modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Aleksandar/bert-srb-base-cased-oscar
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - magicdata license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/jiyangtang_magicdata_asr_conformer_lm_transformer` This model was trained by Jiyang Tang using magicdata recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 9d0f3b3e1be6650d38cc5008518f445308fe06d9 pip install -e . cd egs2/magicdata/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/jiyangtang_magicdata_asr_conformer_lm_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Sep 21 01:11:58 EDT 2022` - python version: `3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `9d0f3b3e1be6650d38cc5008518f445308fe06d9` - Commit date: `Mon Sep 19 20:27:41 2022 -0400` ## asr_train_asr_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|24279|24286|84.4|15.6|0.0|0.0|15.6|15.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|24279|243325|96.4|1.7|2.0|0.1|3.7|15.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_raw_zh_char_sp ngpu: 0 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: null dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: null val_scheduler_criterion: - valid - acc early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 20000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_noeng_sp/wav.scp - speech - sound - - dump/raw/train_noeng_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - 的 - 我 - 一 - 歌 - 你 - 天 - 不 - 了 - 放 - 来 - 播 - 下 - 个 - 是 - 有 - 给 - 首 - 好 - 请 - 在 - 听 - 么 - 气 - 要 - 想 - 曲 - 上 - 吗 - 去 - 到 - 这 - 啊 - 点 - 那 - 没 - 就 - 说 - 大 - 唱 - 人 - 最 - 第 - 看 - 会 - 明 - 集 - 吧 - 音 - 还 - 乐 - 今 - 电 - 开 - 能 - 度 - 哪 - 里 - 多 - 打 - 十 - 可 - 怎 - 道 - 什 - 新 - 雨 - 以 - 家 - 回 - 话 - 儿 - 他 - 时 - 小 - 温 - 样 - 爱 - 都 - 吃 - 呢 - 知 - 谁 - 为 - 子 - 们 - 也 - 过 - 老 - 很 - 出 - 中 - 现 - 冷 - 和 - 情 - 行 - 心 - 发 - 专 - 几 - 视 - 张 - 事 - 二 - 辑 - 五 - 三 - 后 - 找 - 些 - 早 - 学 - 晚 - 车 - 别 - 演 - 手 - 呀 - 调 - 感 - 问 - 九 - 饭 - 快 - 风 - 得 - 如 - 自 - 生 - 少 - 地 - 用 - 叫 - 帮 - 机 - 台 - 班 - 欢 - 候 - 起 - 等 - 把 - 年 - 干 - 高 - 太 - 啦 - 方 - 提 - 面 - 八 - 四 - 信 - 意 - 王 - 真 - 求 - 热 - 喜 - 觉 - 周 - 近 - 名 - 做 - 公 - 告 - 关 - 六 - 字 - 安 - 再 - 变 - 间 - 国 - 分 - 着 - 哈 - 水 - 节 - 只 - 动 - 北 - 刚 - 空 - 月 - 玩 - 让 - 伤 - 东 - 谢 - 网 - 七 - 见 - 之 - 比 - 杰 - 又 - 买 - 对 - 始 - 无 - 查 - 声 - 文 - 经 - 醒 - 美 - 西 - 哦 - 走 - 两 - 海 - 妈 - 李 - 报 - 诉 - 接 - 定 - 午 - 外 - 才 - 流 - 长 - 宝 - 门 - 收 - 己 - 室 - 林 - 种 - 南 - 日 - 目 - 陈 - 许 - 词 - 服 - 设 - 记 - 频 - 琴 - 主 - 完 - 友 - 花 - 跟 - 钱 - 睡 - 像 - 嗯 - 何 - 京 - 所 - 预 - 边 - 带 - 作 - 零 - 头 - 号 - 果 - 嘛 - 路 - 办 - 吉 - 语 - 本 - 合 - 卫 - 影 - 市 - 摄 - 通 - 加 - 女 - 成 - 因 - 前 - 衣 - 然 - 档 - 位 - 聊 - 哥 - 载 - 原 - <space> - 思 - 氏 - 同 - 题 - 但 - 红 - 火 - 她 - 亲 - 传 - 江 - 清 - 息 - 注 - 死 - 啥 - 州 - 片 - 朋 - 相 - 星 - 华 - 已 - 负 - 白 - 色 - 姐 - 春 - 转 - 半 - 换 - 黄 - 游 - 工 - 法 - 理 - 山 - 该 - 英 - 较 - 先 - 穿 - 推 - 直 - 力 - 当 - 冻 - 费 - 刘 - 男 - 写 - 场 - 呵 - 克 - 正 - 单 - 身 - 系 - 苏 - 婆 - 难 - 阳 - 光 - 重 - 荐 - 越 - 马 - 城 - 错 - 次 - 期 - 口 - 金 - 线 - 准 - 爸 - 忙 - 体 - 于 - 句 - 广 - 福 - 活 - 应 - 亮 - 黑 - 特 - 司 - 喝 - 式 - 飞 - 介 - 者 - 慢 - 静 - 百 - 平 - 绍 - 差 - 照 - 团 - 烦 - 便 - 师 - 站 - 德 - 短 - 远 - 需 - 谱 - 郑 - 化 - 或 - 器 - 急 - 钢 - 您 - 忘 - 店 - 妹 - 梦 - 青 - 适 - 总 - 每 - 业 - 夜 - 神 - 版 - 健 - 区 - 实 - 从 - 孩 - 奏 - 韩 - 伦 - 志 - 算 - 雪 - 世 - 认 - 眼 - 模 - 全 - 与 - 书 - 拿 - 送 - 结 - 其 - 解 - 格 - 洗 - 幸 - 舞 - 望 - 速 - 试 - 钟 - 内 - 联 - 停 - 丽 - 课 - 河 - 沙 - 笑 - 久 - 永 - 贝 - 民 - 址 - 超 - 教 - 代 - 件 - 降 - 脑 - 恋 - 常 - 交 - 低 - 伙 - 而 - 毛 - 阿 - 齐 - 习 - 量 - 段 - 选 - 欣 - 昨 - 进 - 闻 - 住 - 受 - 类 - 酒 - 背 - 藏 - 暴 - 摇 - 云 - 怕 - 考 - 咋 - 武 - 赶 - 孙 - 识 - 嵩 - 景 - 某 - 省 - 界 - 罗 - 任 - 坐 - 级 - 遇 - 麻 - 县 - 被 - 龙 - 品 - 蛋 - 湖 - 离 - 希 - 卖 - 轻 - 岁 - 香 - 赏 - 忆 - 答 - 滚 - 保 - 运 - 深 - 央 - 更 - 况 - 部 - , - 猪 - 休 - 校 - 留 - 嘿 - 弹 - 挺 - 院 - 泪 - 拉 - 懂 - 暖 - 讲 - 顺 - 底 - 卡 - 使 - 表 - 剧 - 包 - 故 - 导 - 凉 - 连 - 咱 - 制 - 蔡 - 容 - 向 - 物 - 微 - 步 - 切 - 搜 - 婚 - 童 - 约 - 芳 - 凯 - 复 - 未 - 陪 - 防 - 典 - 夏 - 万 - 备 - 指 - 冰 - 管 - 基 - 琪 - 宇 - 晓 - 房 - 良 - 戏 - 悲 - 牛 - 千 - 达 - 汉 - 拜 - 奇 - 梅 - 菜 - 满 - 徐 - 楼 - 询 - 图 - 改 - 练 - 敬 - 票 - 吴 - 络 - 码 - 整 - 简 - 队 - 购 - 普 - 附 - 响 - 胡 - 装 - 暑 - 非 - 喂 - 消 - 浪 - 凤 - 愿 - 累 - 球 - 聚 - 启 - 假 - 潮 - 弟 - 玉 - 绿 - 康 - 拍 - 失 - 哭 - 易 - 木 - 斯 - 跳 - 军 - 处 - 搞 - 升 - 除 - 傻 - 骗 - 证 - 杨 - 园 - 茹 - 赵 - 标 - 窗 - 庆 - 惠 - 够 - 烟 - 俊 - 掉 - 建 - 呗 - 插 - 座 - 害 - 智 - 贵 - 左 - 落 - 计 - 客 - 宁 - 梁 - 舒 - 取 - 往 - 漫 - 兰 - 战 - 随 - 晴 - 条 - 入 - 叶 - 强 - 伟 - 雅 - 尔 - 树 - 余 - 弄 - 季 - 排 - 伍 - 吹 - 宏 - 商 - 柔 - 郊 - 铁 - 遍 - 确 - 闭 - 雄 - 似 - 冒 - 待 - 尘 - 群 - 病 - 退 - 务 - 育 - 坏 - 娘 - 莫 - 资 - 楚 - 辛 - 索 - 利 - 数 - 秦 - 燕 - 且 - 录 - 姑 - 念 - 痛 - 冬 - 尾 - 共 - 初 - 粤 - 哎 - 印 - 示 - 抱 - 终 - 泉 - 货 - 肯 - 它 - 伞 - 性 - 古 - 跑 - 腾 - 鱼 - 曾 - 源 - 银 - 读 - 油 - 川 - 言 - 倩 - 峰 - 激 - 置 - 灯 - 独 - 命 - 谈 - 苦 - 限 - 乡 - 菲 - 伴 - 将 - 震 - 炎 - 散 - 依 - 米 - 及 - 贞 - 兴 - 湿 - 寒 - 敏 - 否 - 俩 - 祝 - 慧 - 精 - 律 - 功 - 托 - 洋 - 敢 - 街 - 铃 - 必 - 弦 - 寻 - 涵 - 突 - 皮 - 反 - 烧 - 秋 - 刮 - 末 - 双 - 细 - 范 - 由 - 君 - 款 - 邮 - 醉 - 紧 - 哲 - 缘 - 岛 - 疼 - 阴 - 旋 - 怪 - 草 - 持 - 狼 - 具 - 至 - 汪 - 鸡 - 医 - 邓 - 份 - 右 - 密 - 士 - 修 - 亚 - 画 - 灵 - 妇 - 甜 - 靠 - 荣 - 程 - 莲 - 魂 - 此 - 户 - 属 - 贤 - 充 - 萧 - 血 - 逼 - 闹 - 吸 - 娜 - 肉 - 抒 - 价 - 桥 - 剑 - 巴 - 暗 - 豆 - 迪 - 戴 - 迅 - 朝 - 艺 - 谭 - 治 - 祥 - 尽 - 闷 - 宫 - 艳 - 父 - 存 - 媳 - 跪 - 雾 - 杜 - 味 - 奕 - 兵 - 脸 - 炫 - 兄 - 妮 - 优 - 熊 - 床 - 般 - 净 - 航 - 帝 - 刻 - 孤 - 轩 - 村 - 支 - 玮 - 狗 - 纯 - 楠 - 呐 - 冠 - 元 - 盛 - 决 - 诗 - 爷 - 堵 - 陶 - 乖 - 迷 - 羽 - 忧 - 倒 - 蜜 - 晒 - 仔 - 却 - 姜 - 哟 - 餐 - 雷 - 鸟 - 馆 - 韶 - 箱 - 操 - 乌 - 借 - 恒 - 舍 - 药 - 块 - 澡 - 石 - 软 - 奶 - 笨 - 夫 - 朴 - 义 - 派 - 晨 - 佳 - 科 - 姿 - 显 - 咏 - 饿 - 付 - 宗 - 键 - 止 - 员 - 磊 - 勤 - 崔 - 偏 - 额 - 免 - 乱 - 怀 - 侠 - 岳 - 斌 - 助 - 征 - 概 - 吕 - 彩 - 板 - 松 - 各 - 组 - 历 - 济 - 象 - 茶 - 领 - 按 - 创 - 镇 - 翻 - 配 - 宿 - 咯 - 帅 - 型 - 估 - 佩 - 惜 - 详 - 续 - 蓝 - 麟 - 珠 - 颜 - 彦 - 农 - 盘 - 母 - 鞋 - 账 - 博 - 礼 - 环 - 套 - 效 - 郭 - 居 - 佑 - 根 - 惊 - 圳 - 叔 - 若 - 逆 - 鸿 - 锁 - 食 - 芸 - 裤 - 娱 - 漂 - 野 - 麦 - 豫 - 顾 - 爽 - 族 - 仙 - 围 - 观 - 链 - 嗨 - 厅 - 巍 - 劲 - 极 - 呼 - 咖 - 淑 - 丝 - 昌 - 嘉 - 绝 - 史 - 击 - 承 - 蔚 - 堂 - 沉 - 笔 - 朵 - 凰 - 琥 - 匆 - 炜 - 输 - 须 - 娴 - 嘻 - 牌 - 田 - 杀 - 滴 - 鬼 - 桦 - 赛 - 玟 - 抽 - 案 - 轮 - 立 - 摆 - 屋 - 诺 - 丁 - 佰 - 蒙 - 澄 - 羊 - 添 - 质 - 波 - 萨 - 狂 - 丹 - 屁 - 角 - 章 - 产 - 宜 - 笛 - 严 - 维 - 测 - 娃 - 料 - 宋 - 洲 - 卦 - 猜 - 港 - 挂 - 淘 - 郁 - 统 - 断 - 锅 - 稍 - 绮 - 汗 - 辉 - 乎 - 破 - 钧 - 芹 - 择 - 胖 - 即 - 呜 - 旅 - 拨 - 紫 - 哇 - 默 - 论 - 朱 - 登 - 脚 - 订 - 秀 - ? - 社 - 飘 - 尚 - 另 - 骂 - 并 - 恶 - 扫 - 裸 - 姨 - 苹 - 压 - 厌 - 汇 - 爆 - 局 - 睛 - 庄 - 唐 - 嘞 - 偶 - 乔 - 染 - 熟 - 喆 - 愉 - 虎 - 技 - 威 - 布 - 嘴 - 湾 - 术 - 讨 - 尼 - 诶 - 坊 - 删 - 桑 - 庾 - 斗 - 呃 - 仁 - 训 - 汤 - 脱 - 凡 - 例 - 唉 - 畅 - 参 - 晕 - 肥 - 营 - 鲁 - 减 - 琳 - 瑞 - 透 - 素 - 厉 - 追 - 扰 - 控 - 谣 - 足 - 检 - 扬 - 娇 - 耳 - 津 - 倾 - 淡 - 露 - 妞 - 熙 - 值 - 罪 - 浩 - 探 - 盐 - 列 - 券 - 潘 - 官 - 篇 - 纪 - 签 - 棒 - 丑 - 陆 - 养 - 佛 - 唯 - 芮 - 哒 - 榜 - 培 - 疯 - 财 - 卷 - 痴 - 凌 - 瓜 - 猫 - 泡 - 据 - 厦 - 辣 - 恩 - 土 - 补 - 递 - 伏 - 灰 - 糖 - 玛 - 黎 - 湘 - 遥 - 谅 - 桃 - 曼 - 招 - 勇 - 泰 - 杭 - 缓 - 朗 - 替 - 刷 - 封 - 骨 - 盖 - 眠 - 担 - 忽 - 蛮 - 蜗 - 肚 - 喽 - 懒 - 继 - 辈 - 魔 - 哼 - 顶 - 冲 - 番 - 释 - 形 - 页 - 渡 - 触 - 裂 - 逛 - 圆 - 迎 - 态 - 弃 - 洛 - 丰 - 困 - 展 - 束 - 巧 - 临 - 际 - 涛 - 酷 - 洁 - 毕 - 呆 - 励 - 臭 - 暂 - 评 - 沧 - 磨 - 洞 - 厂 - 吵 - 煮 - 旧 - 幽 - 寄 - 政 - 丫 - 闯 - 举 - 误 - 护 - 状 - 寂 - 牙 - 杯 - 议 - 眉 - 享 - 剩 - 秘 - 噢 - 耿 - 致 - 偷 - 丢 - 刀 - 销 - 盒 - 编 - 珍 - 葛 - 译 - 颗 - 括 - 奥 - 鲜 - 沈 - 婷 - 摩 - 炒 - 惯 - 啡 - 混 - 燥 - 扣 - 晶 - 柏 - 拥 - 旭 - 拾 - 验 - 嫁 - 铺 - 棉 - 划 - 虾 - 浙 - 寓 - 剪 - 贴 - 圣 - 颖 - 申 - 枝 - 艾 - 旁 - 溪 - '?' - 厚 - 驶 - 燃 - 虽 - 途 - 祖 - 职 - 泽 - 腿 - 薇 - 阵 - 移 - 淋 - 灭 - 寞 - 森 - 延 - 孝 - 沥 - 迟 - 伪 - 催 - 投 - 伯 - 谓 - 诚 - 架 - 耶 - 项 - 撒 - 邦 - 善 - 鼻 - 芬 - 闲 - 增 - 卓 - 层 - 鹏 - 敲 - 镖 - 粉 - 欧 - 纸 - 甘 - 昆 - 哩 - 坚 - 苍 - 积 - 筝 - 擦 - 董 - 吻 - 折 - 欺 - 疆 - 勒 - 售 - 船 - 胜 - 甄 - 杂 - 骑 - 贱 - 饼 - 称 - 隆 - 竟 - 逃 - 啷 - 引 - 宾 - 莉 - 境 - 奖 - 救 - 讯 - 恰 - 垃 - 圾 - 宅 - 潜 - 皇 - 符 - 徽 - 造 - 翔 - 粥 - 桌 - 租 - 险 - 驾 - 祭 - 昂 - 牧 - 宣 - 综 - 谷 - 私 - 瓷 - 避 - 肖 - 闪 - 圈 - 喱 - 耀 - 悟 - 秒 - 篮 - 逗 - 蝶 - 趣 - 恨 - 恐 - 饺 - 碎 - 奔 - 幼 - 股 - 锦 - 锡 - 椅 - 玲 - 刑 - 嗓 - 喊 - 虑 - 俺 - 镜 - 耐 - 鹿 - 狄 - 兮 - 返 - 恭 - 含 - 傅 - 沟 - 莹 - 妃 - 忠 - 赤 - 喔 - 抓 - 迈 - 众 - 豪 - 祈 - 馨 - 嬛 - 庭 - 异 - 辰 - 琅 - 荷 - 匪 - 吐 - 警 - 虹 - 吓 - 聪 - 悔 - 归 - 富 - 陕 - 魏 - 欲 - 菊 - 雹 - 隐 - 涯 - 忍 - 芦 - 琊 - 酸 - 逊 - 亦 - 咪 - 瞎 - 滨 - 胸 - 采 - 穹 - 究 - 炊 - 痒 - 莎 - 柳 - 井 - 洪 - 胎 - 鼓 - 润 - 迁 - 玫 - 滩 - 傲 - 袁 - 赚 - 研 - 躺 - 烤 - 莱 - 搬 - 蒋 - 曹 - 孟 - 嫂 - 甲 - 瑰 - 窝 - 令 - 堆 - 废 - 掌 - 巡 - 妙 - 袋 - 争 - 萌 - 挑 - 册 - 饮 - 勋 - 珊 - 戒 - 绵 - 亡 - 劳 - 搭 - 甩 - 匙 - 彭 - 锋 - 钥 - 率 - 吟 - 鼠 - 纱 - 坡 - 潇 - 挣 - 逝 - 针 - 弱 - 妍 - 稳 - 怒 - 塘 - 卢 - 宵 - 悠 - 饱 - 披 - 瘦 - 浮 - 烂 - 壶 - 截 - 勿 - 序 - 委 - 兔 - 塔 - 执 - 墨 - 府 - 宙 - 欠 - 巨 - 帽 - 占 - 顿 - 权 - 坠 - 碰 - 著 - 硬 - 炮 - 骚 - 肃 - 规 - 厕 - 贾 - 葫 - 徒 - 瓶 - 辽 - 耍 - 赢 - 桂 - 浦 - 趟 - 柯 - 悉 - 恼 - 禁 - 殊 - 卧 - 赞 - 益 - 责 - 虚 - 姓 - 愁 - 舅 - 残 - 既 - 拖 - 棍 - 幻 - 库 - 骄 - 烈 - 尊 - 伊 - 缺 - 迹 - 疑 - 汽 - 郎 - 鸭 - 仪 - 盗 - 幺 - 萱 - 胃 - 脏 - 努 - 勉 - 池 - 咳 - 奋 - 批 - 蝴 - 监 - 犯 - 滑 - 牵 - 冯 - 败 - 毒 - 怖 - 绪 - 帐 - 协 - 韵 - 怜 - 薛 - 姚 - 副 - 塞 - 蕉 - 夹 - 萝 - 爹 - 貌 - 奈 - 乞 - 隔 - 澳 - 姥 - 妖 - 腰 - 纳 - 龄 - 材 - 旗 - 萤 - 俗 - 昼 - 坛 - 霍 - 怡 - 丐 - 咒 - 础 - 嘎 - 虫 - 枪 - 遗 - 献 - 陌 - 侣 - 。 - 昧 - 筒 - 袭 - 厨 - 爬 - 茂 - 媛 - 慰 - 填 - 霞 - 娟 - 摸 - 逍 - 赫 - 霾 - 泥 - 暧 - 翅 - 谦 - 夕 - 瑶 - 鑫 - 刺 - 袖 - 拒 - 玄 - 涂 - 溜 - 旬 - 鸣 - 泷 - 距 - 阻 - 绩 - 狠 - 宽 - 狐 - 赖 - 握 - 循 - 靓 - 述 - 糕 - 踏 - 侯 - 劵 - 壮 - 抄 - 苟 - 岗 - 供 - 湛 - 炼 - 烫 - 棋 - 糊 - 饶 - 悄 - 霸 - 竹 - 哀 - 拔 - 蓉 - 旦 - 晰 - 振 - 漠 - 苗 - 帘 - 糟 - 崇 - 踩 - 汕 - 寝 - 刹 - 蔬 - 旺 - 躁 - 守 - 液 - 疗 - 晋 - 坤 - 洒 - 串 - 屏 - 翠 - 鹅 - 腻 - 毅 - 蹈 - 党 - 咩 - 灿 - 哄 - 核 - 横 - 谎 - 忏 - 映 - 倔 - 则 - 肤 - 贺 - 潍 - 焦 - 渐 - 坑 - 瞄 - 融 - 琼 - 尤 - 逸 - 碧 - 葡 - 卜 - 察 - 邢 - 薄 - 亏 - 绒 - 萄 - 婉 - 闺 - 势 - 描 - 均 - 梨 - 椒 - 慕 - 污 - 弯 - 繁 - 炸 - 肿 - 阅 - 肺 - 席 - 呦 - 碟 - 耻 - 端 - 叹 - 庸 - 危 - 痘 - 峡 - 腐 - 霜 - 拳 - 昴 - 荡 - 屎 - 纠 - 夸 - 尿 - 钰 - 撼 - 嗽 - 雯 - 症 - 衡 - 互 - 孔 - 钻 - 萍 - 娄 - 斤 - 悦 - 谊 - 扯 - 驴 - 歉 - 扎 - 庐 - 蒲 - 吼 - 熬 - 鸳 - 蒸 - 驹 - 允 - 射 - 酱 - 鸯 - 企 - 馒 - 乘 - 葱 - 泳 - 莞 - 脆 - 寨 - 损 - 陀 - 膀 - 淮 - 侃 - 霉 - 施 - 橙 - 煲 - 妆 - 审 - 宠 - 穷 - 敌 - 堡 - 樱 - 诞 - 胆 - 彤 - 祷 - 渭 - 霆 - 亭 - 璐 - 邵 - 壁 - 禺 - 墙 - 葬 - 垫 - 吾 - 粒 - 爵 - 弘 - 妻 - 蕾 - 咨 - 固 - 幕 - 粗 - 抢 - 访 - 贸 - 挥 - 饰 - 硕 - 域 - 岸 - 咬 - 晗 - 姆 - 骤 - 抖 - 判 - 鄂 - 获 - 锻 - 郝 - 柜 - 醋 - 桐 - 泣 - 粘 - 革 - 脾 - 尸 - 侧 - 辆 - 埋 - 稻 - 肠 - 嫌 - 彬 - 庚 - 彼 - 龟 - 弥 - 籍 - 纽 - 喷 - 氛 - 币 - 蠢 - 磁 - 袜 - 柴 - 寸 - 韦 - 忐 - 忑 - 恢 - 缩 - 捷 - 绕 - 翼 - 琦 - 玻 - 驻 - 屈 - 岩 - 颂 - 仓 - 茜 - 璃 - 裙 - 僵 - 柿 - 稿 - 巾 - 撑 - 尹 - 嘟 - 牡 - 昏 - 歇 - 诵 - 丸 - 梯 - 挡 - 袄 - 逢 - 徙 - 渴 - 仰 - 跨 - 碗 - 阔 - 税 - 拼 - 宥 - 丞 - 凶 - 析 - 炖 - 舌 - 抗 - 脖 - 甚 - 豚 - 敷 - 瓦 - 织 - 邀 - 浏 - 猛 - 歪 - 阶 - 兽 - 俄 - 鹤 - 禹 - 纹 - 闽 - 惹 - 煤 - 患 - 岭 - 瑜 - 稀 - 拆 - 凄 - 崎 - 芝 - 摊 - 尺 - 彻 - 览 - 贷 - 珂 - 憋 - 径 - 抚 - 魅 - 悬 - 胶 - 倍 - 贯 - 籁 - 乃 - 哑 - 惑 - 撞 - 箫 - 绣 - 扁 - 苑 - 靖 - 漏 - 挤 - 轶 - 叮 - 烨 - 菇 - 砸 - 趁 - 媚 - 仅 - 藤 - 邱 - 陵 - 躲 - 滋 - 叛 - 捉 - 孕 - 铜 - 衫 - 寿 - 寺 - 枫 - 豹 - 伽 - 翡 - 蜂 - 丙 - 姗 - 羡 - 凑 - 鄙 - 庙 - 铭 - 宰 - 廖 - 肩 - 臣 - 抑 - 辅 - 誓 - 扇 - 啪 - 羞 - 诊 - 敦 - 跃 - 俞 - 肝 - 坦 - 贡 - 踢 - 齿 - 尧 - 淀 - 叉 - 浴 - 狮 - 昊 - 蟹 - 捏 - 略 - 禾 - 纲 - 赔 - 憾 - 赋 - 丘 - 尝 - 钓 - 涕 - 猴 - 鸽 - 纵 - 奉 - 涨 - 揍 - 怨 - 挨 - 兜 - 冈 - 凭 - 策 - 裴 - 摔 - 喵 - 佐 - 喉 - 膏 - 瑟 - 抬 - 纷 - 廊 - 贼 - 煎 - 熄 - 渝 - 缠 - 纶 - 岚 - 衬 - 遮 - 翰 - 誉 - 摘 - 勾 - 赣 - 姬 - 娅 - 撤 - 霖 - 泊 - 膝 - 耽 - 犹 - 仍 - 辞 - 溃 - 骏 - 弓 - 膜 - 诱 - 慌 - 惨 - 噪 - 涩 - 潭 - 幂 - 梓 - 植 - 罚 - 扮 - 涮 - 雁 - 兆 - 舟 - 咸 - 犀 - 炉 - 筋 - 陇 - 狸 - 帕 - 噶 - 茄 - 嗒 - 纬 - 障 - 聘 - 盼 - 盟 - 咧 - 灏 - 菠 - 巷 - 帖 - 慈 - 枕 - 唤 - 慨 - 呛 - 叽 - 砖 - 窍 - 瞒 - 龚 - 促 - 尖 - 螺 - 捞 - 盆 - 茫 - 屌 - 械 - 乳 - 啤 - 玺 - 廷 - 谐 - 吖 - 帆 - 蛇 - 琵 - 琶 - 扑 - 跌 - 崩 - 扭 - 扔 - 咿 - 菩 - 茉 - 攻 - 虐 - 甸 - 璇 - 驰 - 瞬 - 鸦 - 厢 - 囊 - 闫 - 届 - 墓 - 芒 - 栗 - 沫 - 违 - 缝 - 棵 - 杏 - 赌 - 灾 - 颤 - 沂 - 肇 - 桶 - 霄 - ! - 咙 - 绥 - 仲 - 愈 - 竖 - 菌 - 捕 - 烘 - 阮 - 皆 - 咚 - 劫 - 揭 - 郸 - 庞 - 喇 - 拐 - 奴 - 咔 - 幅 - 偿 - 咦 - 召 - 薪 - 盯 - 黛 - 杉 - 辨 - 邯 - 枯 - 沃 - 吊 - 筷 - 陷 - 鹰 - 嗦 - 噻 - 屯 - 殇 - 抵 - 雕 - 辩 - 枣 - 捂 - 瘾 - 粮 - 巢 - 耗 - 储 - 殷 - 糯 - 轨 - 沾 - 淇 - 毁 - 沐 - 蚊 - 鉴 - 灌 - 玖 - 唔 - 芙 - 淳 - 昕 - 裹 - 茧 - 浑 - 睿 - 踪 - 邪 - 瘩 - 恺 - 斜 - 汰 - 逐 - 铮 - 毫 - 胞 - 昭 - 妥 - 筑 - 贪 - 蘑 - 皓 - 颐 - 疙 - 捡 - 泛 - 债 - 栎 - 棚 - 腹 - 构 - 蓬 - 宪 - 叭 - 愚 - 押 - 蜀 - 夷 - 娶 - 盾 - 倪 - 牟 - 抛 - 壳 - 衍 - 杆 - 撕 - 亿 - 纤 - 淹 - 翘 - 蔷 - 芊 - 罩 - 拯 - 嗷 - 浇 - 宴 - 遵 - 冥 - 祸 - 塑 - 沛 - 猎 - 携 - 噜 - 喘 - 缴 - 砍 - 唢 - 曦 - 遛 - 罢 - 峨 - 戚 - 稚 - 揉 - 堰 - 螃 - 薯 - 乙 - 矿 - 挽 - 弛 - 埃 - 淅 - 疲 - 窦 - 烛 - 媒 - 尬 - 汀 - 谨 - 罐 - 劣 - 伶 - 煜 - 栏 - 榆 - 矛 - 琐 - 槽 - 驼 - 渤 - 沒 - 泄 - 粑 - 匀 - 囧 - 茵 - 霹 - 澈 - 岑 - 乏 - 栋 - 拌 - 框 - 祁 - 叨 - 斋 - 玥 - 僧 - 疏 - 绳 - 晃 - 抹 - 授 - 蓄 - 檬 - 仇 - 毯 - 啵 - 泼 - 阁 - ',' - 邹 - 阎 - 渠 - 函 - 腊 - 割 - 绑 - 扶 - 肌 - 卑 - 匠 - 雳 - 绯 - 婧 - 煌 - 蒂 - 腔 - 仿 - 遭 - 阜 - 峻 - 劝 - 绎 - 黔 - 贫 - 剁 - 荆 - 樊 - 卸 - 锄 - 阕 - 狱 - 冉 - 鲍 - 荒 - 侄 - 唇 - 忌 - 掖 - 竞 - 匹 - 仗 - 锤 - 穆 - 践 - 冶 - 柱 - 聂 - 捧 - 唠 - 翁 - 掏 - 塌 - 沁 - 巩 - 沸 - 蜡 - 痕 - 削 - 晟 - 眯 - 灶 - 婴 - 啸 - 釜 - 兼 - 剂 - 氧 - 赐 - 铠 - 攀 - 扩 - 朦 - 胧 - 孽 - 挖 - 钞 - 碍 - 凝 - 鼎 - 屉 - 斑 - 抠 - 哗 - 哨 - 婶 - 劈 - 冕 - 霏 - 汾 - 雀 - 浚 - 屠 - 唰 - 疚 - 芽 - 惦 - 裕 - 仑 - 厘 - 烁 - 瞧 - 蚂 - 涿 - 尴 - 埔 - 橘 - 磕 - 苇 - 脂 - 臂 - 蛙 - 镁 - 绽 - 卿 - 荃 - 莺 - 迫 - 敖 - 呈 - 勃 - 碌 - 讶 - 赠 - 巫 - 篱 - 浓 - 攒 - 裁 - 嫣 - 彪 - 娣 - 坟 - 廉 - 聆 - 铉 - 瞌 - 葵 - 鞍 - 坎 - 畜 - 爪 - 锯 - 潼 - 矣 - 闸 - 俱 - 蹭 - 戈 - 扒 - 滤 - 撇 - 浅 - 唧 - 觅 - 婕 - 牢 - 堕 - 丈 - 滕 - 御 - 溢 - 阑 - 楞 - 伺 - 馋 - 禄 - 胳 - 措 - 伐 - 滔 - 沦 - 澎 - 谙 - 桢 - 肾 - 熏 - 炅 - 邻 - 吞 - 噔 - 哔 - 沿 - 竺 - 闵 - 妨 - 啰 - 儒 - 锈 - 虞 - 颠 - 脊 - 膊 - 搓 - 岐 - 浸 - 兹 - 吨 - 垂 - 晏 - 痹 - 哆 - 漆 - 叠 - 莓 - 嘀 - 挫 - 馈 - 愧 - 佟 - 疾 - 蒜 - 盈 - 侬 - 烊 - 炙 - 蜢 - 诡 - 莆 - 蛾 - 轴 - 妒 - 洱 - 擎 - 脉 - 飓 - 泫 - 浆 - 岔 - 蹦 - 愤 - 琛 - 趴 - 绘 - 忻 - 拽 - 牲 - 馅 - 鲨 - 靴 - 鳅 - 俐 - 罕 - 呕 - 凋 - 绫 - 蕊 - 圃 - 猥 - 氓 - 歧 - 秧 - 栈 - 梧 - 衷 - 巅 - 彝 - 嚎 - 菁 - 渔 - 茬 - 汐 - 拓 - 昔 - 囚 - 舜 - 搁 - 泸 - 涟 - 蚁 - 裳 - 鞭 - 辟 - 蝎 - 簧 - 予 - 倦 - 傍 - 荔 - 瞳 - 碑 - 桨 - 疫 - 骁 - 驿 - 柠 - 妾 - 隶 - 菏 - 煽 - 麒 - 奎 - 驯 - 飙 - 姻 - 沅 - 扉 - 斩 - 奢 - 蚌 - 掩 - 蹲 - 丧 - 辱 - 焉 - 佘 - 襄 - 芯 - 枉 - 谋 - 渊 - 哮 - 喀 - 朔 - 侏 - 姝 - 戎 - 磅 - 督 - 诛 - 奸 - 苞 - 庵 - 馄 - 聋 - 滁 - 垚 - 柬 - 猩 - 夺 - 啼 - 坝 - 竭 - 黏 - 衰 - 遂 - 潞 - 谜 - 蜻 - 蜓 - 瓣 - 秉 - 檐 - 楂 - 嗑 - 搅 - 嘚 - 倚 - 乒 - 宛 - 崽 - 恕 - 轰 - 淄 - 晞 - 酬 - 砂 - 筠 - 薰 - 蒿 - 瞅 - 勺 - 阙 - 伸 - 嚏 - 湄 - 咆 - 坂 - 役 - 掰 - 渣 - 魁 - 诅 - 浒 - 妓 - 珑 - 捎 - 焊 - 饲 - 脍 - 荫 - 堤 - 轿 - 乓 - 筹 - 撸 - 饨 - 渺 - 桓 - 旷 - 笙 - 晖 - 慎 - 埠 - 挪 - 汝 - 浊 - 仨 - 鳄 - 濮 - 汶 - 邰 - 钉 - 蔽 - 亨 - 屑 - 铅 - 喃 - 葩 - 哉 - 睁 - 骆 - 涉 - 汁 - 拦 - 痞 - 芜 - 俪 - 兑 - 梵 - 刊 - 缅 - 彰 - 俑 - 桔 - 堪 - 鸥 - 契 - 覆 - 拷 - 珞 - 诸 - 棱 - 忒 - 嫩 - 梶 - 贻 - 藕 - 愣 - 湃 - 趋 - 甭 - 嗖 - 怯 - 憧 - 珀 - 缸 - 蔓 - 稣 - 筱 - 杠 - 崖 - 凳 - 裆 - 隧 - 锣 - 嘣 - 瀑 - 漪 - 柄 - 凸 - 颁 - 迦 - 烙 - 岱 - 瑄 - 吭 - 肆 - 鳞 - 晾 - 憬 - 邑 - 甥 - 掀 - 褂 - 淫 - 瓢 - 暮 - 喧 - 祛 - 恙 - 禅 - 柚 - 樟 - 疮 - 嗡 - 懈 - 茨 - 矮 - 诠 - 侮 - 眨 - 羲 - 掐 - 琉 - 雍 - 晔 - 凹 - 怂 - 禧 - 蹬 - 绅 - 榄 - 箍 - 詹 - 溶 - 黯 - 啃 - 驸 - 朕 - 婺 - 援 - 铲 - 呻 - 犬 - 捣 - 眷 - 剃 - 惧 - 芷 - 叱 - 娥 - 钦 - 矫 - 憨 - 骊 - 坪 - 俏 - 炳 - 妲 - 冀 - 刁 - 馍 - 琢 - 扛 - 瞿 - 辙 - 茅 - 寡 - 絮 - 呷 - 哺 - 咕 - 驱 - 搂 - 圭 - 嫉 - 涓 - 茱 - '"' - 笼 - 讽 - 涡 - 泓 - 弊 - 诀 - 璧 - 舔 - 嬅 - 亢 - 沪 - 绢 - 钙 - 喏 - 馥 - 怅 - 簿 - 薜 - 捶 - 冤 - 脐 - 岂 - 溺 - 蕙 - 铿 - 锵 - 锐 - 呸 - 砰 - 亩 - 漳 - 阪 - 栀 - 坞 - 跤 - 蓓 - 舰 - 缕 - 羁 - 芋 - 畔 - 衔 - 铝 - 盲 - 株 - 搏 - 曙 - 惩 - 逻 - 蹄 - 涤 - 宕 - 咤 - 尉 - 嘘 - 瀚 - 仃 - 稽 - 霑 - 飕 - 垮 - 酿 - 畏 - 鲸 - 梗 - 署 - 砒 - 雏 - 茗 - 恬 - 螂 - 拂 - 憔 - 悴 - 钗 - 棕 - 劭 - 歹 - 笠 - 厄 - 焖 - 拣 - 逮 - 蕴 - 淌 - 枸 - 杞 - 雇 - 漯 - 邂 - 逅 - · - 荟 - 塾 - 涌 - 挚 - 舱 - 惬 - 剖 - 榴 - 侦 - 摁 - 烹 - 烽 - 俘 - 麓 - 犊 - 酌 - 匿 - 梭 - 覃 - 隽 - 惆 - 掠 - 舵 - 艰 - 蟑 - 瘤 - 仆 - 穴 - 涅 - 衿 - 嚷 - 峪 - 榕 - 吒 - 酪 - 曝 - 帧 - 靶 - 嚣 - 踝 - 翊 - 陂 - 髓 - 瑚 - 裘 - 芍 - 炬 - 鲅 - 蚕 - 肢 - 颊 - 陛 - 籽 - 粟 - 滞 - 煞 - 乾 - 媞 - 刨 - 碾 - 瘫 - 盔 - 侈 - 徘 - 徊 - 熔 - 吆 - 褪 - 拟 - 廓 - 翟 - 俾 - 沽 - 垒 - 萎 - 僻 - 豌 - 卵 - 狡 - 篓 - 栽 - 崴 - 拧 - 颈 - 咐 - 胭 - 阱 - 鄱 - 漓 - 厥 - 烬 - 糙 - 褥 - 炕 - 恍 - 襟 - 韧 - 眸 - 毙 - 垢 - 叙 - 辜 - 酝 - 璋 - 荧 - 魇 - 皈 - 觞 - 喻 - 孺 - 匈 - 铛 - 诈 - 盏 - 淼 - 佣 - 苓 - 缚 - 洼 - 疡 - 猬 - 腑 - 阡 - 鲫 - 鹭 - 鹂 - 笆 - 埙 - 癌 - 璀 - 璨 - 疹 - 蓑 - 芭 - 嘶 - 桀 - 吩 - 泾 - 铂 - 倘 - 囗 - 璜 - 窃 - 癫 - 璞 - 墟 - 钩 - 粹 - 镐 - 韬 - 牺 - 寮 - 喳 - 鄞 - 笋 - 臧 - 疤 - 捐 - 腥 - 嬷 - 燮 - 濠 - 棠 - 夙 - 弑 - 乍 - 剔 - 嘈 - 钇 - 衅 - 挝 - 橡 - 矜 - 圩 - 恳 - 瑛 - 蔺 - 兖 - 焕 - 懿 - 钏 - 栾 - 筐 - 苒 - 碳 - 韭 - 箭 - 婵 - 迭 - 枷 - 孜 - 咽 - 悯 - 漉 - 噬 - 侍 - 蝉 - 涧 - 鹦 - 鹉 - 冼 - 竿 - … - 袈 - 诏 - 锢 - 泠 - 匡 - 枚 - 坷 - 邝 - 癖 - 绷 - 皖 - 滦 - 滥 - 荨 - 虏 - 拈 - 浜 - 颓 - “ - ” - 戳 - 钮 - 梳 - 溅 - 徨 - 旨 - 罂 - 蹉 - 腌 - 隙 - 侨 - 槟 - 泌 - 珈 - 芵 - 腮 - 晤 - 墩 - 鲤 - 扳 - 栓 - 窑 - 荏 - 饪 - 泵 - 猿 - 眀 - 嗝 - 禽 - 朽 - 偕 - 胀 - 谍 - 捅 - 蜉 - 蝣 - 蹋 - 拱 - 氯 - 噼 - 蚩 - 芥 - 蛟 - 貂 - 荚 - 痰 - 殿 - 遣 - 丛 - 碱 - 殖 - 炽 - 嚓 - 彗 - 窟 - 鳌 - 矶 - 镯 - 乜 - 髙 - 蛤 - 荤 - 坨 - 漱 - 惰 - 跎 - 萸 - 曰 - 亘 - 窘 - 厮 - 绐 - 黝 - 鞠 - 漩 - 蚱 - 垣 - 翩 - 嬴 - 彷 - 椰 - 砚 - 褐 - 黍 - 噗 - 耕 - 挠 - 妩 - 掂 - 峯 - 灸 - 晌 - 溧 - 鹃 - 屿 - 昙 - 廾 - 冢 - 龌 - 龊 - 瞪 - 刽 - 脓 - 壹 - 羱 - 奠 - 贰 - 佬 - 拙 - 颢 - 嘱 - 糗 - 昀 - 巳 - 辕 - 惫 - 黒 - 辐 - 窈 - 窕 - 拢 - 缪 - 逞 - 吝 - 裟 - 钝 - 寇 - 耙 - 隋 - 蝇 - 仟 - 铨 - 赊 - 皑 - 衢 - 胚 - 腺 - 啧 - 淤 - 妄 - 氢 - 寅 - 叻 - 嘲 - 叼 - 沮 - 磐 - 芈 - 饥 - 槿 - 卤 - 懵 - 惴 - 毋 - 箩 - 苔 - 峥 - 斥 - 矬 - 佚 - 肮 - 皎 - 憎 - 樨 - 讴 - 鳖 - 煦 - 焚 - 泗 - 皂 - 礁 - 睬 - 梢 - 妤 - 佗 - 蝌 - 蚪 - 渗 - 暇 - 卟 - 悼 - 瑨 - 伎 - 纺 - 耆 - 舶 - 礴 - 豺 - 涪 - 谬 - 赴 - 婪 - 吱 - 麽 - 犁 - 潸 - 鸪 - 鸢 - 鄯 - 讷 - 弶 - 橄 - 撬 - 赦 - 岷 - 垓 - 绞 - 虔 - 剥 - 澜 - 酗 - 谛 - 骥 - 撅 - 鱿 - 犷 - 讪 - 秃 - 卞 - 缆 - 蓦 - 庶 - 勐 - 笫 - 敛 - 弗 - 痱 - 啬 - 硚 - 昱 - 忿 - 撩 - 椿 - 侵 - 窄 - 邛 - 崃 - 涸 - 赈 - 狭 - 嵌 - 淖 - 瑙 - 踹 - 傈 - 僳 - 缭 - 睦 - 窜 - 嘅 - 樵 - 爰 - 侗 - 逑 - 弧 - 侑 - : - 娉 - 蝙 - 蝠 - 骅 - 饴 - 揣 - / - 鲈 - 綦 - 拴 - 硝 - 梆 - 馗 - 夭 - 扼 - 鳃 - 惚 - 扈 - 矢 - 藁 - 飚 - 妊 - 踮 - 惟 - 痊 - 艇 - 偎 - 魄 - 篝 - 簸 - 擞 - 粽 - 缥 - 缈 - 跷 - 咁 - 悍 - 菀 - 陡 - 橱 - 遐 - 榨 - 渎 - 蹂 - 躏 - 舂 - 轼 - 枰 - 焰 - 幌 - 邸 - 捜 - 灼 - 茯 - 芎 - 穗 - 棘 - 碜 - 颉 - 鹧 - 啄 - 趾 - 茎 - 揽 - 靳 - 黜 - 惋 - 亥 - 铡 - 栅 - 挞 - 眈 - 膘 - 犍 - 珉 - 镪 - 昵 - 霓 - 圪 - 汲 - 惺 - 瑕 - 桩 - 洽 - 唏 - 耒 - 唻 - 豁 - 郓 - 纣 - 亊 - 鳝 - 蟆 - 癣 - 碚 - 踌 - 殁 - 缉 - 痔 - 頔 - 蔫 - ; - 掺 - 愫 - 祟 - 拘 - 蜘 - 蛛 - 涎 - 耸 - 揪 - 芪 - 腕 - 袍 - 慵 - 绻 - 绛 - 螨 - 捌 - 墅 - 篷 - 啾 - 孪 - 唬 - 褛 - 跶 - 壤 - 慷 - 痧 - 懦 - 郯 - 莴 - 茴 - 嘬 - 铎 - 辫 - 绚 - 簇 - 墘 - 婿 - 咻 - 斡 - 沱 - 譬 - 羔 - 藓 - 肋 - 棂 - 赎 - 炭 - 徵 - 簌 - 艘 - 苪 - 眶 - 嘭 - 霎 - 馊 - 秽 - 仕 - 镶 - 纨 - 摧 - 蒨 - 闰 - 迩 - 篙 - 嚯 - 郫 - 陋 - 殒 - 邃 - 浔 - 瑾 - 鳟 - 祯 - 泻 - 氟 - 猾 - 酥 - 萦 - 郴 - 祀 - 涼 - 屡 - 摹 - 毡 - 妪 - 郡 - 柘 - 裱 - 囔 - 楷 - 鄄 - 蕲 - 偲 - 菘 - 姣 - 瞥 - 肪 - 饽 - 惭 - 胁 - 垄 - 榻 - 讼 - 旱 - 鬓 - 凇 - 钊 - 掣 - 浣 - 凃 - 蓥 - 臊 - 夔 - 脯 - 苛 - 阀 - 睫 - 腋 - 姊 - 躬 - 瘁 - 奄 - 靡 - 盂 - 柑 - 渑 - 恻 - 缱 - 拎 - 恤 - 缶 - 嵬 - 簋 - 囤 - 褴 - 蔼 - 沌 - 薏 - 鸵 - 跋 - 篪 - 罡 - 颇 - 嗄 - 胺 - 烯 - 酚 - 祠 - 迢 - 硖 - 眺 - 珏 - 怆 - 斧 - 痪 - 祺 - 嘤 - 谑 - 婊 - 滂 - 骇 - 帔 - 荼 - 硅 - 猖 - 皱 - 顽 - 榔 - 锌 - 蔻 - 滢 - 茸 - 捋 - 壥 - 孰 - 娩 - 锥 - 逾 - 诬 - 娠 - 厝 - 噎 - 秤 - 祢 - 嗳 - 嗜 - 滘 - 尅 - 悚 - 履 - 馕 - 簪 - 俭 - 摞 - 妗 - 蛎 - 暹 - 钾 - 膨 - 孚 - 驷 - 卯 - 猇 - 褚 - 町 - 骞 - - - 芩 - 赁 - 粱 - 隼 - 掘 - 莽 - 郾 - 擒 - 叁 - 敕 - 镊 - 惘 - 蚤 - 邳 - 嗫 - 扪 - 瀛 - 凿 - 雎 - 啲 - 鲲 - 帼 - 枭 - 羹 - 驳 - 铆 - 肴 - 嫦 - 媲 - 鹳 - 秩 - 銮 - 饯 - 毽 - 珩 - 眩 - 仄 - 葳 - 撮 - 睇 - 塄 - 肘 - 钠 - 诓 - 呱 - 垅 - 菱 - 亍 - 戍 - 酯 - 袱 - 隘 - 蓟 - 暨 - 痣 - 辗 - 埵 - 殉 - 郏 - 孢 - 悳 - 讫 - 诲 - 髋 - 孑 - 睹 - 擅 - 嗮 - 慒 - 琰 - 濛 - 雌 - 恁 - 擀 - 娼 - 谕 - 撵 - 苯 - 聴 - 唛 - 撂 - 栖 - 拗 - 孬 - 怏 - 掇 - 肽 - 胰 - 沣 - 卅 - 箅 - 氨 - 浠 - 蠡 - 募 - 肛 - 岀 - 瞑 - 蛆 - 舀 - 蚝 - 歙 - 涔 - 诘 - 、 - 垡 - 涠 - 嘢 - 糸 - 胤 - 绊 - 柒 - 沓 - 粼 - 菖 - 犒 - 呒 - 唑 - 莘 - 莪 - 宸 - 睨 - \ - 鲶 - 蛐 - 溏 - 菈 - 蹩 - 焙 - 釆 - 瑗 - 睾 - 槐 - 榉 - 杷 - 鄢 - 僕 - 诽 - 嗲 - 蜃 - 戆 - 蘼 - 糜 - 霁 - 坻 - 硼 - 槛 - 枞 - 麸 - 谒 - 荀 - 邋 - 遢 - 锴 - 啶 - 粪 - 驭 - 筵 - 砌 - 莩 - 蹼 - 吔 - 缳 - 埭 - 隗 - 厶 - 丶 - "\x14" - "\x17" - 稼 - 铖 - 涣 - 亳 - 幢 - 沭 - 驮 - 奚 - 藐 - 颅 - 埤 - 愘 - 镲 - 窒 - 暄 - 诃 - 噘 - 歼 - 隅 - 爻 - 蘅 - 锹 - 锇 - 椎 - 琨 - 烩 - 枢 - 觧 - 萁 - 镂 - 龈 - 怠 - 阐 - 藉 - 凛 - 冽 - 珣 - 泘 - 抉 - 锭 - 蕃 - 蠃 - 毓 - 啐 - 栩 - 骷 - 髅 - 耷 - 寥 - 杵 - 蚬 - 窖 - 孛 - 舆 - 皿 - 柸 - 粳 - 钣 - 趸 - 叄 - 腚 - 杖 - 鸸 - 犲 - 浗 - 缮 - 哓 - 箧 - 攘 - 冇 - 钛 - 郗 - 囡 - 酆 - 姌 - 雉 - 胯 - 椭 - 埏 - 钵 - 绌 - 蝾 - 坼 - 濂 - w - o - r - d - 袒 - 峦 - 鹫 - 炯 - 悱 - 漕 - 莦 - 蔑 - 樽 - 牒 - 濡 - 嫯 - 陖 - 疸 - 桅 - 辖 - 僢 - 《 - 》 - 酣 - 遨 - 邬 - ':' - 嫲 - 哌 - 锚 - 淙 - Q - 濑 - 熨 - 谴 - 筛 - 薹 - 磬 - 熠 - 腓 - 阉 - 钴 - 恂 - 溉 - 陨 - 螳 - 孵 - 瘠 - 嫡 - 哝 - 狙 - 怼 - 斟 - 甫 - 渌 - 卒 - 翕 - 沏 - 旮 - 旯 - 菡 - 變 - 狈 - 鳜 - 嵋 - 仞 - 鳕 - 噩 - 踟 - 躇 - 蛀 - 瘸 - 篡 - 锊 - 団 - 斐 - 蹍 - 冗 - "\uFEFF" - 歆 - 圴 - 泯 - 伥 - 愎 - 坌 - 碘 - 赉 - 骧 - 矩 - 綽 - 秭 - 怵 - 麝 - 贩 - 溥 - 捆 - 腩 - 溴 - 卉 - 痦 - 荻 - 缇 - 秸 - 秆 - 捍 - 炀 - 阆 - 泞 - 懊 - 啕 - 蚶 - 衩 - 桜 - 旖 - 贬 - 酵 - 滟 - 纥 - 倭 - 赝 - 呶 - 哧 - 煸 - 劢 - 炝 - 僚 - 豇 - 阂 - 涝 - 骡 - 霭 - 窨 - 殴 - 竣 - 醇 - 擂 - 怦 - 怩 - 臾 - 搔 - 伱 - 啉 - 嫖 - 囝 - 糠 - 胥 - 酰 - 镫 - 蟒 - 荞 - 醪 - 颦 - 吏 - 颛 - 赳 - 贿 - 赂 - 痩 - 仂 - 颍 - 罔 - 猕 - 嚒 - 蘸 - 熹 - 捺 - 坜 - 郜 - 鉄 - 蒌 - 荑 - 藻 - 谌 - 钳 - 屮 - 疵 - 哞 - 琮 - 潴 - 讹 - 镭 - '3' - 尕 - 倬 - 庇 - 侩 - 瘆 - 傀 - 儡 - 诧 - 葆 - 唾 - 皋 - 逄 - 诌 - 氦 - 彳 - 盅 - 曳 - 槲 - 挟 - 怿 - 顷 - 臃 - 衙 - 踵 - 霈 - 嗪 - 闩 - 锟 - 恿 - 抻 - 茁 - 惢 - 菅 - 迂 - 瞟 - 痉 - 挛 - 绦 - 晁 - 挢 - 蠕 - 洙 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Aleksandar/bert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7550595238095238 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5133689839572193 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.516320474777448 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5958866036687048 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.748 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5231481481481481 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025161970769926 - name: F1 (macro) type: f1_macro value: 0.8979165451427438 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8328638497652581 - name: F1 (macro) type: f1_macro value: 0.6469572777603673 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6630552546045504 - name: F1 (macro) type: f1_macro value: 0.6493250582245075 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9562495652778744 - name: F1 (macro) type: f1_macro value: 0.8695137253747418 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8906298965841429 - name: F1 (macro) type: f1_macro value: 0.8885946595123109 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5133689839572193 - Accuracy on SAT: 0.516320474777448 - Accuracy on BATS: 0.5958866036687048 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.5231481481481481 - Accuracy on Google: 0.748 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9025161970769926 - Micro F1 score on CogALexV: 0.8328638497652581 - Micro F1 score on EVALution: 0.6630552546045504 - Micro F1 score on K&H+N: 0.9562495652778744 - Micro F1 score on ROOT09: 0.8906298965841429 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7550595238095238 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
Aleksandar/bert-srb-ner
[ "pytorch", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the context encoder of the MS MARCO UniCOIL Lexical Model (Λ) from the SPAR paper: [Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?](https://arxiv.org/abs/2110.06918) <br> Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta and Wen-tau Yih <br> **Meta AI** The associated github repo is available here: https://github.com/facebookresearch/dpr-scale/tree/main/spar This model is a BERT-base sized dense retriever trained on the MS MARCO corpus to imitate the behavior of [UniCOIL](https://github.com/castorini/pyserini/blob/master/docs/experiments-unicoil.md), a sparse retriever. The following models are also available: Pretrained Model | Corpus | Teacher | Architecture | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- Wiki BM25 Λ | Wikipedia | BM25 | BERT-base | facebook/spar-wiki-bm25-lexmodel-query-encoder | facebook/spar-wiki-bm25-lexmodel-context-encoder PAQ BM25 Λ | PAQ | BM25 | BERT-base | facebook/spar-paq-bm25-lexmodel-query-encoder | facebook/spar-paq-bm25-lexmodel-context-encoder MARCO BM25 Λ | MS MARCO | BM25 | BERT-base | facebook/spar-marco-bm25-lexmodel-query-encoder | facebook/spar-marco-bm25-lexmodel-context-encoder MARCO UniCOIL Λ | MS MARCO | UniCOIL | BERT-base | facebook/spar-marco-unicoil-lexmodel-query-encoder | facebook/spar-marco-unicoil-lexmodel-context-encoder # Using the Lexical Model (Λ) Alone This model should be used together with the associated query encoder, similar to the [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr) model. ``` import torch from transformers import AutoTokenizer, AutoModel # The tokenizer is the same for the query and context encoder tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 341.3268 score2 = query_emb @ ctx_emb[1] # 340.1626 ``` # Using the Lexical Model (Λ) with a Base Dense Retriever as in SPAR As Λ learns lexical matching from a sparse teacher retriever, it can be used in combination with a standard dense retriever (e.g. [DPR](https://huggingface.co/docs/transformers/v4.22.1/en/model_doc/dpr#dpr), [Contriever](https://huggingface.co/facebook/contriever-msmarco)) to build a dense retriever that excels at both lexical and semantic matching. In the following example, we show how to build the SPAR-Wiki model for Open-Domain Question Answering by concatenating the embeddings of DPR and the Wiki BM25 Λ. ``` import torch from transformers import AutoTokenizer, AutoModel from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer from transformers import DPRContextEncoder, DPRContextEncoderTokenizer # DPR model dpr_ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") dpr_query_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-multiset-base") dpr_query_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-multiset-base") # Wiki BM25 Λ model lexmodel_tokenizer = AutoTokenizer.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_query_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-query-encoder') lexmodel_context_encoder = AutoModel.from_pretrained('facebook/spar-wiki-bm25-lexmodel-context-encoder') query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Compute DPR embeddings dpr_query_input = dpr_query_tokenizer(query, return_tensors='pt')['input_ids'] dpr_query_emb = dpr_query_encoder(dpr_query_input).pooler_output dpr_ctx_input = dpr_ctx_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') dpr_ctx_emb = dpr_ctx_encoder(**dpr_ctx_input).pooler_output # Compute Λ embeddings lexmodel_query_input = lexmodel_tokenizer(query, return_tensors='pt') lexmodel_query_emb = lexmodel_query_encoder(**query_input).last_hidden_state[:, 0, :] lexmodel_ctx_input = lexmodel_tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') lexmodel_ctx_emb = lexmodel_context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Form SPAR embeddings via concatenation # The concatenation weight is only applied to query embeddings # Refer to the SPAR paper for details concat_weight = 0.7 spar_query_emb = torch.cat( [dpr_query_emb, concat_weight * lexmodel_query_emb], dim=-1, ) spar_ctx_emb = torch.cat( [dpr_ctx_emb, lexmodel_ctx_emb], dim=-1, ) # Compute similarity scores score1 = spar_query_emb @ spar_ctx_emb[0] # 317.6931 score2 = spar_query_emb @ spar_ctx_emb[1] # 314.6144 ```
Aleksandar1932/distilgpt2-rock
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: mit --- ### million-live-akane-15k on Stable Diffusion This is the `<akane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<akane> 0](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/0.png) ![<akane> 1](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/1.png) ![<akane> 2](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/2.png) ![<akane> 3](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/3.png) ![<akane> 4](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/4.png) ![<akane> 5](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/5.png) ![<akane> 6](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/6.png) ![<akane> 7](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/7.png) ![<akane> 8](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/8.png) ![<akane> 9](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/9.png) ![<akane> 10](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/10.png) ![<akane> 11](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/11.png) ![<akane> 12](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/12.png) ![<akane> 13](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/13.png) ![<akane> 14](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/14.png) ![<akane> 15](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/15.png) ![<akane> 16](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/16.png) ![<akane> 17](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/17.png) ![<akane> 18](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/18.png) ![<akane> 19](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/19.png) ![<akane> 20](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/20.png) ![<akane> 21](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/21.png) ![<akane> 22](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/22.png) ![<akane> 23](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/23.png) ![<akane> 24](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/24.png) ![<akane> 25](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/25.png) ![<akane> 26](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/26.png) ![<akane> 27](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/27.png) ![<akane> 28](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/28.png) ![<akane> 29](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/29.png) ![<akane> 30](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/30.png) ![<akane> 31](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/31.png) ![<akane> 32](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/32.png) ![<akane> 33](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/33.png) ![<akane> 34](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/34.png) ![<akane> 35](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/35.png) ![<akane> 36](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/36.png) ![<akane> 37](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/37.png) ![<akane> 38](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/38.png) ![<akane> 39](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/39.png) ![<akane> 40](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/40.png) ![<akane> 41](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/41.png) ![<akane> 42](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/42.png) ![<akane> 43](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/43.png) ![<akane> 44](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/44.png) ![<akane> 45](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/45.png) ![<akane> 46](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/46.png) ![<akane> 47](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/47.png) ![<akane> 48](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/48.png) ![<akane> 49](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/49.png) ![<akane> 50](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/50.png) ![<akane> 51](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/51.png) ![<akane> 52](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/52.png) ![<akane> 53](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/53.png) ![<akane> 54](https://huggingface.co/sd-concepts-library/million-live-akane-15k/resolve/main/concept_images/54.png)
Aleksandar1932/gpt2-country
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: mit --- ### million-live-akane-3k on Stable Diffusion This is the `<akane>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<akane> 0](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/0.png) ![<akane> 1](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/1.png) ![<akane> 2](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/2.png) ![<akane> 3](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/3.png) ![<akane> 4](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/4.png) ![<akane> 5](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/5.png) ![<akane> 6](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/6.png) ![<akane> 7](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/7.png) ![<akane> 8](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/8.png) ![<akane> 9](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/9.png) ![<akane> 10](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/10.png) ![<akane> 11](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/11.png) ![<akane> 12](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/12.png) ![<akane> 13](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/13.png) ![<akane> 14](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/14.png) ![<akane> 15](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/15.png) ![<akane> 16](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/16.png) ![<akane> 17](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/17.png) ![<akane> 18](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/18.png) ![<akane> 19](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/19.png) ![<akane> 20](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/20.png) ![<akane> 21](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/21.png) ![<akane> 22](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/22.png) ![<akane> 23](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/23.png) ![<akane> 24](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/24.png) ![<akane> 25](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/25.png) ![<akane> 26](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/26.png) ![<akane> 27](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/27.png) ![<akane> 28](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/28.png) ![<akane> 29](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/29.png) ![<akane> 30](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/30.png) ![<akane> 31](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/31.png) ![<akane> 32](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/32.png) ![<akane> 33](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/33.png) ![<akane> 34](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/34.png) ![<akane> 35](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/35.png) ![<akane> 36](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/36.png) ![<akane> 37](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/37.png) ![<akane> 38](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/38.png) ![<akane> 39](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/39.png) ![<akane> 40](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/40.png) ![<akane> 41](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/41.png) ![<akane> 42](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/42.png) ![<akane> 43](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/43.png) ![<akane> 44](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/44.png) ![<akane> 45](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/45.png) ![<akane> 46](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/46.png) ![<akane> 47](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/47.png) ![<akane> 48](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/48.png) ![<akane> 49](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/49.png) ![<akane> 50](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/50.png) ![<akane> 51](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/51.png) ![<akane> 52](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/52.png) ![<akane> 53](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/53.png) ![<akane> 54](https://huggingface.co/sd-concepts-library/million-live-akane-3k/resolve/main/concept_images/54.png)
AlekseyKulnevich/Pegasus-HeaderGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - text-generation --- # Model Card for bt-opt-1.3b # Model Details ## Model Description - **Developed by:** Opentensor - **Shared by [Optional]:** Hugging Face and Meta - **Model type:** Text Generation - **Language(s) (NLP):** More information needed - **License:** More information needed - **Related Models:** - **Parent Model:** OPT - **Resources for more information:** - [Associated Paper](https://arxiv.org/abs/2205.01068) # Uses ## Direct Use This model can be used for the task of Text Generation ## Downstream Use [Optional] In addition, the model can be fine-tuned on a downstream task using the [CLM example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations As mentioned in Meta AI's model card, given that the training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral the model is strongly biased : > Like other large language models for which the diversity (or lack thereof) of training > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern > large language models. See model [facebook/opt-1.3b model card](https://huggingface.co/facebook/opt-1.3b) for example biased predictions The model creators noted in the [associated paper](https://arxiv.org/pdf/2205.01068.pdf) > we found OPT-175B does not work well with declarative instructions or point-blank interrogatives. Prompting with such instructions tends to produce a simulation of a dialogue beginning with such an instruction, rather than an execution of the instruction. Future work into instruction learning, in the vein of InstructGPT (Ouyang et al., 2022), may alleviate these limitations. OPT-175B also tends to be repetitive and can easily get stuck in a loop. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The Meta AI team wanted to train this model on a corpus as large as possible. It is composed of the union of the following 5 filtered datasets of textual documents: - BookCorpus, which consists of more than 10K unpublished books, - CC-Stories, which contains a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas, - The Pile, from which * Pile-CC, OpenWebText2, USPTO, Project Gutenberg, OpenSubtitles, Wikipedia, DM Mathematics and HackerNews* were included. - Pushshift.io Reddit dataset that was developed in Baumgartner et al. (2020) and processed in Roller et al. (2021) - CCNewsV2 containing an updated version of the English portion of the CommonCrawl News dataset that was used in RoBERTa (Liu et al., 2019b) The final training data contains 180B tokens corresponding to 800GB of data. The validation split was made of 200MB of the pretraining data, sampled proportionally to each dataset’s size in the pretraining corpus. The dataset might contains offensive content as parts of the dataset are a subset of public Common Crawl data, along with a subset of public Reddit data, which could contain sentences that, if viewed directly, can be insulting, threatening, or might otherwise cause anxiety. Alo see the dataset card in the [associated paper](https://arxiv.org/pdf/2205.01068.pdf). ## Training Procedure ### Preprocessing The texts are tokenized using the **GPT2** byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens. The 175B model was trained on 992 *80GB A100 GPUs*. The training duration was roughly ~33 days of continuous training ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 992 *80GB A100 GPUs - **Hours used:** 792 (~33 dyas) - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective OPTForCausalLM ## Compute Infrastructure More information needed ### Hardware More information needed ### Software Transformers_version: 4.22.1 # Citation **BibTeX:** ```bibtex @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Opentensor in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("opentensor/bt-opt-1.3b") model = AutoModelForCausalLM.from_pretrained("opentensor/bt-opt-1.3b") ``` </details>
AliReza/distilbert-emotion
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc0-1.0 language: en widget: - text: "thismodelcanperformwordsegmentation" - text: "sometimesitdoesntworkquitewell" - text: "expertsexchange" ---
Alicanke/Wyau
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc0-1.0 language: pl widget: - text: "modelpodzielitentekstnasłowa" - text: "czasamijednaknieidziemutozbytdobrze" ---
Alireza1044/albert-base-v2-mnli
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
235
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-scan_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-scan_v2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Alireza1044/dwight_bert_lm
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: mit --- ### yinit on Stable Diffusion This is the `yinit-dropcap` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![yinit-dropcap 0](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/4.jpeg) ![yinit-dropcap 1](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/12.jpeg) ![yinit-dropcap 2](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/8.jpeg) ![yinit-dropcap 3](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/0.jpeg) ![yinit-dropcap 4](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/6.jpeg) ![yinit-dropcap 5](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/3.jpeg) ![yinit-dropcap 6](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/20.jpeg) ![yinit-dropcap 7](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/11.jpeg) ![yinit-dropcap 8](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/19.jpeg) ![yinit-dropcap 9](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/24.jpeg) ![yinit-dropcap 10](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/17.jpeg) ![yinit-dropcap 11](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/10.jpeg) ![yinit-dropcap 12](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/7.jpeg) ![yinit-dropcap 13](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/13.jpeg) ![yinit-dropcap 14](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/16.jpeg) ![yinit-dropcap 15](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/2.jpeg) ![yinit-dropcap 16](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/25.jpeg) ![yinit-dropcap 17](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/22.jpeg) ![yinit-dropcap 18](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/9.jpeg) ![yinit-dropcap 19](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/15.jpeg) ![yinit-dropcap 20](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/21.jpeg) ![yinit-dropcap 21](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/1.jpeg) ![yinit-dropcap 22](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/14.jpeg) ![yinit-dropcap 23](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/5.jpeg) ![yinit-dropcap 24](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/18.jpeg) ![yinit-dropcap 25](https://huggingface.co/sd-concepts-library/yinit/resolve/main/concept_images/23.jpeg)
Alireza1044/michael_bert_lm
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit --- ### BEE on Stable Diffusion This is the `<b-e-e>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<b-e-e> 0](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/0.jpeg) ![<b-e-e> 1](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/3.jpeg) ![<b-e-e> 2](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/2.jpeg) ![<b-e-e> 3](https://huggingface.co/sd-concepts-library/bee/resolve/main/concept_images/1.jpeg)
AllwynJ/HarryBoy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: mit --- ### pixel-mania on Stable Diffusion This is the `<pixel-mania>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Allybaby21/Allysai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ```
AnaRhisT/bert_sequence_cs_validation
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bsd-3-clause --- # hu-text-metrics Metrics for Hungarian text evaluation. ## Features * **unique_words**: Number of unique words in a sentence, not including stopwords. * **grammar_error**: Number of grammar errors in a sentence. _(Unimplemented)_ ## Usage For example usages, see the `_example.py` file.
Andrey1989/bert-multilingual-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - Alexei1/autotrain-data-imdb-sentiment-analysis co2_eq_emissions: emissions: 0.018564765189754893 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1530155186 - CO2 Emissions (in grams): 0.0186 ## Validation Metrics - Loss: 0.694 - Accuracy: 0.487 - Macro F1: 0.218 - Micro F1: 0.487 - Weighted F1: 0.319 - Macro Precision: 0.162 - Micro Precision: 0.487 - Weighted Precision: 0.237 - Macro Recall: 0.333 - Micro Recall: 0.487 - Weighted Recall: 0.487 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
Andrey1989/mt5-small-finetuned-mlsum-es
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Andrey1989/mt5-small-finetuned-mlsum-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-TF-weight1-epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-TF-weight1-epoch10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Andrija/M-bert-NER
[ "pytorch", "bert", "token-classification", "hr", "sr", "multilingual", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - spacy - token-classification widget: - text: "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984" - text: "In The High Court Of Kerala At Ernakulam\n\nCrl Mc No. 1622 of 2006()\n\n\n1. T.R.Ajayan, S/O. O.Raman,\n ... Petitioner\n\n Vs\n\n\n\n1. M.Ravindran,\n ... Respondent\n\n2. Mrs. Nirmala Dinesh, W/O. Dinesh,\n\n For Petitioner :Sri.A.Kumar\n\n For Respondent :Smt.M.K.Pushpalatha\n\nThe Hon'ble Mr. Justice P.R.Raman\nThe Hon'ble Mr. Justice V.K.Mohanan\n\n Dated :07/01/2008\n\n O R D E R\n" language: - en license: mit model-index: - name: en_legal_ner_trf results: - task: type: token-classification name: Named Entity Recognition dataset: type: Named Entity Recognition name: InLegalNER split: Test metrics: - type: F1-Score value: 91.076 name: Test F1-Score --- # To Update [AUTHORS] "[PAPER NAME]". [PAPER DETAILS] [PAPER LINK] --- Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy). ### Scores | Type | Score | | --- | --- | | **F1-Score** | **91.076** | | `Precision` | 91.979 | | `Recall` | 90.19 | | Feature | Description | | --- | --- | | **Name** | `en_legal_ner_trf` | | **Version** | `3.2.0` | | **spaCy** | `>=3.2.2,<3.3.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)| | **License** | `MIT` | | **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) | ## Load Pretrained Model Install the model using pip ```sh pip install https://huggingface.co/opennyaiorg/en_legal_ner_trf/resolve/main/en_legal_ner_trf-any-py3-none-any.whl ``` Using pretrained NER model ```python # Using spacy.load(). import spacy nlp = spacy.load("en_legal_ner_trf") text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984" doc = nlp(text) # Print indentified entites for ent in doc.ents: print(ent,ent.label_) ##OUTPUT #Section 319 PROVISION #Cr.P.C. STATUTE #G. Sambiah RESPONDENT #20th June 1984 DATE ``` ### Label Scheme <details> <summary>View label scheme (14 labels for 1 components)</summary> | ENTITY | BELONGS TO | | --- | --- | | `LAWYER` | PREAMBLE | | `COURT` | PREAMBLE, JUDGEMENT | | `JUDGE` | PREAMBLE, JUDGEMENT | | `PETITIONER` | PREAMBLE, JUDGEMENT | | `RESPONDENT` | PREAMBLE, JUDGEMENT | | `CASE_NUMBER` | JUDGEMENT | | `GPE` | JUDGEMENT | | `DATE` | JUDGEMENT | | `ORG` | JUDGEMENT | | `STATUTE` | JUDGEMENT | | `WITNESS` | JUDGEMENT | | `PRECEDENT` | JUDGEMENT | | `PROVISION` | JUDGEMENT | | `OTHER_PERSON` | JUDGEMENT | </details> ## Author - Publication ``` [CITATION DETAILS] ```
Andrija/RobertaFastBPE
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 194.40 +/- 31.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SR_rule_based_only_classfn_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2166 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 216, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2166, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- library_name: fastai tags: - image-classification --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: - en library_name: nemo datasets: - librispeech_asr - fisher_corpus - Switchboard-1 - WSJ-0 - WSJ-1 - National-Singapore-Corpus-Part-1 - National-Singapore-Corpus-Part-6 - vctk - VoxPopuli-(EN) - Europarl-ASR-(EN) - Multilingual-LibriSpeech-(2000-hours) - mozilla-foundation/common_voice_8_0 - MLCommons/peoples_speech thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: stt_en_conformer_transducer_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 1.7 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 3.7 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: english split: test args: language: en metrics: - name: Test WER type: wer value: 5.8 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Mozilla Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 config: en split: test args: language: en metrics: - name: Test WER type: wer value: 7.8 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Wall Street Journal 92 type: wsj_0 args: language: en metrics: - name: Test WER type: wer value: 1.5 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Wall Street Journal 93 type: wsj_1 args: language: en metrics: - name: Test WER type: wer value: 2.1 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: National Singapore Corpus type: nsc_part_1 args: language: en metrics: - name: Test WER type: wer value: 5.9 --- # NVIDIA Conformer-Transducer Large (en-US) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets) This model transcribes speech in lower case English alphabet along with spaces and apostrophes. It is a large version of Conformer-Transducer (around 120M parameters) model. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_en_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ### Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech: - Librispeech 960 hours of English speech - Fisher Corpus - Switchboard-1 Dataset - WSJ-0 and WSJ-1 - National Speech Corpus (Part 1, Part 6) - VCTK - VoxPopuli (EN) - Europarl-ASR (EN) - Multilingual Librispeech (MLS EN) - 2,000 hrs subset - Mozilla Common Voice (v8.0) - People's Speech - 12,000 hrs subset Note: older versions of the model may have trained on smaller set of datasets. ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MCV Test 6.1 | MCV Test 8.0 | Train Dataset | |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|----|------| | 1.10.0 | SentencePiece Unigram | 1024 | 3.7 | 1.7 | 1.5 | 2.1 | 5.9 | 5.8 | 6.5 | 7.8 | NeMo ASRSET 3.0 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## NVIDIA Riva: Deployment [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva). Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: VietAI-NLP-ITN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VietAI-NLP-ITN This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4378 - Bleu: 81.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 0.6529 | 1.0 | 31250 | 0.5660 | 78.7315 | | 0.5125 | 2.0 | 62500 | 0.4770 | 81.3979 | | 0.4798 | 3.0 | 93750 | 0.4554 | 81.6720 | | 0.4568 | 4.0 | 125000 | 0.4435 | 81.7753 | | 0.4387 | 5.0 | 156250 | 0.4378 | 81.8571 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 169.43 +/- 77.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
Access to model FrankKomes/DialoGPT-medium-cherry is restricted and you are not in the authorized list. Visit https://huggingface.co/FrankKomes/DialoGPT-medium-cherry to ask for access.
AnonymousSub/SR_rule_based_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: new_classifer_epoch10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_classifer_epoch10 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0837 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0524 | 1.0 | 4248 | 0.0628 | 0.9790 | | 0.0251 | 2.0 | 8496 | 0.0496 | 0.9848 | | 0.0153 | 3.0 | 12744 | 0.0857 | 0.9837 | | 0.0049 | 4.0 | 16992 | 0.1030 | 0.9849 | | 0.0038 | 5.0 | 21240 | 0.0837 | 0.9867 | | 0.003 | 6.0 | 25488 | 0.1165 | 0.9856 | | 0.0026 | 7.0 | 29736 | 0.1143 | 0.9853 | | 0.0004 | 8.0 | 33984 | 0.1475 | 0.9856 | | 0.0004 | 9.0 | 38232 | 0.1328 | 0.9861 | | 0.0 | 10.0 | 42480 | 0.1349 | 0.9862 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/bert-base-uncased_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: unlicense language: "en" widget: - text: "FileZilla Project FileZilla Client 3.5.1." - text: "Google Chrome 56.0.2924.87." ---
AnonymousSub/bert_mean_diff_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - ko tags: - bart license: mit --- # koBART Review Summarization ## finetuning BASE https://huggingface.co/gogamza/kobart-summarization # dataset https://github.com/dnrso/dnrso.github.io # Demo Space https://huggingface.co/spaces/dnrso/koBART_Sum_Review_finetuning
AnonymousSub/bert_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: afl-3.0 --- https://huggingface.co/julien-c/DPRNNTasNet-ks16_WHAM_sepclean
AnonymousSub/declutr-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-09-23T04:40:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli-5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 13.4 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli-5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4557 - Rouge1: 13.4 - Rouge2: 1.9415 - Rougel: 10.4671 - Rougelsum: 12.0693 - Gen Len: 18.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 3.6754 | 1.0 | 8520 | 3.4557 | 13.4 | 1.9415 | 10.4671 | 12.0693 | 18.9529 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/dummy_1
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit_classification_huggingface results: - task: name: Animal-10 Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.980894148349762 --- # vit_classification_huggingface Animal-10 dataset classification using Vision Transformer with Hugging Face. ## Example Images #### cane ![cane](images/cane.jpeg) #### cavallo ![cavallo](images/cavallo.jpeg) #### elefante ![elefante](images/elefante.jpeg) #### farfalla ![farfalla](images/farfalla.jpeg) #### gallina ![gallina](images/gallina.jpeg) #### gatto ![gatto](images/gatto.jpeg) #### mucca ![mucca](images/mucca.jpeg) #### pecora ![pecora](images/pecora.jpeg) #### ragno ![ragno](images/ragno.jpeg) #### scoiattolo ![scoiattolo](images/scoiattolo.jpeg)
AnonymousSub/dummy_2
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6976744186046512 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4068 - F1: 0.6977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9585 | 1.0 | 99 | 0.5474 | 0.5651 | | 0.4522 | 2.0 | 198 | 0.3921 | 0.6903 | | 0.3243 | 3.0 | 297 | 0.4068 | 0.6977 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-g results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-g This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9226 - Cer: 0.1638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8333 | 3.25 | 500 | 3.4624 | 0.9560 | | 1.243 | 6.49 | 1000 | 1.0049 | 0.2488 | | 0.3657 | 9.74 | 1500 | 0.8749 | 0.2087 | | 0.2104 | 12.99 | 2000 | 0.8799 | 0.1909 | | 0.1508 | 16.23 | 2500 | 0.9321 | 0.1845 | | 0.1245 | 19.48 | 3000 | 0.8778 | 0.1744 | | 0.1048 | 22.73 | 3500 | 0.9793 | 0.1808 | | 0.0922 | 25.97 | 4000 | 0.9464 | 0.1697 | | 0.0801 | 29.22 | 4500 | 0.9226 | 0.1638 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.13.0
AnonymousSub/rule_based_bert_mean_diff_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using dataset crawling from social media Youtube with topic about "Pemakaian Behel/Kawat Gigi" ## How to Use ### As Text Classifier ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification pretrained= "liandarizkia/SA01-IndoBert" model = AutoModelForSequenceClassification.from_pretrained(pretrained) tokenizer = AutoTokenizer.from_pretrained(pretrained) sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) label_index = {'LABEL_0': 'negative', 'LABEL_1': 'positive', 'LABEL_2': 'neutral'} text = """Aku baru sebulan udah pengen lepas rasanya. Udah gak peduli uang yang keluar sayang. Pokoknya gak nyaman, setiap hari sedih terus. Akhirnya aku cerita ke dokterku kalau aku dah gak kuat aku bilang kalau bakal bertahan 2 atau 3 bulan dari pemasangan behel. Setelah itu aku minta buat beneran lepas aja. Pokoknya jangan ragu buat cerita ke dokter""" result = sentiment_analysis(text) status = label_index[result[0]['label']] score = result[0]['score'] print(f'Text: {text} | Label : {status} ({score * 100:.3f}%)') ```
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.023 | 1.0 | 313 | 2.3080 | | 2.1325 | 2.0 | 626 | 2.2527 | | 2.2656 | 3.0 | 939 | 2.2888 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: asr_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # asr_test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 4.7239 | 1.0 | 41495 | 3.9360 | | 3.7732 | 2.0 | 82990 | 3.5599 | | 3.4792 | 3.0 | 124485 | 3.4566 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: classification https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
language: - en tags: - translation license: apache-2.0 datasets: - wmt19 metrics: - bleu - sacrebleu
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - en - it - multilingual license: apache-2.0 tags: - generated_from_trainer datasets: - ccmatrix model-index: - name: t5-small-finetuned-en-to-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.0188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5524 | 1.0 | 750 | 2.2315 | | 2.4839 | 2.0 | 1500 | 2.1932 | | 2.4654 | 3.0 | 2250 | 2.1637 | | 2.4001 | 4.0 | 3000 | 2.1352 | | 2.3966 | 5.0 | 3750 | 2.1122 | | 2.3537 | 6.0 | 4500 | 2.0921 | | 2.3427 | 7.0 | 5250 | 2.0746 | | 2.316 | 8.0 | 6000 | 2.0614 | | 2.301 | 9.0 | 6750 | 2.0488 | | 2.2813 | 10.0 | 7500 | 2.0403 | | 2.2691 | 11.0 | 8250 | 2.0325 | | 2.2561 | 12.0 | 9000 | 2.0265 | | 2.258 | 13.0 | 9750 | 2.0217 | | 2.2447 | 14.0 | 10500 | 2.0199 | | 2.2432 | 15.0 | 11250 | 2.0188 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: convnext-tiny-224_finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224_finetuned This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0895 - Precision: 0.9807 - Recall: 0.9608 - F1: 0.9702 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 46 | 0.3080 | 0.9096 | 0.6852 | 0.7206 | 0.8365 | | No log | 2.0 | 92 | 0.1644 | 0.9660 | 0.9176 | 0.9386 | 0.9551 | | No log | 3.0 | 138 | 0.0974 | 0.9742 | 0.9586 | 0.9661 | 0.9744 | | No log | 4.0 | 184 | 0.0795 | 0.9829 | 0.9670 | 0.9746 | 0.9808 | | No log | 5.0 | 230 | 0.0838 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 6.0 | 276 | 0.0838 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 7.0 | 322 | 0.0803 | 0.9829 | 0.9670 | 0.9746 | 0.9808 | | No log | 8.0 | 368 | 0.0869 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 9.0 | 414 | 0.0897 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | | No log | 10.0 | 460 | 0.0895 | 0.9807 | 0.9608 | 0.9702 | 0.9776 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vivpavlov/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AnonymousSub/specter-bert-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-base-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8858829316281358 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-Massive-intent This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6707 - Accuracy: 0.8859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6844 | 1.0 | 720 | 0.7190 | 0.8387 | | 0.4713 | 2.0 | 1440 | 0.5449 | 0.8726 | | 0.2459 | 3.0 | 2160 | 0.5893 | 0.8790 | | 0.1469 | 4.0 | 2880 | 0.6631 | 0.8795 | | 0.0874 | 5.0 | 3600 | 0.6707 | 0.8859 | | 0.0507 | 6.0 | 4320 | 0.7189 | 0.8844 | | 0.0344 | 7.0 | 5040 | 0.7480 | 0.8854 | | 0.0225 | 8.0 | 5760 | 0.7956 | 0.8844 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AnonymousSub/specter-bert-model_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 widget: - text: 横浜国立大学は日本の[MASK]県にある。 --- This is RoBERTa model pretrained on texts in the Japanese language. 3.45GB wikipedia text trained 1.65M step use the sentencepiece tokenizer. If you want to fine-tune model. Please use ```python from transformers import BertTokenizer, RobertaModel BertTokenizer.from_pretrained('') RoBERTModel.from_pretrained('') ``` The accuracy in JGLUE-marc_ja-v1.0 binary sentiment classification 95.4% Contribute by Yokohama Nationaly University Mori Lab @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} }
AnonymousSub/specter-bert-model_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - generated_from_trainer model-index: - name: resultsb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resultsb This model is a fine-tuned version of [bhumikak/resultsa](https://huggingface.co/bhumikak/resultsa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8957 - Rouge2 Precision: 0.2127 - Rouge2 Recall: 0.2605 - Rouge2 Fmeasure: 0.2167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ArBert/albert-base-v2-finetuned-ner-gmm
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-imdb This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3367 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.687 | 1.0 | 20 | 1.4339 | 0.625 | | 1.4117 | 2.0 | 40 | 1.3367 | 0.625 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ArcQ/gpt-experiments
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-23T19:36:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-tiny-Massive-intent-KD-distilBERT results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8396458435809149 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-Massive-intent-KD-distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.6612 - Accuracy: 0.8396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 10.9795 | 1.0 | 720 | 9.3236 | 0.2917 | | 9.4239 | 2.0 | 1440 | 7.9792 | 0.4092 | | 8.2632 | 3.0 | 2160 | 6.9824 | 0.4811 | | 7.3425 | 4.0 | 2880 | 6.1545 | 0.5514 | | 6.56 | 5.0 | 3600 | 5.4829 | 0.6060 | | 5.9032 | 6.0 | 4320 | 4.8994 | 0.6463 | | 5.3078 | 7.0 | 5040 | 4.4129 | 0.6911 | | 4.819 | 8.0 | 5760 | 4.0152 | 0.7073 | | 4.3866 | 9.0 | 6480 | 3.6734 | 0.7324 | | 3.9954 | 10.0 | 7200 | 3.3729 | 0.7516 | | 3.6764 | 11.0 | 7920 | 3.1251 | 0.7600 | | 3.3712 | 12.0 | 8640 | 2.9077 | 0.7752 | | 3.1037 | 13.0 | 9360 | 2.7361 | 0.7787 | | 2.8617 | 14.0 | 10080 | 2.5791 | 0.7860 | | 2.6667 | 15.0 | 10800 | 2.4383 | 0.7944 | | 2.476 | 16.0 | 11520 | 2.3301 | 0.7944 | | 2.3203 | 17.0 | 12240 | 2.2099 | 0.8052 | | 2.1698 | 18.0 | 12960 | 2.1351 | 0.8101 | | 2.0563 | 19.0 | 13680 | 2.0554 | 0.8111 | | 1.9294 | 20.0 | 14400 | 2.0100 | 0.8190 | | 1.8304 | 21.0 | 15120 | 1.9566 | 0.8210 | | 1.7315 | 22.0 | 15840 | 1.9076 | 0.8224 | | 1.6587 | 23.0 | 16560 | 1.8511 | 0.8283 | | 1.5876 | 24.0 | 17280 | 1.8230 | 0.8298 | | 1.5173 | 25.0 | 18000 | 1.8002 | 0.8259 | | 1.4676 | 26.0 | 18720 | 1.7667 | 0.8278 | | 1.3956 | 27.0 | 19440 | 1.7512 | 0.8313 | | 1.3436 | 28.0 | 20160 | 1.7233 | 0.8298 | | 1.3031 | 29.0 | 20880 | 1.6802 | 0.8318 | | 1.2584 | 30.0 | 21600 | 1.6768 | 0.8328 | | 1.2233 | 31.0 | 22320 | 1.6612 | 0.8396 | | 1.1884 | 32.0 | 23040 | 1.6608 | 0.8352 | | 1.1374 | 33.0 | 23760 | 1.6195 | 0.8387 | | 1.1299 | 34.0 | 24480 | 1.5969 | 0.8377 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Arcanos/1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model thet-system/en_core_sci_md is restricted and you are not in the authorized list. Visit https://huggingface.co/thet-system/en_core_sci_md to ask for access.
Arcktosh/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs4 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1088 - F1: 0.9076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2994 | 1.0 | 101 | 0.0977 | 0.8416 | | 0.0639 | 2.0 | 202 | 0.0846 | 0.8689 | | 0.0318 | 3.0 | 303 | 0.0781 | 0.8879 | | 0.0173 | 4.0 | 404 | 0.0770 | 0.8934 | | 0.0099 | 5.0 | 505 | 0.0905 | 0.9021 | | 0.005 | 6.0 | 606 | 0.0963 | 0.9020 | | 0.0031 | 7.0 | 707 | 0.1024 | 0.9095 | | 0.002 | 8.0 | 808 | 0.1063 | 0.9057 | | 0.0017 | 9.0 | 909 | 0.1072 | 0.9076 | | 0.0014 | 10.0 | 1010 | 0.1103 | 0.9089 | | 0.0013 | 11.0 | 1111 | 0.1093 | 0.9087 | | 0.0008 | 12.0 | 1212 | 0.1088 | 0.9076 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Ashim/dga-transformer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/rossimiano/1664256351634/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1550158420988153856/OUoCVt_b_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ross Massimiano, DVM</div> <div style="text-align: center; font-size: 14px;">@rossimiano</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ross Massimiano, DVM. | Data | Ross Massimiano, DVM | | --- | --- | | Tweets downloaded | 1324 | | Retweets | 203 | | Short tweets | 130 | | Tweets kept | 991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/312h1q2v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rossimiano's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vljawam) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vljawam/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rossimiano') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Ayham/roberta_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rlt_2409_1450 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlt_2409_1450 This model is a fine-tuned version of [svalabs/gbert-large-zeroshot-nli](https://huggingface.co/svalabs/gbert-large-zeroshot-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0518 - F1: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 36 | 0.5165 | 0.8542 | | No log | 1.99 | 72 | 0.1459 | 0.9599 | | No log | 2.99 | 108 | 0.0733 | 0.9882 | | No log | 3.99 | 144 | 0.1385 | 0.9502 | | No log | 4.99 | 180 | 0.0948 | 0.9806 | | No log | 5.99 | 216 | 0.0699 | 0.9822 | | No log | 6.99 | 252 | 0.0582 | 0.9859 | | No log | 7.99 | 288 | 0.0340 | 0.9933 | | No log | 8.99 | 324 | 0.0475 | 0.9826 | | No log | 9.99 | 360 | 0.0518 | 0.9826 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Ayham/xlnet_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit --- ### paolo bonolis on Stable Diffusion This is the `<paolo-bonolis>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<paolo-bonolis> 0](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/3.jpeg) ![<paolo-bonolis> 1](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/1.jpeg) ![<paolo-bonolis> 2](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/0.jpeg) ![<paolo-bonolis> 3](https://huggingface.co/sd-concepts-library/paolo-bonolis/resolve/main/concept_images/2.jpeg)
Ayham/xlnet_gpt_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: BERT-tiny-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-tiny-emotion-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | | 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | | 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | | 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | | 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | | 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | | 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | | 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | | 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | | 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | | 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | | 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | | 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | | 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | | 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Ayran/DialoGPT-small-gandalf
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
AyushPJ/ai-club-inductions-21-nlp-ALBERT
[ "pytorch", "albert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
This is a test model, so the results are not really good. The team is continuing to grow. If you like it, Click like above to support the author. 🤗
Azaghast/GPT2-SCP-Descriptions
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-j-phoneme-common-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-j-phoneme-common-test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1488 | 7.14 | 2000 | 0.0788 | 0.0919 | | 0.0308 | 14.28 | 4000 | 0.0155 | 0.0271 | | 0.0121 | 21.43 | 6000 | 0.0070 | 0.0103 | | 0.0067 | 28.57 | 8000 | 0.0059 | 0.0067 | | 0.0025 | 35.71 | 10000 | 0.0143 | 0.0180 | | 0.0001 | 42.85 | 12000 | 0.0000 | 0.0001 | | 0.0 | 50.0 | 14000 | 0.0000 | 0.0001 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.0+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BSC-LT/roberta-base-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9036697247706422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3735 - Accuracy: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.243 | 1.0 | 4210 | 0.3735 | 0.9037 | | 0.1557 | 2.0 | 8420 | 0.3907 | 0.8922 | | 0.1248 | 3.0 | 12630 | 0.3690 | 0.8945 | | 0.1017 | 4.0 | 16840 | 0.5466 | 0.8830 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Babelscape/rebel-large
[ "pytorch", "safetensors", "bart", "text2text-generation", "en", "dataset:Babelscape/rebel-dataset", "transformers", "seq2seq", "relation-extraction", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "BartForConditionalGeneration" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,458
null
--- license: bigscience-bloom-rail-1.0 --- Uses the Waifu Diffusion model as a base, linked here: https://huggingface.co/hakurei/waifu-diffusion Custom Dreambooth model based off of the likeness of Emilia from Re:Zero. Dataset was 16 training images, and 11 regularization images. Trained for 3000 steps. To use the model, simply insert the name 'Emilia' into your prompts. The class token used was 'white_hair_girl_violet_eyes'. Append the class token after Emilia for stronger results. EX: "A photo of Emilia white_hair_girl_violet_eyes"
Babelscape/wikineural-multilingual-ner
[ "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "sequence-tagger-model", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41,608
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.80 +/- 13.74 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Badr/model1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Thorneworks on Stable Diffusion This is the `<Thorneworks>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<Thorneworks> 0](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/9.jpeg) ![<Thorneworks> 1](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/10.jpeg) ![<Thorneworks> 2](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/3.jpeg) ![<Thorneworks> 3](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/1.jpeg) ![<Thorneworks> 4](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/4.jpeg) ![<Thorneworks> 5](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/8.jpeg) ![<Thorneworks> 6](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/11.jpeg) ![<Thorneworks> 7](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/6.jpeg) ![<Thorneworks> 8](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/5.jpeg) ![<Thorneworks> 9](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/0.jpeg) ![<Thorneworks> 10](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/2.jpeg) ![<Thorneworks> 11](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/7.jpeg) ![<Thorneworks> 12](https://huggingface.co/sd-concepts-library/thorneworks/resolve/main/concept_images/12.jpeg)
Bagus/SER-LSSED
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-24T18:26:10Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: shopinspo_demo results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5267857313156128 --- # shopinspo_demo Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### womens dress ![womens dress](images/womens_dress.jpg) #### womens pants ![womens pants](images/womens_pants.jpg) #### womens shorts ![womens shorts](images/womens_shorts.jpg) #### womens skirt ![womens skirt](images/womens_skirt.jpg) #### womens top ![womens top](images/womens_top.jpg)
Bagus/ser-japanese
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: XLSR_Fine_Tuned_Urdu_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLSR_Fine_Tuned_Urdu_V2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8023 - Wer: 0.4382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.424 | 3.25 | 1000 | 2.9777 | 1.0 | | 1.4315 | 6.49 | 2000 | 0.8493 | 0.5896 | | 0.6938 | 9.74 | 3000 | 0.7438 | 0.4978 | | 0.5129 | 12.99 | 4000 | 0.7480 | 0.4785 | | 0.4133 | 16.23 | 5000 | 0.7568 | 0.4600 | | 0.3496 | 19.48 | 6000 | 0.7387 | 0.4471 | | 0.3133 | 22.73 | 7000 | 0.7655 | 0.4426 | | 0.2767 | 25.97 | 8000 | 0.8081 | 0.4530 | | 0.2581 | 29.22 | 9000 | 0.8023 | 0.4382 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice_id_6.1", "transformers", "audio", "speech", "bahasa-indonesia", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
Jiangstyle on Stable Diffusion This is the <Jiangstyle> concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the Stable Conceptualizer notebook. You can also train your own concepts and load them into the concept libraries using this notebook. Here is the new concept you will be able to use as a style:
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
[ "pytorch", "tensorboard", "wav2vec2", "el", "dataset:aesdd", "transformers", "audio", "audio-classification", "speech", "license:apache-2.0" ]
audio-classification
{ "architectures": [ "Wav2Vec2ForSpeechClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-tiny-Massive-intent-KD-BERT_and_distilBERT results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8470241023118544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-Massive-intent-KD-BERT_and_distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 2.3729 - Accuracy: 0.8470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 15.1159 | 1.0 | 720 | 12.8257 | 0.2253 | | 12.9949 | 2.0 | 1440 | 10.9891 | 0.4304 | | 11.3865 | 3.0 | 2160 | 9.5622 | 0.5032 | | 10.0553 | 4.0 | 2880 | 8.3700 | 0.5539 | | 8.9431 | 5.0 | 3600 | 7.4127 | 0.6104 | | 8.0135 | 6.0 | 4320 | 6.6185 | 0.6286 | | 7.1987 | 7.0 | 5040 | 5.9517 | 0.6818 | | 6.5168 | 8.0 | 5760 | 5.3879 | 0.7118 | | 5.9352 | 9.0 | 6480 | 4.9426 | 0.7275 | | 5.4299 | 10.0 | 7200 | 4.5637 | 0.7413 | | 5.0017 | 11.0 | 7920 | 4.2379 | 0.7585 | | 4.5951 | 12.0 | 8640 | 3.9699 | 0.7678 | | 4.2849 | 13.0 | 9360 | 3.7416 | 0.7737 | | 3.991 | 14.0 | 10080 | 3.5502 | 0.7865 | | 3.7455 | 15.0 | 10800 | 3.4090 | 0.7900 | | 3.5315 | 16.0 | 11520 | 3.3053 | 0.7914 | | 3.345 | 17.0 | 12240 | 3.1670 | 0.8003 | | 3.1767 | 18.0 | 12960 | 3.0739 | 0.8013 | | 3.0322 | 19.0 | 13680 | 2.9927 | 0.8047 | | 2.8864 | 20.0 | 14400 | 2.9366 | 0.8037 | | 2.7728 | 21.0 | 15120 | 2.8666 | 0.8091 | | 2.6732 | 22.0 | 15840 | 2.8146 | 0.8126 | | 2.5726 | 23.0 | 16560 | 2.7588 | 0.8195 | | 2.493 | 24.0 | 17280 | 2.7319 | 0.8273 | | 2.4183 | 25.0 | 18000 | 2.6847 | 0.8249 | | 2.3526 | 26.0 | 18720 | 2.6317 | 0.8323 | | 2.2709 | 27.0 | 19440 | 2.6071 | 0.8288 | | 2.2125 | 28.0 | 20160 | 2.5982 | 0.8323 | | 2.1556 | 29.0 | 20880 | 2.5546 | 0.8337 | | 2.1042 | 30.0 | 21600 | 2.5278 | 0.8318 | | 2.054 | 31.0 | 22320 | 2.5005 | 0.8411 | | 2.0154 | 32.0 | 23040 | 2.4891 | 0.8347 | | 1.9785 | 33.0 | 23760 | 2.4633 | 0.8367 | | 1.9521 | 34.0 | 24480 | 2.4451 | 0.8421 | | 1.9247 | 35.0 | 25200 | 2.4370 | 0.8416 | | 1.8741 | 36.0 | 25920 | 2.4197 | 0.8446 | | 1.8659 | 37.0 | 26640 | 2.4081 | 0.8406 | | 1.8367 | 38.0 | 27360 | 2.3979 | 0.8426 | | 1.8153 | 39.0 | 28080 | 2.3758 | 0.8451 | | 1.7641 | 40.0 | 28800 | 2.3729 | 0.8470 | | 1.7608 | 41.0 | 29520 | 2.3683 | 0.8460 | | 1.7647 | 42.0 | 30240 | 2.3628 | 0.8446 | | 1.7656 | 43.0 | 30960 | 2.3492 | 0.8470 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
Access to model saidhr20/pubmed-xlnet-text-classification is restricted and you are not in the authorized list. Visit https://huggingface.co/saidhr20/pubmed-xlnet-text-classification to ask for access.
Bakkes/BakkesModWiki
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-24T19:02:27Z
--- license: mit --- ### kysa-v-style on Stable Diffusion This is the `<kysa-v-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kysa-v-style> 0](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/3.jpeg) ![<kysa-v-style> 1](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/1.jpeg) ![<kysa-v-style> 2](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/4.jpeg) ![<kysa-v-style> 3](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/5.jpeg) ![<kysa-v-style> 4](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/0.jpeg) ![<kysa-v-style> 5](https://huggingface.co/sd-concepts-library/kysa-v-style/resolve/main/concept_images/2.jpeg)
Bala/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert-tiny-emotion-KD-BERT results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9175 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-emotion-KD-BERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4810 - Accuracy: 0.9175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.8247 | 1.0 | 1000 | 2.5170 | 0.7745 | | 1.9864 | 2.0 | 2000 | 1.3436 | 0.874 | | 1.1126 | 3.0 | 3000 | 0.8299 | 0.894 | | 0.6924 | 4.0 | 4000 | 0.6500 | 0.9025 | | 0.5272 | 5.0 | 5000 | 0.6097 | 0.908 | | 0.4298 | 6.0 | 6000 | 0.5913 | 0.904 | | 0.3936 | 7.0 | 7000 | 0.5165 | 0.9135 | | 0.3238 | 8.0 | 8000 | 0.5120 | 0.9075 | | 0.3018 | 9.0 | 9000 | 0.4989 | 0.916 | | 0.2605 | 10.0 | 10000 | 0.4810 | 0.9175 | | 0.2512 | 11.0 | 11000 | 0.4757 | 0.9135 | | 0.219 | 12.0 | 12000 | 0.4676 | 0.914 | | 0.2046 | 13.0 | 13000 | 0.4794 | 0.911 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Banshee/dialoGPT-luke-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-tiny-sst2-KD-BERT results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8348623853211009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-sst2-KD-BERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8257 - Accuracy: 0.8349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7521 | 1.0 | 4210 | 0.7345 | 0.8234 | | 0.4301 | 2.0 | 8420 | 0.7748 | 0.8303 | | 0.3335 | 3.0 | 12630 | 0.8257 | 0.8349 | | 0.2831 | 4.0 | 16840 | 0.9145 | 0.8188 | | 0.2419 | 5.0 | 21050 | 0.9096 | 0.8177 | | 0.2149 | 6.0 | 25260 | 0.8410 | 0.8234 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BaptisteDoyen/camembert-base-xnli
[ "pytorch", "tf", "camembert", "text-classification", "fr", "dataset:xnli", "transformers", "zero-shot-classification", "xnli", "nli", "license:mit", "has_space" ]
zero-shot-classification
{ "architectures": [ "CamembertForSequenceClassification" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
405,474
2022-09-24T19:36:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert-tiny-emotion-KD-BERT_and_distilBERT results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.918 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-emotion-KD-BERT_and_distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.8780 - Accuracy: 0.918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 7.1848 | 1.0 | 1000 | 4.7404 | 0.774 | | 3.856 | 2.0 | 2000 | 2.7317 | 0.8685 | | 2.3973 | 3.0 | 3000 | 1.8329 | 0.8895 | | 1.5273 | 4.0 | 4000 | 1.2938 | 0.898 | | 1.113 | 5.0 | 5000 | 1.1298 | 0.8985 | | 0.9099 | 6.0 | 6000 | 1.0746 | 0.907 | | 0.831 | 7.0 | 7000 | 1.0071 | 0.907 | | 0.6813 | 8.0 | 8000 | 0.9556 | 0.9115 | | 0.6432 | 9.0 | 9000 | 0.9746 | 0.913 | | 0.5745 | 10.0 | 10000 | 0.8780 | 0.918 | | 0.5319 | 11.0 | 11000 | 0.9410 | 0.909 | | 0.4787 | 12.0 | 12000 | 0.9103 | 0.913 | | 0.4529 | 13.0 | 13000 | 0.8829 | 0.915 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Barbarameerr/Barbara
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-24T19:45:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-tiny-sst2-KD-distilBERT results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8325688073394495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-sst2-KD-distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1035 - Accuracy: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2008 | 1.0 | 4210 | 1.1319 | 0.8177 | | 0.6821 | 2.0 | 8420 | 1.1035 | 0.8326 | | 0.5315 | 3.0 | 12630 | 1.2271 | 0.8245 | | 0.4486 | 4.0 | 16840 | 1.4426 | 0.8177 | | 0.3857 | 5.0 | 21050 | 1.4309 | 0.8303 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BatuhanYilmaz/mt5-small-finetuned-amazonbooks-en-es
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distillbert-base-spanish-uncased-finetuned-suicidios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-suicidios This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2970 - Accuracy: 0.9483 - F1: 0.9483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.3543 | 1.0 | 9618 | 0.2688 | 0.9422 | 0.9422 | | 0.1726 | 2.0 | 19236 | 0.2970 | 0.9483 | 0.9483 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BeIR/sparta-msmarco-distilbert-base-v1
[ "pytorch", "distilbert", "feature-extraction", "arxiv:2009.13013", "arxiv:2104.08663", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
106
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.01 +/- 14.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BearThreat/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-base-finetuned-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Begimay/Task
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Mizkif on Stable Diffusion This is the `<mizkif>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). <br> <h3>here are some images i rendered with this model</h3> <span>graffiti wall</span> <img src="https://i.imgur.com/PIq7Y0w.png" alt="graffiti wall" width="200"/> <span>stained glass</span> <img src="https://i.imgur.com/QcwB5GF.png" alt="stained glass" width="200"/> <br> <h3>here are the images i used to train the model</h3> ![<mizkif> 0](https://huggingface.co/sd-concepts-library/mizkif/resolve/main/concept_images/1.jpeg) ![<mizkif> 1](https://huggingface.co/sd-concepts-library/mizkif/resolve/main/concept_images/0.jpeg) ![<mizkif> 2](https://huggingface.co/sd-concepts-library/mizkif/resolve/main/concept_images/2.jpeg)
BenGeorge/MyModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Brittney-Williams-Art on Stable Diffusion This is the `<Brittney_Williams>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<Brittney_Williams> 0](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/9.jpeg) ![<Brittney_Williams> 1](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/10.jpeg) ![<Brittney_Williams> 2](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/3.jpeg) ![<Brittney_Williams> 3](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/1.jpeg) ![<Brittney_Williams> 4](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/4.jpeg) ![<Brittney_Williams> 5](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/8.jpeg) ![<Brittney_Williams> 6](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/11.jpeg) ![<Brittney_Williams> 7](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/6.jpeg) ![<Brittney_Williams> 8](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/5.jpeg) ![<Brittney_Williams> 9](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/0.jpeg) ![<Brittney_Williams> 10](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/2.jpeg) ![<Brittney_Williams> 11](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/7.jpeg) ![<Brittney_Williams> 12](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/13.jpeg) ![<Brittney_Williams> 13](https://huggingface.co/sd-concepts-library/brittney-williams-art/resolve/main/concept_images/12.jpeg)
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit --- ### wheelchair on Stable Diffusion This is the `<wheelchair>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<wheelchair> 0](https://huggingface.co/sd-concepts-library/wheelchair/resolve/main/concept_images/3.jpeg) ![<wheelchair> 1](https://huggingface.co/sd-concepts-library/wheelchair/resolve/main/concept_images/1.jpeg) ![<wheelchair> 2](https://huggingface.co/sd-concepts-library/wheelchair/resolve/main/concept_images/0.jpeg) ![<wheelchair> 3](https://huggingface.co/sd-concepts-library/wheelchair/resolve/main/concept_images/2.jpeg)
Bharathdamu/wav2vec2-large-xls-r-300m-hindi3-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
data: https://github.com/BigSalmon2/InformalToFormalDataset ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` informal english: i reached out to accounts who had a lot of followers, helping to make people know about us. resume english: i partnered with prominent influencers to build brand awareness. *** ```
Bharathdamu/wav2vec2-model-hindibhasha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5-neel-final-again results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 15.1361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5-neel-final-again This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.5993 - Rouge1: 15.1361 - Rouge2: 2.1584 - Rougel: 12.7499 - Rougelsum: 13.989 - Gen Len: 18.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8014 | 1.0 | 17040 | 3.5993 | 15.1361 | 2.1584 | 12.7499 | 13.989 | 18.9998 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BigBoy/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-1.0.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-1.0.0 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8753 - Rouge1: 57.3754 - Rouge2: 52.6902 - Rougel: 56.5013 - Rougelsum: 56.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 7.598 | 1.0 | 339 | 1.1360 | 57.9291 | 52.9851 | 56.8619 | 57.36 | | 1.6607 | 2.0 | 678 | 0.9274 | 58.4006 | 53.715 | 57.3505 | 57.8747 | | 1.3212 | 3.0 | 1017 | 0.8753 | 57.3754 | 52.6902 | 56.5013 | 56.9205 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BigDaddyNe1L/Hhaa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other widget: - text: "Chapter 1." example_title: "First Prompt used in video" - text: "Chapter 1. Shadowclan" example_title: "Second prompt used in video" - text: "Fireheart" example_title: "Fireheart" inference: parameters: temperature: 0.4 repetition_penalty: 1.1 min_length: 64 max_length: 128 --- This represents an OPT-125M model trained on the "Warriors: The Prophecies Begin" book series. To train this model, I ripped text directly from PDFs using PyMuPdf. This is the model trained in this [video](https://youtu.be/BAloWD4FXIM) Please check out my [YouTube channel.](https://www.youtube.com/channel/UCLXxfueCPZRZnyGFWJ07uqA)
BigSalmon/MrLincoln2
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
BigSalmon/T52
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0247 - Precision: 0.9269 - Recall: 0.9509 - F1: 0.9387 - Accuracy: 0.9945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0744 | 1.0 | 843 | 0.0266 | 0.8945 | 0.9293 | 0.9116 | 0.9920 | | 0.016 | 2.0 | 1686 | 0.0239 | 0.9279 | 0.9446 | 0.9362 | 0.9942 | | 0.0075 | 3.0 | 2529 | 0.0247 | 0.9269 | 0.9509 | 0.9387 | 0.9945 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Bimal/my_bot_model
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: fillmaskmodel results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # fillmaskmodel This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Tokenizers 0.12.1
Blabla/Pipipopo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-25T12:35:23Z
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: syn-oct-ViT-Large-4Epochs-run1 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9416666626930237 --- # syn-oct-ViT-Large-4Epochs-run1
Blaine-Mason/hackMIT-finetuned-sst2
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 1.0 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 1.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `CAUSE`, `HIGH_BILL`, `INSTALL_METER`, `ISSUE`, `METER_CHECK`, `NEW_SERVICE`, `SITE_CHECK` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 100.00 | | `ENTS_P` | 100.00 | | `ENTS_R` | 100.00 | | `TRANSFORMER_LOSS` | 0.02 | | `NER_LOSS` | 0.01 |
Blerrrry/Kkk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: syn-oct-ViT-Base-4Epochs-run1 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9750000238418579 --- # syn-oct-ViT-Base-4Epochs-run1
BlightZz/DialoGPT-medium-Kurisu
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- language: ja license: mit datasets: - wikipedia --- # nagisa_bert A BERT model for [nagisa](https://github.com/taishi-i/nagisa). The model is available in [Transformers](https://github.com/huggingface/transformers) 🤗. A tokenizer for nagisa_bert is available [here](https://github.com/taishi-i/nagisa_bert). ## Install To use this model, the following python library must be installed. You can install [*nagisa_bert*](https://github.com/taishi-i/nagisa_bert) by using the *pip* command. Python 3.7+ on Linux or macOS is required. ```bash $ pip install nagisa_bert ``` ## Usage This model is available in Transformer's pipeline method. ```python >>> from transformers import pipeline >>> from nagisa_bert import NagisaBertTokenizer >>> text = "nagisaで[MASK]できるモデルです" >>> tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert") >>> fill_mask = pipeline("fill-mask", model='taishi-i/nagisa_bert', tokenizer=tokenizer) >>> print(fill_mask(text)) [{'score': 0.1385931372642517, 'sequence': 'nagisa で 使用 できる モデル です', 'token': 8092, 'token_str': '使 用'}, {'score': 0.11947669088840485, 'sequence': 'nagisa で 利用 できる モデル です', 'token': 8252, 'token_str': '利 用'}, {'score': 0.04910655692219734, 'sequence': 'nagisa で 作成 できる モデル です', 'token': 9559, 'token_str': '作 成'}, {'score': 0.03792576864361763, 'sequence': 'nagisa で 購入 できる モデル です', 'token': 9430, 'token_str': '購 入'}, {'score': 0.026893319562077522, 'sequence': 'nagisa で 入手 できる モデル です', 'token': 11273, 'token_str': '入 手'}] ``` Tokenization and vectorization. ```python >>> from transformers import BertModel >>> from nagisa_bert import NagisaBertTokenizer >>> text = "nagisaで[MASK]できるモデルです" >>> tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert") >>> tokens = tokenizer.tokenize(text) >>> print(tokens) ['na', '##g', '##is', '##a', 'で', '[MASK]', 'できる', 'モデル', 'です'] >>> model = BertModel.from_pretrained("taishi-i/nagisa_bert") >>> h = model(**tokenizer(text, return_tensors="pt")).last_hidden_state >>> print(h) tensor([[[-0.2912, -0.6818, -0.4097, ..., 0.0262, -0.3845, 0.5816], [ 0.2504, 0.2143, 0.5809, ..., -0.5428, 1.1805, 1.8701], [ 0.1890, -0.5816, -0.5469, ..., -1.2081, -0.2341, 1.0215], ..., [-0.4360, -0.2546, -0.2824, ..., 0.7420, -0.2904, 0.3070], [-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403], [-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]], grad_fn=<NativeLayerNormBackward0>) ``` ## Model description ### Architecture The model architecture is the same as [the BERT bert-base-uncased architecture](https://huggingface.co/bert-base-uncased) (12 layers, 768 dimensions of hidden states, and 12 attention heads). ### Training Data The models is trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 8, 2022 with [make_corpus_wiki.py](https://github.com/cl-tohoku/bert-japanese/blob/main/make_corpus_wiki.py) and [create_pretraining_data.py](https://github.com/cl-tohoku/bert-japanese/blob/main/create_pretraining_data.py). ### Training The model is trained with the default parameters of [transformers.BertConfig](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig). Due to GPU memory limitations, the batch size is set to small; 16 instances per batch, and 2M training steps. ## Tutorial You can find here a list of the notebooks on Japanese NLP using pre-trained models and transformers. | Notebook | Description | | |:----------|:-------------|------:| | [Fill-mask](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to fill in Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/fill_mask-japanese_bert_models.ipynb)| | [Feature-extraction](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb) | How to use the pipeline function in transformers to extract features from Japanese text. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/feature_extraction-japanese_bert_models.ipynb)| | [Embedding visualization](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization-japanese_bert_models.ipynb) | Show how to visualize embeddings from Japanese pre-trained models. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/embedding_visualization_japanese_bert_models.ipynb)| | [How to fine-tune a model on text classification](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb) | Show how to fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-amazon_reviews_ja.ipynb)| | [How to fine-tune a model on text classification with csv files](https://github.com/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb) | Show how to preprocess the data and fine-tune a pretrained model on a Japanese text classification task. |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/taishi-i/nagisa_bert/blob/develop/notebooks/text_classification-csv_files.ipynb)|
BlightZz/MakiseKurisu
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: syn-oct-ViT-Large-8Epochs-run1 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9666666388511658 --- # syn-oct-ViT-Large-8Epochs-run1
BogdanKuloren/continual-learning-paper-embeddings-model
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "MPNetModel" ], "model_type": "mpnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 226.89 +/- 17.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Boondong/Wandee
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: testarenz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testarenz This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2806 | 1.0 | 5533 | 1.2153 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Brona/poc_de
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-3.0 --- Japanese RoBERTa base size trained by wikipedia dump 20220905 using fairseq. Tokenizer is [japanese_roberta_tokenizer](https://github.com/k141303/japanese_roberta_tokenizer).
Brykee/BrykeeBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9205298013245033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [Tianyi98/opt-350m-finetuned-cola](https://huggingface.co/Tianyi98/opt-350m-finetuned-cola) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4133 - Accuracy: 0.92 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Bryson575x/riceboi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- **BIH (BERT Imitates Human) Model** This is finetuned model based on pretrained klue/roberta-large BIH learns the examples evaluated by native Korean speakers on the 'fit for commonsense' **How to use** Please check this git link [J-Seo/SRLev-BIH](https://github.com/J-Seo/SRLev-BIH) **BibTeX entry and citation info** ``` @inproceedings{jay2022SRLev-BIH, title={SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning}, author={Jaehyung Seo, Yoonna Jang, Jaewook Lee, Hyeonseok Moon, Sugyeong Eo, Chanjun Park, Aram So, and Heuiseok Lim}, booktitle={Proceedings of the 34th Annual Conference on Human & Cognitive Language Technology}, affilation={Korea University, NLP & AI}, month={October}, year={2022} } ```
BumBelDumBel/ZORK_AI_FANTASY
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2983 | 1.0 | 5555 | 1.2202 | | 1.0252 | 2.0 | 11110 | 1.1583 | | 0.8078 | 3.0 | 16665 | 1.1954 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-ca-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
85
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-t5-base This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16,451
null
This is a `microsoft/codebert-base-mlm` model, trained for 1,000,000 steps (with `batch_size=32`) on **C** code from the `codeparrot/github-code-clean` dataset, on the masked-language-modeling task. It is intended to be used in CodeBERTScore: [https://github.com/neulab/code-bert-score](https://github.com/neulab/code-bert-score), but can be used for any other model or task. For more information, see: [https://github.com/neulab/code-bert-score](https://github.com/neulab/code-bert-score) ## Citation If you use this model for research, please cite: ``` @article{zhou2023codebertscore, url = {https://arxiv.org/abs/2302.05527}, author = {Zhou, Shuyan and Alon, Uri and Agarwal, Sumit and Neubig, Graham}, title = {CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code}, publisher = {arXiv}, year = {2023}, } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 0.01 | 128 | 3.0141 | 18.0313 | 2.7105 | 14.1325 | 14.3393 | 18.8882 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- license: bigscience-bloom-rail-1.0 widget : - text: "அகத்தின் அழகு" example_title: "அகத்தின் அழகு" - text : "கடுகு சிறுத்தாலும்" example_title: "கடுகு சிறுத்தாலும்" - text : "யானைக்கும் அடி" example_title : "யானைக்கும் அடி" --- # GPT2-Tamil ## Model description GPT2-Tamil is a GPT-2 transformer model fine Tuned on a large corpus of Tamil data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token i only uses the inputs from 1 to i but not the future tokens. This way, the model learns an inner representation of the Tamil language that can then be used to extract features useful for downstream tasks. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ## Usage You can use this model for Tamil text generation: ```python >>> from transformers import TFGPT2LMHeadModel, GPT2Tokenizer >>> tokenizer = GPT2Tokenizer.from_pretrained("Lagstill/GPT-2-Tamil") >>> model = TFGPT2LMHeadModel.from_pretrained("Lagstill/GPT-2-Tamil") >>> text = "அகத்தின் அழகு" >>> encoded_text = tokenizer.encode(text, return_tensors='tf') >>> beam_output = model.generate( encoded_text, max_length=100, num_beams=5, temperature=0.7, no_repeat_ngram_size=2, num_return_sequences=5 ) >>> print(tokenizer.decode(beam_output[0], skip_special_tokens=True)) ``` ---