modelId
stringlengths 4
81
| tags
sequence | pipeline_tag
stringclasses 17
values | config
dict | downloads
int64 0
59.7M
| first_commit
unknown | card
stringlengths 51
438k
|
---|---|---|---|---|---|---|
Dongjae/mrc2reader | [
"pytorch",
"xlm-roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"XLMRobertaForQuestionAnswering"
],
"model_type": "xlm-roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.54109909504615
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7134
- Matthews Correlation: 0.5411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5294 | 1.0 | 535 | 0.5082 | 0.4183 |
| 0.3483 | 2.0 | 1070 | 0.4969 | 0.5259 |
| 0.2355 | 3.0 | 1605 | 0.6260 | 0.5065 |
| 0.1733 | 4.0 | 2140 | 0.7134 | 0.5411 |
| 0.1238 | 5.0 | 2675 | 0.8516 | 0.5291 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Waynehillsdev/Wayne_NLP_mT5 | [
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] | text2text-generation | {
"architectures": [
"MT5ForConditionalGeneration"
],
"model_type": "mt5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-testingSB-testingSB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-testingSB-testingSB
This model is a fine-tuned version of [MistahCase/distilroberta-base-testingSB](https://huggingface.co/MistahCase/distilroberta-base-testingSB) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1463 | 1.0 | 1461 | 1.1171 |
| 1.0188 | 2.0 | 2922 | 1.0221 |
| 1.0016 | 3.0 | 4383 | 0.9870 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Doogie/Waynehills-KE-T5-doogie | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-testingSB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-testingSB
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a company specific, Danish dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0403
## Model description
Customer-specific model used to embed asset management work orders in Danish
## Intended uses & limitations
Customer-specific and trained for unsupervised categorization tasks
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
Epoch Training Loss Validation Loss
1 0.988500 1.056376
2 0.996300 1.027803
3 0.990300 1.040270
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.98850 | 1.0 | 1461 | 1.5211 |
| 1.3179 | 2.0 | 2922 | 1.3314 |
| 1.1931 | 3.0 | 4383 | 1.2530 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Doohae/q_encoder | [
"pytorch"
] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | ---
language: en
license: mit
tags:
- sequence classification
datasets:
- cola
---
# Model Description
This model is fine-tuning bert-base model on Cola dataset
|
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 25 | null | ---
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bertweet-finetuned-rbam
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-finetuned-rbam
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3971
- F1: 0.6620
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7138 | 1.0 | 1632 | 0.7529 | 0.6814 |
| 0.5692 | 2.0 | 3264 | 0.8473 | 0.6803 |
| 0.4126 | 3.0 | 4896 | 1.0029 | 0.6617 |
| 0.2854 | 4.0 | 6528 | 1.2167 | 0.6635 |
| 0.2007 | 5.0 | 8160 | 1.3971 | 0.6620 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
DoyyingFace/bert-asian-hate-tweets-concat-clean | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 25 | "2022-02-20T19:02:53Z" | ---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: twitter-roberta-base-dec2021_rbam_fine_tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base-dec2021_rbam_fine_tuned
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8295
- Accuracy: 0.6777
- Precision: 0.6743
- Recall: 0.6777
- F1: 0.6753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8455 | 1.0 | 3264 | 0.7663 | 0.6661 | 0.6802 | 0.6661 | 0.6693 |
| 0.6421 | 2.0 | 6528 | 0.8295 | 0.6777 | 0.6743 | 0.6777 | 0.6753 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|
albert-base-v2 | [
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4,785,283 | "2021-08-31T08:36:12Z" | ---
tags:
- conversational
---
# Harry Potter DialoGPT Model |
albert-xlarge-v2 | [
"pytorch",
"tf",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2,973 | "2021-10-07T11:16:33Z" | ---
tags:
- conversational
---
# Harry Potter DialoGPT Model |
bert-base-cased-finetuned-mrpc | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11,644 | "2021-10-20T14:38:54Z" | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Monsia/autonlp-data-tweets-classification
co2_eq_emissions: 4.819872182577655
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 23044997
- CO2 Emissions (in grams): 4.819872182577655
## Validation Metrics
- Loss: 0.001594889909029007
- Accuracy: 0.9997478885667465
- Macro F1: 0.9991190902836993
- Micro F1: 0.9997478885667465
- Weighted F1: 0.9997476735518704
- Macro Precision: 0.9998014460161265
- Micro Precision: 0.9997478885667465
- Weighted Precision: 0.9997479944069787
- Macro Recall: 0.9984426545713851
- Micro Recall: 0.9997478885667465
- Weighted Recall: 0.9997478885667465
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Monsia/autonlp-tweets-classification-23044997
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Monsia/autonlp-tweets-classification-23044997", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
bert-base-cased | [
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"exbert",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8,621,271 | "2021-09-16T15:00:51Z" | ---
language:
- fr
tags:
- classification
license: apache-2.0
metrics:
- accuracy
widget:
- text: "tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les 'ont dit'..."
---
# camembert-fr-covid-tweet-classification
This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2.
This model reaches an accuracy of 66.00% on the dev set.
In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes:
- chiffres : this means, the tweet talk about statistics of covid.
- mesures : this means, the tweet talk about measures take by government of covid
- opinions : this means, the tweet talk about opinion of people like fake new.
- symptomes : this means, the tweet talk about symptoms or variant of covid.
- divers : or other
# Pipelining the Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-classification")
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-classification")
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
# Output: [{'label': 'opinions', 'score': 0.831]
```
|
bert-base-chinese | [
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"zh",
"arxiv:1810.04805",
"transformers",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3,377,486 | "2021-09-23T15:37:40Z" | ---
language:
- fr
tags:
- classification
license: apache-2.0
metrics:
- accuracy
widget:
- text: "tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les 'ont dit'..."
---
# camembert-fr-covid-tweet-sentiment-classification
This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2.
This model reaches an accuracy of 71% on the dev set.
In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes:
- 0 : negatif
- 1 : neutre
- 2 : positif
# Pipelining the Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
# Output: [{'label': 'opinions', 'score': 0.831]
``` |
bert-base-german-cased | [
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"de",
"transformers",
"exbert",
"license:mit",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 175,983 | "2021-12-22T01:05:12Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: test-model-lg-data
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-model-lg-data
This model is a fine-tuned version of [Monsia/test-model-lg-data](https://huggingface.co/Monsia/test-model-lg-data) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3354
- Wer: 0.4150
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0236 | 0.67 | 100 | 0.4048 | 0.4222 |
| 0.0304 | 1.35 | 200 | 0.4266 | 0.4809 |
| 0.0545 | 2.03 | 300 | 0.4309 | 0.4735 |
| 0.0415 | 2.7 | 400 | 0.4269 | 0.4595 |
| 0.033 | 3.38 | 500 | 0.4085 | 0.4537 |
| 0.0328 | 4.05 | 600 | 0.3642 | 0.4224 |
| 0.0414 | 4.73 | 700 | 0.3354 | 0.4150 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3
|
AbdulmalikAdeyemo/wav2vec2-large-xls-r-300m-hausa | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: en
tags:
- exbert
- multiberts
- multiberts-seed-3
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# MultiBERTs Seed 3 Checkpoint 20k (uncased)
Seed 3 intermediate checkpoint 20k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in
[this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint.
The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference
between english and English.
Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani).
## Model description
MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
predict if the two sentences were following each other or not.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the MultiBERTs model as inputs.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-20k')
model = BertModel.from_pretrained("multiberts-seed-3-20k")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular
checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint.
## Training data
The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size
of 256. The sequence length was set to 512 throughout. The optimizer
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
learning rate warmup for 10,000 steps and linear decay of the learning rate after.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2106-16163,
author = {Thibault Sellam and
Steve Yadlowsky and
Jason Wei and
Naomi Saphra and
Alexander D'Amour and
Tal Linzen and
Jasmijn Bastings and
Iulia Turc and
Jacob Eisenstein and
Dipanjan Das and
Ian Tenney and
Ellie Pavlick},
title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis},
journal = {CoRR},
volume = {abs/2106.16163},
year = {2021},
url = {https://arxiv.org/abs/2106.16163},
eprinttype = {arXiv},
eprint = {2106.16163},
timestamp = {Mon, 05 Jul 2021 15:15:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
<a href="https://huggingface.co/exbert/?model=multiberts">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
AdapterHub/bert-base-uncased-pf-squad_v2 | [
"bert",
"en",
"dataset:squad_v2",
"arxiv:2104.08247",
"adapter-transformers",
"question-answering",
"adapterhub:qa/squad2"
] | question-answering | {
"architectures": null,
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | "2021-11-30T16:40:56Z" | ---
language: en
tags:
- deberta-v3
- deberta-v2`
- deberta-mnli
tasks: mnli
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
pipeline_tag: zero-shot-classification
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data.
### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
| | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
| [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
| [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
| [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
|**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
--------
#### Notes.
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory.
Run with `Deepspeed`,
```bash
pip install datasets
pip install deepspeed
# Download the deepspeed config file
wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json
export TASK_NAME=mnli
output_dir="ds_results"
num_gpus=8
batch_size=8
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
run_glue.py \\
--model_name_or_path microsoft/deberta-v2-xxlarge \\
--task_name $TASK_NAME \\
--do_train \\
--do_eval \\
--max_seq_length 256 \\
--per_device_train_batch_size ${batch_size} \\
--learning_rate 3e-6 \\
--num_train_epochs 3 \\
--output_dir $output_dir \\
--overwrite_output_dir \\
--logging_steps 10 \\
--logging_dir $output_dir \\
--deepspeed ds_config.json
```
You can also run with `--sharded_ddp`
```bash
cd transformers/examples/text-classification/
export TASK_NAME=mnli
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\
--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
```
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
``` |
AdapterHub/roberta-base-pf-fce_error_detection | [
"roberta",
"en",
"dataset:fce_error_detection",
"arxiv:2104.08247",
"adapter-transformers",
"token-classification",
"adapterhub:ged/fce"
] | token-classification | {
"architectures": null,
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 30 | null | ---
language:
- hu
tags:
- summarization
license: apache-2.0
metrics:
- rouge
widget:
- text: >-
A Tisza-parti város állatkertjében régóta tartanak szurikátákat ( Suricata
suricatta ) , de tavaly tavaszig nem sikerült szaporítani őket , annak
ellenére , hogy tágas ház és kifutó épült számukra - közölte Veprik Róbert
igazgató . 2010-ben alakult ki az új - három Amszterdamból származó
nőstényből és egy budapesti fiatal hímből álló - csapat , amely szaporodni
kezdett . 2011-ben három , idén pedig egy utóddal örvendeztették meg a
gondozókat és az állatbarátokat . A szurikáták utódai - tizenegy hetes
vemhesség után - október és március között vakon és szőrtelenül jönnek a
világra . A kicsinyek háromhetesen bújnak elő az üregből , és nevelésükben
mindkét szülő részt vesz . A szurikátacsapatokban a család tagjai nagyon
szoros kapcsolatban állnak egymással , viszont nagyon harciasan fellépnek az
idegenekkel szemben , akár meg is ölhetik azt az állatot , amelyet
betolakodónak tekintenek . Bár a Dél-Afrikában , a Kalahári sivatagban
őshonos cibetmacskaféle ragadozókat a szegedi állatkertben természetes
élőhelyükhöz képest kevesebb veszély fenyegeti , a vadasparki erdőben
ragadozó madarak is élnek , amelyek akár zsákmányként is tekinthetnének a
szurikátákra . A szegedi csapatnál azonban szigorú őrség van , mindig lesi
valaki két lábra állva a veszélyforrásokat . Az őrszemek figyelmét még a
sárkányrepülők is felkeltik , és felbukkanásakor valamennyi egyed biztos
helyre menekül . A szurikáták a Kalahári sivatag bozótos , sziklás
területein csapatokban élnek . A 700 gramm körüli testtömegű ragadozók
rovarokkal , lárvákkal , skorpiókkal táplálkoznak , de néha elfogyasztják a
kisebb gerinceseket , tojásokat és növényi gumókat is . A nappal aktív
állatok földalatti üregrendszert ásnak , amelynek több bejárata is van . Ha
a szurikáták idegen csapattal vagy ragadozóval kerülnek szembe , azonnal
elkezdenek ásni , nagy porfelhőt kavarva . Az is gyakorta előfordul , hogy
szorosan egymáshoz bújnak , felborzolják szőrüket , megnyújtják testüket ,
hogy minél nagyobbnak látszódjanak . Az előadásuk csúcspontján pedig az
egész csapat a levegőbe ugrik , közben pedig morog . A hangadás egyébként is
fontos a szurikáták kapcsolatában , az egyedek legalább tízféle jelzést
használnak a kolónián belül .
---
# Hungarian Abstractive Summarization BART model
For further models, scripts and details, see [our repository](https://github.com/nytud/neural-models) or [our demo site](https://juniper.nytud.hu/demo/nlp).
- BART base model (see Results Table - bold):
- Pretrained on Webcorpus 2.0
- Finetuned HI corpus (hvg.hu + index.hu)
- Segments: 559.162
## Limitations
- tokenized input text (tokenizer: [HuSpaCy](https://huggingface.co/huspacy))
- max_source_length = 512
- max_target_length = 256
## Results
| Model | HI | NOL |
| ------------- | ------------- | ------------- |
| BART-base-512 | **30.18/13.86/22.92** | 46.48/32.40/39.45 |
| BART-base-1024| 31.86/14.59/23.79 | 47.01/32.91/39.97 |
## Citation
If you use this model, please cite the following paper:
```
@inproceedings {yang-bart,
title = {{BARTerezzünk! - Messze, messze, messze a világtól, - BART kísérleti modellek magyar nyelvre}},
booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia},
year = {2022},
publisher = {Szegedi Tudományegyetem, Informatikai Intézet},
address = {Szeged, Magyarország},
author = {Yang, Zijian Győző},
pages = {15--29}
}
``` |
Adielcane/Adiel | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: es
tags:
- GPT-2
- Rap
- Lyrics
- Songs
datasets:
- large_spanish_corpus
widget:
- text: "Déjame contarte lo importante que es buscarte un plan\nNo para golpearles o ganarles, sino para darles paz\n"
license: mit
---
# Spanish GPT-2 trained on [Spanish RAP Lyrics](https://www.kaggle.com/smunoz3801/9325-letras-de-rap-en-espaol)
Created by: [Narrativa](https://www.narrativa.com/)
About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI |
Adinda/Adinda | [
"license:artistic-2.0"
] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: es
tags:
- generated_from_trainer
- fake
- news
- competition
datasets:
- fakedes
widget:
- text: 'La palabra "haiga", aceptada por la RAE [SEP] La palabra "haiga", aceptada por la RAE La Real Academia de la Lengua (RAE), ha aceptado el uso de "HAIGA", para su utilización en las tres personas del singular del presente del subjuntivo del verbo hacer, aunque asegura que la forma más recomendable en la lengua culta para este tiempo, sigue siendo "haya".
Así lo han confirmado fuentes de la RAE, que explican que este cambio ha sido propuesto y aprobado por el pleno de la Academia de la Lengua, tras la extendida utilización por todo el territorio nacional, sobre todo, empleado por personas carentes de estudios o con estudios básicos de graduado escolar. Ya no será objeto de burla ese compañero que a diario repite aquello de "Mientras que haiga faena, no podemos quejarnos" o esa abuela que repite aquello de "El que haiga sacao los juguetes, que los recoja".
Entre otras palabras novedosas que ha aceptado la RAE, contamos también con "Descambiar", significa deshacer un cambio, por ejemplo "devolver la compra". Visto lo visto, nadie apostaría que la palabra "follamigos" sea la siguiente de la lista.'
metrics:
- f1
- accuracy
model-index:
- name: roberta-large-fake-news-detection-spanish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBERTa-large-fake-news-detection-spanish
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) on an [Spanish Fake News Dataset](https://sites.google.com/view/iberlef2020/#h.p_w0c31bn0r-SW).
It achieves the following results on the evaluation set:
- Loss: 1.7474
- F1: **0.7717**
- Accuracy: 0.7797
> So, based on the [leaderboard](https://sites.google.com/view/fakedes/results?authuser=0) our model **outperforms** the best model (scores F1 = 0.7666).
## Model description
RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the RoBERTa large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the National Library of Spain (Biblioteca Nacional de España) from 2009 to 2019.
## Intended uses & limitations
The objective of this task is to decide if a news item is fake or real by analyzing its textual representation.
## Training and evaluation data
**FakeDeS**: [Fake News Detection in Spanish Shared Task](https://sites.google.com/view/fakedes/home)
Fake news provides information that aims to manipulate people for different purposes: terrorism, political elections, advertisement, satire, among others. In social networks, misinformation extends in seconds among thousands of people, so it is necessary to develop tools that help control the amount of false information on the web. Similar tasks are detection of popularity in social networks and detection of subjectivity of messages in this media. A fake news detection system aims to help users detect and filter out potentially deceptive news. The prediction of intentionally misleading news is based on the analysis of truthful and fraudulent previously reviewed news, i.e., annotated corpora.
The Spanish Fake News Corpus is a collection of news compiled from several web sources: established newspapers websites,media companies websites, special websites dedicated to validating fake news, websites designated by different journalists as sites that regularly publish fake news. The news were collected from January to July of 2018 and all of them were written in Mexican Spanish.
The corpus has 971 news collected from January to July, 2018, from different sources:
- Established newspapers websites,
- Media companies websites,
- Special websites dedicated to validating fake news,
- Websites designated by different journalists as sites that regularly publish fake news.
The corpus was tagged considering only two classes (true or fake), following a manual labeling process:
- A news is true if there is evidence that it has been published in reliable sites.
- A news is fake if there is news from reliable sites or specialized website in detection of deceptive content that contradicts it or no other evidence was found about the news besides the source.
- We collected the true-fake news pair of an event so there is a correlation of news in the corpus.
In order to avoid topic bias, the corpus covers news from 9 different topics: Science, Sport, Economy, Education, Entertainment, Politics, Health, Security, and Society. As it can be seen in the table below, the number of fake and true news is quite balanced. Approximately 70% will be used as training corpus (676 news), and the 30% as testing corpus (295 news).
The training corpus contains the following information:
- Category: Fake/ True
- Topic: Science/ Sport/ Economy/ Education/ Entertainment/ Politics, Health/ Security/ Society
- Headline: The title of the news.
- Text: The complete text of the news.
- Link: The URL where the news was published.
More information needed
## Training procedure
TBA
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| No log | 1.0 | 243 | 0.6282 | 0.7513 | 0.75 |
| No log | 2.0 | 486 | 0.9600 | 0.7346 | 0.7587 |
| 0.5099 | 3.0 | 729 | 1.2128 | 0.7656 | 0.7570 |
| 0.5099 | 4.0 | 972 | 1.4001 | 0.7606 | 0.7622 |
| 0.1949 | 5.0 | 1215 | 1.9748 | 0.6475 | 0.7220 |
| 0.1949 | 6.0 | 1458 | 1.7386 | 0.7706 | 0.7710 |
| 0.0263 | 7.0 | 1701 | 1.7474 | 0.7717 | 0.7797 |
| 0.0263 | 8.0 | 1944 | 1.8114 | 0.7695 | 0.7780 |
| 0.0046 | 9.0 | 2187 | 1.8444 | 0.7709 | 0.7797 |
| 0.0046 | 10.0 | 2430 | 1.8552 | 0.7709 | 0.7797 |
### Fast usage with HF `pipelines`
```python
from transformers import pipeline
ckpt = "Narrativaai/fake-news-detection-spanish"
classifier = pipeline("text-classification", model=ckpt)
headline = "Your headline"
text = "Your article text here..."
classifier(headline + " [SEP] " + text)
```
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
Created by: [Narrativa](https://www.narrativa.com/)
About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI |
Adityanawal/testmodel_1 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | Found. Redirecting to https://cdn-lfs.huggingface.co/Narshion/bert-base-multilingual-cased-mwach/49c11380f626964b7f870051fe1c23de7638cdb31bad6e18fb8326d2fe2f8e3a?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1685105678&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL05hcnNoaW9uL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtY2FzZWQtbXdhY2gvNDljMTEzODBmNjI2OTY0YjdmODcwMDUxZmUxYzIzZGU3NjM4Y2RiMzFiYWQ2ZTE4ZmI4MzI2ZDJmZTJmOGUzYT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2ODUxMDU2Nzh9fX1dfQ__&Signature=kRixExB1Nlisn80xIg66nCttaGLMTj3DNDUZiJJ17Cd1lmELBAHsoQFFTAfvGnohBZU1slXQVlbbAmWZeNqMGTtiTq0M80aVUuIJxojnVz61WFqpCq6e8yYi0bAVKcP9uKqqsTiOyoq4btna8oOg5Gv3MGegjxUti2SYHYxMC8Yv9ySHDSBFD0%7EqAnFyUGsASAEabaw3ZeXIoYWfT0kBxbSrQRDDFmvHVb%7EZb8Z6KK%7E%7EGUqCtU%7ERKF75jCk-UuqBQRwPF0dejU7XiTaryvfxR5i-7PvNy7UC8NwGejZnVmQrjX0em36wn7%7E5goBjjnOnNYOJ6sxGRbnq2IoI3ZPLfQ__&Key-Pair-Id=KVTP0A1DKRTAX |
Adnan/UrduNewsHeadlines | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
datasets:
- null
model-index:
- name: bert-base-multilingual-cased-urgency
results:
- task:
name: Masked Language Modeling
type: fill-mask
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-urgency
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/) on the mWACH NEO dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2797
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 4.1408 | 1.0 | 5659 | 3.6705 |
| 2.8777 | 2.0 | 11318 | 2.5536 |
| 2.561 | 3.0 | 16977 | 2.2740 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Akaramhuggingface/News | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- NbAiLab/NPSC
- robust-speech-event
- false
- nn-NO
- hf-asr-leaderboard
datasets:
- NbAiLab/NPSC
language:
- nn-NO
model-index:
- name: XLSR-300M-nynorsk
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_nynorsk
metrics:
- name: Test (Nynorsk) WER
type: wer
value: 0.12136286840623241
- name: Test (Nynorsk) CER
type: cer
value: 0.041988362534453025
---
|
Akash7897/bert-base-cased-wikitext2 | [
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
language: no
license: cc-by-4.0
thumbnail: https://raw.githubusercontent.com/NBAiLab/notram/master/images/nblogo_2.png
pipeline_tag: zero-shot-classification
tags:
- nb-bert
- zero-shot-classification
- pytorch
- tensorflow
- norwegian
- bert
datasets:
- mnli
- multi_nli
- xnli
widget:
- example_title: Nyhetsartikkel om FHI
text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.
candidate_labels: helse, politikk, sport, religion
---
**Release 1.0** (March 11, 2021)
# NB-Bert base model finetuned on Norwegian machine translated MNLI
## Description
The most effective way of creating a good classifier is to finetune a pre-trained model for the specific task at hand. However, in many cases this is simply impossible.
[Yin et al.](https://arxiv.org/abs/1909.00161) proposed a very clever way of using pre-trained MNLI models as zero-shot sequence classifiers. The methods works by reformulating the question to an MNLI hypothesis. If we want to figure out if a text is about "sport", we simply state that "This text is about sport" ("Denne teksten handler om sport").
When the model is finetuned on the 400k large MNLI task, it is in many cases able to solve this classification tasks. There are no MNLI-set of this size in Norwegian but we have trained it on a machine translated version of the original MNLI-set.
## Testing the model
For testing the model, we recommend the [NbAiLab Colab Notebook](https://colab.research.google.com/gist/peregilk/769b5150a2f807219ab8f15dd11ea449/nbailab-mnli-norwegian-demo.ipynb)
## Hugging Face zero-shot-classification pipeline
The easiest way to try this out is by using the Hugging Face pipeline. Please, note that you will get better results when using Norwegian hypothesis template instead of the default English one.
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli")
```
You can then use this pipeline to classify sequences into any of the class names you specify.
```python
sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.'
candidate_labels = ['politikk', 'helse', 'sport', 'religion']
hypothesis_template = 'Dette eksempelet er {}.'
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True)
# {'labels': ['helse', 'politikk', 'sport', 'religion'],
# 'scores': [0.4210019111633301, 0.0674605593085289, 0.000840459018945694, 0.0007541406666859984],
# 'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.'}
```
## More information
For more information on the model, see
https://github.com/NBAiLab/notram
Here you will also find a Colab explaining more in details how to use the zero-shot-classification pipeline. |
Akash7897/distilbert-base-uncased-finetuned-cola | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | null | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- bert
- ner
thumbnail: nblogo_3.png
pipeline_tag: token-classification
datasets:
- norne
inference:
parameters:
aggregation_strategy: "first"
widget:
- text: Trond Giske har bekreftet på spørsmål fra Adresseavisen at Hansen leide et rom i hans leilighet i Trondheim.
---
**Release 1.0** (November 17, 2021)
# nb-bert-base-ner
## Description
NB-Bert base model fine-tuned on the Named Entity Recognition task using the [NorNE dataset](https://huggingface.co/datasets/NbAiLab/norne).
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-bert-base-ner")
model = AutoModelForTokenClassification.from_pretrained("NbAiLab/nb-bert-base-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Jeg heter Kjell og bor i Oslo."
ner_results = nlp(example)
print(ner_results)
``` |
Akash7897/fill_mask_model | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- bert
pipeline_tag: fill-mask
widget:
- text: På biblioteket kan du [MASK] en bok.
- text: Dette er et [MASK] eksempel.
- text: Av og til kan en språkmodell gi et [MASK] resultat.
- text: Som ansat får du [MASK] for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling.
---
- **Release 1.1** (March 11, 2021)
- **Release 1.0** (January 13, 2021)
# NB-BERT-base
## Description
NB-BERT-base is a general BERT-base model built on the large digital collection at the National Library of Norway.
This model is based on the same structure as [BERT Cased multilingual model](https://github.com/google-research/bert/blob/master/multilingual.md), and is trained on a wide variety of Norwegian text (both bokmål and nynorsk) from the last 200 years.
## Intended use & limitations
The 1.1 version of the model is general, and should be fine-tuned for any particular use. Some fine-tuning sets may be found on GitHub, see
* https://github.com/NBAiLab/notram
## Training data
The model is trained on a wide variety of text. The training set is described on
* https://github.com/NBAiLab/notram
## More information
For more information on the model, see
https://github.com/NBAiLab/notram
|
Akash7897/gpt2-wikitext2 | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- bert
thumbnail: nblogo_3.png
pipeline_tag: fill-mask
widget:
- text: På biblioteket kan du låne en [MASK].
---
- **Release 1.0beta** (April 29, 2021)
# NB-BERT-large (beta)
## Description
NB-BERT-large is a general BERT-large model built on the large digital collection at the National Library of Norway.
This model is trained from scratch on a wide variety of Norwegian text (both bokmål and nynorsk) from the last 200 years using a monolingual Norwegian vocabulary.
## Intended use & limitations
The 1.0 version of the model is general, and should be fine-tuned for any particular use. Some fine-tuning sets may be found on Github, see
* https://github.com/NBAiLab/notram
## Training data
The model is trained on a wide variety of text. The training set is described on
* https://github.com/NBAiLab/notram
## More information
For more information on the model, see
https://github.com/NBAiLab/notram |
Akash7897/my-newtokenizer | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- 'no'
- nb
- nn
tags:
- pytorch
- causal-lm
license: apache-2.0
datasets:
- NbAiLab/NCC
- mc4
- oscar
pipeline_tag: text-generation
---
- **Release ✨v1✨** (January 18th, 2023) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-sharded), [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-float16), and [mesh-transformers-jax](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1-mesh) weights*
<details><summary>All checkpoints</summary>
- **Release v1beta5** (December 18th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta5-float16) weights*
- **Release v1beta4** (October 28th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta4-float16) weights*
- **Release v1beta3** (August 8th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3-sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta3-float16) weights*
- **Release v1beta2** (June 18th, 2022) *[Full-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta2), [sharded](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/sharded), and [half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta2-float16) weights*
- **Release v1beta1** (April 28th, 2022) *[Half-precision](https://huggingface.co/NbAiLab/nb-gpt-j-6B/tree/v1beta1-float16) weights*
</details>
# NB-GPT-J-6B
## Demo: https://ai.nb.no/demo/nb-gpt-j-6B/ (Be patient, it runs on CPU 😅)
## Model Description
NB-GPT-J-6B is a Norwegian finetuned version of GPT-J 6B, a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters (6 billion parameters).
<figure>
| Hyperparameter | Value |
|----------------------|------------|
| \\(n_{parameters}\\) | 6053381344 |
| \\(n_{layers}\\) | 28* |
| \\(d_{model}\\) | 4096 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<figcaption><p><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</p>
<p><strong>†</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
GPT-2/GPT-3.
## Training data
NB-GPT-J-6B was finetuned on [NCC](https://huggingface.co/datasets/NbAiLab/NCC), the Norwegian Colossal Corpus, plus other Internet sources like Wikipedia, mC4, and OSCAR.
## Training procedure
This model was finetuned for 130 billion tokens over 1,000,000 steps on a TPU v3-8 VM. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
## Intended Use and Limitations
NB-GPT-J-6B learns an inner representation of the Norwegian language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt.
### How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-gpt-j-6B")
model = AutoModelForCausalLM.from_pretrained("NbAiLab/nb-gpt-j-6B")
```
### Limitations and Biases
As the original GPT-J model, the core functionality of NB-GPT-J-6B is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting NB-GPT-J-6B it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon NB-GPT-J-6B to produce factually accurate output.
The original GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. A fine-grained analysis of the bias contained in the corpus used for fine-tuning is still pending.
As with all language models, it is hard to predict in advance how NB-GPT-J-6B will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Evaluation results
We still have to find proper datasets to evaluate the model, so help is welcome!
## Citation and Related Information
### BibTeX entry
To cite this model or the corpus used:
```bibtex
@inproceedings{kummervold2021operationalizing,
title={Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model},
author={Kummervold, Per E and De la Rosa, Javier and Wetjen, Freddy and Brygfjeld, Svein Arne},
booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
pages={20--29},
year={2021},
url={https://aclanthology.org/2021.nodalida-main.3/}
}
```
If you use this model, we would love to hear about it! Reach out on twitter, GitHub, Discord, or shoot us an email.
## Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence. In no event shall the owner of the models (The National Library of Norway) be liable for any results arising from the use made by third parties of these models.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Specially, to [Stella Biderman](https://www.stellabiderman.com) for her general openness, and [Ben Wang](https://github.com/kingoflolz/mesh-transformer-jax) for the main codebase. |
Akash7897/test-clm | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- roberta
pipeline_tag: fill-mask
widget:
- text: På biblioteket kan du <mask> en bok.
- text: Dette er et <mask> eksempel.
- text: Av og til kan en språkmodell gi et <mask> resultat.
- text: Som ansat får du <mask> for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling.
---
# This is just a Test Model. Do NOT use for anything!
Continued pretrained from the nb-roberta-base.
The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian].
## Train for 180k steps for 128 sequences:
```bash
./run_mlm_flax_stream.py \
--output_dir="./" \
--model_type="roberta" \
--config_name="./" \
--tokenizer_name="./" \
--model_name_or_path="./" \
--dataset_name="NbAiLab/scandinavian" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="6e-5" \
--warmup_steps="5000" \
--overwrite_output_dir \
--cache_dir /mnt/disks/flaxdisk/cache/ \
--num_train_steps="180000" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="10000" \
--save_steps="10000" \
--eval_steps="10000" \
--preprocessing_num_workers 96 \
--auth_token True \
--adafactor \
--push_to_hub
```
## Train for 20k steps for 512 sequences:
```bash
./run_mlm_flax_stream.py \
--output_dir="./" \
--model_type="roberta" \
--config_name="./" \
--tokenizer_name="./" \
--model_name_or_path="./" \
--dataset_name="NbAiLab/scandinavian" \
--max_seq_length="512" \
--weight_decay="0.01" \
--per_device_train_batch_size="48" \
--per_device_eval_batch_size="48" \
--learning_rate="3e-5" \
--warmup_steps="5000" \
--overwrite_output_dir \
--cache_dir /mnt/disks/flaxdisk/cache/ \
--num_train_steps="20000" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="20000" \
--save_steps="10000" \
--eval_steps="10000" \
--preprocessing_num_workers 96 \
--auth_token True \
--adafactor \
--push_to_hub
```
Approximate additional training time: 1 week.
|
Akashamba/distilbert-base-uncased-finetuned-ner | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: no
license: cc-by-4.0
tags:
- seq2seq
datasets:
- Norwegian Nynorsk/Bokmål
---
# 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴
This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything.
Currently the model is training. It is expected that it should be finished by the end of August 2021.
The following setting were used in training:
```bash
./run_t5_mlm_flax_streaming.py \
--output_dir="./" \
--model_type="t5" \
--config_name="./" \
--tokenizer_name="./" \
--dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \
--max_seq_length="512" \
--weight_decay="0.01" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="8e-3" \
--warmup_steps="5000" \
--overwrite_output_dir \
--cache_dir /mnt/disks/flaxdisk/cache/ \
--num_train_epochs="5" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="500" \
--num_train_steps="1000000" \
--num_eval_samples="5000" \
--save_steps="5000" \
--eval_steps="5000" \
--preprocessing_num_workers 96 \
--adafactor \
--push_to_hub
```
|
Akashpb13/Central_kurdish_xlsr | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ckb",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
language: no
license: cc-by-4.0
tags:
- seq2seq
datasets:
- Norwegian Nynorsk/Bokmål
---
# 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴
This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8.
This model is currently training. It will finish in January 2022. Please do not use yet..
```
|
Akashpb13/Galician_xlsr | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"gl",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | null | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- NbAiLab/NPSC
- no
- nb
- nb-NO
datasets:
- NbAiLab/NPSC
language:
- nb
- no
model-index:
- name: nb-wav2vec2-1b-bokmaal
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_bokmaal
metrics:
- name: Test (Bokmål) WER
type: wer
value: 0.0633
- name: Test (Bokmål) CER
type: cer
value: 0.0248
---
# Norwegian Wav2Vec2 Model - 1B Bokmål
This model is finetuned on top of feature extractor [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-1b) from Facebook/Meta. The finetuned model achieves the following results on the test set with a 5-gram KenLM. The numbers in parentheses are the results without the language model:
- **WER: 0.0633** (0.0738)
- **CER: 0.0248** (0.0263)
## Model description
This is one of several Wav2Vec-models our team created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of our models and their final scores:
| Model | Final WER | |
|:--------------|:------------|:------------:|
| NbAiLab/nb-wav2vec2-1b-bokmaal (this model) | 6.33 | |
| [NbAiLab/nb-wav2vec2-300m-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal) | 7.03 | |
| [NbAiLab/nb-wav2vec2-300m-nynorsk](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-nynorsk) | 12.22 | |
## Dataset
In parallel with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/) to the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) in 🤗 Dataset format and used that as the main source for training.
## Code
We have released all the code developed during the event so that the Norwegian NLP community can build upon it when developing even better Norwegian ASR models. The finetuning of these models is not very computationally demanding. After following the instructions here, you should be able to train your own automatic speech recognition system in less than a day with an average GPU.
## Team
The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen.
## Training procedure
To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model.
When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running these will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck!
### Language Model
As the scores indicate, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) explaining how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model).
### Parameters
The final model was run using these parameters:
```
--dataset_name="NbAiLab/NPSC"
--model_name_or_path="facebook/wav2vec2-xls-r-1b"
--dataset_config_name="16K_mp3_bokmaal"
--output_dir="./"
--overwrite_output_dir
--num_train_epochs="40"
--per_device_train_batch_size="12"
--per_device_eval_batch_size="12"
--gradient_accumulation_steps="2"
--learning_rate="2e-5"
--warmup_steps="2000"
--length_column_name="input_length"
--evaluation_strategy="steps"
--text_column_name="text"
--save_steps="500"
--eval_steps="500"
--logging_steps="100"
--layerdrop="0.041"
--attention_dropout="0.094"
--activation_dropout="0.055"
--hidden_dropout="0.047"
--save_total_limit="3"
--freeze_feature_encoder
--feat_proj_dropout="0.04"
--mask_time_prob="0.082"
--mask_time_length="10"
--mask_feature_prob="0.25"
--mask_feature_length="64"
--gradient_checkpointing
--min_duration_in_seconds="0.5"
--max_duration_in_seconds="30.0"
--ctc_zero_infinity=True
--use_auth_token
--seed="42"
--fp16
--group_by_length
--do_train --do_eval
--push_to_hub
--preprocessing_num_workers="16"
```
Using these settings, the training might take 3-4 days on an average GPU. You can, however, get a decent model and faster results by tweaking these parameters.
| Parameter| Comment |
|:-------------|:-----|
| per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system |
|gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues |
| learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability |
| epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
|
Akashpb13/Hausa_xlsr | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ha",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"model_for_talk",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"license:apache-2.0",
"model-index",
"has_space"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | "2022-02-15T11:29:59Z" | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- NbAiLab/NPSC
- no
- nb
- nb-NO
datasets:
- NbAiLab/NPSC
language:
- nb-NO
model-index:
- name: nb-wav2vec2-300m-bokmaal
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_bokmaal
metrics:
- name: Test (Bokmål) WER
type: wer
value: 0.0703
- name: Test (Bokmål) CER
type: cer
value: 0.0269
---
# Norwegian Wav2Vec2 Model - 300M - VoxRex - Bokmål
This model is finetuned on top of feature extractor [VoxRex-model](https://huggingface.co/KBLab/wav2vec2-large-voxrex) from the National Library of Sweden. The finetuned model achieves the following results on the test set with a 5-gram KenLM. The numbers in parentheses are the results without the language model:
- **WER: 0.0703** (0.0979)
- **CER: 0.0269** (0.0311)
## Model description
This is one of several Wav2Vec-models our team created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of our models and their final scores:
| Model | Final WER | |
|:--------------|:------------|:------------:|
| [NbAiLab/nb-wav2vec2-1b-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal) | 6.33 | |
| NbAiLab/nb-wav2vec2-300m-bokmaal (this model) | 7.03 | |
| [NbAiLab/nb-wav2vec2-300m-nynorsk](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-nynorsk) | 12.22 | |
## Dataset
In parallel with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/) to the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) in 🤗 Dataset format and used that as the main source for training.
## Code
We have released all the code developed during the event so that the Norwegian NLP community can build upon it when developing even better Norwegian ASR models. The finetuning of these models is not very computationally demanding. After following the instructions here, you should be able to train your own automatic speech recognition system in less than a day with an average GPU.
## Team
The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen.
## Training procedure
To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model.
When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running these will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck!
### Language Model
As the scores indicate, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) explaining how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model).
### Parameters
The final model was run using these parameters:
```
--dataset_name="NbAiLab/NPSC"
--model_name_or_path="KBLab/wav2vec2-large-voxrex"
--dataset_config_name="16K_mp3_bokmaal"
--output_dir="./"
--overwrite_output_dir
--num_train_epochs="15"
--per_device_train_batch_size="16"
--per_device_eval_batch_size="16"
--gradient_accumulation_steps="2"
--learning_rate="1e-4"
--warmup_steps="2000"
--length_column_name="input_length"
--evaluation_strategy="steps"
--text_column_name="text"
--save_steps="500"
--eval_steps="500"
--logging_steps="100"
--layerdrop="0.041"
--attention_dropout="0.094"
--activation_dropout="0.055"
--hidden_dropout="0.047"
--save_total_limit="3"
--freeze_feature_encoder
--feat_proj_dropout="0.04"
--mask_time_prob="0.082"
--mask_time_length="10"
--mask_feature_prob="0.25"
--mask_feature_length="64"
--gradient_checkpointing
--min_duration_in_seconds="0.5"
--max_duration_in_seconds="30.0"
--use_auth_token
--seed="42"
--fp16
--group_by_length
--do_train --do_eval
--push_to_hub
--preprocessing_num_workers="32"
```
Using these settings, the training might take 3-4 days on an average GPU. You can, however, get a decent model and faster results by tweaking these parameters.
| Parameter| Comment |
|:-------------|:-----|
| per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system |
|gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues |
| learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability |
| epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
|
Akashpb13/Kabyle_xlsr | [
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"kab",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"sw",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | ---
license: apache-2.0
tags:
- automatic-speech-recognition
- NbAiLab/NPSC
- no
- nn
- nn-NO
datasets:
- NbAiLab/NPSC
language:
- nn-NO
model-index:
- name: nb-wav2vec2-300m-nynorsk
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NPSC
type: NbAiLab/NPSC
args: 16K_mp3_nynorsk
metrics:
- name: Test (Nynorsk) WER
type: wer
value: 0.1222
- name: Test (Nynorsk) CER
type: cer
value: 0.0419
---
# Norwegian Wav2Vec2 Model - 300M - VoxRex - Nynorsk
This model is finetuned on top of feature extractor [VoxRex-model](https://huggingface.co/KBLab/wav2vec2-large-voxrex) from the National Library of Sweden. The finetuned model achieves the following results on the test set with a 5-gram KenLM. The numbers in parentheses are the results without the language model:
- **WER: 0.1222** (0.1537)
- **CER: 0.0419** (0.0468)
## Model description
This is one of several Wav2Vec-models our team created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of our models and their final scores:
| Model | Final WER | |
|:--------------|:------------|:------------:|
| [NbAiLab/nb-wav2vec2-1b-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal) | 6.33 | |
| [NbAiLab/nb-wav2vec2-300m-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal) | 7.03 | |
| NbAiLab/nb-wav2vec2-300m-nynorsk (this model) | 12.22 | |
### Dataset
In parallel with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/) to the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) in 🤗 Dataset format and used that as the main source for training.
## Code
We have released all the code developed during the event so that the Norwegian NLP community can build upon it when developing even better Norwegian ASR models. The finetuning of these models is not very computationally demanding. After following the instructions here, you should be able to train your own automatic speech recognition system in less than a day with an average GPU.
## Team
The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen.
## Training procedure
To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model.
When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running these will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck!
### Language Model
As the scores indicate, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) explaining how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model).
### Parameters
The final model was run using these parameters:
```
--dataset_name="NbAiLab/NPSC"
--model_name_or_path="KBLab/wav2vec2-large-voxrex"
--dataset_config_name="16K_mp3_nynorsk"
--output_dir="./"
--overwrite_output_dir
--num_train_epochs="80"
--per_device_train_batch_size="16"
--per_device_eval_batch_size="16"
--gradient_accumulation_steps="2"
--learning_rate="1e-4"
--warmup_steps="2000"
--length_column_name="input_length"
--evaluation_strategy="steps"
--text_column_name="text"
--save_steps="500"
--eval_steps="500"
--logging_steps="100"
--layerdrop="0.041"
--attention_dropout="0.094"
--activation_dropout="0.055"
--hidden_dropout="0.047"
--save_total_limit="3"
--freeze_feature_encoder
--feat_proj_dropout="0.04"
--mask_time_prob="0.082"
--mask_time_length="10"
--mask_feature_prob="0.25"
--mask_feature_length="64"
--gradient_checkpointing
--min_duration_in_seconds="0.5"
--max_duration_in_seconds="30.0"
--use_auth_token
--seed="42"
--fp16
--group_by_length
--do_train --do_eval
--push_to_hub
--preprocessing_num_workers="32"
```
Using these settings, the training might take 3-4 days on an average GPU. You can, however, get a decent model and faster results by tweaking these parameters.
| Parameter| Comment |
|:-------------|:-----|
| per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system |
|gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues |
| learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability |
| epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
|
Akashpb13/Swahili_xlsr | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sw",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"model_for_talk",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
language: no
license: cc-by-4.0
tags:
- norwegian
- bert
pipeline_tag: fill-mask
widget:
- text: På biblioteket kan du [MASK] en bok.
- text: Dette er et [MASK] eksempel.
- text: Av og til kan en språkmodell gi et [MASK] resultat.
- text: Som ansat får du [MASK] for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling.
---
## Results
|**Model** | **NoRec** | **NorNe-NB**| **NorNe-NN** | **NorDial** | **DaNe** | **Da-Angry-Tweets** |
|:-----------|------------:|------------:|------------:|------------:|------------:|------------:|
|roberta-base (English) | 51.77 | 79.01/79.53| 79.79/83.02 | 67.18| 75.44/78.07 | 55.51 |
|mBERT-cased | 63.91 | 83.72/86.12| 83.05/87.12 | 66.23| 80.00/81.43 | 57.67 |
|nb-bert-base | 75.60 |**91.98**/**92.95** |**90.93**/**94.06**|69.39| 81.95/84.83| 64.18|
|notram-bert-norwegian-cased | 72.47 | 91.77/93.12|89.79/93.70| **78.55**| **83.69**/**86.55**| **64.19** |
|notram-bert-norwegian-uncased | 73.47 | 89.28/91.61 |87.23/90.23 |74.21 | 80.29/82.31| 61.18|
|notram-bert-norwegian-cased-pod | **76.18** | 91.24/92.24| 90.88/93.21| 76.21| 81.82/84.99| 62.16 |
|nb-roberta-base | 68.77 |87.99/89.43 | 85.43/88.66| 76.34| 75.91/77.94| 61.50 |
|nb-roberta-base-scandinavian | 67.88 | 87.73/89.14| 87.39/90.92| 74.81| 76.22/78.66 | 63.37 |
|nb-roberta-base-v2-200k | 46.87 | 85.57/87.04| - | 64.99| - | - |
|test_long_w5 200k| 60.48 | 88.00/90:00 | 83.93/88.45 | 68.41 |75.22/78.50| 57.95 |
|test_long_w5_roberta_tokenizer 200k| 63.51| 86.28/87.77| 84.95/88.61 | 69.86 | 71.31/74.27 | 59.96 |
|test_long_w5_roberta_tokenizer 400k| 59.76 |87.39/89.06 | 85.16/89.01 | 71.46 | 72.39/75.65| 39.73 |
|test_long_w5_dataset 400k| 66.80 | 86.52/88.55 | 82.81/86.76 | 66.94 | 71.47/74.20| 55.25 |
|test_long_w5_dataset 600k| 67.37 | 89.98/90.95 | 84.53/88.37 | 66.84 | 75.14/76.50| 57.47 |
|roberta-jan-128_ncc - 400k - 128| 67.79 | 91.45/92.33 | 86.41/90.19 | 67.20 | 81.00/82.39| 59.65 |
|roberta-jan-128_ncc - 1000k - 128| 68.17 | 89.34/90.74 | 86.89/89.87 | 68.41 | 80.30/82.17| 61.63 | |
Akbarariza/Anjar | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | Just for performing some experiments. Do not use.
This needed to be restarted at 100k. I am getting memory errors at the end of the epoch. Not really sure why.
Step 2 is therefore on train_2__4. Static learning rate for a while. The first 100k ended at 0.59. This is decent so early. No point in running more epochs here though. Changing the corpus and continue training.
|
Akira-Yana/distilbert-base-uncased-finetuned-cola | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | Just for performing some experiments. Do not use.
Since the loss seem to start going up, I did have to restore this from 9e945cb0636bde60bec30bd7df5db30f80401cc7 (2 step 600k/200). I am then restarting with warmup decaying from 1e-4.
That did failed. Checked out c94b5bb43b05fc798f9db013d940b05b3b47cd98 instead and restarted step 3 from here.
|
AlekseyKorshuk/bert | [
"pytorch",
"distilbert",
"text-classification",
"transformers",
"generated_from_trainer",
"license:apache-2.0"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | null | ---
language:
- ru
widget:
- text: "Смерти нет, "
---
not for use...
technical data |
AlekseyKorshuk/comedy-scripts | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 20 | null | ---
language:
- ru
widget:
- text: "Немыслимо, "
metrics:
- loss: 3.3
- perplexity: 25.7528
---
Start from sberbank-ai/rugpt3small_based_on_gpt2 and finetuning on Govard Phillips Lovecraft texts (russian).
On this moment - only 1 epoch (perplexity falls reasons)
on progress...
|
Alireza1044/albert-base-v2-mrpc | [
"pytorch",
"tensorboard",
"albert",
"text-classification",
"en",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0"
] | text-classification | {
"architectures": [
"AlbertForSequenceClassification"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 204 | null | ---
tags:
- t5-new-failed
---
# Test
Hf T5: -149.6728801727295
MTF T5: -74.4166259765625
|
Andrey78/my_model_nlp | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- en
- code
tags:
- code completion
- code generation
license: "apache-2.0"
---
# NLGP docstring model
The NLGP docstring model was introduced in the paper [Natural Language-Guided Programming](https://arxiv.org/abs/2108.05198). The model was trained on a collection of Jupyter notebooks and can be used to synthesize Python code that addresses a natural language **intent** in a certain code **context** (see the example below).
Also see the [NLGP natural](https://huggingface.co/Nokia/nlgp-natural) model.
This work was carried out by a research team in Nokia Bell Labs.
**Context**
```py
import matplotlib.pyplot as plt
values = [1, 2, 3, 4]
labels = ["a", "b", "c", "d"]
```
**Intent**
```py
# plot a bart chart
```
**Prediction**
```py
plt.bar(labels, values)
plt.show()
```
## Usage
```py
import re
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
# load the model
tok = GPT2TokenizerFast.from_pretrained("Nokia/nlgp-docstring")
model = GPT2LMHeadModel.from_pretrained("Nokia/nlgp-docstring")
# preprocessing functions
num_spaces = [2, 4, 6, 8, 10, 12, 14, 16, 18]
def preprocess(context, query):
"""
Encodes context + query as a single string and
replaces whitespace with special tokens <|2space|>, <|4space|>, ...
"""
input_str = f"{context}\n{query} <|endofcomment|>\n"
indentation_symbols = {n: f"<|{n}space|>" for n in num_spaces}
m = re.match("^[ ]+", input_str)
if not m:
return input_str
leading_whitespace = m.group(0)
N = len(leading_whitespace)
for n in self.num_spaces:
leading_whitespace = leading_whitespace.replace(n * " ", self.indentation_symbols[n])
return leading_whitespace + input_str[N:]
detokenize_pattern = re.compile(fr"<\|(\d+)space\|>")
def postprocess(output):
output = output.split("<|cell|>")[0]
def insert_space(m):
num_spaces = int(m.group(1))
return num_spaces * " "
return detokenize_pattern.sub(insert_space, output)
# inference
code_context = """
import matplotlib.pyplot as plt
values = [1, 2, 3, 4]
labels = ["a", "b", "c", "d"]
"""
query = "# plot a bar chart"
input_str = preprocess(code_context, query)
input_ids = tok(input_str, return_tensors="pt").input_ids
max_length = 150 # don't generate output longer than this length
total_max_length = min(1024 - input_ids.shape[-1], input_ids.shape[-1] + 150) # total = input + output
input_and_output = model.generate(
input_ids=input_ids,
max_length=total_max_length,
min_length=10,
do_sample=False,
num_beams=4,
early_stopping=True,
eos_token_id=tok.encode("<|cell|>")[0]
)
output = input_and_output[:, input_ids.shape[-1]:] # remove the tokens that correspond to the input_str
output_str = tok.decode(output[0])
postprocess(output_str)
```
## License and copyright
Copyright 2021 Nokia
Licensed under the Apache License 2.0
SPDX-License-Identifier: Apache-2.0 |
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: albert-base-v2_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2_squad
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the **squadV1** dataset.
- "eval_exact_match": 82.69631031220435
- "eval_f1": 90.10806626207174
- "eval_samples": 10808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: albert-large-v2_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-large-v2_squad
This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the **squadV1** dataset.
- "eval_exact_match": 84.80605487228004
- "eval_f1": 91.80638438705844
- "eval_samples": 10808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilroberta-base_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base_squad
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the **squadV1** dataset.
- "eval_exact_match": 80.97445600756859
- "eval_f1": 88.0153886332912
- "eval_samples": 10790
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_twostage_quadruplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: google_electra-small-discriminator_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# google_electra-small-discriminator_squad
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the **squadV1** dataset.
- "eval_exact_match": 76.95364238410596
- "eval_f1": 84.98869246841396
- "eval_samples": 10784
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_twostagequadruplet_hier_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: microsoft_deberta-base_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft_deberta-base_squad
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the **squadV1** dataset.
- "eval_exact_match": 86.30085146641439
- "eval_f1": 92.68502275661561
- "eval_samples": 10788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: microsoft-deberta-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft-deberta-large
This model is a fine-tuned version of [microsoft_deberta-large](https://huggingface.co/microsoft/deberta-large) on the **squadV1** dataset.
- "eval_exact_match": 87.89025543992432
- "eval_f1": 93.8755152147345
- "eval_samples": 10788
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/SR_rule_based_twostagetriplet_hier_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: xlm-roberta-base_squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base_squad
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset.
- "eval_exact_match": 82.69631031220435
- "eval_f1": 89.4562841806503
- "eval_samples": 10918
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.14.1
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
AnonymousSub/bert_mean_diff_epochs_1_shard_10 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | A fine-tuned model based on'gumgo91/IUPAC_BERT'for Blood brain barrier permeability prediction based on IUPAC string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too.
[](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw) |
AnonymousSub/bert_snips | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | A fine-tuned model based on'DeepChem/ChemBERTa-77M-MLM'for Blood brain barrier permeability prediction based on SMILES string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too.
[](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw) |
AnonymousSub/cline-papers-roberta-0.585 | [
"pytorch",
"roberta",
"transformers"
] | null | {
"architectures": [
"LecbertForPreTraining"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | null | ##An MT5ForConditionalGeneration trained on 3 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (ES):
* topic attribution - topics were assigned with BertTopic library using embeddings from `Hate-speech-CNERG/dehatebert-mono-spanish` bert model (train and test sets from the PAN task)
* hate speech identification (train set from the PAN task)
in order to generate tone of comment use prefix **hater classification:** |
AnonymousSub/cline-s10-AR | [
"pytorch",
"roberta",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | null | ##A T5ForConditionalGeneration trained on 3 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (EN):
* author attribution (train and test sets from the PAN task)
* topic attribution - topics were assigned with BertTopic library using embeddings from `cardiffnlp/bertweet-base-hate` Roberta model (train and test sets from the PAN task)
* hate speech identification (train set from the PAN task)
in order to generate tone of comment use prefix **hater classification:** |
AnonymousSub/cline-s10-SR | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | A T5ForConditionalGeneration trained on 2 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (EN):
* topic attribution - topics were assigned with BertTopic library using embeddings from `cardiffnlp/bertweet-base-hate` Roberta model (train and test sets from the PAN task)
* hate speech identification (train set from the PAN task)
in order to generate tone of comment use prefix **hater classification:** |
AnonymousSub/hier_triplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | "2021-05-05T18:15:22Z" | ---
tags:
- longformer
language: multilingual
license: apache-2.0
datasets:
- wikitext
---
## XLM-R Longformer Model
XLM-R Longformer is a XLM-R model, that has been extended to allow sequence lengths up to 4096 tokens, instead of the regular 512. The model was pre-trained from the XLM-RoBERTa checkpoint using the Longformer [pre-training scheme](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) on the English WikiText-103 corpus.
The reason for this was to investigate methods for creating efficient Transformers for low-resource languages, such as Swedish, without the need to pre-train them on long-context datasets in each respecitve language. The trained model came as a result of a master thesis project at [Peltarion](https://peltarion.com/) and was fine-tuned on multilingual quesion-answering tasks, with code available [here](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer#xlm-r).
Since both XLM-R model and Longformer models are large models, it it recommended to run the models with NVIDIA Apex (16bit precision), large GPU and several gradient accumulation steps.
## How to Use
The model can be used as expected to fine-tune on a downstream task.
For instance for QA.
```python
import torch
from transformers import AutoModel, AutoTokenizer
MAX_SEQUENCE_LENGTH = 4096
MODEL_NAME_OR_PATH = "markussagen/xlm-roberta-longformer-base-4096"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
max_length=MAX_SEQUENCE_LENGTH,
padding="max_length",
truncation=True,
)
model = AutoModelForQuestionAnswering.from_pretrained(
MODEL_NAME_OR_PATH,
max_length=MAX_SEQUENCE_LENGTH,
)
```
## Training Procedure
The model have been trained on the WikiText-103 corpus, using a **48GB** GPU with the following training script and parameters. The model was pre-trained for 6000 iterations and took ~5 days. See the full [training script](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer/blob/main/scripts/finetune_qa_models.py) and [Github repo](https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer) for more information
```sh
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
export DATA_DIR=./wikitext-103-raw
scripts/run_long_lm.py \
--model_name_or_path xlm-roberta-base \
--model_name xlm-roberta-to-longformer \
--output_dir ./output \
--logging_dir ./logs \
--val_file_path $DATA_DIR/wiki.valid.raw \
--train_file_path $DATA_DIR/wiki.train.raw \
--seed 42 \
--max_pos 4096 \
--adam_epsilon 1e-8 \
--warmup_steps 500 \
--learning_rate 3e-5 \
--weight_decay 0.01 \
--max_steps 6000 \
--evaluate_during_training \
--logging_steps 50 \
--eval_steps 50 \
--save_steps 6000 \
--max_grad_norm 1.0 \
--per_device_eval_batch_size 2 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 64 \
--overwrite_output_dir \
--fp16 \
--do_train \
--do_eval
```
|
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_squad2.0 | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | ---
language:
- ca
license: apache-2.0
tags:
- automatic-speech-recognition
- collectivat/tv3_parla
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- projecte-aina/parlament_parla
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
- collectivat/tv3_parla
- projecte-aina/parlament_parla
model-index:
- name: wav2vec2-xls-r-300m-ca
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_8_0 ca
type: mozilla-foundation/common_voice_8_0
args: ca
metrics:
- name: Test WER
type: wer
value: 13.170091241317552
- name: Test CER
type: cer
value: 3.356726205534543
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: projecte-aina/parlament_parla ca
type: projecte-aina/parlament_parla
args: clean
metrics:
- name: Test WER
type: wer
value: 8.048005647723261
- name: Test CER
type: cer
value: 2.240912911020065
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: collectivat/tv3_parla ca
type: collectivat/tv3_parla
args: ca
metrics:
- name: Test WER
type: wer
value: 23.320629787889285
- name: Test CER
type: cer
value: 10.439216202089989
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: speech-recognition-community-v2/dev_data ca
type: speech-recognition-community-v2/dev_data
args: ca
metrics:
- name: Test WER
type: wer
value: 31.99671115046487
- name: Test CER
type: cer
value: 15.820020687277325
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ca
metrics:
- name: Test WER
type: wer
value: 22.04
---
# wav2vec2-xls-r-300m-ca
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets.
It achieves the following results on the evaluation set (for the three datasets):
- Loss: 0.2472
- Wer: 0.1499
## Model description
Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model.
## Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language.
## Training and evaluation data
More information needed
## Training procedure
The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
### Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 6.2099 | 0.09 | 500 | 3.4125 | 1.0 |
| 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 |
| 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 |
| 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 |
| 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 |
| 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 |
| 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 |
| 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 |
| 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 |
| 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 |
| 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 |
| 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 |
| 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 |
| 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 |
| 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 |
| 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 |
| 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 |
| 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 |
| 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 |
| 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 |
| 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 |
| 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 |
| 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 |
| 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 |
| 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 |
| 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 |
| 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 |
| 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 |
| 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 |
| 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 |
| 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 |
| 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 |
| 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 |
| 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 |
| 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 |
| 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 |
| 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 |
| 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 |
| 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 |
| 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 |
| 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 |
| 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 |
| 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 |
| 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 |
| 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 |
| 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 |
| 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 |
| 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 |
| 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 |
| 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 |
| 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 |
| 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 |
| 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 |
| 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 |
| 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 |
| 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 |
| 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 |
| 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 |
| 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 |
| 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 |
| 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 |
| 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
# Thanks
Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
|
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | null | ---
language:
- en
tags:
- text-classification
widget:
- text: "Please add a like button!"
example_title: "Likely feature request"
- text: "The app crashed when I opened it this morning. Can you fix this please?"
example_title: "Unlikely feature request"
---
How to use this classifier:
```
from transformers import pipeline
pipe = pipeline("text-classification", model="Peterard/distilbert_feature_classifier")
pipe("Please add a like button!")
# [{'label': 'feature_request', 'score': 0.8930749893188477}]
pipe("The app crashed when I opened it this morning. Can you fix this please?")
#[{'label': 'no_feature_request', 'score': 0.9971746206283569}]
```
N.B. The label will change depending on which is the likelier class |
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0 | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 3 | null | Attempt of guided text generation to replace GPT-3 for :[This SCP Does Not Exist](https://www.thisscpdoesnotexist.ml)
Work in Porgress
Finetuned on a dataset of 1700 automatically generated samples from the [official SCP wiki](https://scp-wiki.wikidot.com/)
Exemple input :
```Prompt: SCP-9741 is a pair of jeans that looks really cool ### Generation: Item #: SCP-9741\nObject Class: Safe\nSpecial Containment Procedures:```
# Acknowledgment
This work was made possible thanks to the TPU Research Cloud program by Google
|
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language:
- es
license: apache-2.0
tags:
- "national library of spain"
- "spanish"
- "bne"
- "roberta-base-bne"
datasets:
- "bne"
metrics:
- "ppl"
widget:
- text: "Por la ventanilla del coche vi la Giralda y pensé que bonita que es la ciudad de <mask>."
- text: "Más vale <mask> que lamentar."
- text: "Caminante no hay camino, se hace camino al <mask>."
- text: "Tengo una pelota roja y otra amarilla. Si le doy la roja a Jose, sólo me queda la <mask>."
- text: "Tengo una pelota roja y otra amarilla. Si le doy la amarilla a Jose, sólo me queda la <mask>."
- text: "El <mask> es el pico más alto de España."
---
# RoBERTa base trained with data from the National Library of Spain (BNE)
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Overview](#overview)
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citation Information](#citation-information)
- [Disclaimer](#disclaimer)
</details>
## Overview
- **Architecture:** roberta-base
- **Language:** Spanish
- **Task:** fill-mask
- **Data:** BNE
## Model description
The **roberta-base-bne** is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
## Intended uses and limitations
The **roberta-base-bne** model is ready-to-use only for masked language modeling to perform the Fill Mask task (try the inference API or read the next section).
However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification, or Named Entity Recognition.
You can use the raw model for fill mask or fine-tune it to a downstream task.
## How to use
Here is how to use this model:
```python
>>> from transformers import pipeline
>>> from pprint import pprint
>>> unmasker = pipeline('fill-mask', model='PlanTL-GOB-ES/roberta-base-bne')
>>> pprint(unmasker("Gracias a los datos de la BNE se ha podido <mask> este modelo del lenguaje."))
[{'score': 0.08422081917524338,
'token': 3832,
'token_str': ' desarrollar',
'sequence': 'Gracias a los datos de la BNE se ha podido desarrollar este modelo del lenguaje.'},
{'score': 0.06348305940628052,
'token': 3078,
'token_str': ' crear',
'sequence': 'Gracias a los datos de la BNE se ha podido crear este modelo del lenguaje.'},
{'score': 0.06148449331521988,
'token': 2171,
'token_str': ' realizar',
'sequence': 'Gracias a los datos de la BNE se ha podido realizar este modelo del lenguaje.'},
{'score': 0.056218471378088,
'token': 10880,
'token_str': ' elaborar',
'sequence': 'Gracias a los datos de la BNE se ha podido elaborar este modelo del lenguaje.'},
{'score': 0.05133328214287758,
'token': 31915,
'token_str': ' validar',
'sequence': 'Gracias a los datos de la BNE se ha podido validar este modelo del lenguaje.'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
>>> from transformers import RobertaTokenizer, RobertaModel
>>> tokenizer = RobertaTokenizer.from_pretrained('PlanTL-GOB-ES/roberta-base-bne')
>>> model = RobertaModel.from_pretrained('PlanTL-GOB-ES/roberta-base-bne')
>>> text = "Gracias a los datos de la BNE se ha podido desarrollar este modelo del lenguaje."
>>> encoded_input = tokenizer(text, return_tensors='pt')
>>> output = model(**encoded_input)
>>> print(output.last_hidden_state.shape)
torch.Size([1, 19, 768])
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. Nevertheless, here's an example of how the model can have biased predictions:
```python
>>> from transformers import pipeline, set_seed
>>> from pprint import pprint
>>> unmasker = pipeline('fill-mask', model='PlanTL-GOB-ES/roberta-base-bne')
>>> set_seed(42)
>>> pprint(unmasker("Antonio está pensando en <mask>."))
[{'score': 0.07950365543365479,
'sequence': 'Antonio está pensando en ti.',
'token': 486,
'token_str': ' ti'},
{'score': 0.03375273942947388,
'sequence': 'Antonio está pensando en irse.',
'token': 13134,
'token_str': ' irse'},
{'score': 0.031026942655444145,
'sequence': 'Antonio está pensando en casarse.',
'token': 24852,
'token_str': ' casarse'},
{'score': 0.030703715980052948,
'sequence': 'Antonio está pensando en todo.',
'token': 665,
'token_str': ' todo'},
{'score': 0.02838558703660965,
'sequence': 'Antonio está pensando en ello.',
'token': 1577,
'token_str': ' ello'}]
>>> set_seed(42)
>>> pprint(unmasker("Mohammed está pensando en <mask>."))
[{'score': 0.05433618649840355,
'sequence': 'Mohammed está pensando en morir.',
'token': 9459,
'token_str': ' morir'},
{'score': 0.0400255024433136,
'sequence': 'Mohammed está pensando en irse.',
'token': 13134,
'token_str': ' irse'},
{'score': 0.03705748915672302,
'sequence': 'Mohammed está pensando en todo.',
'token': 665,
'token_str': ' todo'},
{'score': 0.03658654913306236,
'sequence': 'Mohammed está pensando en quedarse.',
'token': 9331,
'token_str': ' quedarse'},
{'score': 0.03329474478960037,
'sequence': 'Mohammed está pensando en ello.',
'token': 1577,
'token_str': ' ello'}]
```
## Training
### Training data
The [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019.
To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among others, sentence splitting, language detection, filtering of bad-formed sentences, and deduplication of repetitive contents. During the process, document boundaries are kept. This resulted in 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting in 570GB of text.
Some of the statistics of the corpus:
| Corpora | Number of documents | Number of tokens | Size (GB) |
|---------|---------------------|------------------|-----------|
| BNE | 201,080,084 | 135,733,450,668 | 570GB |
### Training procedure
The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens.
The **roberta-base-bne** pre-training consists of a masked language model training, that follows the approach employed for the RoBERTa base. The training lasted a total of 48 hours with 16 computing nodes, each one with 4 NVIDIA V100 GPUs of 16GB VRAM.
## Evaluation
When fine-tuned on downstream tasks, this model achieves the following results:
| Dataset | Metric | [**RoBERTa-base**](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) |
|--------------|----------|------------|
| MLDoc | F1 | 0.9664 |
| CoNLL-NERC | F1 | 0.8851 |
| CAPITEL-NERC | F1 | 0.8960 |
| PAWS-X | F1 | 0.9020 |
| UD-POS | F1 | 0.9907 |
| CAPITEL-POS | F1 | 0.9846 |
| SQAC | F1 | 0.7923 |
| STS | Combined | 0.8533 |
| XNLI | Accuracy | 0.8016 |
For more evaluation details visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish) or [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405).
## Additional information
### Author
Text Mining Unit (TeMU) from Barcelona Supercomputing Center (<[email protected]>).
### Contact information
For further information, send an email to <[email protected]>.
### Copyright
Copyright by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx).
### Licensing information
This work is licensed under a [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://portal.mineco.gob.es/en-us/digitalizacionIA/Pages/sedia.aspx) within the framework of the Plan-TL.
### Citation information
If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405):
```
@article{,
title = {MarIA: Spanish Language Models},
author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
doi = {10.26342/2022-68-3},
issn = {1135-5948},
journal = {Procesamiento del Lenguaje Natural},
publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
volume = {68},
year = {2022},
}
```
### Disclaimer
<details>
<summary>Click to expand</summary>
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.
In no event shall the owner of the models (SEDIA) nor the creator (BSC) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de Inteligencia Artificial.
En ningún caso el propietario de los modelos (SEDIA) ni el creador (BSC) serán responsables de los resultados derivados del uso que hagan terceros de estos models.
</details> |
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0 | [
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
language: "ca"
tags:
- masked-lm
- BERTa
- catalan
widget:
- text: "El Català és una llengua molt <mask>."
- text: "Salvador Dalí va viure a <mask>."
- text: "La Costa Brava té les millors <mask> d'Espanya."
- text: "El cacaolat és un batut de <mask>."
- text: "<mask> és la capital de la Garrotxa."
- text: "Vaig al <mask> a buscar bolets."
- text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
- text: "Catalunya és una referència en <mask> a nivell europeu."
license: apache-2.0
---
# BERTa: RoBERTa-based Catalan language model
## Table of contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Evaluation](#evaluation)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citing information](#citing-information)
- [Disclaimer](#disclaimer)
</details>
## Model description
BERTa is a transformer-based masked language model for the Catalan language.
It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model
and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
This model was originally published as [bsc/roberta-base-ca-cased](https://huggingface.co/bsc/roberta-base-ca-cased).
## Intended uses and limitations
The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section).
However, it is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition.
## How to use
### Load model and tokenizer
``` python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("PlanTL-GOB-ES/roberta-base-ca-cased")
model = AutoModelForMaskedLM.from_pretrained("PlanTL-GOB-ES/roberta-base-ca-cased")
```
### Fill Mask task
Below, an example of how to use the masked language modelling task with a pipeline.
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='PlanTL-GOB-ES/roberta-base-ca-cased')
>>> unmasker("Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.")
[
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.4177263379096985,
"token": 734,
"token_str": " Barcelona"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.10696165263652802,
"token": 3849,
"token_str": " Badalona"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.08135009557008743,
"token": 19349,
"token_str": " Collserola"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.07330769300460815,
"token": 4974,
"token_str": " Terrassa"
},
{
"sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
"entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
"i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
"i pel nord-oest per la serralada de Collserola "
"(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
"la línia de costa encaixant la ciutat en un perímetre molt definit.",
"score": 0.03317456692457199,
"token": 14333,
"token_str": " Gavà"
}
]
```
## Limitations and bias
## Training
### Training corpora and preprocessing
The training corpus consists of several corpora gathered from web crawling and public corpora.
The publicly available corpora are:
1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government
2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles
3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous},
a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/)
4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013
the non-deduplicated version
5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020.
The crawled corpora are:
6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains
7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government
8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/)
To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others,
sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents.
During the process, we keep document boundaries are kept.
Finally, the corpora are concatenated and further global deduplication among the corpora is applied.
The final training corpus consists of about 1,8B tokens.
### Tokenization and pretraining
The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens.
The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model
with the same hyperparameters as in the original work.
The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM.
## Evaluation
### CLUB benchmark
The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
that has been created along with the model.
It contains the following tasks and their related datasets:
1. Part-of-Speech Tagging (POS)
Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus
2. Named Entity Recognition (NER)
**[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format
3. Text Classification (TC)
**[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus
4. Semantic Textual Similarity (STS)
**[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349)
5. Question Answering (QA):
**[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
**[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
Here are the train/dev/test splits of the datasets:
| Task (Dataset) | Total | Train | Dev | Test |
|:--|:--|:--|:--|:--|
| NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 |
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
| STS | 3,073 | 2,073 | 500 | 500 |
| TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
| QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
_The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_
### Results
Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and
the Catalan WikiBERT-ca model
| Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) |
| ------------|:-------------:| -----:|:------|:-------|:------|:----|
| BERTa | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** |
| mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 |
| XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 |
| WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 |
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to <[email protected]>
### Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
### Citing information
If you use this model, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
### Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos. |
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- es
license: apache-2.0
tags:
- "national library of spain"
- "spanish"
- "bne"
- "capitel"
- "ner"
datasets:
- "bne"
- "capitel"
metrics:
- "f1"
inference:
parameters:
aggregation_strategy: "first"
model-index:
- name: roberta-large-bne-capiter-ner
results:
- task:
type: token-classification
dataset:
type: ner
name: CAPITEL-NERC
metrics:
- name: F1
type: f1
value: 0.9051
widget:
- "Me llamo Francisco Javier y vivo en Madrid."
- "Mi hermano Ramón y su mejor amigo Luis trabajan en el BSC."
---
# Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset.
## Table of contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Evaluation](#evaluation)
- [Variable and metrics](#variable-and-metrics)
- [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citing information](#citing-information)
- [Disclaimer](#disclaimer)
</details>
## Model description
The **roberta-large-bne-capitel-ner** is a Named Entity Recognition (NER) model for the Spanish language fine-tuned from the [roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) large model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
## Intended uses and limitations
**roberta-large-bne-capitel-ner** model can be used to recognize Named Entities (NE). The model is limited by its training dataset and may not generalize well for all use cases.
## How to use
```python
from transformers import pipeline
from pprint import pprint
nlp = pipeline("ner", model="PlanTL-GOB-ES/roberta-large-bne-capitel-ner")
example = "Me llamo Francisco Javier y vivo en Madrid."
ner_results = nlp(example)
pprint(ner_results)
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Training
The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1).
### Training procedure
The model was trained with a batch size of 32 and a learning rate of 3e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
## Evaluation
### Variable and metrics
This model was finetuned maximizing F1 score.
## Evaluation results
We evaluated the **roberta-large-bne-capitel-ner** on the CAPITEL-NERC test set against standard multilingual and monolingual baselines:
| Model | CAPITEL-NERC (F1) |
| ------------|:----|
| roberta-large-bne-capitel-ner | **90.51** |
| roberta-base-bne-capitel-ner | 89.60|
| BETO | 87.72 |
| mBERT | 88.10 |
| BERTIN | 88.56 |
| ELECTRA | 80.35 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to <[email protected]>
### Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
## Citing information
If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405):
```
@article{,
abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a
Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial
Intelligence (SEDIA) within the framework of the Plan-TL.},
author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
doi = {10.26342/2022-68-3},
issn = {1135-5948},
journal = {Procesamiento del Lenguaje Natural},
keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informàtica),Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural},
publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
title = {MarIA: Spanish Language Models},
volume = {68},
url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
year = {2022},
}
```
### Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos. |
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language:
- es
license: apache-2.0
tags:
- "national library of spain"
- "spanish"
- "bne"
- "capitel"
- "pos"
datasets:
- "bne"
- "capitel"
metrics:
- "f1"
inference:
parameters:
aggregation_strategy: "first"
model-index:
- name: roberta-large-bne-capiter-pos
results:
- task:
type: token-classification
dataset:
type: pos
name: CAPITEL-POS
metrics:
- name: F1
type: f1
value: 0.986
widget:
- text: "Festival de San Sebastián: Johnny Depp recibirá el premio Donostia en pleno rifirrafe judicial con Amber Heard"
- text: "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto."
- text: "Gracias a los datos de la BNE, se ha podido lograr este modelo del lenguaje."
---
# Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Part of Speech (POS) dataset
## Table of contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Evaluation](#evaluation)
- [Variable and metrics](#variable-and-metrics)
- [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citing information](#citing-information)
- [Disclaimer](#disclaimer)
</details>
## Model description
The **roberta-large-bne-capitel-pos** is a Part-of-speech-tagging (POS) model for the Spanish language fine-tuned from the [roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) large model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
# Intended uses and limitations
**roberta-large-bne-capitel-pos** model can be used to Part-of-speech-tagging (POS) a text. The model is limited by its training dataset and may not generalize well for all use cases.
## How to use
Here is how to use this model:
```python
from transformers import pipeline
from pprint import pprint
nlp = pipeline("token-classification", model="PlanTL-GOB-ES/roberta-large-bne-capitel-pos")
example = "El alcalde de Vigo, Abel Caballero, ha comenzado a colocar las luces de Navidad en agosto."
pos_results = nlp(example)
pprint(pos_results)
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Training
The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 2).
### Training procedure
The model was trained with a batch size of 16 and a learning rate of 3e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
## Evaluation
### Variable and metrics
This model was finetuned maximizing F1 score.
## Evaluation results
We evaluated the **roberta-large-bne-capitel-pos** on the CAPITEL-POS test set against standard multilingual and monolingual baselines:
| Model | CAPITEL-POS (F1) |
| ------------|:----|
| roberta-large-bne-capitel-pos | **98.56** |
| roberta-base-bne-capitel-pos | 98.46 |
| BETO | 98.36 |
| mBERT | 98.39 |
| BERTIN | 98.47 |
| ELECTRA | 98.16 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to <[email protected]>
### Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
### Citing information
If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405):
```
@article{,
abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a
Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial
Intelligence (SEDIA) within the framework of the Plan-TL.},
author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
doi = {10.26342/2022-68-3},
issn = {1135-5948},
journal = {Procesamiento del Lenguaje Natural},
keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informàtica),Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural},
publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
title = {MarIA: Spanish Language Models},
volume = {68},
url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
year = {2022},
}
```
### Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos. |
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_squad2.0 | [
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
language:
- es
license: apache-2.0
tags:
- "national library of spain"
- "spanish"
- "bne"
- "qa"
- "question answering"
datasets:
- "PlanTL-GOB-ES/SQAC"
metrics:
- "f1"
- "exact match"
model-index:
- name: roberta-large-bne-sqac
results:
- task:
type: question-answering
dataset:
type: "PlanTL-GOB-ES/SQAC"
name: SQAC
metrics:
- name: F1
type: f1
value: 0.8202
---
# Spanish RoBERTa-large trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset.
## Table of contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-use)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
- [Training](#training)
- [Training data](#training-data)
- [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
- [Evaluation](#evaluation)
- [Variable and metrics](#variable-and-metrics)
- [Evaluation results](#evaluation-results)
- [Additional information](#additional-information)
- [Author](#author)
- [Contact information](#contact-information)
- [Copyright](#copyright)
- [Licensing information](#licensing-information)
- [Funding](#funding)
- [Citing information](#citing-information)
- [Disclaimer](#disclaimer)
</details>
## Model description
The **roberta-large-bne-sqac** is a Question Answering (QA) model for the Spanish language fine-tuned from the [roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) large model pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text, processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019.
## Intended uses and limitations
**roberta-large-bne-sqac** model can be used for extractive question answering. The model is limited by its training dataset and may not generalize well for all use cases.
## How to use
```python
from transformers import pipeline
nlp = pipeline("question-answering", model="PlanTL-GOB-ES/roberta-large-bne-sqac")
text = "¿Dónde vivo?"
context = "Me llamo Wolfgang y vivo en Berlin"
qa_results = nlp(text, context)
print(qa_results)
```
## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
## Training
### Training data
We used the QA dataset in Spanish called [SQAC corpus](https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC) for training and evaluation.
### Training procedure
The model was trained with a batch size of 16 and a learning rate of 1e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set.
## Evaluation results
We evaluated the **roberta-large-bne-sqac** on the SQAC test set against standard multilingual and monolingual baselines:
| Model | SQAC (F1) |
| ------------|:----|
| roberta-large-bne-sqac | **82.02** |
| roberta-base-bne-sqac | 79.23|
| BETO | 79.23 |
| mBERT | 75.62 |
| BERTIN | 76.78 |
| ELECTRA | 73.83 |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-spanish).
## Additional information
### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected])
### Contact information
For further information, send an email to <[email protected]>
### Copyright
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
### Citing information
If you use this model, please cite our [paper](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405):
```
@article{,
abstract = {We want to thank the National Library of Spain for such a large effort on the data gathering and the Future of Computing Center, a
Barcelona Supercomputing Center and IBM initiative (2020). This work was funded by the Spanish State Secretariat for Digitalization and Artificial
Intelligence (SEDIA) within the framework of the Plan-TL.},
author = {Asier Gutiérrez Fandiño and Jordi Armengol Estapé and Marc Pàmies and Joan Llop Palao and Joaquin Silveira Ocampo and Casimiro Pio Carrino and Carme Armentano Oller and Carlos Rodriguez Penagos and Aitor Gonzalez Agirre and Marta Villegas},
doi = {10.26342/2022-68-3},
issn = {1135-5948},
journal = {Procesamiento del Lenguaje Natural},
keywords = {Artificial intelligence,Benchmarking,Data processing.,MarIA,Natural language processing,Spanish language modelling,Spanish language resources,Tractament del llenguatge natural (Informàtica),Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural},
publisher = {Sociedad Española para el Procesamiento del Lenguaje Natural},
title = {MarIA: Spanish Language Models},
volume = {68},
url = {https://upcommons.upc.edu/handle/2117/367156#.YyMTB4X9A-0.mendeley},
year = {2022},
}
```
### Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
In no event shall the owner of the models (SEDIA – State Secretariat for digitalization and artificial intelligence) nor the creator (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
En ningún caso el propietario de los modelos (SEDIA – Secretaría de Estado de Digitalización e Inteligencia Artificial) ni el creador (BSC – Barcelona Supercomputing Center) serán responsables de los resultados derivados del uso que hagan terceros de estos modelos. |
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10 | [
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
model-index:
- name: XLS-R-1B - French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: fr
metrics:
- name: Test WER
type: wer
value: 18.33
- name: Test CER
type: cer
value: 5.60
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: fr
metrics:
- name: Test WER
type: wer
value: 60.25
- name: Test CER
type: cer
value: 15.68
---
## Model description
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 4.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.9827 | 0.29 | 1000 | inf | 0.2937 |
| 1.0203 | 0.57 | 2000 | inf | 0.2711 |
| 1.0048 | 0.86 | 3000 | inf | 0.2620 |
| 0.9858 | 1.15 | 4000 | inf | 0.2522 |
| 0.9709 | 1.43 | 5000 | inf | 0.2365 |
| 0.9347 | 1.72 | 6000 | inf | 0.2332 |
| 0.9256 | 2.01 | 7000 | inf | 0.2261 |
| 0.8936 | 2.29 | 8000 | inf | 0.2203 |
| 0.877 | 2.58 | 9000 | inf | 0.2096 |
| 0.8393 | 2.87 | 10000 | inf | 0.2017 |
| 0.8156 | 3.15 | 11000 | inf | 0.1936 |
| 0.8015 | 3.44 | 12000 | inf | 0.1880 |
| 0.774 | 3.73 | 13000 | inf | 0.1834 |
It achieves the best result on the validation set on STEP 13000:
- Wer: 0.1834
Some problem occurs when calculating the validation loss.
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0
### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8` with split `test`
```bash
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
|
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1 | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | "2021-08-01T17:55:07Z" | ---
datasets:
- squad_v2
---
# RoBERTa-base for QA
## Overview
**Language model:** 'roberta-base' </br>
**Language:** English </br>
**Downstream-task:** Extractive QA </br>
**Training data:** SQuAD 2.0 </br>
**Eval data:** SQuAD 2.0 </br>
**Code:** <TBD> </br>
## Env Information
`transformers` version: 4.9.1 </br>
Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br>
Python version: 3.7.11 </br>
PyTorch version (GPU?): 1.9.0+cu102 (False)</br>
Tensorflow version (GPU?): 2.5.0 (False)</br>
## Hyperparameters
```
max_seq_len=386
doc_stride=128
n_best_size=20
max_answer_length=30
min_null_score=7.0
batch_size=8
n_epochs=6
base_LM_model = "roberta-base"
learning_rate=1.5e-5
adam_epsilon=1e-5
adam_beta1=0.95
adam_beta2=0.999
warmup_steps=100
weight_decay=0.01
optimizer=AdamW
lr_scheduler="polynomial"
```
##### There is a special threshold value CLS_threshold=-3 used to more accurately identify no answers [Logic will be available in GitHub Repo [TBD]
## Performance
```
"exact": 81.192622
"f1": 83.95408
"total": 11873
"HasAns_exact": 74.190283
"HasAns_f1": 79.721119
"HasAns_total": 5928
"NoAns_exact": 88.174937
"NoAns_f1": 88.174937
"NoAns_total": 5945
```
## Usage
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "PremalMatalia/roberta-base-best-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Which name is also used to describe the Amazon rainforest in English?',
'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.'
}
res = nlp(QA_input)
print(res)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Authors
Premal Matalia |
AnonymousSub/specter-bert-model_copy_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 26 | null | ---
language:
- hi
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 248.1278
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
AnonymousSub/unsup-consert-base | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
model_index:
- name: roberta-base-bne-finetuned-amazon_reviews_multi
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: es
metric:
name: Accuracy
type: accuracy
value: 0.9185
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-bne-finetuned-amazon_reviews_multi
This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3011
- Accuracy: 0.9185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2427 | 1.0 | 125 | 0.2109 | 0.919 |
| 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
AnonymousSub/unsup-consert-base_copy | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language: pt-br
license: mit
tags:
- LegalNLP
- NLP
- legal field
- python
- word2vec
- doc2vec
---
# ***LegalNLP*** - Natural Language Processing Methods for the Brazilian Legal Language ⚖️
### The library of Natural Language Processing for Brazilian legal language, *LegalNLP*, was born in a partnership between Brazilian researchers and the legal tech [Tikal Tech](https://www.tikal.tech) based in São Paulo, Brazil. Besides containing pre-trained language models for the Brazilian legal language, ***LegalNLP*** provides functions that can facilitate the manipulation of legal texts in Portuguese and demonstration/tutorials to help people in their own work.
You can access our paper by clicking [**here**](https://arxiv.org/abs/2110.15709).
If you use our library in your academic work, please cite us in the following way
@article{polo2021legalnlp,
title={LegalNLP--Natural Language Processing methods for the Brazilian Legal Language},
author={Polo, Felipe Maia and Mendon{\c{c}}a, Gabriel Caiaffa Floriano and Parreira, Kau{\^e} Capellato J and Gianvechio, Lucka and Cordeiro, Peterson and Ferreira, Jonathan Batista and de Lima, Leticia Maria Paz and Maia, Ant{\^o}nio Carlos do Amaral and Vicente, Renato},
journal={arXiv preprint arXiv:2110.15709},
year={2021}
}
--------------
## Summary
0. [Accessing the Language Models](#0)
1. [ Introduction / Installing package](#1)
2. [ Language Models (Details / How to use)](#2)
1. [ Word2Vec/Doc2Vec ](#2.1)
3. [ Demonstrations / Tutorials](#3)
4. [ References](#4)
--------------
<a name="0"></a>
## 0\. Accessing the Language Models
All our models can be found [here](https://drive.google.com/drive/folders/1tCccOXPLSEAEUQtcWXvED3YaNJi3p7la?usp=sharing).
Please contact *[email protected]* if you have any problem accessing the language models.
--------------
<a name="1"></a>
## 1\. Introduction / Installing package
*LegalNLP* is promising given the scarcity of Natural Language Processing resources focused on the Brazilian legal language. It is worth mentioning that our library was made for Python, one of the most well-known programming languages for machine learning.
You first need to install the HuggingFaceHub library running the following command on terminal
``` :sh
$ pip install huggingface_hub
```
Import `hf_hub_download`:
```python
from huggingface_hub import hf_hub_download
```
And then you can download our Word2Vec(SG)/Doc2Vec(DBOW) and Word2Vec(CBOW)/Doc2Vec(DM) by the following commands:
```python
w2v_sg_d2v_dbow = hf_hub_download(repo_id = "Projeto/LegalNLP", filename = "w2v_d2v_dbow_size_100_window_15_epochs_20")
w2v_cbow_d2v_dm = hf_hub_download(repo_id = "Projeto/LegalNLP", filename = "w2v_d2v_dm_size_100_window_15_epochs_20")
```
--------------
<a name="2"></a>
## 2\. Model Languages
<a name="3.2"></a>
### 3.2\. Word2Vec/Doc2Vec
Our first models for generating vector representation for tokens and
texts (embeddings) are variations of the Word2Vec [1,
2] and Doc2Vec [3] methods. In short, the
Word2Vec methods generate embeddings for tokens5 and that somehow capture
the meaning of the various textual elements, based on the contexts in which these
elements appear. Doc2Vec methods are extensions/modifications of Word2Vec
for generating whole text representations.
Remember to at least make all letters lowercase. Please check our paper or [Gensim page](https://radimrehurek.com/gensim_3.8.3/models/doc2vec.html) for more details. Preferably use Gensim version 3.8.3.
Below we have a summary table with some important information about the trained models:
| Filenames | Doc2Vec | Word2Vec | Size | Windows
|:-------------------:|:--------------:|:--------------:|:--------------:|:--------------:|
| ```w2v_d2v_dm*``` | Distributed Memory (DM) | Continuous Bag-of-Words (CBOW) | 100, 200, 300 | 15
| ```w2v_d2v_dbow*``` | Distributed Bag-of-Words (DBOW) | Skip-Gram (SG) | 100, 200, 300 | 15
Here we made available both models with 100 size and 15 window.
#### Using *Word2Vec*
Installing Gensim
```python
!pip install gensim=='3.8.3'
```
Loading W2V:
```python
from gensim.models import KeyedVectors
#Loading a W2V model
w2v=KeyedVectors.load(w2v_cbow_d2v_dm)
w2v=w2v.wv
```
Viewing the first 10 entries of 'juiz' vector
```python
w2v['juiz'][:10]
```
array([ 6.570131 , -1.262787 , 5.156106 , -8.943866 , -5.884408 ,
-7.717058 , 1.8819941 , -8.02803 , -0.66901577, 6.7223144 ],
dtype=float32)
Viewing closest tokens to 'juiz'
```python
w2v.most_similar('juiz')
```
[('juíza', 0.8210258483886719),
('juiza', 0.7306275367736816),
('juíz', 0.691645085811615),
('juízo', 0.6605231165885925),
('magistrado', 0.6213295459747314),
('mmª_juíza', 0.5510469675064087),
('juizo', 0.5494943261146545),
('desembargador', 0.5313084721565247),
('mmjuiz', 0.5277603268623352),
('fabíola_melo_feijão_juíza', 0.5043971538543701)]
#### Using *Doc2Vec*
Installing Gensim
```python
!pip install gensim=='3.8.3'
```
Loading D2V
```python
from gensim.models import Doc2Vec
#Loading a D2V model
d2v=Doc2Vec.load(w2v_cbow_d2v_dm)
```
Inferring vector for a text
```python
txt='direito do consumidor origem : bangu regional xxix juizado especial civel ação : [processo] - - recte : fundo de investimento em direitos creditórios'
tokens=txt.split()
txt_vec=d2v.infer_vector(tokens, epochs=20)
txt_vec[:10]
```
array([ 0.02626514, -0.3876521 , -0.24873355, -0.0318402 , 0.3343679 ,
-0.21307918, 0.07193747, 0.02030687, 0.407305 , 0.20065512],
dtype=float32)
--------------
<a name="4"></a>
## 4\. Demonstrations
For a better understanding of the application of these models, below are the links to notebooks where we apply them to a legal dataset using various classification models such as Logistic Regression and CatBoost:
- **BERT notebook** :
[](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/BERT/BERT_TUTORIAL.ipynb)
- **Word2Vec notebook** :
[](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Word2Vec/Word2Vec_TUTORIAL.ipynb)
- **Doc2Vec notebook** :
[](https://colab.research.google.com/github/felipemaiapolo/legalnlp/blob/main/demo/Doc2Vec/Doc2Vec_TUTORIAL.ipynb)
--------------
<a name="5"></a>
## 5\. References
[1] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119.
[2] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.
[3] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196.
PMLR.
[4] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146.
[5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.
[6] Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: pretrained BERT
models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent
Systems, BRACIS, Rio Grande do Sul, Brazil, October 20-23
|
AnonymousSub/unsup-consert-base_copy_wikiqa | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 26 | null | ---
pipeline_tag: text-classification
inference: false
language: en
tags:
- transformers
---
# Prompsit/paraphrase-bert-en
This model allows to evaluate paraphrases for a given phrase.
We have fine-tuned this model from pretrained "bert-base-uncased".
Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain.
# How to use it
The model answer the following question: Is "phrase B" a paraphrase of "phrase A".
Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text.
Resulting probabilities correspond to classes:
* 0: Not a paraphrase
* 1: It's a paraphrase
So, considering the phrase "may be addressed" and a candidate paraphrase like "could be included", you can use the model like this:
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-bert-en")
model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-bert-en")
input = tokenizer('may be addressed','could be included',return_tensors='pt')
logits = model(**input).logits
soft = torch.nn.Softmax(dim=1)
print(soft(logits))
```
Code output is:
```
tensor([[0.1592, 0.8408]], grad_fn=<SoftmaxBackward>)
```
As the probability of 1 (=It's a paraphrase) is 0.84 and the probability of 0 (=It is not a paraphrase) is 0.15, we can conclude, for our previous example, that "could be included" is a paraphrase of "may be addressed".
# Evaluation results
We have used as test dataset 16500 pairs of phrases human tagged.
Metrics obtained are:
```
metrics={
'test_loss': 0.5660144090652466,
'test_accuracy': 0.8170742794799527,
'test_precision': 0.7043977055449331,
'test_recall': 0.5978578383641675,
'test_f1': 0.6467696629213483,
'test_matthews_correlation': 0.5276716223607356,
'test_runtime': 19.3345,
'test_samples_per_second': 568.88,
'test_steps_per_second': 17.792
}
``` |
AnonymousSub/unsup-consert-base_squad2.0 | [
"pytorch",
"bert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"BertForQuestionAnswering"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
pipeline_tag: text-classification
inference: false
language: pt
tags:
- transformers
---
# Prompsit/paraphrase-bert-pt
This model allows to evaluate paraphrases for a given phrase.
We have fine-tuned this model from pretrained "neuralmind/bert-base-portuguese-cased".
Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain.
# How to use it
The model answer the following question: Is "phrase B" a paraphrase of "phrase A".
Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text.
Resulting probabilities correspond to classes:
* 0: Not a paraphrase
* 1: It's a paraphrase
So, considering the phrase "logo após o homicídio" and a candidate paraphrase like "pouco depois do assassinato", you can use the model like this:
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-bert-pt")
model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-bert-pt")
input = tokenizer('logo após o homicídio','pouco depois do assassinato',return_tensors='pt')
logits = model(**input).logits
soft = torch.nn.Softmax(dim=1)
print(soft(logits))
```
Code output is:
```
tensor([[0.2137, 0.7863]], grad_fn=<SoftmaxBackward>)
```
As the probability of 1 (=It's a paraphrase) is 0.7863 and the probability of 0 (=It is not a paraphrase) is 0.2137, we can conclude, for our previous example, that "pouco depois do assassinato" is a paraphrase of "logo após o homicidio".
# Evaluation results
We have used as test dataset 16500 pairs of phrases human tagged.
Metrics obtained are:
```
metrics={
'test_loss': 0.6074697375297546,
'test_accuracy': 0.7809,
'test_precision': 0.7157638466220329,
'test_recall': 0.40551724137931033,
'test_f1': 0.5177195685670262,
'test_matthews_correlation': 0.41603913834665324,
'test_runtime': 16.4585,
'test_samples_per_second': 607.587,
'test_steps_per_second': 19.017
}
``` |
AnonymousSub/unsup-consert-emanuals | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | null | ---
pipeline_tag: text-classification
inference: false
language: es
tags:
- transformers
---
# Prompsit/paraphrase-roberta-es
This model allows to evaluate paraphrases for a given phrase.
We have fine-tuned this model from pretrained "PlanTL-GOB-ES/roberta-base-bne".
Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain.
# How to use it
The model answer the following question: Is "phrase B" a paraphrase of "phrase A".
Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text.
Resulting probabilities correspond to classes:
* 0: Not a paraphrase
* 1: It's a paraphrase
So, considering the phrase "se buscarán acuerdos" and a candidate paraphrase like "se deberá obtener el acuerdo", you can use the model like this:
```
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-roberta-es")
model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-roberta-es")
input = tokenizer('se buscarán acuerdos','se deberá obtener el acuerdo',return_tensors='pt')
logits = model(**input).logits
soft = torch.nn.Softmax(dim=1)
print(soft(logits))
```
Code output is:
```
tensor([[0.2266, 0.7734]], grad_fn=<SoftmaxBackward>)
```
As the probability of 1 (=It's a paraphrase) is 0.77 and the probability of 0 (=It is not a paraphrase) is 0.22, we can conclude, for our previous example, that "se deberá obtener el acuerdo" is a paraphrase of "se buscarán acuerdos".
# Evaluation results
We have used as test dataset 16500 pairs of phrases human tagged.
Metrics obtained are:
```
metrics={
'test_loss': 0.4869941473007202,
'test_accuracy': 0.8003636363636364,
'test_precision': 0.6692456479690522,
'test_recall': 0.5896889646357052,
'test_f1': 0.6269535673839184,
'test_matthews_correlation': 0.49324489316659575,
'test_runtime': 27.1537,
'test_samples_per_second': 607.652,
'test_steps_per_second': 19.003
}
``` |
AnonymousSub/unsup-consert-papers-bert | [
"pytorch",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
language: "en"
tags:
- financial-sentiment-analysis
- sentiment-analysis
widget:
- text: "Stocks rallied and the British pound gained."
---
FinBERT is a pre-trained NLP model to analyze sentiment of financial text. It is built by further training the BERT language model in the finance domain, using a large financial corpus and thereby fine-tuning it for financial sentiment classification. [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (2014) is used for fine-tuning. For more details, please see the paper [FinBERT: Financial Sentiment Analysis with Pre-trained Language Models](https://arxiv.org/abs/1908.10063) and our related [blog post](https://medium.com/prosus-ai-tech-blog/finbert-financial-sentiment-analysis-with-bert-b277a3607101) on Medium.
The model will give softmax outputs for three labels: positive, negative or neutral.
---
About Prosus
Prosus is a global consumer internet group and one of the largest technology investors in the world. Operating and investing globally in markets with long-term growth potential, Prosus builds leading consumer internet companies that empower people and enrich communities. For more information, please visit www.prosus.com.
Contact information
Please contact Dogu Araci dogu.araci[at]prosus[dot]com and Zulkuf Genc zulkuf.genc[at]prosus[dot]com about any FinBERT related issues and questions.
|
AntonClaesson/finetuning_test | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- conversational
---
# Shrek DialoGPT Model |
Anubhav23/IndianlegalBert | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | "2021-10-20T22:11:47Z" | ---
tags:
- conversational
---
# Jarvis DialoGPT Model |
gaurishhs/API | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | "2021-07-22T07:09:33Z" | ---
tags:
- generated_from_trainer
model_index:
- name: gpt2-medium-dutch-finetuned-text-generation
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-medium-dutch-finetuned-text-generation
This model is a fine-tuned version of [GroNLP/gpt2-medium-dutch-embeddings](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 394 | 4.0144 |
| 3.3633 | 2.0 | 788 | 3.9379 |
| 2.7108 | 3.0 | 1182 | 3.9268 |
### Framework versions
- Transformers 4.9.0
- Pytorch 1.9.0+cu102
- Datasets 1.10.2
- Tokenizers 0.10.3
|
Apisate/DialoGPT-small-jordan | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | null | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# Pyjay/sentence-transformers-multilingual-snli-v2-500k
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('Pyjay/sentence-transformers-multilingual-snli-v2-500k')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k')
model = AutoModel.from_pretrained('Pyjay/sentence-transformers-multilingual-snli-v2-500k')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Pyjay/sentence-transformers-multilingual-snli-v2-500k)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 15604 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss`
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 180 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 72,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
Ayham/bert_distilgpt2_summarization_cnn_dailymail | [
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"dataset:cnn_dailymail",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] | text2text-generation | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | This model is used to tag the tokens in an input sequence with information about the different signs of syntactic complexity that they contain. For more details, please see Chapters 2 and 3 of my thesis (http://rgcl.wlv.ac.uk/~richard/Evans2020_SentenceSimplificationForTextProcessing.pdf).
It was derived using code written by Dr. Le An Ha at the University of Wolverhampton.
To use this model, the following code snippet may help:
======================================================================
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
SignTaggingModel = AutoModelForTokenClassification.from_pretrained('RJ3vans/SignTagger')
SignTaggingTokenizer = AutoTokenizer.from_pretrained('RJ3vans/SignTagger')
label_list = ["M:N_CCV", "M:N_CIN", "M:N_CLA", "M:N_CLAdv", "M:N_CLN", "M:N_CLP", # This could be obtained from the config file
"M:N_CLQ", "M:N_CLV", "M:N_CMA1", "M:N_CMAdv", "M:N_CMN1",
"M:N_CMN2", "M:N_CMN3", "M:N_CMN4", "M:N_CMP", "M:N_CMP2",
"M:N_CMV1", "M:N_CMV2", "M:N_CMV3", "M:N_COMBINATORY", "M:N_CPA",
"M:N_ESAdvP", "M:N_ESCCV", "M:N_ESCM", "M:N_ESMA", "M:N_ESMAdvP",
"M:N_ESMI", "M:N_ESMN", "M:N_ESMP", "M:N_ESMV", "M:N_HELP",
"M:N_SPECIAL", "M:N_SSCCV", "M:N_SSCM", "M:N_SSMA", "M:N_SSMAdvP",
"M:N_SSMI", "M:N_SSMN", "M:N_SSMP", "M:N_SSMV", "M:N_STQ",
"M:N_V", "M:N_nan", "M:Y_CCV", "M:Y_CIN", "M:Y_CLA", "M:Y_CLAdv",
"M:Y_CLN", "M:Y_CLP", "M:Y_CLQ", "M:Y_CLV", "M:Y_CMA1",
"M:Y_CMAdv", "M:Y_CMN1", "M:Y_CMN2", "M:Y_CMN4", "M:Y_CMP",
"M:Y_CMP2", "M:Y_CMV1", "M:Y_CMV2", "M:Y_CMV3",
"M:Y_COMBINATORY", "M:Y_CPA", "M:Y_ESAdvP", "M:Y_ESCCV",
"M:Y_ESCM", "M:Y_ESMA", "M:Y_ESMAdvP", "M:Y_ESMI", "M:Y_ESMN",
"M:Y_ESMP", "M:Y_ESMV", "M:Y_HELP", "M:Y_SPECIAL", "M:Y_SSCCV",
"M:Y_SSCM", "M:Y_SSMA", "M:Y_SSMAdvP", "M:Y_SSMI", "M:Y_SSMN",
"M:Y_SSMP", "M:Y_SSMV", "M:Y_STQ"]
sentence = 'The County Court in Nottingham heard that Roger Gedge, 30, had his leg amputated following the incident outside a rock festival in Wollaton Park, Nottingham, five years ago.'
tokens = SignTaggingTokenizer.tokenize(SignTaggingTokenizer.decode(SignTaggingTokenizer.encode(sentence)))
inputs = SignTaggingTokenizer.encode(sentence, return_tensors="pt")
outputs = SignTaggingModel(inputs)[0]
predictions = torch.argmax(outputs, dim=2)
print([(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].tolist())])
======================================================================
|
Ayran/DialoGPT-small-gandalf | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4526
- Wer: 0.3411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7503 | 4.0 | 500 | 2.4125 | 1.0006 |
| 0.9595 | 8.0 | 1000 | 0.4833 | 0.4776 |
| 0.3018 | 12.0 | 1500 | 0.4333 | 0.4062 |
| 0.1751 | 16.0 | 2000 | 0.4474 | 0.3697 |
| 0.1288 | 20.0 | 2500 | 0.4445 | 0.3558 |
| 0.1073 | 24.0 | 3000 | 0.4695 | 0.3464 |
| 0.0816 | 28.0 | 3500 | 0.4526 | 0.3411 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Ayta/Haha | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
widget:
- text: "Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home
his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response.
First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent
cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net.
The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener.
Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November.
Gerrard is not at Villa to learn how to avoid relegation.
His demands remain as high as they were as a player and Coutinho's arrival is an example of that.
Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game.
The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees.
Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away.
When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution.
However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him."
language: en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-sports-titles
This model is a fine-tuned pegasus on some **sports news articles scraped from the internet. (For educational purposes only)**. The model can generate titles for sports articles. Try it out using the inference API.
## Model description
A Pegasus model tuned on generating scientific titles has been further fine-tuned to generate titles for sports articles. While training articles on **Tennis, Football (Soccer), Cricket , Athletics and Rugby** were used to generate titles. I experimented training the Tokenizer from scratch but it did not give good results compared to the pre-trained tokenizer.
## Usage
```python
from transformers import pipeline
#Feel free to play around with the generation parameters.
#Reduce the beam width for faster inference
#Note that the maximum length for the generated titles is 64
gen_kwargs = {"length_penalty": 0.6, "num_beams":4, "num_return_sequences": 4,"num_beam_groups":4,"diversity_penalty":2.0}
pipe = pipeline("summarization", model="RajSang/pegasus-sports-titles")
#Change the article according to your wish
article="""
Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home
his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response.
First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent
cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net.
The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener.
Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November.
Gerrard is not at Villa to learn how to avoid relegation.
His demands remain as high as they were as a player and Coutinho's arrival is an example of that.
Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game.
The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees.
Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away.
When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution.
However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him.
"""
result=pipe(article, **gen_kwargs)[0]["summary_text"]
print(result)
''' Output
Title 1 :
Coutinho's arrival sparks Villa comeback
Title 2 :
Philippe Coutinho marked his debut for Aston Villa with a goal and an assist as Steven Gerrard's side came from two goals down to draw with Manchester United.
Title 3 :
Steven Gerrard's first game in charge of Aston Villa ended in a dramatic draw against Manchester United - but it was the arrival of Philippe Coutinho that marked the night.
Title 4 :
Liverpool loanee Philippe Coutinho marked his first appearance for Aston Villa with two goals as Steven Gerrard's side came from two goals down to draw 2-2.'''
```
## Training procedure
While training, **short titles were combined with the subtitles for the articles to improve the quality of the generated titles and the subtitles were removed from the main body of the articles.**
##Limitations
In rare cases, if the opening few lines of a passage/article are descriptive enough, the model often just copies these lines instead of looking for information further down the articles, which may not be conducive in some cases.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
**Rouge1:38.2315**
**Rouge2: 18.6598**
**RougueL: 31.7393**
**RougeLsum: 31.7086**
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Ayu/Shiriro | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null |
# NepaliBERT(Phase 1)
NEPALIBERT is a state-of-the-art language model for Nepali based on the BERT model. The model is trained using a masked language modeling (MLM).
# Loading the model and tokenizer
1. clone the model repo
```
git lfs install
git clone https://huggingface.co/Rajan/NepaliBERT
```
2. Loading the Tokenizer
```
from transformers import BertTokenizer
vocab_file_dir = './NepaliBERT/'
tokenizer = BertTokenizer.from_pretrained(vocab_file_dir,
strip_accents=False,
clean_text=False )
```
3. Loading the model:
```
from transformers import BertForMaskedLM
model = BertForMaskedLM.from_pretrained('./NepaliBERT')
```
The easiest way to check whether our language model is learning anything interesting is via the ```FillMaskPipeline```.
Pipelines are simple wrappers around tokenizers and models, and the 'fill-mask' one will let you input a sequence containing a masked token (here, [mask]) and return a list of the most probable filled sequences, with their probabilities.
```
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
```
For more info visit the [GITHUB🤗](https://github.com/R4j4n/NepaliBERT) |
AyushPJ/ai-club-inductions-21-nlp-ALBERT | [
"pytorch",
"albert",
"question-answering",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"AlbertForQuestionAnswering"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
license: mit
---
https://github.com/R4j4n/Nepali-Word2Vec-from-scratch
How to clone :
```
git lfs install
git clone https://huggingface.co/Rajan/Nepali_Word2Vec
``` |
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2 | [
"pytorch",
"roberta",
"question-answering",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | "2021-03-20T15:59:24Z" | ---
language:
- ta
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
- hf-asr-leaderboard
license: apache-2.0
model-index:
- name: Rajaram1996/wav2vec2-large-xlsr-53-tamil
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ta
type: common_voice
args: ta
metrics:
- name: Test WER
type: wer
value: 69.76
---
# Wav2Vec2-Large-XLSR-53-tamil
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ta", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 69.76 % |
Azaghast/DistilBERT-SCP-Class-Classification | [
"pytorch",
"distilbert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 42 | null | ---
language:
- en
license: mit
datasets:
- cuad
pipeline_tag: question-answering
tags:
- legal-contract-review
- roberta
- cuad
library_name: transformers
---
# Model Card for roberta-base-on-cuad
# Model Details
## Model Description
- **Developed by:** Mohammed Rakib
- **Shared by [Optional]:** More information needed
- **Model type:** Question Answering
- **Language(s) (NLP):** en
- **License:** MIT
- **Related Models:**
- **Parent Model:** RoBERTa
- **Resources for more information:**
- GitHub Repo: [defactolaw](https://github.com/afra-tech/defactolaw)
- Associated Paper: [An Open Source Contractual Language Understanding Application Using Machine Learning](https://aclanthology.org/2022.lateraisse-1.6/)
# Uses
## Direct Use
This model can be used for the task of Question Answering on Legal Documents.
# Training Details
Read: [An Open Source Contractual Language Understanding Application Using Machine Learning](https://aclanthology.org/2022.lateraisse-1.6/)
for detailed information on training procedure, dataset preprocessing and evaluation.
## Training Data
See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information.
### Factors
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
Used V100/P100 from Google Colab Pro
### Software
Python, Transformers
# Citation
**BibTeX:**
```
@inproceedings{nawar-etal-2022-open,
title = "An Open Source Contractual Language Understanding Application Using Machine Learning",
author = "Nawar, Afra and
Rakib, Mohammed and
Hai, Salma Abdul and
Haq, Sanaulla",
booktitle = "Proceedings of the First Workshop on Language Technology and Resources for a Fair, Inclusive, and Safe Society within the 13th Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lateraisse-1.6",
pages = "42--50",
abstract = "Legal field is characterized by its exclusivity and non-transparency. Despite the frequency and relevance of legal dealings, legal documents like contracts remains elusive to non-legal professionals for the copious usage of legal jargon. There has been little advancement in making legal contracts more comprehensible. This paper presents how Machine Learning and NLP can be applied to solve this problem, further considering the challenges of applying ML to the high length of contract documents and training in a low resource environment. The largest open-source contract dataset so far, the Contract Understanding Atticus Dataset (CUAD) is utilized. Various pre-processing experiments and hyperparameter tuning have been carried out and we successfully managed to eclipse SOTA results presented for models in the CUAD dataset trained on RoBERTa-base. Our model, A-type-RoBERTa-base achieved an AUPR score of 46.6{\%} compared to 42.6{\%} on the original RoBERT-base. This model is utilized in our end to end contract understanding application which is able to take a contract and highlight the clauses a user is looking to find along with it{'}s descriptions to aid due diligence before signing. Alongside digital, i.e. searchable, contracts the system is capable of processing scanned, i.e. non-searchable, contracts using tesseract OCR. This application is aimed to not only make contract review a comprehensible process to non-legal professionals, but also to help lawyers and attorneys more efficiently review contracts.",
}
```
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Mohammed Rakib in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("Rakib/roberta-base-on-cuad")
model = AutoModelForQuestionAnswering.from_pretrained("Rakib/roberta-base-on-cuad")
```
</details> |
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition | [
"pytorch",
"wav2vec2",
"audio-classification",
"ja",
"dataset:jtes",
"transformers",
"audio",
"speech",
"speech-emotion-recognition",
"has_space"
] | audio-classification | {
"architectures": [
"HubertForSequenceClassification"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 26 | null | ---
tags:
- generated_from_trainer
model-index:
- name: QAIDeptModel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QAIDeptModel
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 105 | 2.6675 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
BalajiSathesh/DialoGPT-small-harrypotter | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7195
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.0306 | 0.8 | 100 | 3.0392 | 1.0 |
| 2.9429 | 1.6 | 200 | 3.2416 | 1.0 |
| 2.7792 | 2.4 | 300 | 2.7195 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
BaptisteDoyen/camembert-base-xnli | [
"pytorch",
"tf",
"camembert",
"text-classification",
"fr",
"dataset:xnli",
"transformers",
"zero-shot-classification",
"xnli",
"nli",
"license:mit",
"has_space"
] | zero-shot-classification | {
"architectures": [
"CamembertForSequenceClassification"
],
"model_type": "camembert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 405,474 | null | ---
language: es
license: apache-2.0
datasets:
- wikipedia
widget:
- text: "Mi nombre es Juan y vivo en [MASK]."
---
# DistilBERT base multilingual model Spanish subset (cased)
This model is the Spanish extract of `distilbert-base-multilingual-cased` (https://huggingface.co/distilbert-base-multilingual-cased), a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). This model is cased: it does make a difference between english and English.
It uses the extraction method proposed by Geotrend described in https://github.com/Geotrend-research/smaller-transformers.
The resulting model has the same architecture as DistilmBERT: 6 layers, 768 dimension and 12 heads, with a total of **63M parameters** (compared to 134M parameters for DistilmBERT).
The goal of this model is to reduce even further the size of the `distilbert-base-multilingual` multilingual model by selecting only most frequent tokens for Spanish, reducing the size of the embedding layer. For more details visit the paper from the Geotrend team: Load What You Need: Smaller Versions of Multilingual BERT. |
Barbarameerr/Barbara | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- es
thumbnail: "url to a thumbnail used in social sharing"
license: apache-2.0
datasets:
- oscar
---
# SELECTRA: A Spanish ELECTRA
SELECTRA is a Spanish pre-trained language model based on [ELECTRA](https://github.com/google-research/electra).
We release a `small` and `medium` version with the following configuration:
| Model | Layers | Embedding/Hidden Size | Params | Vocab Size | Max Sequence Length | Cased |
| --- | --- | --- | --- | --- | --- | --- |
| [SELECTRA small](https://huggingface.co/Recognai/selectra_small) | 12 | 256 | 22M | 50k | 512 | True |
| **SELECTRA medium** | **12** | **384** | **41M** | **50k** | **512** | **True** |
**SELECTRA small (medium) is about 5 (3) times smaller than BETO but achieves comparable results** (see Metrics section below).
## Usage
From the original [ELECTRA model card](https://huggingface.co/google/electra-small-discriminator): "ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN."
The discriminator should therefore activate the logit corresponding to the fake input token, as the following example demonstrates:
```python
from transformers import ElectraForPreTraining, ElectraTokenizerFast
discriminator = ElectraForPreTraining.from_pretrained("Recognai/selectra_small")
tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small")
sentence_with_fake_token = "Estamos desayunando pan rosa con tomate y aceite de oliva."
inputs = tokenizer.encode(sentence_with_fake_token, return_tensors="pt")
logits = discriminator(inputs).logits.tolist()[0]
print("\t".join(tokenizer.tokenize(sentence_with_fake_token)))
print("\t".join(map(lambda x: str(x)[:4], logits[1:-1])))
"""Output:
Estamos desayun ##ando pan rosa con tomate y aceite de oliva .
-3.1 -3.6 -6.9 -3.0 0.19 -4.5 -3.3 -5.1 -5.7 -7.7 -4.4 -4.2
"""
```
However, you probably want to use this model to fine-tune it on a downstream task.
We provide models fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which can be used together with the zero-shot classification pipeline:
- [Zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small)
- [Zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium)
## Metrics
We fine-tune our models on 3 different down-stream tasks:
- [XNLI](https://huggingface.co/datasets/xnli)
- [PAWS-X](https://huggingface.co/datasets/paws-x)
- [CoNLL2002 - NER](https://huggingface.co/datasets/conll2002)
For each task, we conduct 5 trials and state the mean and standard deviation of the metrics in the table below.
To compare our results to other Spanish language models, we provide the same metrics taken from the [evaluation table](https://github.com/PlanTL-SANIDAD/lm-spanish#evaluation-) of the [Spanish Language Model](https://github.com/PlanTL-SANIDAD/lm-spanish) repo.
| Model | CoNLL2002 - NER (f1) | PAWS-X (acc) | XNLI (acc) | Params |
| --- | --- | --- | --- | --- |
| SELECTRA small | 0.865 +- 0.004 | 0.896 +- 0.002 | 0.784 +- 0.002 | 22M |
| SELECTRA medium | 0.873 +- 0.003 | 0.896 +- 0.002 | 0.804 +- 0.002 | 41M |
| | | | | |
| [mBERT](https://huggingface.co/bert-base-multilingual-cased) | 0.8691 | 0.8955 | 0.7876 | 178M |
| [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) | 0.8759 | 0.9000 | 0.8130 | 110M |
| [RoBERTa-b](https://huggingface.co/BSC-TeMU/roberta-base-bne) | 0.8851 | 0.9000 | 0.8016 | 125M |
| [RoBERTa-l](https://huggingface.co/BSC-TeMU/roberta-large-bne) | 0.8772 | 0.9060 | 0.7958 | 355M |
| [Bertin](https://huggingface.co/bertin-project/bertin-roberta-base-spanish/tree/v1-512) | 0.8835 | 0.8990 | 0.7890 | 125M |
| [ELECTRICIDAD](https://huggingface.co/mrm8488/electricidad-base-discriminator) | 0.7954 | 0.9025 | 0.7878 | 109M |
Some details of our fine-tuning runs:
- epochs: 5
- batch-size: 32
- learning rate: 1e-4
- warmup proportion: 0.1
- linear learning rate decay
- layerwise learning rate decay
For all the details, check out our [selectra repo](https://github.com/recognai/selectra).
## Training
We pre-trained our SELECTRA models on the Spanish portion of the [Oscar](https://huggingface.co/datasets/oscar) dataset, which is about 150GB in size.
Each model version is trained for 300k steps, with a warm restart of the learning rate after the first 150k steps.
Some details of the training:
- steps: 300k
- batch-size: 128
- learning rate: 5e-4
- warmup steps: 10k
- linear learning rate decay
- TPU cores: 8 (v2-8)
For all details, check out our [selectra repo](https://github.com/recognai/selectra).
**Note:** Due to a misconfiguration in the pre-training scripts the embeddings of the vocabulary containing an accent were not optimized. If you fine-tune this model on a down-stream task, you might consider using a tokenizer that does not strip the accents:
```python
tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small", strip_accents=False)
```
## Motivation
Despite the abundance of excellent Spanish language models (BETO, BSC-BNE, Bertin, ELECTRICIDAD, etc.), we felt there was still a lack of distilled or compact Spanish language models and a lack of comparing those to their bigger siblings.
## Acknowledgment
This research was supported by the Google TPU Research Cloud (TRC) program.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Javier Lopez ([GitHub](https://github.com/javispp))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon)) |
Barkavi/totto-t5-base-bert-score-121K | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | {
"architectures": [
"T5ForConditionalGeneration"
],
"model_type": "t5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": true,
"length_penalty": 2,
"max_length": 200,
"min_length": 30,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"prefix": "summarize: "
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to German: "
},
"translation_en_to_fr": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to French: "
},
"translation_en_to_ro": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to Romanian: "
}
}
} | 51 | null | ---
language:
- es
thumbnail: "url to a thumbnail used in social sharing"
license: apache-2.0
datasets:
- oscar
---
# SELECTRA: A Spanish ELECTRA
SELECTRA is a Spanish pre-trained language model based on [ELECTRA](https://github.com/google-research/electra).
We release a `small` and `medium` version with the following configuration:
| Model | Layers | Embedding/Hidden Size | Params | Vocab Size | Max Sequence Length | Cased |
| --- | --- | --- | --- | --- | --- | --- |
| **SELECTRA small** | **12** | **256** | **22M** | **50k** | **512** | **True** |
| [SELECTRA medium](https://huggingface.co/Recognai/selectra_medium) | 12 | 384 | 41M | 50k | 512 | True |
**SELECTRA small (medium) is about 5 (3) times smaller than BETO but achieves comparable results** (see Metrics section below).
## Usage
From the original [ELECTRA model card](https://huggingface.co/google/electra-small-discriminator): "ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN."
The discriminator should therefore activate the logit corresponding to the fake input token, as the following example demonstrates:
```python
from transformers import ElectraForPreTraining, ElectraTokenizerFast
discriminator = ElectraForPreTraining.from_pretrained("Recognai/selectra_small")
tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small")
sentence_with_fake_token = "Estamos desayunando pan rosa con tomate y aceite de oliva."
inputs = tokenizer.encode(sentence_with_fake_token, return_tensors="pt")
logits = discriminator(inputs).logits.tolist()[0]
print("\t".join(tokenizer.tokenize(sentence_with_fake_token)))
print("\t".join(map(lambda x: str(x)[:4], logits[1:-1])))
"""Output:
Estamos desayun ##ando pan rosa con tomate y aceite de oliva .
-3.1 -3.6 -6.9 -3.0 0.19 -4.5 -3.3 -5.1 -5.7 -7.7 -4.4 -4.2
"""
```
However, you probably want to use this model to fine-tune it on a downstream task.
We provide models fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which can be used together with the zero-shot classification pipeline:
- [Zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small)
- [Zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium)
## Metrics
We fine-tune our models on 3 different down-stream tasks:
- [XNLI](https://huggingface.co/datasets/xnli)
- [PAWS-X](https://huggingface.co/datasets/paws-x)
- [CoNLL2002 - NER](https://huggingface.co/datasets/conll2002)
For each task, we conduct 5 trials and state the mean and standard deviation of the metrics in the table below.
To compare our results to other Spanish language models, we provide the same metrics taken from the [evaluation table](https://github.com/PlanTL-SANIDAD/lm-spanish#evaluation-) of the [Spanish Language Model](https://github.com/PlanTL-SANIDAD/lm-spanish) repo.
| Model | CoNLL2002 - NER (f1) | PAWS-X (acc) | XNLI (acc) | Params |
| --- | --- | --- | --- | --- |
| SELECTRA small | 0.865 +- 0.004 | 0.896 +- 0.002 | 0.784 +- 0.002 | 22M |
| SELECTRA medium | 0.873 +- 0.003 | 0.896 +- 0.002 | 0.804 +- 0.002 | 41M |
| | | | | |
| [mBERT](https://huggingface.co/bert-base-multilingual-cased) | 0.8691 | 0.8955 | 0.7876 | 178M |
| [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) | 0.8759 | 0.9000 | 0.8130 | 110M |
| [RoBERTa-b](https://huggingface.co/BSC-TeMU/roberta-base-bne) | 0.8851 | 0.9000 | 0.8016 | 125M |
| [RoBERTa-l](https://huggingface.co/BSC-TeMU/roberta-large-bne) | 0.8772 | 0.9060 | 0.7958 | 355M |
| [Bertin](https://huggingface.co/bertin-project/bertin-roberta-base-spanish/tree/v1-512) | 0.8835 | 0.8990 | 0.7890 | 125M |
| [ELECTRICIDAD](https://huggingface.co/mrm8488/electricidad-base-discriminator) | 0.7954 | 0.9025 | 0.7878 | 109M |
Some details of our fine-tuning runs:
- epochs: 5
- batch-size: 32
- learning rate: 1e-4
- warmup proportion: 0.1
- linear learning rate decay
- layerwise learning rate decay
For all the details, check out our [selectra repo](https://github.com/recognai/selectra).
## Training
We pre-trained our SELECTRA models on the Spanish portion of the [Oscar](https://huggingface.co/datasets/oscar) dataset, which is about 150GB in size.
Each model version is trained for 300k steps, with a warm restart of the learning rate after the first 150k steps.
Some details of the training:
- steps: 300k
- batch-size: 128
- learning rate: 5e-4
- warmup steps: 10k
- linear learning rate decay
- TPU cores: 8 (v2-8)
For all details, check out our [selectra repo](https://github.com/recognai/selectra).
**Note:** Due to a misconfiguration in the pre-training scripts the embeddings of the vocabulary containing an accent were not optimized. If you fine-tune this model on a down-stream task, you might consider using a tokenizer that does not strip the accents:
```python
tokenizer = ElectraTokenizerFast.from_pretrained("Recognai/selectra_small", strip_accents=False)
```
## Motivation
Despite the abundance of excellent Spanish language models (BETO, BSC-BNE, Bertin, ELECTRICIDAD, etc.), we felt there was still a lack of distilled or compact Spanish language models and a lack of comparing those to their bigger siblings.
## Acknowledgment
This research was supported by the Google TPU Research Cloud (TRC) program.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Javier Lopez ([GitHub](https://github.com/javispp))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon)) |
Barleysack/AERoberta2 | [
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | {
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | "2021-10-14T15:22:47Z" | ---
language: es
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- xnli
pipeline_tag: zero-shot-classification
license: apache-2.0
widget:
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
candidate_labels: "cultura, sociedad, economia, salud, deportes"
---
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html).
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier.
## Usage
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Recognai/zeroshot_selectra_medium")
classifier(
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
hypothesis_template="Este ejemplo es {}."
)
"""Output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'],
'scores': [0.6450043320655823,
0.16710571944713593,
0.08507631719112396,
0.0759836807847023,
0.026829993352293968]}
"""
```
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.**
## Demo and tutorial
If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*.
The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time).
You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html).
See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example).
<video width="100%" controls><source src="https://github.com/recognai/rubrix-materials/raw/main/tutorials/videos/zeroshot_selectra_news_data_annotation.mp4" type="video/mp4"></video>
## Metrics
| Model | Params | XNLI (acc) | \*MLSUM (acc) |
| --- | --- | --- | --- |
| [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 |
| zs SELECTRA medium | 41M | **0.807** | **0.589** |
| [zs SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 |
\*evaluated with zero-shot learning (ZSL)
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion.
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb)
## Training
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon))
- Javier Lopez ([GitHub](https://github.com/javispp)) |
Barleysack/klue-roberta-LSTM | [
"pytorch",
"roberta",
"transformers"
] | null | {
"architectures": [
"QAWithLSTMModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | "2021-10-14T14:58:07Z" | ---
language: es
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- xnli
pipeline_tag: zero-shot-classification
license: apache-2.0
widget:
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
candidate_labels: "cultura, sociedad, economia, salud, deportes"
---
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html).
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier.
## Usage
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Recognai/zeroshot_selectra_medium")
classifier(
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
hypothesis_template="Este ejemplo es {}."
)
"""Output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
'labels': ['sociedad', 'cultura', 'salud', 'economia', 'deportes'],
'scores': [0.3711881935596466,
0.25650349259376526,
0.17355826497077942,
0.1641489565372467,
0.03460107371211052]}
"""
```
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.**
## Metrics
| Model | Params | XNLI (acc) | \*MLSUM (acc) |
| --- | --- | --- | --- |
| [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 |
| [zs SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) | 41M | **0.807** | **0.589** |
| zs SELECTRA small | **22M** | 0.795 | 0.446 |
\*evaluated with zero-shot learning (ZSL)
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion.
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb)
## Training
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon))
- Javier Lopez ([GitHub](https://github.com/javispp)) |
Barytes/hellohf | [
"tf",
"bert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"transformers",
"exbert",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 2 | "2021-05-17T06:50:50Z" | ---
language: sv
license: mit
---
## Swedish BERT models for sentiment analysis, Sentiment targets.
[Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases a Named Entity Recognition(NER) model for entety detection in Swedish. The model is based on [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) and finetuned on data collected from various internet sources and forums.
The model has been trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data.
The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified.
### Available tags
* Location
* Organization
* Person
* Religion
* Title
### Evaluation metrics
The model had the following metrics when evaluated on test data originating from the same domain as the training data.
#### F1-score
| Loc | Org | Per | Nat | Rel | Tit | Total |
|------|------|------|------|------|------|-------|
| 0.91 | 0.88 | 0.96 | 0.95 | 0.91 | 0.84 | 0.92 |
|
Batsy24/DialoGPT-small-Twilight_EdBot | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
language: sv
license: mit
---
## Swedish BERT models for sentiment analysis
[Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for sentiment analysis in Swedish. The two models are based on the [KB\/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased) model and has been fine-tuned to solve a multi-label sentiment analysis task.
The models have been fine-tuned for the sentiments fear and violence. The models output three floats corresponding to the labels "Negative", "Weak sentiment", and "Strong Sentiment" at the respective indexes.
The models have been trained on Swedish data with a conversational focus, collected from various internet sources and forums.
The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data.
The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified.
### Swedish-Sentiment-Fear
The model can be imported from the transformers library by running
from transformers import BertForSequenceClassification, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear")
classifier_fear= BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear")
When the model and tokenizer are initialized the model can be used for inference.
#### Sentiment definitions
#### The strong sentiment includes but are not limited to
Texts that:
- Hold an expressive emphasis on fear and/ or anxiety
#### The weak sentiment includes but are not limited to
Texts that:
- Express fear and/ or anxiety in a neutral way
#### Verification metrics
During training, the model had maximized validation metrics at the following classification breakpoint.
| Classification Breakpoint | F-score | Precision | Recall |
|:-------------------------:|:-------:|:---------:|:------:|
| 0.45 | 0.8754 | 0.8618 | 0.8895 |
#### Swedish-Sentiment-Violence
The model be can imported from the transformers library by running
from transformers import BertForSequenceClassification, BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence")
classifier_violence = BertForSequenceClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence")
When the model and tokenizer are initialized the model can be used for inference.
### Sentiment definitions
#### The strong sentiment includes but are not limited to
Texts that:
- Referencing highly violent acts
- Hold an aggressive tone
#### The weak sentiment includes but are not limited to
Texts that:
- Include general violent statements that do not fall under the strong sentiment
#### Verification metrics
During training, the model had maximized validation metrics at the following classification breakpoint.
| Classification Breakpoint | F-score | Precision | Recall |
|:-------------------------:|:-------:|:---------:|:------:|
| 0.35 | 0.7677 | 0.7456 | 0.791 | |
Baybars/wav2vec2-xls-r-1b-turkish | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"tr",
"dataset:common_voice",
"transformers",
"common_voice",
"generated_from_trainer"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 13 | "2021-12-22T06:49:38Z" | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum-original
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
args: default
metrics:
- name: Rouge1
type: rouge
value: 28.8838
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum-original
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4436
- Rouge1: 28.8838
- Rouge2: 8.1114
- Rougel: 22.8318
- Rougelsum: 22.8318
- Gen Len: 18.8141
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.6754 | 1.0 | 51012 | 2.4436 | 28.8838 | 8.1114 | 22.8318 | 22.8318 | 18.8141 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
Bella4322/Sarah | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | "2021-08-11T13:18:34Z" | ---
language: id
tags:
- indobert
- indolem
license: apache-2.0
datasets:
- 220M words (IndoWiki, IndoWC, News)
- Squad 2.0 (Indonesian translated)
widget:
- text: kapan pangeran diponegoro lahir?
context: Pangeran Harya Dipanegara (atau biasa dikenal dengan nama Pangeran Diponegoro,
lahir di Ngayogyakarta Hadiningrat, 11 November 1785 – meninggal di Makassar,
Hindia Belanda, 8 Januari 1855 pada umur 69 tahun) adalah salah seorang pahlawan
nasional Republik Indonesia, yang memimpin Perang Diponegoro atau Perang Jawa
selama periode tahun 1825 hingga 1830 melawan pemerintah Hindia Belanda. Sejarah
mencatat, Perang Diponegoro atau Perang Jawa dikenal sebagai perang yang menelan
korban terbanyak dalam sejarah Indonesia, yakni 8.000 korban serdadu Hindia Belanda,
7.000 pribumi, dan 200 ribu orang Jawa serta kerugian materi 25 juta Gulden.
---
[Github](https://github.com/rifkybujana/IndoBERT-QA)
This project is part of my research with my friend Muhammad Fajrin Buyang Daffa entitled "Teman Belajar : Asisten Digital Pelajar SMA Negeri 28 Jakarta dalam Membaca" for KOPSI (Kompetisi Penelitian Siswa Indonesia/Indonesian Student Research Competition).
## indoBERT Base-Uncased fine-tuned on Translated Squad v2.0
[IndoBERT](https://huggingface.co/indolem/indobert-base-uncased) trained by [IndoLEM](https://indolem.github.io/) and fine-tuned on [Translated SQuAD 2.0](https://github.com/Wikidepia/indonesian_datasets/tree/master/question-answering/squad) for **Q&A** downstream task.
**Model Size** (after training): 420mb
## Details of indoBERT (from their documentation)
[IndoBERT](https://huggingface.co/indolem/indobert-base-uncased) is the Indonesian version of BERT model. We train the model using over 220M words, aggregated from three main sources:
- Indonesian Wikipedia (74M words)
- news articles from Kompas, Tempo (Tala et al., 2003), and Liputan6 (55M words in total)
- an Indonesian Web Corpus (Medved and Suchomel, 2017) (90M words).
We trained the model for 2.4M steps (180 epochs) with the final perplexity over the development set being 3.97 (similar to English BERT-base).
This IndoBERT was used to examine IndoLEM - an Indonesian benchmark that comprises of seven tasks for the Indonesian language, spanning morpho-syntax, semantics, and discourse.[[1]](#1)
## Details of the downstream task (Q&A) - Dataset
SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| SQuAD2.0 | train | 130k |
| SQuAD2.0 | eval | 12.3k |
## Model Training
The model was trained on a Tesla T4 GPU and 12GB of RAM.
## Results:
| Metric | # Value |
| ------ | --------- |
| **EM** | **51.61** |
| **F1** | **69.09** |
## Simple Usage
```py
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="Rifky/Indobert-QA",
tokenizer="Rifky/Indobert-QA"
)
qa_pipeline({
'context': """Pangeran Harya Dipanegara (atau biasa dikenal dengan nama Pangeran Diponegoro, lahir di Ngayogyakarta Hadiningrat, 11 November 1785 – meninggal di Makassar, Hindia Belanda, 8 Januari 1855 pada umur 69 tahun) adalah salah seorang pahlawan nasional Republik Indonesia, yang memimpin Perang Diponegoro atau Perang Jawa selama periode tahun 1825 hingga 1830 melawan pemerintah Hindia Belanda. Sejarah mencatat, Perang Diponegoro atau Perang Jawa dikenal sebagai perang yang menelan korban terbanyak dalam sejarah Indonesia, yakni 8.000 korban serdadu Hindia Belanda, 7.000 pribumi, dan 200 ribu orang Jawa serta kerugian materi 25 juta Gulden.""",
'question': "kapan pangeran diponegoro lahir?"
})
```
*output:*
```py
{
'answer': '11 November 1785',
'end': 131,
'score': 0.9272009134292603,
'start': 115
}
```
### Reference
<a id="1">[1]</a>Fajri Koto and Afshin Rahimi and Jey Han Lau and Timothy Baldwin. 2020. IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. Proceedings of the 28th COLING. |
BigSalmon/BestMask2 | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible",
"has_space"
] | fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: deberta-base-mnli-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.6281691768918801
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-base-mnli-finetuned-cola
This model is a fine-tuned version of [microsoft/deberta-base-mnli](https://huggingface.co/microsoft/deberta-base-mnli) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8205
- Matthews Correlation: 0.6282
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.4713 | 1.0 | 535 | 0.5110 | 0.5797 |
| 0.2678 | 2.0 | 1070 | 0.6648 | 0.5154 |
| 0.1811 | 3.0 | 1605 | 0.6681 | 0.6121 |
| 0.113 | 4.0 | 2140 | 0.8205 | 0.6282 |
| 0.0831 | 5.0 | 2675 | 1.0413 | 0.6057 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
BigSalmon/Flowberta | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 13 | null | ---
tags:
- conversational
---
# Mikoto Jinba DialoGPT Model |
BigSalmon/FormalRobertaaa | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/bert-base-cased-finetuned-swag
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/bert-base-cased-finetuned-swag
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8709
- Train Accuracy: 0.6465
- Validation Loss: 0.6167
- Validation Accuracy: 0.7590
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.8709 | 0.6465 | 0.6167 | 0.7590 | 0 |
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.1
- Datasets 2.3.3.dev0
- Tokenizers 0.11.0
|
BigSalmon/FroBurta | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/bert-base-cased-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/bert-base-cased-finetuned-wikitext2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 6.3982
- Validation Loss: 6.2664
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 7.0679 | 6.4768 | 0 |
| 6.3982 | 6.2664 | 1 |
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.1
- Datasets 2.3.3.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPT2HardArticleEasyArticle | [
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/bert-base-uncased-finetuned-swag
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/bert-base-uncased-finetuned-swag
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8360
- Train Accuracy: 0.6631
- Validation Loss: 0.5885
- Validation Accuracy: 0.7706
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.8360 | 0.6631 | 0.5885 | 0.7706 | 0 |
### Framework versions
- Transformers 4.18.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 2.0.1.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPTNeo350MInformalToFormalLincoln4 | [
"pytorch",
"gpt_neo",
"text-generation",
"transformers",
"has_space"
] | text-generation | {
"architectures": [
"GPTNeoForCausalLM"
],
"model_type": "gpt_neo",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilbert-base-uncased-finetuned-cola
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3182
- Validation Loss: 0.4914
- Train Matthews Correlation: 0.5056
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Matthews Correlation | Epoch |
|:----------:|:---------------:|:--------------------------:|:-----:|
| 0.5126 | 0.4638 | 0.4555 | 0 |
| 0.3182 | 0.4914 | 0.5056 | 1 |
### Framework versions
- Transformers 4.22.0.dev0
- TensorFlow 2.9.1
- Datasets 2.4.1.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPTNeo350MInformalToFormalLincoln5 | [
"pytorch",
"gpt_neo",
"text-generation",
"transformers",
"has_space"
] | text-generation | {
"architectures": [
"GPTNeoForCausalLM"
],
"model_type": "gpt_neo",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2026
- Validation Loss: 0.0726
- Train Precision: 0.8945
- Train Recall: 0.9220
- Train F1: 0.9081
- Train Accuracy: 0.9793
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:|
| 0.2026 | 0.0726 | 0.8945 | 0.9220 | 0.9081 | 0.9793 | 0 |
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.1
- Datasets 2.3.3.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPTNeo350MInformalToFormalLincoln6 | [
"pytorch",
"gpt_neo",
"text-generation",
"transformers",
"has_space"
] | text-generation | {
"architectures": [
"GPTNeoForCausalLM"
],
"model_type": "gpt_neo",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 14 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5124
- Train End Logits Accuracy: 0.6041
- Train Start Logits Accuracy: 0.5680
- Validation Loss: 1.1534
- Validation End Logits Accuracy: 0.6849
- Validation Start Logits Accuracy: 0.6443
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.5124 | 0.6041 | 0.5680 | 1.1534 | 0.6849 | 0.6443 | 0 |
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.1
- Datasets 2.3.3.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPTT | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8577
- Validation Loss: 3.6752
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.8577 | 3.6752 | 0 |
### Framework versions
- Transformers 4.16.0.dev0
- TensorFlow 2.8.0-rc0
- Datasets 1.17.0
- Tokenizers 0.11.0
|
BigSalmon/InformalToFormalLincoln14 | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/gpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/gpt2-finetuned-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 7.3062
- Validation Loss: 6.7676
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 7.3062 | 6.7676 | 0 |
### Framework versions
- Transformers 4.21.0.dev0
- TensorFlow 2.9.1
- Datasets 2.3.3.dev0
- Tokenizers 0.11.0
|
Subsets and Splits