modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
BigSalmon/T5F
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ririying/mt5-small-finetuned-mt5-class1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ririying/mt5-small-finetuned-mt5-class1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0908 - Validation Loss: 1.7689 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 71320, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.8999 | 2.2395 | 0 | | 2.6457 | 1.9951 | 1 | | 2.3865 | 1.8784 | 2 | | 2.2622 | 1.8179 | 3 | | 2.1877 | 1.7959 | 4 | | 2.1395 | 1.7820 | 5 | | 2.1085 | 1.7720 | 6 | | 2.0908 | 1.7689 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
BigTooth/DialoGPT-small-tohru
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-11-30T09:37:51Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 45 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 45, "warmup_steps": 5, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BillelBenoudjit/jplu-wikiann
[ "fr", "dataset:wikiann", "model-index" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 language: en datasets: - Jzuluaga/uwb_atcc tags: - text - token-classification - en-atc - en - generated_from_trainer - bert - bertraffic metrics: - Precision - Recall - Accuracy - F1 - Jaccard Error Rate widget: - text: "lining up runway three one csa five bravo easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye" - text: "csa seven three two zero so change of taxi quality eight nine sierra we need to full length britair five nine zero bravo contact ruzyne ground one two one decimal nine good bye" - text: "swiss four six one foxtrot line up runway three one and wait one two one nine csa four yankee alfa" - text: "tower klm five five tango ils three one wizz air four papa uniform tower roger" model-index: - name: bert-base-token-classification-for-atc-en-uwb-atcc results: - task: type: token-classification name: chunking dataset: type: Jzuluaga/uwb_atcc name: UWB-ATCC corpus (Air Traffic Control Communications) config: test split: test metrics: - type: F1 value: 0.87 name: TEST F1 (macro) verified: False - type: Accuracy value: 0.91 name: TEST Accuracy verified: False - type: Precision value: 0.86 name: TEST Precision (macro) verified: False - type: Recall value: 0.88 name: TEST Recall (macro) verified: False - type: Jaccard Error Rate value: 0.169 name: TEST Jaccard Error Rate verified: False --- # bert-base-token-classification-for-atc-en-uwb-atcc This model allow to detect speaker roles and speaker changes based on text. Normally, this task is done on the acoustic level. However, we propose to perform this task on the text level. We solve this challenge by performing speaker role and change detection with a BERT model. We fine-tune it on the chunking task (token-classification). For instance: - Speaker 1: **lufthansa six two nine charlie tango report when established** - Speaker 2: **report when established lufthansa six two nine charlie tango** Based on that, could you tell the speaker role? Is it speaker 1 air traffic controller or pilot? Also, if you have a recording with 2 or more speakers, like this: - Recording with 2 or more segments: **report when established lufthansa six two nine charlie tango lufthansa six two nine charlie tango report when established** could you tell when the first speaker ends and when the second starts? This is basically diarization plus speaker role detection. Check the inference API (there are3 examples)! This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). <a href="https://github.com/idiap/bert-text-diarization-atc"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\"> </a> It achieves the following results on the evaluation set: - Loss: 0.0098 - Precision: 0.9760 - Recall: 0.9741 - F1: 0.9750 - Accuracy: 0.9965 Paper: [BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications](https://arxiv.org/abs/2110.05781). Authors: Juan Zuluaga-Gomez, Seyyed Saeed Sarfjoo, Amrutha Prasad, Iuliia Nigmatulina, Petr Motlicek, Karel Ondrej, Oliver Ohneiser, Hartmut Helmke Abstract: Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system. Code — GitHub repository: https://github.com/idiap/bert-text-diarization-atc ## Intended uses & limitations This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets where BERT was pre-trained or fine-tuned. ## Training and evaluation data See Table 3 (page 5) in our paper:[BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications](https://arxiv.org/abs/2110.05781).. We described there the data used to fine-tune or model for speaker role and speaker change detection. - We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0 - However, do not worry, we have prepared a script in our repository for preparing this databases: - Dataset preparation folder: https://github.com/idiap/bert-text-diarization-atc/tree/main/data/databases/uwb_atcc - Prepare the data: https://github.com/idiap/bert-text-diarization-atc/blob/main/data/databases/uwb_atcc/data_prepare_uwb_atcc_corpus.sh - Get the data in the format required by HuggingFace: https://github.com/idiap/bert-text-diarization-atc/blob/main/data/databases/uwb_atcc/exp_prepare_uwb_atcc_corpus.sh ## Writing your own inference script The snippet of code: ```python from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jzuluaga/bert-base-token-classification-for-atc-en-uwb-atcc") model = AutoModelForTokenClassification.from_pretrained("Jzuluaga/bert-base-token-classification-for-atc-en-uwb-atcc") ##### Process text sample (from UWB-ATCC) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("lining up runway three one csa five bravo b easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye) [{'entity_group': 'pilot', 'score': 0.99991554, 'word': 'lining up runway three one csa five bravo b', 'start': 0, 'end': 43 }, {'entity_group': 'atco', 'score': 0.99994576, 'word': 'easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye', 'start': 44, 'end': 126 }] ``` # Cite us If you use this code for your research, please cite our paper with: ``` @article{zuluaga2022bertraffic, title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022how, title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022atco2, title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others}, journal={arXiv preprint arXiv:2211.04054}, year={2022} } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.03 | 500 | 0.2282 | 0.6818 | 0.7001 | 0.6908 | 0.9246 | | 0.3487 | 0.06 | 1000 | 0.1214 | 0.8163 | 0.8024 | 0.8093 | 0.9631 | | 0.3487 | 0.1 | 1500 | 0.0933 | 0.8496 | 0.8544 | 0.8520 | 0.9722 | | 0.1124 | 0.13 | 2000 | 0.0693 | 0.8845 | 0.8739 | 0.8791 | 0.9786 | | 0.1124 | 0.16 | 2500 | 0.0540 | 0.8993 | 0.8911 | 0.8952 | 0.9817 | | 0.0667 | 0.19 | 3000 | 0.0474 | 0.9058 | 0.8929 | 0.8993 | 0.9857 | | 0.0667 | 0.23 | 3500 | 0.0418 | 0.9221 | 0.9245 | 0.9233 | 0.9865 | | 0.0492 | 0.26 | 4000 | 0.0294 | 0.9369 | 0.9415 | 0.9392 | 0.9903 | | 0.0492 | 0.29 | 4500 | 0.0263 | 0.9512 | 0.9446 | 0.9479 | 0.9911 | | 0.0372 | 0.32 | 5000 | 0.0223 | 0.9495 | 0.9497 | 0.9496 | 0.9915 | | 0.0372 | 0.35 | 5500 | 0.0212 | 0.9530 | 0.9514 | 0.9522 | 0.9923 | | 0.0308 | 0.39 | 6000 | 0.0177 | 0.9585 | 0.9560 | 0.9572 | 0.9933 | | 0.0308 | 0.42 | 6500 | 0.0169 | 0.9619 | 0.9613 | 0.9616 | 0.9936 | | 0.0261 | 0.45 | 7000 | 0.0140 | 0.9689 | 0.9662 | 0.9676 | 0.9951 | | 0.0261 | 0.48 | 7500 | 0.0130 | 0.9652 | 0.9629 | 0.9641 | 0.9945 | | 0.0214 | 0.51 | 8000 | 0.0127 | 0.9676 | 0.9635 | 0.9656 | 0.9953 | | 0.0214 | 0.55 | 8500 | 0.0109 | 0.9714 | 0.9708 | 0.9711 | 0.9959 | | 0.0177 | 0.58 | 9000 | 0.0103 | 0.9740 | 0.9727 | 0.9734 | 0.9961 | | 0.0177 | 0.61 | 9500 | 0.0101 | 0.9768 | 0.9744 | 0.9756 | 0.9963 | | 0.0159 | 0.64 | 10000 | 0.0098 | 0.9760 | 0.9741 | 0.9750 | 0.9965 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
Biniam/en_ti_translate
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 197 with parameters: ``` {'batch_size': 13, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 591, "warmup_steps": 60, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BinksSachary/DialoGPT-small-shaxx
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 56 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 56, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BitanBiswas/mbert-bengali-ner-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-11-30T09:56:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute butterflies. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(kzipa/sd-class-butterflies-32) image = pipeline().images[0] image ```
Blackmist786/DialoGPt-small-transformers4
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 56 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 56, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Blazeolmo/Scrabunzi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T10:10:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2560 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 9.46667947923119e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5120, "warmup_steps": 512, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BlindMan820/Sarcastic-News-Headlines
[ "pytorch", "distilbert", "text-classification", "English", "dataset:Kaggle Dataset", "transformers", "Text", "Sequence-Classification", "Sarcasm", "DistilBert" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute butterflies. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(kzipa/sd-class-butterflies-64) image = pipeline().images[0] image ```
Bman/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T10:26:05Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6.7b-ri-reproduce-combined-4-gpu-20-val results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-ri-reproduce-combined-4-gpu-20-val This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9434 - Accuracy: 0.0329 - Perplexity: 51.5916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 100 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:| | 2.5731 | 1.0 | 79 | 2.6113 | 0.0317 | 13.6171 | | 2.206 | 2.0 | 158 | 2.4805 | 0.0328 | 11.9469 | | 1.9105 | 3.0 | 237 | 2.4512 | 0.0333 | 11.6019 | | 1.6301 | 4.0 | 316 | 2.5078 | 0.0345 | 12.2780 | | 1.3733 | 5.0 | 395 | 2.6816 | 0.0342 | 14.6090 | | 1.1337 | 6.0 | 474 | 3.0078 | 0.0330 | 20.2431 | | 0.9619 | 7.0 | 553 | 3.1777 | 0.0330 | 23.9923 | | 0.798 | 8.0 | 632 | 3.2559 | 0.0330 | 25.9419 | | 0.6653 | 9.0 | 711 | 3.4277 | 0.0331 | 30.8068 | | 0.552 | 10.0 | 790 | 3.5566 | 0.0333 | 35.0453 | | 0.4568 | 11.0 | 869 | 3.7324 | 0.0324 | 41.7802 | | 0.3756 | 12.0 | 948 | 3.8184 | 0.0328 | 45.5295 | | 0.3119 | 13.0 | 1027 | 3.8477 | 0.0331 | 46.8831 | | 0.2448 | 14.0 | 1106 | 3.9062 | 0.0329 | 49.7122 | | 0.1986 | 15.0 | 1185 | 3.9434 | 0.0329 | 51.5916 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
BobBraico/distilbert-base-uncased-finetuned-imdb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta_checkpoint-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_checkpoint-finetuned-squad This model is a fine-tuned version of [WillHeld/roberta-base-coqa](https://huggingface.co/WillHeld/roberta-base-coqa) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.8934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8468 | 1.0 | 5536 | 0.8168 | | 0.6239 | 2.0 | 11072 | 0.8237 | | 0.4805 | 3.0 | 16608 | 0.8934 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
BogdanKuloren/continual-learning-paper-embeddings-model
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "MPNetModel" ], "model_type": "mpnet", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 --- ## Chinese-English-mixed ASR model using icefall_conv_emformer2 ### Wenetspeech testset results | TEST_NET | TEST_MEETING | |----------|--------------| | 9.64 | 9.2 | | as log in `decoding_results/modified_beam_search_result` ### Training commond ``` python3 conv_emformer_transducer_stateless2/train.py --world-size 8 --num-epochs 30 --start-epoch 1 --exp-dir conv_emformer_transducer_stateless2/exp --max-duration 400 --master-port 12321 --num-encoder-layers 12 --chunk-length 32 --cnn-module-kernel 31 --left-context-length 32 --right-context-length 8 --memory-size 32 ``` ### Model unit is char+bpe as `data/lang_char_bpe/tokens.txt`
BonjinKim/dst_kor_bert
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
{ "architectures": [ "BertForPreTraining" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-sngp-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sngp-squad-seed-42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.4521 | 1.0 | 8248 | 2.0439 | | 2.1298 | 2.0 | 16496 | 1.9074 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Botjallu/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/kzipa/ddpm-butterflies-128/tensorboard?#scalars)
Branex/gpt-neo-2.7B
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T10:38:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7096 | 1.0 | 157 | 2.4928 | | 2.5783 | 2.0 | 314 | 2.4239 | | 2.528 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
CAUKiel/JavaBERT
[ "pytorch", "safetensors", "bert", "fill-mask", "code", "arxiv:2110.10404", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388
2022-11-30T14:47:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(juancopi81/sd-class-butterflies-32) image = pipeline().images[0] image ```
CBreit00/DialoGPT_small_Rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_file: pipeline.skops widget: structuredData: acceleration: - 20.7 - 17.0 - 18.6 cylinders: - 4 - 4 - 4 displacement: - 98.0 - 120.0 - 120.0 horsepower: - '65' - '88' - '79' model year: - 81 - 75 - 82 origin: - 1 - 2 - 1 weight: - 2380 - 2957 - 2625 --- # Model description This is a regression model on MPG dataset trained for this [kaggle tutorial](https://www.kaggle.com/unofficialmerve/persisting-your-scikit-learn-model-using-skops/). ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------------| | ccp_alpha | 0.0 | | criterion | squared_error | | max_depth | | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | random_state | | | splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 {color: black;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 pre{padding: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable {background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-item {z-index: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:only-child::after {width: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeRegressor()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="37ade0f5-01f0-4181-acab-e7150c3b5fa2" type="checkbox" checked><label for="37ade0f5-01f0-4181-acab-e7150c3b5fa2" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeRegressor</label><div class="sk-toggleable__content"><pre>DecisionTreeRegressor()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |--------------------|---------------------------------------| | Mean Squared Error | 10.86399394359616 | | R-Squared | <function r2_score at 0x7f743fc54b00> | # How to Get Started with the Model Use the code below to get started with the model. ```python from skops.io import load import json import pandas as pd clf = load("pipeline.skops") with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
CLTL/icf-levels-adm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole_REINFORCE results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 146.70 +/- 25.78 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
CM-CA/DialoGPT-small-cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Leo446673/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Cameron/BERT-SBIC-targetcategory
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: mit tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: TweetEval_XLNET_5E results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: train args: sentiment metrics: - name: Accuracy type: accuracy value: 0.9333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TweetEval_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4591 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5575 | 0.04 | 50 | 0.2675 | 0.9 | | 0.4177 | 0.08 | 100 | 0.2193 | 0.9067 | | 0.2911 | 0.12 | 150 | 0.2482 | 0.9 | | 0.3503 | 0.16 | 200 | 0.2424 | 0.9 | | 0.3412 | 0.2 | 250 | 0.1913 | 0.9267 | | 0.2747 | 0.24 | 300 | 0.1783 | 0.92 | | 0.2999 | 0.28 | 350 | 0.2495 | 0.9133 | | 0.3141 | 0.32 | 400 | 0.2460 | 0.9 | | 0.2935 | 0.37 | 450 | 0.2034 | 0.92 | | 0.2619 | 0.41 | 500 | 0.2600 | 0.9067 | | 0.2454 | 0.45 | 550 | 0.2178 | 0.92 | | 0.2809 | 0.49 | 600 | 0.2254 | 0.9133 | | 0.288 | 0.53 | 650 | 0.1849 | 0.92 | | 0.2769 | 0.57 | 700 | 0.1896 | 0.9267 | | 0.3079 | 0.61 | 750 | 0.2153 | 0.9133 | | 0.2598 | 0.65 | 800 | 0.3279 | 0.9067 | | 0.3149 | 0.69 | 850 | 0.1985 | 0.92 | | 0.2872 | 0.73 | 900 | 0.1801 | 0.9333 | | 0.2554 | 0.77 | 950 | 0.2023 | 0.9267 | | 0.2645 | 0.81 | 1000 | 0.2208 | 0.9067 | | 0.2509 | 0.85 | 1050 | 0.2012 | 0.9333 | | 0.2404 | 0.89 | 1100 | 0.1995 | 0.9067 | | 0.2361 | 0.93 | 1150 | 0.1808 | 0.9133 | | 0.2298 | 0.97 | 1200 | 0.2226 | 0.9333 | | 0.193 | 1.01 | 1250 | 0.2535 | 0.9267 | | 0.1603 | 1.06 | 1300 | 0.2163 | 0.9467 | | 0.1916 | 1.1 | 1350 | 0.2479 | 0.92 | | 0.1963 | 1.14 | 1400 | 0.1964 | 0.94 | | 0.1667 | 1.18 | 1450 | 0.3139 | 0.9133 | | 0.1668 | 1.22 | 1500 | 0.2204 | 0.9267 | | 0.1677 | 1.26 | 1550 | 0.2468 | 0.9333 | | 0.1601 | 1.3 | 1600 | 0.2394 | 0.94 | | 0.1714 | 1.34 | 1650 | 0.2326 | 0.94 | | 0.197 | 1.38 | 1700 | 0.1861 | 0.94 | | 0.1777 | 1.42 | 1750 | 0.2518 | 0.94 | | 0.1925 | 1.46 | 1800 | 0.1806 | 0.94 | | 0.2068 | 1.5 | 1850 | 0.1319 | 0.9467 | | 0.1716 | 1.54 | 1900 | 0.1199 | 0.9667 | | 0.1442 | 1.58 | 1950 | 0.1694 | 0.96 | | 0.1929 | 1.62 | 2000 | 0.1990 | 0.9467 | | 0.1654 | 1.66 | 2050 | 0.2972 | 0.9333 | | 0.1759 | 1.7 | 2100 | 0.1584 | 0.9467 | | 0.1788 | 1.75 | 2150 | 0.2266 | 0.94 | | 0.1796 | 1.79 | 2200 | 0.2746 | 0.9333 | | 0.172 | 1.83 | 2250 | 0.2313 | 0.9333 | | 0.1637 | 1.87 | 2300 | 0.2918 | 0.9267 | | 0.2359 | 1.91 | 2350 | 0.2121 | 0.9267 | | 0.1778 | 1.95 | 2400 | 0.2022 | 0.9333 | | 0.1581 | 1.99 | 2450 | 0.2936 | 0.9067 | | 0.1312 | 2.03 | 2500 | 0.2531 | 0.9333 | | 0.1178 | 2.07 | 2550 | 0.2525 | 0.9267 | | 0.0924 | 2.11 | 2600 | 0.2715 | 0.9333 | | 0.0774 | 2.15 | 2650 | 0.2123 | 0.9533 | | 0.091 | 2.19 | 2700 | 0.2128 | 0.9467 | | 0.0948 | 2.23 | 2750 | 0.2187 | 0.9533 | | 0.1121 | 2.27 | 2800 | 0.2438 | 0.9467 | | 0.1259 | 2.31 | 2850 | 0.2197 | 0.9467 | | 0.0747 | 2.35 | 2900 | 0.2727 | 0.9333 | | 0.114 | 2.39 | 2950 | 0.3197 | 0.9333 | | 0.086 | 2.44 | 3000 | 0.3643 | 0.9333 | | 0.1326 | 2.48 | 3050 | 0.2791 | 0.94 | | 0.1017 | 2.52 | 3100 | 0.2661 | 0.9333 | | 0.0719 | 2.56 | 3150 | 0.2797 | 0.94 | | 0.1424 | 2.6 | 3200 | 0.1819 | 0.96 | | 0.106 | 2.64 | 3250 | 0.2770 | 0.94 | | 0.0996 | 2.68 | 3300 | 0.2213 | 0.94 | | 0.0835 | 2.72 | 3350 | 0.2894 | 0.9333 | | 0.0808 | 2.76 | 3400 | 0.3424 | 0.9333 | | 0.1406 | 2.8 | 3450 | 0.2166 | 0.94 | | 0.0345 | 2.84 | 3500 | 0.3146 | 0.9333 | | 0.1247 | 2.88 | 3550 | 0.2824 | 0.9467 | | 0.076 | 2.92 | 3600 | 0.2650 | 0.9467 | | 0.134 | 2.96 | 3650 | 0.2758 | 0.9267 | | 0.0521 | 3.0 | 3700 | 0.2693 | 0.9467 | | 0.0366 | 3.04 | 3750 | 0.3428 | 0.9333 | | 0.0682 | 3.08 | 3800 | 0.2779 | 0.9533 | | 0.0624 | 3.12 | 3850 | 0.2563 | 0.9467 | | 0.0402 | 3.17 | 3900 | 0.3086 | 0.94 | | 0.052 | 3.21 | 3950 | 0.3324 | 0.94 | | 0.0579 | 3.25 | 4000 | 0.3165 | 0.9467 | | 0.0411 | 3.29 | 4050 | 0.3507 | 0.9467 | | 0.0507 | 3.33 | 4100 | 0.3108 | 0.9533 | | 0.0326 | 3.37 | 4150 | 0.3645 | 0.94 | | 0.085 | 3.41 | 4200 | 0.3390 | 0.94 | | 0.022 | 3.45 | 4250 | 0.3367 | 0.94 | | 0.0689 | 3.49 | 4300 | 0.3433 | 0.94 | | 0.0458 | 3.53 | 4350 | 0.3359 | 0.9533 | | 0.0384 | 3.57 | 4400 | 0.3642 | 0.9467 | | 0.0415 | 3.61 | 4450 | 0.3429 | 0.9467 | | 0.0362 | 3.65 | 4500 | 0.3727 | 0.9467 | | 0.0351 | 3.69 | 4550 | 0.3293 | 0.9467 | | 0.06 | 3.73 | 4600 | 0.4717 | 0.92 | | 0.0344 | 3.77 | 4650 | 0.3668 | 0.94 | | 0.0518 | 3.81 | 4700 | 0.3461 | 0.94 | | 0.046 | 3.86 | 4750 | 0.4020 | 0.9267 | | 0.0735 | 3.9 | 4800 | 0.2660 | 0.9467 | | 0.0453 | 3.94 | 4850 | 0.3364 | 0.9333 | | 0.039 | 3.98 | 4900 | 0.4398 | 0.92 | | 0.0497 | 4.02 | 4950 | 0.3476 | 0.94 | | 0.0183 | 4.06 | 5000 | 0.3871 | 0.94 | | 0.0558 | 4.1 | 5050 | 0.4066 | 0.9267 | | 0.0358 | 4.14 | 5100 | 0.3926 | 0.92 | | 0.0507 | 4.18 | 5150 | 0.3312 | 0.9467 | | 0.0111 | 4.22 | 5200 | 0.3976 | 0.9267 | | 0.0363 | 4.26 | 5250 | 0.4753 | 0.92 | | 0.0283 | 4.3 | 5300 | 0.4234 | 0.9267 | | 0.0097 | 4.34 | 5350 | 0.4547 | 0.9333 | | 0.0018 | 4.38 | 5400 | 0.4687 | 0.9267 | | 0.0344 | 4.42 | 5450 | 0.4274 | 0.9333 | | 0.021 | 4.46 | 5500 | 0.4448 | 0.9333 | | 0.0092 | 4.5 | 5550 | 0.4672 | 0.9333 | | 0.0354 | 4.55 | 5600 | 0.4666 | 0.9333 | | 0.029 | 4.59 | 5650 | 0.4614 | 0.9333 | | 0.0182 | 4.63 | 5700 | 0.4840 | 0.9333 | | 0.043 | 4.67 | 5750 | 0.4327 | 0.9333 | | 0.0259 | 4.71 | 5800 | 0.4639 | 0.9333 | | 0.0224 | 4.75 | 5850 | 0.4607 | 0.9333 | | 0.0302 | 4.79 | 5900 | 0.4606 | 0.9333 | | 0.0224 | 4.83 | 5950 | 0.4654 | 0.9333 | | 0.0431 | 4.87 | 6000 | 0.4681 | 0.9333 | | 0.0284 | 4.91 | 6050 | 0.4622 | 0.9333 | | 0.0326 | 4.95 | 6100 | 0.4602 | 0.9333 | | 0.018 | 4.99 | 6150 | 0.4591 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
Capreolus/birch-bert-large-car_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-credit_cards-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Cedille/fr-boris
[ "pytorch", "gptj", "text-generation", "fr", "dataset:c4", "arxiv:2202.03371", "transformers", "causal-lm", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPTJForCausalLM" ], "model_type": "gptj", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-home-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-home-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3789 - Accuracy: 0.3356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7614 | 1.0 | 1 | 2.6146 | 0.1889 | | 2.2082 | 2.0 | 2 | 2.5232 | 0.2667 | | 1.8344 | 3.0 | 3 | 2.4516 | 0.2933 | | 1.4601 | 4.0 | 4 | 2.4033 | 0.3267 | | 1.2748 | 5.0 | 5 | 2.3789 | 0.3356 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-large-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-1-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-1-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-xlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-5-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-5-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-xlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-6-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-6-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-xlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-auto_and_commute-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-auto_and_commute-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2614 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7929 | 1.0 | 1 | 2.5690 | 0.2667 | | 2.267 | 2.0 | 2 | 2.4558 | 0.3533 | | 1.8495 | 3.0 | 3 | 2.3630 | 0.3911 | | 1.4397 | 4.0 | 4 | 2.2956 | 0.4133 | | 1.2985 | 5.0 | 5 | 2.2614 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-xxlarge-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-large-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-7-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-7-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/albert-tiny-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
393
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-travel-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-travel-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1384 - Accuracy: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7625 | 1.0 | 1 | 2.5258 | 0.2933 | | 2.0955 | 2.0 | 2 | 2.3775 | 0.3333 | | 1.7076 | 3.0 | 3 | 2.2590 | 0.38 | | 1.3257 | 4.0 | 4 | 2.1788 | 0.4089 | | 1.1109 | 5.0 | 5 | 2.1384 | 0.4289 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/bert-base-spanish-wwm-cased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-utility-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 - Accuracy: 0.3956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8194 | 1.0 | 1 | 2.6027 | 0.3156 | | 2.2337 | 2.0 | 2 | 2.5079 | 0.3778 | | 1.7996 | 3.0 | 3 | 2.4293 | 0.3822 | | 1.4591 | 4.0 | 4 | 2.3728 | 0.3956 | | 1.3205 | 5.0 | 5 | 2.3439 | 0.3956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-utility-8-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-8-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 - Accuracy: 0.3956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8194 | 1.0 | 1 | 2.6027 | 0.3156 | | 2.2337 | 2.0 | 2 | 2.5079 | 0.3778 | | 1.7996 | 3.0 | 3 | 2.4293 | 0.3822 | | 1.4591 | 4.0 | 4 | 2.3728 | 0.3956 | | 1.3205 | 5.0 | 5 | 2.3439 | 0.3956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-utility-9-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-utility-9-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3728 - Accuracy: 0.3956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8194 | 1.0 | 1 | 2.6027 | 0.3156 | | 2.2337 | 2.0 | 2 | 2.5079 | 0.3778 | | 1.7996 | 3.0 | 3 | 2.4293 | 0.3822 | | 1.4591 | 4.0 | 4 | 2.3728 | 0.3956 | | 1.3205 | 5.0 | 5 | 2.3439 | 0.3956 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: all-roberta-large-v1-work-3-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-work-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3586 - Accuracy: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8058 | 1.0 | 1 | 2.6169 | 0.2356 | | 2.3524 | 2.0 | 2 | 2.5215 | 0.2978 | | 1.9543 | 3.0 | 3 | 2.4427 | 0.3422 | | 1.5539 | 4.0 | 4 | 2.3874 | 0.36 | | 1.4133 | 5.0 | 5 | 2.3586 | 0.3689 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Champion/test_upload_vox2_wavlm_epoch8
[ "sidekit", "audio" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- illustrator : Mitsuhiro Kimura license: Futabasha ---from Kobayashi-san Chi No Maid Dragon from PIL import Image url = https://static.wikia.nocookie.net/wikiseriesjaponesas/images/d/d4/Kobayashi.png/revision/latest?cb=20170801205650&path-prefix=es image = https://static.wikia.nocookie.net/wikiseriesjaponesas/images/d/d2/Kobayashi.png/revision/latest?cb=20170801205650&path-prefix=es feature_extractor = ViTFeatureExtractor.from_pretrained(https://ficcion-sin-limites.fandom.com/es/wiki/Kobayashi model = ViTModel.from_pretrained('google/vit-base-patch32-224-in21k') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_state = outputs.last_hidden_state
Chan/distilgpt2-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T20:58:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 10 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 4.326394417589792e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 30, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Chandanbhat/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-dutch-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dutch-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5834 - eval_wer: 0.3471 - eval_cer: 0.1181 - eval_runtime: 338.6313 - eval_samples_per_second: 14.582 - eval_steps_per_second: 1.825 - epoch: 14.87 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Cheatham/xlm-roberta-large-finetuned-d12
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: DLL888/deberta-v3-base-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # DLL888/deberta-v3-base-squad This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [SQuAD](https://huggingface.co/datasets/squad) dataset. It achieves the following results on the evaluation set: - Exact Match: 88.08893093661305 - F1: 93.75543944888847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training Machine Trained in Google Colab Pro with the following specs: - A100-SXM4-40GB - NVIDIA-SMI 460.32.03 - Driver Version: 460.32.03 - CUDA Version: 11.2 Training took about 26 minutes for two epochs. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10538, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 500, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0540 | 0.7261 | 0.6885 | 0.7617 | 0.7841 | 0.7530 | 0 | | 0.6248 | 0.8212 | 0.7777 | 0.7594 | 0.7873 | 0.7569 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Cheatham/xlm-roberta-large-finetuned-d12_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/blewglass/1669844278462/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1589805873366724610/ifGVL-6g_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">come back clammy</div> <div style="text-align: center; font-size: 14px;">@blewglass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from come back clammy. | Data | come back clammy | | --- | --- | | Tweets downloaded | 3174 | | Retweets | 582 | | Short tweets | 317 | | Tweets kept | 2275 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cybl684/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @blewglass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zifv54gk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zifv54gk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/blewglass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Cheatham/xlm-roberta-large-finetuned-d1r01
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_prev1.jpg" tags: - stable-diffusion - text-to-image --- ### supermarionation This is a fine-tuned Stable Diffusion model (based on v1.5) trained on screenshots from Gerry Anderson **_Supermarionation_** stop motion animation movie, basically from **_Thunderbirds_** tv series. Use the token **_supermarionation_** in your prompts to use the style. _Download the ckpt file from "files and versions" tab into the stable diffusion models folder of your web-ui of choice._ _I've found interesting (and really funny ^^) the output in the img2img. You can see the results in the second and third pic (original/img2img). You can play around with denoising strength (40-70) and activate or not the restore face option._ ### supermarionation v2 In this version I've trained characters and vehicles. 47 images and 9400 steps, 20% text encoder. -- **Characters and vehicles rendered with this model:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_v2_prev1.jpg) _prompt and settings used: **[person/vehicle] in supermarionation style** | **Steps: 30, Sampler: Euler, CFG scale: 7.5**_ **Characters rendered with img2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_v2_prev2.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 30 - you can play around with settings**_ **Characters rendered with supermarionation in txt2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_prev1.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 40 - you can play around with settings**_ **Characters rendered with supermarionation in img2img:** ![Character Samples](https://huggingface.co/tuwonga/supermarionation/resolve/main/supermarionation_prev2.jpg) _prompt and settings used: **[person] in supermarionation style** | **Steps: 40 - you can play around with settings**_ -- Supermarionation v1 was trained with Dreambooth training by TheLastBen, using 43 images at 8600 steps with 18% of text encoder. -- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Cheatham/xlm-roberta-large-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
2022-11-30T21:47:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Stable Diffusion - Butterflies, 32px Model developed for the Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class). This model is a diffusion model for unconditional image generation of cute butterflies 🦋. It is trained on a very small collection of 1'000 pictures and trained for 30 epochs. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('alkiskoudounas/sd-butterflies-32px') image = pipeline().images[0] image ```
Cheatham/xlm-roberta-large-finetuned3
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
22
null
--- language: en thumbnail: http://www.huggingtweets.com/poisonjr/1669845035713/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582446449228382209/8JRLlVu__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gale na</div> <div style="text-align: center; font-size: 14px;">@poisonjr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gale na. | Data | gale na | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 731 | | Short tweets | 782 | | Tweets kept | 1691 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33t9oiqy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @poisonjr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c5vn57r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c5vn57r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/poisonjr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Cheatham/xlm-roberta-large-finetuned4
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- language: en thumbnail: http://www.huggingtweets.com/kelseyhightower-mipsytipsy-rakyll/1669845299643/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1204077305271705606/j5XjhPAt_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576759705933819904/iDotz1Gw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492548437996310529/waX1aEU-_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kelsey Hightower & Charity Majors & Jaana Dogan ヤナ ドガン</div> <div style="text-align: center; font-size: 14px;">@kelseyhightower-mipsytipsy-rakyll</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kelsey Hightower & Charity Majors & Jaana Dogan ヤナ ドガン. | Data | Kelsey Hightower | Charity Majors | Jaana Dogan ヤナ ドガン | | --- | --- | --- | --- | | Tweets downloaded | 3227 | 3194 | 3223 | | Retweets | 464 | 509 | 297 | | Short tweets | 246 | 415 | 240 | | Tweets kept | 2517 | 2270 | 2686 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3shpfqlw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kelseyhightower-mipsytipsy-rakyll's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kgnzkmq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kgnzkmq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kelseyhightower-mipsytipsy-rakyll') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Chertilasus/main
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T22:15:02Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: sepal_length: - 6.3 - 6.5 - 5.6 sepal_width: - 3.3 - 3.0 - 2.5 --- ### Linear Regression Model This Linear Regression model trained on Iris dataset as a regular numpy array with 2-dimensional. Goal is to test this pr -> https://github.com/skops-dev/skops/pull/211
Chester/traffic-rec
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T22:22:07Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: sepal_length: - 6.3 - 6.5 - 5.6 --- ### Linear Regression Model This Linear Regression model trained on Iris dataset as a regular numpy array with 1-dimensional. Goal is to test this pr -> https://github.com/skops-dev/skops/pull/211
Chikita1/www_stash_stock
[ "license:bsd-3-clause-clear" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T22:25:46Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('noobmldude/sd-class-butterflies-32') image = pipeline().images[0] image ```
Ching/negation_detector
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-11-30T22:35:32Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Stable Diffusion - Butterflies, 64px Model developed for the Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class). This model is a diffusion model for unconditional image generation of cute butterflies 🦋. It is trained on a very small collection of 1'000 pictures and trained for 30 epochs. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('alkiskoudounas/sd-butterflies-64px') image = pipeline().images[0] image ```
Chinmay/mlindia
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-30T22:38:12Z
Author: Varun Pai Website: https://www.varunlpai.com/
Chiuchiyin/DialoGPT-small-Donald
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-30T22:39:42Z
--- license: cc-by-4.0 --- # GenRead: FiD model trained on WebQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the WebQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 11500 steps. References: [1] Semantic parsing on freebase from question-answer pairs. EMNLP 2013. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the WebQ dataset, the EM score is 54.36. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
ChrisVCB/DialoGPT-medium-ej
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2022-11-30T23:15:02Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0294 - Rouge1: 16.4909 - Rouge2: 7.9422 - Rougel: 16.3139 - Rougelsum: 16.3615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.5928 | 1.0 | 1209 | 3.3005 | 14.6517 | 6.5194 | 14.3474 | 14.2801 | | 3.9024 | 2.0 | 2418 | 3.1399 | 16.744 | 8.6706 | 16.0952 | 16.1512 | | 3.5806 | 3.0 | 3627 | 3.0869 | 18.0041 | 9.2385 | 17.718 | 17.6889 | | 3.4201 | 4.0 | 4836 | 3.0590 | 17.5844 | 8.972 | 17.1709 | 17.2169 | | 3.3202 | 5.0 | 6045 | 3.0598 | 17.5762 | 8.6036 | 17.3677 | 17.3708 | | 3.2436 | 6.0 | 7254 | 3.0409 | 16.7641 | 8.19 | 16.6109 | 16.5899 | | 3.2079 | 7.0 | 8463 | 3.0332 | 16.6917 | 8.1747 | 16.4958 | 16.527 | | 3.1801 | 8.0 | 9672 | 3.0294 | 16.4909 | 7.9422 | 16.3139 | 16.3615 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Chun/DialoGPT-large-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.7311211804904578 - name: Recall type: recall value: 0.7298750848074663 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1658 - Precision: 0.7311 - Recall: 0.7299 - Fscore: 0.7299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8562 | 1.0 | 815 | 0.7859 | 0.7527 | 0.6006 | 0.6173 | | 0.5352 | 2.0 | 1630 | 0.9248 | 0.7545 | 0.7188 | 0.7293 | | 0.2543 | 3.0 | 2445 | 1.1658 | 0.7311 | 0.7299 | 0.7299 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Chun/DialoGPT-medium-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2022-11-30T23:58:33Z
--- license: openrail --- Textual inversion embedding for SD2.0 and 768-v-ema.ckpt Converts even simple promts into landscape paintings it was trained with no people in the dataset, but it can also work for them all examples are made with 20 steps, DPM++ 2M Karras and CFG 7 and 768x768 resolution, no other promts, no negatives moon station, white block buildings, foreign planet, painted_landscape: ![grid-0588-1361246-moon station, white block buildings, foreign planet, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853477965-63126010c7577b68d90ac441.png) asteroid impact, huge sun, rocky landscape, painted_landscape: ![grid-0601-3598571-asteroid impact, huge sun, rocky landscape, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853477678-63126010c7577b68d90ac441.png) foreign science fiction planet, weird tangled trees, purple plants: ![grid-0602-5083209-foreign science fiction planet, weird tangled trees, purple plants, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853479142-63126010c7577b68d90ac441.png) black swamp, witch hut, mud water, painted_landscape: ![grid-0604-9905645.0-black swamp, witch hut, mud water, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853479455-63126010c7577b68d90ac441.png) small town marketplace, store and shop, medieval buildings, painted_landscape: ![grid-0605-9905645.0-small town marketplace, store and shop, medieval buildings, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853479450-63126010c7577b68d90ac441.png) demon devil black stone tower, hellfire landscape, bone trees, painted_landscape: ![grid-0606-9905645.0-demon devil black stone tower, hellfire landscape, bone trees, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853478864-63126010c7577b68d90ac441.png) vulcano, eruption, lava, painted_landscape: ![grid-0611-7140421.0-vulcano, eruption, lava, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853478723-63126010c7577b68d90ac441.png) mega cyberpunk city, neon lights, skyscraper, painted_landscape: ![grid-0612-4291227-mega cyberpunk city, neon lights, skyscraper, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853479495-63126010c7577b68d90ac441.png) castle, high mountains, elvish architecture, painted_landscape: ![grid-0615-4882040-castle, high mountains, elvish architecture, painted_landscape.png](https://s3.amazonaws.com/moonup/production/uploads/1669853479506-63126010c7577b68d90ac441.png) portrait of a woman, red long hair, long black coat, painted_landscape: ![grid-0625-7213073-portrait of a woman, red long hair, long black coat, painted_landscape_.png](https://s3.amazonaws.com/moonup/production/uploads/1669910231654-63126010c7577b68d90ac441.png) portrait of a woman, top bun hair, frilly blue dress, painted_landscape: ![grid-0627-2645913-portrait of a woman, top bun hair, frilly blue dress, painted_landscape_.png](https://s3.amazonaws.com/moonup/production/uploads/1669910232223-63126010c7577b68d90ac441.png) portrait of a old man, grey bushy beard, catching a fish, painted_landscape: ![grid-0629-9624303-portrait of a old man, grey bushy beard, catching a fish, painted_landscape_.png](https://s3.amazonaws.com/moonup/production/uploads/1669910232240-63126010c7577b68d90ac441.png)
Chun/DialoGPT-small-dailydialog
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-11-30T23:59:06Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k - wit-400m - imagenet-12k --- # Model card for vit_base_patch16_clip_384.openai_ft_in12k_in1k A Vision Transformer (ViT) image classification model. Pretrained on WIT-400M image-text pairs by OpenAI using CLIP. Fine-tuned on ImageNet-12k and then ImageNet-1k in `timm`. See recipes in [Reproducible scaling laws](https://arxiv.org/abs/2212.07143). ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 86.9 - GMACs: 49.4 - Activations (M): 48.3 - Image size: 384 x 384 - **Papers:** - Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020 - Reproducible scaling laws for contrastive language-image learning: https://arxiv.org/abs/2212.07143 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2 - **Dataset:** ImageNet-1k - **Pretrain Dataset:** - WIT-400M - ImageNet-12k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('vit_base_patch16_clip_384.openai_ft_in12k_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_base_patch16_clip_384.openai_ft_in12k_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 577, 768) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} } ``` ```bibtex @article{cherti2022reproducible, title={Reproducible scaling laws for contrastive language-image learning}, author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia}, journal={arXiv preprint arXiv:2212.07143}, year={2022} } ``` ```bibtex @article{dosovitskiy2020vit, title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, journal={ICLR}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
Chun/w-zh2en-mto
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-12-01T00:15:23Z
--- library_name: keras tags: - plant-classification - image-classification --- # Classification of Grape Varieties using Convolutional Neural Network Models The full credit goes to: [Gabriel Carneiro] (https://www.linkedin.com/in/gabriel-carneiro-81a13a64/) ## Supported varieties - Códega - Moscatel Galego - Rabigato - Tinta Roriz - Tinto Cao - Touriga Nacional ## Explainable AI support We also supported algorithms of Explainable AI. The Grad-CAM, Grad-CAM++, and LIME.
Chungu424/repo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6931034482758621 - name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.692628774202147 - name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6931034482758621 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.6931034482758621 - F1 (macro): 0.692628774202147 - Accuracy: 0.6931034482758621 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
Chuu/Chumar
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: TowerBuilding type: TowerBuilding metrics: - type: mean_reward value: nan +/- nan name: mean_reward verified: false --- A(n) **APPO** model trained on the **TowerBuilding** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
CoachCarter/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This repo contains pre-trained models, checkpoints, training logs and decoding results of the following pull-request: https://github.com/k2-fsa/icefall/pull/683
CoachCarter/distilbert-base-uncased
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8665180357857429 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1457 - F1: 0.8665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2537 | 1.0 | 1049 | 0.1758 | 0.8236 | | 0.1335 | 2.0 | 2098 | 0.1442 | 0.8494 | | 0.0811 | 3.0 | 3147 | 0.1457 | 0.8665 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CodeDanCode/CartmenBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy model-index: - name: cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 - name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6168385894019698 - name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.6169540229885058 - F1 (macro): 0.6168385894019698 - Accuracy: 0.6169540229885058 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
CodeDanCode/SP-KyleBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5-samsung results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: train args: samsum metrics: - name: Rouge1 type: rouge value: 42.2345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-samsung This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.8153 - Rouge1: 42.2345 - Rouge2: 18.983 - Rougel: 33.0073 - Rougelsum: 38.8755 - Gen Len: 36.4242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.0028 | 1.0 | 1841 | 1.8153 | 42.2345 | 18.983 | 33.0073 | 38.8755 | 36.4242 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
CodeMonkey98/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: multi-label-class-classification-on-github-issues results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi-label-class-classification-on-github-issues This model is a fine-tuned version of [neuralmagic/oBERT-12-upstream-pruned-unstructured-97](https://huggingface.co/neuralmagic/oBERT-12-upstream-pruned-unstructured-97) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1077 - Micro f1: 0.6520 - Macro f1: 0.0704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | No log | 1.0 | 49 | 0.2835 | 0.3791 | 0.0172 | | No log | 2.0 | 98 | 0.1710 | 0.3791 | 0.0172 | | No log | 3.0 | 147 | 0.1433 | 0.3791 | 0.0172 | | No log | 4.0 | 196 | 0.1333 | 0.4540 | 0.0291 | | No log | 5.0 | 245 | 0.1247 | 0.5206 | 0.0352 | | No log | 6.0 | 294 | 0.1173 | 0.6003 | 0.0541 | | No log | 7.0 | 343 | 0.1125 | 0.6315 | 0.0671 | | No log | 8.0 | 392 | 0.1095 | 0.6439 | 0.0699 | | No log | 9.0 | 441 | 0.1072 | 0.6531 | 0.0713 | | No log | 10.0 | 490 | 0.1075 | 0.6397 | 0.0695 | | 0.1605 | 11.0 | 539 | 0.1074 | 0.6591 | 0.0711 | | 0.1605 | 12.0 | 588 | 0.1043 | 0.6462 | 0.0703 | | 0.1605 | 13.0 | 637 | 0.1049 | 0.6541 | 0.0709 | | 0.1605 | 14.0 | 686 | 0.1051 | 0.6524 | 0.0713 | | 0.1605 | 15.0 | 735 | 0.1061 | 0.6535 | 0.0770 | | 0.1605 | 16.0 | 784 | 0.1034 | 0.6511 | 0.0708 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CodeNinja1126/bert-p-encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: ko license: cc-by-4.0 tags: - seq2seq widget: - text: "question: 조선 중기의 무신인 이순신이 태어난 날짜는? title: 이순신 context: 이순신(李舜臣, 1545년 4월 28일 (음력 3월 8일) ~ 1598년 12월 16일 (음력 11월 19일))은 조선 중기의 무신이었다. 본관은 덕수(德水), 자는 여해(汝諧), 시호는 충무(忠武)였으며, 한성 출신이었다. 문반 가문 출신으로 1576년(선조 9년) 무과(武科)에 급제[2]하여 그 관직이 동구비보 권관, 훈련원 봉사, 발포진 수군만호, 조산보 만호, 전라좌도수사를 거쳐 정헌대부 삼도수군통제사에 이르렀다." - text: "question: 함장 마쓰오카 바키치는 배를 조정하는 명수로 로프 하나 손상되지 않았다고 말한 사람은? title: 반류마루 context: 일련의 하코다테 전쟁은 적아 쌍방의 문서에 마쓰오카 바키치 함장의 능란한 조함 능력과 냉정한 지휘만이 기록되어 있다. 함포 사격으로 마쓰마에 성을 공격하여 엄호한 이후, 1869년 메이지 2년 3월 25일 미야코 만 해전에서는 폭풍우를 만나 요함과 헤어졌을 때에 만날 약속했던 하치노헤 항에서 대기하고 있었기 때문에 참전에는 이르지 못했다. 이 폭풍우 때도 “함장 마쓰오카 바키치는 배를 조정하는 명수로 로프 하나 손상되지 않았다”고 타고 있던 하야시 다다스가 남긴 바 있다. 이 귀로에서 신정부 군의 철갑함의 추격을 받았다. 기관 능력의 차이로 인한 속도차 때문에 도주가 불가능하다고 판단하고 맞장 공격을 하겠다고 전투 준비를 했지만, 철갑선의 사정거리에 들어간 순간에 순풍이 불기 시작하여 추격을 뿌리치고 하코다테로 돌아올 수 있었다." --- # pko-t5-base-finetuned-korquad [Source Code](https://github.com/paust-team/pko-t5)
CodeNinja1126/bert-q-encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/yixiaoxu/ddpm-butterflies-128/tensorboard?#scalars)
CoffeeAddict93/gpt1-call-of-the-wild
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy model-index: - name: cardiffnlp/xlm-roberta-base-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.665948275862069 - name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6628627126803655 - name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.665948275862069 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/xlm-roberta-base-sentiment-multilingual This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/xlm-roberta-base-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.665948275862069 - F1 (macro): 0.6628627126803655 - Accuracy: 0.665948275862069 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
Contrastive-Tension/BERT-Base-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: bart-finetuned-idl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-idl This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Bleu: 0.0 - Gen Len: 4.9917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:----:|:-------:| | 0.2005 | 1.0 | 13874 | 0.1589 | 0.0 | 5.0002 | | 0.1182 | 2.0 | 27748 | 0.0949 | 0.0 | 4.9924 | | 0.0983 | 3.0 | 41622 | 0.0778 | 0.0 | 4.9924 | | 0.0724 | 4.0 | 55496 | 0.0724 | 0.0 | 4.9903 | | 0.0532 | 5.0 | 69370 | 0.0549 | 0.0 | 4.9928 | | 0.0458 | 6.0 | 83244 | 0.0463 | 0.0 | 4.9861 | | 0.0435 | 7.0 | 97118 | 0.0548 | 0.0 | 4.9923 | | 0.0464 | 8.0 | 110992 | 0.0847 | 0.0 | 4.9899 | | 0.0317 | 9.0 | 124866 | 0.0303 | 0.0 | 4.9922 | | 0.0302 | 10.0 | 138740 | 0.0284 | 0.0 | 4.9919 | | 0.0306 | 11.0 | 152614 | 0.0120 | 0.0 | 4.9919 | | 0.0224 | 12.0 | 166488 | 0.0462 | 0.0 | 4.9917 | | 0.0184 | 13.0 | 180362 | 0.0138 | 0.0 | 4.9924 | | 0.0208 | 14.0 | 194236 | 0.0730 | 0.0 | 4.9919 | | 0.0149 | 15.0 | 208110 | 0.0126 | 0.0 | 4.992 | | 0.0161 | 16.0 | 221984 | 0.0100 | 0.0 | 4.9915 | | 0.0178 | 17.0 | 235858 | 0.0106 | 0.0 | 4.992 | | 0.0116 | 18.0 | 249732 | 0.0149 | 0.0 | 4.9921 | | 0.0096 | 19.0 | 263606 | 0.0085 | 0.0 | 4.9918 | | 0.0094 | 20.0 | 277480 | 0.0101 | 0.0 | 4.9916 | | 0.0084 | 21.0 | 291354 | 0.0093 | 0.0 | 4.9918 | | 0.0077 | 22.0 | 305228 | 0.0138 | 0.0 | 4.992 | | 0.0094 | 23.0 | 319102 | 0.0084 | 0.0 | 4.9918 | | 0.0079 | 24.0 | 332976 | 0.0058 | 0.0 | 4.9917 | | 0.006 | 25.0 | 346850 | 0.0067 | 0.0 | 4.9918 | | 0.0046 | 26.0 | 360724 | 0.0041 | 0.0 | 4.9918 | | 0.0049 | 27.0 | 374598 | 0.0061 | 0.0 | 4.9919 | | 0.002 | 28.0 | 388472 | 0.0035 | 0.0 | 4.9918 | | 0.003 | 29.0 | 402346 | 0.0038 | 0.0 | 4.9917 | | 0.0027 | 30.0 | 416220 | 0.0050 | 0.0 | 4.9917 | | 0.001 | 31.0 | 430094 | 0.0063 | 0.0 | 4.9918 | | 0.0017 | 32.0 | 443968 | 0.0042 | 0.0 | 4.992 | | 0.0013 | 33.0 | 457842 | 0.0032 | 0.0 | 4.9917 | | 0.0005 | 34.0 | 471716 | 0.0031 | 0.0 | 4.9917 | | 0.0003 | 35.0 | 485590 | 0.0031 | 0.0 | 4.9917 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0+cu111 - Datasets 2.7.1 - Tokenizers 0.13.2
Corvus/DialoGPT-medium-CaptainPrice-Extended
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - code license: bsd-3-clause tags: - code - generative datasets: - bigcode/the-stack --- # CodeGen (CodeGen-CSS 350M) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is finetuned on top of the **CodeGen-Multi 350M**, where "Multi" means the model is initialized with *CodeGen-NL 350M* and further pre-trained on a dataset of multiple programming languages, and "350M" refers to the number of trainable parameters. It has been finetuned on CSS code contained in bigcode/the-stack dataset on huggingface ## Training data This checkpoint (CodeGen-Multi 350M) was firstly initialized with *CodeGen-NL 350M*, and then pre-trained on [BigQuery](https://console.cloud.google.com/marketplace/details/github/github-repos), a large-scale dataset of multiple programming languages from GitHub repositories. The data consists of 119.2B tokens and includes C, C++, Go, Java, JavaScript, and Python. Lastly it has been finetuned on CSS code contained in [bigcode/the-stack](https://huggingface.co/datasets/bigcode/the-stack) dataset on huggingface ## Training procedure Initially: CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. Finetune: I fine tuned the 350M model on a single A100 with 40Gb of RAM, with batch size 10 and an input length of 512 tokens Used 80-90% of the RAM ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi") model = AutoModelForCausalLM.from_pretrained("alecsharpie/codegen_350m_css") text = ".header-container {" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
CouchCat/ma_ner_v7_distil
[ "pytorch", "distilbert", "token-classification", "en", "transformers", "ner", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_ELECTRA_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.96 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_ELECTRA_5E This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.1658 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6872 | 0.03 | 50 | 0.6751 | 0.5867 | | 0.6407 | 0.06 | 100 | 0.5811 | 0.86 | | 0.5551 | 0.1 | 150 | 0.4980 | 0.8667 | | 0.4784 | 0.13 | 200 | 0.3889 | 0.9333 | | 0.412 | 0.16 | 250 | 0.3349 | 0.9333 | | 0.3826 | 0.19 | 300 | 0.3138 | 0.9133 | | 0.3629 | 0.22 | 350 | 0.2568 | 0.96 | | 0.335 | 0.26 | 400 | 0.2352 | 0.9333 | | 0.2966 | 0.29 | 450 | 0.1907 | 0.9667 | | 0.2776 | 0.32 | 500 | 0.1898 | 0.96 | | 0.2428 | 0.35 | 550 | 0.1771 | 0.9533 | | 0.2577 | 0.38 | 600 | 0.1610 | 0.96 | | 0.2252 | 0.42 | 650 | 0.1503 | 0.96 | | 0.2273 | 0.45 | 700 | 0.1425 | 0.9667 | | 0.2155 | 0.48 | 750 | 0.1417 | 0.96 | | 0.2681 | 0.51 | 800 | 0.1682 | 0.94 | | 0.195 | 0.54 | 850 | 0.1527 | 0.96 | | 0.2133 | 0.58 | 900 | 0.1480 | 0.9533 | | 0.1996 | 0.61 | 950 | 0.1516 | 0.9533 | | 0.2123 | 0.64 | 1000 | 0.1645 | 0.94 | | 0.2263 | 0.67 | 1050 | 0.1449 | 0.96 | | 0.1941 | 0.7 | 1100 | 0.1445 | 0.96 | | 0.2273 | 0.74 | 1150 | 0.1389 | 0.96 | | 0.2156 | 0.77 | 1200 | 0.1541 | 0.9533 | | 0.193 | 0.8 | 1250 | 0.1512 | 0.9533 | | 0.1851 | 0.83 | 1300 | 0.1949 | 0.92 | | 0.2041 | 0.86 | 1350 | 0.1531 | 0.96 | | 0.1924 | 0.9 | 1400 | 0.1640 | 0.9533 | | 0.2453 | 0.93 | 1450 | 0.1639 | 0.9467 | | 0.1774 | 0.96 | 1500 | 0.1729 | 0.9467 | | 0.1999 | 0.99 | 1550 | 0.1618 | 0.94 | | 0.1998 | 1.02 | 1600 | 0.1628 | 0.9467 | | 0.1607 | 1.06 | 1650 | 0.1608 | 0.94 | | 0.1878 | 1.09 | 1700 | 0.1659 | 0.9467 | | 0.1702 | 1.12 | 1750 | 0.1694 | 0.9467 | | 0.1711 | 1.15 | 1800 | 0.1666 | 0.9467 | | 0.1517 | 1.18 | 1850 | 0.1560 | 0.9533 | | 0.1521 | 1.22 | 1900 | 0.1662 | 0.9467 | | 0.2297 | 1.25 | 1950 | 0.2137 | 0.94 | | 0.2046 | 1.28 | 2000 | 0.1793 | 0.94 | | 0.1869 | 1.31 | 2050 | 0.1673 | 0.9467 | | 0.1684 | 1.34 | 2100 | 0.1730 | 0.9467 | | 0.1359 | 1.38 | 2150 | 0.1817 | 0.94 | | 0.1595 | 1.41 | 2200 | 0.1709 | 0.9467 | | 0.1458 | 1.44 | 2250 | 0.1660 | 0.94 | | 0.1518 | 1.47 | 2300 | 0.1735 | 0.9467 | | 0.1239 | 1.5 | 2350 | 0.1514 | 0.9533 | | 0.2183 | 1.54 | 2400 | 0.1644 | 0.9467 | | 0.1678 | 1.57 | 2450 | 0.1578 | 0.9467 | | 0.1516 | 1.6 | 2500 | 0.1562 | 0.9467 | | 0.2575 | 1.63 | 2550 | 0.1516 | 0.9467 | | 0.1576 | 1.66 | 2600 | 0.1684 | 0.9533 | | 0.1134 | 1.7 | 2650 | 0.1691 | 0.96 | | 0.2075 | 1.73 | 2700 | 0.1586 | 0.96 | | 0.1425 | 1.76 | 2750 | 0.1516 | 0.96 | | 0.1426 | 1.79 | 2800 | 0.1499 | 0.96 | | 0.1295 | 1.82 | 2850 | 0.1563 | 0.96 | | 0.1253 | 1.86 | 2900 | 0.1576 | 0.9533 | | 0.1801 | 1.89 | 2950 | 0.1563 | 0.9533 | | 0.1513 | 1.92 | 3000 | 0.1522 | 0.96 | | 0.1204 | 1.95 | 3050 | 0.1604 | 0.9533 | | 0.2055 | 1.98 | 3100 | 0.1483 | 0.96 | | 0.1461 | 2.02 | 3150 | 0.1532 | 0.96 | | 0.1044 | 2.05 | 3200 | 0.1540 | 0.96 | | 0.116 | 2.08 | 3250 | 0.1604 | 0.96 | | 0.1098 | 2.11 | 3300 | 0.1632 | 0.96 | | 0.1259 | 2.14 | 3350 | 0.1640 | 0.96 | | 0.1137 | 2.18 | 3400 | 0.1684 | 0.9533 | | 0.135 | 2.21 | 3450 | 0.1568 | 0.9467 | | 0.1819 | 2.24 | 3500 | 0.1497 | 0.96 | | 0.1612 | 2.27 | 3550 | 0.1569 | 0.96 | | 0.1699 | 2.3 | 3600 | 0.1594 | 0.96 | | 0.1488 | 2.34 | 3650 | 0.1727 | 0.96 | | 0.1079 | 2.37 | 3700 | 0.1830 | 0.9533 | | 0.1209 | 2.4 | 3750 | 0.1657 | 0.96 | | 0.1619 | 2.43 | 3800 | 0.1556 | 0.96 | | 0.1544 | 2.46 | 3850 | 0.1627 | 0.96 | | 0.1717 | 2.5 | 3900 | 0.1597 | 0.96 | | 0.1198 | 2.53 | 3950 | 0.1470 | 0.9467 | | 0.0922 | 2.56 | 4000 | 0.1643 | 0.96 | | 0.1399 | 2.59 | 4050 | 0.1577 | 0.9467 | | 0.1491 | 2.62 | 4100 | 0.1557 | 0.96 | | 0.146 | 2.66 | 4150 | 0.1596 | 0.96 | | 0.1617 | 2.69 | 4200 | 0.1608 | 0.96 | | 0.1463 | 2.72 | 4250 | 0.1601 | 0.9467 | | 0.1342 | 2.75 | 4300 | 0.1624 | 0.96 | | 0.1492 | 2.78 | 4350 | 0.1586 | 0.96 | | 0.1672 | 2.82 | 4400 | 0.1582 | 0.96 | | 0.1403 | 2.85 | 4450 | 0.1572 | 0.96 | | 0.1173 | 2.88 | 4500 | 0.1630 | 0.96 | | 0.1345 | 2.91 | 4550 | 0.1571 | 0.96 | | 0.171 | 2.94 | 4600 | 0.1562 | 0.96 | | 0.125 | 2.98 | 4650 | 0.1477 | 0.9533 | | 0.1494 | 3.01 | 4700 | 0.1404 | 0.96 | | 0.1234 | 3.04 | 4750 | 0.1494 | 0.96 | | 0.0926 | 3.07 | 4800 | 0.1538 | 0.96 | | 0.1188 | 3.1 | 4850 | 0.1565 | 0.96 | | 0.0986 | 3.13 | 4900 | 0.1679 | 0.96 | | 0.1242 | 3.17 | 4950 | 0.1686 | 0.96 | | 0.1193 | 3.2 | 5000 | 0.1688 | 0.96 | | 0.1548 | 3.23 | 5050 | 0.1639 | 0.96 | | 0.1216 | 3.26 | 5100 | 0.1601 | 0.96 | | 0.1068 | 3.29 | 5150 | 0.1799 | 0.94 | | 0.1582 | 3.33 | 5200 | 0.1594 | 0.96 | | 0.1454 | 3.36 | 5250 | 0.1594 | 0.96 | | 0.1631 | 3.39 | 5300 | 0.1555 | 0.96 | | 0.1323 | 3.42 | 5350 | 0.1548 | 0.9667 | | 0.145 | 3.45 | 5400 | 0.1573 | 0.9667 | | 0.1221 | 3.49 | 5450 | 0.1611 | 0.96 | | 0.1034 | 3.52 | 5500 | 0.1653 | 0.96 | | 0.1096 | 3.55 | 5550 | 0.1688 | 0.96 | | 0.096 | 3.58 | 5600 | 0.1690 | 0.9533 | | 0.1228 | 3.61 | 5650 | 0.1671 | 0.9533 | | 0.1133 | 3.65 | 5700 | 0.1710 | 0.9533 | | 0.0939 | 3.68 | 5750 | 0.1772 | 0.96 | | 0.1252 | 3.71 | 5800 | 0.1706 | 0.9533 | | 0.0726 | 3.74 | 5850 | 0.1685 | 0.96 | | 0.1144 | 3.77 | 5900 | 0.1696 | 0.9533 | | 0.0902 | 3.81 | 5950 | 0.1753 | 0.9533 | | 0.1462 | 3.84 | 6000 | 0.1699 | 0.96 | | 0.1019 | 3.87 | 6050 | 0.1677 | 0.96 | | 0.1374 | 3.9 | 6100 | 0.1727 | 0.96 | | 0.1246 | 3.93 | 6150 | 0.1711 | 0.96 | | 0.1026 | 3.97 | 6200 | 0.1728 | 0.96 | | 0.1081 | 4.0 | 6250 | 0.1745 | 0.96 | | 0.1014 | 4.03 | 6300 | 0.1760 | 0.9533 | | 0.1047 | 4.06 | 6350 | 0.1726 | 0.96 | | 0.0989 | 4.09 | 6400 | 0.1748 | 0.96 | | 0.117 | 4.13 | 6450 | 0.1736 | 0.96 | | 0.1499 | 4.16 | 6500 | 0.1755 | 0.96 | | 0.0911 | 4.19 | 6550 | 0.1761 | 0.96 | | 0.1165 | 4.22 | 6600 | 0.1734 | 0.96 | | 0.1072 | 4.25 | 6650 | 0.1693 | 0.96 | | 0.1166 | 4.29 | 6700 | 0.1703 | 0.96 | | 0.0987 | 4.32 | 6750 | 0.1715 | 0.9467 | | 0.0996 | 4.35 | 6800 | 0.1700 | 0.96 | | 0.1267 | 4.38 | 6850 | 0.1633 | 0.96 | | 0.1374 | 4.41 | 6900 | 0.1642 | 0.9667 | | 0.0699 | 4.45 | 6950 | 0.1628 | 0.96 | | 0.0773 | 4.48 | 7000 | 0.1642 | 0.96 | | 0.0903 | 4.51 | 7050 | 0.1649 | 0.96 | | 0.1357 | 4.54 | 7100 | 0.1641 | 0.96 | | 0.1252 | 4.57 | 7150 | 0.1659 | 0.9667 | | 0.1013 | 4.61 | 7200 | 0.1663 | 0.96 | | 0.1071 | 4.64 | 7250 | 0.1653 | 0.96 | | 0.1094 | 4.67 | 7300 | 0.1671 | 0.96 | | 0.1103 | 4.7 | 7350 | 0.1650 | 0.96 | | 0.1169 | 4.73 | 7400 | 0.1656 | 0.96 | | 0.0858 | 4.77 | 7450 | 0.1651 | 0.96 | | 0.0925 | 4.8 | 7500 | 0.1669 | 0.96 | | 0.1572 | 4.83 | 7550 | 0.1663 | 0.96 | | 0.1125 | 4.86 | 7600 | 0.1655 | 0.96 | | 0.1011 | 4.89 | 7650 | 0.1654 | 0.96 | | 0.1307 | 4.93 | 7700 | 0.1656 | 0.96 | | 0.1195 | 4.96 | 7750 | 0.1656 | 0.96 | | 0.1004 | 4.99 | 7800 | 0.1658 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
Coyotl/DialoGPT-test-last-arthurmorgan
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- widget: - text: "なんでしょう?" context: "御社と一度ご一緒したことがあるというデザイナー伊藤美奈の案内で問い合わせ差し上げております。\n現在、3ページほどのサイト製作を依頼できる先を探しているのですが、お見積もり等をお願いすることは可能でしょうか? 大体5段×3ページくらいの分量で、現在①デザインガイドラインと素材をお渡しし、デザインからコーディングまで②こちらでデザインを組コーディングのみ、のどちらかでご依頼できたらと思います。 納期は年始2-3月になるかと思います。\n以上宜しくお願いいたします。" - text: "なんでしょう?" context: "株式会社キャンバスご担当者様、初めてメールを送らせていただきます、株式会社フリープラスの阪田と申します。弊社は国内最大級のインバウンドを専門にした大阪の旅行会社で、世界40カ国1,200社以上との取引実績があり、コロナ前は年間約32万人の訪日客の受け入れをしておりました。現在は国境開放に当たりツアーの問い合わせ対応と並行し、アジア、欧米豪に顧客を持つ海外旅行会社へのニーズ調査を元にしたモデルコースの造成や、オンラインを通じた商談会、FAMトリップなど、自治体様や事業者様のインバウンド促進の支援を行っております。この度、弊社主体でデジタルアートを活用した小規模の観光イベントを考えておりまして、お見積りの作成をお願いしたくご連絡した次第です。デジタルアートのイベントに関して特定の規模での費用感を伺えれば幸いです。==========================================FREEPLUS Inc.Destination Management DepartmentKen SakataE-mail [email protected] [email protected] http://www.freeplus.co.jp/■ Osaka head office501 Kitahama Business Kaikan, 2-1-17 Kitahama, Chuo-ku, Osaka City, Osaka 541-0041 JapanTEL:(+81) 6 -7739 - 4331FAX:06 - 6537 - 1637■ Beppu Branch OfficeBeppu City Children&#039;s Hall West Wing 2F, Suehirocho 1-3, Beppu, Oita, 874-0938TEL: (+81)06-7739-4331―――――――――――――――――【 FP HOTELS South-Namba 】" license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: bert-large-japanese-wikipedia-ud-head-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-japanese-wikipedia-ud-head-finetuned-squad This model is a fine-tuned version of [KoichiYasuoka/bert-large-japanese-wikipedia-ud-head](https://huggingface.co/KoichiYasuoka/bert-large-japanese-wikipedia-ud-head) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 50 | 1.9136 | | No log | 2.0 | 100 | 1.9691 | | No log | 3.0 | 150 | 1.9130 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Craftified/Bob
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: CV11_finetuning1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CV11_finetuning1 This model is a fine-tuned version of [Roshana/Wav2Vec1_CV](https://huggingface.co/Roshana/Wav2Vec1_CV) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7162 - Wer: 0.3625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5067 | 0.86 | 400 | 0.6193 | 0.4492 | | 0.4448 | 1.72 | 800 | 0.6325 | 0.4384 | | 0.3781 | 2.59 | 1200 | 0.6248 | 0.4197 | | 0.3172 | 3.45 | 1600 | 0.6408 | 0.4343 | | 0.2556 | 4.31 | 2000 | 0.6593 | 0.4230 | | 0.2148 | 5.17 | 2400 | 0.6742 | 0.3987 | | 0.1779 | 6.03 | 2800 | 0.6658 | 0.3929 | | 0.1446 | 6.9 | 3200 | 0.6768 | 0.3846 | | 0.1248 | 7.76 | 3600 | 0.6809 | 0.3804 | | 0.108 | 8.62 | 4000 | 0.7214 | 0.3683 | | 0.0938 | 9.48 | 4400 | 0.7162 | 0.3625 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Craig/mGqFiPhu
[ "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - zeroth_korean_asr model-index: - name: wav2vec2-large-xls-r-300m-korean results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean This model is a fine-tuned version of [teddy322/wav2vec2-large-xls-r-300m-korean](https://huggingface.co/teddy322/wav2vec2-large-xls-r-300m-korean) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4474 - Wer: 0.3320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1683 | 1.12 | 400 | 0.4871 | 0.4144 | | 0.2177 | 2.25 | 800 | 0.5225 | 0.4552 | | 0.1939 | 3.37 | 1200 | 0.5300 | 0.4456 | | 0.1432 | 4.49 | 1600 | 0.4704 | 0.3850 | | 0.1047 | 5.62 | 2000 | 0.4951 | 0.3960 | | 0.0864 | 6.74 | 2400 | 0.4617 | 0.3638 | | 0.0686 | 7.87 | 2800 | 0.4477 | 0.3393 | | 0.0538 | 8.99 | 3200 | 0.4474 | 0.3320 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
CrayonShinchan/fine_tune_try_1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: bigscience-bloom-rail-1.0 tags: - stable-diffusion - diffusion model-index: - name: bloom-560m-RLHF-SD2-prompter results: [] datasets: - Gustavosta/Stable-Diffusion-Prompts widget: - text: "<s>Prompt: " inference: parameters: eos_token_id: 2 max_length: 128 do_sample: true --- # BLOOM-560m RLHF SD2 Prompter **COLAB DEMO INCLUDING STABLE DIFFUSION: https://colab.research.google.com/github/aicrumb/doohickey/blob/main/rlhf_prompt_tuner.ipynb** Using RLHF (Reinforcement Learning from Human Feedback) to finetune [mrm8488/bloom-560m-finetuned-sd-prompts](https://hf.co/mrm8488/bloom-560m-finetuned-sd-prompts) further for SD2.0 ``` batch_size = 16 learning_rate = 0.001 # this is why I didn't have to spend _forever_ on it ``` Generate extension with "\<s>Prompt: " and whatever your normal prompt is. I did this myself. I sat down and just ranked images for so long. It's gone through a couple iterations. Only the biases and layernorm weights were trained. The commit messages are a MESS. **First iteration of this project** donate so i can do this on real hardware : https://github.com/aicrumb/aicrumb/blob/main/README.md ## Example usage ```python # Install libraries needed to run the models !pip install transformers diffusers accelerate -qq # Import the libraries from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler from transformers import pipeline import torch # This is the model that the transformer was finetuned to generate prompts for model_id = "stabilityai/stable-diffusion-2-base" # Use the Euler scheduler here scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16) pipe = pipe.to("cuda") # Load the transformer model prompt_pipe = pipeline("text-generation", model="crumb/bloom-560m-RLHF-SD2-prompter") prompt = "cool landscape" # Auto-complete prompt prompt = "<s>Prompt: " + prompt + "," extended_prompt = prompt_pipe(prompt, do_sample=True, max_length=42)[0]['generated_text'] extended_prompt = extended_prompt[10:] print("Prompt is now: ", extended_prompt) # Generate image image = pipe(extended_prompt).images[0] image.save("output.png") image ``` *Prompt is now: cool landscape, concept art* ![](https://cdn.discordapp.com/attachments/1010693530181718146/1047831482808406067/image.png) *Prompt is now: cool landscape, concept art, sharp focus, digital painting* ![](https://cdn.discordapp.com/attachments/1010693530181718146/1047832480335536249/image.png) short additions, they work though I guess (results vary) It's also very good at generating prompts by itself, with just the "Prompt:" prompt. *\<s>Prompt: 1 0 th century, highly detailed, concept art, cinematic lighting, unreal engine, trending on artstation, artstation hd, artstation hq, very very detailed* ![](https://cdn.discordapp.com/attachments/1010693530181718146/1047843202050310174/image.png) Further testing to be done in this area (automated training with aesthetic predicting models, larger data collection about prompt scores, better training in general) Also, enjoy this graphic I had to make myself because I kept being indecisive of the reward methodology ![](https://cdn.discordapp.com/attachments/1010693530181718146/1047846272096292925/image.png)
CrisLeaf/generador-de-historias-de-tolkien
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: YELP_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.9733333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # YELP_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 0.1394 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4967 | 0.03 | 50 | 0.1667 | 0.9467 | | 0.3268 | 0.06 | 100 | 0.2106 | 0.9133 | | 0.3413 | 0.1 | 150 | 0.2107 | 0.9667 | | 0.3172 | 0.13 | 200 | 0.1906 | 0.94 | | 0.2804 | 0.16 | 250 | 0.2588 | 0.9 | | 0.2604 | 0.19 | 300 | 0.2023 | 0.94 | | 0.2532 | 0.22 | 350 | 0.1263 | 0.9533 | | 0.2103 | 0.26 | 400 | 0.1233 | 0.96 | | 0.212 | 0.29 | 450 | 0.2019 | 0.9267 | | 0.2669 | 0.32 | 500 | 0.1110 | 0.9667 | | 0.2187 | 0.35 | 550 | 0.1542 | 0.96 | | 0.2203 | 0.38 | 600 | 0.0879 | 0.9733 | | 0.2699 | 0.42 | 650 | 0.0971 | 0.9667 | | 0.2107 | 0.45 | 700 | 0.0863 | 0.9667 | | 0.2443 | 0.48 | 750 | 0.0823 | 0.9733 | | 0.1987 | 0.51 | 800 | 0.1207 | 0.9733 | | 0.2326 | 0.54 | 850 | 0.1368 | 0.9667 | | 0.1787 | 0.58 | 900 | 0.1027 | 0.9667 | | 0.2159 | 0.61 | 950 | 0.2443 | 0.9333 | | 0.1316 | 0.64 | 1000 | 0.2035 | 0.9467 | | 0.2416 | 0.67 | 1050 | 0.0882 | 0.9733 | | 0.2008 | 0.7 | 1100 | 0.1709 | 0.9533 | | 0.2065 | 0.74 | 1150 | 0.1098 | 0.9667 | | 0.2391 | 0.77 | 1200 | 0.1055 | 0.9667 | | 0.1533 | 0.8 | 1250 | 0.1997 | 0.94 | | 0.2016 | 0.83 | 1300 | 0.0899 | 0.96 | | 0.2016 | 0.86 | 1350 | 0.0957 | 0.9733 | | 0.2316 | 0.9 | 1400 | 0.0784 | 0.98 | | 0.1839 | 0.93 | 1450 | 0.0784 | 0.9733 | | 0.2121 | 0.96 | 1500 | 0.1150 | 0.9733 | | 0.1307 | 0.99 | 1550 | 0.0969 | 0.9733 | | 0.1271 | 1.02 | 1600 | 0.2326 | 0.9467 | | 0.1736 | 1.06 | 1650 | 0.0979 | 0.9667 | | 0.1357 | 1.09 | 1700 | 0.0862 | 0.98 | | 0.1871 | 1.12 | 1750 | 0.1419 | 0.9667 | | 0.1411 | 1.15 | 1800 | 0.1301 | 0.96 | | 0.1317 | 1.18 | 1850 | 0.1602 | 0.9533 | | 0.1432 | 1.22 | 1900 | 0.1885 | 0.9533 | | 0.1793 | 1.25 | 1950 | 0.0776 | 0.9667 | | 0.1322 | 1.28 | 2000 | 0.0822 | 0.9733 | | 0.1416 | 1.31 | 2050 | 0.0920 | 0.9733 | | 0.1524 | 1.34 | 2100 | 0.0673 | 0.98 | | 0.1338 | 1.38 | 2150 | 0.0602 | 0.98 | | 0.152 | 1.41 | 2200 | 0.0916 | 0.98 | | 0.1192 | 1.44 | 2250 | 0.0559 | 0.98 | | 0.1471 | 1.47 | 2300 | 0.1096 | 0.9667 | | 0.1267 | 1.5 | 2350 | 0.0695 | 0.9733 | | 0.1776 | 1.54 | 2400 | 0.1363 | 0.96 | | 0.1495 | 1.57 | 2450 | 0.0818 | 0.98 | | 0.1158 | 1.6 | 2500 | 0.1282 | 0.9667 | | 0.1772 | 1.63 | 2550 | 0.0682 | 0.9733 | | 0.1187 | 1.66 | 2600 | 0.1032 | 0.9733 | | 0.136 | 1.7 | 2650 | 0.1071 | 0.9667 | | 0.1829 | 1.73 | 2700 | 0.0753 | 0.9667 | | 0.1147 | 1.76 | 2750 | 0.1071 | 0.9733 | | 0.1174 | 1.79 | 2800 | 0.1441 | 0.9667 | | 0.0707 | 1.82 | 2850 | 0.1362 | 0.9667 | | 0.1372 | 1.86 | 2900 | 0.1861 | 0.9533 | | 0.2108 | 1.89 | 2950 | 0.0770 | 0.9733 | | 0.2014 | 1.92 | 3000 | 0.1114 | 0.9667 | | 0.1373 | 1.95 | 3050 | 0.1244 | 0.9667 | | 0.1242 | 1.98 | 3100 | 0.1220 | 0.96 | | 0.1267 | 2.02 | 3150 | 0.1139 | 0.9733 | | 0.1021 | 2.05 | 3200 | 0.2013 | 0.9533 | | 0.1091 | 2.08 | 3250 | 0.1027 | 0.9733 | | 0.0648 | 2.11 | 3300 | 0.1464 | 0.9733 | | 0.1207 | 2.14 | 3350 | 0.1255 | 0.9733 | | 0.0833 | 2.18 | 3400 | 0.0708 | 0.98 | | 0.0796 | 2.21 | 3450 | 0.1608 | 0.96 | | 0.0624 | 2.24 | 3500 | 0.0827 | 0.98 | | 0.0518 | 2.27 | 3550 | 0.0602 | 0.98 | | 0.1242 | 2.3 | 3600 | 0.0752 | 0.9733 | | 0.0422 | 2.34 | 3650 | 0.1000 | 0.9733 | | 0.0748 | 2.37 | 3700 | 0.1171 | 0.9667 | | 0.0839 | 2.4 | 3750 | 0.1341 | 0.9667 | | 0.1033 | 2.43 | 3800 | 0.0744 | 0.98 | | 0.0567 | 2.46 | 3850 | 0.0869 | 0.98 | | 0.0756 | 2.5 | 3900 | 0.0745 | 0.98 | | 0.0768 | 2.53 | 3950 | 0.0895 | 0.9733 | | 0.0878 | 2.56 | 4000 | 0.0703 | 0.98 | | 0.1023 | 2.59 | 4050 | 0.0806 | 0.98 | | 0.0807 | 2.62 | 4100 | 0.0338 | 0.9867 | | 0.0868 | 2.66 | 4150 | 0.0892 | 0.9667 | | 0.0648 | 2.69 | 4200 | 0.1637 | 0.9533 | | 0.0535 | 2.72 | 4250 | 0.1622 | 0.9667 | | 0.0675 | 2.75 | 4300 | 0.1354 | 0.9733 | | 0.1121 | 2.78 | 4350 | 0.1440 | 0.9533 | | 0.0714 | 2.82 | 4400 | 0.1022 | 0.9467 | | 0.0786 | 2.85 | 4450 | 0.1110 | 0.9733 | | 0.0822 | 2.88 | 4500 | 0.1218 | 0.9733 | | 0.1075 | 2.91 | 4550 | 0.1041 | 0.9733 | | 0.0783 | 2.94 | 4600 | 0.0992 | 0.9733 | | 0.1059 | 2.98 | 4650 | 0.1187 | 0.9733 | | 0.067 | 3.01 | 4700 | 0.0931 | 0.9733 | | 0.0425 | 3.04 | 4750 | 0.1252 | 0.9733 | | 0.0539 | 3.07 | 4800 | 0.1152 | 0.9733 | | 0.0419 | 3.1 | 4850 | 0.1534 | 0.9667 | | 0.0462 | 3.13 | 4900 | 0.1398 | 0.9733 | | 0.0435 | 3.17 | 4950 | 0.1168 | 0.98 | | 0.0144 | 3.2 | 5000 | 0.1489 | 0.9667 | | 0.0367 | 3.23 | 5050 | 0.1293 | 0.9733 | | 0.0336 | 3.26 | 5100 | 0.1353 | 0.9733 | | 0.0246 | 3.29 | 5150 | 0.0958 | 0.98 | | 0.0181 | 3.33 | 5200 | 0.1294 | 0.9733 | | 0.0357 | 3.36 | 5250 | 0.1209 | 0.9733 | | 0.0683 | 3.39 | 5300 | 0.1748 | 0.96 | | 0.0353 | 3.42 | 5350 | 0.2159 | 0.9533 | | 0.0415 | 3.45 | 5400 | 0.1723 | 0.96 | | 0.0336 | 3.49 | 5450 | 0.1031 | 0.98 | | 0.0475 | 3.52 | 5500 | 0.0959 | 0.98 | | 0.0393 | 3.55 | 5550 | 0.2163 | 0.96 | | 0.0337 | 3.58 | 5600 | 0.1097 | 0.9733 | | 0.0415 | 3.61 | 5650 | 0.1365 | 0.98 | | 0.035 | 3.65 | 5700 | 0.1175 | 0.98 | | 0.0448 | 3.68 | 5750 | 0.1543 | 0.9667 | | 0.0445 | 3.71 | 5800 | 0.2005 | 0.96 | | 0.0211 | 3.74 | 5850 | 0.1179 | 0.98 | | 0.0198 | 3.77 | 5900 | 0.1298 | 0.9733 | | 0.026 | 3.81 | 5950 | 0.2167 | 0.9667 | | 0.0412 | 3.84 | 6000 | 0.1224 | 0.98 | | 0.0446 | 3.87 | 6050 | 0.0798 | 0.98 | | 0.0174 | 3.9 | 6100 | 0.0577 | 0.9933 | | 0.0535 | 3.93 | 6150 | 0.1482 | 0.9667 | | 0.0495 | 3.97 | 6200 | 0.0862 | 0.98 | | 0.0267 | 4.0 | 6250 | 0.1190 | 0.98 | | 0.0087 | 4.03 | 6300 | 0.0747 | 0.98 | | 0.0102 | 4.06 | 6350 | 0.0753 | 0.9867 | | 0.0178 | 4.09 | 6400 | 0.1812 | 0.9667 | | 0.0088 | 4.13 | 6450 | 0.0817 | 0.98 | | 0.0144 | 4.16 | 6500 | 0.0805 | 0.98 | | 0.014 | 4.19 | 6550 | 0.0862 | 0.9867 | | 0.0002 | 4.22 | 6600 | 0.0894 | 0.98 | | 0.0112 | 4.25 | 6650 | 0.1004 | 0.9733 | | 0.0054 | 4.29 | 6700 | 0.0832 | 0.9867 | | 0.0001 | 4.32 | 6750 | 0.0812 | 0.9867 | | 0.0202 | 4.35 | 6800 | 0.1828 | 0.9667 | | 0.009 | 4.38 | 6850 | 0.1114 | 0.98 | | 0.0001 | 4.41 | 6900 | 0.1295 | 0.98 | | 0.0077 | 4.45 | 6950 | 0.1610 | 0.9733 | | 0.0082 | 4.48 | 7000 | 0.1787 | 0.9667 | | 0.0198 | 4.51 | 7050 | 0.1485 | 0.9733 | | 0.0017 | 4.54 | 7100 | 0.1774 | 0.9733 | | 0.0115 | 4.57 | 7150 | 0.1567 | 0.9733 | | 0.0001 | 4.61 | 7200 | 0.1534 | 0.9733 | | 0.0247 | 4.64 | 7250 | 0.2020 | 0.9667 | | 0.0059 | 4.67 | 7300 | 0.1918 | 0.9667 | | 0.0052 | 4.7 | 7350 | 0.1315 | 0.98 | | 0.0076 | 4.73 | 7400 | 0.1289 | 0.98 | | 0.0218 | 4.77 | 7450 | 0.1610 | 0.9733 | | 0.0077 | 4.8 | 7500 | 0.1355 | 0.98 | | 0.0096 | 4.83 | 7550 | 0.1378 | 0.9733 | | 0.008 | 4.86 | 7600 | 0.1568 | 0.9733 | | 0.0103 | 4.89 | 7650 | 0.1388 | 0.9733 | | 0.0009 | 4.93 | 7700 | 0.1221 | 0.98 | | 0.0287 | 4.96 | 7750 | 0.1448 | 0.9733 | | 0.01 | 4.99 | 7800 | 0.1394 | 0.9733 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
Crives/distilbert-base-uncased-finetuned-emotion
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: malay-patel/bert-finetuned-squad-nq results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # malay-patel/bert-finetuned-squad-nq This model is a fine-tuned version of [nlpconnect/roberta-base-squad2-nq](https://huggingface.co/nlpconnect/roberta-base-squad2-nq) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5461 - Train End Logits Accuracy: 0.6253 - Train Start Logits Accuracy: 0.6120 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 861, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:-----:| | 1.5548 | 0.6236 | 0.6172 | 0 | | 1.5423 | 0.6286 | 0.6192 | 1 | | 1.5461 | 0.6253 | 0.6120 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
Crumped/imdb-simpleRNN
[ "keras" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### zrn-07-512-sd15-2e-6-800-woman-ddim on Stable Diffusion via Dreambooth #### model by kingery This your the Stable Diffusion model fine-tuned the zrn-07-512-sd15-2e-6-800-woman-ddim concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a photo of yangguangkechuang woman** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn4.png) ![image 1](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn5.png) ![image 2](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn1.png) ![image 3](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn3.png) ![image 4](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn2.png) ![image 5](https://huggingface.co/kingery/zrn-07-512-sd15-2e-6-800-woman-ddim/resolve/main/concept_images/zrn6.png)
Cryptikdw/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Access to model Ivd/glevero is restricted and you are not in the authorized list. Visit https://huggingface.co/Ivd/glevero to ask for access.
Crystal/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: enlm-roberta-imdb-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-imdb-final This model is a fine-tuned version of [manirai91/enlm-roberta-final](https://huggingface.co/manirai91/enlm-roberta-final) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
Cthyllax/DialoGPT-medium-PaladinDanse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: es datasets: - common_voice - ciempiess_test - hub4ne_es_LDC98S74 - callhome_es_LDC96S35 tags: - audio - automatic-speech-recognition - spanish - xlrs-53-spanish - ciempiess - cimpiess-unam license: cc-by-4.0 widget: model-index: - name: wav2vec2-large-xlsr-53-spanish-ep5-944h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 10.0 (Test) type: mozilla-foundation/common_voice_10_0 split: test args: language: es metrics: - name: WER type: wer value: 9.20 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 10.0 (Dev) type: mozilla-foundation/common_voice_10_0 split: validation args: language: es metrics: - name: WER type: wer value: 8.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CIEMPIESS-TEST type: ciempiess/ciempiess_test split: test args: language: es metrics: - name: WER type: wer value: 11.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 1997 Spanish Broadcast News Speech (HUB4-NE) type: HUB4NE_LDC98S74 split: test args: language: es metrics: - name: WER type: wer value: 7.48 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CALLHOME Spanish Speech (Test) type: callhome_LDC96S35 split: test args: language: es metrics: - name: WER type: wer value: 39.12 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CALLHOME Spanish Speech (Dev) type: callhome_LDC96S35 split: validation args: language: es metrics: - name: WER type: wer value: 40.39 --- # wav2vec2-large-xlsr-53-spanish-ep5-944h The "wav2vec2-large-xlsr-53-spanish-ep5-944h" is an acoustic model suitable for Automatic Speech Recognition in Spanish. It is the result of fine-tuning the model "facebook/wav2vec2-large-xlsr-53" for 5 epochs with around 944 hours of Spanish data gathered or developed by the [CIEMPIESS-UNAM Project](https://huggingface.co/ciempiess) since 2012. Most of the data is available at the the CIEMPIESS-UNAM Project homepage http://www.ciempiess.org/. The rest can be found in public repositories such as [LDC](https://www.ldc.upenn.edu/) or [OpenSLR](https://openslr.org/) The specific list of corpora used to fine-tune the model is: - [CIEMPIESS-LIGHT (18h25m)](https://catalog.ldc.upenn.edu/LDC2017S23) - [CIEMPIESS-BALANCE (18h20m)](https://catalog.ldc.upenn.edu/LDC2018S11) - [CIEMPIESS-FEM (13h54m)](https://catalog.ldc.upenn.edu/LDC2019S07) - [CHM150 (1h38m)](https://catalog.ldc.upenn.edu/LDC2016S04) - [TEDX_SPANISH (24h29m)](https://openslr.org/67/) - [LIBRIVOX_SPANISH (73h01m)](https://catalog.ldc.upenn.edu/LDC2020S01) - [WIKIPEDIA_SPANISH (25h37m)](https://catalog.ldc.upenn.edu/LDC2021S07) - [VOXFORGE_SPANISH (49h42m)](http://www.voxforge.org/es) - [MOZILLA COMMON VOICE 10.0 (320h22m)](https://commonvoice.mozilla.org/es) - [HEROICO (16h33m)](https://catalog.ldc.upenn.edu/LDC2006S37) - [LATINO-40 (6h48m)](https://catalog.ldc.upenn.edu/LDC95S28) - [CALLHOME_SPANISH (13h22m)](https://catalog.ldc.upenn.edu/LDC96S35) - [HUB4NE_SPANISH (31h41m)](https://catalog.ldc.upenn.edu/LDC98S74) - [FISHER_SPANISH (127h22m)](https://catalog.ldc.upenn.edu/LDC2010S01) - [Chilean Spanish speech data set (7h08m)](https://openslr.org/71/) - [Colombian Spanish speech data set (7h34m)](https://openslr.org/72/) - [Peruvian Spanish speech data set (9h13m)](https://openslr.org/73/) - [Argentinian Spanish speech data set (8h01m)](https://openslr.org/61/) - [Puerto Rico Spanish speech data set (1h00m)](https://openslr.org/74/) - [MediaSpeech Spanish (10h00m)](https://openslr.org/108/) - [DIMEX100-LIGHT (6h09m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html) - [DIMEX100-NIÑOS (08h09m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html) - [GOLEM-UNIVERSUM (00h10m)](https://turing.iimas.unam.mx/~luis/DIME/CORPUS-DIMEX.html) - [GLISSANDO (6h40m)](https://glissando.labfon.uned.es/es) - TELE_con_CIENCIA (28h16m) **Unplished Material** - UNSHAREABLE MATERIAL (118h22m) **Not available for sharing** The fine-tuning process was performed during November (2022) in the servers of the Language and Voice Lab (https://lvl.ru.is/) at Reykjavík University (Iceland) by Carlos Daniel Hernández Mena. # Evaluation ```python import torch from transformers import Wav2Vec2Processor from transformers import Wav2Vec2ForCTC #Load the processor and model. MODEL_NAME="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-spanish-ep5-944h" processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME) #Load the dataset from datasets import load_dataset, load_metric, Audio ds=load_dataset("ciempiess/ciempiess_test", split="test") #Downsample to 16kHz ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) #Process the dataset def prepare_dataset(batch): audio = batch["audio"] #Batched output is "un-batched" to ensure mapping is correct batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] with processor.as_target_processor(): batch["labels"] = processor(batch["normalized_text"]).input_ids return batch ds = ds.map(prepare_dataset, remove_columns=ds.column_names,num_proc=1) #Define the evaluation metric import numpy as np wer_metric = load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) #We do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} #Do the evaluation (with batch_size=1) model = model.to(torch.device("cuda")) def map_to_result(batch): with torch.no_grad(): input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0) logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] batch["sentence"] = processor.decode(batch["labels"], group_tokens=False) return batch results = ds.map(map_to_result,remove_columns=ds.column_names) #Compute the overall WER now. print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["sentence"]))) ``` **Test Result**: 0.112 # BibTeX entry and citation info *When publishing results based on these models please refer to:* ```bibtex @misc{mena2022xlrs53spanish, title={Acoustic Model in Spanish: wav2vec2-large-xlsr-53-spanish-ep5-944h.}, author={Hernandez Mena, Carlos Daniel}, year={2022}, url={https://huggingface.co/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-spanish-ep5-944h}, } ``` # Acknowledgements The author wants to thank to the social service program ["Desarrollo de Tecnologías del Habla"](http://profesores.fi-b.unam.mx/carlos_mena/servicio.html) at the [Facultad de Ingeniería (FI)](https://www.ingenieria.unam.mx/) of the [Universidad Nacional Autónoma de México (UNAM)](https://www.unam.mx/). He also thanks to the social service students for all the hard work. Special thanks to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. The author also thanks to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture.
Culmenus/XLMR-ENIS-finetuned-ner
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit tags: - generated_from_trainer model-index: - name: hygpt2-clm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hygpt2-clm This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 4000 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 1.18.4 - Tokenizers 0.11.6
Culmenus/opus-mt-de-is-finetuned-de-to-is
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-12-01T08:37:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9273693534100974 - name: Recall type: recall value: 0.9370175634858485 - name: F1 type: f1 value: 0.932168493684269 - name: Accuracy type: accuracy value: 0.9839070964462167 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9274 - Recall: 0.9370 - F1: 0.9322 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2431 | 1.0 | 878 | 0.0690 | 0.9174 | 0.9214 | 0.9194 | 0.9811 | | 0.0525 | 2.0 | 1756 | 0.0606 | 0.9251 | 0.9348 | 0.9299 | 0.9830 | | 0.0299 | 3.0 | 2634 | 0.0602 | 0.9274 | 0.9370 | 0.9322 | 0.9839 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4864864864864865 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3905 - Accuracy: 0.4865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6128 | 0.97 | 15 | 1.3905 | 0.4865 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model sd-dreambooth-library/ssssssslacis is restricted and you are not in the authorized list. Visit https://huggingface.co/sd-dreambooth-library/ssssssslacis to ask for access.
CyberMuffin/DialoGPT-small-ChandlerBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: cc-by-4.0 --- ## Aina Project's Catalan-Spanish machine translation model for the administrative domain. ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-use) - [How to Use](#how-to-use) - [Training](#training) - [Training data](#training-data) - [Training procedure](#training-procedure) - [Data Preparation](#data-preparation) - [Tokenization](#tokenization) - [Hyperparameters](#hyperparameters) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Additional Information](#additional-information) - [Author](#author) - [Contact Information](#contact-information) - [Copyright](#copyright) - [Licensing Information](#licensing-information) - [Funding](#funding) - [Disclaimer](#disclaimer) ## Model description This model is a finetuned version of [projecte-aina/mt-aina-ca-es](https://huggingface.co/projecte-aina/mt-aina-ca-es) for the administrative domain. Additionally, the model is evaluated on several public datasecomprising 5 different domains (general, adminstrative, technology, biomedical, and news). ## Intended uses and limitations You can use this model for machine translation of administrative texts from Catalan to Spanish. ## How to use ### Usage Required libraries: ```bash pip install ctranslate2 pyonmttok ``` Translate a sentence using python ```python import ctranslate2 import pyonmttok from huggingface_hub import snapshot_download model_dir = snapshot_download(repo_id="projecte-aina/mt-aina-ca-es-adm", revision="main") tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model") tokenized=tokenizer.tokenize("Benvingut al projecte Aina!") translator = ctranslate2.Translator(model_dir) translated = translator.translate_batch([tokenized[0]]) print(tokenizer.detokenize(translated[0][0]['tokens'])) ``` ## Training ### Training data The original model was trained on a combination of the following datasets: | Dataset | Sentences | |-------------------|----------------| | DOCG v2 | 8.472.786 | | El Periodico | 6.483.106 | | EuroParl | 1.876.669 | | WikiMatrix | 1.421.077 | | Wikimedia | 335.955 | | QED | 71.867 | | TED2020 v1 | 52.177 | | CCMatrix v1 | 56.103.820 | | MultiCCAligned v1 | 2.433.418 | | ParaCrawl | 15.327.808 | | **Total** | **92.578.683** | This finetuned model is further trained using: | Dataset | Sentences | |-------------------|----------------| | AINA AAPP | 62.773 | ### Training procedure ### Data preparation All datasets are concatenated and filtered using the [mBERT Gencata parallel filter](https://huggingface.co/projecte-aina/mbert-base-gencata) and cleaned using the clean-corpus-n.pl script from [moses](https://github.com/moses-smt/mosesdecoder), allowing sentences between 5 and 150 words. Before training, the punctuation is normalized using a modified version of the join-single-file.py script from [SoftCatalà](https://github.com/Softcatala/nmt-models/blob/master/data-processing-tools/join-single-file.py) #### Tokenization All data is tokenized using sentencepiece, with 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included. #### Hyperparameters The model is based on the Transformer-XLarge proposed by [Subramanian et al.](https://aclanthology.org/2021.wmt-1.18.pdf) The following hyperparamenters were set on the Fairseq toolkit: | Hyperparameter | Value | |------------------------------------|----------------------------------| | Architecture | transformer_vaswani_wmt_en_de_big| | Embedding size | 1024 | | Feedforward size | 4096 | | Number of heads | 16 | | Encoder layers | 24 | | Decoder layers | 6 | | Normalize before attention | True | | --share-decoder-input-output-embed | True | | --share-all-embeddings | True | | Effective batch size | 96.000 | | Optimizer | adam | | Adam betas | (0.9, 0.980) | | Clip norm | 0.0 | | Learning rate | 1e-3 | | Lr. schedurer | inverse sqrt | | Warmup updates | 4000 | | Dropout | 0.1 | | Label smoothing | 0.1 | The original model was trained using shards of 10 million sentences, for a total of 13.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 6 checkpoints. For the finetuning, the model continues training for 9000 updates with reduced maximum learning rate of 5e-5. ## Evaluation ### Variable and metrics We use the BLEU score for evaluation on test sets: [Flores-101](https://github.com/facebookresearch/flores), [TaCon](https://elrc-share.eu/repository/browse/tacon-spanish-constitution-mt-test-set/84a96138b98611ec9c1a00155d02670628f3e6857b0f422abd82abc3795ec8c2/), [United Nations](https://zenodo.org/record/3888414#.Y33-_tLMIW0), [Cybersecurity](https://elrc-share.eu/repository/browse/cyber-mt-test-set/2bd93faab98c11ec9c1a00155d026706b96a490ed3e140f0a29a80a08c46e91e/), [wmt19 biomedical test set](), [wmt13 news test set](https://elrc-share.eu/repository/browse/catalan-wmt2013-machine-translation-shared-task-test-set/84a96139b98611ec9c1a00155d0267061a0aa1b62e2248e89aab4952f3c230fc/), [aina aapp]() ### Evaluation results Below are the evaluation results on the machine translation from Catalan to Spanish compared to [Softcatalà](https://www.softcatala.org/) and [Google Translate](https://translate.google.es/?hl=es): | Test set | SoftCatalà | Google Translate | mt-aina-ca-es | mt-aina-ca-es-adm | |----------------------|------------|------------------|---------------|-------------------| | Spanish Constitution | 70,7 | **77,1** | 75,5 | 67,2 | | United Nations | 78,1 | 84,3 | **86,3** | 78,0 | | Flores 101 dev | 23,5 | 24 | **24,1** | 22,4 | | Flores 101 devtest | 24,1 | 24,2 | **24,4** | 22,9 | | Cybersecurity | 67,3 | **76,9** | 75,1 | 65,7 | | wmt 19 biomedical | 60,4 | 62,7 | **63,0** | 59,2 | | wmt 13 news | 22,5 | 23,1 | **23,4** | 20,4 | | aina_aapp | 80,9 | 81,4 | 82,8 | **85,5** | | Average | 53,4 | 56,7 | **56,7** | 52,6 | ## Additional information ### Author Text Mining Unit (TeMU) at the Barcelona Supercomputing Center ([email protected]) ### Contact information For further information, send an email to [email protected] ### Copyright Copyright (c) 2022 Text Mining Unit at Barcelona Supercomputing Center ### Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.
DHBaek/gpt2-stackoverflow-question-contents-generator
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- datasets: - tweet_eval metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-emotion results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: emotion split: test metrics: - name: Micro F1 (tweet_eval/emotion) type: micro_f1_tweet_eval/emotion value: 0.8451794510907812 - name: Macro F1 (tweet_eval/emotion) type: micro_f1_tweet_eval/emotion value: 0.8173778863357652 - name: Accuracy (tweet_eval/emotion) type: accuracy_tweet_eval/emotion value: 0.8451794510907812 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-dec2021-emotion This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [`tweet_eval (emotion)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-emotion/raw/main/metric.json)). - F1 (micro): 0.8451794510907812 - F1 (macro): 0.8173778863357652 - Accuracy: 0.8451794510907812 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-dec2021-emotion", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
DSI/ar_emotion_6
[ "pytorch", "bert", "transformers" ]
null
{ "architectures": [ "BertForMultiLabelSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-cola-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-v5 This model is a fine-tuned version of [MGanesh29/distilbert-base-uncased-finetuned-cola-v5](https://huggingface.co/MGanesh29/distilbert-base-uncased-finetuned-cola-v5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2563 - Accuracy: 0.9310 - Precision: 0.9310 - Recall: 0.9310 - F1: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 6.25 | 50 | 0.2638 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 12.5 | 100 | 0.2607 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 18.75 | 150 | 0.2643 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | | No log | 25.0 | 200 | 0.2563 | 0.9310 | 0.9310 | 0.9310 | 0.9310 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
DSI/personal_sentiment
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 970 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 970, "warmup_steps": 97, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Tweets", "Sentiment analysis" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - generated_from_trainer datasets: - conll2003 model-index: - name: enlm-roberta-conll2003-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlm-roberta-conll2003-final This model is a fine-tuned version of [manirai91/enlm-roberta-final](https://huggingface.co/manirai91/enlm-roberta-final) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
DTAI-KULeuven/robbertje-1-gb-merged
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-news-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-news-classifier This model is a fine-tuned version of [russellc/roberta-news-classifier](https://huggingface.co/russellc/roberta-news-classifier) on the custom(Kaggle) dataset. It achieves the following results on the evaluation set: - Loss: 0.1043 - Accuracy: 0.9786 - F1: 0.9786 - Precision: 0.9786 - Recall: 0.9786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1327 | 1.0 | 123 | 0.1043 | 0.9786 | 0.9786 | 0.9786 | 0.9786 | | 0.1103 | 2.0 | 246 | 0.1157 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | | 0.102 | 3.0 | 369 | 0.1104 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | | 0.0825 | 4.0 | 492 | 0.1271 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | | 0.055 | 5.0 | 615 | 0.1296 | 0.9724 | 0.9724 | 0.9724 | 0.9724 | ### Evaluation results ***** Running Prediction ***** Num examples = 980 Batch size = 64 precision recall f1-score support dunya 0.99 0.96 0.97 147 ekonomi 0.96 0.96 0.96 141 kultur 0.97 0.99 0.98 142 saglik 0.99 0.98 0.98 148 siyaset 0.98 0.98 0.98 134 spor 1.00 1.00 1.00 139 teknoloji 0.96 0.98 0.97 129 accuracy -- -- 0.98 980 macro avg 0.98 0.98 0.98 980 weighted avg 0.98 0.98 0.98 980 ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
alexandrainst/da-hatespeech-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
866
null
--- datasets: - tweet_eval metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-sentiment results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: sentiment split: test metrics: - name: Micro F1 (tweet_eval/sentiment) type: micro_f1_tweet_eval/sentiment value: 0.7128785411917942 - name: Macro F1 (tweet_eval/sentiment) type: micro_f1_tweet_eval/sentiment value: 0.7149679965048391 - name: Accuracy (tweet_eval/sentiment) type: accuracy_tweet_eval/sentiment value: 0.7128785411917942 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-dec2021-sentiment This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [`tweet_eval (sentiment)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-sentiment/raw/main/metric.json)). - F1 (micro): 0.7128785411917942 - F1 (macro): 0.7149679965048391 - Accuracy: 0.7128785411917942 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-dec2021-sentiment", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
alexandrainst/da-hatespeech-detection-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,719
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_MGH_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_MGH_Lifecycle_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0716 | 1.0 | 1625 | 0.0843 | | 0.0695 | 2.0 | 3250 | 0.0701 | | 0.0603 | 3.0 | 4875 | 0.0728 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
alexandrainst/da-sentiment-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "arxiv:1910.09700", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,432
2022-12-01T11:44:39Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: SimQA-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # SimQA-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1454 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 597, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.7101 | 0 | | 0.1836 | 1 | | 0.1454 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
alexandrainst/da-subjectivivity-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "dataset:DDSC/twitter-sent", "dataset:DDSC/europarl", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
846
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - zeroth_korean_asr model-index: - name: wav2vec2-large-xls-r-300m-zeroth results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-zeroth This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the zeroth_korean_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.7052 - Wer: 0.4621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 15.1763 | 1.61 | 400 | 4.6768 | 1.0 | | 3.1779 | 3.21 | 800 | 1.6680 | 0.8752 | | 1.052 | 4.82 | 1200 | 0.9580 | 0.7332 | | 0.5412 | 6.42 | 1600 | 0.7752 | 0.5993 | | 0.3281 | 8.03 | 2000 | 0.7158 | 0.5615 | | 0.2312 | 9.64 | 2400 | 0.6975 | 0.5532 | | 0.2001 | 11.24 | 2800 | 0.7489 | 0.5677 | | 0.1587 | 12.85 | 3200 | 0.6954 | 0.5267 | | 0.1321 | 14.46 | 3600 | 0.7329 | 0.5371 | | 0.1178 | 16.06 | 4000 | 0.7534 | 0.5341 | | 0.103 | 17.67 | 4400 | 0.7046 | 0.5066 | | 0.0843 | 19.28 | 4800 | 0.7507 | 0.5028 | | 0.079 | 20.88 | 5200 | 0.7137 | 0.4886 | | 0.0647 | 22.49 | 5600 | 0.7170 | 0.4855 | | 0.0565 | 24.1 | 6000 | 0.7124 | 0.4781 | | 0.0487 | 25.7 | 6400 | 0.7043 | 0.4721 | | 0.0433 | 27.31 | 6800 | 0.7128 | 0.4557 | | 0.0379 | 28.91 | 7200 | 0.7052 | 0.4621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
DanL/scientific-challenges-and-directions
[ "pytorch", "bert", "text-classification", "en", "dataset:DanL/scientific-challenges-and-directions-dataset", "arxiv:2108.13751", "transformers", "generated_from_trainer" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
134
null
--- language: - it tags: - Biomedical Language Modeling widget: - text: "L'asma allergica è una patologia dell'[MASK] respiratorio causata dalla presenza di allergeni responsabili dell'infiammazione dell'albero bronchiale." example_title: "Example 1" - text: "Il pancreas produce diversi [MASK] molto importanti tra i quali l'insulina e il glucagone." example_title: "Example 2" - text: "Il GABA è un amminoacido ed è il principale neurotrasmettitore inibitorio del [MASK]." example_title: "Example 3" ---
Danih1502/t5-small-finetuned-en-to-de
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - tweet_eval metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-hate results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: hate split: test metrics: - name: Micro F1 (tweet_eval/hate) type: micro_f1_tweet_eval/hate value: 0.5666666666666667 - name: Macro F1 (tweet_eval/hate) type: micro_f1_tweet_eval/hate value: 0.5411020518761093 - name: Accuracy (tweet_eval/hate) type: accuracy_tweet_eval/hate value: 0.5666666666666667 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-dec2021-hate This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [`tweet_eval (hate)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-hate/raw/main/metric.json)). - F1 (micro): 0.5666666666666667 - F1 (macro): 0.5411020518761093 - Accuracy: 0.5666666666666667 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-dec2021-hate", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
DannyMichael/ECU911
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: it license: afl-3.0 widget: - text: Il <mask> ha chiesto revocarsi l'obbligo di pagamento --- <img src="https://huggingface.co/dlicari/Italian-Legal-BERT-SC/resolve/main/ITALIAN_LEGAL_BERT-SC.jpg" width="600"/> # ITALIAN-LEGAL-BERT-SC It is the [ITALIAN-LEGAL-BERT](https://huggingface.co/dlicari/Italian-Legal-BERT) variant pre-trained from scratch on Italian legal documents (ITA-LEGAL-BERT-SC) based on the CamemBERT architecture ## Training procedure It was trained from scratch using a larger training dataset, 6.6GB of civil and criminal cases. We used [CamemBERT](https://huggingface.co/docs/transformers/main/en/model_doc/camembert) architecture with a language modeling head on top, AdamW Optimizer, initial learning rate 2e-5 (with linear learning rate decay), sequence length 512, batch size 18, 1 million training steps, device 8*NVIDIA A100 40GB using distributed data parallel (each step performs 8 batches). It uses SentencePiece tokenization trained from scratch on a subset of training set (5 milions sentences) and vocabulary size of 32000 <h2> Usage </h2> ITALIAN-LEGAL-BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dlicari/Italian-Legal-BERT-SC" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. ```python # %pip install sentencepiece # %pip install transformers from transformers import pipeline model_name = "dlicari/Italian-Legal-BERT-SC" fill_mask = pipeline("fill-mask", model_name) fill_mask("Il <mask> ha chiesto revocarsi l'obbligo di pagamento") # [{'score': 0.6529251933097839,'token_str': 'ricorrente', # {'score': 0.0380014143884182, 'token_str': 'convenuto', # {'score': 0.0360226035118103, 'token_str': 'richiedente', # {'score': 0.023908283561468124,'token_str': 'Condominio', # {'score': 0.020863816142082214, 'token_str': 'lavoratore'}] ```
DavidSpaceG/MSGIFSR
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - big_patent metrics: - rouge model-index: - name: mt5-small-finetuned-Big-Patent-h results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: big_patent type: big_patent config: h split: train args: h metrics: - name: Rouge1 type: rouge value: 33.9091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-Big-Patent-h This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 2.2622 - Rouge1: 33.9091 - Rouge2: 14.1731 - Rougel: 30.105 - Rougelsum: 30.3666 ## Model description In this project, we fine-tuned mT5small, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. The model was fine-tuned on the electric patent corpus using a variety of techniques, including transfer learning, data augmentation, and hyperparameter tuning. ## Intended uses & limitations The fine-tuned model showed significant improvements in performance on the electric patent-specific tasks compared to the original pre-trained model. Note: This project is suitable for researchers who are working on electric patent, as it's fine-tuned on electric patents and it can be used for related NLP problems for electric patent and electric patent research. ## Training and evaluation data A subset of electric patents were used to fine-tune the model. The fine-tuned model was evaluated using the ROUGE metric on a variety of natural language processing tasks specific to the patent domain, including, named entity recognition, and summarization. ## Training procedure The model was fine-tuned on the electric patent corpus using a variety of techniques, including transfer learning, data augmentation, and hyperparameter tuning. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.5817 | 1.0 | 1071 | 2.3830 | 32.8521 | 13.2087 | 29.5594 | 29.7744 | | 2.5657 | 2.0 | 2142 | 2.3345 | 33.9434 | 14.0573 | 30.0135 | 30.2533 | | 2.4915 | 3.0 | 3213 | 2.2761 | 33.2033 | 13.2053 | 29.5126 | 29.8023 | | 2.4365 | 4.0 | 4284 | 2.3041 | 33.8649 | 13.6629 | 30.0377 | 30.257 | | 2.3952 | 5.0 | 5355 | 2.2722 | 33.9208 | 13.8018 | 30.1035 | 30.3432 | | 2.3628 | 6.0 | 6426 | 2.2850 | 33.883 | 13.9537 | 30.0579 | 30.2417 | | 2.3474 | 7.0 | 7497 | 2.2858 | 33.7201 | 14.0808 | 30.0762 | 30.255 | | 2.331 | 8.0 | 8568 | 2.2622 | 33.9091 | 14.1731 | 30.105 | 30.3666 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-swahili
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
67
null
--- datasets: - tweet_eval metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-2021-124m-sentiment results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: sentiment split: test metrics: - name: Micro F1 (tweet_eval/sentiment) type: micro_f1_tweet_eval/sentiment value: 0.7133669814392706 - name: Macro F1 (tweet_eval/sentiment) type: micro_f1_tweet_eval/sentiment value: 0.7158353597305398 - name: Accuracy (tweet_eval/sentiment) type: accuracy_tweet_eval/sentiment value: 0.7133669814392706 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-2021-124m-sentiment This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) on the [`tweet_eval (sentiment)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m-sentiment/raw/main/metric.json)). - F1 (micro): 0.7133669814392706 - F1 (macro): 0.7158353597305398 - Accuracy: 0.7133669814392706 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-2021-124m-sentiment", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Davlan/bert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
269,898
null
--- language: - en tags: - stable-diffusion - text-to-image inference: true license: creativeml-openrail-m datasets: - Guizmus/AnimeChanStyle - skytnt/fbanimehq - skytnt/anime-segmentation - Nerfgun3/bad_prompt - Nerfgun3/shatter_style - Nerfgun3/ouroboros_embeddings - cattoroboto/waifudiffusion-marine-textual-inversion - waifu-research-department/regularization - waifu-research-department/embeddings library_name: diffusers pipeline_tag: text-to-image ---
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: bigscience-bloom-rail-1.0 tags: - stable-diffusion - diffusion model-index: - name: bloom-560m-RLHF-SD2-prompter results: [] datasets: - Gustavosta/Stable-Diffusion-Prompts widget: - text: "<s>Prompt: " inference: parameters: eos_token_id: 2 max_length: 128 do_sample: true --- # The RAT (RLHF-Aesthetic Tuned model for prompt synthesis) **COLAB DEMO INCLUDING STABLE DIFFUSION: https://colab.research.google.com/github/aicrumb/doohickey/blob/main/rlhf_prompt_tuner.ipynb** This is a further finetuned version of [crumb/bloom-560m-RLHF-SD2-prompter](https://hf.co/crumb/bloom-560m-RLHF-SD2-prompter) to optimize for aesthetic score with models from https://github.com/crowsonkb/simulacra-aesthetic-models instead of me hand scoring each image donate so i can do this on real hardware : https://github.com/aicrumb/aicrumb/blob/main/README.md trained at bs=32, lr=0.0001, only tuning biases and layernorm weights ## Example usage ```python # Install libraries needed to run the models !pip install transformers diffusers accelerate -qq # Import the libraries from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler from transformers import pipeline import torch # This is the model that the transformer was finetuned to generate prompts for model_id = "stabilityai/stable-diffusion-2-base" # Use the Euler scheduler here scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16) pipe = pipe.to("cuda") # Load the transformer model prompt_pipe = pipeline("text-generation", model="crumb/bloom-560m-RLHF-SD2-prompter-aesthetic") prompt = "cool landscape" # Auto-complete prompt prompt = "<s>Prompt: " + prompt + "," extended_prompt = prompt_pipe(prompt, do_sample=True, max_length=42)[0]['generated_text'] extended_prompt = extended_prompt[10:] print("Prompt is now: ", extended_prompt) # Generate image image = pipe(extended_prompt).images[0] image.save("output.png") image ``` ## Limitations Aesthetic scoring models have been shown to have very large biases, and one I noticed is it really likes images of women no matter the actual quality, so those were optimized for more than other things. Also it fell into the trap of rlhf models, it gets kinda same-ey, so if you don't like the general "stable diffusion, trending on artstation" look this might not be for you.
Davlan/m2m100_418M-yor-eng-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
Access to model Anko2/IA_Trend is restricted and you are not in the authorized list. Visit https://huggingface.co/Anko2/IA_Trend to ask for access.
Davlan/mT5_base_yoruba_adr
[ "pytorch", "mt5", "text2text-generation", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: other tags: - stable-diffusion - text-to-image - core-ml --- # Stable Diffusion v2 Model Card This model was generated by Hugging Face using [Apple’s repository](https://github.com/apple/ml-stable-diffusion) which has [ASCL](https://github.com/apple/ml-stable-diffusion/blob/main/LICENSE.md). This model card focuses on the model associated with the Stable Diffusion v2 model, available [here](https://github.com/Stability-AI/stablediffusion). The model is trained from scratch 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. Then it is further trained for 850k steps at resolution `512x512` on the same dataset on images with resolution `>= 512x512`. ![image](https://github.com/Stability-AI/stablediffusion/blob/main/assets/stable-samples/txt2img/merged-0003.png?raw=true) These weights here have been converted to Core ML for use on Apple Silicon hardware. There are 4 variants of the Core ML weights: ``` coreml-stable-diffusion-2-base ├── original │ ├── compiled # Swift inference, "original" attention │ └── packages # Python inference, "original" attention └── split_einsum ├── compiled # Swift inference, "split_einsum" attention └── packages # Python inference, "split_einsum" attention ``` Please, refer to https://huggingface.co/blog/diffusers-coreml for details. - Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-base#examples) - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-base-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt). ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
Davlan/mbart50-large-eng-yor-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- datasets: - tweet_eval metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-2021-124m-hate results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: hate split: test metrics: - name: Micro F1 (tweet_eval/hate) type: micro_f1_tweet_eval/hate value: 0.5606060606060606 - name: Macro F1 (tweet_eval/hate) type: micro_f1_tweet_eval/hate value: 0.5319403309512811 - name: Accuracy (tweet_eval/hate) type: accuracy_tweet_eval/hate value: 0.5606060606060606 pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: "topic_classification 1" - text: Yes, including Medicare and social security saving👍 example_title: "sentiment 1" - text: All two of them taste like ass. example_title: "offensive 1" - text: If you wanna look like a badass, have drama on social media example_title: "irony 1" - text: Whoever just unfollowed me you a bitch example_title: "hate 1" - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: "emotion 1" - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: "emoji 1" --- # cardiffnlp/twitter-roberta-base-2021-124m-hate This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2021-124m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) on the [`tweet_eval (hate)`](https://huggingface.co/datasets/tweet_eval) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m-hate/raw/main/metric.json)). - F1 (micro): 0.5606060606060606 - F1 (macro): 0.5319403309512811 - Accuracy: 0.5606060606060606 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/twitter-roberta-base-2021-124m-hate", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{'\i}nez-C{'a}mara, Eugenio and others}, author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```