modelId
stringlengths
4
81
tags
sequence
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Dazai/Ok
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Dean/summarsiation
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Sedged DialoGPT Model
Declan/Breitbart_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: code license: mit tags: - Code - GPyT - code generator --- GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning. Newlines are replaced by `<N>` Input to the model is code, up to the context length of 1024, with newlines replaced by `<N>` Here's a quick example of using this model: ```py from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Sentdex/GPyT") model = AutoModelWithLMHead.from_pretrained("Sentdex/GPyT") # copy and paste some code in here inp = """import""" newlinechar = "<N>" converted = inp.replace("\n", newlinechar) tokenized = tokenizer.encode(converted, return_tensors='pt') resp = model.generate(tokenized) decoded = tokenizer.decode(resp[0]) reformatted = decoded.replace("<N>","\n") print(reformatted) ``` Should produce: ``` import numpy as np import pytest import pandas as pd<N ``` This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities: https://pythonprogramming.net/GPT-python-code-transformer-model-GPyT/ Considerations: 1. This model is intended for educational and research use only. Do not trust model outputs. 2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code. 3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things. 4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
Declan/CNN_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-base__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base__sst2__all-train This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6964 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.6964 | 0.49 | | No log | 2.0 | 14 | 0.7010 | 0.49 | | No log | 3.0 | 21 | 0.7031 | 0.49 | | No log | 4.0 | 28 | 0.7054 | 0.49 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/CNN_model_v7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9917 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7001 | 1.0 | 7 | 0.7327 | 0.2857 | | 0.6326 | 2.0 | 14 | 0.6479 | 0.5714 | | 0.5232 | 3.0 | 21 | 0.5714 | 0.5714 | | 0.3313 | 4.0 | 28 | 0.6340 | 0.7143 | | 0.3161 | 5.0 | 35 | 0.6304 | 0.7143 | | 0.0943 | 6.0 | 42 | 0.4719 | 0.8571 | | 0.0593 | 7.0 | 49 | 0.5000 | 0.7143 | | 0.0402 | 8.0 | 56 | 0.3530 | 0.8571 | | 0.0307 | 9.0 | 63 | 0.3499 | 0.8571 | | 0.0033 | 10.0 | 70 | 0.3258 | 0.8571 | | 0.0021 | 11.0 | 77 | 0.3362 | 0.8571 | | 0.0012 | 12.0 | 84 | 0.4591 | 0.8571 | | 0.0036 | 13.0 | 91 | 0.4661 | 0.8571 | | 0.001 | 14.0 | 98 | 0.5084 | 0.8571 | | 0.0017 | 15.0 | 105 | 0.5844 | 0.8571 | | 0.0005 | 16.0 | 112 | 0.6645 | 0.8571 | | 0.002 | 17.0 | 119 | 0.7422 | 0.8571 | | 0.0006 | 18.0 | 126 | 0.7354 | 0.8571 | | 0.0005 | 19.0 | 133 | 0.7265 | 0.8571 | | 0.0005 | 20.0 | 140 | 0.7207 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/CNN_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.5497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7086 | 1.0 | 7 | 0.7176 | 0.2857 | | 0.6897 | 2.0 | 14 | 0.7057 | 0.2857 | | 0.6491 | 3.0 | 21 | 0.6582 | 0.8571 | | 0.567 | 4.0 | 28 | 0.4480 | 0.8571 | | 0.4304 | 5.0 | 35 | 0.5465 | 0.7143 | | 0.0684 | 6.0 | 42 | 0.5408 | 0.8571 | | 0.0339 | 7.0 | 49 | 0.6501 | 0.8571 | | 0.0082 | 8.0 | 56 | 0.9152 | 0.8571 | | 0.0067 | 9.0 | 63 | 2.5162 | 0.5714 | | 0.0045 | 10.0 | 70 | 1.1136 | 0.8571 | | 0.0012 | 11.0 | 77 | 1.1668 | 0.8571 | | 0.0007 | 12.0 | 84 | 1.2071 | 0.8571 | | 0.0005 | 13.0 | 91 | 1.2310 | 0.8571 | | 0.0006 | 14.0 | 98 | 1.2476 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/ChicagoTribune_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 | | 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 | | 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 | | 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 | | 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 | | 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 | | 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 | | 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 | | 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 | | 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 | | 0.001 | 11.0 | 77 | 1.1101 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/ChicagoTribune_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.7068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6955 | 1.0 | 7 | 0.7370 | 0.2857 | | 0.6919 | 2.0 | 14 | 0.6855 | 0.4286 | | 0.6347 | 3.0 | 21 | 0.5872 | 0.7143 | | 0.4016 | 4.0 | 28 | 0.6644 | 0.7143 | | 0.3097 | 5.0 | 35 | 0.5120 | 0.7143 | | 0.0785 | 6.0 | 42 | 0.5845 | 0.7143 | | 0.024 | 7.0 | 49 | 0.6951 | 0.7143 | | 0.0132 | 8.0 | 56 | 0.8972 | 0.7143 | | 0.0037 | 9.0 | 63 | 1.5798 | 0.7143 | | 0.0034 | 10.0 | 70 | 1.5178 | 0.7143 | | 0.003 | 11.0 | 77 | 1.3511 | 0.7143 | | 0.0012 | 12.0 | 84 | 1.1346 | 0.7143 | | 0.0007 | 13.0 | 91 | 0.9752 | 0.7143 | | 0.0008 | 14.0 | 98 | 0.8531 | 0.7143 | | 0.0007 | 15.0 | 105 | 0.8149 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/ChicagoTribune_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.6392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 | | 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 | | 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 | | 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 | | 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 | | 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 | | 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 | | 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 | | 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 | | 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 | | 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 | | 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 | | 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 | | 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/ChicagoTribune_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.5063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 1.0 | 7 | 0.7455 | 0.2857 | | 0.6844 | 2.0 | 14 | 0.7242 | 0.2857 | | 0.6137 | 3.0 | 21 | 0.7341 | 0.4286 | | 0.3805 | 4.0 | 28 | 1.0217 | 0.4286 | | 0.2201 | 5.0 | 35 | 1.1437 | 0.2857 | | 0.0296 | 6.0 | 42 | 1.5997 | 0.4286 | | 0.0103 | 7.0 | 49 | 2.6835 | 0.4286 | | 0.0046 | 8.0 | 56 | 3.3521 | 0.4286 | | 0.002 | 9.0 | 63 | 3.7846 | 0.4286 | | 0.0017 | 10.0 | 70 | 4.0088 | 0.4286 | | 0.0018 | 11.0 | 77 | 4.1483 | 0.4286 | | 0.0006 | 12.0 | 84 | 4.2235 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/ChicagoTribune_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.6579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7129 | 1.0 | 7 | 0.7309 | 0.2857 | | 0.6549 | 2.0 | 14 | 0.7316 | 0.4286 | | 0.621 | 3.0 | 21 | 0.7131 | 0.5714 | | 0.3472 | 4.0 | 28 | 0.5703 | 0.4286 | | 0.2041 | 5.0 | 35 | 0.6675 | 0.5714 | | 0.031 | 6.0 | 42 | 1.6750 | 0.5714 | | 0.0141 | 7.0 | 49 | 1.8743 | 0.5714 | | 0.0055 | 8.0 | 56 | 1.1778 | 0.5714 | | 0.0024 | 9.0 | 63 | 1.0699 | 0.5714 | | 0.0019 | 10.0 | 70 | 1.0933 | 0.5714 | | 0.0012 | 11.0 | 77 | 1.1218 | 0.7143 | | 0.0007 | 12.0 | 84 | 1.1468 | 0.7143 | | 0.0006 | 13.0 | 91 | 1.1584 | 0.7143 | | 0.0006 | 14.0 | 98 | 1.3092 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/FoxNews_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4201 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7162 | 1.0 | 13 | 0.6832 | 0.5385 | | 0.6561 | 2.0 | 26 | 0.7270 | 0.4615 | | 0.4685 | 3.0 | 39 | 1.0674 | 0.5385 | | 0.2837 | 4.0 | 52 | 1.0841 | 0.5385 | | 0.1129 | 5.0 | 65 | 0.3502 | 0.9231 | | 0.0118 | 6.0 | 78 | 0.4829 | 0.9231 | | 0.0022 | 7.0 | 91 | 0.7430 | 0.8462 | | 0.0007 | 8.0 | 104 | 0.8219 | 0.8462 | | 0.0005 | 9.0 | 117 | 0.8787 | 0.8462 | | 0.0003 | 10.0 | 130 | 0.8713 | 0.8462 | | 0.0003 | 11.0 | 143 | 0.8473 | 0.8462 | | 0.0002 | 12.0 | 156 | 0.8482 | 0.8462 | | 0.0002 | 13.0 | 169 | 0.8494 | 0.8462 | | 0.0002 | 14.0 | 182 | 0.8638 | 0.8462 | | 0.0002 | 15.0 | 195 | 0.8492 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/FoxNews_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7088 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6705 | 1.0 | 3 | 0.7961 | 0.25 | | 0.6571 | 2.0 | 6 | 0.8092 | 0.25 | | 0.7043 | 3.0 | 9 | 0.7977 | 0.25 | | 0.6207 | 4.0 | 12 | 0.8478 | 0.25 | | 0.5181 | 5.0 | 15 | 0.9782 | 0.25 | | 0.4136 | 6.0 | 18 | 1.3151 | 0.25 | | 0.3702 | 7.0 | 21 | 1.8633 | 0.25 | | 0.338 | 8.0 | 24 | 2.2119 | 0.25 | | 0.2812 | 9.0 | 27 | 2.3058 | 0.25 | | 0.2563 | 10.0 | 30 | 2.3353 | 0.25 | | 0.2132 | 11.0 | 33 | 2.5921 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/FoxNews_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7020 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6773 | 1.0 | 3 | 0.7822 | 0.25 | | 0.6587 | 2.0 | 6 | 0.8033 | 0.25 | | 0.693 | 3.0 | 9 | 0.8101 | 0.25 | | 0.5979 | 4.0 | 12 | 1.1235 | 0.25 | | 0.4095 | 5.0 | 15 | 1.3563 | 0.25 | | 0.2836 | 6.0 | 18 | 1.5325 | 0.5 | | 0.1627 | 7.0 | 21 | 1.7786 | 0.25 | | 0.0956 | 8.0 | 24 | 2.0067 | 0.5 | | 0.0535 | 9.0 | 27 | 2.3351 | 0.5 | | 0.0315 | 10.0 | 30 | 2.6204 | 0.5 | | 0.0182 | 11.0 | 33 | 2.8483 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/FoxNews_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6421 - Accuracy: 0.6310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6696 | 1.0 | 3 | 0.7917 | 0.25 | | 0.6436 | 2.0 | 6 | 0.8107 | 0.25 | | 0.6923 | 3.0 | 9 | 0.8302 | 0.25 | | 0.5051 | 4.0 | 12 | 0.9828 | 0.25 | | 0.3688 | 5.0 | 15 | 0.7402 | 0.25 | | 0.2671 | 6.0 | 18 | 0.5820 | 0.75 | | 0.1935 | 7.0 | 21 | 0.8356 | 0.5 | | 0.0815 | 8.0 | 24 | 1.0431 | 0.25 | | 0.0591 | 9.0 | 27 | 0.9679 | 0.75 | | 0.0276 | 10.0 | 30 | 1.0659 | 0.75 | | 0.0175 | 11.0 | 33 | 0.9689 | 0.75 | | 0.0152 | 12.0 | 36 | 0.8820 | 0.75 | | 0.006 | 13.0 | 39 | 0.8337 | 0.75 | | 0.0041 | 14.0 | 42 | 0.7650 | 0.75 | | 0.0036 | 15.0 | 45 | 0.6960 | 0.75 | | 0.0034 | 16.0 | 48 | 0.6548 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/HuffPost_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3078 - Accuracy: 0.6930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6813 | 1.0 | 3 | 0.7842 | 0.25 | | 0.6617 | 2.0 | 6 | 0.7968 | 0.25 | | 0.6945 | 3.0 | 9 | 0.7746 | 0.25 | | 0.5967 | 4.0 | 12 | 0.7557 | 0.25 | | 0.4824 | 5.0 | 15 | 0.6920 | 0.25 | | 0.3037 | 6.0 | 18 | 0.6958 | 0.5 | | 0.2329 | 7.0 | 21 | 0.6736 | 0.5 | | 0.1441 | 8.0 | 24 | 0.3749 | 1.0 | | 0.0875 | 9.0 | 27 | 0.3263 | 0.75 | | 0.0655 | 10.0 | 30 | 0.3525 | 0.75 | | 0.0373 | 11.0 | 33 | 0.1993 | 1.0 | | 0.0173 | 12.0 | 36 | 0.1396 | 1.0 | | 0.0147 | 13.0 | 39 | 0.0655 | 1.0 | | 0.0084 | 14.0 | 42 | 0.0343 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0225 | 1.0 | | 0.004 | 16.0 | 48 | 0.0167 | 1.0 | | 0.003 | 17.0 | 51 | 0.0134 | 1.0 | | 0.0027 | 18.0 | 54 | 0.0114 | 1.0 | | 0.002 | 19.0 | 57 | 0.0104 | 1.0 | | 0.0015 | 20.0 | 60 | 0.0099 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0095 | 1.0 | | 0.0013 | 22.0 | 66 | 0.0095 | 1.0 | | 0.0012 | 23.0 | 69 | 0.0091 | 1.0 | | 0.0011 | 24.0 | 72 | 0.0085 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0081 | 1.0 | | 0.001 | 26.0 | 78 | 0.0077 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0074 | 1.0 | | 0.0009 | 28.0 | 84 | 0.0071 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0068 | 1.0 | | 0.0008 | 30.0 | 90 | 0.0064 | 1.0 | | 0.0007 | 31.0 | 93 | 0.0062 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0059 | 1.0 | | 0.0007 | 33.0 | 99 | 0.0056 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0054 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0053 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0050 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0048 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0048 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0048 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0047 | 1.0 | | 0.0005 | 43.0 | 129 | 0.0047 | 1.0 | | 0.0005 | 44.0 | 132 | 0.0047 | 1.0 | | 0.0006 | 45.0 | 135 | 0.0047 | 1.0 | | 0.0005 | 46.0 | 138 | 0.0047 | 1.0 | | 0.0005 | 47.0 | 141 | 0.0047 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0047 | 1.0 | | 0.0005 | 49.0 | 147 | 0.0047 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0047 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/HuffPost_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 - Accuracy: 0.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 3 | 0.7901 | 0.25 | | 0.6418 | 2.0 | 6 | 0.9259 | 0.25 | | 0.6169 | 3.0 | 9 | 1.0574 | 0.25 | | 0.5639 | 4.0 | 12 | 1.1372 | 0.25 | | 0.4562 | 5.0 | 15 | 0.6090 | 0.5 | | 0.3105 | 6.0 | 18 | 0.4435 | 1.0 | | 0.2303 | 7.0 | 21 | 0.2804 | 1.0 | | 0.1388 | 8.0 | 24 | 0.2205 | 1.0 | | 0.0918 | 9.0 | 27 | 0.1282 | 1.0 | | 0.0447 | 10.0 | 30 | 0.0643 | 1.0 | | 0.0297 | 11.0 | 33 | 0.0361 | 1.0 | | 0.0159 | 12.0 | 36 | 0.0211 | 1.0 | | 0.0102 | 13.0 | 39 | 0.0155 | 1.0 | | 0.0061 | 14.0 | 42 | 0.0158 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0189 | 1.0 | | 0.0035 | 16.0 | 48 | 0.0254 | 1.0 | | 0.0027 | 17.0 | 51 | 0.0305 | 1.0 | | 0.0021 | 18.0 | 54 | 0.0287 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0215 | 1.0 | | 0.0016 | 20.0 | 60 | 0.0163 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0138 | 1.0 | | 0.0015 | 22.0 | 66 | 0.0131 | 1.0 | | 0.001 | 23.0 | 69 | 0.0132 | 1.0 | | 0.0014 | 24.0 | 72 | 0.0126 | 1.0 | | 0.0011 | 25.0 | 75 | 0.0125 | 1.0 | | 0.001 | 26.0 | 78 | 0.0119 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0110 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0106 | 1.0 | | 0.0008 | 29.0 | 87 | 0.0095 | 1.0 | | 0.0009 | 30.0 | 90 | 0.0089 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0083 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0075 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0066 | 1.0 | | 0.0006 | 34.0 | 102 | 0.0059 | 1.0 | | 0.0007 | 35.0 | 105 | 0.0054 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0049 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0047 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0045 | 1.0 | | 0.0006 | 40.0 | 120 | 0.0046 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0045 | 1.0 | | 0.0006 | 42.0 | 126 | 0.0044 | 1.0 | | 0.0006 | 43.0 | 129 | 0.0043 | 1.0 | | 0.0006 | 44.0 | 132 | 0.0044 | 1.0 | | 0.0005 | 45.0 | 135 | 0.0045 | 1.0 | | 0.0006 | 46.0 | 138 | 0.0043 | 1.0 | | 0.0006 | 47.0 | 141 | 0.0043 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0041 | 1.0 | | 0.0007 | 49.0 | 147 | 0.0042 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0042 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/HuffPost_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7037 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6864 | 1.0 | 3 | 0.7800 | 0.25 | | 0.6483 | 2.0 | 6 | 0.8067 | 0.25 | | 0.6028 | 3.0 | 9 | 0.8500 | 0.25 | | 0.4086 | 4.0 | 12 | 1.0661 | 0.25 | | 0.2923 | 5.0 | 15 | 1.2302 | 0.25 | | 0.2059 | 6.0 | 18 | 1.0312 | 0.5 | | 0.1238 | 7.0 | 21 | 1.1271 | 0.5 | | 0.0711 | 8.0 | 24 | 1.3100 | 0.5 | | 0.0453 | 9.0 | 27 | 1.4208 | 0.5 | | 0.0198 | 10.0 | 30 | 1.5988 | 0.5 | | 0.0135 | 11.0 | 33 | 1.9174 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/HuffPost_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6597 | 1.0 | 3 | 0.7716 | 0.25 | | 0.6376 | 2.0 | 6 | 0.7802 | 0.25 | | 0.5857 | 3.0 | 9 | 0.6625 | 0.75 | | 0.4024 | 4.0 | 12 | 0.5195 | 0.75 | | 0.2635 | 5.0 | 15 | 0.4222 | 1.0 | | 0.1714 | 6.0 | 18 | 0.4410 | 0.5 | | 0.1267 | 7.0 | 21 | 0.7773 | 0.75 | | 0.0582 | 8.0 | 24 | 0.9070 | 0.75 | | 0.0374 | 9.0 | 27 | 0.9539 | 0.75 | | 0.0204 | 10.0 | 30 | 1.0507 | 0.75 | | 0.012 | 11.0 | 33 | 1.2802 | 0.5 | | 0.0086 | 12.0 | 36 | 1.4272 | 0.5 | | 0.0049 | 13.0 | 39 | 1.4803 | 0.5 | | 0.0039 | 14.0 | 42 | 1.4912 | 0.5 | | 0.0031 | 15.0 | 45 | 1.5231 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/HuffPost_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6757 | 1.0 | 3 | 0.7810 | 0.25 | | 0.6506 | 2.0 | 6 | 0.8102 | 0.25 | | 0.6463 | 3.0 | 9 | 0.8313 | 0.25 | | 0.5813 | 4.0 | 12 | 0.8858 | 0.25 | | 0.4635 | 5.0 | 15 | 0.8220 | 0.25 | | 0.3992 | 6.0 | 18 | 0.7226 | 0.5 | | 0.3281 | 7.0 | 21 | 0.6707 | 0.75 | | 0.2276 | 8.0 | 24 | 0.7515 | 0.75 | | 0.1674 | 9.0 | 27 | 0.6971 | 0.75 | | 0.0873 | 10.0 | 30 | 0.5419 | 0.75 | | 0.0525 | 11.0 | 33 | 0.5025 | 0.75 | | 0.0286 | 12.0 | 36 | 0.5229 | 0.75 | | 0.0149 | 13.0 | 39 | 0.5660 | 0.75 | | 0.0082 | 14.0 | 42 | 0.6954 | 0.75 | | 0.006 | 15.0 | 45 | 0.8649 | 0.75 | | 0.0043 | 16.0 | 48 | 1.0011 | 0.75 | | 0.0035 | 17.0 | 51 | 1.0909 | 0.75 | | 0.0021 | 18.0 | 54 | 1.1615 | 0.75 | | 0.0017 | 19.0 | 57 | 1.2147 | 0.75 | | 0.0013 | 20.0 | 60 | 1.2585 | 0.75 | | 0.0016 | 21.0 | 63 | 1.2917 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NPR_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0424 - Accuracy: 0.5355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 10 | 1.1049 | 0.1 | | 1.0641 | 2.0 | 20 | 1.0768 | 0.3 | | 0.9742 | 3.0 | 30 | 1.0430 | 0.4 | | 0.8765 | 4.0 | 40 | 1.0058 | 0.4 | | 0.6979 | 5.0 | 50 | 0.8488 | 0.7 | | 0.563 | 6.0 | 60 | 0.7221 | 0.7 | | 0.4135 | 7.0 | 70 | 0.6587 | 0.8 | | 0.2509 | 8.0 | 80 | 0.5577 | 0.7 | | 0.0943 | 9.0 | 90 | 0.5840 | 0.7 | | 0.0541 | 10.0 | 100 | 0.6959 | 0.7 | | 0.0362 | 11.0 | 110 | 0.6884 | 0.6 | | 0.0254 | 12.0 | 120 | 0.9263 | 0.6 | | 0.0184 | 13.0 | 130 | 0.7992 | 0.6 | | 0.0172 | 14.0 | 140 | 0.7351 | 0.6 | | 0.0131 | 15.0 | 150 | 0.7664 | 0.6 | | 0.0117 | 16.0 | 160 | 0.8262 | 0.6 | | 0.0101 | 17.0 | 170 | 0.8839 | 0.6 | | 0.0089 | 18.0 | 180 | 0.9018 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkPost_model_v1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9907 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 10 | 1.1287 | 0.2 | | 1.0481 | 2.0 | 20 | 1.1136 | 0.2 | | 0.9498 | 3.0 | 30 | 1.1200 | 0.2 | | 0.8157 | 4.0 | 40 | 1.0771 | 0.2 | | 0.65 | 5.0 | 50 | 0.9733 | 0.4 | | 0.5021 | 6.0 | 60 | 1.0626 | 0.4 | | 0.3358 | 7.0 | 70 | 1.0787 | 0.4 | | 0.2017 | 8.0 | 80 | 1.3183 | 0.4 | | 0.088 | 9.0 | 90 | 1.2204 | 0.5 | | 0.0527 | 10.0 | 100 | 1.6892 | 0.4 | | 0.0337 | 11.0 | 110 | 1.6967 | 0.5 | | 0.0238 | 12.0 | 120 | 1.5436 | 0.5 | | 0.0183 | 13.0 | 130 | 1.7447 | 0.4 | | 0.0159 | 14.0 | 140 | 1.8999 | 0.4 | | 0.014 | 15.0 | 150 | 1.9004 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 10 | 1.1248 | 0.1 | | 1.0586 | 2.0 | 20 | 1.1162 | 0.2 | | 0.9834 | 3.0 | 30 | 1.1199 | 0.3 | | 0.9271 | 4.0 | 40 | 1.0740 | 0.3 | | 0.7663 | 5.0 | 50 | 1.0183 | 0.5 | | 0.6042 | 6.0 | 60 | 1.0259 | 0.5 | | 0.4482 | 7.0 | 70 | 0.8699 | 0.7 | | 0.3072 | 8.0 | 80 | 1.0615 | 0.5 | | 0.1458 | 9.0 | 90 | 1.0164 | 0.5 | | 0.0838 | 10.0 | 100 | 1.0620 | 0.5 | | 0.055 | 11.0 | 110 | 1.1829 | 0.5 | | 0.0347 | 12.0 | 120 | 1.2815 | 0.4 | | 0.0244 | 13.0 | 130 | 1.2607 | 0.6 | | 0.0213 | 14.0 | 140 | 1.3695 | 0.5 | | 0.0169 | 15.0 | 150 | 1.4397 | 0.5 | | 0.0141 | 16.0 | 160 | 1.4388 | 0.6 | | 0.0122 | 17.0 | 170 | 1.4242 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9011 - Accuracy: 0.578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0968 | 1.0 | 10 | 1.1309 | 0.0 | | 1.0709 | 2.0 | 20 | 1.1237 | 0.1 | | 0.9929 | 3.0 | 30 | 1.1254 | 0.1 | | 0.878 | 4.0 | 40 | 1.1206 | 0.5 | | 0.7409 | 5.0 | 50 | 1.0831 | 0.1 | | 0.5663 | 6.0 | 60 | 0.9830 | 0.6 | | 0.4105 | 7.0 | 70 | 0.9919 | 0.5 | | 0.2912 | 8.0 | 80 | 1.0472 | 0.6 | | 0.1013 | 9.0 | 90 | 1.1617 | 0.4 | | 0.0611 | 10.0 | 100 | 1.2789 | 0.6 | | 0.039 | 11.0 | 110 | 1.4091 | 0.4 | | 0.0272 | 12.0 | 120 | 1.4974 | 0.4 | | 0.0189 | 13.0 | 130 | 1.4845 | 0.5 | | 0.018 | 14.0 | 140 | 1.4924 | 0.5 | | 0.0131 | 15.0 | 150 | 1.5206 | 0.6 | | 0.0116 | 16.0 | 160 | 1.5858 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v3
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1031 | 1.0 | 10 | 1.1286 | 0.1 | | 1.0648 | 2.0 | 20 | 1.1157 | 0.3 | | 0.9982 | 3.0 | 30 | 1.1412 | 0.2 | | 0.9283 | 4.0 | 40 | 1.2053 | 0.2 | | 0.7958 | 5.0 | 50 | 1.1466 | 0.2 | | 0.6668 | 6.0 | 60 | 1.1783 | 0.3 | | 0.5068 | 7.0 | 70 | 1.2992 | 0.3 | | 0.3741 | 8.0 | 80 | 1.3483 | 0.3 | | 0.1653 | 9.0 | 90 | 1.4533 | 0.2 | | 0.0946 | 10.0 | 100 | 1.6292 | 0.2 | | 0.0569 | 11.0 | 110 | 1.8381 | 0.2 | | 0.0346 | 12.0 | 120 | 2.0781 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v4
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1121 - Accuracy: 0.16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1038 | 1.0 | 10 | 1.1243 | 0.1 | | 1.0859 | 2.0 | 20 | 1.1182 | 0.2 | | 1.0234 | 3.0 | 30 | 1.1442 | 0.3 | | 0.9493 | 4.0 | 40 | 1.2239 | 0.1 | | 0.8114 | 5.0 | 50 | 1.2023 | 0.4 | | 0.6464 | 6.0 | 60 | 1.2329 | 0.4 | | 0.4731 | 7.0 | 70 | 1.2971 | 0.5 | | 0.3355 | 8.0 | 80 | 1.3913 | 0.4 | | 0.1268 | 9.0 | 90 | 1.4670 | 0.5 | | 0.0747 | 10.0 | 100 | 1.7961 | 0.4 | | 0.0449 | 11.0 | 110 | 1.8168 | 0.5 | | 0.0307 | 12.0 | 120 | 1.9307 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7714 - Accuracy: 0.705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0871 | 1.0 | 19 | 1.0704 | 0.45 | | 1.0019 | 2.0 | 38 | 1.0167 | 0.55 | | 0.8412 | 3.0 | 57 | 0.9134 | 0.55 | | 0.6047 | 4.0 | 76 | 0.8430 | 0.6 | | 0.3746 | 5.0 | 95 | 0.8315 | 0.6 | | 0.1885 | 6.0 | 114 | 0.8585 | 0.6 | | 0.0772 | 7.0 | 133 | 0.9443 | 0.65 | | 0.0312 | 8.0 | 152 | 1.1019 | 0.65 | | 0.0161 | 9.0 | 171 | 1.1420 | 0.65 | | 0.0102 | 10.0 | 190 | 1.2773 | 0.65 | | 0.0077 | 11.0 | 209 | 1.2454 | 0.65 | | 0.0064 | 12.0 | 228 | 1.2785 | 0.65 | | 0.006 | 13.0 | 247 | 1.3834 | 0.65 | | 0.0045 | 14.0 | 266 | 1.4139 | 0.65 | | 0.0043 | 15.0 | 285 | 1.4056 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/NewYorkTimes_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0606 - Accuracy: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 19 | 1.1045 | 0.2 | | 0.9967 | 2.0 | 38 | 1.1164 | 0.35 | | 0.8164 | 3.0 | 57 | 1.1570 | 0.4 | | 0.5884 | 4.0 | 76 | 1.2403 | 0.35 | | 0.3322 | 5.0 | 95 | 1.3815 | 0.35 | | 0.156 | 6.0 | 114 | 1.8102 | 0.3 | | 0.0576 | 7.0 | 133 | 2.1439 | 0.4 | | 0.0227 | 8.0 | 152 | 2.4368 | 0.3 | | 0.0133 | 9.0 | 171 | 2.5994 | 0.4 | | 0.009 | 10.0 | 190 | 2.7388 | 0.35 | | 0.0072 | 11.0 | 209 | 2.8287 | 0.35 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Politico_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1052 | 1.0 | 19 | 1.0726 | 0.45 | | 1.0421 | 2.0 | 38 | 1.0225 | 0.5 | | 0.9173 | 3.0 | 57 | 0.9164 | 0.6 | | 0.6822 | 4.0 | 76 | 0.8251 | 0.7 | | 0.4407 | 5.0 | 95 | 0.8908 | 0.5 | | 0.2367 | 6.0 | 114 | 0.6772 | 0.75 | | 0.1145 | 7.0 | 133 | 0.7792 | 0.65 | | 0.0479 | 8.0 | 152 | 1.0657 | 0.6 | | 0.0186 | 9.0 | 171 | 1.2228 | 0.65 | | 0.0111 | 10.0 | 190 | 1.1100 | 0.6 | | 0.0083 | 11.0 | 209 | 1.1991 | 0.65 | | 0.0067 | 12.0 | 228 | 1.2654 | 0.65 | | 0.0061 | 13.0 | 247 | 1.2837 | 0.65 | | 0.0046 | 14.0 | 266 | 1.2860 | 0.6 | | 0.0043 | 15.0 | 285 | 1.3160 | 0.65 | | 0.0037 | 16.0 | 304 | 1.3323 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Politico_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1041 | 1.0 | 19 | 1.0658 | 0.5 | | 1.009 | 2.0 | 38 | 0.9892 | 0.7 | | 0.7925 | 3.0 | 57 | 0.8516 | 0.7 | | 0.5279 | 4.0 | 76 | 0.7877 | 0.65 | | 0.2932 | 5.0 | 95 | 0.7592 | 0.65 | | 0.1166 | 6.0 | 114 | 0.9437 | 0.65 | | 0.044 | 7.0 | 133 | 1.0315 | 0.75 | | 0.0197 | 8.0 | 152 | 1.3513 | 0.55 | | 0.0126 | 9.0 | 171 | 1.1702 | 0.7 | | 0.0083 | 10.0 | 190 | 1.2272 | 0.7 | | 0.0068 | 11.0 | 209 | 1.2889 | 0.7 | | 0.0059 | 12.0 | 228 | 1.3073 | 0.7 | | 0.0052 | 13.0 | 247 | 1.3595 | 0.7 | | 0.0041 | 14.0 | 266 | 1.4443 | 0.7 | | 0.0038 | 15.0 | 285 | 1.4709 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Politico_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1013 | 1.0 | 19 | 1.0733 | 0.55 | | 1.0226 | 2.0 | 38 | 1.0064 | 0.65 | | 0.8539 | 3.0 | 57 | 0.8758 | 0.75 | | 0.584 | 4.0 | 76 | 0.6941 | 0.7 | | 0.2813 | 5.0 | 95 | 0.5151 | 0.7 | | 0.1122 | 6.0 | 114 | 0.4351 | 0.8 | | 0.0432 | 7.0 | 133 | 0.4896 | 0.85 | | 0.0199 | 8.0 | 152 | 0.5391 | 0.85 | | 0.0126 | 9.0 | 171 | 0.5200 | 0.85 | | 0.0085 | 10.0 | 190 | 0.5622 | 0.85 | | 0.0069 | 11.0 | 209 | 0.5950 | 0.85 | | 0.0058 | 12.0 | 228 | 0.6015 | 0.85 | | 0.0053 | 13.0 | 247 | 0.6120 | 0.85 | | 0.0042 | 14.0 | 266 | 0.6347 | 0.85 | | 0.0039 | 15.0 | 285 | 0.6453 | 0.85 | | 0.0034 | 16.0 | 304 | 0.6660 | 0.85 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Politico_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1327 - Accuracy: 0.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0972 | 1.0 | 19 | 1.0470 | 0.45 | | 0.9738 | 2.0 | 38 | 0.9244 | 0.65 | | 0.7722 | 3.0 | 57 | 0.8612 | 0.65 | | 0.4929 | 4.0 | 76 | 0.6759 | 0.75 | | 0.2435 | 5.0 | 95 | 0.7273 | 0.7 | | 0.0929 | 6.0 | 114 | 0.6444 | 0.85 | | 0.0357 | 7.0 | 133 | 0.7671 | 0.8 | | 0.0173 | 8.0 | 152 | 0.7599 | 0.75 | | 0.0121 | 9.0 | 171 | 0.8140 | 0.8 | | 0.0081 | 10.0 | 190 | 0.7861 | 0.8 | | 0.0066 | 11.0 | 209 | 0.8318 | 0.8 | | 0.0057 | 12.0 | 228 | 0.8777 | 0.8 | | 0.0053 | 13.0 | 247 | 0.8501 | 0.8 | | 0.004 | 14.0 | 266 | 0.8603 | 0.8 | | 0.004 | 15.0 | 285 | 0.8787 | 0.8 | | 0.0034 | 16.0 | 304 | 0.8969 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Politico_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0523 - Accuracy: 0.663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0957 | 1.0 | 19 | 1.0696 | 0.6 | | 1.0107 | 2.0 | 38 | 1.0047 | 0.55 | | 0.8257 | 3.0 | 57 | 0.8358 | 0.8 | | 0.6006 | 4.0 | 76 | 0.7641 | 0.6 | | 0.4172 | 5.0 | 95 | 0.5931 | 0.8 | | 0.2639 | 6.0 | 114 | 0.5570 | 0.7 | | 0.1314 | 7.0 | 133 | 0.5017 | 0.65 | | 0.0503 | 8.0 | 152 | 0.3115 | 0.75 | | 0.023 | 9.0 | 171 | 0.4353 | 0.85 | | 0.0128 | 10.0 | 190 | 0.5461 | 0.75 | | 0.0092 | 11.0 | 209 | 0.5045 | 0.8 | | 0.007 | 12.0 | 228 | 0.5014 | 0.8 | | 0.0064 | 13.0 | 247 | 0.5070 | 0.8 | | 0.0049 | 14.0 | 266 | 0.4681 | 0.8 | | 0.0044 | 15.0 | 285 | 0.4701 | 0.8 | | 0.0039 | 16.0 | 304 | 0.4862 | 0.8 | | 0.0036 | 17.0 | 323 | 0.4742 | 0.8 | | 0.0035 | 18.0 | 342 | 0.4652 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1054 | 1.0 | 19 | 1.0938 | 0.35 | | 1.0338 | 2.0 | 38 | 1.0563 | 0.65 | | 0.8622 | 3.0 | 57 | 0.9372 | 0.6 | | 0.5919 | 4.0 | 76 | 0.8461 | 0.6 | | 0.3357 | 5.0 | 95 | 1.0206 | 0.45 | | 0.1621 | 6.0 | 114 | 0.9802 | 0.7 | | 0.0637 | 7.0 | 133 | 1.2434 | 0.65 | | 0.0261 | 8.0 | 152 | 1.3865 | 0.65 | | 0.0156 | 9.0 | 171 | 1.4414 | 0.7 | | 0.01 | 10.0 | 190 | 1.5502 | 0.7 | | 0.0079 | 11.0 | 209 | 1.6102 | 0.7 | | 0.0062 | 12.0 | 228 | 1.6525 | 0.7 | | 0.0058 | 13.0 | 247 | 1.6884 | 0.7 | | 0.0046 | 14.0 | 266 | 1.7479 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1097 - Accuracy: 0.132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1065 | 1.0 | 5 | 1.1287 | 0.0 | | 1.0592 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0059 | 3.0 | 15 | 1.1959 | 0.0 | | 0.9129 | 4.0 | 20 | 1.2410 | 0.0 | | 0.8231 | 5.0 | 25 | 1.2820 | 0.0 | | 0.7192 | 6.0 | 30 | 1.3361 | 0.0 | | 0.6121 | 7.0 | 35 | 1.4176 | 0.0 | | 0.5055 | 8.0 | 40 | 1.5111 | 0.0 | | 0.4002 | 9.0 | 45 | 1.5572 | 0.0 | | 0.3788 | 10.0 | 50 | 1.6733 | 0.0 | | 0.2755 | 11.0 | 55 | 1.7381 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1013 - Accuracy: 0.0915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0866 | 1.0 | 5 | 1.1363 | 0.0 | | 1.0439 | 2.0 | 10 | 1.1803 | 0.0 | | 1.0227 | 3.0 | 15 | 1.2162 | 0.2 | | 0.9111 | 4.0 | 20 | 1.2619 | 0.0 | | 0.8243 | 5.0 | 25 | 1.2929 | 0.2 | | 0.7488 | 6.0 | 30 | 1.3010 | 0.2 | | 0.62 | 7.0 | 35 | 1.3011 | 0.2 | | 0.5054 | 8.0 | 40 | 1.2931 | 0.4 | | 0.4191 | 9.0 | 45 | 1.3274 | 0.4 | | 0.4107 | 10.0 | 50 | 1.3259 | 0.4 | | 0.3376 | 11.0 | 55 | 1.2800 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1019 - Accuracy: 0.139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1082 | 1.0 | 5 | 1.1432 | 0.0 | | 1.0524 | 2.0 | 10 | 1.1613 | 0.0 | | 1.0641 | 3.0 | 15 | 1.1547 | 0.0 | | 0.9592 | 4.0 | 20 | 1.1680 | 0.0 | | 0.9085 | 5.0 | 25 | 1.1762 | 0.0 | | 0.8508 | 6.0 | 30 | 1.1809 | 0.2 | | 0.7263 | 7.0 | 35 | 1.1912 | 0.2 | | 0.6448 | 8.0 | 40 | 1.2100 | 0.2 | | 0.5378 | 9.0 | 45 | 1.2037 | 0.2 | | 0.5031 | 10.0 | 50 | 1.2096 | 0.2 | | 0.4041 | 11.0 | 55 | 1.2203 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Accuracy: 0.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1073 | 1.0 | 5 | 1.1393 | 0.0 | | 1.0392 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0302 | 3.0 | 15 | 1.1694 | 0.2 | | 0.9176 | 4.0 | 20 | 1.1846 | 0.2 | | 0.8339 | 5.0 | 25 | 1.1663 | 0.2 | | 0.7533 | 6.0 | 30 | 1.1513 | 0.4 | | 0.6327 | 7.0 | 35 | 1.1474 | 0.4 | | 0.4402 | 8.0 | 40 | 1.1385 | 0.4 | | 0.3752 | 9.0 | 45 | 1.0965 | 0.2 | | 0.3448 | 10.0 | 50 | 1.0357 | 0.2 | | 0.2582 | 11.0 | 55 | 1.0438 | 0.2 | | 0.1903 | 12.0 | 60 | 1.0561 | 0.2 | | 0.1479 | 13.0 | 65 | 1.0569 | 0.2 | | 0.1129 | 14.0 | 70 | 1.0455 | 0.2 | | 0.1071 | 15.0 | 75 | 1.0416 | 0.4 | | 0.0672 | 16.0 | 80 | 1.1164 | 0.4 | | 0.0561 | 17.0 | 85 | 1.1846 | 0.6 | | 0.0463 | 18.0 | 90 | 1.2040 | 0.6 | | 0.0431 | 19.0 | 95 | 1.2078 | 0.6 | | 0.0314 | 20.0 | 100 | 1.2368 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1045 - Accuracy: 0.128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1115 | 1.0 | 5 | 1.1174 | 0.0 | | 1.0518 | 2.0 | 10 | 1.1379 | 0.0 | | 1.0445 | 3.0 | 15 | 1.1287 | 0.0 | | 0.9306 | 4.0 | 20 | 1.1324 | 0.2 | | 0.8242 | 5.0 | 25 | 1.1219 | 0.2 | | 0.7986 | 6.0 | 30 | 1.1369 | 0.4 | | 0.7369 | 7.0 | 35 | 1.1732 | 0.2 | | 0.534 | 8.0 | 40 | 1.1828 | 0.6 | | 0.4285 | 9.0 | 45 | 1.1482 | 0.6 | | 0.3691 | 10.0 | 50 | 1.1401 | 0.6 | | 0.3215 | 11.0 | 55 | 1.1286 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/Reuters_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7214 - Accuracy: 0.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0995 | 1.0 | 5 | 1.1301 | 0.0 | | 1.0227 | 2.0 | 10 | 1.1727 | 0.0 | | 1.0337 | 3.0 | 15 | 1.1734 | 0.2 | | 0.9137 | 4.0 | 20 | 1.1829 | 0.2 | | 0.8065 | 5.0 | 25 | 1.1496 | 0.4 | | 0.7038 | 6.0 | 30 | 1.1101 | 0.4 | | 0.6246 | 7.0 | 35 | 1.0982 | 0.2 | | 0.4481 | 8.0 | 40 | 1.0913 | 0.2 | | 0.3696 | 9.0 | 45 | 1.0585 | 0.4 | | 0.3137 | 10.0 | 50 | 1.0418 | 0.4 | | 0.2482 | 11.0 | 55 | 1.0078 | 0.4 | | 0.196 | 12.0 | 60 | 0.9887 | 0.6 | | 0.1344 | 13.0 | 65 | 0.9719 | 0.6 | | 0.1014 | 14.0 | 70 | 1.0053 | 0.6 | | 0.111 | 15.0 | 75 | 0.9653 | 0.6 | | 0.0643 | 16.0 | 80 | 0.9018 | 0.6 | | 0.0559 | 17.0 | 85 | 0.9393 | 0.6 | | 0.0412 | 18.0 | 90 | 1.0210 | 0.6 | | 0.0465 | 19.0 | 95 | 0.9965 | 0.6 | | 0.0328 | 20.0 | 100 | 0.9739 | 0.6 | | 0.0289 | 21.0 | 105 | 0.9796 | 0.6 | | 0.0271 | 22.0 | 110 | 0.9968 | 0.6 | | 0.0239 | 23.0 | 115 | 1.0143 | 0.6 | | 0.0201 | 24.0 | 120 | 1.0459 | 0.6 | | 0.0185 | 25.0 | 125 | 1.0698 | 0.6 | | 0.0183 | 26.0 | 130 | 1.0970 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1275 - Accuracy: 0.3795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.11 | 1.0 | 5 | 1.1184 | 0.0 | | 1.0608 | 2.0 | 10 | 1.1227 | 0.0 | | 1.0484 | 3.0 | 15 | 1.1009 | 0.2 | | 0.9614 | 4.0 | 20 | 1.1009 | 0.2 | | 0.8545 | 5.0 | 25 | 1.0772 | 0.2 | | 0.8241 | 6.0 | 30 | 1.0457 | 0.2 | | 0.708 | 7.0 | 35 | 1.0301 | 0.4 | | 0.5045 | 8.0 | 40 | 1.0325 | 0.4 | | 0.4175 | 9.0 | 45 | 1.0051 | 0.4 | | 0.3446 | 10.0 | 50 | 0.9610 | 0.4 | | 0.2851 | 11.0 | 55 | 0.9954 | 0.4 | | 0.1808 | 12.0 | 60 | 1.0561 | 0.4 | | 0.1435 | 13.0 | 65 | 1.0218 | 0.4 | | 0.1019 | 14.0 | 70 | 1.0254 | 0.4 | | 0.0908 | 15.0 | 75 | 0.9935 | 0.4 | | 0.0591 | 16.0 | 80 | 1.0090 | 0.4 | | 0.0512 | 17.0 | 85 | 1.0884 | 0.4 | | 0.0397 | 18.0 | 90 | 1.2732 | 0.4 | | 0.039 | 19.0 | 95 | 1.2979 | 0.6 | | 0.0325 | 20.0 | 100 | 1.2705 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1206 - Accuracy: 0.0555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1186 | 1.0 | 5 | 1.1631 | 0.0 | | 1.058 | 2.0 | 10 | 1.1986 | 0.0 | | 1.081 | 3.0 | 15 | 1.2111 | 0.0 | | 1.0118 | 4.0 | 20 | 1.2373 | 0.0 | | 0.9404 | 5.0 | 25 | 1.2645 | 0.0 | | 0.9146 | 6.0 | 30 | 1.3258 | 0.0 | | 0.8285 | 7.0 | 35 | 1.3789 | 0.0 | | 0.6422 | 8.0 | 40 | 1.3783 | 0.0 | | 0.6156 | 9.0 | 45 | 1.3691 | 0.0 | | 0.5321 | 10.0 | 50 | 1.3693 | 0.0 | | 0.4504 | 11.0 | 55 | 1.4000 | 0.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1029 | 1.0 | 5 | 1.1295 | 0.0 | | 1.0472 | 2.0 | 10 | 1.1531 | 0.0 | | 1.054 | 3.0 | 15 | 1.1475 | 0.0 | | 0.9366 | 4.0 | 20 | 1.1515 | 0.0 | | 0.8698 | 5.0 | 25 | 1.1236 | 0.4 | | 0.8148 | 6.0 | 30 | 1.0716 | 0.6 | | 0.6884 | 7.0 | 35 | 1.0662 | 0.6 | | 0.5641 | 8.0 | 40 | 1.0671 | 0.6 | | 0.5 | 9.0 | 45 | 1.0282 | 0.6 | | 0.3882 | 10.0 | 50 | 1.0500 | 0.6 | | 0.3522 | 11.0 | 55 | 1.1381 | 0.6 | | 0.2492 | 12.0 | 60 | 1.1278 | 0.6 | | 0.2063 | 13.0 | 65 | 1.0731 | 0.6 | | 0.1608 | 14.0 | 70 | 1.1339 | 0.6 | | 0.1448 | 15.0 | 75 | 1.1892 | 0.6 | | 0.0925 | 16.0 | 80 | 1.1840 | 0.6 | | 0.0768 | 17.0 | 85 | 1.0608 | 0.6 | | 0.0585 | 18.0 | 90 | 1.1073 | 0.6 | | 0.0592 | 19.0 | 95 | 1.3134 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-02-09T17:18:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0959 - Accuracy: 0.093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1068 | 1.0 | 5 | 1.1545 | 0.0 | | 1.0494 | 2.0 | 10 | 1.1971 | 0.0 | | 1.0612 | 3.0 | 15 | 1.2164 | 0.0 | | 0.9517 | 4.0 | 20 | 1.2545 | 0.0 | | 0.8874 | 5.0 | 25 | 1.2699 | 0.0 | | 0.8598 | 6.0 | 30 | 1.2835 | 0.0 | | 0.7006 | 7.0 | 35 | 1.3139 | 0.0 | | 0.5969 | 8.0 | 40 | 1.3116 | 0.2 | | 0.4769 | 9.0 | 45 | 1.3124 | 0.4 | | 0.4352 | 10.0 | 50 | 1.3541 | 0.4 | | 0.3231 | 11.0 | 55 | 1.3919 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2496 - Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 | | 0.196 | 2.0 | 866 | 0.2548 | 0.9110 | | 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 | | 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v6
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.5091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 | | 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 | | 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 | | 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 | | 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 | | 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 | | 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 | | 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 | | 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 | | 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/WallStreetJournal_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Accuracy: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6983 | 1.0 | 7 | 0.7036 | 0.2857 | | 0.6836 | 2.0 | 14 | 0.7181 | 0.2857 | | 0.645 | 3.0 | 21 | 0.7381 | 0.2857 | | 0.5902 | 4.0 | 28 | 0.7746 | 0.2857 | | 0.5799 | 5.0 | 35 | 0.7242 | 0.5714 | | 0.3584 | 6.0 | 42 | 0.6935 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.7041 | 0.5714 | | 0.1815 | 8.0 | 56 | 0.5930 | 0.7143 | | 0.0827 | 9.0 | 63 | 0.6976 | 0.7143 | | 0.0613 | 10.0 | 70 | 0.7346 | 0.7143 | | 0.0356 | 11.0 | 77 | 0.6992 | 0.5714 | | 0.0158 | 12.0 | 84 | 0.7328 | 0.5714 | | 0.013 | 13.0 | 91 | 0.7819 | 0.5714 | | 0.0103 | 14.0 | 98 | 0.8589 | 0.5714 | | 0.0087 | 15.0 | 105 | 0.9177 | 0.5714 | | 0.0076 | 16.0 | 112 | 0.9519 | 0.5714 | | 0.0078 | 17.0 | 119 | 0.9556 | 0.5714 | | 0.006 | 18.0 | 126 | 0.9542 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/test_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.6315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7054 | 0.2857 | | 0.6711 | 2.0 | 14 | 0.7208 | 0.2857 | | 0.6311 | 3.0 | 21 | 0.7365 | 0.2857 | | 0.551 | 4.0 | 28 | 0.7657 | 0.5714 | | 0.5599 | 5.0 | 35 | 0.6915 | 0.5714 | | 0.3167 | 6.0 | 42 | 0.7134 | 0.5714 | | 0.2489 | 7.0 | 49 | 0.7892 | 0.5714 | | 0.1985 | 8.0 | 56 | 0.6756 | 0.7143 | | 0.0864 | 9.0 | 63 | 0.8059 | 0.5714 | | 0.0903 | 10.0 | 70 | 0.8165 | 0.7143 | | 0.0429 | 11.0 | 77 | 0.7947 | 0.7143 | | 0.0186 | 12.0 | 84 | 0.8570 | 0.7143 | | 0.0146 | 13.0 | 91 | 0.9346 | 0.7143 | | 0.011 | 14.0 | 98 | 0.9804 | 0.7143 | | 0.0098 | 15.0 | 105 | 1.0136 | 0.7143 | | 0.0086 | 16.0 | 112 | 1.0424 | 0.7143 | | 0.0089 | 17.0 | 119 | 1.0736 | 0.7143 | | 0.0068 | 18.0 | 126 | 1.0808 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Declan/test_push
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Accuracy: 0.6458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 1.0 | 7 | 0.6973 | 0.4286 | | 0.675 | 2.0 | 14 | 0.7001 | 0.4286 | | 0.6513 | 3.0 | 21 | 0.6959 | 0.4286 | | 0.5702 | 4.0 | 28 | 0.6993 | 0.4286 | | 0.5389 | 5.0 | 35 | 0.6020 | 0.7143 | | 0.3386 | 6.0 | 42 | 0.5326 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.4943 | 0.7143 | | 0.1633 | 8.0 | 56 | 0.3589 | 0.8571 | | 0.1086 | 9.0 | 63 | 0.2924 | 0.8571 | | 0.0641 | 10.0 | 70 | 0.2687 | 0.8571 | | 0.0409 | 11.0 | 77 | 0.2202 | 0.8571 | | 0.0181 | 12.0 | 84 | 0.2445 | 0.8571 | | 0.0141 | 13.0 | 91 | 0.2885 | 0.8571 | | 0.0108 | 14.0 | 98 | 0.3069 | 0.8571 | | 0.009 | 15.0 | 105 | 0.3006 | 0.8571 | | 0.0084 | 16.0 | 112 | 0.2834 | 0.8571 | | 0.0088 | 17.0 | 119 | 0.2736 | 0.8571 | | 0.0062 | 18.0 | 126 | 0.2579 | 0.8571 | | 0.0058 | 19.0 | 133 | 0.2609 | 0.8571 | | 0.0057 | 20.0 | 140 | 0.2563 | 0.8571 | | 0.0049 | 21.0 | 147 | 0.2582 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7139 | 0.2857 | | 0.68 | 2.0 | 14 | 0.7398 | 0.2857 | | 0.641 | 3.0 | 21 | 0.7723 | 0.2857 | | 0.5424 | 4.0 | 28 | 0.8391 | 0.2857 | | 0.5988 | 5.0 | 35 | 0.7761 | 0.2857 | | 0.3698 | 6.0 | 42 | 0.7707 | 0.4286 | | 0.3204 | 7.0 | 49 | 0.8290 | 0.4286 | | 0.2882 | 8.0 | 56 | 0.6551 | 0.5714 | | 0.1512 | 9.0 | 63 | 0.5652 | 0.5714 | | 0.1302 | 10.0 | 70 | 0.5278 | 0.5714 | | 0.1043 | 11.0 | 77 | 0.4987 | 0.7143 | | 0.0272 | 12.0 | 84 | 0.5278 | 0.5714 | | 0.0201 | 13.0 | 91 | 0.5307 | 0.5714 | | 0.0129 | 14.0 | 98 | 0.5382 | 0.5714 | | 0.0117 | 15.0 | 105 | 0.5227 | 0.5714 | | 0.0094 | 16.0 | 112 | 0.5066 | 0.7143 | | 0.0104 | 17.0 | 119 | 0.4869 | 0.7143 | | 0.0069 | 18.0 | 126 | 0.4786 | 0.7143 | | 0.0062 | 19.0 | 133 | 0.4707 | 0.7143 | | 0.0065 | 20.0 | 140 | 0.4669 | 0.7143 | | 0.0051 | 21.0 | 147 | 0.4686 | 0.7143 | | 0.0049 | 22.0 | 154 | 0.4784 | 0.7143 | | 0.0046 | 23.0 | 161 | 0.4839 | 0.7143 | | 0.0039 | 24.0 | 168 | 0.4823 | 0.7143 | | 0.0044 | 25.0 | 175 | 0.4791 | 0.7143 | | 0.0037 | 26.0 | 182 | 0.4778 | 0.7143 | | 0.0038 | 27.0 | 189 | 0.4770 | 0.7143 | | 0.0036 | 28.0 | 196 | 0.4750 | 0.7143 | | 0.0031 | 29.0 | 203 | 0.4766 | 0.7143 | | 0.0031 | 30.0 | 210 | 0.4754 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-10M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
90
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6925 | 1.0 | 7 | 0.6966 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7045 | 0.2857 | | 0.6404 | 3.0 | 21 | 0.7205 | 0.2857 | | 0.555 | 4.0 | 28 | 0.7548 | 0.2857 | | 0.5179 | 5.0 | 35 | 0.6745 | 0.5714 | | 0.3038 | 6.0 | 42 | 0.7260 | 0.5714 | | 0.2089 | 7.0 | 49 | 0.8016 | 0.5714 | | 0.1303 | 8.0 | 56 | 0.8202 | 0.5714 | | 0.0899 | 9.0 | 63 | 0.9966 | 0.5714 | | 0.0552 | 10.0 | 70 | 1.1887 | 0.5714 | | 0.0333 | 11.0 | 77 | 1.2163 | 0.5714 | | 0.0169 | 12.0 | 84 | 1.2874 | 0.5714 | | 0.0136 | 13.0 | 91 | 1.3598 | 0.5714 | | 0.0103 | 14.0 | 98 | 1.4237 | 0.5714 | | 0.0089 | 15.0 | 105 | 1.4758 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-10M-MTR
[ "pytorch", "roberta", "arxiv:1910.09700", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
708
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8356 - Accuracy: 0.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6978 | 1.0 | 7 | 0.6807 | 0.4286 | | 0.6482 | 2.0 | 14 | 0.6775 | 0.4286 | | 0.6051 | 3.0 | 21 | 0.6623 | 0.5714 | | 0.486 | 4.0 | 28 | 0.6710 | 0.5714 | | 0.4612 | 5.0 | 35 | 0.5325 | 0.7143 | | 0.2233 | 6.0 | 42 | 0.4992 | 0.7143 | | 0.1328 | 7.0 | 49 | 0.4753 | 0.7143 | | 0.0905 | 8.0 | 56 | 0.2416 | 1.0 | | 0.0413 | 9.0 | 63 | 0.2079 | 1.0 | | 0.0356 | 10.0 | 70 | 0.2234 | 0.8571 | | 0.0217 | 11.0 | 77 | 0.2639 | 0.8571 | | 0.0121 | 12.0 | 84 | 0.2977 | 0.8571 | | 0.0105 | 13.0 | 91 | 0.3468 | 0.8571 | | 0.0085 | 14.0 | 98 | 0.3912 | 0.8571 | | 0.0077 | 15.0 | 105 | 0.4000 | 0.8571 | | 0.0071 | 16.0 | 112 | 0.4015 | 0.8571 | | 0.0078 | 17.0 | 119 | 0.3865 | 0.8571 | | 0.0059 | 18.0 | 126 | 0.3603 | 0.8571 | | 0.0051 | 19.0 | 133 | 0.3231 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-5M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6952 - Accuracy: 0.5025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6949 | 1.0 | 7 | 0.7252 | 0.2857 | | 0.6678 | 2.0 | 14 | 0.7550 | 0.2857 | | 0.6299 | 3.0 | 21 | 0.8004 | 0.2857 | | 0.5596 | 4.0 | 28 | 0.8508 | 0.2857 | | 0.5667 | 5.0 | 35 | 0.8464 | 0.2857 | | 0.367 | 6.0 | 42 | 0.8515 | 0.2857 | | 0.2706 | 7.0 | 49 | 0.9574 | 0.2857 | | 0.2163 | 8.0 | 56 | 0.9710 | 0.4286 | | 0.1024 | 9.0 | 63 | 1.1607 | 0.1429 | | 0.1046 | 10.0 | 70 | 1.3779 | 0.1429 | | 0.0483 | 11.0 | 77 | 1.4876 | 0.1429 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-5M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6899 | 1.0 | 7 | 0.7055 | 0.2857 | | 0.6793 | 2.0 | 14 | 0.7205 | 0.2857 | | 0.6291 | 3.0 | 21 | 0.7460 | 0.2857 | | 0.5659 | 4.0 | 28 | 0.8041 | 0.2857 | | 0.5607 | 5.0 | 35 | 0.7785 | 0.4286 | | 0.3349 | 6.0 | 42 | 0.8163 | 0.4286 | | 0.2436 | 7.0 | 49 | 0.9101 | 0.2857 | | 0.1734 | 8.0 | 56 | 0.8632 | 0.5714 | | 0.1122 | 9.0 | 63 | 0.9851 | 0.5714 | | 0.0661 | 10.0 | 70 | 1.0835 | 0.5714 | | 0.0407 | 11.0 | 77 | 1.1656 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-77M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,416
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 7 | 0.7121 | 0.1429 | | 0.6755 | 2.0 | 14 | 0.7234 | 0.1429 | | 0.6389 | 3.0 | 21 | 0.7384 | 0.2857 | | 0.5575 | 4.0 | 28 | 0.7884 | 0.2857 | | 0.4972 | 5.0 | 35 | 0.7767 | 0.4286 | | 0.2821 | 6.0 | 42 | 0.8275 | 0.4286 | | 0.1859 | 7.0 | 49 | 0.9283 | 0.2857 | | 0.1388 | 8.0 | 56 | 0.9384 | 0.4286 | | 0.078 | 9.0 | 63 | 1.1973 | 0.4286 | | 0.0462 | 10.0 | 70 | 1.4016 | 0.4286 | | 0.0319 | 11.0 | 77 | 1.4087 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/ChemBERTa-77M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,169
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Accuracy: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7088 | 1.0 | 13 | 0.6819 | 0.6154 | | 0.635 | 2.0 | 26 | 0.6318 | 0.7692 | | 0.547 | 3.0 | 39 | 0.5356 | 0.7692 | | 0.3497 | 4.0 | 52 | 0.4456 | 0.6923 | | 0.1979 | 5.0 | 65 | 0.3993 | 0.7692 | | 0.098 | 6.0 | 78 | 0.3613 | 0.7692 | | 0.0268 | 7.0 | 91 | 0.3561 | 0.9231 | | 0.0137 | 8.0 | 104 | 0.3755 | 0.9231 | | 0.0083 | 9.0 | 117 | 0.4194 | 0.7692 | | 0.0065 | 10.0 | 130 | 0.4446 | 0.7692 | | 0.005 | 11.0 | 143 | 0.4527 | 0.7692 | | 0.0038 | 12.0 | 156 | 0.4645 | 0.7692 | | 0.0033 | 13.0 | 169 | 0.4735 | 0.7692 | | 0.0033 | 14.0 | 182 | 0.4874 | 0.7692 | | 0.0029 | 15.0 | 195 | 0.5041 | 0.7692 | | 0.0025 | 16.0 | 208 | 0.5148 | 0.7692 | | 0.0024 | 17.0 | 221 | 0.5228 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepChem/SmilesTokenizer_PubChem_1M
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6492 - Accuracy: 0.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7106 | 1.0 | 13 | 0.6850 | 0.6154 | | 0.631 | 2.0 | 26 | 0.6632 | 0.6923 | | 0.5643 | 3.0 | 39 | 0.6247 | 0.7692 | | 0.3992 | 4.0 | 52 | 0.5948 | 0.7692 | | 0.1928 | 5.0 | 65 | 0.5803 | 0.7692 | | 0.0821 | 6.0 | 78 | 0.6404 | 0.6923 | | 0.0294 | 7.0 | 91 | 0.7387 | 0.6923 | | 0.0141 | 8.0 | 104 | 0.8270 | 0.6923 | | 0.0082 | 9.0 | 117 | 0.8496 | 0.6923 | | 0.0064 | 10.0 | 130 | 0.8679 | 0.6923 | | 0.005 | 11.0 | 143 | 0.8914 | 0.6923 | | 0.0036 | 12.0 | 156 | 0.9278 | 0.6923 | | 0.0031 | 13.0 | 169 | 0.9552 | 0.6923 | | 0.0029 | 14.0 | 182 | 0.9745 | 0.6923 | | 0.0028 | 15.0 | 195 | 0.9785 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepESP/gpt2-spanish-medium
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
340
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Accuracy: 0.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7124 | 1.0 | 13 | 0.6882 | 0.5385 | | 0.6502 | 2.0 | 26 | 0.6715 | 0.5385 | | 0.6001 | 3.0 | 39 | 0.6342 | 0.6154 | | 0.455 | 4.0 | 52 | 0.5713 | 0.7692 | | 0.2605 | 5.0 | 65 | 0.5562 | 0.7692 | | 0.1258 | 6.0 | 78 | 0.6799 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.8096 | 0.7692 | | 0.0175 | 8.0 | 104 | 0.9281 | 0.6923 | | 0.0106 | 9.0 | 117 | 0.9826 | 0.6923 | | 0.0077 | 10.0 | 130 | 1.0254 | 0.7692 | | 0.0056 | 11.0 | 143 | 1.0667 | 0.7692 | | 0.0042 | 12.0 | 156 | 1.1003 | 0.7692 | | 0.0036 | 13.0 | 169 | 1.1299 | 0.7692 | | 0.0034 | 14.0 | 182 | 1.1623 | 0.6923 | | 0.003 | 15.0 | 195 | 1.1938 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepESP/gpt2-spanish
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,463
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7118 | 1.0 | 13 | 0.6844 | 0.5385 | | 0.6587 | 2.0 | 26 | 0.6707 | 0.6154 | | 0.6067 | 3.0 | 39 | 0.6295 | 0.5385 | | 0.4714 | 4.0 | 52 | 0.5811 | 0.6923 | | 0.2444 | 5.0 | 65 | 0.5932 | 0.7692 | | 0.1007 | 6.0 | 78 | 0.7386 | 0.6923 | | 0.0332 | 7.0 | 91 | 0.6962 | 0.6154 | | 0.0147 | 8.0 | 104 | 0.8200 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.9250 | 0.7692 | | 0.0066 | 10.0 | 130 | 0.9345 | 0.7692 | | 0.005 | 11.0 | 143 | 0.9313 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.9356 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.9395 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.9504 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/bert-base-bg-cs-pl-ru-cased
[ "pytorch", "jax", "bert", "feature-extraction", "bg", "cs", "pl", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,614
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5001 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7175 | 1.0 | 13 | 0.6822 | 0.5385 | | 0.6559 | 2.0 | 26 | 0.6533 | 0.6154 | | 0.6052 | 3.0 | 39 | 0.5762 | 0.7692 | | 0.4587 | 4.0 | 52 | 0.4477 | 0.8462 | | 0.2459 | 5.0 | 65 | 0.4288 | 0.7692 | | 0.1001 | 6.0 | 78 | 0.5219 | 0.7692 | | 0.0308 | 7.0 | 91 | 0.8540 | 0.7692 | | 0.014 | 8.0 | 104 | 0.7789 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.7996 | 0.7692 | | 0.0064 | 10.0 | 130 | 0.8342 | 0.7692 | | 0.0049 | 11.0 | 143 | 0.8612 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.8834 | 0.7692 | | 0.0032 | 13.0 | 169 | 0.9067 | 0.7692 | | 0.003 | 14.0 | 182 | 0.9332 | 0.7692 | | 0.0028 | 15.0 | 195 | 0.9511 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/bert-base-cased-conversational
[ "pytorch", "jax", "bert", "feature-extraction", "en", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,009
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6248 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 13 | 0.6850 | 0.5385 | | 0.6496 | 2.0 | 26 | 0.6670 | 0.6154 | | 0.5895 | 3.0 | 39 | 0.6464 | 0.7692 | | 0.4271 | 4.0 | 52 | 0.6478 | 0.7692 | | 0.2182 | 5.0 | 65 | 0.6809 | 0.6923 | | 0.103 | 6.0 | 78 | 0.9119 | 0.6923 | | 0.0326 | 7.0 | 91 | 1.0718 | 0.6923 | | 0.0154 | 8.0 | 104 | 1.0721 | 0.7692 | | 0.0087 | 9.0 | 117 | 1.1416 | 0.7692 | | 0.0067 | 10.0 | 130 | 1.2088 | 0.7692 | | 0.005 | 11.0 | 143 | 1.2656 | 0.7692 | | 0.0037 | 12.0 | 156 | 1.3104 | 0.7692 | | 0.0032 | 13.0 | 169 | 1.3428 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/bert-base-multilingual-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "multilingual", "arxiv:1704.05426", "arxiv:1809.05053", "arxiv:1908.10084", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
140
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5072 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6704 | 0.6923 | | 0.6489 | 2.0 | 26 | 0.6228 | 0.8462 | | 0.5475 | 3.0 | 39 | 0.5079 | 0.8462 | | 0.4014 | 4.0 | 52 | 0.4203 | 0.8462 | | 0.1923 | 5.0 | 65 | 0.3872 | 0.8462 | | 0.1014 | 6.0 | 78 | 0.4909 | 0.8462 | | 0.0349 | 7.0 | 91 | 0.5460 | 0.8462 | | 0.0173 | 8.0 | 104 | 0.4867 | 0.8462 | | 0.0098 | 9.0 | 117 | 0.5274 | 0.8462 | | 0.0075 | 10.0 | 130 | 0.6086 | 0.8462 | | 0.0057 | 11.0 | 143 | 0.6604 | 0.8462 | | 0.0041 | 12.0 | 156 | 0.6904 | 0.8462 | | 0.0037 | 13.0 | 169 | 0.7164 | 0.8462 | | 0.0034 | 14.0 | 182 | 0.7368 | 0.8462 | | 0.0031 | 15.0 | 195 | 0.7565 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/distilrubert-base-cased-conversational
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6,324
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6736 - Accuracy: 0.5931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7094 | 1.0 | 13 | 0.6887 | 0.5385 | | 0.651 | 2.0 | 26 | 0.6682 | 0.6923 | | 0.6084 | 3.0 | 39 | 0.6412 | 0.6923 | | 0.4547 | 4.0 | 52 | 0.6095 | 0.6923 | | 0.2903 | 5.0 | 65 | 0.6621 | 0.6923 | | 0.1407 | 6.0 | 78 | 0.7130 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.9007 | 0.6923 | | 0.0176 | 8.0 | 104 | 0.9525 | 0.7692 | | 0.0098 | 9.0 | 117 | 1.0289 | 0.7692 | | 0.0071 | 10.0 | 130 | 1.0876 | 0.7692 | | 0.0052 | 11.0 | 143 | 1.1431 | 0.6923 | | 0.0038 | 12.0 | 156 | 1.1687 | 0.7692 | | 0.0034 | 13.0 | 169 | 1.1792 | 0.7692 | | 0.0031 | 14.0 | 182 | 1.2033 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/distilrubert-tiny-cased-conversational-v1
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,141
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.712 | 1.0 | 13 | 0.6936 | 0.5385 | | 0.665 | 2.0 | 26 | 0.6960 | 0.3846 | | 0.6112 | 3.0 | 39 | 0.7138 | 0.3846 | | 0.4521 | 4.0 | 52 | 0.8243 | 0.4615 | | 0.2627 | 5.0 | 65 | 0.7723 | 0.6154 | | 0.0928 | 6.0 | 78 | 1.2666 | 0.5385 | | 0.0312 | 7.0 | 91 | 1.2306 | 0.6154 | | 0.0132 | 8.0 | 104 | 1.3385 | 0.6154 | | 0.0082 | 9.0 | 117 | 1.4584 | 0.6154 | | 0.0063 | 10.0 | 130 | 1.5429 | 0.6154 | | 0.0049 | 11.0 | 143 | 1.5913 | 0.6154 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/distilrubert-tiny-cased-conversational
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5,993
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5625 - Accuracy: 0.7353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6805 | 0.5385 | | 0.6642 | 2.0 | 26 | 0.6526 | 0.7692 | | 0.5869 | 3.0 | 39 | 0.5773 | 0.8462 | | 0.4085 | 4.0 | 52 | 0.4959 | 0.8462 | | 0.2181 | 5.0 | 65 | 0.4902 | 0.6923 | | 0.069 | 6.0 | 78 | 0.5065 | 0.8462 | | 0.0522 | 7.0 | 91 | 0.6082 | 0.7692 | | 0.0135 | 8.0 | 104 | 0.6924 | 0.7692 | | 0.0084 | 9.0 | 117 | 0.5921 | 0.7692 | | 0.0061 | 10.0 | 130 | 0.6477 | 0.7692 | | 0.0047 | 11.0 | 143 | 0.6648 | 0.7692 | | 0.0035 | 12.0 | 156 | 0.6640 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.6615 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.6605 | 0.7692 | | 0.0026 | 15.0 | 195 | 0.6538 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/marianmt-tatoeba-enru
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.5189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6916 | 1.0 | 3 | 0.7035 | 0.25 | | 0.6852 | 2.0 | 6 | 0.7139 | 0.25 | | 0.6533 | 3.0 | 9 | 0.7192 | 0.25 | | 0.6211 | 4.0 | 12 | 0.7322 | 0.25 | | 0.5522 | 5.0 | 15 | 0.7561 | 0.25 | | 0.488 | 6.0 | 18 | 0.7883 | 0.25 | | 0.48 | 7.0 | 21 | 0.8224 | 0.25 | | 0.3948 | 8.0 | 24 | 0.8605 | 0.25 | | 0.3478 | 9.0 | 27 | 0.8726 | 0.25 | | 0.2723 | 10.0 | 30 | 0.8885 | 0.25 | | 0.2174 | 11.0 | 33 | 0.8984 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/marianmt-tatoeba-ruen
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6930 - Accuracy: 0.5047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7082 | 1.0 | 3 | 0.7048 | 0.25 | | 0.6761 | 2.0 | 6 | 0.7249 | 0.25 | | 0.6653 | 3.0 | 9 | 0.7423 | 0.25 | | 0.6212 | 4.0 | 12 | 0.7727 | 0.25 | | 0.5932 | 5.0 | 15 | 0.8098 | 0.25 | | 0.5427 | 6.0 | 18 | 0.8496 | 0.25 | | 0.5146 | 7.0 | 21 | 0.8992 | 0.25 | | 0.4356 | 8.0 | 24 | 0.9494 | 0.25 | | 0.4275 | 9.0 | 27 | 0.9694 | 0.25 | | 0.3351 | 10.0 | 30 | 0.9968 | 0.25 | | 0.2812 | 11.0 | 33 | 1.0056 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/roberta-large-winogrande
[ "pytorch", "roberta", "text-classification", "en", "dataset:winogrande", "arxiv:1907.11692", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
348
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7081 | 1.0 | 3 | 0.7031 | 0.25 | | 0.6853 | 2.0 | 6 | 0.7109 | 0.25 | | 0.6696 | 3.0 | 9 | 0.7211 | 0.25 | | 0.6174 | 4.0 | 12 | 0.7407 | 0.25 | | 0.5717 | 5.0 | 15 | 0.7625 | 0.25 | | 0.5096 | 6.0 | 18 | 0.7732 | 0.25 | | 0.488 | 7.0 | 21 | 0.7798 | 0.25 | | 0.4023 | 8.0 | 24 | 0.7981 | 0.25 | | 0.3556 | 9.0 | 27 | 0.8110 | 0.25 | | 0.2714 | 10.0 | 30 | 0.8269 | 0.25 | | 0.2295 | 11.0 | 33 | 0.8276 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/rubert-base-cased-conversational
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17,362
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6914 - Accuracy: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 3 | 0.7039 | 0.25 | | 0.6615 | 2.0 | 6 | 0.7186 | 0.25 | | 0.653 | 3.0 | 9 | 0.7334 | 0.25 | | 0.601 | 4.0 | 12 | 0.7592 | 0.25 | | 0.5555 | 5.0 | 15 | 0.7922 | 0.25 | | 0.4832 | 6.0 | 18 | 0.8179 | 0.25 | | 0.4565 | 7.0 | 21 | 0.8285 | 0.25 | | 0.3996 | 8.0 | 24 | 0.8559 | 0.25 | | 0.3681 | 9.0 | 27 | 0.8586 | 0.5 | | 0.2901 | 10.0 | 30 | 0.8646 | 0.5 | | 0.241 | 11.0 | 33 | 0.8524 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/rubert-base-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1508.05326", "arxiv:1809.05053", "arxiv:1908.10084", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
46,991
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Accuracy: 0.5107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.7100 | 0.25 | | 0.6785 | 2.0 | 6 | 0.7209 | 0.25 | | 0.6455 | 3.0 | 9 | 0.7321 | 0.25 | | 0.6076 | 4.0 | 12 | 0.7517 | 0.25 | | 0.5593 | 5.0 | 15 | 0.7780 | 0.25 | | 0.5202 | 6.0 | 18 | 0.7990 | 0.25 | | 0.4967 | 7.0 | 21 | 0.8203 | 0.25 | | 0.4158 | 8.0 | 24 | 0.8497 | 0.25 | | 0.3997 | 9.0 | 27 | 0.8638 | 0.25 | | 0.3064 | 10.0 | 30 | 0.8732 | 0.25 | | 0.2618 | 11.0 | 33 | 0.8669 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/rubert-base-cased
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
148,127
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8419 - Accuracy: 0.6172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 3 | 0.6848 | 0.75 | | 0.6681 | 2.0 | 6 | 0.6875 | 0.5 | | 0.6591 | 3.0 | 9 | 0.6868 | 0.25 | | 0.6052 | 4.0 | 12 | 0.6943 | 0.25 | | 0.557 | 5.0 | 15 | 0.7078 | 0.25 | | 0.4954 | 6.0 | 18 | 0.7168 | 0.25 | | 0.4593 | 7.0 | 21 | 0.7185 | 0.25 | | 0.3936 | 8.0 | 24 | 0.7212 | 0.25 | | 0.3699 | 9.0 | 27 | 0.6971 | 0.5 | | 0.2916 | 10.0 | 30 | 0.6827 | 0.5 | | 0.2511 | 11.0 | 33 | 0.6464 | 0.5 | | 0.2109 | 12.0 | 36 | 0.6344 | 0.75 | | 0.1655 | 13.0 | 39 | 0.6377 | 0.75 | | 0.1412 | 14.0 | 42 | 0.6398 | 0.75 | | 0.1157 | 15.0 | 45 | 0.6315 | 0.75 | | 0.0895 | 16.0 | 48 | 0.6210 | 0.75 | | 0.0783 | 17.0 | 51 | 0.5918 | 0.75 | | 0.0606 | 18.0 | 54 | 0.5543 | 0.75 | | 0.0486 | 19.0 | 57 | 0.5167 | 0.75 | | 0.0405 | 20.0 | 60 | 0.4862 | 0.75 | | 0.0376 | 21.0 | 63 | 0.4644 | 0.75 | | 0.0294 | 22.0 | 66 | 0.4497 | 0.75 | | 0.0261 | 23.0 | 69 | 0.4428 | 0.75 | | 0.0238 | 24.0 | 72 | 0.4408 | 0.75 | | 0.0217 | 25.0 | 75 | 0.4392 | 0.75 | | 0.0187 | 26.0 | 78 | 0.4373 | 0.75 | | 0.0177 | 27.0 | 81 | 0.4360 | 0.75 | | 0.0136 | 28.0 | 84 | 0.4372 | 0.75 | | 0.0144 | 29.0 | 87 | 0.4368 | 0.75 | | 0.014 | 30.0 | 90 | 0.4380 | 0.75 | | 0.0137 | 31.0 | 93 | 0.4383 | 0.75 | | 0.0133 | 32.0 | 96 | 0.4409 | 0.75 | | 0.013 | 33.0 | 99 | 0.4380 | 0.75 | | 0.0096 | 34.0 | 102 | 0.4358 | 0.75 | | 0.012 | 35.0 | 105 | 0.4339 | 0.75 | | 0.0122 | 36.0 | 108 | 0.4305 | 0.75 | | 0.0109 | 37.0 | 111 | 0.4267 | 0.75 | | 0.0121 | 38.0 | 114 | 0.4231 | 0.75 | | 0.0093 | 39.0 | 117 | 0.4209 | 0.75 | | 0.0099 | 40.0 | 120 | 0.4199 | 0.75 | | 0.0091 | 41.0 | 123 | 0.4184 | 0.75 | | 0.0116 | 42.0 | 126 | 0.4173 | 0.75 | | 0.01 | 43.0 | 129 | 0.4163 | 0.75 | | 0.0098 | 44.0 | 132 | 0.4153 | 0.75 | | 0.0101 | 45.0 | 135 | 0.4155 | 0.75 | | 0.0088 | 46.0 | 138 | 0.4149 | 0.75 | | 0.0087 | 47.0 | 141 | 0.4150 | 0.75 | | 0.0093 | 48.0 | 144 | 0.4147 | 0.75 | | 0.0081 | 49.0 | 147 | 0.4147 | 0.75 | | 0.009 | 50.0 | 150 | 0.4150 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/xlm-roberta-large-en-ru-mnli
[ "pytorch", "xlm-roberta", "text-classification", "en", "ru", "dataset:glue", "dataset:mnli", "transformers", "xlm-roberta-large", "xlm-roberta-large-en-ru", "xlm-roberta-large-en-ru-mnli", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.7523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7161 | 1.0 | 3 | 0.6941 | 0.5 | | 0.6786 | 2.0 | 6 | 0.7039 | 0.25 | | 0.6586 | 3.0 | 9 | 0.7090 | 0.25 | | 0.6121 | 4.0 | 12 | 0.7183 | 0.25 | | 0.5696 | 5.0 | 15 | 0.7266 | 0.25 | | 0.522 | 6.0 | 18 | 0.7305 | 0.25 | | 0.4899 | 7.0 | 21 | 0.7339 | 0.25 | | 0.3985 | 8.0 | 24 | 0.7429 | 0.25 | | 0.3758 | 9.0 | 27 | 0.7224 | 0.25 | | 0.2876 | 10.0 | 30 | 0.7068 | 0.5 | | 0.2498 | 11.0 | 33 | 0.6751 | 0.75 | | 0.1921 | 12.0 | 36 | 0.6487 | 0.75 | | 0.1491 | 13.0 | 39 | 0.6261 | 0.75 | | 0.1276 | 14.0 | 42 | 0.6102 | 0.75 | | 0.0996 | 15.0 | 45 | 0.5964 | 0.75 | | 0.073 | 16.0 | 48 | 0.6019 | 0.75 | | 0.0627 | 17.0 | 51 | 0.5933 | 0.75 | | 0.053 | 18.0 | 54 | 0.5768 | 0.75 | | 0.0403 | 19.0 | 57 | 0.5698 | 0.75 | | 0.0328 | 20.0 | 60 | 0.5656 | 0.75 | | 0.03 | 21.0 | 63 | 0.5634 | 0.75 | | 0.025 | 22.0 | 66 | 0.5620 | 0.75 | | 0.0209 | 23.0 | 69 | 0.5623 | 0.75 | | 0.0214 | 24.0 | 72 | 0.5606 | 0.75 | | 0.0191 | 25.0 | 75 | 0.5565 | 0.75 | | 0.0173 | 26.0 | 78 | 0.5485 | 0.75 | | 0.0175 | 27.0 | 81 | 0.5397 | 0.75 | | 0.0132 | 28.0 | 84 | 0.5322 | 0.75 | | 0.0138 | 29.0 | 87 | 0.5241 | 0.75 | | 0.0128 | 30.0 | 90 | 0.5235 | 0.75 | | 0.0126 | 31.0 | 93 | 0.5253 | 0.75 | | 0.012 | 32.0 | 96 | 0.5317 | 0.75 | | 0.0118 | 33.0 | 99 | 0.5342 | 0.75 | | 0.0092 | 34.0 | 102 | 0.5388 | 0.75 | | 0.0117 | 35.0 | 105 | 0.5414 | 0.75 | | 0.0124 | 36.0 | 108 | 0.5453 | 0.75 | | 0.0109 | 37.0 | 111 | 0.5506 | 0.75 | | 0.0112 | 38.0 | 114 | 0.5555 | 0.75 | | 0.0087 | 39.0 | 117 | 0.5597 | 0.75 | | 0.01 | 40.0 | 120 | 0.5640 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeepPavlov/xlm-roberta-large-en-ru
[ "pytorch", "xlm-roberta", "feature-extraction", "en", "ru", "transformers" ]
feature-extraction
{ "architectures": [ "XLMRobertaModel" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
190
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.4618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7156 | 1.0 | 3 | 0.6965 | 0.25 | | 0.6645 | 2.0 | 6 | 0.7059 | 0.25 | | 0.6368 | 3.0 | 9 | 0.7179 | 0.25 | | 0.5944 | 4.0 | 12 | 0.7408 | 0.25 | | 0.5369 | 5.0 | 15 | 0.7758 | 0.25 | | 0.449 | 6.0 | 18 | 0.8009 | 0.25 | | 0.4352 | 7.0 | 21 | 0.8209 | 0.5 | | 0.3462 | 8.0 | 24 | 0.8470 | 0.5 | | 0.3028 | 9.0 | 27 | 0.8579 | 0.5 | | 0.2365 | 10.0 | 30 | 0.8704 | 0.5 | | 0.2023 | 11.0 | 33 | 0.8770 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7061 | 1.0 | 3 | 0.6899 | 0.75 | | 0.6627 | 2.0 | 6 | 0.7026 | 0.25 | | 0.644 | 3.0 | 9 | 0.7158 | 0.25 | | 0.6087 | 4.0 | 12 | 0.7325 | 0.25 | | 0.5602 | 5.0 | 15 | 0.7555 | 0.25 | | 0.5034 | 6.0 | 18 | 0.7725 | 0.25 | | 0.4672 | 7.0 | 21 | 0.7983 | 0.25 | | 0.403 | 8.0 | 24 | 0.8314 | 0.25 | | 0.3571 | 9.0 | 27 | 0.8555 | 0.25 | | 0.2792 | 10.0 | 30 | 0.9065 | 0.25 | | 0.2373 | 11.0 | 33 | 0.9286 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeltaHub/adapter_t5-3b_cola
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-02-02T21:07:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7204 | 1.0 | 3 | 0.7025 | 0.5 | | 0.6885 | 2.0 | 6 | 0.7145 | 0.5 | | 0.6662 | 3.0 | 9 | 0.7222 | 0.5 | | 0.6182 | 4.0 | 12 | 0.7427 | 0.25 | | 0.5707 | 5.0 | 15 | 0.7773 | 0.25 | | 0.5247 | 6.0 | 18 | 0.8137 | 0.25 | | 0.5003 | 7.0 | 21 | 0.8556 | 0.25 | | 0.4195 | 8.0 | 24 | 0.9089 | 0.5 | | 0.387 | 9.0 | 27 | 0.9316 | 0.25 | | 0.2971 | 10.0 | 30 | 0.9558 | 0.25 | | 0.2581 | 11.0 | 33 | 0.9420 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeltaHub/adapter_t5-3b_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst5__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst5__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3757 - Accuracy: 0.5045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2492 | 1.0 | 534 | 1.1163 | 0.4991 | | 0.9937 | 2.0 | 1068 | 1.1232 | 0.5122 | | 0.7867 | 3.0 | 1602 | 1.2097 | 0.5045 | | 0.595 | 4.0 | 2136 | 1.3757 | 0.5045 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
DeltaHub/adapter_t5-3b_qnli
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3193 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1992 | 1.0 | 500 | 0.1236 | 0.963 | | 0.084 | 2.0 | 1000 | 0.1428 | 0.963 | | 0.0333 | 3.0 | 1500 | 0.1906 | 0.965 | | 0.0159 | 4.0 | 2000 | 0.3193 | 0.9485 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
DeltaHub/lora_t5-base_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4440 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6868 | 0.5 | | 0.6683 | 2.0 | 6 | 0.6804 | 0.75 | | 0.6375 | 3.0 | 9 | 0.6702 | 0.75 | | 0.5997 | 4.0 | 12 | 0.6686 | 0.75 | | 0.5345 | 5.0 | 15 | 0.6720 | 0.75 | | 0.4673 | 6.0 | 18 | 0.6646 | 0.75 | | 0.4214 | 7.0 | 21 | 0.6494 | 0.75 | | 0.3439 | 8.0 | 24 | 0.6313 | 0.75 | | 0.3157 | 9.0 | 27 | 0.6052 | 0.75 | | 0.2329 | 10.0 | 30 | 0.5908 | 0.75 | | 0.1989 | 11.0 | 33 | 0.5768 | 0.75 | | 0.1581 | 12.0 | 36 | 0.5727 | 0.75 | | 0.1257 | 13.0 | 39 | 0.5678 | 0.75 | | 0.1005 | 14.0 | 42 | 0.5518 | 0.75 | | 0.0836 | 15.0 | 45 | 0.5411 | 0.75 | | 0.0611 | 16.0 | 48 | 0.5320 | 0.75 | | 0.0503 | 17.0 | 51 | 0.5299 | 0.75 | | 0.0407 | 18.0 | 54 | 0.5368 | 0.75 | | 0.0332 | 19.0 | 57 | 0.5455 | 0.75 | | 0.0293 | 20.0 | 60 | 0.5525 | 0.75 | | 0.0254 | 21.0 | 63 | 0.5560 | 0.75 | | 0.0231 | 22.0 | 66 | 0.5569 | 0.75 | | 0.0201 | 23.0 | 69 | 0.5572 | 0.75 | | 0.0179 | 24.0 | 72 | 0.5575 | 0.75 | | 0.0184 | 25.0 | 75 | 0.5547 | 0.75 | | 0.0148 | 26.0 | 78 | 0.5493 | 0.75 | | 0.0149 | 27.0 | 81 | 0.5473 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DemangeJeremy/4-sentiments-with-flaubert
[ "pytorch", "flaubert", "text-classification", "fr", "transformers", "sentiments", "french", "flaubert-large" ]
text-classification
{ "architectures": [ "FlaubertForSequenceClassification" ], "model_type": "flaubert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
226
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.703 | 1.0 | 3 | 0.6906 | 0.5 | | 0.666 | 2.0 | 6 | 0.6945 | 0.25 | | 0.63 | 3.0 | 9 | 0.6885 | 0.5 | | 0.588 | 4.0 | 12 | 0.6888 | 0.25 | | 0.5181 | 5.0 | 15 | 0.6899 | 0.25 | | 0.4508 | 6.0 | 18 | 0.6770 | 0.5 | | 0.4025 | 7.0 | 21 | 0.6579 | 0.5 | | 0.3361 | 8.0 | 24 | 0.6392 | 0.5 | | 0.2919 | 9.0 | 27 | 0.6113 | 0.5 | | 0.2151 | 10.0 | 30 | 0.5774 | 0.75 | | 0.1728 | 11.0 | 33 | 0.5248 | 0.75 | | 0.1313 | 12.0 | 36 | 0.4824 | 0.75 | | 0.1046 | 13.0 | 39 | 0.4456 | 0.75 | | 0.0858 | 14.0 | 42 | 0.4076 | 0.75 | | 0.0679 | 15.0 | 45 | 0.3755 | 0.75 | | 0.0485 | 16.0 | 48 | 0.3422 | 0.75 | | 0.0416 | 17.0 | 51 | 0.3055 | 0.75 | | 0.0358 | 18.0 | 54 | 0.2731 | 1.0 | | 0.0277 | 19.0 | 57 | 0.2443 | 1.0 | | 0.0234 | 20.0 | 60 | 0.2187 | 1.0 | | 0.0223 | 21.0 | 63 | 0.1960 | 1.0 | | 0.0187 | 22.0 | 66 | 0.1762 | 1.0 | | 0.017 | 23.0 | 69 | 0.1629 | 1.0 | | 0.0154 | 24.0 | 72 | 0.1543 | 1.0 | | 0.0164 | 25.0 | 75 | 0.1476 | 1.0 | | 0.0131 | 26.0 | 78 | 0.1423 | 1.0 | | 0.0139 | 27.0 | 81 | 0.1387 | 1.0 | | 0.0107 | 28.0 | 84 | 0.1360 | 1.0 | | 0.0108 | 29.0 | 87 | 0.1331 | 1.0 | | 0.0105 | 30.0 | 90 | 0.1308 | 1.0 | | 0.0106 | 31.0 | 93 | 0.1276 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1267 | 1.0 | | 0.0095 | 33.0 | 99 | 0.1255 | 1.0 | | 0.0076 | 34.0 | 102 | 0.1243 | 1.0 | | 0.0094 | 35.0 | 105 | 0.1235 | 1.0 | | 0.0103 | 36.0 | 108 | 0.1228 | 1.0 | | 0.0086 | 37.0 | 111 | 0.1231 | 1.0 | | 0.0094 | 38.0 | 114 | 0.1236 | 1.0 | | 0.0074 | 39.0 | 117 | 0.1240 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1246 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1253 | 1.0 | | 0.0088 | 42.0 | 126 | 0.1248 | 1.0 | | 0.0082 | 43.0 | 129 | 0.1244 | 1.0 | | 0.0082 | 44.0 | 132 | 0.1234 | 1.0 | | 0.0082 | 45.0 | 135 | 0.1223 | 1.0 | | 0.0071 | 46.0 | 138 | 0.1212 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1208 | 1.0 | | 0.0081 | 48.0 | 144 | 0.1205 | 1.0 | | 0.0067 | 49.0 | 147 | 0.1202 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1202 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Denilson/gbert-base-germaner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Deniskin/emailer_medium_300
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3496 - Accuracy: 0.859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 3 | 0.6875 | 0.75 | | 0.6702 | 2.0 | 6 | 0.6824 | 0.75 | | 0.6456 | 3.0 | 9 | 0.6687 | 0.75 | | 0.5934 | 4.0 | 12 | 0.6564 | 0.75 | | 0.537 | 5.0 | 15 | 0.6428 | 0.75 | | 0.4812 | 6.0 | 18 | 0.6180 | 0.75 | | 0.4279 | 7.0 | 21 | 0.5864 | 0.75 | | 0.3608 | 8.0 | 24 | 0.5540 | 0.75 | | 0.3076 | 9.0 | 27 | 0.5012 | 1.0 | | 0.2292 | 10.0 | 30 | 0.4497 | 1.0 | | 0.1991 | 11.0 | 33 | 0.3945 | 1.0 | | 0.1495 | 12.0 | 36 | 0.3483 | 1.0 | | 0.1176 | 13.0 | 39 | 0.3061 | 1.0 | | 0.0947 | 14.0 | 42 | 0.2683 | 1.0 | | 0.0761 | 15.0 | 45 | 0.2295 | 1.0 | | 0.0584 | 16.0 | 48 | 0.1996 | 1.0 | | 0.0451 | 17.0 | 51 | 0.1739 | 1.0 | | 0.0387 | 18.0 | 54 | 0.1521 | 1.0 | | 0.0272 | 19.0 | 57 | 0.1333 | 1.0 | | 0.0247 | 20.0 | 60 | 0.1171 | 1.0 | | 0.0243 | 21.0 | 63 | 0.1044 | 1.0 | | 0.0206 | 22.0 | 66 | 0.0943 | 1.0 | | 0.0175 | 23.0 | 69 | 0.0859 | 1.0 | | 0.0169 | 24.0 | 72 | 0.0799 | 1.0 | | 0.0162 | 25.0 | 75 | 0.0746 | 1.0 | | 0.0137 | 26.0 | 78 | 0.0705 | 1.0 | | 0.0141 | 27.0 | 81 | 0.0674 | 1.0 | | 0.0107 | 28.0 | 84 | 0.0654 | 1.0 | | 0.0117 | 29.0 | 87 | 0.0634 | 1.0 | | 0.0113 | 30.0 | 90 | 0.0617 | 1.0 | | 0.0107 | 31.0 | 93 | 0.0599 | 1.0 | | 0.0106 | 32.0 | 96 | 0.0585 | 1.0 | | 0.0101 | 33.0 | 99 | 0.0568 | 1.0 | | 0.0084 | 34.0 | 102 | 0.0553 | 1.0 | | 0.0101 | 35.0 | 105 | 0.0539 | 1.0 | | 0.0102 | 36.0 | 108 | 0.0529 | 1.0 | | 0.009 | 37.0 | 111 | 0.0520 | 1.0 | | 0.0092 | 38.0 | 114 | 0.0511 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0504 | 1.0 | | 0.0081 | 40.0 | 120 | 0.0497 | 1.0 | | 0.0079 | 41.0 | 123 | 0.0492 | 1.0 | | 0.0092 | 42.0 | 126 | 0.0488 | 1.0 | | 0.008 | 43.0 | 129 | 0.0483 | 1.0 | | 0.0087 | 44.0 | 132 | 0.0479 | 1.0 | | 0.009 | 45.0 | 135 | 0.0474 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0470 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0467 | 1.0 | | 0.008 | 48.0 | 144 | 0.0465 | 1.0 | | 0.0069 | 49.0 | 147 | 0.0464 | 1.0 | | 0.0077 | 50.0 | 150 | 0.0464 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Deniskin/essays_small_2000
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - Accuracy: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6991 | 1.0 | 3 | 0.6772 | 0.75 | | 0.6707 | 2.0 | 6 | 0.6704 | 0.75 | | 0.6402 | 3.0 | 9 | 0.6608 | 1.0 | | 0.5789 | 4.0 | 12 | 0.6547 | 0.75 | | 0.5211 | 5.0 | 15 | 0.6434 | 0.75 | | 0.454 | 6.0 | 18 | 0.6102 | 1.0 | | 0.4187 | 7.0 | 21 | 0.5701 | 1.0 | | 0.3401 | 8.0 | 24 | 0.5289 | 1.0 | | 0.3107 | 9.0 | 27 | 0.4737 | 1.0 | | 0.2381 | 10.0 | 30 | 0.4255 | 1.0 | | 0.1982 | 11.0 | 33 | 0.3685 | 1.0 | | 0.1631 | 12.0 | 36 | 0.3200 | 1.0 | | 0.1234 | 13.0 | 39 | 0.2798 | 1.0 | | 0.0993 | 14.0 | 42 | 0.2455 | 1.0 | | 0.0781 | 15.0 | 45 | 0.2135 | 1.0 | | 0.0586 | 16.0 | 48 | 0.1891 | 1.0 | | 0.0513 | 17.0 | 51 | 0.1671 | 1.0 | | 0.043 | 18.0 | 54 | 0.1427 | 1.0 | | 0.0307 | 19.0 | 57 | 0.1225 | 1.0 | | 0.0273 | 20.0 | 60 | 0.1060 | 1.0 | | 0.0266 | 21.0 | 63 | 0.0920 | 1.0 | | 0.0233 | 22.0 | 66 | 0.0823 | 1.0 | | 0.0185 | 23.0 | 69 | 0.0751 | 1.0 | | 0.0173 | 24.0 | 72 | 0.0698 | 1.0 | | 0.0172 | 25.0 | 75 | 0.0651 | 1.0 | | 0.0142 | 26.0 | 78 | 0.0613 | 1.0 | | 0.0151 | 27.0 | 81 | 0.0583 | 1.0 | | 0.0117 | 28.0 | 84 | 0.0563 | 1.0 | | 0.0123 | 29.0 | 87 | 0.0546 | 1.0 | | 0.0121 | 30.0 | 90 | 0.0531 | 1.0 | | 0.0123 | 31.0 | 93 | 0.0511 | 1.0 | | 0.0112 | 32.0 | 96 | 0.0496 | 1.0 | | 0.0103 | 33.0 | 99 | 0.0481 | 1.0 | | 0.0086 | 34.0 | 102 | 0.0468 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0457 | 1.0 | | 0.0107 | 36.0 | 108 | 0.0447 | 1.0 | | 0.0095 | 37.0 | 111 | 0.0439 | 1.0 | | 0.0102 | 38.0 | 114 | 0.0429 | 1.0 | | 0.0077 | 39.0 | 117 | 0.0422 | 1.0 | | 0.0092 | 40.0 | 120 | 0.0415 | 1.0 | | 0.0083 | 41.0 | 123 | 0.0409 | 1.0 | | 0.0094 | 42.0 | 126 | 0.0404 | 1.0 | | 0.0084 | 43.0 | 129 | 0.0400 | 1.0 | | 0.0085 | 44.0 | 132 | 0.0396 | 1.0 | | 0.0092 | 45.0 | 135 | 0.0392 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0389 | 1.0 | | 0.0073 | 47.0 | 141 | 0.0388 | 1.0 | | 0.0085 | 48.0 | 144 | 0.0387 | 1.0 | | 0.0071 | 49.0 | 147 | 0.0386 | 1.0 | | 0.0079 | 50.0 | 150 | 0.0386 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Deniskin/essays_small_2000i
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7102 | 1.0 | 3 | 0.6790 | 0.75 | | 0.6693 | 2.0 | 6 | 0.6831 | 0.75 | | 0.6438 | 3.0 | 9 | 0.6876 | 0.75 | | 0.6047 | 4.0 | 12 | 0.6970 | 0.75 | | 0.547 | 5.0 | 15 | 0.7065 | 0.75 | | 0.4885 | 6.0 | 18 | 0.7114 | 0.75 | | 0.4601 | 7.0 | 21 | 0.7147 | 0.5 | | 0.4017 | 8.0 | 24 | 0.7178 | 0.5 | | 0.3474 | 9.0 | 27 | 0.7145 | 0.5 | | 0.2624 | 10.0 | 30 | 0.7153 | 0.5 | | 0.2175 | 11.0 | 33 | 0.7158 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Deniskin/gpt3_medium
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 - Accuracy: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6923 | 0.5 | | 0.6648 | 2.0 | 6 | 0.6838 | 0.5 | | 0.6329 | 3.0 | 9 | 0.6747 | 0.75 | | 0.5836 | 4.0 | 12 | 0.6693 | 0.5 | | 0.5287 | 5.0 | 15 | 0.6670 | 0.25 | | 0.4585 | 6.0 | 18 | 0.6517 | 0.5 | | 0.415 | 7.0 | 21 | 0.6290 | 0.5 | | 0.3353 | 8.0 | 24 | 0.6019 | 0.5 | | 0.2841 | 9.0 | 27 | 0.5613 | 0.75 | | 0.2203 | 10.0 | 30 | 0.5222 | 1.0 | | 0.1743 | 11.0 | 33 | 0.4769 | 1.0 | | 0.1444 | 12.0 | 36 | 0.4597 | 1.0 | | 0.1079 | 13.0 | 39 | 0.4462 | 1.0 | | 0.0891 | 14.0 | 42 | 0.4216 | 1.0 | | 0.0704 | 15.0 | 45 | 0.3880 | 1.0 | | 0.0505 | 16.0 | 48 | 0.3663 | 1.0 | | 0.0428 | 17.0 | 51 | 0.3536 | 1.0 | | 0.0356 | 18.0 | 54 | 0.3490 | 1.0 | | 0.0283 | 19.0 | 57 | 0.3531 | 1.0 | | 0.025 | 20.0 | 60 | 0.3595 | 1.0 | | 0.0239 | 21.0 | 63 | 0.3594 | 1.0 | | 0.0202 | 22.0 | 66 | 0.3521 | 1.0 | | 0.0168 | 23.0 | 69 | 0.3475 | 1.0 | | 0.0159 | 24.0 | 72 | 0.3458 | 1.0 | | 0.0164 | 25.0 | 75 | 0.3409 | 1.0 | | 0.0132 | 26.0 | 78 | 0.3360 | 1.0 | | 0.0137 | 27.0 | 81 | 0.3302 | 1.0 | | 0.0112 | 28.0 | 84 | 0.3235 | 1.0 | | 0.0113 | 29.0 | 87 | 0.3178 | 1.0 | | 0.0111 | 30.0 | 90 | 0.3159 | 1.0 | | 0.0113 | 31.0 | 93 | 0.3108 | 1.0 | | 0.0107 | 32.0 | 96 | 0.3101 | 1.0 | | 0.0101 | 33.0 | 99 | 0.3100 | 1.0 | | 0.0083 | 34.0 | 102 | 0.3110 | 1.0 | | 0.0092 | 35.0 | 105 | 0.3117 | 1.0 | | 0.0102 | 36.0 | 108 | 0.3104 | 1.0 | | 0.0086 | 37.0 | 111 | 0.3086 | 1.0 | | 0.0092 | 38.0 | 114 | 0.3047 | 1.0 | | 0.0072 | 39.0 | 117 | 0.3024 | 1.0 | | 0.0079 | 40.0 | 120 | 0.3014 | 1.0 | | 0.0079 | 41.0 | 123 | 0.2983 | 1.0 | | 0.0091 | 42.0 | 126 | 0.2948 | 1.0 | | 0.0077 | 43.0 | 129 | 0.2915 | 1.0 | | 0.0085 | 44.0 | 132 | 0.2890 | 1.0 | | 0.009 | 45.0 | 135 | 0.2870 | 1.0 | | 0.0073 | 46.0 | 138 | 0.2856 | 1.0 | | 0.0073 | 47.0 | 141 | 0.2844 | 1.0 | | 0.0076 | 48.0 | 144 | 0.2841 | 1.0 | | 0.0065 | 49.0 | 147 | 0.2836 | 1.0 | | 0.0081 | 50.0 | 150 | 0.2835 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Denny29/DialoGPT-medium-asunayuuki
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7044 | 1.0 | 3 | 0.6909 | 0.5 | | 0.6678 | 2.0 | 6 | 0.6901 | 0.5 | | 0.6336 | 3.0 | 9 | 0.6807 | 0.5 | | 0.5926 | 4.0 | 12 | 0.6726 | 0.5 | | 0.5221 | 5.0 | 15 | 0.6648 | 0.5 | | 0.4573 | 6.0 | 18 | 0.6470 | 0.5 | | 0.4177 | 7.0 | 21 | 0.6251 | 0.5 | | 0.3252 | 8.0 | 24 | 0.5994 | 0.5 | | 0.2831 | 9.0 | 27 | 0.5529 | 0.5 | | 0.213 | 10.0 | 30 | 0.5078 | 0.75 | | 0.1808 | 11.0 | 33 | 0.4521 | 1.0 | | 0.1355 | 12.0 | 36 | 0.3996 | 1.0 | | 0.1027 | 13.0 | 39 | 0.3557 | 1.0 | | 0.0862 | 14.0 | 42 | 0.3121 | 1.0 | | 0.0682 | 15.0 | 45 | 0.2828 | 1.0 | | 0.0517 | 16.0 | 48 | 0.2603 | 1.0 | | 0.0466 | 17.0 | 51 | 0.2412 | 1.0 | | 0.038 | 18.0 | 54 | 0.2241 | 1.0 | | 0.0276 | 19.0 | 57 | 0.2096 | 1.0 | | 0.0246 | 20.0 | 60 | 0.1969 | 1.0 | | 0.0249 | 21.0 | 63 | 0.1859 | 1.0 | | 0.0201 | 22.0 | 66 | 0.1770 | 1.0 | | 0.018 | 23.0 | 69 | 0.1703 | 1.0 | | 0.0164 | 24.0 | 72 | 0.1670 | 1.0 | | 0.0172 | 25.0 | 75 | 0.1639 | 1.0 | | 0.0135 | 26.0 | 78 | 0.1604 | 1.0 | | 0.014 | 27.0 | 81 | 0.1585 | 1.0 | | 0.0108 | 28.0 | 84 | 0.1569 | 1.0 | | 0.0116 | 29.0 | 87 | 0.1549 | 1.0 | | 0.0111 | 30.0 | 90 | 0.1532 | 1.0 | | 0.0113 | 31.0 | 93 | 0.1513 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1503 | 1.0 | | 0.01 | 33.0 | 99 | 0.1490 | 1.0 | | 0.0079 | 34.0 | 102 | 0.1479 | 1.0 | | 0.0097 | 35.0 | 105 | 0.1466 | 1.0 | | 0.0112 | 36.0 | 108 | 0.1458 | 1.0 | | 0.0091 | 37.0 | 111 | 0.1457 | 1.0 | | 0.0098 | 38.0 | 114 | 0.1454 | 1.0 | | 0.0076 | 39.0 | 117 | 0.1451 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1448 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1445 | 1.0 | | 0.0096 | 42.0 | 126 | 0.1440 | 1.0 | | 0.0081 | 43.0 | 129 | 0.1430 | 1.0 | | 0.0083 | 44.0 | 132 | 0.1424 | 1.0 | | 0.0088 | 45.0 | 135 | 0.1418 | 1.0 | | 0.0077 | 46.0 | 138 | 0.1414 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1413 | 1.0 | | 0.0084 | 48.0 | 144 | 0.1412 | 1.0 | | 0.0072 | 49.0 | 147 | 0.1411 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1411 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Denver/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3160 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7187 | 1.0 | 3 | 0.6776 | 1.0 | | 0.684 | 2.0 | 6 | 0.6608 | 1.0 | | 0.6532 | 3.0 | 9 | 0.6364 | 1.0 | | 0.5996 | 4.0 | 12 | 0.6119 | 1.0 | | 0.5242 | 5.0 | 15 | 0.5806 | 1.0 | | 0.4612 | 6.0 | 18 | 0.5320 | 1.0 | | 0.4192 | 7.0 | 21 | 0.4714 | 1.0 | | 0.3274 | 8.0 | 24 | 0.4071 | 1.0 | | 0.2871 | 9.0 | 27 | 0.3378 | 1.0 | | 0.2082 | 10.0 | 30 | 0.2822 | 1.0 | | 0.1692 | 11.0 | 33 | 0.2271 | 1.0 | | 0.1242 | 12.0 | 36 | 0.1793 | 1.0 | | 0.0977 | 13.0 | 39 | 0.1417 | 1.0 | | 0.0776 | 14.0 | 42 | 0.1117 | 1.0 | | 0.0631 | 15.0 | 45 | 0.0894 | 1.0 | | 0.0453 | 16.0 | 48 | 0.0733 | 1.0 | | 0.0399 | 17.0 | 51 | 0.0617 | 1.0 | | 0.0333 | 18.0 | 54 | 0.0528 | 1.0 | | 0.0266 | 19.0 | 57 | 0.0454 | 1.0 | | 0.0234 | 20.0 | 60 | 0.0393 | 1.0 | | 0.0223 | 21.0 | 63 | 0.0345 | 1.0 | | 0.0195 | 22.0 | 66 | 0.0309 | 1.0 | | 0.0161 | 23.0 | 69 | 0.0281 | 1.0 | | 0.0167 | 24.0 | 72 | 0.0260 | 1.0 | | 0.0163 | 25.0 | 75 | 0.0242 | 1.0 | | 0.0134 | 26.0 | 78 | 0.0227 | 1.0 | | 0.0128 | 27.0 | 81 | 0.0214 | 1.0 | | 0.0101 | 28.0 | 84 | 0.0204 | 1.0 | | 0.0109 | 29.0 | 87 | 0.0194 | 1.0 | | 0.0112 | 30.0 | 90 | 0.0186 | 1.0 | | 0.0108 | 31.0 | 93 | 0.0179 | 1.0 | | 0.011 | 32.0 | 96 | 0.0174 | 1.0 | | 0.0099 | 33.0 | 99 | 0.0169 | 1.0 | | 0.0083 | 34.0 | 102 | 0.0164 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0160 | 1.0 | | 0.01 | 36.0 | 108 | 0.0156 | 1.0 | | 0.0084 | 37.0 | 111 | 0.0152 | 1.0 | | 0.0089 | 38.0 | 114 | 0.0149 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0146 | 1.0 | | 0.0082 | 40.0 | 120 | 0.0143 | 1.0 | | 0.008 | 41.0 | 123 | 0.0141 | 1.0 | | 0.0093 | 42.0 | 126 | 0.0139 | 1.0 | | 0.0078 | 43.0 | 129 | 0.0138 | 1.0 | | 0.0086 | 44.0 | 132 | 0.0136 | 1.0 | | 0.009 | 45.0 | 135 | 0.0135 | 1.0 | | 0.0072 | 46.0 | 138 | 0.0134 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0133 | 1.0 | | 0.0082 | 48.0 | 144 | 0.0133 | 1.0 | | 0.0068 | 49.0 | 147 | 0.0132 | 1.0 | | 0.0074 | 50.0 | 150 | 0.0132 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeskDown/MarianMixFT_en-fil
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4865 - Accuracy: 0.778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7024 | 1.0 | 3 | 0.6843 | 0.75 | | 0.67 | 2.0 | 6 | 0.6807 | 0.5 | | 0.6371 | 3.0 | 9 | 0.6677 | 0.5 | | 0.585 | 4.0 | 12 | 0.6649 | 0.5 | | 0.5122 | 5.0 | 15 | 0.6707 | 0.5 | | 0.4379 | 6.0 | 18 | 0.6660 | 0.5 | | 0.4035 | 7.0 | 21 | 0.6666 | 0.5 | | 0.323 | 8.0 | 24 | 0.6672 | 0.5 | | 0.2841 | 9.0 | 27 | 0.6534 | 0.5 | | 0.21 | 10.0 | 30 | 0.6456 | 0.5 | | 0.1735 | 11.0 | 33 | 0.6325 | 0.5 | | 0.133 | 12.0 | 36 | 0.6214 | 0.5 | | 0.0986 | 13.0 | 39 | 0.6351 | 0.5 | | 0.081 | 14.0 | 42 | 0.6495 | 0.5 | | 0.0638 | 15.0 | 45 | 0.6671 | 0.5 | | 0.0449 | 16.0 | 48 | 0.7156 | 0.5 | | 0.0399 | 17.0 | 51 | 0.7608 | 0.5 | | 0.0314 | 18.0 | 54 | 0.7796 | 0.5 | | 0.0243 | 19.0 | 57 | 0.7789 | 0.5 | | 0.0227 | 20.0 | 60 | 0.7684 | 0.5 | | 0.0221 | 21.0 | 63 | 0.7628 | 0.5 | | 0.0192 | 22.0 | 66 | 0.7728 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
DeskDown/MarianMixFT_en-ms
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: cs license: cc-by-4.0 --- # Small-E-Czech Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech web corpus created at [Seznam.cz](https://www.seznam.cz/) and introduced in an [IAAI 2022 paper](https://arxiv.org/abs/2112.01810). Like other pretrained models, it should be finetuned on a downstream task of interest before use. At Seznam.cz, it has helped improve [web search ranking](https://blog.seznam.cz/2021/02/vyhledavani-pomoci-vyznamovych-vektoru/), query typo correction or clickbait titles detection. We release it under [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/) (i.e. allowing commercial use). To raise an issue, please visit our [github](https://github.com/seznam/small-e-czech). ### How to use the discriminator in transformers ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("Seznam/small-e-czech") tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech") sentence = "Za hory, za doly, mé zlaté parohy" fake_sentence = "Za hory, za doly, kočka zlaté parohy" fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"] fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") outputs = discriminator(fake_inputs) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() for token in fake_sentence_tokens: print("{:>7s}".format(token), end="") print() for prediction in predictions.squeeze(): print("{:7.1f}".format(prediction), end="") print() ``` In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: ``` [CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0 ``` ### Finetuning For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html).
DeskDown/MarianMix_en-ja-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer - summarization datasets: - mlsum language: de metrics: - rouge model-index: - name: mode-bart-deutsch results: - task: name: Summarization type: summarization dataset: name: mlsum de type: mlsum args: de metrics: - name: Rouge1 type: rouge value: 41.698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mode-bart-deutsch This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.2152 - Rouge1: 41.698 - Rouge2: 31.3548 - Rougel: 38.2817 - Rougelsum: 39.6349 - Gen Len: 63.1723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
DeskDown/MarianMix_en-zh-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer - summarization datasets: - mlsum language: de metrics: - rouge model-index: - name: t5-seven-epoch-base-german results: - task: name: Summarization type: summarization dataset: name: mlsum de type: mlsum args: de metrics: - name: Rouge1 type: rouge value: 42.3787 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-seven-epoch-base-german This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the mlsum de dataset. It achieves the following results on the evaluation set: - Loss: 1.5491 - Rouge1: 42.3787 - Rouge2: 32.0253 - Rougel: 38.9529 - Rougelsum: 40.4544 - Gen Len: 47.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
DeskDown/MarianMix_en-zh_to_vi-ms-hi-ja
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - conversational --- # Spongebob DialoGPT model
Despin89/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# ChineseBERT-base This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
Dev-DGT/food-dbert-multiling
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
# ChineseBERT-large This repository contains code, model, dataset for **ChineseBERT** at ACL2021. paper: **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* code: [ChineseBERT github link](https://github.com/ShannonAI/ChineseBert) ## Model description We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining. First, for each Chinese character, we get three kind of embedding. - **Char Embedding:** the same as origin BERT token embedding. - **Glyph Embedding:** capture visual features based on different fonts of a Chinese character. - **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character. Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding. Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model. The following image shows an overview architecture of ChineseBERT model. ![MODEL](https://raw.githubusercontent.com/ShannonAI/ChineseBert/main/images/ChineseBERT.png) ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.
Devrim/prism-default
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- metrics: - accuracy widget: - text: "In war resolution, in defeat defiance, in victory magnanimity" - text: "en la guerra resolución en la derrota desafío en la victoria magnanimidad" --- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1dqeUwS_DZ-urrmYzB29nTCBUltwJxhbh?usp=sharing) # 22 Language Identifier - BERT This model is trained to identify the following 22 different languages. - Arabic - Chinese - Dutch - English - Estonian - French - Hindi - Indonesian - Japanese - Korean - Latin - Persian - Portugese - Pushto - Romanian - Russian - Spanish - Swedish - Tamil - Thai - Turkish - Urdu ## Loading the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("SharanSMenon/22-languages-bert-base-cased") model = AutoModelForSequenceClassification.from_pretrained("SharanSMenon/22-languages-bert-base-cased") ``` ## Inference ```python def predict(sentence): tokenized = tokenizer(sentence, return_tensors="pt") outputs = model(**tokenized) return model.config.id2label[outputs.logits.argmax(dim=1).item()] ``` ### Examples ```python sentence1 = "in war resolution, in defeat defiance, in victory magnanimity" predict(sentence1) # English sentence2 = "en la guerra resolución en la derrota desafío en la victoria magnanimidad" predict(sentence2) # Spanish sentence3 = "هذا هو أعظم إله على الإطلاق" predict(sentence3) # Arabic ```
Dhruva/Interstellar
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-11-18T12:08:00Z
--- language: - ru - en pipeline_tag: text2text-generation tags: - PyTorch - Transformers - gpt2 - squad - lm-head - casual-lm thumbnail: "https://github.com/RussianNLP/RusEnQA" --- ## RusEnQA QA for Russian and English based on the [rugpt3xl](https://huggingface.co/sberbank-ai/rugpt3xl) model ### Fine-tuning format: ``` "<s>paragraph: "+eng_context+"\nlang: rus\nquestion: "+rus_question+' answer: '+ rus_answer+"</s>" ``` ### About ruGPT-3 XL model Model was trained with 512 sequence length using [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) code by [SberDevices](https://sberdevices.ru/) team, on 80B tokens dataset for 4 epochs. After that model was finetuned 1 epoch with sequence length 2048. *Note! Model has sparse attention blocks.* Total training time was around 10 days on 256 GPUs. Final perplexity on test set is 12.05. Model parameters: 1.3B.
DimaOrekhov/cubert-method-name
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - conversational --- # SHAY0 Dialo GPT Model
Dimedrolza/DialoGPT-small-cyberpunk
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - conversational --- # Harry Potter DialGPT Model
DivyanshuSheth/T5-Seq2Seq-Final
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- #isla DialoGPT Model
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: superglue-boolq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superglue-boolq This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2098 - Accuracy: 76.7584 - Average Metrics: 76.7584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Average Metrics | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:| | No log | 0.34 | 100 | 0.2293 | 73.2722 | 73.2722 | | No log | 0.68 | 200 | 0.2098 | 76.7584 | 76.7584 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111 - Datasets 1.17.0 - Tokenizers 0.12.1
AdapterHub/bert-base-uncased-pf-squad_v2
[ "bert", "en", "dataset:squad_v2", "arxiv:2104.08247", "adapter-transformers", "question-answering", "adapterhub:qa/squad2" ]
question-answering
{ "architectures": null, "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - en - de - es license: mit tags: - sentence_embedding ---