modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/bert_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - generated_from_trainer model-index: - name: final-squad-bn-qgen-banglat5-all-metric-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final-squad-bn-qgen-banglat5-all-metric-v3 This model is a fine-tuned version of [csebuetnlp/banglat5](https://huggingface.co/csebuetnlp/banglat5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Rouge1 Precision: 39.5263 - Rouge1 Recall: 37.168 - Rouge1 Fmeasure: 37.1806 - Rouge2 Precision: 17.7035 - Rouge2 Recall: 16.508 - Rouge2 Fmeasure: 16.5336 - Rougel Precision: 37.135 - Rougel Recall: 34.9177 - Rougel Fmeasure: 34.9266 - Rougelsum Precision: 37.1205 - Rougelsum Recall: 34.8982 - Rougelsum Fmeasure: 34.9129 - Bleu-1: 36.4356 - Bleu-2: 22.3217 - Bleu-3: 14.7682 - Bleu-4: 10.0865 - Meteor: 0.2051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:|:-------:|:-------:|:-------:|:-------:|:------:| | 0.5901 | 1.0 | 6769 | 0.4756 | 32.2563 | 31.3211 | 30.7652 | 12.2914 | 11.9567 | 11.6739 | 29.1321 | 28.3925 | 27.84 | 29.1291 | 28.3832 | 27.8378 | 31.9366 | 17.9528 | 10.9479 | 6.8658 | 0.1715 | | 0.5094 | 2.0 | 13538 | 0.4343 | 37.5727 | 35.6711 | 35.4661 | 16.3104 | 15.4196 | 15.3046 | 35.2059 | 33.4452 | 33.2559 | 35.1882 | 33.4395 | 33.24 | 35.1532 | 21.1183 | 13.7297 | 9.2128 | 0.1955 | | 0.4866 | 3.0 | 20307 | 0.4267 | 38.6402 | 36.2947 | 36.2796 | 16.8569 | 15.7129 | 15.7114 | 36.2902 | 34.0855 | 34.0734 | 36.2733 | 34.0723 | 34.0661 | 35.6286 | 21.554 | 14.098 | 9.5506 | 0.1996 | | 0.4732 | 4.0 | 27076 | 0.4235 | 39.3469 | 36.7357 | 36.8598 | 17.4835 | 16.2062 | 16.2677 | 36.9883 | 34.5422 | 34.6543 | 36.9783 | 34.5352 | 34.6594 | 35.9917 | 21.9745 | 14.4922 | 9.884 | 0.203 | | 0.4646 | 5.0 | 33845 | 0.4224 | 39.4223 | 37.0956 | 37.0893 | 17.6277 | 16.4682 | 16.4692 | 37.0994 | 34.896 | 34.8991 | 37.0885 | 34.8691 | 34.8811 | 36.3637 | 22.2704 | 14.7068 | 10.021 | 0.2049 | | 0.4517 | 6.0 | 40614 | 0.4231 | 39.5263 | 37.168 | 37.1806 | 17.7035 | 16.508 | 16.5336 | 37.135 | 34.9177 | 34.9266 | 37.1205 | 34.8982 | 34.9129 | 36.4356 | 22.3217 | 14.7682 | 10.0865 | 0.2051 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AnonymousSub/cline_emanuals
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: twitter-climate-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-climate-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2779 - eval_accuracy: 0.8941 - eval_f1: 0.9372 - eval_runtime: 135.2041 - eval_samples_per_second: 39.873 - eval_steps_per_second: 2.493 - epoch: 1.0 - step: 1348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cpu - Datasets 2.5.2 - Tokenizers 0.12.1
AnonymousSub/declutr-model_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: Basque_Dialects_Classification results: [] widget: - text: "Gaur eskolara etorri naiz" example_title: "Example 1" - text: "Gaur eskolara etorri naz" example_title: "Example 2" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Basque_Dialects_Classification This model is a fine-tuned version of [ixa-ehu/roberta-eus-cc100-base-cased](https://huggingface.co/ixa-ehu/roberta-eus-cc100-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4558 - F1: 0.6846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.2193610624691235e-06 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.7 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4126 | 1.0 | 9611 | 1.4626 | 0.5893 | | 1.3446 | 2.0 | 19222 | 1.5642 | 0.6421 | | 1.0157 | 3.0 | 28833 | 1.5049 | 0.6596 | | 1.3012 | 4.0 | 38444 | 1.4939 | 0.6708 | | 1.0824 | 5.0 | 48055 | 1.4558 | 0.6846 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
AnonymousSub/declutr-model_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1578421524804927490/hffLTarW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lost Ark @ TwitchCon</div> <div style="text-align: center; font-size: 14px;">@playlostark</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lost Ark @ TwitchCon. | Data | Lost Ark @ TwitchCon | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 40 | | Short tweets | 376 | | Tweets kept | 2832 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ef4be5e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @playlostark's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qttau89) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qttau89/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/playlostark') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/declutr-s10-SR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0285 | 0.61 | 5000 | 1.2520 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.12.1 - Datasets 1.12.1 - Tokenizers 0.10.3
AnonymousSub/dummy_1
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- language: - "th" tags: - "thai" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "หลายหัวดีกว่าหัวเดียว" --- # deberta-base-thai-ud-goeswith ## Model Description This is a DeBERTa(V2) model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-base-thai](https://huggingface.co/KoichiYasuoka/deberta-base-thai). ## How to Use ```py class UDgoeswith(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=self.tokenizer(text,return_offsets_mapping=True) v=w["input_ids"] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" v=[(s,e) for s,e in w["offset_mapping"] if s<e] for i,(s,e) in enumerate(v,1): q=self.model.config.id2label[p[i,h[i]]].split("|") u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=UDgoeswith("KoichiYasuoka/deberta-base-thai-ud-goeswith") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). Or without ufal.chu-liu-edmonds: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-base-thai-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("หลายหัวดีกว่าหัวเดียว")) ```
AnonymousSub/dummy_2
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
null
--- license: mit --- ### fox purple on Stable Diffusion This is the `<foxi-purple>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<foxi-purple> 0](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0004.png) ![<foxi-purple> 1](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0008.png) ![<foxi-purple> 2](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0003.png) ![<foxi-purple> 3](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0002.png) ![<foxi-purple> 4](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0001.png) ![<foxi-purple> 5](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0007.png) ![<foxi-purple> 6](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0006.png) ![<foxi-purple> 7](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0005.png)
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-model2-0910 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-0910 This model is a fine-tuned version of [theojolliffe/bart-model2-1409](https://huggingface.co/theojolliffe/bart-model2-1409) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 48 | 0.7670 | 38.9302 | 29.5801 | 37.9912 | 35.6634 | 20.0 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: syn-oct-ViT-Base-4Epochs-30c-v2-run results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8666666746139526 --- # syn-oct-ViT-Base-4Epochs-30c-v2-run
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - autotrain - translation language: - en - de datasets: - Tritkoman/autotrain-data-wwwwdsxzaa co2_eq_emissions: emissions: 13.980549591928089 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1702359709 - CO2 Emissions (in grams): 13.9805 ## Validation Metrics - Loss: 1.741 - SacreBLEU: 27.270 - Gen len: 13.747
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
This is a test, do not use it, the results are very bad.
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-10-09T13:03:31Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 7.7048287301375975 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259725 - CO2 Emissions (in grams): 7.7048 ## Validation Metrics - Loss: 0.421 - Accuracy: 0.827 - Macro F1: 0.530 - Micro F1: 0.827 - Weighted F1: 0.805 - Macro Precision: 0.579 - Micro Precision: 0.827 - Weighted Precision: 0.795 - Macro Recall: 0.513 - Micro Recall: 0.827 - Weighted Recall: 0.827 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 0.00824689737605251 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259728 - CO2 Emissions (in grams): 0.0082 ## Validation Metrics - Loss: 0.434 - Accuracy: 0.831 - Macro F1: 0.521 - Micro F1: 0.831 - Weighted F1: 0.803 - Macro Precision: 0.590 - Micro Precision: 0.831 - Weighted Precision: 0.794 - Macro Recall: 0.507 - Micro Recall: 0.831 - Weighted Recall: 0.831 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2022-10-09T13:03:45Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 0.002766545033914285 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259729 - CO2 Emissions (in grams): 0.0028 ## Validation Metrics - Loss: 6.095 - Accuracy: 0.824 - Macro F1: 0.543 - Micro F1: 0.824 - Weighted F1: 0.808 - Macro Precision: 0.572 - Micro Precision: 0.824 - Weighted Precision: 0.801 - Macro Recall: 0.543 - Micro Recall: 0.824 - Weighted Recall: 0.824 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit --- ### Roblox avatar on Stable Diffusion why am i spending time making these?, anyways. This is the `<roblox-avatar>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). photos were taken from pinterest. Here is the new concept you will be able to use as an `object`: ![<roblox-avatar> 0](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/4.jpeg) ![<roblox-avatar> 1](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/0.jpeg) ![<roblox-avatar> 2](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/3.jpeg) ![<roblox-avatar> 3](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/2.jpeg) ![<roblox-avatar> 4](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/1.jpeg)
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: syn-oct-ViT-Base-8Epochs-30c-v2-run results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.949999988079071 --- # syn-oct-ViT-Base-8Epochs-30c-v2-run
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-base_ro-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 19.6396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base_ro-finetuned-en-to-it This model is a fine-tuned version of [j0hngou/t5-base-finetuned-en-to-ro](https://huggingface.co/j0hngou/t5-base-finetuned-en-to-ro) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 1.4669 - Bleu: 19.6396 - Gen Len: 52.4247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 2.0942 | 5.6875 | 73.434 | | 2.5108 | 2.0 | 564 | 1.9725 | 6.6631 | 72.6607 | | 2.5108 | 3.0 | 846 | 1.9010 | 7.9227 | 67.01 | | 2.1659 | 4.0 | 1128 | 1.8452 | 8.9935 | 65.1027 | | 2.1659 | 5.0 | 1410 | 1.7979 | 9.4164 | 64.9827 | | 2.0288 | 6.0 | 1692 | 1.7590 | 9.6035 | 66.6933 | | 2.0288 | 7.0 | 1974 | 1.7264 | 10.7658 | 62.068 | | 1.9238 | 8.0 | 2256 | 1.6955 | 11.5779 | 59.472 | | 1.8435 | 9.0 | 2538 | 1.6729 | 12.7588 | 56.584 | | 1.8435 | 10.0 | 2820 | 1.6541 | 13.3086 | 56.1153 | | 1.775 | 11.0 | 3102 | 1.6337 | 13.8543 | 55.3307 | | 1.775 | 12.0 | 3384 | 1.6148 | 14.3566 | 55.2853 | | 1.7204 | 13.0 | 3666 | 1.5994 | 14.693 | 55.6607 | | 1.7204 | 14.0 | 3948 | 1.5838 | 15.1284 | 55.5327 | | 1.6705 | 15.0 | 4230 | 1.5742 | 15.6125 | 55.0087 | | 1.632 | 16.0 | 4512 | 1.5600 | 15.9616 | 54.052 | | 1.632 | 17.0 | 4794 | 1.5526 | 16.495 | 53.562 | | 1.5868 | 18.0 | 5076 | 1.5392 | 16.4252 | 54.4613 | | 1.5868 | 19.0 | 5358 | 1.5311 | 16.753 | 54.1853 | | 1.5656 | 20.0 | 5640 | 1.5262 | 17.0308 | 54.2473 | | 1.5656 | 21.0 | 5922 | 1.5186 | 17.3553 | 53.396 | | 1.529 | 22.0 | 6204 | 1.5121 | 17.6177 | 53.472 | | 1.529 | 23.0 | 6486 | 1.5058 | 17.6409 | 53.6847 | | 1.5071 | 24.0 | 6768 | 1.5038 | 18.2009 | 53.2327 | | 1.4903 | 25.0 | 7050 | 1.4962 | 18.4838 | 52.9587 | | 1.4903 | 26.0 | 7332 | 1.4935 | 18.5545 | 52.688 | | 1.4686 | 27.0 | 7614 | 1.4879 | 18.62 | 53.5 | | 1.4686 | 28.0 | 7896 | 1.4850 | 19.0099 | 52.34 | | 1.4511 | 29.0 | 8178 | 1.4813 | 19.0538 | 52.474 | | 1.4511 | 30.0 | 8460 | 1.4787 | 18.89 | 53.0753 | | 1.4364 | 31.0 | 8742 | 1.4756 | 19.2582 | 52.3587 | | 1.4279 | 32.0 | 9024 | 1.4739 | 19.2973 | 52.69 | | 1.4279 | 33.0 | 9306 | 1.4725 | 19.3624 | 52.694 | | 1.4172 | 34.0 | 9588 | 1.4704 | 19.5421 | 52.1667 | | 1.4172 | 35.0 | 9870 | 1.4689 | 19.4807 | 52.5487 | | 1.4141 | 36.0 | 10152 | 1.4685 | 19.5972 | 52.2733 | | 1.4141 | 37.0 | 10434 | 1.4676 | 19.5835 | 52.374 | | 1.4058 | 38.0 | 10716 | 1.4674 | 19.6374 | 52.3447 | | 1.4058 | 39.0 | 10998 | 1.4671 | 19.6105 | 52.5273 | | 1.4027 | 40.0 | 11280 | 1.4669 | 19.6396 | 52.4247 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - pt tags: - legal pipeline_tag: fill-mask model-index: - name: checkpoints results: - task: name: Fill Mask type: fill-mask metrics: - name: Loss type: loss value: 0.47251805663108826 license: cc-by-4.0 widget: - text: "Com efeito, se tal fosse possível, o Poder [MASK] – que não dispõe de função legislativa – passaria a desempenhar atribuição que lhe é institucionalmente estranha (a de legislador positivo), usurpando, desse modo, no contexto de um sistema de poderes essencialmente limitados, competência que não lhe pertence, com evidente transgressão ao princípio constitucional da separação de poderes." --- ## (BERT base) Language modeling in the legal domain in Portuguese **legal-bert-base-cased-ptbr** is a Language Model in the legal domain in Portuguese based on the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) by using a MASK objective. The model is intended to assist NLP research in the legal field, computer law and legal technology applications. Several legal texts in Portuguese were used (more information below). **Large version of the model will be available soon**. ## Pre-training corpora The pre-training corpora of **legal-bert-base-cased-ptbr** include: * 61309 - Documentos juridicos diversos | (Miscellaneous legal documents) * 751 - Petições (Recurso Extraordinário JEC) | (Petitions) * 682 - Sentenças | (Sentences) * 498 - Acordãos 2º Instancia | (2nd Instance Accords) * 469 - Agravos Recurso extraordinário | (RE grievances) * 411 - Despacho de Admissibilidade | (Admissibility Order) The data used was provided by the BRAZILIAN SUPREME FEDERAL TRIBUNAL, through the terms of use: [LREC 2020](https://ailab.unb.br/victor/lrec2020). The results of this project do not imply in any way the position of the BRAZILIAN SUPREME FEDERAL TRIBUNAL, all being the sole and exclusive responsibility of the author of the model. ## Load Pretrained Model ````python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("dominguesm/legal-bert-base-cased-ptbr") model = AutoModel.from_pretrained("dominguesm/legal-bert-base-cased-ptbr") # OR from transformers import pipeline pipe = pipeline('fill-mask', "dominguesm/legal-bert-base-cased-ptbr") ```` ## Use **legal-bert-base-cased-ptbr** variants as Language Models | Text | Masked token | Predictions | | ---------------------------------- | ------------ | ------------ | | De ordem, a Secretaria Judiciária do Supremo Tribunal Federal INTIMA a parte abaixo identificada, ou quem as suas vezes fizer, do inteiro teor do(a) despacho/decisão presente nos autos (art. 270 do Código de Processo [MASK] e art 5º da Lei 11.419/2006). | Civil | ('Civil', 0.9999), ('civil', 0.0001), ('Penal', 0.0000), ('eletrônico', 0.0000), ('2015', 0.0000) | | 2. INTIMAÇÃO da Autarquia: 2.2 Para que apresente em Juízo, com a contestação, cópia do processo administrativo referente ao benefício [MASK] em discussão na lide | previdenciário | ('ora', 0.9424), ('administrativo', 0.0202), ('doença', 0.0117), ('acidente', 0.0037), ('posto', 0.0036) | | Certifico que, nesta data, os presentes autos foram remetidos ao [MASK] para processar e julgar recurso (Agravo de Instrumento). | STF | ('Tribunal', 0.4278), ('Supremo', 0.1657), ('origem', 0.1538), ('arquivo', 0.1415), ('sistema', 0.0216) | | TEMA: 810. Validade da correção monetária e dos juros moratórios [MASK] sobre as condenações impostas à Fazenda Pública, conforme previstos no art. 1º-F da Lei 9.494/1997, com a redação dada pela Lei 11.960/2009. | incidentes | ('incidentes', 0.9979), ('incidente', 0.0021), ('aplicados', 0.0000), (',', 0.0000), ('aplicada', 0.0000) | ## Training results ```` Num examples = 353435 Num Epochs = 3 Instantaneous batch size per device = 4 Total train batch size (w. parallel, distributed & accumulation) = 32 Gradient Accumulation steps = 1 Total optimization steps = 33135 TRAIN RESULTS "epoch": 3.0 "train_loss": 0.6107781137512769 "train_runtime": 10192.1545 "train_samples": 353435 "train_samples_per_second": 104.031 "train_steps_per_second": 3.251 EVAL RESULTS "epoch": 3.0 "eval_loss": 0.47251805663108826 "eval_runtime": 126.3026 "eval_samples": 17878 "eval_samples_per_second": 141.549 "eval_steps_per_second": 4.426 "perplexity": 1.604028145934512 ```` ## Citation ``` @misc{domingues2022legal-bert-base-cased-ptbr, author = {Domingues, Maicon} title = {Language Model in the legal domain in Portuguese}, year={2022}, howpublished= {\url{https://huggingface.co/dominguesm/legal-bert-base-cased-ptbr/}} } ```
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it-b32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 9.6816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it-b32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.1496 - Bleu: 9.6816 - Gen Len: 56.5347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | No log | 1.0 | 282 | 2.9409 | 2.6764 | 69.2487 | | 3.3809 | 2.0 | 564 | 2.8277 | 2.4974 | 87.428 | | 3.3809 | 3.0 | 846 | 2.7483 | 2.6851 | 89.7887 | | 3.1255 | 4.0 | 1128 | 2.6831 | 3.1801 | 85.6927 | | 3.1255 | 5.0 | 1410 | 2.6293 | 3.6949 | 79.9467 | | 2.9965 | 6.0 | 1692 | 2.5809 | 4.0149 | 76.852 | | 2.9965 | 7.0 | 1974 | 2.5403 | 4.3463 | 74.6487 | | 2.9002 | 8.0 | 2256 | 2.5033 | 4.838 | 72.6053 | | 2.8229 | 9.0 | 2538 | 2.4694 | 5.2829 | 67.984 | | 2.8229 | 10.0 | 2820 | 2.4421 | 5.4964 | 68.986 | | 2.76 | 11.0 | 3102 | 2.4135 | 5.8118 | 66.528 | | 2.76 | 12.0 | 3384 | 2.3897 | 6.1966 | 65.052 | | 2.7051 | 13.0 | 3666 | 2.3667 | 6.452 | 64.2273 | | 2.7051 | 14.0 | 3948 | 2.3465 | 6.6428 | 63.516 | | 2.6568 | 15.0 | 4230 | 2.3265 | 6.9467 | 61.8673 | | 2.6183 | 16.0 | 4512 | 2.3101 | 7.2029 | 60.7393 | | 2.6183 | 17.0 | 4794 | 2.2954 | 7.4982 | 60.0327 | | 2.5757 | 18.0 | 5076 | 2.2799 | 7.7555 | 59.968 | | 2.5757 | 19.0 | 5358 | 2.2660 | 7.8406 | 60.0307 | | 2.5534 | 20.0 | 5640 | 2.2558 | 8.0679 | 59.0793 | | 2.5534 | 21.0 | 5922 | 2.2426 | 8.3325 | 58.5367 | | 2.5159 | 22.0 | 6204 | 2.2324 | 8.3538 | 58.6893 | | 2.5159 | 23.0 | 6486 | 2.2217 | 8.5867 | 57.7627 | | 2.4983 | 24.0 | 6768 | 2.2135 | 8.8324 | 56.7367 | | 2.4791 | 25.0 | 7050 | 2.2052 | 8.8113 | 57.4373 | | 2.4791 | 26.0 | 7332 | 2.1981 | 9.0909 | 57.0173 | | 2.4529 | 27.0 | 7614 | 2.1908 | 9.0056 | 57.802 | | 2.4529 | 28.0 | 7896 | 2.1856 | 9.2696 | 56.9773 | | 2.4395 | 29.0 | 8178 | 2.1780 | 9.2824 | 57.0007 | | 2.4395 | 30.0 | 8460 | 2.1722 | 9.2106 | 56.9893 | | 2.4277 | 31.0 | 8742 | 2.1685 | 9.4668 | 56.406 | | 2.4181 | 32.0 | 9024 | 2.1646 | 9.4992 | 56.2327 | | 2.4181 | 33.0 | 9306 | 2.1616 | 9.5054 | 56.3033 | | 2.4071 | 34.0 | 9588 | 2.1578 | 9.5093 | 56.548 | | 2.4071 | 35.0 | 9870 | 2.1554 | 9.5227 | 56.7807 | | 2.3991 | 36.0 | 10152 | 2.1532 | 9.5762 | 56.756 | | 2.3991 | 37.0 | 10434 | 2.1518 | 9.6659 | 56.5913 | | 2.3955 | 38.0 | 10716 | 2.1506 | 9.7199 | 56.5753 | | 2.3955 | 39.0 | 10998 | 2.1498 | 9.6715 | 56.558 | | 2.3913 | 40.0 | 11280 | 2.1496 | 9.6816 | 56.5347 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-10-09T14:09:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: levit-192_finetuned_on_unlabelled_IA_with_snorkel_labels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # levit-192_finetuned_on_unlabelled_IA_with_snorkel_labels This model is a fine-tuned version of [facebook/levit-192](https://huggingface.co/facebook/levit-192) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.9836 - Recall: 0.9822 - F1: 0.9829 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 253 | nan | 0.9743 | 0.9791 | 0.9766 | 0.9826 | | 0.0557 | 2.0 | 506 | nan | 0.9829 | 0.9801 | 0.9815 | 0.9863 | | 0.0557 | 3.0 | 759 | nan | 0.9836 | 0.9822 | 0.9829 | 0.9873 | | 0.0543 | 4.0 | 1012 | nan | 0.9839 | 0.9775 | 0.9807 | 0.9858 | | 0.0543 | 5.0 | 1265 | nan | 0.9616 | 0.9727 | 0.9670 | 0.9752 | | 0.0457 | 6.0 | 1518 | nan | 0.9563 | 0.9699 | 0.9629 | 0.9720 | | 0.0457 | 7.0 | 1771 | nan | 0.9822 | 0.9808 | 0.9815 | 0.9863 | | 0.0418 | 8.0 | 2024 | nan | 0.9735 | 0.9769 | 0.9752 | 0.9815 | | 0.0418 | 9.0 | 2277 | nan | 0.9832 | 0.9811 | 0.9822 | 0.9868 | | 0.0396 | 10.0 | 2530 | nan | 0.9843 | 0.9815 | 0.9829 | 0.9873 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
2022-10-09T14:10:20Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: tmphgqi7q16 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmphgqi7q16 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.2 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Appolo/TestModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.33 +/- 17.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ArvinZhuang/BiTAG-t5-large
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
2022-10-10T00:11:26Z
This model is based on [hivemind/gpt-j-6B-8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit) and increased vocabulary size to 91238. Since the existing weights are maintained, add a new vocabulary and use it for fine tuning. 이 모델은 hivemind/gpt-j-6B-8bit를 기반으로 vocabulary 크기를 91238로 늘인 것입니다. 기존 weight가 유지되고 있기 때문에 새로운 vocabulary를 추가 하여 fine tunning 하는데 사용하세요.
Ateeb/QA
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4443 - Rouge1: 0.2523 - Rouge2: 0.2151 - Rougel: 0.2477 - Rougelsum: 0.2501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.8153 | 1.0 | 7131 | 0.4937 | 0.252 | 0.2141 | 0.247 | 0.2496 | | 0.4935 | 2.0 | 14262 | 0.4474 | 0.253 | 0.2151 | 0.248 | 0.2505 | | 0.4494 | 3.0 | 21393 | 0.4443 | 0.2523 | 0.2151 | 0.2477 | 0.2501 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
Augustvember/WOKKAWOKKA
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer model-index: - name: kobigbird-bert-base-finetuned-klue-v2_epoch64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-bert-base-finetuned-klue-v2_epoch64 This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5026 | 0.55 | 500 | 1.3754 | | 0.9551 | 1.1 | 1000 | 0.9633 | | 0.8 | 1.64 | 1500 | 0.8191 | | 0.6182 | 2.19 | 2000 | 0.7808 | | 0.5731 | 2.74 | 2500 | 0.7482 | | 0.3699 | 3.29 | 3000 | 0.8175 | | 0.3634 | 3.84 | 3500 | 0.8139 | ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Augustvember/WokkaBot99
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/emmarkgadgets/1666104626415/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1577618253312040962/_WR59faP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Emmark</div> <div style="text-align: center; font-size: 14px;">@emmarkgadgets</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Emmark. | Data | Emmark | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 200 | | Short tweets | 2112 | | Tweets kept | 937 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zjdekgzp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @emmarkgadgets's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uheep0ve) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uheep0ve/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/emmarkgadgets') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Augustvember/WokkaBotF
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model sajidhameed63/urdu_fine_tuning_check is restricted and you are not in the authorized list. Visit https://huggingface.co/sajidhameed63/urdu_fine_tuning_check to ask for access.
Axon/resnet18-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: unknown language: - en tags: - mlconsole library_name: mlconsole metrics: - mae - loss model-index: - name: house_price_prediction results: - task: type: regression name: regression dataset: type: house price prediction name: House price prediction metrics: - type: mae name: Mean absolute error value: 5.466085910797119 - type: loss name: Model loss value: 57.81909942626953 --- # House price prediction (#0) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/osanseviero/house_price_prediction).
Aybars/ModelOnWhole
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - mlconsole - tabular-regression library_name: mlconsole inference: false datasets: - julien-c/kaggle-rounakbanik-pokemon metrics: - mae - loss model-index: - name: pokemon-predict-hp results: - task: type: tabular-regression name: tabular-regression dataset: type: julien-c/kaggle-rounakbanik-pokemon name: pokemon.csv metrics: - type: mae name: Mean absolute error value: 15.908513069152832 - type: loss name: Model loss value: 647.6045532226562 --- # pokemon.csv (#0) Trained on [ML Console](https://mlconsole.com) on the [julien-c/kaggle-rounakbanik-pokemon](https://huggingface.co/datasets/julien-c/kaggle-rounakbanik-pokemon). [Load the model on ML Console](https://mlconsole.com/model/hf/julien-c/pokemon-predict-hp). ### Screenshots of training ![](screenshots/training-curve.png) ![](screenshots/predict.png)
Ayham/distilbert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
Access to model Datasculptor/portrait-sculpture-in-the-style-of-sigfried-gross is restricted and you are not in the authorized list. Visit https://huggingface.co/Datasculptor/portrait-sculpture-in-the-style-of-sigfried-gross to ask for access.
Ayran/DialoGPT-medium-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - bn - gu - hi - mr - ne - or - pa - sa - ur library_name: transformers pipeline_tag: fill-mask --- # IA-Original IA-Original is a multilingual RoBERTa model pre-trained exclusively on 11 Indian languages from the Indo-Aryan language family. It is pre-trained on the monolingual corpora of these languages and subsequently evaluated on a set of diverse tasks. The 11 languages covered by IA-Original are: Bhojpuri, Bengali, Gujarati, Hindi, Magahi, Marathi, Nepali, Oriya, Punjabi, Sanskrit, Urdu. The code can be found [here](https://github.com/IBM/NL-FM-Toolkit). For more information, check-out our [paper](https://aclanthology.org/2021.emnlp-main.675/). ## Pretraining Corpus We pre-trained IA-Original on the publicly available monolingual corpus. The corpus has the following distribution of languages: | **Language** | **\# Sentences** | **\# Tokens** | | | :------------ | ---------------: | ------------: | ------------: | | | | **\# Total** | **\# Unique** | | Hindi (hi) | 1552\.89 | 20,098\.73 | 25\.01 | | Bengali (bn) | 353\.44 | 4,021\.30 | 6\.5 | | Sanskrit (sa) | 165\.35 | 1,381\.04 | 11\.13 | | Urdu (ur) | 153\.27 | 2,465\.48 | 4\.61 | | Marathi (mr) | 132\.93 | 1,752\.43 | 4\.92 | | Gujarati (gu) | 131\.22 | 1,565\.08 | 4\.73 | | Nepali (ne) | 84\.21 | 1,139\.54 | 3\.43 | | Punjabi (pa) | 68\.02 | 945\.68 | 2\.00 | | Oriya (or) | 17\.88 | 274\.99 | 1\.10 | | Bhojpuri (bh) | 10\.25 | 134\.37 | 1\.13 | | Magahi (mag) | 0\.36 | 3\.47 | 0\.15 | ## Evaluation Results IA-Original is evaluated on IndicGLUE and some additional tasks. For more details about the tasks, refer to the [paper](https://aclanthology.org/2021.emnlp-main.675/). ## Downloads You can also download it from [Huggingface](https://huggingface.co/ibm/ia-multilingual-original-script-roberta). ## Citing If you are using any of the resources, please cite the following article: ``` @inproceedings{dhamecha-etal-2021-role, title = "Role of {L}anguage {R}elatedness in {M}ultilingual {F}ine-tuning of {L}anguage {M}odels: {A} {C}ase {S}tudy in {I}ndo-{A}ryan {L}anguages", author = "Dhamecha, Tejas and Murthy, Rudra and Bharadwaj, Samarth and Sankaranarayanan, Karthik and Bhattacharyya, Pushpak", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.675", doi = "10.18653/v1/2021.emnlp-main.675", pages = "8584--8595", } ``` ## Contributors - Tejas Dhamecha - Rudra Murthy - Samarth Bharadwaj - Karthik Sankaranarayanan - Pushpak Bhattacharyya ## Contact - Rudra Murthy ([[email protected]](mailto:[email protected]))
Ayran/DialoGPT-medium-harry-potter-1-through-4-plus-6-e18
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-10-10T12:21:04Z
--- tags: - generated_from_keras_callback model-index: - name: layoutlm-funsd-tf results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd-tf This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2280 - Validation Loss: 0.6532 - Train Overall Precision: 0.7218 - Train Overall Recall: 0.7878 - Train Overall F1: 0.7534 - Train Overall Accuracy: 0.8144 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| | 1.6940 | 1.4151 | 0.2686 | 0.2785 | 0.2735 | 0.5128 | 0 | | 1.1731 | 0.8665 | 0.5771 | 0.6101 | 0.5932 | 0.7267 | 1 | | 0.7612 | 0.6849 | 0.6362 | 0.7336 | 0.6814 | 0.7784 | 2 | | 0.5630 | 0.6265 | 0.6748 | 0.7592 | 0.7145 | 0.8017 | 3 | | 0.4441 | 0.6256 | 0.6935 | 0.7767 | 0.7328 | 0.8036 | 4 | | 0.3641 | 0.6402 | 0.7115 | 0.7772 | 0.7429 | 0.7940 | 5 | | 0.2781 | 0.6248 | 0.7176 | 0.7868 | 0.7506 | 0.8141 | 6 | | 0.2280 | 0.6532 | 0.7218 | 0.7878 | 0.7534 | 0.8144 | 7 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.10.0 - Datasets 2.5.2 - Tokenizers 0.12.1
AyushPJ/ai-club-inductions-21-nlp-ELECTRA-base-squad
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "ElectraForQuestionAnswering" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask arxiv: 2210.05529 language: en thumbnail: https://github.com/coastalcph/hierarchical-transformers/raw/main/data/figures/hat_encoder.png tags: - long-documents datasets: - c4 model-index: - name: kiddothe2b/hierarchical-transformer-base-4096 results: [] --- # Hierarchical Attention Transformer (HAT) / hierarchical-transformer-base-4096 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=hierarchical-transformer) to look for other versions of HAT or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelForForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-base-4096", trust_remote_code=True) mlm_model = AutoModelForMaskedLM("kiddothe2b/hierarchical-transformer-base-4096", trust_remote_code=True) ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelForSequenceClassification.from_pretrained("kiddothe2b/hierarchical-transformer-base-4096", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint and has been continued pre-trained for additional 50k steps in long sequences (> 1024 subwords) of [C4](https://huggingface.co/datasets/c4) (Raffel et al., 2020). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.7437 | 0.2 | 10000 | 1.6370 | | 1.6994 | 0.4 | 20000 | 1.6054 | | 1.6726 | 0.6 | 30000 | 1.5718 | | 1.644 | 0.8 | 40000 | 1.5526 | | 1.6299 | 1.0 | 50000 | 1.5368 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
AyushPJ/ai-club-inductions-21-nlp-distilBERT
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - cuad model-index: - name: bert-finetuned-cuad-legalbert1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-cuad-legalbert1 This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the cuad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AyushPJ/test-squad-trained-finetuned-squad
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit --- <strong>Classifier of event reported in vaccine-related content in Italian language</strong></br> A monolingual model for classifying the nature of the event reported in vaccine-related content in Italian language. The model was trained on 36,722 and independently tested on 9,299 social media content between Facebook posts, Twitter tweets, Instagram media and YouTube videos. It is a fine-tuned version of bert-base-multilingual-cased. <strong>Model output</strong></br> The model classifies each input into one of three distinct classes:</br> <ul> <li>Adverse</li> <li>Neutral</li> <li>Positive</li> </ul> <strong>Citation info and BibTeX entry</strong></br> <a href="https://arxiv.org/abs/2301.05961" target="_blank">https://arxiv.org/abs/2301.05961</a> ```bibtex @article{, title={Unveiling the Hidden Agenda: Biases in News Reporting and Consumption}, author={Galeazzi, Alessandro and Peruzzi, Antonio and Brugnoli, Emanuele and Delmastro, Marco and Zollo, Fabiana}, journal={ArXiv}, year={2023}, volume={abs/2301.05961} } ```
Azizun/Geotrend-10-epochs
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-10-10T13:38:05Z
--- tags: - espnet - audio - text-to-speech language: jp datasets: - ErodeesFleurs license: cc-by-4.0 --- ## ESPnet2 TTS model ### `ErodeesFleurs/Amtmp` ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout d5b5ec7b2e77bd3e10707141818b7e6c57ac6b3f pip install -e . cd egs2/amadeus/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model ErodeesFleurs/Amtmp ``` ## TTS config <details><summary>expand</summary> ``` config: conf/tuning/finetune_vits.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_amadeus_vits_finetune_from_jsut_32_sentence ngpu: 1 seed: 777 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 2000 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: true wandb_project: amadeus wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - downloads/f3698edf589206588f58f5ec837fa516/exp/tts_train_vits_raw_phn_jaconv_pyopenjtalk_accent_with_pause/train.total_count.ave_10best.pth:tts:tts ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 5000000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/train/speech_shape valid_shape_file: - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/text_shape.phn - exp/tts_stats_raw_linear_spectrogram_phn_jaconv_pyopenjtalk_accent_with_pause/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/22k/raw/train/text - text - text - - dump/22k/raw/train/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/22k/raw/dev/text - text - text - - dump/22k/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.999875 optim2: adamw optim2_conf: lr: 0.0001 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.999875 generator_first: false token_list: - <blank> - <unk> - '1' - '2' - '0' - '3' - '4' - '-1' - '5' - a - o - '-2' - i - '-3' - u - e - k - n - t - '6' - r - '-4' - s - N - m - pau - '7' - sh - d - g - w - '8' - U - '-5' - I - cl - h - y - b - '9' - j - ts - ch - '-6' - z - p - '-7' - f - ky - ry - '-8' - gy - '-9' - hy - ny - '-10' - by - my - '-11' - '-12' - '-13' - py - '-14' - '-15' - v - '10' - '-16' - '-17' - '11' - '-21' - '-20' - '12' - '-19' - '13' - '-18' - '14' - dy - '15' - ty - '-22' - '16' - '18' - '19' - '17' - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: jaconv g2p: pyopenjtalk_accent_with_pause feats_extract: linear_spectrogram feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null normalize: null normalize_conf: {} tts: vits tts_conf: generator_type: vits_generator generator_params: hidden_channels: 192 spks: -1 global_channels: -1 segment_size: 32 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 2 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 4 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 5 posterior_encoder_layers: 16 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: 4 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true stochastic_duration_predictor_kernel_size: 3 stochastic_duration_predictor_dropout_rate: 0.5 stochastic_duration_predictor_flows: 4 stochastic_duration_predictor_dds_conv_layers: 3 vocabs: 85 aux_channels: 513 discriminator_type: hifigan_multi_scale_multi_period_discriminator discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 16 bias: true downsample_scales: - 2 - 2 - 4 - 4 - 1 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 22050 n_fft: 1024 hop_length: 256 win_length: null window: hann n_mels: 80 fmin: 0 fmax: null log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 1.0 lambda_kl: 1.0 sampling_rate: 22050 cache_generator_outputs: true pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Azuris/DialoGPT-medium-senorita
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-10-10T13:44:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4671 | 0.5 | 2767 | 1.3471 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
BAHIJA/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- language: en thumbnail: http://www.huggingtweets.com/angelicismbj/1667671357876/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1578378077826330624/CWUsJU25_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">angelicism beijing</div> <div style="text-align: center; font-size: 14px;">@angelicismbj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from angelicism beijing. | Data | angelicism beijing | | --- | --- | | Tweets downloaded | 2366 | | Retweets | 213 | | Short tweets | 352 | | Tweets kept | 1801 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c813g98z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angelicismbj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/46oix6b0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/46oix6b0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angelicismbj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BME-TMIT/foszt2oszt
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2022-10-10T14:01:22Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 69.30 +/- 7.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BSC-LT/roberta-base-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-10-10T14:42:01Z
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - c4 model-index: - name: kiddothe2b/adhoc-hierarchical-transformer-base-4096 results: [] --- # Hierarchical Attention Transformer (HAT) / kiddothe2b/adhoc-hierarchical-transformer-base-4096 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), BUT has not been continued pre-trained. It supports sequences of length up to 4,096. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. Note: If you wish to use a fully pre-trained HAT model, you have to use [kiddothe2b/adhoc-hat-base-4096](https://huggingface.co/kiddothe2b/adhoc-hat-base-4096). ## Intended uses & limitations The model is intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=hierarchical-transformer) to look for other versions of HAT, or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/adhoc-hierarchical-transformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelForSequenceClassification("kiddothe2b/adhoc-hierarchical-transformer-base-4096", trust_remote_code=True) ``` Note: If you wish to use a fully pre-trained HAT model, you have to use [kiddothe2b/hierarchical-transformer-base-4096](https://huggingface.co/kiddothe2b/hierarchical-transformer-base-4096). ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint. ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
BSC-LT/roberta-large-bne-capitel-pos
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2022-10-10T14:56:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="CoenSchouten/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
BSen/wav2vec2-large-xls-r-300m-turkish-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-10-10T15:10:09Z
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask arxiv: 2210.05529 language: en tags: - long-documents datasets: - c4 model-index: - name: kiddothe2b/longformer-base-4096 results: [] --- # Longformer / longformer-base-4096 ## Model description [Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), and continued pre-trained for MLM in long sequences following the paradigm of original Longformer released by Beltagy et al. (2020). It supports sequences of length up to 4,096. Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=longformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification or question answering. ## How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-base-4096', trust_remote_code=True) mlm_model("Hello I'm a <mask> model.") ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/longformer-base-4096", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint and has been continued pre-trained for additional 50k steps in long sequences (> 1024 subwords) of [C4](https://huggingface.co/datasets/c4) (Raffel et al., 2020). ### Training hyperparameters TThe following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7067 | 0.2 | 10000 | 1.5923 | 0.6714 | | 1.6532 | 0.4 | 20000 | 1.5494 | 0.6784 | | 1.622 | 0.6 | 30000 | 1.5208 | 0.6830 | | 1.588 | 0.8 | 40000 | 1.4880 | 0.6876 | | 1.5682 | 1.0 | 50000 | 1.4680 | 0.6908 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ``` Also cite the original work: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150). ``` @article{Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={Iz Beltagy and Matthew E. Peters and Arman Cohan}, journal={arXiv:2004.05150}, year={2020}, } ```
Backedman/DialoGPT-small-Anika
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-10-10T15:31:26Z
--- license: mit --- ### wojak on Stable Diffusion This is the `wojak` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![wojak 0](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/4.jpeg) ![wojak 1](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/8.jpeg) ![wojak 2](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/5.jpeg) ![wojak 3](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/9.jpeg) ![wojak 4](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/0.jpeg) ![wojak 5](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/7.jpeg) ![wojak 6](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/3.jpeg) ![wojak 7](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/2.jpeg) ![wojak 8](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/6.jpeg) ![wojak 9](https://huggingface.co/sd-concepts-library/wojak/resolve/main/concept_images/1.jpeg)
Bagus/ser-japanese
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Alt41r/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: mit --- This is a test readme doddodododo mlm
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it-lrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it-lrs This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1483 - Bleu: 10.4962 - Gen Len: 51.8247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.9618 | 1.0 | 1125 | 2.8717 | 4.6688 | 66.512 | | 1.7256 | 2.0 | 2250 | 2.7638 | 6.5673 | 56.7267 | | 1.6133 | 3.0 | 3375 | 2.6703 | 7.4218 | 55.1753 | | 1.5132 | 4.0 | 4500 | 2.6096 | 7.9581 | 54.5387 | | 1.4558 | 5.0 | 5625 | 2.5603 | 8.5191 | 52.41 | | 1.4392 | 6.0 | 6750 | 2.5109 | 8.976 | 52.1867 | | 1.4113 | 7.0 | 7875 | 2.4768 | 9.2615 | 51.8907 | | 1.3669 | 8.0 | 9000 | 2.4447 | 9.3001 | 52.6 | | 1.3575 | 9.0 | 10125 | 2.4262 | 9.5818 | 51.774 | | 1.3315 | 10.0 | 11250 | 2.3906 | 9.584 | 52.3213 | | 1.3231 | 11.0 | 12375 | 2.3740 | 9.7574 | 51.63 | | 1.2917 | 12.0 | 13500 | 2.3475 | 9.8298 | 51.6367 | | 1.282 | 13.0 | 14625 | 2.3269 | 9.8176 | 52.06 | | 1.2841 | 14.0 | 15750 | 2.3121 | 9.9668 | 51.9487 | | 1.2548 | 15.0 | 16875 | 2.2993 | 9.9941 | 51.708 | | 1.2487 | 16.0 | 18000 | 2.2816 | 10.0288 | 52.364 | | 1.2462 | 17.0 | 19125 | 2.2697 | 10.1991 | 51.3893 | | 1.232 | 18.0 | 20250 | 2.2581 | 10.2667 | 51.6693 | | 1.2227 | 19.0 | 21375 | 2.2428 | 10.3357 | 51.5373 | | 1.2279 | 20.0 | 22500 | 2.2350 | 10.3646 | 51.4633 | | 1.2159 | 21.0 | 23625 | 2.2275 | 10.3489 | 51.472 | | 1.2036 | 22.0 | 24750 | 2.2186 | 10.3756 | 51.444 | | 1.2089 | 23.0 | 25875 | 2.2082 | 10.3555 | 51.7133 | | 1.1957 | 24.0 | 27000 | 2.2016 | 10.4624 | 51.4293 | | 1.1828 | 25.0 | 28125 | 2.1953 | 10.4474 | 51.4287 | | 1.1885 | 26.0 | 29250 | 2.1887 | 10.3417 | 51.4227 | | 1.1817 | 27.0 | 30375 | 2.1844 | 10.4777 | 51.5787 | | 1.1769 | 28.0 | 31500 | 2.1759 | 10.4044 | 51.5907 | | 1.1831 | 29.0 | 32625 | 2.1728 | 10.4434 | 51.6587 | | 1.1842 | 30.0 | 33750 | 2.1706 | 10.4136 | 51.7653 | | 1.1828 | 31.0 | 34875 | 2.1689 | 10.5099 | 51.5893 | | 1.1673 | 32.0 | 36000 | 2.1613 | 10.4957 | 51.646 | | 1.1603 | 33.0 | 37125 | 2.1570 | 10.4438 | 51.6633 | | 1.1718 | 34.0 | 38250 | 2.1564 | 10.5364 | 51.7113 | | 1.1651 | 35.0 | 39375 | 2.1538 | 10.4444 | 51.6593 | | 1.1756 | 36.0 | 40500 | 2.1501 | 10.4497 | 51.7393 | | 1.1595 | 37.0 | 41625 | 2.1499 | 10.4701 | 51.7313 | | 1.1603 | 38.0 | 42750 | 2.1499 | 10.4611 | 51.7533 | | 1.1586 | 39.0 | 43875 | 2.1487 | 10.4776 | 51.836 | | 1.161 | 40.0 | 45000 | 2.1483 | 10.4962 | 51.8247 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
BatuhanYilmaz/dummy-model
[ "tf", "camembert", "fill-mask", "transformers", "generated_from_keras_callback", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - julien-c/kaggle-rounakbanik-pokemon model-index: - name: pokemon_is_legendary results: - task: type: tabular-classification name: tabular-classification dataset: type: julien-c/kaggle-rounakbanik-pokemon name: pokemon.csv metrics: - type: accuracy name: Accuracy value: 1 - type: loss name: Model loss value: 0.314619243144989 --- # pokemon.csv (#0) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/pokemon_is_legendary).
BatuhanYilmaz/dummy
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: unknown inference: false tags: - mlconsole - tabular-regression library_name: mlconsole metrics: - mae - loss datasets: - julien-c/kaggle-rounakbanik-pokemon model-index: - name: pokemon_hp results: - task: type: tabular-regression name: tabular-regression dataset: type: julien-c/kaggle-rounakbanik-pokemon name: julien-c/kaggle-rounakbanik-pokemon metrics: - type: mae name: Mean absolute error value: 4.479848861694336 - type: loss name: Model loss value: 51.252288818359375 --- # pokemon.csv (1) (#1) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/pokemon_hp).
BatuhanYilmaz/marian-finetuned-kde4-en-to-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - timelms - twitter license: mit datasets: - twitter-api --- # Twitter June 2022 (RoBERTa-base, 154M) This is a RoBERTa-base model trained on 153.86M tweets until the end of June 2022 (15M tweets increment). More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.35668 not 2) 0.27636 fully 3) 0.18418 getting 4) 0.03197 still 5) 0.02259 triple ------------------------------ I keep forgetting to bring a <mask>. 1) 0.04261 book 2) 0.04233 backpack 3) 0.04161 charger 4) 0.03892 mask 5) 0.03636 lighter ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.55292 the 2) 0.17813 The 3) 0.03052 this 4) 0.01565 Championship 5) 0.01391 End ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.98951 The movie was great 2) 0.96042 Just finished reading 'Embeddings in NLP' 3) 0.95454 I just ordered fried chicken 🐣 4) 0.95148 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
BatuhanYilmaz/mt5-small-finetuned-amazonbooks-en-es
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Bee-Garbs/DialoGPT-real-cartman-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-10-10T18:28:25Z
--- license: unknown inference: false tags: - mlconsole - tabular-classification library_name: mlconsole metrics: - accuracy - loss datasets: - train.csv model-index: - name: titanic-survival-with-ml-console results: - task: type: tabular-classification name: tabular-classification dataset: type: train.csv name: train.csv metrics: - type: accuracy name: Accuracy value: 0.7882882952690125 - type: loss name: Model loss value: 0.5075606107711792 --- # train.csv (#2) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/victor/titanic-survival-with-ml-console).
BenWitter/DialoGPT-small-Tyrion
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-10-10T19:02:20Z
--- tags: - autotrain - translation language: - en - nl datasets: - Tritkoman/autotrain-data-wdwssqddwd co2_eq_emissions: emissions: 0.642110734276787 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1716860020 - CO2 Emissions (in grams): 0.6421 ## Validation Metrics - Loss: 0.741 - SacreBLEU: 31.314 - Gen len: 14.605
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-10-10T19:21:36Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: flaubert_base_cased-finetuned-DOP6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flaubert_base_cased-finetuned-DOP6 This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4109 - Accuracy: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9735 | 1.0 | 110 | 0.6360 | 0.7955 | | 0.6305 | 2.0 | 220 | 0.4801 | 0.8227 | | 0.4992 | 3.0 | 330 | 0.4163 | 0.8545 | | 0.4172 | 4.0 | 440 | 0.4109 | 0.8591 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
Bharathdamu/wav2vec2-large-xls-r-300m-hindi2-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-10-10T19:28:20Z
--- language: nl datasets: - common_voice tags: - audio - automatic-speech-recognition - phoneme-recognition model-index: - name: wav2vec2-base-960h-phoneme-reco-dutch results: - task: name: Automatic Phoneme Recognition type: automatic-phoneme-recognition dataset: name: CommonVoice (clean) type: librispeech_asr config: clean split: test args: language: nl metrics: - name: Test PER type: per value: 20.83 - name: Val PER type: per value: 16.18 --- # Model Description The Wav2vec2 base model [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) fine tuned on phoneme recognition task for the dutch language. # Usage To transcribe in phonemes audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("Clementapa/wav2vec2-base-960h-phoneme-reco-dutch") model = Wav2Vec2ForCTC.from_pretrained("Clementapa/wav2vec2-base-960h-phoneme-reco-dutch") # load dummy dataset and read soundfiles ds = load_dataset("common_voice", "nl", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```
BigSalmon/GPTNeo350MInformalToFormalLincoln5
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-10-11T01:08:51Z
Pre-trained evaluator in EMNLP 2022 paper *[Towards a Unified Multi-Dimensional Evaluator for Text Generation](https://arxiv.org/abs/2210.07197)* ## Introduction **Multi-dimensional evaluation** is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics (e.g., ROUGE, BLEU), but they are not sufficient to portray the difference between the advanced generation models. Therefore, we propose **UniEval** to bridge this gap so that a more comprehensive and fine-grained evaluation of NLG systems can be achieved. ## Pre-trained Evaluator **unieval-dialog** is the pre-trained evaluator for the dialogue response generation task. It can evaluate the model output from five dimensions: - *naturalness* - *coherence* - *engagingness* - *groundedness* - *understandability* ## Usage Please refer to [our GitHub repository](https://github.com/maszhongming/UniEval).
BigSalmon/InfillFormalLincoln
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-10-11T01:51:32Z
--- license: mit --- ### muxoyara on Stable Diffusion This is the `<muxoyara>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<muxoyara> 0](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/0.jpeg) ![<muxoyara> 1](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/9.jpeg) ![<muxoyara> 2](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/3.jpeg) ![<muxoyara> 3](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/4.jpeg) ![<muxoyara> 4](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/14.jpeg) ![<muxoyara> 5](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/6.jpeg) ![<muxoyara> 6](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/10.jpeg) ![<muxoyara> 7](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/13.jpeg) ![<muxoyara> 8](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/1.jpeg) ![<muxoyara> 9](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/17.jpeg) ![<muxoyara> 10](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/16.jpeg) ![<muxoyara> 11](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/5.jpeg) ![<muxoyara> 12](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/12.jpeg) ![<muxoyara> 13](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/8.jpeg) ![<muxoyara> 14](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/2.jpeg) ![<muxoyara> 15](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/11.jpeg) ![<muxoyara> 16](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/15.jpeg) ![<muxoyara> 17](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/19.jpeg) ![<muxoyara> 18](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/7.jpeg) ![<muxoyara> 19](https://huggingface.co/sd-concepts-library/muxoyara/resolve/main/concept_images/18.jpeg)
BigSalmon/MrLincoln3
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
2022-10-11T04:02:18Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1859.98 +/- 54.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/MrLincoln4
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-10-11T04:24:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 197.81 +/- 75.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/MrLincoln6
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-10-11T04:37:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: testmodel results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.697 - name: F1 type: f1 value: 0.697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testmodel This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.7132 - Accuracy: 0.697 - F1: 0.697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
BigSalmon/MrLincoln7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-10-11T04:38:01Z
--- language: - as tags: - Assamese pos tagger - pos tagger for Assamese - flair based pos tagging model metrics: - F1 score --- # AsPOS: Pre-trained model for Assamese POS tagging AsPOS is a pre-trained POS tagging model focusing on Assamese language. Stacked embedding (MuRIL + FlairEmbedding) and BiLSTM-CRF model are used to train the model. It achieves an F1-score of 74.62% in POS tagging with 41 POS tagset. ## Annotated Assamese POS tagged dataset The dataset has been annotated by an automatic POS tagger, of which the accuracy is 74.62%. After that, it is manually corrected. The dataset is split into three parts for model training, those are train.txt, dev.txt, and test.txt. ## Requirements - It requires python 3.6+ - Install [Flair](https://github.com/flairNLP/flair) (Version: 0.9.0) preferably in virtual environment, ## How to run Download the pre-trained model from the link- [AsPOS](https://huggingface.co/dpathak/aspos_assamese_pos_tagger/blob/main/AsPOS.pt). ``` from flair.models import SequenceTagger from flair.data import Sentence, Token # Load the tagger model = SequenceTagger.load('AsPOS.pt') # create example sentence sen='ফুকন বসুমতাৰী এজন অধ্য়াপক । তেওঁ বৰ্তমান কোকৰাঝাৰত থাকে ।' sentence = Sentence(sen) # predict tags and print model.predict(sentence) print(sentence.to_tagged_string()) ফুকন <N_NNP> বসুমতাৰী <N_NN> এজন <QT_QTF> অধ্য়াপক <N_NN> । <RD_PUNC> তেওঁ <PR_PRP> বৰ্তমান <RB> কোকৰাঝাৰত <N_NNP> থাকে <V_VM> । <RD_PUNC> # create example sentence sen='মাতৃভাষাৰ সমান্তৰালকৈ সংস্কৃত, ইংৰাজী ভাষাৰ চৰ্চা অত্যন্ত জৰুৰী ৷' sentence = Sentence(sen) # predict tags and print model.predict(sentence) print(sentence.to_tagged_string() মাতৃভাষাৰ <N_NN> সমান্তৰালকৈ <N_NN> সংস্কৃত <N_NNP> , <RD_PUNC> ইংৰাজী <N_NNP> ভাষাৰ <N_ANN> চৰ্চা <N_NN> অত্যন্ত <RP_INTF> জৰুৰী <N_NN> ৷ <RD_PUNC> ``` ----- ``` # If you use our model, please cite this paper: @INPROCEEDINGS{10017934, author={Pathak, Dhrubajyoti and Nandi, Sukumar and Sarmah, Priyankoo}, booktitle={2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA)}, title={AsPOS: Assamese Part of Speech Tagger using Deep Learning Approach}, year={2022}, volume={}, number={}, pages={1-8}, doi={10.1109/AICCSA56895.2022.10017934}}
BigSalmon/SimplifyText
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
2022-10-11T05:59:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 573.50 +/- 171.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hezzze -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hezzze -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga hezzze ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/T5Salmon2
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
13
null
--- datasets: - bigscience/P3 language: en license: apache-2.0 --- **Official repository**: [seonghyeonye/Flipped-Learning](https://github.com/seonghyeonye/Flipped-Learning) # Model Description FLIPPED uses a unique meta-learning method to show zero-shot task generalization on classification natural language prompts, outperforming GPT-3 and T0-11B on many tasks with a 4x smaller scale. It is a series of encoder-decoder model trained on a numerous classification dataset. We show inputs and its corresponding outputs of each instances in each dataset to FLIPPED, and train it to generate its possible instruction. We add unlikelihood loss in order **not** to generate the instruction when given the same input, but a wrong output. To obtain FLIPPED, we fine-tune a T5 model in a given scale on a multitask mixture covering many different classification NLP tasks. # Intended uses You can use the models to perform inference on tasks by specifying your input-output NLP query in a "input: {input}\noutput: {output}" form , and the model will predict the instruction. For example, You can try *"input: <extra_id_0> this is the best cast iron skillet you will ever buy<extra_id_1>\noutput: Positive"* as an input, and the model will hopefully generate *"Title: Review:"*. # How to use Our overall explanation models along with ablations can be found in our [paper](https://arxiv.org/abs/2210.02969). We recommend using the [FLIPPED-11B](seonghyeonye/flipped_11B) checkpoint as it leads (on average) to the best performances on a variety of NLP tasks. |Model|Number of parameters| |-|-| |[Flipped_11B](https://huggingface.co/seonghyeonye/flipped_11B)|11 billion| |[Flipped_3B](https://huggingface.co/seonghyeonye/flipped_3B)|3 billion| Here is how to download the model in PyTorch: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("seonghyeonye/flipped_11B") tokenizer = T5Tokenizer.from_pretrained("seonghyeonye/flipped_11B") ``` If you want to use another checkpoint, please replace the path in `T5Tokenizer` and `T5ForConditionalGeneration`. We also provide a quick [Jupyter Notebook](https://github.com/seonghyeonye/Flipped-Learning/blob/master/flipped_inference.ipynb) where you can inference with our method. **Note: the model was trained with bfloat16 activations. As such, we highly discourage running inference with fp16.** # Training procedure FLIPPED models are based on [T5](https://huggingface.co/google/t5-v1_1-xxl), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). At a high level, the input text along with output label is fed to the encoder and the instruction text is produced by the decoder. The model is fine-tuned to autoregressively generate the target. We also feed input text along with a wrong input, adding an unlikelihood loss in order not to make model produce the proper instruction in that case. Here are our training details. Training details: - Fine-tuning steps: 5'000 - Input sequence length: 384 - Target sequence length: 64 - Batch size: 240 - Optimizer: Adafactor - Learning rate: 5e-5 - Dropout: 0.1 - Sampling strategy: proportional to the number of examples in each dataset (we randomly sampled any dataset if it has over 500'000 examples so that it has at most 500'000 examples. Also, we randomly choose which instruction to generate for each training steps, so ideally each instruction appears *num_examples/num_templates* while training.) # Training data We trained different variants T0 with different mixtures of datasets. |Model|Training datasets| |--|--| |FLIPPED-11B|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Topic Classification: AG News, DBPedia<br>- Paraphrase Identification: MRPC, PAWS, QQP| |FLIPPED_3B|Same as FLIPPED-11B| We only choose prompts examples that has output lables, which can be found on the dataset page. # Evaluation data We evaluate our models on following datasets: |Task category|Datasets| |-|-| |Natural language inference|ANLI(R1, R2, R3), CB, RTE| |Coreference resolution|WSC, Winogrande| |Word sense disambiguation|WiC| |Sentence completion|COPA, HellaSwag, Story Cloze| |QA|PIQA, ARC-Challenge, OpenbookQA| We also evaluate FLIPPED on a subset of [BIG-bench benchmark](https://github.com/google/BIG-bench): - Code description task - Conceptual combinations - Hindu knowledge json - Known unknowns - Language identification - Logic grid puzzle task - Logical deduction - Common misconceptions - Movie dialog same or different - Novel concepts - Strategyqa - Formal fallacies syllogisms negation - VitaminC - Winowhy multiple choice # Label generalization We evaluate the robustness of models on following datasets with changing the output label of the datasets. The substitute words can be found in our [paper](https://arxiv.org/abs/2210.02969). |Task category|(Datasets, Template name)| |-|-| |Unseen tasks|(WSC, does the pronoun refer to), (CB, can we infer), (RTE, MNLI crowdsource)| |Seen tasks|(IMDB, Reviewer Enjoyment Yes No), (PAWS, Meaning) | The template name we used can be found in the [promptsource template library](https://github.com/bigscience-workshop/promptsource/tree/main/promptsource/templates). # BibTeX entry and citation info ```bibtex @article{ye2022guess, title={Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners}, author={Ye, Seonghyeon and Kim, Doyoung and Jang, Joel and Shin, Joongbo and Seo, Minjoon}, journal={arXiv preprint arXiv:2210.02969}, year={2022} } ```
BillelBenoudjit/jplu-wikiann
[ "fr", "dataset:wikiann", "model-index" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_keras_callback model-index: - name: latihanyuk results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # latihanyuk This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.4344 - Validation Loss: 8.8852 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4344 | 8.8852 | 0 | ### Framework versions - Transformers 4.23.0 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.13.1
Blabla/Pipipopo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
a beautiful girl,lovely,ACG,street art,fashion,callous girl
Blaine-Mason/hackMIT-finetuned-sst2
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- language: - bs - en - hr - sh - sr language_bcp47: - bs_Latn - sr_Cyrl - sr_Latn tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-en-sh results: - task: name: Translation eng-hrv type: translation args: eng-hrv dataset: name: flores200-dev type: flores200-dev args: eng-hrv metrics: - name: BLEU type: bleu value: 28.1 - name: chr-F type: chrf value: 0.57963 - task: name: Translation eng-srp_Cyrl type: translation args: eng-srp_Cyrl dataset: name: flores200-dev type: flores200-dev args: eng-srp_Cyrl metrics: - name: BLEU type: bleu value: 32.2 - name: chr-F type: chrf value: 0.60096 - task: name: Translation eng-hrv type: translation args: eng-hrv dataset: name: flores200-devtest type: flores200-devtest args: eng-hrv metrics: - name: BLEU type: bleu value: 28.9 - name: chr-F type: chrf value: 0.58652 - task: name: Translation eng-srp_Cyrl type: translation args: eng-srp_Cyrl dataset: name: flores200-devtest type: flores200-devtest args: eng-srp_Cyrl metrics: - name: BLEU type: bleu value: 31.7 - name: chr-F type: chrf value: 0.59874 - task: name: Translation eng-hrv type: translation args: eng-hrv dataset: name: flores101-devtest type: flores_101 args: eng hrv devtest metrics: - name: BLEU type: bleu value: 28.7 - name: chr-F type: chrf value: 0.586 - task: name: Translation eng-srp_Cyrl type: translation args: eng-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: eng srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 31.7 - name: chr-F type: chrf value: 0.59874 - task: name: Translation eng-bos_Latn type: translation args: eng-bos_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-bos_Latn metrics: - name: BLEU type: bleu value: 46.3 - name: chr-F type: chrf value: 0.666 - task: name: Translation eng-hbs type: translation args: eng-hbs dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-hbs metrics: - name: BLEU type: bleu value: 42.1 - name: chr-F type: chrf value: 0.631 - task: name: Translation eng-hrv type: translation args: eng-hrv dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-hrv metrics: - name: BLEU type: bleu value: 49.7 - name: chr-F type: chrf value: 0.691 - task: name: Translation eng-srp_Cyrl type: translation args: eng-srp_Cyrl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-srp_Cyrl metrics: - name: BLEU type: bleu value: 45.1 - name: chr-F type: chrf value: 0.645 - task: name: Translation eng-srp_Latn type: translation args: eng-srp_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-srp_Latn metrics: - name: BLEU type: bleu value: 39.8 - name: chr-F type: chrf value: 0.613 --- # opus-mt-tc-base-en-sh ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from English (en) to Serbo-Croatian (sh). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-align) - **Release**: 2021-04-20 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): eng - Target Language(s): bos_Latn hbs hrv srp_Cyrl srp_Latn - Language Pair(s): eng-bos_Latn eng-hbs eng-hrv eng-srp_Cyrl eng-srp_Latn - Valid Target Language Labels: >>bos_Cyrl<< >>bos_Latn<< >>cnr<< >>cnr_Latn<< >>hbs<< >>hbs_Cyrl<< >>hrv<< >>srp_Cyrl<< >>srp_Latn<< - **Original Model**: [opus+bt-2021-04-20.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hbs/opus+bt-2021-04-20.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT eng-hbs README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hbs/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bos_Latn<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>hrv<< You're about to make a very serious mistake.", ">>hbs<< I've just been too busy." ] model_name = "pytorch-models/opus-mt-tc-base-en-sh" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Ti si o tome napraviti vrlo ozbiljnu pogrešku. # [4] ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-en-sh") print(pipe(">>hrv<< You're about to make a very serious mistake.")) # expected output: Ti si o tome napraviti vrlo ozbiljnu pogrešku. ``` ## Training - **Data**: opus+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-align - **Original MarianNMT Model**: [opus+bt-2021-04-20.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hbs/opus+bt-2021-04-20.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opus+bt-2021-04-20.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hbs/opus+bt-2021-04-20.test.txt) * test set scores: [opus+bt-2021-04-20.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hbs/opus+bt-2021-04-20.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-bos_Latn | tatoeba-test-v2021-08-07 | 0.666 | 46.3 | 301 | 1650 | | eng-hbs | tatoeba-test-v2021-08-07 | 0.631 | 42.1 | 10017 | 63927 | | eng-hrv | tatoeba-test-v2021-08-07 | 0.691 | 49.7 | 1480 | 9396 | | eng-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.645 | 45.1 | 1580 | 9152 | | eng-srp_Latn | tatoeba-test-v2021-08-07 | 0.613 | 39.8 | 6656 | 43729 | | eng-hrv | flores101-devtest | 0.586 | 28.7 | 1012 | 22423 | | eng-hrv | flores200-dev | 0.57963 | 28.1 | 997 | 21567 | | eng-hrv | flores200-devtest | 0.58652 | 28.9 | 1012 | 22423 | | eng-srp_Cyrl | flores101-devtest | 0.59874 | 31.7 | 1012 | 23456 | | eng-srp_Cyrl | flores200-dev | 0.60096 | 32.2 | 997 | 22384 | | eng-srp_Cyrl | flores200-devtest | 0.59874 | 31.7 | 1012 | 23456 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: e2a6299 * port time: Tue Oct 11 10:14:32 CEST 2022 * port machine: LM0-400-22516.local
Blerrrry/Kkk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: gpt2-finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6466666666666666 - name: F1 type: f1 value: 0.6159420289855072 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 1.7442 - Accuracy: 0.6467 - F1: 0.6159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu116 - Datasets 2.5.2 - Tokenizers 0.13.1
Bloodwarrior/Chikfalay
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: bloom-finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8655737704918034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloom-finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 1.2018 - Accuracy: 0.8633 - F1: 0.8656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu116 - Datasets 2.5.2 - Tokenizers 0.13.1
BlueGamerBeast/DialoGPT-small-joshua
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 200 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 200, "warmup_steps": 20, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Bman/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - wikipedia model-index: - name: kiddothe2b/hierarchical-transformer-I3-mini-1024 results: [] --- # Hierarchical Attention Transformer (HAT) / hierarchical-transformer-I3-mini-1024 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 1,024. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=hierarchical-transformer) to look for other versions of HAT or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelforForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-I3-mini-1024", trust_remote_code=True) mlm_model = AutoModelforForMaskedLM("kiddothe2b/hierarchical-transformer-I3-mini-1024", trust_remote_code=True) ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-I3-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/hierarchical-transformer-I3-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.7353 | 0.2 | 10000 | 2.5067 | | 2.6081 | 0.4 | 20000 | 2.3966 | | 2.5552 | 0.6 | 30000 | 2.3446 | | 2.5105 | 0.8 | 40000 | 2.3117 | | 2.4978 | 1.14 | 50000 | 2.2954 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
BobBraico/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - wikipedia model-index: - name: kiddothe2b/hierarchical-transformer-LC1-mini-1024 results: [] --- # Hierarchical Attention Transformer (HAT) / hierarchical-transformer-LC1-mini-1024 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 1,024. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?other=hierarchical-transformer) to look for other versions of HAT, or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelforForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) mlm_model = AutoModelforForMaskedLM("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) ``` You can also fine-tun it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/hierarchical-transformer-LC1-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3959 | 0.2 | 10000 | 2.2258 | | 2.3395 | 0.4 | 20000 | 2.1738 | | 2.3082 | 0.6 | 30000 | 2.1404 | | 2.273 | 0.8 | 40000 | 2.1145 | | 2.262 | 1.14 | 50000 | 2.1004 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
BobBraico/distilbert-base-uncased-finetuned-imdb-accelerate
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 259.18 +/- 18.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BobBraico/distilbert-base-uncased-finetuned-imdb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: tags: - long_documents datasets: - c4 model-index: - name: kiddothe2b/longformer-mini-1024 results: [] --- # Longformer / longformer-mini-1024 ## Model description [Longformer](https://arxiv.org/abs/2004.05150) is a transformer model for long documents. This version of Longformer is presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by [Beltagy et al. (2020)](](https://arxiv.org/abs/1908.08962)). It supports sequences of length up to 1,024. Longformer uses a combination of a sliding window (local) attention and global attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=longformer) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline mlm_model = pipeline('fill-mask', model='kiddothe2b/longformer-mini-1024', trust_remote_code=True) mlm_model("Hello I'm a <mask> model.") ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/longformer-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/longformer-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7067 | 0.2 | 10000 | 1.5923 | 0.6714 | | 1.6532 | 0.4 | 20000 | 1.5494 | 0.6784 | | 1.622 | 0.6 | 30000 | 1.5208 | 0.6830 | | 1.588 | 0.8 | 40000 | 1.4880 | 0.6876 | | 1.5682 | 1.0 | 50000 | 1.4680 | 0.6908 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ``` Also cite the original work: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150). ``` @article{Beltagy2020Longformer, title={Longformer: The Long-Document Transformer}, author={Iz Beltagy and Matthew E. Peters and Arman Cohan}, journal={arXiv:2004.05150}, year={2020}, } ```
BogdanKuloren/continual-learning-paper-embeddings-model
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "MPNetModel" ], "model_type": "mpnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-ner-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-ner-finetuned-ner This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0947 - Precision: 0.9851 - Recall: 0.9887 - F1: 0.9869 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1092 | 1.0 | 1355 | 0.0916 | 0.9872 | 0.9780 | 0.9826 | 0.9815 | | 0.0668 | 2.0 | 2710 | 0.0799 | 0.9835 | 0.9887 | 0.9861 | 0.9850 | | 0.0373 | 3.0 | 4065 | 0.0925 | 0.9822 | 0.9885 | 0.9853 | 0.9843 | | 0.0262 | 4.0 | 5420 | 0.0898 | 0.9886 | 0.9815 | 0.9850 | 0.9847 | | 0.0192 | 5.0 | 6775 | 0.0947 | 0.9851 | 0.9887 | 0.9869 | 0.9860 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
BonjinKim/dst_kor_bert
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
{ "architectures": [ "BertForPreTraining" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: greek_legal_bert_v2-finetuned-ner-V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # greek_legal_bert_v2-finetuned-ner-V3 This model is a fine-tuned version of [alexaapo/greek_legal_bert_v2](https://huggingface.co/alexaapo/greek_legal_bert_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0907 - Precision: 0.9023 - Recall: 0.9265 - F1: 0.9142 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.19 | 25 | 0.0661 | 0.8895 | 0.9229 | 0.9059 | 0.9813 | | No log | 2.38 | 50 | 0.0820 | 0.9091 | 0.9319 | 0.9204 | 0.9838 | | No log | 3.57 | 75 | 0.0791 | 0.8924 | 0.9211 | 0.9065 | 0.9825 | | No log | 4.76 | 100 | 0.0824 | 0.8950 | 0.9319 | 0.9131 | 0.9841 | | No log | 5.95 | 125 | 0.0820 | 0.8830 | 0.9194 | 0.9008 | 0.9812 | | No log | 7.14 | 150 | 0.0862 | 0.9059 | 0.9319 | 0.9187 | 0.9817 | | No log | 8.33 | 175 | 0.0915 | 0.9021 | 0.9247 | 0.9133 | 0.9826 | | No log | 9.52 | 200 | 0.0905 | 0.9023 | 0.9265 | 0.9142 | 0.9828 | ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
BossLee/t5-gec
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2022-10-11T09:31:12Z
--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - wikipedia model-index: - name: kiddothe2b/hierarchical-transformer-EC2-mini-1024 results: [] --- # Hierarchical Attention Transformer (HAT) / hierarchical-transformer-EC2-mini-1024 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of miniature BERT (Turc et al., 2019), and continued pre-trained for MLM following the paradigm of Longformer released by Beltagy et al. (2020). It supports sequences of length up to 1,024. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?other=hierarchical-transformer) to look for other versions of HAT or fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can use this model directly for masked language modeling: ```python from transformers import AutoTokenizer, AutoModelforForMaskedLM tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) mlm_model = AutoModelforForMaskedLM(kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) ``` You can also fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelforSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) doc_classifier = AutoModelforSequenceClassification("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True) ``` ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [google/bert_uncased_L-6_H-256_A-4](https://huggingface.co/google/bert_uncased_L-6_H-256_A-4) checkpoint and has been continued pre-trained for additional 50k steps on English [Wikipedia](https://huggingface.co/datasets/wikipedia). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3798 | 0.2 | 10000 | 2.2014 | | 2.3267 | 0.4 | 20000 | 2.1535 | | 2.2976 | 0.6 | 30000 | 2.1234 | | 2.2649 | 0.8 | 40000 | 2.1010 | | 2.254 | 1.14 | 50000 | 2.0870 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```
BotterHax/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-10-11T09:36:19Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: greek_legal_bert_v2-finetuned-ner-V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # greek_legal_bert_v2-finetuned-ner-V4 This model is a fine-tuned version of [amichailidis/greek_legal_bert_v2-finetuned-ner](https://huggingface.co/amichailidis/greek_legal_bert_v2-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0659 - Precision: 0.9033 - Recall: 0.9373 - F1: 0.9200 - Accuracy: 0.9845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.19 | 25 | 0.1246 | 0.8264 | 0.8190 | 0.8227 | 0.9680 | | No log | 2.38 | 50 | 0.0729 | 0.8716 | 0.9247 | 0.8974 | 0.9809 | | No log | 3.57 | 75 | 0.0553 | 0.8978 | 0.9444 | 0.9205 | 0.9851 | | No log | 4.76 | 100 | 0.0591 | 0.8990 | 0.9409 | 0.9194 | 0.9852 | | No log | 5.95 | 125 | 0.0598 | 0.9017 | 0.9373 | 0.9192 | 0.9849 | | No log | 7.14 | 150 | 0.0628 | 0.9064 | 0.9373 | 0.9216 | 0.9842 | | No log | 8.33 | 175 | 0.0636 | 0.9031 | 0.9355 | 0.9190 | 0.9843 | | No log | 9.52 | 200 | 0.0659 | 0.9033 | 0.9373 | 0.9200 | 0.9845 | ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Branex/gpt-neo-2.7B
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 datasets: - sst2 - glue tags: - openvino --- ## [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) exported to the OpenVINO IR. ## Model Details **Model Description:** This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set. ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import AutoTokenizer, pipeline from optimum.intel.openvino import OVModelForSequenceClassification model_id = "echarlaix/distilbert-base-uncased-finetuned-sst-2-english-openvino" model = OVModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) cls_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "He's a dreadful magician." outputs = cls_pipe(text) ```
Brayan/CNN_Brain_Tumor
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_keras_callback model-index: - name: ajinkyaT/albert-japanese-v2-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ajinkyaT/albert-japanese-v2-finetuned-ner This model is a fine-tuned version of [ajinkyaT/albert-japanese-v2-finetuned-ner](https://huggingface.co/ajinkyaT/albert-japanese-v2-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1292 - Validation Loss: 0.1499 - Train Precision: 0.6817 - Train Recall: 0.6951 - Train F1: 0.6883 - Train Accuracy: 0.9594 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1320, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1299 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 4 | | 0.1306 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 5 | | 0.1296 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 6 | | 0.1292 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 7 | | 0.1306 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 8 | | 0.1292 | 0.1499 | 0.6817 | 0.6951 | 0.6883 | 0.9594 | 9 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.13.1
BrianTin/MTBERT
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-10-11T10:05:41Z
See https://github.com/Askannz/gundam-stable-diffusion
Bryanwong/wangchanberta-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: openrail --- technological strange special male dark green blue
Brykee/DialoGPT-medium-Morty
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
229
2022-10-11T14:03:17Z
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus model-index: - name: asi/albert-act-base results: - task: type: text-classification name: CoLA dataset: type: glue name: CoLA # General Language Understanding Evaluation benchmark (GLUE) split: cola metrics: - type: matthews_correlation value: 27.5 name: Matthew's Corr - task: type: text-classification name: SST-2 dataset: type: glue name: SST-2 # The Stanford Sentiment Treebank split: sst2 metrics: - type: accuracy value: 87.6 name: Accuracy - task: type: text-classification name: MRPC dataset: type: glue name: MRPC # Microsoft Research Paraphrase Corpus split: mrpc metrics: - type: accuracy value: 78.7 name: Accuracy - type: f1 value: 84.7 name: F1 - task: type: text-similarity name: STS-B dataset: type: glue name: STS-B # Semantic Textual Similarity Benchmark split: stsb metrics: - type: spearmanr value: 79.7 name: Spearman Corr - type: pearsonr value: 81.8 name: Pearson Corr - task: type: text-classification name: QQP dataset: type: glue name: QQP # Quora Question Pairs split: qqp metrics: - type: f1 value: 67.8 name: F1 - type: accuracy value: 87.5 name: Accuracy - task: type: text-classification name: MNLI-m dataset: type: glue name: MNLI-m # MultiNLI Matched split: mnli_matched metrics: - type: accuracy value: 77.0 name: Accuracy - task: type: text-classification name: MNLI-mm dataset: type: glue name: MNLI-mm # MultiNLI Matched split: mnli_mismatched metrics: - type: accuracy value: 76.8 name: Accuracy - task: type: text-classification name: QNLI dataset: type: glue name: QNLI # Question NLI split: qnli metrics: - type: accuracy value: 86.4 name: Accuracy - task: type: text-classification name: RTE dataset: type: glue name: RTE # Recognizing Textual Entailment split: rte metrics: - type: accuracy value: 62.0 name: Accuracy - task: type: text-classification name: WNLI dataset: type: glue name: WNLI # Winograd NLI split: wnli metrics: - type: accuracy value: 65.1 name: Accuracy --- # Adaptive Depth Transformers Implementation of the paper "How Many Layers and Why? An Analysis of the Model Depth in Transformers". In this study, we investigate the role of the multiple layers in deep transformer models. We design a variant of ALBERT that dynamically adapts the number of layers for each token of the input. ## Model architecture We augment a multi-layer transformer encoder with a halting mechanism, which dynamically adjusts the number of layers for each token. We directly adapted this mechanism from Graves ([2016](#graves-2016)). At each iteration, we compute a probability for each token to stop updating its state. ## Model use The architecture is not yet directly included in the Transformers library. The code used for pre-training is available in the following [github repository](https://github.com/AntoineSimoulin/adaptive-depth-transformers). So you should install the code implementation first: ```bash !pip install git+https://github.com/AntoineSimoulin/adaptive-depth-transformers$ ``` Then you can use the model directly. ```python from act import AlbertActConfig, AlbertActModel, TFAlbertActModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('asi/albert-act-base') model = AlbertActModel.from_pretrained('asi/albert-act-base') _ = model.eval() inputs = tokenizer("a lump in the middle of the monkeys stirred and then fell quiet .", return_tensors="pt") outputs = model(**inputs) outputs.updates # tensor([[[[15., 9., 10., 7., 3., 8., 5., 7., 12., 10., 6., 8., 8., 9., 5., 8.]]]]) ``` ## Citations ### BibTeX entry and citation info If you use our iterative transformer model for your scientific publication or your industrial applications, please cite the following [paper](https://aclanthology.org/2021.acl-srw.23/): ```bibtex @inproceedings{simoulin-crabbe-2021-many, title = "How Many Layers and Why? {A}n Analysis of the Model Depth in Transformers", author = "Simoulin, Antoine and Crabb{\'e}, Benoit", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-srw.23", doi = "10.18653/v1/2021.acl-srw.23", pages = "221--228", } ``` ### References ><div id="graves-2016">Alex Graves. 2016. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983.</div>
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2022-10-11T14:04:00Z
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus model-index: - name: asi/albert-act-base results: - task: type: text-classification name: CoLA dataset: type: glue name: CoLA # General Language Understanding Evaluation benchmark (GLUE) split: cola metrics: - type: matthews_correlation value: 33.8 name: Matthew's Corr - task: type: text-classification name: SST-2 dataset: type: glue name: SST-2 # The Stanford Sentiment Treebank split: sst2 metrics: - type: accuracy value: 88.6 name: Accuracy - task: type: text-classification name: MRPC dataset: type: glue name: MRPC # Microsoft Research Paraphrase Corpus split: mrpc metrics: - type: accuracy value: 79.4 name: Accuracy - type: f1 value: 85.2 name: F1 - task: type: text-similarity name: STS-B dataset: type: glue name: STS-B # Semantic Textual Similarity Benchmark split: stsb metrics: - type: spearmanr value: 81.2 name: Spearman Corr - type: pearsonr value: 82.7 name: Pearson Corr - task: type: text-classification name: QQP dataset: type: glue name: QQP # Quora Question Pairs split: qqp metrics: - type: f1 value: 67.8 name: F1 - type: accuracy value: 87.4 name: Accuracy - task: type: text-classification name: MNLI-m dataset: type: glue name: MNLI-m # MultiNLI Matched split: mnli_matched metrics: - type: accuracy value: 79.5 name: Accuracy - task: type: text-classification name: MNLI-mm dataset: type: glue name: MNLI-mm # MultiNLI Matched split: mnli_mismatched metrics: - type: accuracy value: 78.5 name: Accuracy - task: type: text-classification name: QNLI dataset: type: glue name: QNLI # Question NLI split: qnli metrics: - type: accuracy value: 88.3 name: Accuracy - task: type: text-classification name: RTE dataset: type: glue name: RTE # Recognizing Textual Entailment split: rte metrics: - type: accuracy value: 61.9 name: Accuracy - task: type: text-classification name: WNLI dataset: type: glue name: WNLI # Winograd NLI split: wnli metrics: - type: accuracy value: 65.1 name: Accuracy --- # Adaptive Depth Transformers Implementation of the paper "How Many Layers and Why? An Analysis of the Model Depth in Transformers". In this study, we investigate the role of the multiple layers in deep transformer models. We design a variant of ALBERT that dynamically adapts the number of layers for each token of the input. ## Model architecture We augment a multi-layer transformer encoder with a halting mechanism, which dynamically adjusts the number of layers for each token. We directly adapted this mechanism from Graves ([2016](#graves-2016)). At each iteration, we compute a probability for each token to stop updating its state. ## Model use The architecture is not yet directly included in the Transformers library. The code used for pre-training is available in the following [github repository](https://github.com/AntoineSimoulin/adaptive-depth-transformers). So you should install the code implementation first: ```bash !pip install git+https://github.com/AntoineSimoulin/adaptive-depth-transformers$ ``` Then you can use the model directly. ```python from act import AlbertActConfig, AlbertActModel, TFAlbertActModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('asi/albert-act-base') model = AlbertActModel.from_pretrained('asi/albert-act-base') _ = model.eval() inputs = tokenizer("a lump in the middle of the monkeys stirred and then fell quiet .", return_tensors="pt") outputs = model(**inputs) outputs.updates # tensor([[[[15., 9., 10., 7., 3., 8., 5., 7., 12., 10., 6., 8., 8., 9., 5., 8.]]]]) ``` ## Citations ### BibTeX entry and citation info If you use our iterative transformer model for your scientific publication or your industrial applications, please cite the following [paper](https://aclanthology.org/2021.acl-srw.23/): ```bibtex @inproceedings{simoulin-crabbe-2021-many, title = "How Many Layers and Why? {A}n Analysis of the Model Depth in Transformers", author = "Simoulin, Antoine and Crabb{\'e}, Benoit", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-srw.23", doi = "10.18653/v1/2021.acl-srw.23", pages = "221--228", } ``` ### References ><div id="graves-2016">Alex Graves. 2016. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983.</div>
CAMeL-Lab/bert-base-arabic-camelbert-msa
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,967
null
Access to model Ogaabi/Wamba is restricted and you are not in the authorized list. Visit https://huggingface.co/Ogaabi/Wamba to ask for access.
CLAck/indo-mixed
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-hatexplain-label-all-tokens-False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-hatexplain-label-all-tokens-False This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.1750 | | No log | 2.0 | 348 | 0.1704 | | 0.1846 | 3.0 | 522 | 0.1722 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
CLS/WubiBERT_models
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5512772054945002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8076 - Matthews Correlation: 0.5513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5264 | 1.0 | 535 | 0.5380 | 0.4135 | | 0.3486 | 2.0 | 1070 | 0.5007 | 0.4923 | | 0.2404 | 3.0 | 1605 | 0.5373 | 0.5358 | | 0.1757 | 4.0 | 2140 | 0.7435 | 0.5414 | | 0.122 | 5.0 | 2675 | 0.8076 | 0.5513 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
CLTL/MedRoBERTa.nl
[ "pytorch", "roberta", "fill-mask", "nl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,988
null
--- license: mit --- ### Ayush Spider SPR on Stable Diffusion This is the `<spr-mn>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<spr-mn> 0](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/1.jpeg) ![<spr-mn> 1](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/3.jpeg) ![<spr-mn> 2](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/2.jpeg) ![<spr-mn> 3](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/4.jpeg) ![<spr-mn> 4](https://huggingface.co/sd-concepts-library/ayush-spider-spr/resolve/main/concept_images/0.jpeg)
CLTL/gm-ner-xlmrbase
[ "pytorch", "tf", "xlm-roberta", "token-classification", "nl", "transformers", "dighum", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [intent-dataset](https://huggingface.co/datasets/MuhammadIqbalBazmi/intent-dataset) dataset. It achieves the following results on the evaluation set: - Loss: 0.4928 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1867 | 1.0 | 28 | 2.1745 | 0.2708 | | 2.1177 | 2.0 | 56 | 2.1165 | 0.2708 | | 2.1012 | 3.0 | 84 | 2.0553 | 0.2708 | | 1.9851 | 4.0 | 112 | 1.9551 | 0.375 | | 1.9092 | 5.0 | 140 | 1.9765 | 0.2917 | | 1.6848 | 6.0 | 168 | 1.8461 | 0.2917 | | 1.6576 | 7.0 | 196 | 1.5223 | 0.5 | | 1.4492 | 8.0 | 224 | 1.4500 | 0.4792 | | 1.2193 | 9.0 | 252 | 1.5349 | 0.4792 | | 1.1149 | 10.0 | 280 | 1.2159 | 0.5833 | | 1.0615 | 11.0 | 308 | 1.1469 | 0.6875 | | 1.0584 | 12.0 | 336 | 1.2778 | 0.6042 | | 0.8237 | 13.0 | 364 | 1.1774 | 0.5625 | | 0.6699 | 14.0 | 392 | 0.9661 | 0.6875 | | 0.7414 | 15.0 | 420 | 1.2787 | 0.5208 | | 0.5324 | 16.0 | 448 | 0.8592 | 0.7292 | | 0.3753 | 17.0 | 476 | 0.6860 | 0.7917 | | 0.3274 | 18.0 | 504 | 0.6210 | 0.8333 | | 0.3667 | 19.0 | 532 | 0.7310 | 0.75 | | 0.2347 | 20.0 | 560 | 0.6801 | 0.7292 | | 0.2036 | 21.0 | 588 | 0.9876 | 0.6875 | | 0.1711 | 22.0 | 616 | 0.6323 | 0.7917 | | 0.205 | 23.0 | 644 | 0.4414 | 0.8958 | | 0.0892 | 24.0 | 672 | 0.4253 | 0.8958 | | 0.0777 | 25.0 | 700 | 0.4703 | 0.8958 | | 0.0717 | 26.0 | 728 | 0.4883 | 0.8958 | | 0.041 | 27.0 | 756 | 0.6224 | 0.8542 | | 0.0493 | 28.0 | 784 | 0.5839 | 0.875 | | 0.0405 | 29.0 | 812 | 0.6454 | 0.8542 | | 0.04 | 30.0 | 840 | 0.6102 | 0.875 | | 0.0333 | 31.0 | 868 | 0.6080 | 0.875 | | 0.0303 | 32.0 | 896 | 0.5539 | 0.875 | | 0.025 | 33.0 | 924 | 0.5799 | 0.8958 | | 0.0246 | 34.0 | 952 | 0.5766 | 0.8958 | | 0.0209 | 35.0 | 980 | 0.5700 | 0.8958 | | 0.0225 | 36.0 | 1008 | 0.5709 | 0.8958 | | 0.0225 | 37.0 | 1036 | 0.5582 | 0.8958 | | 0.0217 | 38.0 | 1064 | 0.5258 | 0.875 | | 0.0207 | 39.0 | 1092 | 0.5058 | 0.8958 | | 0.0234 | 40.0 | 1120 | 0.4981 | 0.8958 | | 0.021 | 41.0 | 1148 | 0.4928 | 0.9167 | | 0.0224 | 42.0 | 1176 | 0.4962 | 0.9167 | | 0.0212 | 43.0 | 1204 | 0.5329 | 0.8958 | | 0.0208 | 44.0 | 1232 | 0.5727 | 0.8958 | | 0.0206 | 45.0 | 1260 | 0.5733 | 0.8958 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
CLTL/icf-levels-adm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- pipeline_tag: image-to-image tags: - art --- a hyper network trained by よし男's artwork. (reference: https://www.pixiv.net/users/3584828) only for study and self use please do not publish or use for business. 请勿发表或商用 Author: Tongfan Wei ([email protected]) an example by base model anything v4.5, upscale model CUGAN ![00681-3567241462-NSFW, (master___.png](https://s3.amazonaws.com/moonup/production/uploads/1676775176386-63458d7f547c70e4b7cd5d40.png)
CLTL/icf-levels-enr
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal Trained on this model: https://huggingface.co/CarperAI/FIM-NeoX-1.3B, which is geared toward filling in the blank. Check out their model and give them a like! ``` from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast tokenizer = GPTNeoXTokenizerFast.from_pretrained("CarperAI/FIM-NeoX-1.3B") model = GPTNeoXForCausalLM.from_pretrained("BigSalmon/FormalInformalConcise-FIM-NeoX-1.3B") ``` To load model, you may need to do: ``` pip install git+https://github.com/huggingface/transformers ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/GPT2Mask ``` ``` prompt = """<|SUF|> into relaxation <|PRE|> music before bedtime <|MID|>""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` How To Make Prompts: Infill Phrase Masking In-Fill ``` <|SUF|> into relaxation <|PRE|> music before bedtime <|MID|> ``` Informal To Formal ``` informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` music before bedtime [makes for being able to relax] -> is a recipe for relaxation. ``` ``` [people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway. ``` ``` in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal. *** politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ). ```
CLTL/icf-levels-etn
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: mit --- ### Natasha Johnston on Stable Diffusion This is the `<natasha-johnston>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<natasha-johnston> 0](https://huggingface.co/sd-concepts-library/natasha-johnston/resolve/main/concept_images/0.jpeg) ![<natasha-johnston> 1](https://huggingface.co/sd-concepts-library/natasha-johnston/resolve/main/concept_images/3.jpeg) ![<natasha-johnston> 2](https://huggingface.co/sd-concepts-library/natasha-johnston/resolve/main/concept_images/4.jpeg) ![<natasha-johnston> 3](https://huggingface.co/sd-concepts-library/natasha-johnston/resolve/main/concept_images/1.jpeg) ![<natasha-johnston> 4](https://huggingface.co/sd-concepts-library/natasha-johnston/resolve/main/concept_images/2.jpeg)
CLTL/icf-levels-fac
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
Access to model ccw/real is restricted and you are not in the authorized list. Visit https://huggingface.co/ccw/real to ask for access.
CLTL/icf-levels-ins
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- tags: - conversational --- # Ned Flanders DialoGPT
CLTL/icf-levels-mbw
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 50.90 +/- 14.29 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
CM-CA/Cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CSResearcher/TestModel
[ "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.916 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.1671 - Accuracy: 0.916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7213 | 0.99 | 62 | 1.6647 | 0.885 | | 1.2902 | 1.99 | 124 | 1.2744 | 0.918 | | 1.1288 | 2.99 | 186 | 1.1671 | 0.916 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
CSZay/bart
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: EdBianchi/T5-finetuned-abstracts results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # EdBianchi/T5-finetuned-abstracts This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9469 - Train Lr: 0.0004 - Validation Loss: 1.8462 - Validation Lr: 0.0002 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.00015378147, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Lr | Validation Loss | Validation Lr | Epoch | |:----------:|:--------:|:---------------:|:-------------:|:-----:| | 2.2534 | 0.0005 | 1.9839 | 0.0007 | 0 | | 1.9469 | 0.0004 | 1.8462 | 0.0002 | 1 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1
Caddy/UD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.