modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Callidior/bert2bert-base-arxiv-titlegen
[ "pytorch", "safetensors", "encoder-decoder", "text2text-generation", "en", "dataset:arxiv_dataset", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible", "has_space" ]
summarization
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
145
null
--- language: en license: apache-2.0 datasets: - sst2 - glue tags: - openvino --- ## distilbert-base-uncased-finetuned-sst-2-english [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) quantized with NNCF PTQ and exported to OpenVINO IR. **Model Description:** This model reaches an accuracy of 90.0 on the validation set. See [ov\_config.json](./ov_config.json) for the quantization config. ## Usage example To install the requirements for using the OpenVINO backend, do: ``` pip install optimum[openvino] ``` This installs all necessary dependencies, including Transformers and OpenVINO. *NOTE: Python 3.7-3.9 are supported. A virtualenv is recommended.* You can use this model with a Transformers *pipeline*. ```python from transformers import AutoTokenizer, pipeline from optimum.intel.openvino import OVModelForSequenceClassification model_id = "helenai/distilbert-base-uncased-finetuned-sst-2-english-ov-int8" model = OVModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) cls_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "OpenVINO is awesome!" outputs = cls_pipe(text) print(outputs) ``` Example output: ```sh [{'label': 'POSITIVE', 'score': 0.9998594522476196}] ```
CallumRai/HansardGPT2
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it-lrs-back results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it-lrs-back This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7887 - Bleu: 15.4528 - Gen Len: 52.516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.8637 | 1.0 | 1125 | 2.7212 | 3.496 | 82.846 | | 2.6665 | 2.0 | 2250 | 2.5507 | 5.4897 | 65.4087 | | 2.5307 | 3.0 | 3375 | 2.4286 | 6.688 | 61.9687 | | 2.4064 | 4.0 | 4500 | 2.3431 | 7.6166 | 59.5613 | | 2.3369 | 5.0 | 5625 | 2.2779 | 8.4755 | 57.776 | | 2.284 | 6.0 | 6750 | 2.2202 | 9.0471 | 57.1227 | | 2.2358 | 7.0 | 7875 | 2.1728 | 9.7222 | 55.9393 | | 2.1747 | 8.0 | 9000 | 2.1357 | 10.4908 | 54.9073 | | 2.1555 | 9.0 | 10125 | 2.1012 | 11.0378 | 54.292 | | 2.1215 | 10.0 | 11250 | 2.0715 | 11.2204 | 54.546 | | 2.0882 | 11.0 | 12375 | 2.0448 | 11.6557 | 54.1687 | | 2.0544 | 12.0 | 13500 | 2.0193 | 12.0521 | 53.604 | | 2.0355 | 13.0 | 14625 | 1.9959 | 12.2297 | 53.3893 | | 2.0236 | 14.0 | 15750 | 1.9755 | 12.4706 | 53.3327 | | 1.9974 | 15.0 | 16875 | 1.9555 | 12.59 | 53.4507 | | 1.983 | 16.0 | 18000 | 1.9400 | 12.8305 | 53.1807 | | 1.9615 | 17.0 | 19125 | 1.9236 | 13.0549 | 53.128 | | 1.9519 | 18.0 | 20250 | 1.9111 | 13.1942 | 53.2953 | | 1.9408 | 19.0 | 21375 | 1.8977 | 13.3979 | 53.332 | | 1.9203 | 20.0 | 22500 | 1.8862 | 13.5626 | 52.73 | | 1.9134 | 21.0 | 23625 | 1.8749 | 13.8549 | 52.904 | | 1.8981 | 22.0 | 24750 | 1.8638 | 13.9347 | 53.2787 | | 1.8911 | 23.0 | 25875 | 1.8557 | 14.1628 | 52.946 | | 1.8859 | 24.0 | 27000 | 1.8471 | 14.2514 | 52.744 | | 1.8692 | 25.0 | 28125 | 1.8406 | 14.4957 | 52.9267 | | 1.8733 | 26.0 | 29250 | 1.8324 | 14.5489 | 53.112 | | 1.8602 | 27.0 | 30375 | 1.8268 | 14.6941 | 52.882 | | 1.8547 | 28.0 | 31500 | 1.8202 | 14.9101 | 52.948 | | 1.8478 | 29.0 | 32625 | 1.8151 | 14.9498 | 52.8967 | | 1.8485 | 30.0 | 33750 | 1.8102 | 15.0763 | 52.8587 | | 1.8401 | 31.0 | 34875 | 1.8065 | 15.1604 | 52.8513 | | 1.8307 | 32.0 | 36000 | 1.8023 | 15.1404 | 52.6533 | | 1.8275 | 33.0 | 37125 | 1.7994 | 15.1813 | 52.738 | | 1.8233 | 34.0 | 38250 | 1.7964 | 15.3185 | 52.7033 | | 1.8238 | 35.0 | 39375 | 1.7939 | 15.4693 | 52.6433 | | 1.8253 | 36.0 | 40500 | 1.7926 | 15.4467 | 52.44 | | 1.8169 | 37.0 | 41625 | 1.7908 | 15.4167 | 52.5907 | | 1.8182 | 38.0 | 42750 | 1.7899 | 15.4595 | 52.5433 | | 1.8161 | 39.0 | 43875 | 1.7890 | 15.4411 | 52.5007 | | 1.8169 | 40.0 | 45000 | 1.7887 | 15.4528 | 52.516 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
CalvinHuang/mt5-small-finetuned-amazon-en-es
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
summarization
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Cameron/BERT-Jigsaw
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- license: apache-2.0 --- https://github.com/entangledloops/slidingpuzzle
Cameron/BERT-SBIC-targetcategory
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac ---
Cameron/BERT-eec-emotion
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-Classification-kaggleEffectiveFeedback2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-Classification-kaggleEffectiveFeedback2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7473 | 1.0 | 3677 | 0.7181 | | 0.6347 | 2.0 | 7354 | 0.7349 | | 0.4244 | 3.0 | 11031 | 0.9255 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Cameron/BERT-jigsaw-identityhate
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7682 - Accuracy: 0.4167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2017 | 1.0 | 14 | 2.2113 | 0.1042 | | 2.2013 | 2.0 | 28 | 2.2078 | 0.0625 | | 2.197 | 3.0 | 42 | 2.1981 | 0.0625 | | 2.1917 | 4.0 | 56 | 2.1760 | 0.3125 | | 2.1759 | 5.0 | 70 | 2.1534 | 0.3333 | | 2.1713 | 6.0 | 84 | 2.1305 | 0.3333 | | 2.1431 | 7.0 | 98 | 2.1044 | 0.3333 | | 2.1366 | 8.0 | 112 | 2.0838 | 0.3333 | | 2.1482 | 9.0 | 126 | 2.0649 | 0.3333 | | 2.1074 | 10.0 | 140 | 2.0532 | 0.3333 | | 2.1066 | 11.0 | 154 | 2.0506 | 0.3333 | | 2.089 | 12.0 | 168 | 2.0624 | 0.3333 | | 2.0625 | 13.0 | 182 | 2.0580 | 0.3333 | | 2.1106 | 14.0 | 196 | 2.0419 | 0.3333 | | 2.0714 | 15.0 | 210 | 2.0350 | 0.3333 | | 2.0256 | 16.0 | 224 | 2.0333 | 0.3333 | | 2.1226 | 17.0 | 238 | 2.0286 | 0.3333 | | 2.0451 | 18.0 | 252 | 2.0195 | 0.3333 | | 2.0822 | 19.0 | 266 | 1.9968 | 0.3333 | | 2.0991 | 20.0 | 280 | 1.9883 | 0.3333 | | 2.0537 | 21.0 | 294 | 1.9767 | 0.3333 | | 1.973 | 22.0 | 308 | 1.9524 | 0.3333 | | 2.0429 | 23.0 | 322 | 1.9432 | 0.3333 | | 2.0091 | 24.0 | 336 | 1.9402 | 0.3333 | | 2.0309 | 25.0 | 350 | 1.9295 | 0.3333 | | 2.0261 | 26.0 | 364 | 1.9167 | 0.3333 | | 2.0081 | 27.0 | 378 | 1.9083 | 0.3333 | | 2.023 | 28.0 | 392 | 1.9013 | 0.3333 | | 2.0 | 29.0 | 406 | 1.8623 | 0.375 | | 1.936 | 30.0 | 420 | 1.8483 | 0.3958 | | 1.9809 | 31.0 | 434 | 1.8344 | 0.3958 | | 1.9645 | 32.0 | 448 | 1.8428 | 0.4167 | | 1.9788 | 33.0 | 462 | 1.8372 | 0.3958 | | 1.9484 | 34.0 | 476 | 1.8246 | 0.3958 | | 1.9553 | 35.0 | 490 | 1.7941 | 0.4167 | | 1.9321 | 36.0 | 504 | 1.7824 | 0.4167 | | 1.9759 | 37.0 | 518 | 1.7884 | 0.3958 | | 1.9424 | 38.0 | 532 | 1.7875 | 0.3958 | | 1.9592 | 39.0 | 546 | 1.7901 | 0.3958 | | 1.9425 | 40.0 | 560 | 1.7812 | 0.3958 | | 1.8899 | 41.0 | 574 | 1.7736 | 0.3958 | | 1.9361 | 42.0 | 588 | 1.7711 | 0.4167 | | 1.9023 | 43.0 | 602 | 1.7711 | 0.4167 | | 1.9203 | 44.0 | 616 | 1.7688 | 0.4167 | | 1.8921 | 45.0 | 630 | 1.7682 | 0.4167 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Cameron/BERT-jigsaw-severetoxic
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Cameron/BERT-mdgender-convai-binary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
Access to model Shanty/Testfdg is restricted and you are not in the authorized list. Visit https://huggingface.co/Shanty/Testfdg to ask for access.
Cameron/BERT-mdgender-convai-ternary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Cameron/BERT-mdgender-wizard
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.176 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4290 - Rouge1: 0.176 - Rouge2: 0.0773 - Rougel: 0.1454 - Rougelsum: 0.1455 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.5195 | 0.1478 | 0.0528 | 0.1197 | 0.1194 | 19.0 | | No log | 2.0 | 124 | 2.4660 | 0.1572 | 0.06 | 0.1288 | 0.1287 | 19.0 | | No log | 3.0 | 186 | 2.4366 | 0.1691 | 0.0719 | 0.1394 | 0.1396 | 19.0 | | No log | 4.0 | 248 | 2.4290 | 0.176 | 0.0773 | 0.1454 | 0.1455 | 19.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Canadiancaleb/DialoGPT-small-jesse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: BC4CHEMD-Original-128-PubMedBERT-Trial-latest-general results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BC4CHEMD-Original-128-PubMedBERT-Trial-latest-general This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - Precision: 0.9678 - Recall: 0.9892 - F1: 0.9784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.10.3
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Nard Style on Stable Diffusion This is the `<nard>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<nard> 0](https://huggingface.co/sd-concepts-library/nard-style/resolve/main/concept_images/0.jpeg) ![<nard> 1](https://huggingface.co/sd-concepts-library/nard-style/resolve/main/concept_images/3.jpeg) ![<nard> 2](https://huggingface.co/sd-concepts-library/nard-style/resolve/main/concept_images/1.jpeg) ![<nard> 3](https://huggingface.co/sd-concepts-library/nard-style/resolve/main/concept_images/2.jpeg)
CapitainData/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Capreolus/bert-base-msmarco
[ "pytorch", "tf", "jax", "bert", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
238
null
Access to model TTian/bert-finetuned-feedback is restricted and you are not in the authorized list. Visit https://huggingface.co/TTian/bert-finetuned-feedback to ask for access.
Capreolus/birch-bert-large-car_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: bsd-3-clause --- Copyright 2018-2022, UT-Battelle Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Capreolus/birch-bert-large-mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9280714609088352 --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2185 - Accuracy: 0.928 - F1: 0.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8374 | 1.0 | 250 | 0.3188 | 0.9045 | 0.9012 | | 0.254 | 2.0 | 500 | 0.2185 | 0.928 | 0.9281 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
Capreolus/electra-base-msmarco
[ "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "transformers" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
110
null
```py from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-lms-pipe") ```
Captain-1337/CrudeBERT
[ "pytorch", "bert", "text-classification", "arxiv:1908.10063", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Prompt is studio_ghibli_anime_style style I know people will ignore this, but please don't use this to make NFTs.
Captain272/lstm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.92 +/- 19.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Carlork314/Carlos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model alkzar90/skynet is restricted and you are not in the authorized list. Visit https://huggingface.co/alkzar90/skynet to ask for access.
CarlosPR/mt5-spanish-memmories-analysis
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - autotrain - translation language: - en - nl datasets: - Tritkoman/autotrain-data-kkakkakqa co2_eq_emissions: emissions: 96.54051975402358 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1726160287 - CO2 Emissions (in grams): 96.5405 ## Validation Metrics - Loss: 0.151 - SacreBLEU: 51.859 - Gen len: 14.625
Cdial/hausa-asr
[ "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
Autoregressive prompt augmenter for https://medium.com/@enryu9000/anifusion-diffusion-models-for-anime-pictures-138cf1af2cbe.
Cedille/fr-boris
[ "pytorch", "gptj", "text-generation", "fr", "dataset:c4", "arxiv:2202.03371", "transformers", "causal-lm", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPTJForCausalLM" ], "model_type": "gptj", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.0 - Datasets 2.5.0 - Tokenizers 0.12.1
dccuchile/albert-large-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus model-index: - name: asi/albert-act-base results: - task: type: text-classification name: CoLA dataset: type: glue name: CoLA # General Language Understanding Evaluation benchmark (GLUE) split: cola metrics: - type: matthews_correlation value: 36.7 name: Matthew's Corr - task: type: text-classification name: SST-2 dataset: type: glue name: SST-2 # The Stanford Sentiment Treebank split: sst2 metrics: - type: accuracy value: 87.8 name: Accuracy - task: type: text-classification name: MRPC dataset: type: glue name: MRPC # Microsoft Research Paraphrase Corpus split: mrpc metrics: - type: accuracy value: 81.4 name: Accuracy - type: f1 value: 86.5 name: F1 - task: type: text-similarity name: STS-B dataset: type: glue name: STS-B # Semantic Textual Similarity Benchmark split: stsb metrics: - type: spearmanr value: 83.0 name: Spearman Corr - type: pearsonr value: 84.2 name: Pearson Corr - task: type: text-classification name: QQP dataset: type: glue name: QQP # Quora Question Pairs split: qqp metrics: - type: f1 value: 68.5 name: F1 - type: accuracy value: 87.7 name: Accuracy - task: type: text-classification name: MNLI-m dataset: type: glue name: MNLI-m # MultiNLI Matched split: mnli_matched metrics: - type: accuracy value: 79.9 name: Accuracy - task: type: text-classification name: MNLI-mm dataset: type: glue name: MNLI-mm # MultiNLI Matched split: mnli_mismatched metrics: - type: accuracy value: 79.2 name: Accuracy - task: type: text-classification name: QNLI dataset: type: glue name: QNLI # Question NLI split: qnli metrics: - type: accuracy value: 89.0 name: Accuracy - task: type: text-classification name: RTE dataset: type: glue name: RTE # Recognizing Textual Entailment split: rte metrics: - type: accuracy value: 63.0 name: Accuracy - task: type: text-classification name: WNLI dataset: type: glue name: WNLI # Winograd NLI split: wnli metrics: - type: accuracy value: 65.1 name: Accuracy --- # Adaptive Depth Transformers Implementation of the paper "How Many Layers and Why? An Analysis of the Model Depth in Transformers". In this study, we investigate the role of the multiple layers in deep transformer models. We design a variant of ALBERT that dynamically adapts the number of layers for each token of the input. ## Model architecture We augment a multi-layer transformer encoder with a halting mechanism, which dynamically adjusts the number of layers for each token. We directly adapted this mechanism from Graves ([2016](#graves-2016)). At each iteration, we compute a probability for each token to stop updating its state. ## Model use The architecture is not yet directly included in the Transformers library. The code used for pre-training is available in the following [github repository](https://github.com/AntoineSimoulin/adaptive-depth-transformers). So you should install the code implementation first: ```bash !pip install git+https://github.com/AntoineSimoulin/adaptive-depth-transformers$ ``` Then you can use the model directly. ```python from act import AlbertActConfig, AlbertActModel, TFAlbertActModel from transformers import AlbertTokenizer tokenizer = AlbertTokenizer.from_pretrained('asi/albert-act-base') model = AlbertActModel.from_pretrained('asi/albert-act-base') _ = model.eval() inputs = tokenizer("a lump in the middle of the monkeys stirred and then fell quiet .", return_tensors="pt") outputs = model(**inputs) outputs.updates # tensor([[[[15., 9., 10., 7., 3., 8., 5., 7., 12., 10., 6., 8., 8., 9., 5., 8.]]]]) ``` ## Citations ### BibTeX entry and citation info If you use our iterative transformer model for your scientific publication or your industrial applications, please cite the following [paper](https://aclanthology.org/2021.acl-srw.23/): ```bibtex @inproceedings{simoulin-crabbe-2021-many, title = "How Many Layers and Why? {A}n Analysis of the Model Depth in Transformers", author = "Simoulin, Antoine and Crabb{\'e}, Benoit", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-srw.23", doi = "10.18653/v1/2021.acl-srw.23", pages = "221--228", } ``` ### References ><div id="graves-2016">Alex Graves. 2016. <a href="https://arxiv.org/abs/1603.08983" target="_blank">Adaptive computation time for recurrent neural networks.</a> CoRR, abs/1603.08983.</div>
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-960h-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-960h-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1937 | 1.0 | 14 | 2.1715 | 0.3333 | | 2.1764 | 2.0 | 28 | 2.1317 | 0.3333 | | 2.1358 | 3.0 | 42 | 2.0794 | 0.3333 | | 2.1227 | 4.0 | 56 | 2.0367 | 0.3333 | | 2.1157 | 5.0 | 70 | 1.9845 | 0.3333 | | 2.0776 | 6.0 | 84 | 1.9369 | 0.3333 | | 2.0126 | 7.0 | 98 | 1.8021 | 0.375 | | 1.88 | 8.0 | 112 | 1.6825 | 0.4167 | | 1.8818 | 9.0 | 126 | 1.4638 | 0.5 | | 1.7044 | 10.0 | 140 | 1.4188 | 0.5208 | | 1.5442 | 11.0 | 154 | 1.3421 | 0.5625 | | 1.5045 | 12.0 | 168 | 1.3971 | 0.5 | | 1.3369 | 13.0 | 182 | 1.1602 | 0.5833 | | 1.4017 | 14.0 | 196 | 1.3510 | 0.5417 | | 1.2565 | 15.0 | 210 | 1.0978 | 0.5625 | | 1.1056 | 16.0 | 224 | 1.0847 | 0.5833 | | 1.2006 | 17.0 | 238 | 1.0262 | 0.625 | | 0.9235 | 18.0 | 252 | 0.9532 | 0.7083 | | 0.9528 | 19.0 | 266 | 1.0212 | 0.6042 | | 0.8195 | 20.0 | 280 | 0.8442 | 0.7083 | | 0.7518 | 21.0 | 294 | 0.8379 | 0.6875 | | 0.6017 | 22.0 | 308 | 0.9422 | 0.7292 | | 0.7697 | 23.0 | 322 | 0.7353 | 0.75 | | 0.5367 | 24.0 | 336 | 0.8685 | 0.6875 | | 0.5655 | 25.0 | 350 | 0.7440 | 0.7708 | | 0.5116 | 26.0 | 364 | 0.7572 | 0.75 | | 0.4297 | 27.0 | 378 | 0.7518 | 0.75 | | 0.4928 | 28.0 | 392 | 0.5988 | 0.7917 | | 0.4424 | 29.0 | 406 | 0.7240 | 0.75 | | 0.3313 | 30.0 | 420 | 0.6173 | 0.7708 | | 0.3854 | 31.0 | 434 | 0.7375 | 0.75 | | 0.4131 | 32.0 | 448 | 0.7026 | 0.7708 | | 0.2899 | 33.0 | 462 | 0.6516 | 0.7708 | | 0.3644 | 34.0 | 476 | 0.6201 | 0.7917 | | 0.2316 | 35.0 | 490 | 0.6111 | 0.7708 | | 0.2589 | 36.0 | 504 | 0.5518 | 0.7917 | | 0.3778 | 37.0 | 518 | 0.5512 | 0.7708 | | 0.2426 | 38.0 | 532 | 0.5779 | 0.7917 | | 0.304 | 39.0 | 546 | 0.7771 | 0.75 | | 0.1833 | 40.0 | 560 | 0.5839 | 0.7708 | | 0.1649 | 41.0 | 574 | 0.5699 | 0.7708 | | 0.2529 | 42.0 | 588 | 0.6190 | 0.75 | | 0.2121 | 43.0 | 602 | 0.5992 | 0.75 | | 0.2736 | 44.0 | 616 | 0.6011 | 0.7917 | | 0.2446 | 45.0 | 630 | 0.6013 | 0.7708 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-large-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
This model is converted with https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py. However, the tokenizer in the diffuser model is wrong, for proper usage, see description at https://medium.com/@enryu9000/anifusion-diffusion-models-for-anime-pictures-138cf1af2cbe, and instructions/examples at https://github.com/enryu43/anifusion-stable-diffusion. Also, the original checkpoint in the Latent Diffusion format is available. Installation instructions for webui: https://gist.github.com/enryu43/858999bf69dc92b97fdad6137c3c45e6
dccuchile/albert-tiny-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true --- # John Diffusion Model Card John Diffusion (Based on Stable Diffusion) is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how John Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion). The **John-Diffusion** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 225k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). It was then trained with Dreambooth on pictures of our savior, Little King John. ## Model Details - **Finetuned by** Ethan Porcaro - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
dccuchile/albert-tiny-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-xlsr-53-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-xlsr-53-espeak-cv-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9124 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1894 | 1.0 | 14 | 2.1812 | 0.3333 | | 2.1795 | 2.0 | 28 | 2.1553 | 0.3333 | | 2.144 | 3.0 | 42 | 2.1066 | 0.3333 | | 2.1175 | 4.0 | 56 | 2.0283 | 0.3542 | | 2.0542 | 5.0 | 70 | 1.9253 | 0.3958 | | 2.0007 | 6.0 | 84 | 1.8468 | 0.4167 | | 1.8891 | 7.0 | 98 | 1.7655 | 0.4583 | | 1.8484 | 8.0 | 112 | 1.6695 | 0.4792 | | 1.8256 | 9.0 | 126 | 1.5920 | 0.5 | | 1.6832 | 10.0 | 140 | 1.5331 | 0.5 | | 1.6149 | 11.0 | 154 | 1.4763 | 0.5 | | 1.5853 | 12.0 | 168 | 1.4453 | 0.5 | | 1.4357 | 13.0 | 182 | 1.3588 | 0.5 | | 1.4789 | 14.0 | 196 | 1.3238 | 0.4792 | | 1.3886 | 15.0 | 210 | 1.2822 | 0.4792 | | 1.313 | 16.0 | 224 | 1.2609 | 0.5 | | 1.3559 | 17.0 | 238 | 1.2191 | 0.5208 | | 1.1937 | 18.0 | 252 | 1.1936 | 0.5 | | 1.1847 | 19.0 | 266 | 1.1547 | 0.5417 | | 1.197 | 20.0 | 280 | 1.1390 | 0.5417 | | 1.1057 | 21.0 | 294 | 1.1310 | 0.5208 | | 1.0291 | 22.0 | 308 | 1.1086 | 0.5417 | | 1.0768 | 23.0 | 322 | 1.1075 | 0.5417 | | 1.0249 | 24.0 | 336 | 1.0654 | 0.5625 | | 1.0433 | 25.0 | 350 | 1.0390 | 0.5625 | | 0.9974 | 26.0 | 364 | 1.0086 | 0.6458 | | 0.9578 | 27.0 | 378 | 0.9939 | 0.625 | | 0.916 | 28.0 | 392 | 0.9938 | 0.625 | | 0.9187 | 29.0 | 406 | 0.9843 | 0.625 | | 0.8759 | 30.0 | 420 | 0.9755 | 0.625 | | 0.9199 | 31.0 | 434 | 0.9822 | 0.6042 | | 0.8791 | 32.0 | 448 | 0.9522 | 0.6458 | | 0.8436 | 33.0 | 462 | 0.9414 | 0.6458 | | 0.8692 | 34.0 | 476 | 0.9510 | 0.625 | | 0.8201 | 35.0 | 490 | 0.9208 | 0.6667 | | 0.8284 | 36.0 | 504 | 0.9398 | 0.6458 | | 0.8761 | 37.0 | 518 | 0.9438 | 0.6458 | | 0.7948 | 38.0 | 532 | 0.9253 | 0.6667 | | 0.8339 | 39.0 | 546 | 0.9250 | 0.6458 | | 0.8002 | 40.0 | 560 | 0.9145 | 0.6458 | | 0.7791 | 41.0 | 574 | 0.9062 | 0.6667 | | 0.7944 | 42.0 | 588 | 0.9077 | 0.6667 | | 0.7777 | 43.0 | 602 | 0.9069 | 0.6458 | | 0.7943 | 44.0 | 616 | 0.9118 | 0.625 | | 0.7573 | 45.0 | 630 | 0.9124 | 0.625 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-xlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.9186 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.5550 - Bleu: 5.9186 - Gen Len: 17.5809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.7524 | 1.0 | 6355 | 1.5696 | 5.8485 | 17.5793 | | 1.7452 | 2.0 | 12710 | 1.5550 | 5.9186 | 17.5809 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
dccuchile/albert-xlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit --- ### 27_from_Mayonnaise_SalesMen on Stable Diffusion via Dreambooth #### model by crimsonGenocide This your the Stable Diffusion model fine-tuned the 27_from_Mayonnaise_SalesMen concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a drawing of 27 from Mayonnaise SalesMen** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/2.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/7.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/4.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/8.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/1.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/10.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/0.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/3.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/9.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/5.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/27-from-mayonnaise-salesmen/resolve/main/concept_images/6.jpeg)
dccuchile/albert-xxlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-xls-r-300m-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3107 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1982 | 1.0 | 14 | 2.1951 | 0.0625 | | 2.2021 | 2.0 | 28 | 2.1847 | 0.1458 | | 2.1819 | 3.0 | 42 | 2.1661 | 0.3333 | | 2.1789 | 4.0 | 56 | 2.1413 | 0.3333 | | 2.164 | 5.0 | 70 | 2.1183 | 0.3333 | | 2.1484 | 6.0 | 84 | 2.0974 | 0.3333 | | 2.1199 | 7.0 | 98 | 2.0939 | 0.3333 | | 2.1343 | 8.0 | 112 | 2.0829 | 0.3333 | | 2.1397 | 9.0 | 126 | 2.0654 | 0.3333 | | 2.1045 | 10.0 | 140 | 2.0553 | 0.3333 | | 2.1083 | 11.0 | 154 | 2.0255 | 0.3333 | | 2.0914 | 12.0 | 168 | 2.0065 | 0.3333 | | 2.0434 | 13.0 | 182 | 1.9696 | 0.3333 | | 2.0687 | 14.0 | 196 | 1.9231 | 0.4167 | | 2.0237 | 15.0 | 210 | 1.8679 | 0.4167 | | 1.9562 | 16.0 | 224 | 1.8184 | 0.4167 | | 2.0361 | 17.0 | 238 | 1.8803 | 0.3958 | | 1.888 | 18.0 | 252 | 1.7802 | 0.4167 | | 1.899 | 19.0 | 266 | 1.7662 | 0.4167 | | 1.8959 | 20.0 | 280 | 1.7076 | 0.4167 | | 1.8368 | 21.0 | 294 | 1.6566 | 0.4375 | | 1.7358 | 22.0 | 308 | 1.6283 | 0.5 | | 1.7877 | 23.0 | 322 | 1.6411 | 0.4583 | | 1.7311 | 24.0 | 336 | 1.5525 | 0.5208 | | 1.7079 | 25.0 | 350 | 1.5163 | 0.5 | | 1.6496 | 26.0 | 364 | 1.5458 | 0.5 | | 1.6374 | 27.0 | 378 | 1.5211 | 0.5 | | 1.6048 | 28.0 | 392 | 1.4533 | 0.5417 | | 1.5927 | 29.0 | 406 | 1.4319 | 0.5 | | 1.4987 | 30.0 | 420 | 1.4579 | 0.5208 | | 1.5745 | 31.0 | 434 | 1.4167 | 0.6042 | | 1.4632 | 32.0 | 448 | 1.4471 | 0.5417 | | 1.4686 | 33.0 | 462 | 1.4116 | 0.5625 | | 1.5368 | 34.0 | 476 | 1.3872 | 0.6042 | | 1.4327 | 35.0 | 490 | 1.3491 | 0.5833 | | 1.3978 | 36.0 | 504 | 1.3325 | 0.5833 | | 1.4509 | 37.0 | 518 | 1.3236 | 0.6042 | | 1.3881 | 38.0 | 532 | 1.3426 | 0.5833 | | 1.39 | 39.0 | 546 | 1.3137 | 0.6042 | | 1.4153 | 40.0 | 560 | 1.3123 | 0.625 | | 1.3635 | 41.0 | 574 | 1.3224 | 0.6042 | | 1.403 | 42.0 | 588 | 1.3111 | 0.6042 | | 1.3763 | 43.0 | 602 | 1.3197 | 0.5833 | | 1.3539 | 44.0 | 616 | 1.3077 | 0.6042 | | 1.306 | 45.0 | 630 | 1.3107 | 0.625 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dccuchile/albert-xxlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # copenlu/spiced This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('copenlu/spiced') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=copenlu/spiced) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 591 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 591, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dccuchile/bert-base-spanish-wwm-cased-finetuned-ner
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
81
null
Pre-trained evaluator in EMNLP 2022 paper *[Towards a Unified Multi-Dimensional Evaluator for Text Generation](https://arxiv.org/abs/2210.07197)* ## Introduction **Multi-dimensional evaluation** is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics (e.g., ROUGE, BLEU), but they are not sufficient to portray the difference between the advanced generation models. Therefore, we propose **UniEval** to bridge this gap so that a more comprehensive and fine-grained evaluation of NLG systems can be achieved. ## Pre-trained Evaluator **unieval-fact** is the pre-trained evaluator for the factual consistency detection task. It can evaluate the model output and predict a consistency score. ## Usage Please refer to [our GitHub repository](https://github.com/maszhongming/UniEval).
dccuchile/bert-base-spanish-wwm-cased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- language: fr tags: - Early Modern French - Historical license: apache-2.0 datasets: - freemmax --- <a href="https://portizs.eu/publication/2022/lrec/dalembert/"> <img width="300px" src="https://portizs.eu/publication/2022/lrec/dalembert/featured_hu18bf34d40cdc71c744bdd15e48ff0b23_61788_720x2500_fit_q100_h2_lanczos_3.webp"> </a> # D'AlemBERT base model This model is a [RoBERTa base model](https://huggingface.co/roberta-base) pre-trained on the [FreEMmax corpus](https://doi.org/10.5281/zenodo.6481135) for Early Modern French. It was introduced in [this paper](https://aclanthology.org/2022.lrec-1.359/). This model is Cased and was trained with a mix of normalized and unnormalized data. ## Model description D'AlemBERT is a transformers mode pretrained on the raw texts only with no humans labelling them in any way with an automatic process to generate inputs and labels from those texts using the RoBERTa base model. More precisely, it was pretrained with one objective: - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT. The model is primarily intended for use in Digital Humanities and Historical NLP. ### Limitations and bias This model is trained with historical French data from starting from the 16th c., so it might produce results that seem extremely biased by today standards. It might not work well on contemporary data and it is not intended to be used on it. This bias will also affect all fine-tuned versions of this model. ## Training data D'AlemBERT was pretrained on the non-freely available version of the [FreEMmax corpus](https://doi.org/10.5281/zenodo.6481135), a dataset consisting of more than 180k tokens coming from 22 different sources, and comprising French textual data going from the 16th c to the early 20th c. ### BibTeX entry and citation info ```bibtex @inproceedings{gabay-etal-2022-freem, title = "From {F}re{EM} to D{'}{A}lem{BERT}: a Large Corpus and a Language Model for Early {M}odern {F}rench", author = "Gabay, Simon and Ortiz Suarez, Pedro and Bartz, Alexandre and Chagu{\'e}, Alix and Bawden, Rachel and Gambette, Philippe and Sagot, Beno{\^\i}t", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.359", pages = "3367--3374", abstract = "anguage models for historical states of language are becoming increasingly important to allow the optimal digitisation and analysis of old textual sources. Because these historical states are at the same time more complex to process and more scarce in the corpora available, this paper presents recent efforts to overcome this difficult situation. These efforts include producing a corpus, creating the model, and evaluating it with an NLP task currently used by scholars in other ongoing projects.", } ```
dccuchile/bert-base-spanish-wwm-uncased-finetuned-ner
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit --- ### Kirby on Stable Diffusion This is the `<kirby>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<kirby> 0](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/2.jpeg) ![<kirby> 1](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/7.jpeg) ![<kirby> 2](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/4.jpeg) ![<kirby> 3](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/8.jpeg) ![<kirby> 4](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/1.jpeg) ![<kirby> 5](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/0.jpeg) ![<kirby> 6](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/3.jpeg) ![<kirby> 7](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/5.jpeg) ![<kirby> 8](https://huggingface.co/sd-concepts-library/kirby/resolve/main/concept_images/6.jpeg)
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- "This is just a test; I'm new to hugging face."
dccuchile/distilbert-base-spanish-uncased-finetuned-ner
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v0-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="farzeen/q-FrozenLake-v0-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dccuchile/distilbert-base-spanish-uncased-finetuned-pawsx
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- language: - "la" tags: - "latin" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "deus videt te non sentientem" --- # roberta-base-latin-ud-goeswith ## Model Description This is a RoBERTa model pre-trained on CC-100 Latin texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-latin-v2](https://huggingface.co/ClassCat/roberta-base-latin-v2). ## How to Use ```py class UDgoeswith(object): def __init__(self,bert): from transformers import AutoTokenizer,AutoModelForTokenClassification self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForTokenClassification.from_pretrained(bert) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=self.tokenizer(text,return_offsets_mapping=True) v=w["input_ids"] x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)] with torch.no_grad(): e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:] r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())] e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan) g=self.model.config.label2id["X|_|goeswith"] r=numpy.tri(e.shape[0]) for i in range(e.shape[0]): for j in range(i+2,e.shape[1]): r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1 e[:,:,g]+=numpy.where(r==0,0,numpy.nan) m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan) m[1:,1:]=numpy.nanmax(e,axis=2).transpose() p=numpy.zeros(m.shape) p[1:,1:]=numpy.nanargmax(e,axis=2).transpose() for i in range(1,m.shape[0]): m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan) m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text+"\n" v=[(s,e) for s,e in w["offset_mapping"] if s<e] for i,(s,e) in enumerate(v,1): q=self.model.config.id2label[p[i,h[i]]].split("|") u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=UDgoeswith("KoichiYasuoka/roberta-base-latin-ud-goeswith") print(nlp("deus videt te non sentientem")) ``` with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/). Or without ufal.chu-liu-edmonds: ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-latin-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("deus videt te non sentientem")) ```
dccuchile/distilbert-base-spanish-uncased-finetuned-pos
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: zh widget: - text: "子墨子曰" --- # Ancient chinese GPT2 model ## Model description This model is a GPT2 model trained to generate ancient Chinese text, with `bert-base-chinese` as tokenizer. ## Training data It's trained on the classic Chinese texts fetched from ctext.org. Current training data is really small scale -- all training text data together was 19Mb. <details> <summary> "Reading list" of this model </summary> * 孟子 "mengzi" * 论语 "analects" * 商君书 "shang-jun-shu" * 礼记 "liji" * 孙子兵法 "art-of-war" * 墨子 "mozi" * 庄子 "zhuangzi" * 道德经 "dao-de-jing" * 韩非子 "hanfeizi" * 史记 "shiji" * 战国策 "zhan-guo-ce" * 汉书 "han-shu" * 后汉书 "hou-han-shu" * 三国志 "sanguozhi" * 世说新语 "shi-shuo-xin-yu" * 颜氏家训 "yan-shi-jia-xun" * 金瓶梅 "jinpingmei" * 西游记 "xiyouji" * 红楼梦 "hongloumeng" </details> ## How to use You can use the model directly with a pipeline for text generation: ```python from transformers import pipeline, GPT2LMHeadModel model = GPT2LMHeadModel.from_pretrained("binxu/Ziyue-GPT2") generator = pipeline('text-generation', model=model, tokenizer='bert-base-chinese') outputs = generator("子墨子曰", max_length=50, num_return_sequences=5, num_beams=10, repetition_penalty=1.5) [{'generated_text': '子墨子曰 : 吾 未 得 见 之 时 , 知 有 失 得 之 时 , 有 为 之 者 。 氏 , 圣 王 之 时 , 万 乘 之 世 , 圣 人 不 易 之 道 也 。'}] ```
dccuchile/distilbert-base-spanish-uncased
[ "pytorch", "distilbert", "fill-mask", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
670
null
Pre-trained evaluator in EMNLP 2022 paper *[Towards a Unified Multi-Dimensional Evaluator for Text Generation](https://arxiv.org/abs/2210.07197)* ## Introduction **Multi-dimensional evaluation** is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics (e.g., ROUGE, BLEU), but they are not sufficient to portray the difference between the advanced generation models. Therefore, we propose **UniEval** to bridge this gap so that a more comprehensive and fine-grained evaluation of NLG systems can be achieved. ## Pre-trained Evaluator **unieval-intermediate** is a pre-trained Boolean Answer Generator after performing intermediate multi-task learning. On top of this checkpoint, you can also train a custom evaluator for a specific NLG task. ## Usage Please refer to [our GitHub repository](https://github.com/maszhongming/UniEval).
CennetOguz/distilbert-base-uncased-finetuned-recipe-1
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.24 +/- 0.43 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Michael02/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate-1
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Michael02/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer model-index: - name: trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainer This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Certified-Zoomer/DialoGPT-small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mBART_translator_json_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART_translator_json_2 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1203 - Bleu: 77.8658 - Gen Len: 36.1527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.7858 | 1.0 | 1912 | 0.6568 | 55.2937 | 75.6389 | | 0.994 | 2.0 | 3824 | 0.4015 | 71.3655 | 35.744 | | 0.7267 | 3.0 | 5736 | 0.2971 | 66.7522 | 34.5473 | | 0.5916 | 4.0 | 7648 | 0.2437 | 80.0233 | 37.4331 | | 0.502 | 5.0 | 9560 | 0.2072 | 80.9632 | 36.9833 | | 0.433 | 6.0 | 11472 | 0.1767 | 69.9384 | 36.6381 | | 0.3581 | 7.0 | 13384 | 0.1566 | 64.615 | 34.8954 | | 0.3244 | 8.0 | 15296 | 0.1382 | 77.5563 | 36.1736 | | 0.2815 | 9.0 | 17208 | 0.1259 | 76.1662 | 36.1548 | | 0.2555 | 10.0 | 19120 | 0.1203 | 77.8658 | 36.1527 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 1.9042 - Mean Iou: 0.1600 - Mean Accuracy: 0.1997 - Overall Accuracy: 0.7338 - Per Category Iou: [nan, 0.27359520957005035, 0.6563592089876799, 0.0, 0.23344374046535918, 0.0, nan, 0.0, 0.0, 0.0, 0.5539341917024321, nan, nan, nan, nan, 0.0, 0.0, nan, 0.6213519498256361, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.8012808797206368, 0.0, 0.8609473035107046, nan, 0.0, 0.0, 0.0] - Per Category Accuracy: [nan, 0.38598740280061317, 0.9344800917343116, 0.0, 0.23402267811135147, 0.0, nan, 0.0, 0.0, 0.0, 0.6574569071869553, nan, nan, nan, nan, 0.0, 0.0, nan, 0.889953470705536, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.9339123774958169, 0.0, 0.9562267789312698, nan, 0.0, 0.0, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 2.8419 | 0.42 | 20 | 3.2243 | 0.1239 | 0.1973 | 0.6992 | [0.0, 0.221283072298205, 0.6482498250140304, 0.0, 0.36607695456244177, 0.013827775204570018, nan, 1.0254201659129828e-05, 0.0, 0.0, 0.5416500682753081, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5339731316050166, 0.0, 0.0006440571922786744, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7498440701547007, 0.0, 0.7659222854515146, 0.0, 0.0, 0.0, 0.0] | [nan, 0.3346613609105567, 0.8582083544770268, 0.0, 0.5101472837243907, 0.015482685970504024, nan, 1.0366454154356502e-05, 0.0, 0.0, 0.6745826026281508, nan, nan, nan, nan, 0.0, 0.0, nan, 0.8093545247364923, 0.0, 0.0006458279514337381, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.9324806212895075, 0.0, 0.797418357423677, nan, 0.0, 0.0, 0.0] | | 2.3662 | 0.83 | 40 | 2.5147 | 0.1402 | 0.1798 | 0.6989 | [nan, 0.19549119549985344, 0.6036027201962391, 0.0, 0.0019222772099991463, 0.000300503343099692, nan, 0.0, 0.0, 0.0, 0.47853978429259575, nan, nan, nan, nan, 0.0, 0.0, nan, 0.5820555774612892, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.7898452112422248, 0.0, 0.8521568687502872, nan, 0.0, 0.0, 0.0] | [nan, 0.25107981668136076, 0.9396577375184628, 0.0, 0.0019233683746435017, 0.0003025228242666523, nan, 0.0, 0.0, 0.0, 0.5513810659584686, nan, nan, nan, nan, 0.0, 0.0, nan, 0.8953553793561865, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.9300976130892274, 0.0, 0.9250758451014455, nan, 0.0, 0.0, 0.0] | | 2.1745 | 1.25 | 60 | 2.0428 | 0.1485 | 0.1882 | 0.7162 | [nan, 0.24240648716131, 0.6262941164542789, 0.0, 0.04440846090507781, 0.0, nan, 0.0, 0.0, 0.0, 0.522913696330921, nan, nan, nan, nan, 0.0, 0.0, nan, 0.6194890050543631, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.7947837731119848, 0.0, 0.8609570537373858, nan, 0.0, 0.0, 0.0] | [nan, 0.3318909301752965, 0.9392945927202885, 0.0, 0.04443587164684973, 0.0, nan, 0.0, 0.0, 0.0, 0.6149676720993105, nan, nan, nan, nan, 0.0, 0.0, nan, 0.8836542113759377, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.9409947331534898, 0.0, 0.9509521157666382, nan, 0.0, 0.0, 0.0] | | 1.986 | 1.67 | 80 | 1.9042 | 0.1600 | 0.1997 | 0.7338 | [nan, 0.27359520957005035, 0.6563592089876799, 0.0, 0.23344374046535918, 0.0, nan, 0.0, 0.0, 0.0, 0.5539341917024321, nan, nan, nan, nan, 0.0, 0.0, nan, 0.6213519498256361, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.8012808797206368, 0.0, 0.8609473035107046, nan, 0.0, 0.0, 0.0] | [nan, 0.38598740280061317, 0.9344800917343116, 0.0, 0.23402267811135147, 0.0, nan, 0.0, 0.0, 0.0, 0.6574569071869553, nan, nan, nan, nan, 0.0, 0.0, nan, 0.889953470705536, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.9339123774958169, 0.0, 0.9562267789312698, nan, 0.0, 0.0, 0.0] | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Chuah/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-960h-lv60-self-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-960h-lv60-self-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1985 - Accuracy: 0.5417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2033 | 1.0 | 14 | 2.2126 | 0.0833 | | 2.2006 | 2.0 | 28 | 2.2026 | 0.0833 | | 2.1786 | 3.0 | 42 | 2.1758 | 0.3333 | | 2.1712 | 4.0 | 56 | 2.1436 | 0.3333 | | 2.1495 | 5.0 | 70 | 2.1120 | 0.3333 | | 2.1326 | 6.0 | 84 | 2.0909 | 0.3333 | | 2.1039 | 7.0 | 98 | 2.0966 | 0.3333 | | 2.0931 | 8.0 | 112 | 2.0355 | 0.3333 | | 2.1144 | 9.0 | 126 | 2.0082 | 0.3333 | | 2.0258 | 10.0 | 140 | 1.9901 | 0.375 | | 2.0028 | 11.0 | 154 | 1.9429 | 0.3958 | | 1.9737 | 12.0 | 168 | 1.9538 | 0.3958 | | 1.9023 | 13.0 | 182 | 1.8824 | 0.375 | | 1.9226 | 14.0 | 196 | 1.8607 | 0.3958 | | 1.8521 | 15.0 | 210 | 1.8065 | 0.3958 | | 1.7752 | 16.0 | 224 | 1.8153 | 0.4167 | | 1.8391 | 17.0 | 238 | 1.7470 | 0.4375 | | 1.7041 | 18.0 | 252 | 1.7419 | 0.4167 | | 1.7075 | 19.0 | 266 | 1.6644 | 0.4375 | | 1.6845 | 20.0 | 280 | 1.6340 | 0.4375 | | 1.6275 | 21.0 | 294 | 1.6271 | 0.4167 | | 1.4586 | 22.0 | 308 | 1.5640 | 0.4375 | | 1.4987 | 23.0 | 322 | 1.5279 | 0.4583 | | 1.5513 | 24.0 | 336 | 1.4873 | 0.4792 | | 1.4828 | 25.0 | 350 | 1.4887 | 0.4583 | | 1.4711 | 26.0 | 364 | 1.4613 | 0.4583 | | 1.371 | 27.0 | 378 | 1.4062 | 0.4792 | | 1.3789 | 28.0 | 392 | 1.4038 | 0.4792 | | 1.3579 | 29.0 | 406 | 1.4031 | 0.4792 | | 1.2771 | 30.0 | 420 | 1.3637 | 0.5 | | 1.3417 | 31.0 | 434 | 1.3655 | 0.5 | | 1.231 | 32.0 | 448 | 1.3698 | 0.5 | | 1.2367 | 33.0 | 462 | 1.3394 | 0.5 | | 1.2933 | 34.0 | 476 | 1.3448 | 0.4792 | | 1.1631 | 35.0 | 490 | 1.2867 | 0.5417 | | 1.165 | 36.0 | 504 | 1.2624 | 0.5417 | | 1.2431 | 37.0 | 518 | 1.2252 | 0.5625 | | 1.1731 | 38.0 | 532 | 1.2082 | 0.5625 | | 1.1734 | 39.0 | 546 | 1.2062 | 0.5417 | | 1.1631 | 40.0 | 560 | 1.2034 | 0.5417 | | 1.0963 | 41.0 | 574 | 1.1973 | 0.5417 | | 1.2157 | 42.0 | 588 | 1.1988 | 0.5625 | | 1.1467 | 43.0 | 602 | 1.2018 | 0.5417 | | 1.1503 | 44.0 | 616 | 1.1986 | 0.5417 | | 1.0945 | 45.0 | 630 | 1.1985 | 0.5417 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Chungu424/DATA
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filter_sort metrics: - f1 - accuracy model-index: - name: favs-filtersort-multilabel-classification-bert-base-cased results: - task: name: Text Classification type: text-classification dataset: name: filter_sort type: filter_sort config: default split: train args: default metrics: - name: F1 type: f1 value: 0.7428571428571428 - name: Accuracy type: accuracy value: 0.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # favs-filtersort-multilabel-classification-bert-base-cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the filter_sort dataset. It achieves the following results on the evaluation set: - Loss: 0.3066 - F1: 0.7429 - Roc Auc: 0.8142 - Accuracy: 0.2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.7601 | 1.0 | 12 | 0.6966 | 0.2564 | 0.4518 | 0.0 | | 0.6757 | 2.0 | 24 | 0.5629 | 0.6667 | 0.7785 | 0.0 | | 0.5796 | 3.0 | 36 | 0.4652 | 0.6286 | 0.7477 | 0.0 | | 0.5026 | 4.0 | 48 | 0.4161 | 0.6479 | 0.7605 | 0.0 | | 0.4282 | 5.0 | 60 | 0.3830 | 0.6849 | 0.7862 | 0.0 | | 0.4085 | 6.0 | 72 | 0.3658 | 0.7273 | 0.7962 | 0.0 | | 0.3847 | 7.0 | 84 | 0.3538 | 0.7353 | 0.8052 | 0.0 | | 0.3829 | 8.0 | 96 | 0.3457 | 0.6761 | 0.7772 | 0.0 | | 0.3758 | 9.0 | 108 | 0.3409 | 0.6857 | 0.7810 | 0.0 | | 0.3487 | 10.0 | 120 | 0.3327 | 0.7143 | 0.7976 | 0.0 | | 0.3421 | 11.0 | 132 | 0.3268 | 0.6866 | 0.7758 | 0.0 | | 0.3351 | 12.0 | 144 | 0.3183 | 0.7059 | 0.7886 | 0.0 | | 0.3245 | 13.0 | 156 | 0.3149 | 0.7246 | 0.8014 | 0.0 | | 0.3191 | 14.0 | 168 | 0.3087 | 0.7246 | 0.8014 | 0.1 | | 0.3083 | 15.0 | 180 | 0.3066 | 0.7429 | 0.8142 | 0.2 | | 0.3061 | 16.0 | 192 | 0.3062 | 0.7429 | 0.8142 | 0.2 | | 0.2935 | 17.0 | 204 | 0.3017 | 0.7429 | 0.8142 | 0.2 | | 0.2888 | 18.0 | 216 | 0.3009 | 0.7429 | 0.8142 | 0.2 | | 0.297 | 19.0 | 228 | 0.3022 | 0.7429 | 0.8142 | 0.2 | | 0.2868 | 20.0 | 240 | 0.3014 | 0.7429 | 0.8142 | 0.2 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Cinnamon/electra-small-japanese-discriminator
[ "pytorch", "electra", "pretraining", "ja", "transformers", "license:apache-2.0" ]
null
{ "architectures": [ "ElectraForPreTraining" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
419
null
--- language: en thumbnail: http://www.huggingtweets.com/deepleffen-the_dealersh1p/1665552272191/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1211158441504456704/dCNSnY4k_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">『 』『dan』『 』 & Deep Leffen Bot</div> <div style="text-align: center; font-size: 14px;">@deepleffen-the_dealersh1p</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 『 』『dan』『 』 & Deep Leffen Bot. | Data | 『 』『dan』『 』 | Deep Leffen Bot | | --- | --- | --- | | Tweets downloaded | 2673 | 608 | | Retweets | 1336 | 14 | | Short tweets | 235 | 27 | | Tweets kept | 1102 | 567 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xu780cl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-the_dealersh1p's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3w2qdw30) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3w2qdw30/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-the_dealersh1p') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
CleveGreen/FieldClassifier_v2_gpt
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "GPT2ForSequenceClassification" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: zh datasets: - DeltaReadingComprehensionDataset widget: - text: "中興大學在哪裡?" context: "國立中興大學(簡稱興大、NCHU),是位於臺中的一所高等教育機構。中興大學以農業科學、農業經濟學、獸醫、生命科學、轉譯醫學、生醫工程、生物科技、綠色科技等研究領域見長 。近年中興大學與臺中榮民總醫院、彰化師範大學、中國醫藥大學等機構合作,聚焦於癌症醫學、免疫醫學及醫學工程三項領域,將實驗室成果逐步應用到臨床上,未來「衛生福利部南投醫院中興院區」將改為「國立中興大學醫學院附設醫院」。興大也與臺中市政府合作,簽訂合作意向書,共同推動數位文化、智慧城市等面相帶動區域發展。" - text: "我住在哪裡?" context: "我叫翰承,我住在台中。" --- # bert-base-chinese for QA This is the [bert-base-chinese](https://huggingface.co/bert-base-chinese) model, fine-tuned using the DRCD dataset. It's been trained on question-answer pairs for the task of Question Answering. ## Usage ### In Transformers ```python from transformers import BertTokenizerFast, BertForQuestionAnswering, pipeline model_name = "NchuNLP/Chinese-Question-Answering" tokenizer = BertTokenizerFast.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) # a) Get predictions nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) QA_input = { 'question': '中興大學在哪裡?', 'context': '國立中興大學(簡稱興大、NCHU),是位於臺中的一所高等教育機構。中興大學以農業科學、農業經濟學、獸醫、生命科學、轉譯醫學、生醫工程、生物科技、綠色科技等研究領域見長 。近年中興大學與臺中榮民總醫院、彰化師範大學、中國醫藥大學等機構合作,聚焦於癌症醫學、免疫醫學及醫學工程三項領域,將實驗室成果逐步應用到臨床上,未來「衛生福利部南投醫院中興院區」將改為「國立中興大學醫學院附設醫院」。興大也與臺中市政府合作,簽訂合作意向書,共同推動數位文化、智慧城市等面相帶動區域發展。' } res = nlp(QA_input) {'score': 1.0, 'start': 21, 'end': 23, 'answer': '臺中'} # b) Inside the Question answering pipeline inputs = tokenizer(query, text, return_tensors="pt",padding=True, truncation=True, max_length=512, stride=256) outputs = model(**inputs) sequence_ids = inputs.sequence_ids() # Mask everything apart from the tokens of the context mask = [i != 1 for i in sequence_ids] # Unmask the [CLS] token mask[0] = False mask = torch.tensor(mask)[None] start_logits[mask] = -10000 end_logits[mask] = -10000 start_probabilities = torch.nn.functional.softmax(start_logits, dim=-1)[0] end_probabilities = torch.nn.functional.softmax(end_logits, dim=-1)[0] scores = start_probabilities[:, None] * end_probabilities[None, :] max_index = scores.argmax().item() start_index = max_index // scores.shape[1] end_index = max_index % scores.shape[1] inputs_with_offsets = tokenizer(query, text, return_offsets_mapping=True) offsets = inputs_with_offsets["offset_mapping"] start_char, _ = offsets[start_index] _, end_char = offsets[end_index] answer = text[start_char:end_char] result = { "answer": answer, "start": start_char, "end": end_char, "score": scores[start_index, end_index], } print(result) ``` ## Authors **Han Cheng Yu:** [email protected] **Yao-Chung Fan:** [email protected] ## About us [中興大學自然語言處理實驗室](https://nlpnchu.org/)研究方向圍繞於深度學習技術在文字資料探勘 (Text Mining) 與自然語言處理 (Natural Language Processing) 方面之研究,目前實驗室成員的研究主題著重於機器閱讀理解 (Machine Reading Comprehension) 以及自然語言生成 (Natural Language Generation) 兩面向。 ## More Information <p>For more info about Nchu NLP Lab, visit our <strong><a href="https://demo.nlpnchu.org/">Lab Online Demo</a></strong> repo and <strong><a href="https://github.com/NCHU-NLP-Lab">GitHub</a></strong>.
CoachCarter/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-conformer-rel-pos-large-960h-ft-intent-classification-ori results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-conformer-rel-pos-large-960h-ft-intent-classification-ori This model is a fine-tuned version of [facebook/wav2vec2-conformer-rel-pos-large-960h-ft](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large-960h-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2518 - Accuracy: 0.5833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2018 | 1.0 | 28 | 2.1963 | 0.125 | | 2.1871 | 2.0 | 56 | 2.1715 | 0.3333 | | 2.1499 | 3.0 | 84 | 2.1349 | 0.3333 | | 2.1236 | 4.0 | 112 | 2.0749 | 0.3333 | | 2.0814 | 5.0 | 140 | 2.0232 | 0.3333 | | 2.0905 | 6.0 | 168 | 1.9028 | 0.375 | | 1.9167 | 7.0 | 196 | 1.8469 | 0.3958 | | 1.7048 | 8.0 | 224 | 1.6481 | 0.4583 | | 1.4723 | 9.0 | 252 | 1.5350 | 0.4583 | | 1.5265 | 10.0 | 280 | 1.4526 | 0.5 | | 1.2621 | 11.0 | 308 | 1.4451 | 0.4583 | | 1.5083 | 12.0 | 336 | 1.3296 | 0.4792 | | 1.1857 | 13.0 | 364 | 1.2983 | 0.4792 | | 1.3449 | 14.0 | 392 | 1.3026 | 0.4792 | | 1.2061 | 15.0 | 420 | 1.3181 | 0.4792 | | 1.2544 | 16.0 | 448 | 1.2603 | 0.4792 | | 1.0731 | 17.0 | 476 | 1.2607 | 0.4792 | | 0.8836 | 18.0 | 504 | 1.2644 | 0.4792 | | 1.0917 | 19.0 | 532 | 1.2345 | 0.4792 | | 1.0786 | 20.0 | 560 | 1.2791 | 0.4792 | | 1.1616 | 21.0 | 588 | 1.2238 | 0.4792 | | 1.0614 | 22.0 | 616 | 1.2305 | 0.4583 | | 0.9617 | 23.0 | 644 | 1.2315 | 0.4792 | | 0.9652 | 24.0 | 672 | 1.2931 | 0.4792 | | 0.9042 | 25.0 | 700 | 1.1246 | 0.5 | | 1.0865 | 26.0 | 728 | 1.1490 | 0.4792 | | 0.9653 | 27.0 | 756 | 1.1713 | 0.5 | | 0.858 | 28.0 | 784 | 1.1726 | 0.5208 | | 0.8364 | 29.0 | 812 | 1.2142 | 0.5 | | 0.6798 | 30.0 | 840 | 1.2163 | 0.5208 | | 0.9284 | 31.0 | 868 | 1.1398 | 0.4792 | | 0.7383 | 32.0 | 896 | 1.2418 | 0.5208 | | 0.651 | 33.0 | 924 | 1.1734 | 0.5 | | 0.7416 | 34.0 | 952 | 1.2285 | 0.5 | | 0.6287 | 35.0 | 980 | 1.1467 | 0.5833 | | 0.6806 | 36.0 | 1008 | 1.1589 | 0.5625 | | 0.6148 | 37.0 | 1036 | 1.1373 | 0.5833 | | 0.7174 | 38.0 | 1064 | 1.2118 | 0.5625 | | 0.6056 | 39.0 | 1092 | 1.2205 | 0.5833 | | 0.7041 | 40.0 | 1120 | 1.2408 | 0.5833 | | 0.631 | 41.0 | 1148 | 1.2350 | 0.5833 | | 0.6028 | 42.0 | 1176 | 1.2787 | 0.5833 | | 0.5942 | 43.0 | 1204 | 1.2463 | 0.5833 | | 0.5441 | 44.0 | 1232 | 1.2496 | 0.5833 | | 0.5042 | 45.0 | 1260 | 1.2518 | 0.5833 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
CoachCarter/distilbert-base-uncased
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
CodeDanCode/SP-KyleBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
This is a fork of the GPT NeoX 20B tokenizer, edited to split every numerical digit into a separate token. This has the goal of making it easier for the model to learn arithmetic capabilities and to hopefully be more interpretable, and copies the idea from the [PaLM tokenizer](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html). This was done, extremely hackily, by just removing every token that contained "\d\d" (eg "2013"). All remaining digit containing tokens are "0" ... "9" and " 0" ... " 9" This comes at the cost of making modelling normal text harder, since eg dates like 2013 which naturally *should* be a single token are now 2|0|1|3. This has a reduced vocab size of 48252 (several of the tokens towards the end are special whitespace tokens copied in from GPT-NeoX to make tokenizing code easier - some of these are duplicated in the vocabulary and thus may not actually show up at train time). It includes a padding token (<|PAD|>) an End-Of-String token (<|EOS|>) and a Beginning-Of-String token (<|BOS|>)
CodeNinja1126/bert-p-encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1475 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2761 | 1.0 | 595 | 0.1644 | 0.8164 | | 0.1333 | 2.0 | 1190 | 0.1473 | 0.8525 | | 0.0848 | 3.0 | 1785 | 0.1475 | 0.8589 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CodeNinja1126/test-model
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CoderEFE/DialoGPT-marxbot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "has_space" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: TESTq-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ThomasSimonini/TESTq-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Venkatakrishnan-Ramesh/Text_gen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-10-12T07:46:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: TESTq-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ThomasSimonini/TESTq-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CoffeeAddict93/gpt2-medium-modest-proposal
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-10-12T07:57:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-works results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="osanseviero/q-FrozenLake-v1-4x4-noSlippery-works", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
CohleM/bert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: SpanBERT-hatexplain-label-all-tokens-False-3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpanBERT-hatexplain-label-all-tokens-False-3epoch This model is a fine-tuned version of [SpanBERT/spanbert-large-cased](https://huggingface.co/SpanBERT/spanbert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.1810 | | No log | 2.0 | 348 | 0.1657 | | 0.1781 | 3.0 | 522 | 0.1749 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
A 2L, width 736 SoLU model trained on 15B tokens of the Pile. Bugs: the layernorm just before the unembed is an RMS norm, and the width is not a multiple of 64, so d_head=64 and n_heads=11, and n_heads * d_head != d_model :(
Crasher222/kaggle-comp-test
[ "pytorch", "bert", "text-classification", "en", "dataset:Crasher222/autonlp-data-kaggle-test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
Access to model andrecaruso/aaa is restricted and you are not in the authorized list. Visit https://huggingface.co/andrecaruso/aaa to ask for access.
CurtisASmith/GPT-JRT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-10-12T14:29:12Z
# clinical-led-summarizer HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization" [Paper Link](https://aclanthology.org/2022.findings-emnlp.296/) --- language: - en tags: - summarization license: apache-2.0 datasets: - MIMIC-III metrics: - rouge - bertscore ---
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Dutch", "French", "English", "Tweets", "Topic classification" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
167
2022-10-12T18:00:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sst2 model-index: - name: distilled_bert_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled_bert_finetuning This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sst2 dataset. Label 0 is Negative Label 1 is Positive ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.11.0+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
Danbi/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
a quick little model I did. Probably not going to update this. prompt is "GoosebumpsCover book_cover"
Darkrider/covidbert_mednli
[ "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 2.2325 | | No log | 2.0 | 40 | 2.1603 | | No log | 3.0 | 60 | 2.2368 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
DarshanDeshpande/marathi-distilbert
[ "pytorch", "tf", "distilbert", "fill-mask", "mr", "dataset:Oscar Corpus, News, Stories", "arxiv:1910.01108", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-10-12T23:05:57Z
--- license: unknown inference: false tags: - mlconsole - tabular-regression library_name: mlconsole metrics: - mae - loss datasets: - pokemon.csv model-index: - name: pokemon.csv results: - task: type: tabular-regression name: tabular-regression dataset: type: pokemon.csv name: pokemon.csv metrics: - type: mae name: Mean absolute error value: 3.10766339302063 - type: loss name: Model loss value: 18.141359329223633 --- # pokemon.csv (#0) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/pokemon.csv).
Darya/layoutlmv2-finetuned-funsd-test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it-hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it-hrs This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1558 - Bleu: 9.8991 - Gen Len: 51.8287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 2.0084 | 1.0 | 1125 | 2.8804 | 4.4102 | 67.6067 | | 1.7918 | 2.0 | 2250 | 2.7757 | 6.1959 | 58.0313 | | 1.6944 | 3.0 | 3375 | 2.6845 | 6.9152 | 55.6953 | | 1.5955 | 4.0 | 4500 | 2.6219 | 7.3056 | 54.8213 | | 1.5304 | 5.0 | 5625 | 2.5659 | 7.9427 | 53.4173 | | 1.52 | 6.0 | 6750 | 2.5249 | 8.2049 | 53.678 | | 1.4934 | 7.0 | 7875 | 2.4853 | 8.6612 | 52.304 | | 1.4518 | 8.0 | 9000 | 2.4522 | 8.7991 | 52.6467 | | 1.4393 | 9.0 | 10125 | 2.4353 | 8.8251 | 52.7047 | | 1.4196 | 10.0 | 11250 | 2.4027 | 9.01 | 52.5387 | | 1.405 | 11.0 | 12375 | 2.3797 | 9.1513 | 52.0273 | | 1.3741 | 12.0 | 13500 | 2.3590 | 9.2401 | 52.3373 | | 1.3693 | 13.0 | 14625 | 2.3378 | 9.3611 | 52.1507 | | 1.3638 | 14.0 | 15750 | 2.3226 | 9.4213 | 52.2813 | | 1.3366 | 15.0 | 16875 | 2.3071 | 9.5199 | 52.1507 | | 1.3294 | 16.0 | 18000 | 2.2943 | 9.5296 | 51.9587 | | 1.3258 | 17.0 | 19125 | 2.2788 | 9.6231 | 51.5807 | | 1.3152 | 18.0 | 20250 | 2.2693 | 9.6586 | 51.8933 | | 1.3023 | 19.0 | 21375 | 2.2543 | 9.6762 | 51.5733 | | 1.3061 | 20.0 | 22500 | 2.2451 | 9.6926 | 51.6727 | | 1.3004 | 21.0 | 23625 | 2.2344 | 9.773 | 51.6527 | | 1.2839 | 22.0 | 24750 | 2.2242 | 9.7973 | 51.8113 | | 1.2869 | 23.0 | 25875 | 2.2161 | 9.8177 | 51.9073 | | 1.2819 | 24.0 | 27000 | 2.2115 | 9.8183 | 51.6707 | | 1.2642 | 25.0 | 28125 | 2.2037 | 9.7645 | 52.0853 | | 1.2685 | 26.0 | 29250 | 2.1984 | 9.7764 | 51.6927 | | 1.2609 | 27.0 | 30375 | 2.1934 | 9.7205 | 51.9647 | | 1.2585 | 28.0 | 31500 | 2.1834 | 9.8116 | 51.7373 | | 1.2564 | 29.0 | 32625 | 2.1811 | 9.8547 | 51.8553 | | 1.2563 | 30.0 | 33750 | 2.1766 | 9.8346 | 51.7293 | | 1.258 | 31.0 | 34875 | 2.1748 | 9.8204 | 51.6747 | | 1.2391 | 32.0 | 36000 | 2.1708 | 9.8485 | 51.7647 | | 1.2364 | 33.0 | 37125 | 2.1644 | 9.8503 | 51.6713 | | 1.2436 | 34.0 | 38250 | 2.1629 | 9.8457 | 51.76 | | 1.2408 | 35.0 | 39375 | 2.1614 | 9.8899 | 51.6893 | | 1.2564 | 36.0 | 40500 | 2.1591 | 9.8867 | 51.706 | | 1.2318 | 37.0 | 41625 | 2.1575 | 9.866 | 51.782 | | 1.2423 | 38.0 | 42750 | 2.1570 | 9.8756 | 51.8933 | | 1.2399 | 39.0 | 43875 | 2.1558 | 9.8871 | 51.7967 | | 1.2339 | 40.0 | 45000 | 2.1558 | 9.8991 | 51.8287 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
Dawit/DialogGPT-small-ironman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # contradiction-mini-lds A model for the identification of contradiction sentences in patents using all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/contradiction-mini-lds') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1128 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1128, "warmup_steps": 113, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
DeadBeast/marathi-roberta-base
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # nps-mini A model for the identification of problem and solution sentences in patents using all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('nategro/nps-mini') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 276 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 276, "warmup_steps": 28, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors The following pre-trained model was used: [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
Declan/WallStreetJournal_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2022-10-13T14:52:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 253.01 +/- 24.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from huggingface_sb3 import load_from_hub checkpoint = load_from_hub( repo_id="tkurtulus/ppo-LunarLander-v3", filename="ppo-LunarLander-v3.zip", ) ```
Declan/test_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- widget: - text: "city ___ '\"Europe\",\"continent_code\":\"EU\",\"country\":\"Portugal\",\"country_code\":\"PT\",\"state\":\"\",\"city\":\"\",\"postal\":\"\",\"time_zone\":\"Europe/<TARGET_CITY>\",\"region\":\"EMEA\",\"ipAddress\":\"94.46.24.35\",\"latitude\":38.7057,\"longitude\":-9.1359}'" example_title: "City True Positive Example" - text: "lat ___ '#d52b1e\\\\\\\\\\\\\",\\\\\\\\\\\\\"d\\\\\\\\\\\\\":\\\\\\\\\\\\\"M8.96 0a8.96 8.96 0 1 1 0 17.92A8.96 8.96 0 0 1 8.96 0zm4.926 4.03a25.104 25.104 0 0 0-6.926 8.215 <TARGET_LAT> 38.068 0 0 1-2.966-2.374c-.348.763-.66 1.546-.939 2.346 1.511 1.282 3.532 2.75 4.92 3.577 1.797-4.654 4.601-7.69 7.287-9.811'" example_title: "Lat False Positive Example" - text: "lng ___ '7146,\\\\\"lon\\\\\":-79.403752,\\\\\"type\\\\\":metroIcon},{\\\\\"anchText\\\\\":\\\\\"St George\\\\\",\\\\\"lat\\\\\":43.6683188,\\\\\"lon\\\\\":-<TARGET_LNG>,\\\\\"type\\\\\":metroIcon},{\\\\\"anchText\\\\\":\\\\\"Museum\\\\\",\\\\\"lat\\\\\":43.6671771,\\\\\"lon\\\\\":-79.393502,\\\\\"type\\\\\":metroIc'" example_title: "Lng True Positive Example" - text: "region ___'><a class=\"SummaryItemImageLink-gFtgmn gGNXIl summary-item__image-link summary-item-tracking__image-link\" href=\"/story/adaku-<TARGET_REGION>-reproductive-justice-organizer-supreme-court-roe-v-wade-interview\" aria-hidden=\"true\" tabindex=\"-1\" data-component-type=\"rec'" example_title: "Region False Positive Example" - text: "zip ___ '\",\\\\\"client_country_code\\\\\": \\\\\"US\\\\\",\\\\\"client_continent_code\\\\\": \\\\\"NA\\\\\",\\\\\"client_metro_code\\\\\": \\\\\"753\\\\\",\\\\\"client_postal_code\\\\\": \\\\\"<TARGET_ZIP>\\\\\",\\\\\"client_conn_speed\\\\\": \\\\\"broadband\\\\\",\\\\\"client_gmt_offset\\\\\": \\\\\"-700\\\\\",\\\\\"client_latitude\\\\\": \\\\\"33.440\\\\\",\\\\\"client_longitude\\\\\": '" example_title: "Zip True Positive Example" ---
Declan/test_push
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 71.30 +/- 30.34 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
DeepPavlov/distilrubert-tiny-cased-conversational-v1
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,141
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3049 - eval_accuracy: 0.9252 - eval_runtime: 423.5074 - eval_samples_per_second: 59.031 - eval_steps_per_second: 1.846 - epoch: 1.35 - step: 1054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1
DemangeJeremy/4-sentiments-with-flaubert
[ "pytorch", "flaubert", "text-classification", "fr", "transformers", "sentiments", "french", "flaubert-large" ]
text-classification
{ "architectures": [ "FlaubertForSequenceClassification" ], "model_type": "flaubert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
226
null
--- license: mit --- ### Shoe on Stable Diffusion via Dreambooth #### model by ejcho623 This your the Stable Diffusion model fine-tuned the Shoe concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **sks shoe** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/ejcho623/shoe/resolve/main/concept_images/0.jpeg) ![image 1](https://huggingface.co/ejcho623/shoe/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/ejcho623/shoe/resolve/main/concept_images/3.jpeg) ![image 3](https://huggingface.co/ejcho623/shoe/resolve/main/concept_images/1.jpeg)
Denilson/gbert-base-germaner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: camembert-base-cae-ressentis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-cae-ressentis This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8112 - Precision: 0.8116 - Recall: 0.8034 - F1: 0.8060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 1.2699 | 1.0 | 59 | 1.1005 | 0.2718 | 0.5214 | 0.3573 | | 1.0852 | 2.0 | 118 | 0.8127 | 0.6403 | 0.7179 | 0.6708 | | 0.7006 | 3.0 | 177 | 0.6582 | 0.7407 | 0.7436 | 0.7310 | | 0.4187 | 4.0 | 236 | 0.5833 | 0.8075 | 0.7863 | 0.7817 | | 0.2017 | 5.0 | 295 | 0.5869 | 0.8537 | 0.8376 | 0.8400 | | 0.1142 | 6.0 | 354 | 0.6433 | 0.8125 | 0.8034 | 0.8064 | | 0.0735 | 7.0 | 413 | 0.7700 | 0.8027 | 0.7949 | 0.7959 | | 0.0572 | 8.0 | 472 | 0.8023 | 0.7915 | 0.7863 | 0.7877 | | 0.0445 | 9.0 | 531 | 0.8010 | 0.8116 | 0.8034 | 0.8060 | | 0.033 | 10.0 | 590 | 0.8112 | 0.8116 | 0.8034 | 0.8060 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1
Deniskin/essays_small_2000
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: fine-tune-xls-r-300m-wav2vec2-on-swahili-sagemaker results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-xls-r-300m-wav2vec2-on-swahili-sagemaker This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1866 - Wer: 0.2346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.0466 | 0.22 | 400 | 3.2175 | 1.0 | | 1.8604 | 0.44 | 800 | 0.6654 | 0.6770 | | 0.5942 | 0.66 | 1200 | 0.4830 | 0.5013 | | 0.4631 | 0.89 | 1600 | 0.3532 | 0.4274 | | 0.3949 | 1.11 | 2000 | 0.3612 | 0.4008 | | 0.3634 | 1.33 | 2400 | 0.3024 | 0.3691 | | 0.3385 | 1.55 | 2800 | 0.3271 | 0.3633 | | 0.3225 | 1.77 | 3200 | 0.2795 | 0.3431 | | 0.3062 | 1.99 | 3600 | 0.2651 | 0.3353 | | 0.2573 | 2.22 | 4000 | 0.2832 | 0.3241 | | 0.2608 | 2.44 | 4400 | 0.2921 | 0.3225 | | 0.2583 | 2.66 | 4800 | 0.3887 | 0.3119 | | 0.2536 | 2.88 | 5200 | 0.2526 | 0.3156 | | 0.236 | 3.1 | 5600 | 0.2473 | 0.2988 | | 0.2202 | 3.32 | 6000 | 0.2537 | 0.3016 | | 0.2119 | 3.55 | 6400 | 0.2769 | 0.2979 | | 0.2128 | 3.77 | 6800 | 0.2363 | 0.2940 | | 0.2124 | 3.99 | 7200 | 0.2198 | 0.2846 | | 0.1854 | 4.21 | 7600 | 0.2230 | 0.2855 | | 0.184 | 4.43 | 8000 | 0.2194 | 0.2781 | | 0.1799 | 4.65 | 8400 | 0.2226 | 0.2752 | | 0.1792 | 4.88 | 8800 | 0.2242 | 0.2712 | | 0.1702 | 5.1 | 9200 | 0.2185 | 0.2721 | | 0.1613 | 5.32 | 9600 | 0.2106 | 0.2696 | | 0.1611 | 5.54 | 10000 | 0.2132 | 0.2673 | | 0.1588 | 5.76 | 10400 | 0.1980 | 0.2604 | | 0.1564 | 5.98 | 10800 | 0.2021 | 0.2617 | | 0.1386 | 6.2 | 11200 | 0.2017 | 0.2603 | | 0.1378 | 6.43 | 11600 | 0.1994 | 0.2585 | | 0.1345 | 6.65 | 12000 | 0.1974 | 0.2559 | | 0.1407 | 6.87 | 12400 | 0.1946 | 0.2526 | | 0.1336 | 7.09 | 12800 | 0.1991 | 0.2505 | | 0.1178 | 7.31 | 13200 | 0.1973 | 0.2504 | | 0.1174 | 7.53 | 13600 | 0.1977 | 0.2485 | | 0.1169 | 7.76 | 14000 | 0.1936 | 0.2454 | | 0.1163 | 7.98 | 14400 | 0.1910 | 0.2441 | | 0.1074 | 8.2 | 14800 | 0.1990 | 0.2456 | | 0.1055 | 8.42 | 15200 | 0.1901 | 0.2420 | | 0.108 | 8.64 | 15600 | 0.1900 | 0.2389 | | 0.1019 | 8.86 | 16000 | 0.1895 | 0.2385 | | 0.0998 | 9.09 | 16400 | 0.1919 | 0.2364 | | 0.0966 | 9.31 | 16800 | 0.1897 | 0.2362 | | 0.0903 | 9.53 | 17200 | 0.1858 | 0.2347 | | 0.0887 | 9.75 | 17600 | 0.1883 | 0.2348 | | 0.0934 | 9.97 | 18000 | 0.1866 | 0.2345 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.13.0
Deniskin/gpt3_medium
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
null
--- license: mit --- ### Shoe2 on Stable Diffusion via Dreambooth #### model by ejcho623 This your the Stable Diffusion model fine-tuned the Shoe2 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a sks shoe** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/ejcho623/shoe2/resolve/main/concept_images/0.jpeg) ![image 1](https://huggingface.co/ejcho623/shoe2/resolve/main/concept_images/2.jpeg) ![image 2](https://huggingface.co/ejcho623/shoe2/resolve/main/concept_images/3.jpeg) ![image 3](https://huggingface.co/ejcho623/shoe2/resolve/main/concept_images/1.jpeg)
Denny29/DialoGPT-medium-asunayuuki
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-10-13T18:00:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.6732 | | 2.8375 | 2.0 | 500 | 1.9453 | | 2.8375 | 3.0 | 750 | 1.8522 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1
DeskDown/MarianMix_en-zh-10
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation --- # (CleanRL) **PPO** Agent Playing **CartPole-v1** This is a trained model of a PPO agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py). # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 512, 'capture_video': True, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': False, 'ent_coef': 0.01, 'env_id': 'CartPole-v1', 'exp_name': 'ppo', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_repo_id': 'cleanrl/ppo', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 128, 'norm_adv': True, 'num_envs': 4, 'num_minibatches': 4, 'num_steps': 128, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': False, 'update_epochs': 4, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Dev-DGT/food-dbert-multiling
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: fassahat/distillbert-base-uncased-finetuned-150k-patent-sentences results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # fassahat/distillbert-base-uncased-finetuned-150k-patent-sentences This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2887 - Validation Loss: 0.4392 - Train Accuracy: 0.8414 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 22500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.4810 | 0.4276 | 0.8330 | 0 | | 0.3714 | 0.4163 | 0.8415 | 1 | | 0.2887 | 0.4392 | 0.8414 | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
Devmapall/paraphrase-quora
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
3
null
--- license: mit --- ### Kumiko on Stable Diffusion This is the `Kumiko` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). I guess because they are png you can't see them? Idk, I'll fix it later. It's Kumiko! It looks like Kumiko. Here is the new concept you will be able to use as a `style`: ![kumiko 0](https://huggingface.co/Vicidi/Kumiko/blob/main/00000-0.png) ![kumiko 1](https://huggingface.co/Vicidi/Kumiko/blob/main/00001-0.png) ![kumiko 2](https://huggingface.co/Vicidi/Kumiko/blob/main/00002-0.png) ![kumiko 3](https://huggingface.co/Vicidi/Kumiko/blob/main/00003-0.png) ![kumiko 4](https://huggingface.co/Vicidi/Kumiko/blob/main/00004-0.png) ![kumiko 5](https://huggingface.co/Vicidi/Kumiko/blob/main/00005-0.png) ![kumiko 6](https://huggingface.co/Vicidi/Kumiko/blob/main/00006-0.png) ![kumiko 7](https://huggingface.co/Vicidi/Kumiko/blob/main/00007-0.png) ![kumiko 8](https://huggingface.co/Vicidi/Kumiko/blob/main/00008-0.png) ![kumiko 9](https://huggingface.co/Vicidi/Kumiko/blob/main/00009-0.png)
Dhito/am
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-10-13T19:54:57Z
--- license: mit --- ### Tails from Sonic on Stable Diffusion via Dreambooth #### model by Skittleology This your the Stable Diffusion model fine-tuned the Tails from Sonic concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **tails** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/7.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/11.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/8.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/0.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/6.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/5.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/2.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/9.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/3.jpeg) ![image 9](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/10.jpeg) ![image 10](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/1.jpeg) ![image 11](https://huggingface.co/sd-dreambooth-library/tails-from-sonic/resolve/main/concept_images/4.jpeg)
DicoTiar/wisdomfiy
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Access to model Digitalwitness/distilgpt2-finetuned-beatles is restricted and you are not in the authorized list. Visit https://huggingface.co/Digitalwitness/distilgpt2-finetuned-beatles to ask for access.
DiegoAlysson/opus-mt-en-ro-finetuned-en-to-ro
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation --- # (CleanRL) **PPO** Agent Playing **CartPole-v1** This is a trained model of a PPO agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py). # Hyperparameters ```python {'anneal_lr': True, 'batch_size': 512, 'capture_video': True, 'clip_coef': 0.2, 'clip_vloss': True, 'cuda': False, 'ent_coef': 0.01, 'env_id': 'CartPole-v1', 'exp_name': 'ppo', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_repo_id': 'vwxyzjn/ppo2', 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 128, 'norm_adv': True, 'num_envs': 4, 'num_minibatches': 4, 'num_steps': 128, 'save_model': True, 'seed': 1, 'target_kl': None, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': False, 'update_epochs': 4, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Dkwkk/Da
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### lucario on Stable Diffusion This is the `<lucario>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lucario> 0](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/7.jpeg) ![<lucario> 1](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/14.jpeg) ![<lucario> 2](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/11.jpeg) ![<lucario> 3](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/16.jpeg) ![<lucario> 4](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/8.jpeg) ![<lucario> 5](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/13.jpeg) ![<lucario> 6](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/0.jpeg) ![<lucario> 7](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/6.jpeg) ![<lucario> 8](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/5.jpeg) ![<lucario> 9](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/2.jpeg) ![<lucario> 10](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/9.jpeg) ![<lucario> 11](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/3.jpeg) ![<lucario> 12](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/12.jpeg) ![<lucario> 13](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/10.jpeg) ![<lucario> 14](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/15.jpeg) ![<lucario> 15](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/1.jpeg) ![<lucario> 16](https://huggingface.co/sd-concepts-library/lucario/resolve/main/concept_images/4.jpeg)
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: randomcomb_mlm_ep5_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8615744507729862 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # randomcomb_mlm_ep5_mnli This model is a fine-tuned version of [cuenb](https://huggingface.co/joey234/cuenb) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4416 - Accuracy: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5569 | 0.41 | 5000 | 0.4415 | 0.8273 | | 0.4598 | 0.81 | 10000 | 0.4234 | 0.8425 | | 0.3832 | 1.22 | 15000 | 0.4398 | 0.8475 | | 0.3314 | 1.63 | 20000 | 0.4137 | 0.8494 | | 0.3158 | 2.04 | 25000 | 0.4484 | 0.8527 | | 0.2294 | 2.44 | 30000 | 0.4471 | 0.8552 | | 0.2283 | 2.85 | 35000 | 0.4541 | 0.8557 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.8.0 - Datasets 1.18.3 - Tokenizers 0.12.1
Dongjae/mrc2reader
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer model-index: - name: cuenb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cuenb This model is a version of [roberta-base](https://huggingface.co/roberta-base) with adaptive pre-training using the [negation-focused pre-training strategy](https://github.com/joey234/negation-focused-pretraining) on 1.2M sentences containing negation. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.8998 | 2.57 | 200000 | 1.6606 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.0 - Datasets 1.15.1 - Tokenizers 0.10.3
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-12
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
albert-base-v2
[ "pytorch", "tf", "jax", "rust", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,785,283
2022-10-14T02:06:43Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.observational.sa.5-class.seed_43 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.698744769874477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.observational.sa.5-class.seed_43 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.8001 - Accuracy: 0.6987 - Macro-f1: 0.6805 - Weighted-macro-f1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2022-10-14T02:09:34Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.observational.sa.5-class.seed_44 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.7190675433353257 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.observational.sa.5-class.seed_44 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.7230 - Accuracy: 0.7191 - Macro-f1: 0.7052 - Weighted-macro-f1: 0.7128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2022-10-14T02:11:21Z
--- language: en thumbnail: http://www.huggingtweets.com/pilltoledo/1665713586824/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507166369716097033/1zugU9LF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">juliet</div> <div style="text-align: center; font-size: 14px;">@pilltoledo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from juliet. | Data | juliet | | --- | --- | | Tweets downloaded | 3196 | | Retweets | 126 | | Short tweets | 860 | | Tweets kept | 2210 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k71hn5a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pilltoledo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ufuyucr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ufuyucr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pilltoledo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
albert-xlarge-v2
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,973
2022-10-14T02:12:45Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_42 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.726240286909743 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6956 - Accuracy: 0.7262 - Macro-f1: 0.7053 - Weighted-macro-f1: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2022-10-14T02:15:32Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_43 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.735803945008966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_43 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6596 - Accuracy: 0.7358 - Macro-f1: 0.7204 - Weighted-macro-f1: 0.7325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
2022-10-14T02:18:22Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_44 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.7411835026897788 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.uniform.sa.5-class.seed_44 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6254 - Accuracy: 0.7412 - Macro-f1: 0.7202 - Weighted-macro-f1: 0.7349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
bert-base-cased-finetuned-mrpc
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11,644
2022-10-14T02:21:11Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_42 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.7352062163777645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6579 - Accuracy: 0.7352 - Macro-f1: 0.7190 - Weighted-macro-f1: 0.7313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
2022-10-14T02:21:39Z
--- license: mit language: en tags: - bert - cloze - distractor - generation datasets: - cloth widget: - text: "I feel [MASK] now. [SEP] happy" - text: "The old man was waiting for a ride across the [MASK]. [SEP] river" --- # cdgp-csg-scibert-cloth ## Model description This model is a Candidate Set Generator in **"CDGP: Automatic Cloze Distractor Generation based on Pre-trained Language Model", Findings of EMNLP 2022**. Its input are stem and answer, and output is candidate set of distractors. It is fine-tuned by [**CLOTH**](https://www.cs.cmu.edu/~glai1/data/cloth/) dataset based on [**allenai/scibert_scivocab_uncased**](https://huggingface.co/allenai/scibert_scivocab_uncased) model. For more details, you can see our **paper** or [**GitHub**](https://github.com/AndyChiangSH/CDGP). ## How to use? 1. Download the model by hugging face transformers. ```python from transformers import BertTokenizer, BertForMaskedLM, pipeline tokenizer = BertTokenizer.from_pretrained("AndyChiang/cdgp-csg-scibert-cloth") csg_model = BertForMaskedLM.from_pretrained("AndyChiang/cdgp-csg-scibert-cloth") ``` 2. Create a unmasker. ```python unmasker = pipeline("fill-mask", tokenizer=tokenizer, model=csg_model, top_k=10) ``` 3. Use the unmasker to generate the candidate set of distractors. ```python sent = "I feel [MASK] now. [SEP] happy" cs = unmasker(sent) print(cs) ``` ## Dataset This model is fine-tuned by [CLOTH](https://www.cs.cmu.edu/~glai1/data/cloth/) dataset, which is a collection of nearly 100,000 cloze questions from middle school and high school English exams. The detail of CLOTH dataset is shown below. | Number of questions | Train | Valid | Test | | ------------------- | ----- | ----- | ----- | | Middle school | 22056 | 3273 | 3198 | | High school | 54794 | 7794 | 8318 | | Total | 76850 | 11067 | 11516 | You can also use the [dataset](https://huggingface.co/datasets/AndyChiang/cloth) we have already cleaned. ## Training We use a special way to fine-tune model, which is called **"Answer-Relating Fine-Tune"**. More detail is in our paper. ### Training hyperparameters The following hyperparameters were used during training: - Pre-train language model: [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) - Optimizer: adam - Learning rate: 0.0001 - Max length of input: 64 - Batch size: 64 - Epoch: 1 - Device: NVIDIA® Tesla T4 in Google Colab ## Testing The evaluations of this model as a Candidate Set Generator in CDGP is as follows: | P@1 | F1@3 | F1@10 | MRR | NDCG@10 | | ---- | ---- | ----- | ----- | ------- | | 8.10 | 9.13 | 12.22 | 19.53 | 28.76 | ## Other models ### Candidate Set Generator | Models | CLOTH | DGen | | ----------- | ----------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- | | **BERT** | [cdgp-csg-bert-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bert-cloth) | [cdgp-csg-bert-dgen](https://huggingface.co/AndyChiang/cdgp-csg-bert-dgen) | | **SciBERT** | [*cdgp-csg-scibert-cloth*](https://huggingface.co/AndyChiang/cdgp-csg-scibert-cloth) | [cdgp-csg-scibert-dgen](https://huggingface.co/AndyChiang/cdgp-csg-scibert-dgen) | | **RoBERTa** | [cdgp-csg-roberta-cloth](https://huggingface.co/AndyChiang/cdgp-csg-roberta-cloth) | [cdgp-csg-roberta-dgen](https://huggingface.co/AndyChiang/cdgp-csg-roberta-dgen) | | **BART** | [cdgp-csg-bart-cloth](https://huggingface.co/AndyChiang/cdgp-csg-bart-cloth) | [cdgp-csg-bart-dgen](https://huggingface.co/AndyChiang/cdgp-csg-bart-dgen) | ### Distractor Selector **fastText**: [cdgp-ds-fasttext](https://huggingface.co/AndyChiang/cdgp-ds-fasttext) ## Citation None
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
2022-10-14T02:23:56Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_43 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.7519426180514046 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_43 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6408 - Accuracy: 0.7519 - Macro-f1: 0.7321 - Weighted-macro-f1: 0.7464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
bert-base-german-dbmdz-cased
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,814
2022-10-14T02:26:43Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - OpenTable metrics: - accuracy model-index: - name: roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_44 results: - task: name: Text Classification type: text-classification dataset: name: OpenTable OPENTABLE type: OpenTable args: opentable metrics: - name: Accuracy type: accuracy value: 0.7471607890017932 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base.CEBaB_confounding.price_food_ambiance_negative.sa.5-class.seed_44 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the OpenTable OPENTABLE dataset. It achieves the following results on the evaluation set: - Loss: 0.6246 - Accuracy: 0.7472 - Macro-f1: 0.7303 - Weighted-macro-f1: 0.7434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 44 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1