modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
BME-TMIT/foszt2oszt
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2023-01-23T22:28:08Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1744.17 +/- 508.86 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BSC-LT/RoBERTalex
[ "pytorch", "roberta", "fill-mask", "es", "dataset:legal_ES", "dataset:temu_legal", "arxiv:2110.12201", "transformers", "legal", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
2023-01-23T23:15:32Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # lewispons/Email-classifier-v2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("lewispons/Email-classifier-v2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
BSC-LT/roberta-base-biomedical-clinical-es
[ "pytorch", "roberta", "fill-mask", "es", "arxiv:2109.03570", "arxiv:2109.07765", "transformers", "biomedical", "clinical", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
BSC-LT/roberta-base-bne-capitel-ner-plus
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### eduardosflopes2 Dreambooth model trained by eduardosflopes with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BSC-LT/roberta-base-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
594
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.85 +/- 21.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BSC-LT/roberta-large-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
Scylla model mixed using AnythingV3 and scylla only tagged images from danbooru Dataset of 233 images with complete tag lists This model is amazing with highres fix you can get some amazing results way better than I had hoped for extremely happy with the results More monster girl models on the way feel free to request your favs :) Scylla: 1girl, scylla, tentacles, full body, masterpiece, best quality, ![Scylla](https://huggingface.co/scriche/Scylla/resolve/main/00367.png)
BSen/wav2vec2-large-xls-r-300m-turkish-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 model-index: - name: Arabic-English-opus100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic-English-opus100 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus100 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
BW/TEST
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_Human_Activity_Recognition results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8380952380952381 language: - en --- # vit-base-patch16-224-in21k_Human_Activity_Recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). It achieves the following results on the evaluation set: - Loss: 0.7403 - Accuracy: 0.8381 - Weighted f1: 0.8388 - Micro f1: 0.8381 - Macro f1: 0.8394 - Weighted recall: 0.8381 - Micro recall: 0.8381 - Macro recall: 0.8390 - Weighted precision: 0.8421 - Micro precision: 0.8381 - Macro precision: 0.8424 ## Model description This is a multiclass image classification model of humans doing different activities. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Human%20Activity%20Recognition/ViT-Human%20Action_Recogniton.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/meetnagadia/human-action-recognition-har-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.0814 | 1.0 | 630 | 0.7368 | 0.7794 | 0.7795 | 0.7794 | 0.7798 | 0.7794 | 0.7794 | 0.7797 | 0.7896 | 0.7794 | 0.7896 | | 0.5149 | 2.0 | 1260 | 0.6439 | 0.8060 | 0.8049 | 0.8060 | 0.8036 | 0.8060 | 0.8060 | 0.8051 | 0.8136 | 0.8060 | 0.8130 | | 0.3023 | 3.0 | 1890 | 0.7026 | 0.8254 | 0.8272 | 0.8254 | 0.8278 | 0.8254 | 0.8254 | 0.8256 | 0.8335 | 0.8254 | 0.8345 | | 0.0507 | 4.0 | 2520 | 0.7414 | 0.8317 | 0.8342 | 0.8317 | 0.8348 | 0.8317 | 0.8317 | 0.8321 | 0.8427 | 0.8317 | 0.8438 | | 0.0128 | 5.0 | 3150 | 0.7403 | 0.8381 | 0.8388 | 0.8381 | 0.8394 | 0.8381 | 0.8381 | 0.8390 | 0.8421 | 0.8381 | 0.8424 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1
BigSalmon/GPTNeo350MInformalToFormalLincoln2
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-15T18:17:04Z
--- thumbnail: https://s3.amazonaws.com/moonup/production/uploads/1676494961340-6305db1fcfbde33ef7d480ff.jpeg license: creativeml-openrail-m tags: - stable-diffusion - text-to-image - safetensors --- # Alloy Models ## Brass Mix ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1676493448438-6305db1fcfbde33ef7d480ff.png) ``` masterpiece, high quality, 1girl, green hair, pirate, parrot, looking at viewer, ultra detailed, Negative prompt: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, nostrils, censored, realistic, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3837415330, Size: 512x768, Model hash: 118c467c0b, Model: alloymix-brass-a-fp16, Denoising strength: 0.7, Clip skip: 2, Hires upscale: 1.5, Hires upscaler: Latent ``` - Brass c sample ![brass c sample](https://s3.amazonaws.com/moonup/production/uploads/1676494961340-6305db1fcfbde33ef7d480ff.jpeg) ``` 1girl, solo, white hair, dress, light smile, looking at viewer, room, wall, plant, flowers, Negative prompt: worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, nostrils Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 5, Seed: 2737241409, Size: 896x640, Model hash: 58b6c0666f, Model: alloymix-brass-c-fp16, Denoising strength: 0.7, Clip skip: 2, Hires upscale: 1.5, Hires upscaler: Latent ```
BigSalmon/MrLincoln11
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 502.00 +/- 209.66 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alyssamarieloo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alyssamarieloo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alyssamarieloo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BigSalmon/MrLincoln2
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-01-24T03:52:31Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308443889695690752/P-Cyxhov_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">penelope scott lyrics</div> <div style="text-align: center; font-size: 14px;">@pscottbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from penelope scott lyrics. | Data | penelope scott lyrics | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 114 | | Tweets kept | 3136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yr07xib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pscottbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/j8qcpkm8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/j8qcpkm8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pscottbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/MrLincoln5
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: diffusers pipeline_tag: text-to-image ---
BigSalmon/MrLincoln6
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6874 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 6874, "warmup_steps": 688, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BigSalmon/MrLincolnBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer metrics: - wer model-index: - name: Vin14-P3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Vin14-P3 This model is a fine-tuned version of [HuyenNguyen/Vin12-P3](https://huggingface.co/HuyenNguyen/Vin12-P3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3766 - Wer: 24.0523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1675 | 0.57 | 100 | 0.3491 | 23.3601 | | 0.0998 | 1.15 | 200 | 0.3407 | 22.3272 | | 0.0872 | 1.72 | 300 | 0.3603 | 23.7776 | | 0.0323 | 2.3 | 400 | 0.3766 | 24.0523 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
BigSalmon/PhraseBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-tr-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: sw split: test[:400] args: sw metrics: - name: Wer type: wer value: 0.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4900 - Wer: 0.97 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5497 | 0.4 | 50 | 2.9819 | 1.0 | | 2.8809 | 0.8 | 100 | 2.8873 | 1.0 | | 2.8416 | 1.2 | 150 | 2.8427 | 1.0 | | 2.8145 | 1.6 | 200 | 2.8067 | 1.0 | | 2.747 | 2.0 | 250 | 2.7092 | 1.0 | | 2.1095 | 2.4 | 300 | 1.3472 | 1.0 | | 0.9546 | 2.8 | 350 | 0.7708 | 0.9975 | | 0.6104 | 3.2 | 400 | 0.6317 | 0.9825 | | 0.4941 | 3.6 | 450 | 0.5427 | 0.97 | | 0.4345 | 4.0 | 500 | 0.5314 | 0.975 | | 0.3327 | 4.4 | 550 | 0.4927 | 0.9625 | | 0.3099 | 4.8 | 600 | 0.4900 | 0.97 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
BigSalmon/SimplifyText
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> - `original` version is only compatible with CPU & GPU option.<br> # Note: Some models do not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Shady Art OFFICIAL: Source(s): [Hugging Face](https://huggingface.co/ShadyART/Shady_Art_Official) - [CivitAI](https://civitai.com/models/4515/shady-art-official) This is my personal model based on SD 1.5. I have personally tested it creating more than 10000 unique images and it has always met my expectations. Positive and negative prompts affect the image in exactly the same way, so you'll have to play around with it! Info: -Close-up portraits, half-length photos and full-body photos give the best results but you can generate everything. -The faces and in particular the eyes, if described properly, are surreal in how beautiful they are as this model generates beautiful faces by default, therefore positive prompts like "symmetrical face, perfect face, symmetrical eyes etc..." are useless and sometimes compromise the result, if necessary use negative prompts like "deformed, disfigured etc..." and the face will come out perfect. -This model has the ability to also create landscape images (fantasy or not) but you will have to waste more time on it, as it is focused on"subjects". -Be creative, describe the image in great detail, this guarantees a better overall result. -NSFW have wonderful results both in txt2image and in img2img, if you want to transform a non-NSFW image into NSFW and img2img does not give good results, use Inpaint and you will succeed 100%. -Euler a, DPM++ 2M a Karras and DDIM seem to give the best results Special thanks to sovereignrk and logoth for helping me with some new prompts!
BigSalmon/T52
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Testing_rolls_royce Dreambooth model trained by JacobPerera with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BigSalmon/T5Salmon2
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
13
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-tm4_2_big co2_eq_emissions: emissions: 14.618973710629989 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 3033986980 - CO2 Emissions (in grams): 14.6190 ## Validation Metrics - Loss: 0.000 - Rouge1: 100.000 - Rouge2: 100.000 - RougeL: 100.000 - RougeLsum: 100.000 - Gen Len: 110.456 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-tm4_2_big-3033986980 ```
Blabla/Pipipopo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T07:37:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pbm-cartpole-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Blackmist786/DialoGPt-small-transformers4
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Testing_rolls_royce_100_steps Dreambooth model trained by JacobPerera with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
BonjinKim/dst_kor_bert
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
{ "architectures": [ "BertForPreTraining" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 449.00 +/- 125.50 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jwright94 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jwright94 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jwright94 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 75000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Boondong/Wandee
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1115.88 +/- 91.49 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Botslity/Bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- title: Protengen Web UI emoji: 🪄🖼️ colorFrom: red colorTo: pink sdk: gradio sdk_version: 3.15.0 app_file: app.py pinned: true license: mit --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
BrianTin/MTBERT
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.224 | 1.0 | 5533 | 1.1606 | | 0.9626 | 2.0 | 11066 | 1.1240 | | 0.7619 | 3.0 | 16599 | 1.1596 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Broadus20/DialoGPT-small-joshua
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tw-sentiment-finetuned results: [] metrics: - accuracy --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tw-sentiment-finetuned This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2039 - Train Accuracy: 0.9171 - Validation Loss: 0.4805 - Validation Accuracy: 0.8237 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4620 | 0.7977 | 0.3893 | 0.8332 | 0 | | 0.3238 | 0.8596 | 0.4674 | 0.8362 | 1 | | 0.2039 | 0.9171 | 0.4805 | 0.8237 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Tokenizers 0.13.2
CALM/backup
[ "lean_albert", "transformers" ]
null
{ "architectures": [ "LeanAlbertForPretraining", "LeanAlbertForTokenClassification", "LeanAlbertForSequenceClassification" ], "model_type": "lean_albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: kostasang/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: kostasang/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
54
2023-01-24T10:31:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ludsil/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "has_space" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19,850
2023-01-24T10:38:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.62 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ludsil/taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus26
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
45
null
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="lewtun/dummy-trl-model") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("lewtun/dummy-trl-model") model = AutoModelForCausalLMWithValueHead.from_pretrained("lewtun/dummy-trl-model") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus6
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
2023-01-24T10:43:36Z
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
63
null
--- language: - en tags: - anime --- # Trained LoRAs - [Overview](#overview) - [Previews](#previews) # Overview I will upload all of LoRAs that I trained here on my free time. The model I mostly used with these previews will be [AnyV4.5](https://huggingface.co/andite/anything-v4.0) or [AOM2](https://huggingface.co/WarriorMama777/OrangeMixs). I haven't tested it on other models but it may or may not work :/ I also just started learning on doing training so the quality may not be good as I'm still a noob with this stuff 😅 (For example, you may still need to specify some character traits on the prompt to be more accurate.) Some negative embeddings I may use on sample images will be bad-prompt, bad-artist, or bad-image. # Previews - [Uma Musume: Pretty Derby](#uma-musume-pretty-derby) 1. [Satono Diamond](#satono-diamond) 2. [Mihono Bourbon](#mihono-bourbon) - [Style LoRAs](#art-styles) ## Uma Musume: Pretty Derby - ### Satono Diamond <img src="https://huggingface.co/OrangeCatapult20/trained-loras/resolve/main/previews/1.png" width="512" height="768"> <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, 1girl, solo, satono diamond, horse ears <b>Negative prompt:</b> lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3393568171, Size: 512x768, Model hash: 0fc198c490, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: satono_diamond(aff3460f), AddNet Weight 1: 0.54 </pre> </details> - ### Mihono Bourbon <img src="https://huggingface.co/OrangeCatapult20/trained-loras/resolve/main/previews/2.png" width="512" height="768"> <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, ray tracing, bloom, 1girl, solo, mihono bourbon, horse ears, blue eyes, umamusume, bare shoulders, closed mouth, ahoge, pleated skirt, detached sleeves, necktie, miniskirt, thighhighs, leotard, covered navel, highleg leotard, lowleg skirt <b>Negative prompt:</b> (bad-image-v2:0.8), lowres, mutated hands and fingers, extra legs, extra limbs, fused fingers, simple background, white background, letterboxed, out of frame, border, monster, mutated, bad anatomy, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, (worst quality, low quality:1.3), normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, copyright name, watermark Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 8, Seed: 3193256216, Size: 512x768, Model hash: 0fc198c490, Clip skip: 2, ENSD: 31337, AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: mihono_bourbon(e038379e), AddNet Weight 1: 1 </pre> </details> # Art Styles Style LoRAs strength may vary between models used and other LoRAs being used alongside with it, but 0.65 usually works. - ### Lillly [Artist Twitter](https://twitter.com/lillly____?s=20) <img src="https://huggingface.co/OrangeCatapult20/trained-loras/resolve/main/previews/3.png" width="512" height="768"> <details> <summary>Sample Prompt</summary> <pre> masterpiece, best quality, ultra-detailed, bloom, delicate and beautiful, (from above:1.2), 1girl, solo, beautiful eyes, fox ears, fox tail, fox girl, large breasts, red hair, white dress, see-through, breasts out, open clothes, bottomless, water on breasts, forest background &lt;lora:lillly-style:0.65&gt; <b>Negative prompt:</b> (painting by bad-artist-anime:0.9), (painting by bad-artist:0.9), watermark, text, error, blurry, jpeg artifacts, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, artist name, (worst quality, low quality:1.4), bad anatomy Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 6.5, Seed: 4158263580, Size: 512x768, Model hash: f773383dbc, Clip skip: 2, ENSD: 31337 </pre> </details> - ### Kazutake Hazano [Artist Twitter](https://twitter.com/TEIGI_3?s=20) <img src="https://huggingface.co/OrangeCatapult20/trained-loras/resolve/main/previews/4.png" width="768" height="512"> <details> <summary>Sample Prompt</summary> <pre> hazano style, masterpiece, best quality, ultra-detailed, illustration, official art, lens flare, (detailed light),(night time),((an extremely delicate and beautiful)),((hull body)),(dynamic angle),((beautiful detailed eyes)),(beautiful moon light),((gothic lolita)),(clothes flutter),(black hair:1.5),(blue eyes),((swimming under water)),(beautiful water),(bubbles in water),(shimmering water),((sea fireflie)),(underwater flowers back ground) &lt;lora:hazano-style:0.65&gt; <b>Negative prompt:</b> (bad-image-v2:0.8), lowres, mutated hands and fingers, extra legs, extra limbs, fused fingers, simple background, white background, letterboxed, out of frame, border, monster, mutated, bad anatomy, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, (worst quality, low quality:1.3), normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, copyright name, watermark Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 660771506, Size: 768x512, Model hash: e4b17ce185, Model: anything-v4.5-pruned, Denoising strength: 0.6, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires upscaler: Lanczos </pre> </details>
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
62
2023-01-24T14:10:22Z
--- license: apache-2.0 tags: - vision - depth-estimation - generated_from_trainer model-index: - name: glpn-nyu-finetuned-diode-230124-104649 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glpn-nyu-finetuned-diode-230124-104649 This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset. It achieves the following results on the evaluation set: - Loss: 0.4340 - Mae: 0.4201 - Rmse: 0.6110 - Abs Rel: 0.4400 - Log Mae: 0.1698 - Log Rmse: 0.2229 - Delta1: 0.3745 - Delta2: 0.6423 - Delta3: 0.8241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 24 - eval_batch_size: 48 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:| | 1.0761 | 1.0 | 72 | 0.5035 | 0.4784 | 0.6697 | 0.5506 | 0.2007 | 0.2592 | 0.3019 | 0.5331 | 0.7997 | | 0.4776 | 2.0 | 144 | 0.4640 | 0.4494 | 0.6305 | 0.4846 | 0.1853 | 0.2370 | 0.3321 | 0.5850 | 0.7752 | | 0.4667 | 3.0 | 216 | 0.4852 | 0.4716 | 0.6377 | 0.5477 | 0.1965 | 0.2473 | 0.3105 | 0.5246 | 0.7218 | | 0.4387 | 4.0 | 288 | 0.4587 | 0.4378 | 0.6223 | 0.4874 | 0.1790 | 0.2343 | 0.3577 | 0.6064 | 0.7906 | | 0.4612 | 5.0 | 360 | 0.4843 | 0.4610 | 0.6341 | 0.5444 | 0.1906 | 0.2458 | 0.3269 | 0.5602 | 0.7445 | | 0.4564 | 6.0 | 432 | 0.4605 | 0.4330 | 0.6197 | 0.4901 | 0.1764 | 0.2339 | 0.3775 | 0.6049 | 0.8022 | | 0.4166 | 7.0 | 504 | 0.4576 | 0.4421 | 0.6256 | 0.4625 | 0.1809 | 0.2322 | 0.3613 | 0.5882 | 0.7685 | | 0.3922 | 8.0 | 576 | 0.4805 | 0.4537 | 0.6296 | 0.5422 | 0.1875 | 0.2439 | 0.3381 | 0.5612 | 0.7874 | | 0.3944 | 9.0 | 648 | 0.4601 | 0.4430 | 0.6254 | 0.4762 | 0.1812 | 0.2332 | 0.3545 | 0.5877 | 0.7662 | | 0.3748 | 10.0 | 720 | 0.4606 | 0.4377 | 0.6221 | 0.4960 | 0.1796 | 0.2354 | 0.3573 | 0.5960 | 0.8031 | | 0.3749 | 11.0 | 792 | 0.4513 | 0.4377 | 0.6300 | 0.4403 | 0.1786 | 0.2311 | 0.3621 | 0.6083 | 0.7901 | | 0.4259 | 12.0 | 864 | 0.4834 | 0.4519 | 0.6328 | 0.5462 | 0.1862 | 0.2457 | 0.3521 | 0.5777 | 0.7614 | | 0.4337 | 13.0 | 936 | 0.4338 | 0.4153 | 0.6214 | 0.4096 | 0.1664 | 0.2248 | 0.4137 | 0.6651 | 0.8037 | | 0.4032 | 14.0 | 1008 | 0.4640 | 0.4544 | 0.6279 | 0.4922 | 0.1868 | 0.2351 | 0.3286 | 0.5574 | 0.7557 | | 0.4286 | 15.0 | 1080 | 0.4835 | 0.4651 | 0.6338 | 0.5567 | 0.1929 | 0.2465 | 0.3197 | 0.5449 | 0.7304 | | 0.397 | 16.0 | 1152 | 0.4713 | 0.4547 | 0.6279 | 0.5121 | 0.1872 | 0.2383 | 0.3312 | 0.5644 | 0.7456 | | 0.3713 | 17.0 | 1224 | 0.4664 | 0.4375 | 0.6290 | 0.4766 | 0.1780 | 0.2361 | 0.3821 | 0.6036 | 0.7668 | | 0.4155 | 18.0 | 1296 | 0.4881 | 0.4722 | 0.6367 | 0.5705 | 0.1967 | 0.2494 | 0.3061 | 0.5293 | 0.7220 | | 0.3822 | 19.0 | 1368 | 0.4819 | 0.4592 | 0.6322 | 0.5526 | 0.1898 | 0.2456 | 0.3357 | 0.5531 | 0.7365 | | 0.408 | 20.0 | 1440 | 0.4367 | 0.4201 | 0.6141 | 0.4322 | 0.1691 | 0.2232 | 0.3902 | 0.6418 | 0.8083 | | 0.3698 | 21.0 | 1512 | 0.4461 | 0.4263 | 0.6171 | 0.4454 | 0.1724 | 0.2263 | 0.3850 | 0.6232 | 0.7980 | | 0.3628 | 22.0 | 1584 | 0.4461 | 0.4254 | 0.6226 | 0.4520 | 0.1724 | 0.2307 | 0.3953 | 0.6324 | 0.7926 | | 0.3827 | 23.0 | 1656 | 0.4753 | 0.4529 | 0.6364 | 0.5288 | 0.1867 | 0.2450 | 0.3415 | 0.5893 | 0.7678 | | 0.4378 | 24.0 | 1728 | 0.4779 | 0.4608 | 0.6308 | 0.5422 | 0.1907 | 0.2433 | 0.3247 | 0.5435 | 0.7434 | | 0.3766 | 25.0 | 1800 | 0.4533 | 0.4415 | 0.6231 | 0.4750 | 0.1802 | 0.2309 | 0.3544 | 0.5796 | 0.7917 | | 0.3642 | 26.0 | 1872 | 0.4520 | 0.4276 | 0.6224 | 0.4686 | 0.1736 | 0.2322 | 0.3901 | 0.6242 | 0.8048 | | 0.3503 | 27.0 | 1944 | 0.4451 | 0.4262 | 0.6163 | 0.4574 | 0.1730 | 0.2278 | 0.3721 | 0.6306 | 0.8116 | | 0.3723 | 28.0 | 2016 | 0.4617 | 0.4451 | 0.6239 | 0.4936 | 0.1824 | 0.2346 | 0.3436 | 0.5864 | 0.7740 | | 0.3739 | 29.0 | 2088 | 0.4468 | 0.4295 | 0.6209 | 0.4513 | 0.1741 | 0.2285 | 0.3738 | 0.6288 | 0.7954 | | 0.3699 | 30.0 | 2160 | 0.4494 | 0.4334 | 0.6233 | 0.4682 | 0.1766 | 0.2320 | 0.3684 | 0.6155 | 0.7947 | | 0.3573 | 31.0 | 2232 | 0.4603 | 0.4385 | 0.6215 | 0.4963 | 0.1793 | 0.2345 | 0.3620 | 0.5948 | 0.7839 | | 0.3684 | 32.0 | 2304 | 0.4488 | 0.4278 | 0.6195 | 0.4571 | 0.1735 | 0.2290 | 0.3895 | 0.6201 | 0.7970 | | 0.3911 | 33.0 | 2376 | 0.4499 | 0.4309 | 0.6201 | 0.4636 | 0.1751 | 0.2301 | 0.3839 | 0.6118 | 0.7803 | | 0.3416 | 34.0 | 2448 | 0.4515 | 0.4298 | 0.6185 | 0.4734 | 0.1748 | 0.2311 | 0.3824 | 0.6152 | 0.7916 | | 0.3345 | 35.0 | 2520 | 0.4434 | 0.4247 | 0.6163 | 0.4548 | 0.1720 | 0.2274 | 0.3881 | 0.6233 | 0.8077 | | 0.3436 | 36.0 | 2592 | 0.4561 | 0.4370 | 0.6208 | 0.4926 | 0.1785 | 0.2337 | 0.3586 | 0.5960 | 0.7979 | | 0.3411 | 37.0 | 2664 | 0.4805 | 0.4629 | 0.6337 | 0.5600 | 0.1920 | 0.2468 | 0.3187 | 0.5448 | 0.7601 | | 0.3755 | 38.0 | 2736 | 0.4566 | 0.4365 | 0.6235 | 0.4780 | 0.1784 | 0.2335 | 0.3662 | 0.5972 | 0.7941 | | 0.3456 | 39.0 | 2808 | 0.4665 | 0.4500 | 0.6259 | 0.5163 | 0.1851 | 0.2386 | 0.3368 | 0.5756 | 0.7686 | | 0.3829 | 40.0 | 2880 | 0.4720 | 0.4527 | 0.6279 | 0.5323 | 0.1871 | 0.2423 | 0.3384 | 0.5656 | 0.7635 | | 0.3645 | 41.0 | 2952 | 0.4380 | 0.4211 | 0.6133 | 0.4377 | 0.1701 | 0.2234 | 0.3945 | 0.6275 | 0.8056 | | 0.3654 | 42.0 | 3024 | 0.4228 | 0.4087 | 0.6240 | 0.3844 | 0.1624 | 0.2220 | 0.4339 | 0.6953 | 0.8065 | | 0.3694 | 43.0 | 3096 | 0.4390 | 0.4183 | 0.6153 | 0.4374 | 0.1683 | 0.2250 | 0.3991 | 0.6509 | 0.8065 | | 0.329 | 44.0 | 3168 | 0.4559 | 0.4349 | 0.6191 | 0.4912 | 0.1775 | 0.2330 | 0.3611 | 0.6075 | 0.7981 | | 0.3509 | 45.0 | 3240 | 0.4566 | 0.4341 | 0.6202 | 0.4973 | 0.1774 | 0.2347 | 0.3653 | 0.6168 | 0.7942 | | 0.3666 | 46.0 | 3312 | 0.4665 | 0.4452 | 0.6239 | 0.5179 | 0.1830 | 0.2379 | 0.3384 | 0.5860 | 0.7844 | | 0.3948 | 47.0 | 3384 | 0.4570 | 0.4406 | 0.6221 | 0.4883 | 0.1805 | 0.2333 | 0.3504 | 0.5887 | 0.7961 | | 0.3349 | 48.0 | 3456 | 0.4539 | 0.4372 | 0.6186 | 0.4851 | 0.1789 | 0.2316 | 0.3467 | 0.5966 | 0.8092 | | 0.3689 | 49.0 | 3528 | 0.4416 | 0.4182 | 0.6136 | 0.4565 | 0.1685 | 0.2270 | 0.3991 | 0.6475 | 0.8157 | | 0.3477 | 50.0 | 3600 | 0.4417 | 0.4241 | 0.6184 | 0.4513 | 0.1713 | 0.2272 | 0.3802 | 0.6461 | 0.8114 | | 0.3476 | 51.0 | 3672 | 0.4502 | 0.4333 | 0.6189 | 0.4766 | 0.1763 | 0.2304 | 0.3594 | 0.6120 | 0.8096 | | 0.3318 | 52.0 | 3744 | 0.4480 | 0.4268 | 0.6167 | 0.4666 | 0.1728 | 0.2287 | 0.3744 | 0.6318 | 0.8080 | | 0.336 | 53.0 | 3816 | 0.4504 | 0.4266 | 0.6159 | 0.4792 | 0.1730 | 0.2306 | 0.3782 | 0.6248 | 0.8089 | | 0.3283 | 54.0 | 3888 | 0.4490 | 0.4265 | 0.6184 | 0.4689 | 0.1732 | 0.2305 | 0.3872 | 0.6295 | 0.8037 | | 0.3465 | 55.0 | 3960 | 0.4371 | 0.4216 | 0.6189 | 0.4399 | 0.1701 | 0.2263 | 0.3866 | 0.6515 | 0.8168 | | 0.3299 | 56.0 | 4032 | 0.4544 | 0.4377 | 0.6199 | 0.4828 | 0.1787 | 0.2319 | 0.3532 | 0.6004 | 0.7961 | | 0.3301 | 57.0 | 4104 | 0.4351 | 0.4208 | 0.6151 | 0.4317 | 0.1700 | 0.2234 | 0.3837 | 0.6386 | 0.8147 | | 0.3314 | 58.0 | 4176 | 0.4347 | 0.4189 | 0.6130 | 0.4373 | 0.1689 | 0.2234 | 0.3889 | 0.6468 | 0.8153 | | 0.328 | 59.0 | 4248 | 0.4536 | 0.4342 | 0.6187 | 0.4887 | 0.1773 | 0.2326 | 0.3554 | 0.6080 | 0.8052 | | 0.3153 | 60.0 | 4320 | 0.4393 | 0.4206 | 0.6130 | 0.4515 | 0.1699 | 0.2259 | 0.3854 | 0.6416 | 0.8156 | | 0.3274 | 61.0 | 4392 | 0.4482 | 0.4275 | 0.6148 | 0.4738 | 0.1740 | 0.2295 | 0.3703 | 0.6176 | 0.8177 | | 0.3123 | 62.0 | 4464 | 0.4380 | 0.4172 | 0.6139 | 0.4461 | 0.1678 | 0.2259 | 0.4007 | 0.6569 | 0.8189 | | 0.3269 | 63.0 | 4536 | 0.4395 | 0.4186 | 0.6123 | 0.4574 | 0.1690 | 0.2267 | 0.3881 | 0.6507 | 0.8179 | | 0.3214 | 64.0 | 4608 | 0.4400 | 0.4229 | 0.6128 | 0.4580 | 0.1714 | 0.2264 | 0.3709 | 0.6391 | 0.8222 | | 0.3139 | 65.0 | 4680 | 0.4506 | 0.4295 | 0.6169 | 0.4828 | 0.1748 | 0.2315 | 0.3662 | 0.6223 | 0.8150 | | 0.306 | 66.0 | 4752 | 0.4391 | 0.4210 | 0.6134 | 0.4565 | 0.1702 | 0.2266 | 0.3802 | 0.6481 | 0.8169 | | 0.3375 | 67.0 | 4824 | 0.4511 | 0.4304 | 0.6177 | 0.4807 | 0.1751 | 0.2314 | 0.3683 | 0.6189 | 0.8063 | | 0.3199 | 68.0 | 4896 | 0.4409 | 0.4230 | 0.6157 | 0.4615 | 0.1716 | 0.2284 | 0.3796 | 0.6425 | 0.8184 | | 0.3286 | 69.0 | 4968 | 0.4424 | 0.4242 | 0.6141 | 0.4608 | 0.1721 | 0.2274 | 0.3752 | 0.6317 | 0.8149 | | 0.3168 | 70.0 | 5040 | 0.4250 | 0.4130 | 0.6118 | 0.4139 | 0.1653 | 0.2191 | 0.3987 | 0.6650 | 0.8192 | | 0.3316 | 71.0 | 5112 | 0.4391 | 0.4222 | 0.6146 | 0.4486 | 0.1707 | 0.2254 | 0.3795 | 0.6376 | 0.8176 | | 0.3305 | 72.0 | 5184 | 0.4455 | 0.4273 | 0.6157 | 0.4623 | 0.1738 | 0.2280 | 0.3743 | 0.6173 | 0.8119 | | 0.3135 | 73.0 | 5256 | 0.4407 | 0.4254 | 0.6159 | 0.4513 | 0.1726 | 0.2264 | 0.3688 | 0.6342 | 0.8149 | | 0.3364 | 74.0 | 5328 | 0.4421 | 0.4268 | 0.6152 | 0.4561 | 0.1730 | 0.2266 | 0.3675 | 0.6234 | 0.8135 | | 0.3188 | 75.0 | 5400 | 0.4480 | 0.4317 | 0.6162 | 0.4746 | 0.1760 | 0.2296 | 0.3555 | 0.6132 | 0.8125 | | 0.3125 | 76.0 | 5472 | 0.4346 | 0.4197 | 0.6120 | 0.4389 | 0.1693 | 0.2230 | 0.3802 | 0.6449 | 0.8225 | | 0.3179 | 77.0 | 5544 | 0.4437 | 0.4274 | 0.6153 | 0.4633 | 0.1737 | 0.2279 | 0.3686 | 0.6240 | 0.8158 | | 0.317 | 78.0 | 5616 | 0.4364 | 0.4207 | 0.6127 | 0.4491 | 0.1699 | 0.2250 | 0.3743 | 0.6491 | 0.8237 | | 0.3303 | 79.0 | 5688 | 0.4464 | 0.4286 | 0.6172 | 0.4742 | 0.1746 | 0.2304 | 0.3679 | 0.6182 | 0.8206 | | 0.3267 | 80.0 | 5760 | 0.4295 | 0.4147 | 0.6099 | 0.4243 | 0.1666 | 0.2201 | 0.3934 | 0.6519 | 0.8233 | | 0.3219 | 81.0 | 5832 | 0.4306 | 0.4144 | 0.6101 | 0.4278 | 0.1666 | 0.2209 | 0.3897 | 0.6589 | 0.8240 | | 0.3271 | 82.0 | 5904 | 0.4378 | 0.4215 | 0.6125 | 0.4465 | 0.1704 | 0.2246 | 0.3787 | 0.6395 | 0.8198 | | 0.2986 | 83.0 | 5976 | 0.4401 | 0.4253 | 0.6136 | 0.4511 | 0.1724 | 0.2254 | 0.3697 | 0.6270 | 0.8186 | | 0.3153 | 84.0 | 6048 | 0.4355 | 0.4199 | 0.6111 | 0.4418 | 0.1698 | 0.2232 | 0.3781 | 0.6388 | 0.8250 | | 0.323 | 85.0 | 6120 | 0.4420 | 0.4262 | 0.6135 | 0.4556 | 0.1731 | 0.2260 | 0.3640 | 0.6235 | 0.8207 | | 0.308 | 86.0 | 6192 | 0.4359 | 0.4206 | 0.6123 | 0.4421 | 0.1701 | 0.2238 | 0.3774 | 0.6409 | 0.8232 | | 0.3076 | 87.0 | 6264 | 0.4329 | 0.4185 | 0.6105 | 0.4347 | 0.1688 | 0.2219 | 0.3791 | 0.6471 | 0.8242 | | 0.3089 | 88.0 | 6336 | 0.4256 | 0.4117 | 0.6083 | 0.4180 | 0.1651 | 0.2189 | 0.3949 | 0.6666 | 0.8253 | | 0.299 | 89.0 | 6408 | 0.4449 | 0.4300 | 0.6152 | 0.4602 | 0.1749 | 0.2270 | 0.3596 | 0.6151 | 0.8156 | | 0.3211 | 90.0 | 6480 | 0.4330 | 0.4191 | 0.6106 | 0.4339 | 0.1692 | 0.2218 | 0.3785 | 0.6422 | 0.8252 | | 0.323 | 91.0 | 6552 | 0.4310 | 0.4167 | 0.6098 | 0.4301 | 0.1680 | 0.2211 | 0.3826 | 0.6508 | 0.8260 | | 0.3108 | 92.0 | 6624 | 0.4402 | 0.4259 | 0.6130 | 0.4519 | 0.1730 | 0.2251 | 0.3662 | 0.6260 | 0.8188 | | 0.3201 | 93.0 | 6696 | 0.4300 | 0.4166 | 0.6097 | 0.4312 | 0.1679 | 0.2211 | 0.3834 | 0.6512 | 0.8245 | | 0.3072 | 94.0 | 6768 | 0.4344 | 0.4217 | 0.6117 | 0.4400 | 0.1706 | 0.2228 | 0.3726 | 0.6356 | 0.8239 | | 0.3079 | 95.0 | 6840 | 0.4369 | 0.4236 | 0.6121 | 0.4454 | 0.1716 | 0.2238 | 0.3678 | 0.6308 | 0.8241 | | 0.3192 | 96.0 | 6912 | 0.4328 | 0.4189 | 0.6105 | 0.4362 | 0.1691 | 0.2220 | 0.3774 | 0.6441 | 0.8245 | | 0.2959 | 97.0 | 6984 | 0.4340 | 0.4203 | 0.6110 | 0.4399 | 0.1700 | 0.2228 | 0.3741 | 0.6409 | 0.8245 | | 0.3061 | 98.0 | 7056 | 0.4352 | 0.4208 | 0.6112 | 0.4427 | 0.1703 | 0.2234 | 0.3728 | 0.6402 | 0.8249 | | 0.3294 | 99.0 | 7128 | 0.4329 | 0.4191 | 0.6107 | 0.4372 | 0.1693 | 0.2223 | 0.3762 | 0.6451 | 0.8238 | | 0.3087 | 100.0 | 7200 | 0.4340 | 0.4201 | 0.6110 | 0.4400 | 0.1698 | 0.2229 | 0.3745 | 0.6423 | 0.8241 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
132
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 125 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1250, "warmup_steps": 125, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,862
2023-01-24T10:49:00Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/pcuenq/pokemon-lora These are LoRA adaption weights trained on base model https://huggingface.co/runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. ## How to Use The script below loads the base model, then applies the LoRA weights and performs inference: ```Python import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from huggingface_hub import model_info # LoRA weights ~3 MB model_path = "pcuenq/pokemon-lora" info = model_info(model_path) model_base = info.cardData["base_model"] pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") image = pipe("Green pokemon with menacing face", num_inference_steps=25).images[0] image.save("green_pokemon.png") ``` Please, check [our blog post](https://huggingface.co/blog/lora) or [documentation](https://huggingface.co/docs/diffusers/v0.15.0/en/training/lora#text-to-image-inference) for more details. ## Example Images ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
CAMeL-Lab/bert-base-arabic-camelbert-mix
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "Arabic", "Dialect", "Egyptian", "Gulf", "Levantine", "Classical Arabic", "MSA", "Modern Standard Arabic", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20,880
2023-01-24T10:57:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
2023-01-24T10:57:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-et-children results: [] language: - et library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v2-et-children This model is a fine-tuned version of [agnesluhtaru/whisper-large-et-ERR2020-v2](https://huggingface.co/agnesluhtaru/whisper-large-et-ERR2020-v2) on an Estonian children's speech dataset. More information about the model's performance and the data used for evaluation and training: Luhtaru, Agnes; Jaaska, Rauno; Kruusamäe, Karl; Fishel, Mark (2023). Automatic Transcription for Estonian Children’s Speech. In: Proceedings of the 24th Nordic Conference on Computational Linguistics. [https://openreview.net/forum?id=xbPTfBIUby](https://openreview.net/forum?id=xbPTfBIUby) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0302 | 4.03 | 500 | 0.2971 | 16.2892 | | 0.0042 | 8.06 | 1000 | 0.3406 | 15.8551 | | 0.0017 | 12.1 | 1500 | 0.3714 | 15.5585 | | 0.0009 | 16.13 | 2000 | 0.3934 | 15.6445 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+rocm5.1.1 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
2023-01-24T10:58:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: newwater/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAMeL-Lab/bert-base-arabic-camelbert-msa-eighth
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
2023-01-24T11:01:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0125 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1336 | 3.85 | 500 | 0.0125 | 1.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-egy
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
52
2023-01-26T20:13:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-libri-train360-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-libri-train360-colab This model is a fine-tuned version of [GW12/wav2vec2-libri-train100-colab](https://huggingface.co/GW12/wav2vec2-libri-train100-colab) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1101 - Wer: 0.1002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.1196 | 0.02 | 500 | 0.2020 | 0.1494 | | 0.1695 | 0.04 | 1000 | 0.1600 | 0.1462 | | 0.1726 | 0.06 | 1500 | 0.1996 | 0.1457 | | 0.1654 | 0.08 | 2000 | 0.1531 | 0.1448 | | 0.1665 | 0.1 | 2500 | 0.1582 | 0.1491 | | 0.1555 | 0.12 | 3000 | 0.1566 | 0.1478 | | 0.1562 | 0.13 | 3500 | 0.1555 | 0.1501 | | 0.1604 | 0.15 | 4000 | 0.1465 | 0.1422 | | 0.1522 | 0.17 | 4500 | 0.1423 | 0.1452 | | 0.1534 | 0.19 | 5000 | 0.1375 | 0.1431 | | 0.1576 | 0.21 | 5500 | 0.1872 | 0.1421 | | 0.1543 | 0.23 | 6000 | 0.1547 | 0.1381 | | 0.1501 | 0.25 | 6500 | 0.1446 | 0.1381 | | 0.1508 | 0.27 | 7000 | 0.2108 | 0.1507 | | 0.1479 | 0.29 | 7500 | 0.1495 | 0.1364 | | 0.1474 | 0.31 | 8000 | 0.1571 | 0.1406 | | 0.1475 | 0.33 | 8500 | 0.1570 | 0.1390 | | 0.1453 | 0.35 | 9000 | 0.1547 | 0.1377 | | 0.1465 | 0.37 | 9500 | 0.1633 | 0.1336 | | 0.1424 | 0.38 | 10000 | 0.1344 | 0.1358 | | 0.1417 | 0.4 | 10500 | 0.2518 | 0.1515 | | 0.1427 | 0.42 | 11000 | 0.1697 | 0.1409 | | 0.1434 | 0.44 | 11500 | 0.1649 | 0.1373 | | 0.1384 | 0.46 | 12000 | 0.1743 | 0.1403 | | 0.1394 | 0.48 | 12500 | 0.1485 | 0.1407 | | 0.1392 | 0.5 | 13000 | 0.1421 | 0.1352 | | 2.3614 | 0.52 | 13500 | 0.9494 | 0.1673 | | 0.1621 | 0.54 | 14000 | 0.4273 | 0.1539 | | 0.1454 | 0.56 | 14500 | 0.1764 | 0.1399 | | 0.1453 | 0.58 | 15000 | 0.1750 | 0.1414 | | 0.1375 | 0.6 | 15500 | 0.1845 | 0.1410 | | 0.1436 | 0.62 | 16000 | 0.1583 | 0.1413 | | 0.1405 | 0.63 | 16500 | 0.1893 | 0.1413 | | 0.139 | 0.65 | 17000 | 0.2281 | 0.1619 | | 0.1374 | 0.67 | 17500 | 0.1863 | 0.1413 | | 0.1386 | 0.69 | 18000 | 0.2301 | 0.1479 | | 0.1435 | 0.71 | 18500 | 0.2349 | 0.1579 | | 0.1293 | 0.73 | 19000 | 0.1878 | 0.1461 | | 0.1311 | 0.75 | 19500 | 0.2092 | 0.1342 | | 0.1357 | 0.77 | 20000 | 0.1788 | 0.1421 | | 0.1258 | 0.79 | 20500 | 0.1336 | 0.1302 | | 0.1284 | 0.81 | 21000 | 0.1459 | 0.1306 | | 0.1452 | 0.83 | 21500 | 0.1316 | 0.1319 | | 0.1241 | 0.85 | 22000 | 0.1497 | 0.1285 | | 0.1292 | 0.87 | 22500 | 0.1417 | 0.1318 | | 0.1255 | 0.88 | 23000 | 0.1262 | 0.1305 | | 0.1239 | 0.9 | 23500 | 0.1417 | 0.1302 | | 0.1237 | 0.92 | 24000 | 0.1704 | 0.1309 | | 0.1231 | 0.94 | 24500 | 0.1466 | 0.1308 | | 0.1303 | 0.96 | 25000 | 0.2085 | 0.1392 | | 0.1252 | 0.98 | 25500 | 0.1514 | 0.1441 | | 0.1244 | 1.0 | 26000 | 0.1353 | 0.1282 | | 0.1034 | 1.02 | 26500 | 0.1306 | 0.1279 | | 0.1035 | 1.04 | 27000 | 0.1785 | 0.1288 | | 0.1063 | 1.06 | 27500 | 0.1742 | 0.1311 | | 0.1065 | 1.08 | 28000 | 0.1505 | 0.1269 | | 0.1093 | 1.1 | 28500 | 0.1394 | 0.1264 | | 0.1115 | 1.12 | 29000 | 0.1490 | 0.1325 | | 0.1044 | 1.13 | 29500 | 0.5477 | 0.1736 | | 0.1003 | 1.15 | 30000 | 0.2347 | 0.1351 | | 0.1049 | 1.17 | 30500 | 0.2001 | 0.1347 | | 0.1068 | 1.19 | 31000 | 0.1528 | 0.1255 | | 0.1069 | 1.21 | 31500 | 0.1528 | 0.1266 | | 0.1042 | 1.23 | 32000 | 0.2272 | 0.1318 | | 0.1073 | 1.25 | 32500 | 0.5753 | 0.1869 | | 0.1021 | 1.27 | 33000 | 0.3459 | 0.1477 | | 0.1023 | 1.29 | 33500 | 0.2412 | 0.1362 | | 0.0988 | 1.31 | 34000 | 0.2124 | 0.1319 | | 0.1047 | 1.33 | 34500 | 0.3733 | 0.1497 | | 0.1078 | 1.35 | 35000 | 0.1553 | 0.1281 | | 0.0988 | 1.37 | 35500 | 0.1364 | 0.1239 | | 0.0957 | 1.38 | 36000 | 0.1484 | 0.1278 | | 0.1038 | 1.4 | 36500 | 0.1723 | 0.1253 | | 0.1001 | 1.42 | 37000 | 0.3668 | 0.1648 | | 0.101 | 1.44 | 37500 | 0.2136 | 0.1339 | | 0.1022 | 1.46 | 38000 | 0.1140 | 0.1162 | | 0.0989 | 1.48 | 38500 | 0.1628 | 0.1265 | | 0.0982 | 1.5 | 39000 | 0.2204 | 0.1376 | | 0.1012 | 1.52 | 39500 | 0.1716 | 0.1297 | | 0.1067 | 1.54 | 40000 | 0.1362 | 0.1234 | | 0.1022 | 1.56 | 40500 | 0.1170 | 0.1178 | | 0.1011 | 1.58 | 41000 | 0.1578 | 0.1240 | | 0.0845 | 1.6 | 41500 | 0.1659 | 0.1243 | | 0.0929 | 1.62 | 42000 | 0.1813 | 0.1310 | | 0.0904 | 1.63 | 42500 | 0.1309 | 0.1215 | | 0.0885 | 1.65 | 43000 | 0.1964 | 0.1359 | | 0.0895 | 1.67 | 43500 | 0.1309 | 0.1179 | | 0.0855 | 1.69 | 44000 | 0.1472 | 0.1258 | | 0.0876 | 1.71 | 44500 | 0.1189 | 0.1190 | | 0.0925 | 1.73 | 45000 | 0.1477 | 0.1209 | | 0.0866 | 1.75 | 45500 | 0.2537 | 0.1428 | | 0.0938 | 1.77 | 46000 | 0.1406 | 0.1240 | | 0.0901 | 1.79 | 46500 | 0.1416 | 0.1201 | | 0.0839 | 1.81 | 47000 | 0.1323 | 0.1201 | | 0.0866 | 1.83 | 47500 | 0.1176 | 0.1149 | | 0.0876 | 1.85 | 48000 | 0.1141 | 0.1139 | | 0.0857 | 1.87 | 48500 | 0.2148 | 0.1297 | | 0.089 | 1.88 | 49000 | 0.1707 | 0.1231 | | 0.0861 | 1.9 | 49500 | 0.1457 | 0.1183 | | 0.0855 | 1.92 | 50000 | 0.4576 | 0.1654 | | 0.0808 | 1.94 | 50500 | 0.2264 | 0.1285 | | 0.0859 | 1.96 | 51000 | 0.1630 | 0.1201 | | 0.0859 | 1.98 | 51500 | 0.1613 | 0.1165 | | 0.086 | 2.0 | 52000 | 0.1529 | 0.1196 | | 0.0769 | 2.02 | 52500 | 0.1258 | 0.1139 | | 0.0783 | 2.04 | 53000 | 0.1105 | 0.1136 | | 0.0775 | 2.06 | 53500 | 0.1177 | 0.1128 | | 0.08 | 2.08 | 54000 | 0.1328 | 0.1156 | | 0.0765 | 2.1 | 54500 | 0.1229 | 0.1137 | | 0.0791 | 2.12 | 55000 | 0.1218 | 0.1121 | | 0.0831 | 2.13 | 55500 | 0.1106 | 0.1135 | | 0.0769 | 2.15 | 56000 | 0.1466 | 0.1166 | | 0.0761 | 2.17 | 56500 | 0.1177 | 0.1126 | | 0.0779 | 2.19 | 57000 | 0.1249 | 0.1120 | | 0.0749 | 2.21 | 57500 | 0.1258 | 0.1130 | | 0.0746 | 2.23 | 58000 | 0.1268 | 0.1122 | | 0.074 | 2.25 | 58500 | 0.1141 | 0.1153 | | 0.0726 | 2.27 | 59000 | 0.1231 | 0.1107 | | 0.0771 | 2.29 | 59500 | 0.1393 | 0.1125 | | 0.0776 | 2.31 | 60000 | 0.1224 | 0.1115 | | 0.0756 | 2.33 | 60500 | 0.1071 | 0.1085 | | 0.0753 | 2.35 | 61000 | 0.1072 | 0.1089 | | 0.0698 | 2.37 | 61500 | 0.1129 | 0.1094 | | 0.0726 | 2.38 | 62000 | 0.1109 | 0.1106 | | 0.0758 | 2.4 | 62500 | 0.1052 | 0.1103 | | 0.0743 | 2.42 | 63000 | 0.1079 | 0.1106 | | 0.0765 | 2.44 | 63500 | 0.1248 | 0.1108 | | 0.0724 | 2.46 | 64000 | 0.1248 | 0.1076 | | 0.0659 | 2.48 | 64500 | 0.1099 | 0.1088 | | 0.0674 | 2.5 | 65000 | 0.1156 | 0.1098 | | 0.0691 | 2.52 | 65500 | 0.1122 | 0.1093 | | 0.0677 | 2.54 | 66000 | 0.1228 | 0.1082 | | 0.0695 | 2.56 | 66500 | 0.1049 | 0.1066 | | 0.0687 | 2.58 | 67000 | 0.1025 | 0.1062 | | 0.0682 | 2.6 | 67500 | 0.1080 | 0.1064 | | 0.0663 | 2.61 | 68000 | 0.1009 | 0.1058 | | 0.0654 | 2.63 | 68500 | 0.1145 | 0.1071 | | 0.0641 | 2.65 | 69000 | 0.1178 | 0.1082 | | 0.0662 | 2.67 | 69500 | 0.1106 | 0.1084 | | 0.0623 | 2.69 | 70000 | 0.1086 | 0.1057 | | 0.0692 | 2.71 | 70500 | 0.1048 | 0.1071 | | 0.0663 | 2.73 | 71000 | 0.1119 | 0.1069 | | 0.0639 | 2.75 | 71500 | 0.1147 | 0.1062 | | 0.0597 | 2.77 | 72000 | 0.1121 | 0.1072 | | 0.0688 | 2.79 | 72500 | 0.1149 | 0.1060 | | 0.0616 | 2.81 | 73000 | 0.1126 | 0.1069 | | 0.0633 | 2.83 | 73500 | 0.1302 | 0.1074 | | 0.0651 | 2.85 | 74000 | 0.1260 | 0.1066 | | 0.0637 | 2.86 | 74500 | 0.1233 | 0.1075 | | 0.0641 | 2.88 | 75000 | 0.1199 | 0.1066 | | 0.0655 | 2.9 | 75500 | 0.1249 | 0.1075 | | 0.065 | 2.92 | 76000 | 0.1192 | 0.1061 | | 0.0626 | 2.94 | 76500 | 0.1267 | 0.1069 | | 0.0622 | 2.96 | 77000 | 0.1289 | 0.1094 | | 0.0608 | 2.98 | 77500 | 0.1502 | 0.1096 | | 0.0631 | 3.0 | 78000 | 0.1493 | 0.1099 | | 0.0535 | 3.02 | 78500 | 0.1220 | 0.1064 | | 0.0582 | 3.04 | 79000 | 0.1274 | 0.1077 | | 0.052 | 3.06 | 79500 | 0.1296 | 0.1072 | | 0.0562 | 3.08 | 80000 | 0.1160 | 0.1050 | | 0.0533 | 3.1 | 80500 | 0.1066 | 0.1031 | | 0.0564 | 3.11 | 81000 | 0.1300 | 0.1078 | | 0.0589 | 3.13 | 81500 | 0.1167 | 0.1056 | | 0.0582 | 3.15 | 82000 | 0.1129 | 0.1025 | | 0.0594 | 3.17 | 82500 | 0.1255 | 0.1054 | | 0.0559 | 3.19 | 83000 | 0.1258 | 0.1045 | | 0.0535 | 3.21 | 83500 | 0.1150 | 0.1029 | | 0.0538 | 3.23 | 84000 | 0.1043 | 0.1017 | | 0.0537 | 3.25 | 84500 | 0.1073 | 0.1028 | | 0.0534 | 3.27 | 85000 | 0.1011 | 0.1011 | | 0.0527 | 3.29 | 85500 | 0.0987 | 0.1010 | | 0.0549 | 3.31 | 86000 | 0.1008 | 0.1015 | | 0.0516 | 3.33 | 86500 | 0.1031 | 0.1017 | | 0.0549 | 3.35 | 87000 | 0.1103 | 0.1028 | | 0.056 | 3.36 | 87500 | 0.0980 | 0.1008 | | 0.0528 | 3.38 | 88000 | 0.1045 | 0.1020 | | 0.0555 | 3.4 | 88500 | 0.0979 | 0.1005 | | 0.0517 | 3.42 | 89000 | 0.0948 | 0.0992 | | 0.0495 | 3.44 | 89500 | 0.0974 | 0.1002 | | 0.0496 | 3.46 | 90000 | 0.1035 | 0.1013 | | 0.0497 | 3.48 | 90500 | 0.1167 | 0.1035 | | 0.0485 | 3.5 | 91000 | 0.1098 | 0.1009 | | 0.0465 | 3.52 | 91500 | 0.1168 | 0.1009 | | 0.05 | 3.54 | 92000 | 0.1088 | 0.1005 | | 0.0514 | 3.56 | 92500 | 0.1116 | 0.1000 | | 0.0467 | 3.58 | 93000 | 0.1053 | 0.0998 | | 0.045 | 3.6 | 93500 | 0.1099 | 0.1012 | | 0.0507 | 3.61 | 94000 | 0.1186 | 0.1012 | | 0.0452 | 3.63 | 94500 | 0.1119 | 0.0998 | | 0.0452 | 3.65 | 95000 | 0.1099 | 0.1002 | | 0.0452 | 3.67 | 95500 | 0.1228 | 0.1015 | | 0.0448 | 3.69 | 96000 | 0.1271 | 0.1025 | | 0.0485 | 3.71 | 96500 | 0.1338 | 0.1037 | | 0.048 | 3.73 | 97000 | 0.1288 | 0.1030 | | 0.0476 | 3.75 | 97500 | 0.1183 | 0.1012 | | 0.0457 | 3.77 | 98000 | 0.1171 | 0.1007 | | 0.0492 | 3.79 | 98500 | 0.1142 | 0.1004 | | 0.049 | 3.81 | 99000 | 0.1141 | 0.1006 | | 0.046 | 3.83 | 99500 | 0.1165 | 0.1007 | | 0.0444 | 3.85 | 100000 | 0.1173 | 0.1010 | | 0.0456 | 3.86 | 100500 | 0.1150 | 0.1004 | | 0.0467 | 3.88 | 101000 | 0.1130 | 0.1003 | | 0.0465 | 3.9 | 101500 | 0.1137 | 0.1003 | | 0.0451 | 3.92 | 102000 | 0.1127 | 0.1004 | | 0.0445 | 3.94 | 102500 | 0.1118 | 0.1003 | | 0.0453 | 3.96 | 103000 | 0.1112 | 0.1002 | | 0.0458 | 3.98 | 103500 | 0.1103 | 0.1002 | | 0.0454 | 4.0 | 104000 | 0.1101 | 0.1002 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.13.3 - Tokenizers 0.10.3
CAUKiel/JavaBERT-uncased
[ "pytorch", "safetensors", "bert", "fill-mask", "java", "code", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-01-24T11:39:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: newwater/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAUKiel/JavaBERT
[ "pytorch", "safetensors", "bert", "fill-mask", "code", "arxiv:2110.10404", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388
2023-01-24T11:44:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9175 - name: F1 type: f1 value: 0.917868093658934 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2300 - Accuracy: 0.9175 - F1: 0.9179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8387 | 1.0 | 250 | 0.3276 | 0.9045 | 0.9016 | | 0.2573 | 2.0 | 500 | 0.2300 | 0.9175 | 0.9179 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CBreit00/DialoGPT_small_Rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/btc-doveywan-eth/1674562085261/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1616618733556101124/oXxgxm8O_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1292159368943693824/JXYCQur0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1258321209730760705/1hkrHoOT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dovey "Rug The Fiat" Wan & BTC Times & ETH Zürich</div> <div style="text-align: center; font-size: 14px;">@btc-doveywan-eth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dovey "Rug The Fiat" Wan & BTC Times & ETH Zürich. | Data | Dovey "Rug The Fiat" Wan | BTC Times | ETH Zürich | | --- | --- | --- | --- | | Tweets downloaded | 3244 | 3241 | 3246 | | Retweets | 311 | 1215 | 1023 | | Short tweets | 264 | 35 | 34 | | Tweets kept | 2669 | 1991 | 2189 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fjov15tq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btc-doveywan-eth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n69s58ct) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n69s58ct/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btc-doveywan-eth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
CL/safe-math-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T11:45:57Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 48.00 +/- 33.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CLAck/en-km
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
Access to model jinwoo1126/tmp is restricted and you are not in the authorized list. Visit https://huggingface.co/jinwoo1126/tmp to ask for access.
CLAck/en-vi
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 569.50 +/- 94.77 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga stevaras2 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga stevaras2 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga stevaras2 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CLTL/MedRoBERTa.nl
[ "pytorch", "roberta", "fill-mask", "nl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,988
2023-01-24T12:03:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AmirMesbah/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CLTL/icf-domains
[ "pytorch", "roberta", "nl", "transformers", "license:mit", "text-classification" ]
text-classification
{ "architectures": [ "RobertaForMultiLabelSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
Few prompts: 1. palette knife painting of park with street lights in the style of smangrul 2. citylights painting in the style of smangrul 3. waves hitting the shore painting in the style of smangrul 4. a painting of a dream in the style of smangrul 5. night painting in the style of smangrul Ouputs: ![outputs](https://huggingface.co/smangrul/painting-in-the-style-of-smangrul/resolve/main/download.png) ![outputs](https://huggingface.co/smangrul/painting-in-the-style-of-smangrul/resolve/main/download%20(3).png) ![outputs](https://huggingface.co/smangrul/painting-in-the-style-of-smangrul/resolve/main/download%20(4).png) ![outputs](https://huggingface.co/smangrul/painting-in-the-style-of-smangrul/resolve/main/download%20(59).png) ![outputs](https://huggingface.co/smangrul/painting-in-the-style-of-smangrul/resolve/main/download%20(61).png)
CLTL/icf-levels-enr
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: number_1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 269.50 +/- 10.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
CLTL/icf-levels-etn
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 597.00 +/- 225.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tim-binding -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tim-binding -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tim-binding ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CLTL/icf-levels-ins
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: creativeml-openrail-m --- https://civitai.com/models/4878/michihasu-model
CLTL/icf-levels-stm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
2023-01-24T12:27:06Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: fuatuzumcu --- ### fuatuzumcu Dreambooth model trained by stablemobile with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: fuatuzumcu (use that on your prompt) ![fuatuzumcu 0](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%281%29.jpg)![fuatuzumcu 1](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%282%29.jpg)![fuatuzumcu 2](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%283%29.jpg)![fuatuzumcu 3](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%284%29.jpg)![fuatuzumcu 4](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%285%29.jpg)![fuatuzumcu 5](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%286%29.jpg)![fuatuzumcu 6](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%287%29.jpg)![fuatuzumcu 7](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%288%29.jpg)![fuatuzumcu 8](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%289%29.jpg)![fuatuzumcu 9](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%2810%29.jpg)![fuatuzumcu 10](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%2811%29.jpg)![fuatuzumcu 11](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%2812%29.jpg)![fuatuzumcu 12](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%2813%29.jpg)![fuatuzumcu 13](https://huggingface.co/stablemobile/fuatuzumcu/resolve/main/concept_images/fuatuzumcu_%2814%29.jpg)
CM-CA/Cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1108.72 +/- 76.49 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CM-CA/DialoGPT-small-cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: gpl-3.0 datasets: - multi_woz_v22 language: - en metrics: - bleu - rouge --- Pretrained model: [GODEL-v1_1-base-seq2seq](https://huggingface.co/microsoft/GODEL-v1_1-base-seq2seq/) Fine-tuning dataset: [MultiWOZ 2.2](https://github.com/budzianowski/multiwoz/tree/master/data/MultiWOZ_2.2) # How to use: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("gonced8/godel-multiwoz") model = AutoModelForSeq2SeqLM.from_pretrained("gonced8/godel-multiwoz") # Encoder input context = [ "USER: I need train reservations from norwich to cambridge", "SYSTEM: I have 133 trains matching your request. Is there a specific day and time you would like to travel?", "USER: I'd like to leave on Monday and arrive by 18:00.", ] input_text = " EOS ".join(context[-5:]) + " => " model_inputs = tokenizer( input_text, max_length=512, truncation=True, return_tensors="pt" )["input_ids"] # Decoder input answer_start = "SYSTEM: " decoder_input_ids = tokenizer( "<pad>" + answer_start, max_length=256, truncation=True, add_special_tokens=False, return_tensors="pt", )["input_ids"] # Generate output = model.generate( model_inputs, decoder_input_ids=decoder_input_ids, max_length=256 ) output = tokenizer.decode( output[0], clean_up_tokenization_spaces=True, skip_special_tokens=True ) print(output) # SYSTEM: TR4634 arrives at 17:35. Would you like me to book that for you? ```
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # AIAnGenV1
CSZay/bart
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model DhruvShek/Webraft-Ai is restricted and you are not in the authorized list. Visit https://huggingface.co/DhruvShek/Webraft-Ai to ask for access.
CZWin32768/xlm-align
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2106.06381", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-01-24T12:43:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.87 +/- 0.22 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Caddy/UD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T12:44:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Schwarzschild009/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Calamarii/calamari
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Callidior/bert2bert-base-arxiv-titlegen
[ "pytorch", "safetensors", "encoder-decoder", "text2text-generation", "en", "dataset:arxiv_dataset", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible", "has_space" ]
summarization
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
145
null
--- language: en thumbnail: http://www.huggingtweets.com/btc-eth-vitalikbuterin/1674564747266/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/977496875887558661/L86xyLF4_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1292159368943693824/JXYCQur0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1258321209730760705/1hkrHoOT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">vitalik.eth & BTC Times & ETH Zürich</div> <div style="text-align: center; font-size: 14px;">@btc-eth-vitalikbuterin</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from vitalik.eth & BTC Times & ETH Zürich. | Data | vitalik.eth | BTC Times | ETH Zürich | | --- | --- | --- | --- | | Tweets downloaded | 3243 | 3241 | 3246 | | Retweets | 241 | 1215 | 1023 | | Short tweets | 123 | 35 | 34 | | Tweets kept | 2879 | 1991 | 2189 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/d3n8pkg2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btc-eth-vitalikbuterin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/x6co1yfz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/x6co1yfz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btc-eth-vitalikbuterin') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Cameron/BERT-Jigsaw
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
35
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Cameron/BERT-SBIC-offensive
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Cameron/BERT-SBIC-targetcategory
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: gpl-3.0 --- <img src="https://i.imgur.com/z2ODdOr.jpg" alt="drawing" style="width:300px;"/> # About model A simple model trained on a custom dataset containing over 100 coloring book type images. If you enjoy this model and would like me to improve on it, [buy me a coffe](https://www.buymeacoffee.com/mrhup) ☕ # Installation: Download both the ckpt and yaml files. Ensure that the same naming pattern is used and copy them under models/Stable-Diffusion path in your local/cloud SD installation. Stable Diffusion 2.1 is required for the model to work correctly. # Black images issue: 2.1 models need to have a web-ui config modified - if you are getting black images - go to your config file and add to COMMANDLINE_ARGS= --no-half - potentially it could work with --xformers instead (if supported). This line might slow your generations a bit but will not affect negatively your output. # Prompt suggestion: `bichon havanese wearing sunglasses COLR_001, (((white background))), coloring book, line art, high resolution, black and white, colorless` Negative: `((watermark)), (text), color, shading, gradient, shadows, transparency, noisy, blurred` <img src="https://i.imgur.com/3iDf43z.png" alt="drawing" style="width:300px;"/><img src="https://i.imgur.com/TwVxNe1.jpg" alt="drawing" style="width:300px;"/> <img src="https://i.imgur.com/vKrsyGe.jpg" alt="drawing" style="width:300px;"/><img src="https://i.imgur.com/Mp3vO5i.jpg" alt="drawing" style="width:300px;"/>
Cameron/BERT-eec-emotion
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
2/06 いい感じになったTOTFN-5-25ができました 呼び出しは変わらず、補強はnavelが推奨 正則化画像の偏りか髪がグレーになる副作用あり 以前の話 呼び出しは“trick or treatment”のつもりです これで補強したほうがいいかもしれないです“bikini,boot,gloves, layered bikini,purple bikini,pencil skirt,” あんまり把握してないけどさすがLora、いい感じに見えるので
Cameron/BERT-jigsaw-identityhate
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
37
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopterV2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 90.30 +/- 78.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Cameron/BERT-mdgender-convai-ternary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
I used the prompts and adopted them from [50 Stable Diffusion Photorealistic Portrait Prompts](https://decentralizedcreator.com/stable-diffusion-photorealistic-portrait-prompts/) Few examples: 1. smangrul, hyperrealistic portrait, bladerunner street, art of elysium by jeremy mann and alphonse mucha, fantasy art, photo realistic, dynamic lighting, artstation, poster, volumetric lighting, very detailed face, 4 k, award winning 2. A potrait of handsome smangrul in studio ghibli style animation, 4k HD, busy tokyo city in the background 3. portrait of smangrul by WLOP 4. a potrait of handsome smangrul 5. face protrait of smangrul, jeremy mann painting Ouputs: ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(7).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(9).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(18).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(19).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(21).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(25).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(38).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(23).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(31).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(34).png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/a.png) ![outputs](https://huggingface.co/smangrul/smangrul/resolve/main/download%20(14).png)
Cameron/BERT-mdgender-wizard
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- language: - gos --- A Gronings Wav2Vec2 model. This model is created by fine-tuning the multilingual [XLS-R](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model on Gronings speech. This model is part of the paper: Making More of Little Data: Improving Low-Resource Automatic Speech Recognition Using Data Augmentation. More information on [GitHub](https://github.com/Bartelds/asr-augmentation).
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1783.72 +/- 81.59 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.90 +/- 12.01 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Canyonevo/DialoGPT-medium-KingHenry
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.90 +/- 0.67 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CapitainData/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T13:30:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9485085819030161 - name: Recall type: recall value: 0.9579266240323123 - name: F1 type: f1 value: 0.9531943397806245 - name: Accuracy type: accuracy value: 0.9919979751567306 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0176 - Precision: 0.9485 - Recall: 0.9579 - F1: 0.9532 - Accuracy: 0.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.003 | 1.0 | 1756 | 0.0180 | 0.9397 | 0.9461 | 0.9429 | 0.9908 | | 0.0013 | 2.0 | 3512 | 0.0163 | 0.9456 | 0.9566 | 0.9511 | 0.9919 | | 0.0006 | 3.0 | 5268 | 0.0176 | 0.9485 | 0.9579 | 0.9532 | 0.9920 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.7.1 - Tokenizers 0.13.1
Capreolus/birch-bert-large-car_mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: wooihen/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Capreolus/birch-bert-large-mb
[ "pytorch", "tf", "jax", "bert", "next-sentence-prediction", "transformers" ]
null
{ "architectures": [ "BertForNextSentencePrediction" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - conversational --- # Harry Potter DialoGPT Model
Captain-1337/CrudeBERT
[ "pytorch", "bert", "text-classification", "arxiv:1908.10063", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: apache-2.0 language: - en tags: - audio - automatic-speech-recognition - hf-asr-leaderboard pipeline_tag: automatic-speech-recognition --- A fork of https://huggingface.co/openai/whisper-tiny.en exported to ONNX using [Optimum ONNX export](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model) 🤗
CarlosTron/Yo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
I used the prompts and adopted them from [50 Stable Diffusion Photorealistic Portrait Prompts](https://decentralizedcreator.com/stable-diffusion-photorealistic-portrait-prompts/): 1. A hyperrealistic painting of erenyeager, fantasy art, photo realistic, dynamic lighting, artstation, poster, volumetric lighting, very detailed face, 4 k, award winning 2. erenyeager having tea in a cafe facing eiffel tower 3. erenyeager in times square in the night, hyperrealistic, 4K, HD Ouputs: ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(10).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(11).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(15).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(17).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(20).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(22).png) ![outputs](https://huggingface.co/smangrul/erenyeager/resolve/main/download%20(24).png)
Cathy/reranking_model
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: khaled5321/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-large-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.78 +/- 0.16 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.72 +/- 0.31 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-tiny-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-fintuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8647266113447767 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-fintuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2577 | 1.0 | 525 | 0.1719 | 0.8077 | | 0.1254 | 2.0 | 1050 | 0.1362 | 0.8558 | | 0.081 | 3.0 | 1575 | 0.1357 | 0.8647 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/albert-tiny-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - generated_from_trainer model-index: - name: russian-spellchecking2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # russian-spellchecking2 This model is a fine-tuned version of [UrukHan/t5-russian-spell](https://huggingface.co/UrukHan/t5-russian-spell) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
dccuchile/albert-tiny-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: khaled5321/RND-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/albert-xlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of sloth animal in the Acropolis --- # DreamBooth model for the sloth concept trained by dobis-lks on the dobis-lks/test dataset. This is a Stable Diffusion model fine-tuned on the sloth concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of sloth animal** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `animal` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('dobis-lks/sloth-animal') image = pipeline().images[0] image ```
dccuchile/albert-xlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xlarge-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-ner
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
2023-01-24T14:41:52Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-pos
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-base-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
586
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-large-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-tiny-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
393
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xlarge-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
91
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/albert-xxlarge-spanish
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
{ "architectures": [ "AlbertForPreTraining" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-cased-finetuned-mldoc
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.