modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
dccuchile/bert-base-spanish-wwm-cased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-cased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-cased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-uncased-finetuned-mldoc
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
2023-01-24T14:42:05Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-uncased-finetuned-ner
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.51 +/- 17.32 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/bert-base-spanish-wwm-uncased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9371580169126181 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.9441242796291656 - name: Accuracy type: accuracy value: 0.9864455171601814 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9372 - Recall: 0.9512 - F1: 0.9441 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0877 | 1.0 | 1756 | 0.0710 | 0.9192 | 0.9318 | 0.9255 | 0.9816 | | 0.0352 | 2.0 | 3512 | 0.0641 | 0.9286 | 0.9478 | 0.9381 | 0.9857 | | 0.0172 | 3.0 | 5268 | 0.0622 | 0.9372 | 0.9512 | 0.9441 | 0.9864 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/bert-base-spanish-wwm-uncased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_Scratch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_Scratch This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.104 | 0.18 | 200 | 5.9641 | | 5.6973 | 0.36 | 400 | 5.5992 | | 5.5464 | 0.54 | 600 | 5.4564 | | 5.377 | 0.72 | 800 | 5.3606 | | 5.2162 | 0.9 | 1000 | 5.2674 | | 5.1499 | 1.08 | 1200 | 5.2080 | | 5.1313 | 1.26 | 1400 | 5.1447 | | 5.0138 | 1.44 | 1600 | 5.1041 | | 4.9509 | 1.62 | 1800 | 5.0572 | | 4.9598 | 1.8 | 2000 | 5.0185 | | 4.9581 | 1.98 | 2200 | 5.0109 | | 4.8458 | 2.16 | 2400 | 4.9608 | | 4.953 | 2.34 | 2600 | 4.9482 | | 4.7448 | 2.52 | 2800 | 4.9211 | | 4.8574 | 2.71 | 3000 | 4.9093 | | 4.8402 | 2.89 | 3200 | 4.8980 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
dccuchile/distilbert-base-spanish-uncased-finetuned-ner
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Uswa04/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/distilbert-base-spanish-uncased-finetuned-pos
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-ElectrifAi_v10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-ElectrifAi_v10 This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1748 - Rouge1: 58.3392 - Rouge2: 35.1686 - Rougel: 45.4136 - Rougelsum: 56.9138 - Gen Len: 108.375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 21 | 1.1573 | 56.0772 | 34.1572 | 44.3652 | 54.8621 | 106.0833 | | No log | 2.0 | 42 | 1.1764 | 57.7245 | 34.6517 | 45.67 | 56.3426 | 106.4167 | | No log | 3.0 | 63 | 1.1748 | 58.3392 | 35.1686 | 45.4136 | 56.9138 | 108.375 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2
Chae/botman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
This is a dummy repo created to test the huggingface_hub Python library.
Chaewon/mnmt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="SorinAbrudan/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Chakita/Friends
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Chakita/KROBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Kenemo/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Chakita/KannadaBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.20 +/- 13.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Champion/test_upload_vox2_wavlm_epoch8
[ "sidekit", "audio" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Aeona-Beta-New results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aeona-Beta-New This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 9 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6794 | 1.0 | 7463 | 3.5170 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Chan/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- SFT on [Reddit TL;DR](https://huggingface.co/datasets/CarperAI/openai_summarize_tldr)
CharlieChen/feedback-bigbird
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T16:19:51Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Ashraf-kasem/custom_gpt2_frames_text results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ashraf-kasem/custom_gpt2_frames_text This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3938 - Validation Loss: 2.0834 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 188670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.4252 | 4.4731 | 0 | | 4.1781 | 3.6928 | 1 | | 3.5744 | 3.2572 | 2 | | 3.1856 | 2.9789 | 3 | | 2.9095 | 2.7887 | 4 | | 2.6999 | 2.6534 | 5 | | 2.5334 | 2.5484 | 6 | | 2.3969 | 2.4706 | 7 | | 2.2826 | 2.4102 | 8 | | 2.1842 | 2.3518 | 9 | | 2.0988 | 2.3096 | 10 | | 2.0236 | 2.2740 | 11 | | 1.9569 | 2.2443 | 12 | | 1.8960 | 2.2214 | 13 | | 1.8411 | 2.1954 | 14 | | 1.7913 | 2.1815 | 15 | | 1.7457 | 2.1652 | 16 | | 1.7034 | 2.1552 | 17 | | 1.6648 | 2.1398 | 18 | | 1.6288 | 2.1289 | 19 | | 1.5955 | 2.1213 | 20 | | 1.5643 | 2.1114 | 21 | | 1.5359 | 2.1071 | 22 | | 1.5094 | 2.0998 | 23 | | 1.4846 | 2.0942 | 24 | | 1.4622 | 2.0911 | 25 | | 1.4420 | 2.0893 | 26 | | 1.4233 | 2.0879 | 27 | | 1.4074 | 2.0838 | 28 | | 1.3938 | 2.0834 | 29 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.0 - Datasets 2.8.0 - Tokenizers 0.13.2
Cheapestmedsshop/Buymodafinilus
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- SFT on [Reddit TL;DR](https://huggingface.co/datasets/CarperAI/openai_summarize_tldr)
Cheatham/xlm-roberta-base-finetuned
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: mit --- SFT on [Reddit TL;DR](https://huggingface.co/datasets/CarperAI/openai_summarize_tldr)
CheonggyeMountain-Sherpa/kogpt-trinity-poem
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: 200.13 +/- 145.83 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chertilasus/main
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit language: - pt metrics: - bleurt thumbnail: Word2vec for Portuguese Legal Domain pipeline_tag: summarization --- [![INESC-ID](https://www.inesc-id.pt/wp-content/uploads/2019/06/INESC-ID-logo_01.png)](https://www.inesc-id.pt/projects/PR07005/) Work developed as part of [Project IRIS](https://www.inesc-id.pt/projects/PR07005/). Word2Vec trained for Portuguese Legal Domain ## Citing & Authors ### Contributions [@MartimZanatti](https://github.com/MartimZanatti)
Chester/traffic-rec
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape widget: - text: a photo of fgreeneruins ruins in Paris in front of the Arc de triomphe, mdjrny-v4 style --- # DreamBooth model for the fgreeneruins concept trained on the CCMat/db-forest-ruins dataset. This is a Stable Diffusion model fine-tuned on the fgreeneruins concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of fgreeneruins ruins** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `ruins` images for the landscape theme.<br> Concept: **fgreeneruins** : forest ruins, greenery ruins<br> Pretrained Model: [prompthero/openjourney](https://huggingface.co/prompthero/openjourney)<br> Learning rate: 2e-6<br> ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CCMat/fgreeneruins-ruins-mdj') image = pipeline().images[0] image ``` ## Samples Prompt: "high quality photo of Venice in fgreeneruins ruins, HDR, UHD, 64K" ![example images](images/416f43963ab43a43541c737a4fe7210c.png) <br> Prompt: "Fallout concept of fgreeneruins ruins in underwater city, unreal engine 5" ![example images](images/11c0880ae973031f5d6180519e14b5a0.png) <br> Prompt: "New York City in fgreeneruins ruins with the Empire State Building in the background by Alejandro Bursido" ![example images](images/adad061f7c53713c1811d902bb22497e.png) <br> Prompt: "Manhattan in fgreeneruins ruins by Makoto Shinkai" ![example images](images/f83246cd3df6221dbf4ef29e73cecbf7.png) <br> Prompt: "The Taj Mahal in fgreeneruins ruins, professional photograph" ![example images](images/172f9a41e691aeec772d8f03be2c64ce.png)
Ching/negation_detector
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.15 +/- 18.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chinmay/mlindia
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/btctn-eth-solana/1674579901677/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1140965421908144128/_80iSgFS_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1258321209730760705/1hkrHoOT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1472933274209107976/6u-LQfjG_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bitcoin News & ETH Zürich & Solana</div> <div style="text-align: center; font-size: 14px;">@btctn-eth-solana</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bitcoin News & ETH Zürich & Solana. | Data | Bitcoin News | ETH Zürich | Solana | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3246 | 3217 | | Retweets | 28 | 1023 | 1697 | | Short tweets | 3 | 34 | 214 | | Tweets kept | 3218 | 2189 | 1306 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fvjzvqzc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btctn-eth-solana's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/u13r00ou) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/u13r00ou/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btctn-eth-solana') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Chiuchiyin/DialoGPT-small-Donald
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-01-24T17:05:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1908 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1908, "warmup_steps": 191, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Chiuchiyin/Donald
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-24T17:06:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2604 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 260, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Contrastive-Tension/BERT-Large-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
# Joint Pruning, Quantization and Distillation for BERT-large/SQuADv1.1 ## Setup ```bash git clone https://github.com/vuiseng9/optimum-intel cd optimum-intel pip install -e .[openvino,nncf] cd examples/openvino/question-answering/ pip install -r requirements.txt pip install wandb # optional ``` ## Run ```bash NNCFCFG=/path/to/openvino_config.json MASTER_PORT=<PORTID> RUNID=<RUN_IDENTIFIER> OUTDIR=/path/to/saved_model NEPOCH=30 python -m torch.distributed.launch \ --nproc_per_node 4 \ --master_port $MASTER_PORT \ run_qa.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --teacher_model_or_path bert-large-uncased-whole-word-masking-finetuned-squad \ --distillation_weight 0.9 \ --do_eval \ --fp16 \ --do_train \ --learning_rate 3e-5 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --logging_steps 1 \ --evaluation_strategy steps \ --eval_steps 250 \ --save_steps 500 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR \ --nncf_compression_config $NNCFCFG ``` ### Reference Results ``` Global Step: 41000 F1: 90.842 EM: 84.276 Structured Sparsity (linear): 77.73% ```
CrypticT1tan/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-frozenlake-v1-4x4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Kenemo/q-learning-frozenlake-v1-4x4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
CurtisBowser/DialoGPT-medium-sora
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: cc-by-3.0 --- # Embeddings A collection of embeddings I've created. ### Araknope A stable diffusion embedding trained on a collection of high resolution macro photos of spiders. **Trigger**: `araknope` ### Beez A stable diffusion embedding trained on a collection of high resolution macro photos of bees. **Trigger**: `beez` ### Pmantis A stable diffusion embedding trained on a collection of high resolution macro photos of praying mantises. **Trigger**: `pmantis`
D3xter1922/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
<h1><b>Better Pastel Mix</b></h1> <a href="https://huggingface.co/andite/pastel-mix">Pastel Mix</a> but better. ![](https://media.discordapp.net/attachments/1019446913268973689/1067580510227943535/xy_grid-0000-2260657263-masterpiece20best20quality20upper20body201girl20looking20at20viewer20red20hair20medium20hair20purple20eyes20demon20horns20black20coat20in.png)
D3xter1922/electra-base-discriminator-finetuned-cola
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "ElectraForSequenceClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- license: openrail language: - en - fa metrics: - code_eval ---
Danih1502/t5-small-finetuned-en-to-de
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: openrail --- # Detection Challenges TODO: explain what this repo is TODO: link to larger source
DannyMichael/ECU911
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
SFT on [Reddit TL;DR](https://huggingface.co/datasets/CarperAI/openai_summarize_tldr)
Darkecho789/email-gen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.66 +/- 17.03 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DarkestSky/distilbert-base-uncased-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: jeju-ko-nmt-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jeju-ko-nmt-v7 This model is a fine-tuned version of [leadawon/jeju-ko-nmt-v6](https://huggingface.co/leadawon/jeju-ko-nmt-v6) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
DataikuNLP/camembert-base
[ "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: artistic-2.0 --- # Model Card for 7thv3HoloAbyss <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description HoloCreamSafe (A) | 7th Layer V3 A (B) @ 0.5 Weighted Sum HoloCreamSafe7thLayerV3A (A) | AbyssOrangeMix2_hard @ 0.5 Weighted Sum ## Model Sources HoloCreamSafe https://pixeldrain.com/u/SKoxx1wH 7th V3 A https://huggingface.co/syaimu/7th_Layer/tree/main AbyssOrangeMix2 https://huggingface.co/WarriorMama777/OrangeMixs/tree/main/Models/AbyssOrangeMix2 ## Recommendations DPM++ 2S a Karras CFG 5 Steps 60 4x UltraSharp Denoise: 0.56 bad-artist embed: https://huggingface.co/NiXXerHATTER59/bad-artist/tree/main ## How to Get Started with the Model https://files.catbox.moe/v58q5q.png Positive:nsfw, inside, outside, 1girl, (eyeliner:1.1), (pastel_goth:1.1), blue_eyes, long_hair, bangs, straight bangs, fringe, shiny_skin, (huge_thighs:1.1), (wide_hips:1.1), (huge breasts:1.1), (ostrich onesie:1.2), full_body, medium_shot Negative:bad-artist, out of frame, cropped ## Results <img src="https://i.imgur.com/VTHwReo.png" width="480" height=""> <img src="https://i.imgur.com/UAKTQR0.png" width="480" height="">
DataikuNLP/paraphrase-albert-small-v2
[ "pytorch", "albert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "AlbertModel" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
628
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilroberta-base-mrpc-glu-cristian-agudelo results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.821078431372549 - name: F1 type: f1 value: 0.8712522045855379 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrpc-glu-cristian-agudelo This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9131 - Accuracy: 0.8211 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.285 | 1.09 | 500 | 0.8959 | 0.8407 | 0.8845 | | 0.2653 | 2.18 | 1000 | 0.9131 | 0.8211 | 0.8713 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-luganda
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
2023-01-25T02:52:15Z
--- license: cc0-1.0 --- https://huggingface.co/deadman44/SD_Anime_Merged_Models
Davlan/bert-base-multilingual-cased-finetuned-luo
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: Brain_Tumor_Classification_using_swin_transformer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9949179046129789 - name: F1 type: f1 value: 0.9949179046129789 - name: Recall type: recall value: 0.9949179046129789 - name: Precision type: precision value: 0.9949179046129789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Brain_Tumor_Classification_using_swin_transformer This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0118 - Accuracy: 0.9949 - F1: 0.9949 - Recall: 0.9949 - Precision: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.081 | 1.0 | 180 | 0.0557 | 0.9832 | 0.9832 | 0.9832 | 0.9832 | | 0.0816 | 2.0 | 360 | 0.0187 | 0.9937 | 0.9937 | 0.9937 | 0.9937 | | 0.0543 | 3.0 | 540 | 0.0118 | 0.9949 | 0.9949 | 0.9949 | 0.9949 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
Davlan/byt5-base-eng-yor-mt
[ "pytorch", "t5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - braedennorris/autotrain-data-enterprise_v_consumer co2_eq_emissions: emissions: 1.1718652256627062 --- Enterprise = 1 Consumer = 0 # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3052187265 - CO2 Emissions (in grams): 1.1719 ## Validation Metrics - Loss: 0.428 - Accuracy: 0.824 - Precision: 0.805 - Recall: 0.896 - AUC: 0.891 - F1: 0.848 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/braedennorris/autotrain-enterprise_v_consumer-3052187265 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("braedennorris/autotrain-enterprise_v_consumer-3052187265", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("braedennorris/autotrain-enterprise_v_consumer-3052187265", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Davlan/mT5_base_yoruba_adr
[ "pytorch", "mt5", "text2text-generation", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: openrail --- Also on https://civitai.com/models/5301/elysium-kuro-anime Anime model is custom mix + finetune on dataset of high quality images (mix including Anything 4.0, WD 1.4 Booru, Seek Art Mega V1) and contains the contains the kl-f8-anime2 VAE from Waifu Diffusion. Example settings: Negative prompt: (lowres:1.1), (worst quality:1.2), (low quality:1.1), bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, normal quality, jpeg artifacts, signature, watermark, username, blurry (General model): Clip skip 1, VAE: 'vae-ft-mse-840000' from StabilityAI (included) (Anime model): Clip skip 2, VAE: 'kl-f8-anime2.ckpt' from Waifu Diffusion (included) Example images from anime model: ![awiog.jpg](https://s3.amazonaws.com/moonup/production/uploads/1674681388521-6351b7e2ea4e5b421fb0d42d.jpeg) General model coming soon.
Davlan/mt5-small-en-pcm
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 datasets: - allenai/objaverse - allenai/soda metrics: - accuracy - cer - character - code_eval library_name: adapter-transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
Davlan/mt5_base_yor_eng_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit datasets: - emotion language: - en library_name: transformers --- - **Developed by:** Heegyu Kim - **Model type:** GPT-2 - **Language(s) (NLP):** English - **License:** MIT # Uses ``` from transformers import pipeline generator = pipeline('text-generation', 'heegyu/gpt2-emotion') prompt = "sadness I'm so " # start token should be one of ["sadness", "joy", "love", "anger", "fear", "surprise"] print(generator(prompt)[0]['generated_text']) >>> sadness I'm so tired of seeing all the stupid things that i ve learned from past years that i feel like ive been so stupid and blah and then i feel like ive just wasted all my energy doing stupid shit like how i never ```
Davlan/xlm-roberta-base-finetuned-amharic
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
401
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2164.04 +/- 80.36 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/xlm-roberta-base-finetuned-english
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - vision - depth-estimation - generated_from_trainer model-index: - name: glpn-nyu-finetuned-diode-230125-042306 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glpn-nyu-finetuned-diode-230125-042306 This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset. It achieves the following results on the evaluation set: - Loss: 0.4380 - Mae: 0.4255 - Rmse: 0.6150 - Abs Rel: 0.4444 - Log Mae: 0.1724 - Log Rmse: 0.2247 - Delta1: 0.3675 - Delta2: 0.6329 - Delta3: 0.8147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 24 - eval_batch_size: 48 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:| | 1.0761 | 1.0 | 72 | 0.5029 | 0.4779 | 0.6689 | 0.5504 | 0.2005 | 0.2590 | 0.3023 | 0.5336 | 0.8000 | | 0.4776 | 2.0 | 144 | 0.4638 | 0.4495 | 0.6305 | 0.4854 | 0.1854 | 0.2371 | 0.3323 | 0.5842 | 0.7749 | | 0.4668 | 3.0 | 216 | 0.4843 | 0.4705 | 0.6368 | 0.5459 | 0.1961 | 0.2469 | 0.3115 | 0.5258 | 0.7237 | | 0.439 | 4.0 | 288 | 0.4596 | 0.4383 | 0.6224 | 0.4903 | 0.1794 | 0.2347 | 0.3564 | 0.6054 | 0.7900 | | 0.4629 | 5.0 | 360 | 0.4846 | 0.4622 | 0.6347 | 0.5505 | 0.1914 | 0.2466 | 0.3240 | 0.5567 | 0.7432 | | 0.4557 | 6.0 | 432 | 0.4660 | 0.4399 | 0.6223 | 0.5107 | 0.1801 | 0.2373 | 0.3605 | 0.5922 | 0.7992 | | 0.4131 | 7.0 | 504 | 0.4737 | 0.4466 | 0.6291 | 0.4877 | 0.1847 | 0.2387 | 0.3592 | 0.5753 | 0.7545 | | 0.3742 | 8.0 | 576 | 0.4756 | 0.4555 | 0.6363 | 0.5127 | 0.1879 | 0.2424 | 0.3462 | 0.5642 | 0.7581 | | 0.3943 | 9.0 | 648 | 0.4816 | 0.4606 | 0.6340 | 0.5566 | 0.1901 | 0.2459 | 0.3304 | 0.5512 | 0.7484 | | 0.3699 | 10.0 | 720 | 0.4779 | 0.4527 | 0.6289 | 0.5402 | 0.1869 | 0.2433 | 0.3419 | 0.5659 | 0.7699 | | 0.3695 | 11.0 | 792 | 0.4335 | 0.4185 | 0.6141 | 0.4174 | 0.1685 | 0.2210 | 0.3837 | 0.6484 | 0.8142 | | 0.4268 | 12.0 | 864 | 0.4831 | 0.4622 | 0.6345 | 0.5491 | 0.1912 | 0.2456 | 0.3283 | 0.5515 | 0.7369 | | 0.4295 | 13.0 | 936 | 0.4512 | 0.4421 | 0.6267 | 0.4498 | 0.1803 | 0.2292 | 0.3508 | 0.5951 | 0.7803 | | 0.4071 | 14.0 | 1008 | 0.4632 | 0.4514 | 0.6295 | 0.4755 | 0.1842 | 0.2334 | 0.3514 | 0.5676 | 0.7346 | | 0.4383 | 15.0 | 1080 | 0.4655 | 0.4394 | 0.6283 | 0.4894 | 0.1793 | 0.2370 | 0.3762 | 0.6022 | 0.7816 | | 0.4009 | 16.0 | 1152 | 0.4684 | 0.4434 | 0.6294 | 0.5215 | 0.1814 | 0.2403 | 0.3601 | 0.5881 | 0.7980 | | 0.3889 | 17.0 | 1224 | 0.4619 | 0.4379 | 0.6357 | 0.4623 | 0.1791 | 0.2389 | 0.3946 | 0.6088 | 0.7665 | | 0.4114 | 18.0 | 1296 | 0.4838 | 0.4642 | 0.6358 | 0.5514 | 0.1924 | 0.2471 | 0.3310 | 0.5444 | 0.7336 | | 0.3656 | 19.0 | 1368 | 0.4771 | 0.4524 | 0.6317 | 0.5284 | 0.1869 | 0.2428 | 0.3379 | 0.5765 | 0.7665 | | 0.4117 | 20.0 | 1440 | 0.4388 | 0.4187 | 0.6257 | 0.4113 | 0.1680 | 0.2270 | 0.4162 | 0.6619 | 0.8001 | | 0.3641 | 21.0 | 1512 | 0.4593 | 0.4374 | 0.6238 | 0.4773 | 0.1779 | 0.2332 | 0.3705 | 0.6088 | 0.7745 | | 0.3559 | 22.0 | 1584 | 0.4534 | 0.4300 | 0.6242 | 0.4663 | 0.1747 | 0.2329 | 0.3854 | 0.6288 | 0.7987 | | 0.3897 | 23.0 | 1656 | 0.4695 | 0.4506 | 0.6292 | 0.5215 | 0.1852 | 0.2404 | 0.3432 | 0.5746 | 0.7698 | | 0.4281 | 24.0 | 1728 | 0.4920 | 0.4693 | 0.6380 | 0.5835 | 0.1949 | 0.2514 | 0.3239 | 0.5352 | 0.7230 | | 0.4113 | 25.0 | 1800 | 0.4525 | 0.4335 | 0.6405 | 0.4109 | 0.1757 | 0.2330 | 0.4046 | 0.6251 | 0.7878 | | 0.3734 | 26.0 | 1872 | 0.4357 | 0.4159 | 0.6203 | 0.4158 | 0.1667 | 0.2241 | 0.4234 | 0.6609 | 0.7919 | | 0.3408 | 27.0 | 1944 | 0.4544 | 0.4419 | 0.6257 | 0.4712 | 0.1806 | 0.2325 | 0.3525 | 0.5993 | 0.7850 | | 0.3816 | 28.0 | 2016 | 0.4622 | 0.4465 | 0.6252 | 0.4919 | 0.1823 | 0.2346 | 0.3465 | 0.5844 | 0.7687 | | 0.3643 | 29.0 | 2088 | 0.4534 | 0.4370 | 0.6219 | 0.4721 | 0.1778 | 0.2311 | 0.3653 | 0.6016 | 0.7886 | | 0.3762 | 30.0 | 2160 | 0.4418 | 0.4302 | 0.6209 | 0.4394 | 0.1745 | 0.2261 | 0.3724 | 0.6226 | 0.7944 | | 0.3704 | 31.0 | 2232 | 0.4723 | 0.4496 | 0.6271 | 0.5262 | 0.1848 | 0.2406 | 0.3477 | 0.5726 | 0.7679 | | 0.3657 | 32.0 | 2304 | 0.4458 | 0.4311 | 0.6188 | 0.4580 | 0.1755 | 0.2283 | 0.3641 | 0.6167 | 0.8132 | | 0.4261 | 33.0 | 2376 | 0.4551 | 0.4360 | 0.6240 | 0.4757 | 0.1778 | 0.2333 | 0.3707 | 0.6109 | 0.7859 | | 0.3499 | 34.0 | 2448 | 0.4297 | 0.4131 | 0.6154 | 0.4141 | 0.1654 | 0.2222 | 0.4208 | 0.6585 | 0.8011 | | 0.3316 | 35.0 | 2520 | 0.4553 | 0.4368 | 0.6200 | 0.4786 | 0.1780 | 0.2317 | 0.3625 | 0.6038 | 0.7848 | | 0.3468 | 36.0 | 2592 | 0.4430 | 0.4275 | 0.6159 | 0.4460 | 0.1732 | 0.2253 | 0.3776 | 0.6204 | 0.8069 | | 0.3439 | 37.0 | 2664 | 0.4550 | 0.4353 | 0.6234 | 0.4678 | 0.1772 | 0.2319 | 0.3741 | 0.6089 | 0.7857 | | 0.3854 | 38.0 | 2736 | 0.4619 | 0.4410 | 0.6238 | 0.4960 | 0.1806 | 0.2359 | 0.3556 | 0.5983 | 0.7832 | | 0.3521 | 39.0 | 2808 | 0.4743 | 0.4607 | 0.6317 | 0.5248 | 0.1902 | 0.2412 | 0.3241 | 0.5544 | 0.7351 | | 0.3836 | 40.0 | 2880 | 0.4701 | 0.4508 | 0.6264 | 0.5249 | 0.1856 | 0.2399 | 0.3364 | 0.5747 | 0.7680 | | 0.3601 | 41.0 | 2952 | 0.4749 | 0.4551 | 0.6281 | 0.5289 | 0.1879 | 0.2412 | 0.3288 | 0.5613 | 0.7672 | | 0.3552 | 42.0 | 3024 | 0.4403 | 0.4215 | 0.6224 | 0.4299 | 0.1697 | 0.2267 | 0.4062 | 0.6517 | 0.8015 | | 0.3582 | 43.0 | 3096 | 0.4307 | 0.4170 | 0.6174 | 0.4187 | 0.1676 | 0.2229 | 0.4009 | 0.6648 | 0.8095 | | 0.332 | 44.0 | 3168 | 0.4663 | 0.4462 | 0.6244 | 0.5113 | 0.1834 | 0.2376 | 0.3452 | 0.5794 | 0.7755 | | 0.3407 | 45.0 | 3240 | 0.4491 | 0.4333 | 0.6202 | 0.4714 | 0.1770 | 0.2309 | 0.3514 | 0.6155 | 0.8089 | | 0.3613 | 46.0 | 3312 | 0.4767 | 0.4539 | 0.6282 | 0.5360 | 0.1874 | 0.2423 | 0.3333 | 0.5698 | 0.7528 | | 0.3729 | 47.0 | 3384 | 0.4647 | 0.4435 | 0.6244 | 0.5128 | 0.1822 | 0.2381 | 0.3471 | 0.5923 | 0.7886 | | 0.3304 | 48.0 | 3456 | 0.4431 | 0.4285 | 0.6150 | 0.4599 | 0.1739 | 0.2266 | 0.3627 | 0.6212 | 0.8095 | | 0.357 | 49.0 | 3528 | 0.4558 | 0.4372 | 0.6219 | 0.4788 | 0.1784 | 0.2324 | 0.3579 | 0.6054 | 0.7861 | | 0.3548 | 50.0 | 3600 | 0.4482 | 0.4308 | 0.6197 | 0.4612 | 0.1753 | 0.2295 | 0.3663 | 0.6237 | 0.8060 | | 0.3332 | 51.0 | 3672 | 0.4533 | 0.4317 | 0.6252 | 0.4710 | 0.1755 | 0.2330 | 0.3745 | 0.6278 | 0.7971 | | 0.3369 | 52.0 | 3744 | 0.4350 | 0.4189 | 0.6203 | 0.4229 | 0.1683 | 0.2249 | 0.4017 | 0.6581 | 0.8048 | | 0.3379 | 53.0 | 3816 | 0.4344 | 0.4192 | 0.6192 | 0.4275 | 0.1683 | 0.2242 | 0.3953 | 0.6563 | 0.8049 | | 0.3237 | 54.0 | 3888 | 0.4554 | 0.4392 | 0.6223 | 0.4822 | 0.1798 | 0.2328 | 0.3529 | 0.5952 | 0.7919 | | 0.3523 | 55.0 | 3960 | 0.4511 | 0.4350 | 0.6207 | 0.4752 | 0.1771 | 0.2311 | 0.3673 | 0.6043 | 0.7962 | | 0.326 | 56.0 | 4032 | 0.4460 | 0.4327 | 0.6208 | 0.4581 | 0.1756 | 0.2282 | 0.3644 | 0.6160 | 0.8041 | | 0.3214 | 57.0 | 4104 | 0.4397 | 0.4252 | 0.6160 | 0.4384 | 0.1717 | 0.2241 | 0.3749 | 0.6333 | 0.8019 | | 0.3342 | 58.0 | 4176 | 0.4493 | 0.4316 | 0.6176 | 0.4685 | 0.1754 | 0.2291 | 0.3640 | 0.6201 | 0.7951 | | 0.3361 | 59.0 | 4248 | 0.4568 | 0.4394 | 0.6215 | 0.4935 | 0.1798 | 0.2341 | 0.3509 | 0.5953 | 0.7997 | | 0.3141 | 60.0 | 4320 | 0.4425 | 0.4270 | 0.6182 | 0.4459 | 0.1727 | 0.2265 | 0.3829 | 0.6222 | 0.7972 | | 0.3395 | 61.0 | 4392 | 0.4397 | 0.4229 | 0.6138 | 0.4450 | 0.1707 | 0.2246 | 0.3807 | 0.6318 | 0.8108 | | 0.3124 | 62.0 | 4464 | 0.4232 | 0.4104 | 0.6128 | 0.4073 | 0.1641 | 0.2192 | 0.4074 | 0.6707 | 0.8209 | | 0.3106 | 63.0 | 4536 | 0.4426 | 0.4223 | 0.6156 | 0.4504 | 0.1708 | 0.2267 | 0.3869 | 0.6404 | 0.8063 | | 0.3268 | 64.0 | 4608 | 0.4391 | 0.4242 | 0.6160 | 0.4409 | 0.1715 | 0.2248 | 0.3818 | 0.6346 | 0.8082 | | 0.3153 | 65.0 | 4680 | 0.4558 | 0.4355 | 0.6204 | 0.4877 | 0.1779 | 0.2333 | 0.3607 | 0.6069 | 0.8013 | | 0.3063 | 66.0 | 4752 | 0.4367 | 0.4206 | 0.6154 | 0.4402 | 0.1694 | 0.2246 | 0.3891 | 0.6475 | 0.8129 | | 0.3327 | 67.0 | 4824 | 0.4668 | 0.4466 | 0.6246 | 0.5172 | 0.1834 | 0.2383 | 0.3465 | 0.5778 | 0.7821 | | 0.3189 | 68.0 | 4896 | 0.4423 | 0.4265 | 0.6171 | 0.4531 | 0.1726 | 0.2267 | 0.3748 | 0.6261 | 0.8109 | | 0.3241 | 69.0 | 4968 | 0.4606 | 0.4433 | 0.6227 | 0.5013 | 0.1817 | 0.2353 | 0.3480 | 0.5843 | 0.7906 | | 0.3165 | 70.0 | 5040 | 0.4359 | 0.4222 | 0.6128 | 0.4366 | 0.1702 | 0.2229 | 0.3809 | 0.6371 | 0.8136 | | 0.3293 | 71.0 | 5112 | 0.4289 | 0.4150 | 0.6109 | 0.4181 | 0.1666 | 0.2197 | 0.3948 | 0.6586 | 0.8183 | | 0.3256 | 72.0 | 5184 | 0.4457 | 0.4295 | 0.6174 | 0.4632 | 0.1747 | 0.2286 | 0.3657 | 0.6209 | 0.8117 | | 0.3129 | 73.0 | 5256 | 0.4481 | 0.4314 | 0.6178 | 0.4680 | 0.1755 | 0.2291 | 0.3597 | 0.6201 | 0.8060 | | 0.3197 | 74.0 | 5328 | 0.4365 | 0.4228 | 0.6150 | 0.4400 | 0.1706 | 0.2240 | 0.3744 | 0.6410 | 0.8159 | | 0.323 | 75.0 | 5400 | 0.4351 | 0.4221 | 0.6137 | 0.4352 | 0.1703 | 0.2230 | 0.3752 | 0.6392 | 0.8141 | | 0.3087 | 76.0 | 5472 | 0.4342 | 0.4215 | 0.6155 | 0.4321 | 0.1701 | 0.2232 | 0.3765 | 0.6439 | 0.8180 | | 0.3126 | 77.0 | 5544 | 0.4362 | 0.4247 | 0.6160 | 0.4377 | 0.1717 | 0.2241 | 0.3731 | 0.6397 | 0.8094 | | 0.3185 | 78.0 | 5616 | 0.4377 | 0.4234 | 0.6163 | 0.4446 | 0.1713 | 0.2256 | 0.3737 | 0.6433 | 0.8163 | | 0.3195 | 79.0 | 5688 | 0.4426 | 0.4265 | 0.6174 | 0.4576 | 0.1731 | 0.2280 | 0.3734 | 0.6336 | 0.8149 | | 0.3173 | 80.0 | 5760 | 0.4415 | 0.4259 | 0.6168 | 0.4550 | 0.1725 | 0.2273 | 0.3714 | 0.6381 | 0.8135 | | 0.3207 | 81.0 | 5832 | 0.4374 | 0.4258 | 0.6172 | 0.4402 | 0.1722 | 0.2249 | 0.3689 | 0.6359 | 0.8095 | | 0.3258 | 82.0 | 5904 | 0.4405 | 0.4283 | 0.6173 | 0.4445 | 0.1737 | 0.2257 | 0.3646 | 0.6299 | 0.8078 | | 0.2971 | 83.0 | 5976 | 0.4430 | 0.4307 | 0.6185 | 0.4529 | 0.1748 | 0.2271 | 0.3604 | 0.6259 | 0.8040 | | 0.3132 | 84.0 | 6048 | 0.4423 | 0.4277 | 0.6157 | 0.4478 | 0.1732 | 0.2252 | 0.3703 | 0.6270 | 0.8049 | | 0.3281 | 85.0 | 6120 | 0.4378 | 0.4240 | 0.6152 | 0.4368 | 0.1713 | 0.2238 | 0.3770 | 0.6407 | 0.8108 | | 0.3023 | 86.0 | 6192 | 0.4371 | 0.4241 | 0.6145 | 0.4405 | 0.1715 | 0.2241 | 0.3726 | 0.6370 | 0.8153 | | 0.3051 | 87.0 | 6264 | 0.4327 | 0.4194 | 0.6136 | 0.4288 | 0.1692 | 0.2222 | 0.3798 | 0.6511 | 0.8170 | | 0.3076 | 88.0 | 6336 | 0.4319 | 0.4175 | 0.6122 | 0.4262 | 0.1680 | 0.2215 | 0.3889 | 0.6534 | 0.8183 | | 0.2981 | 89.0 | 6408 | 0.4374 | 0.4244 | 0.6136 | 0.4402 | 0.1716 | 0.2236 | 0.3728 | 0.6331 | 0.8140 | | 0.3238 | 90.0 | 6480 | 0.4349 | 0.4222 | 0.6136 | 0.4371 | 0.1706 | 0.2233 | 0.3743 | 0.6418 | 0.8195 | | 0.32 | 91.0 | 6552 | 0.4375 | 0.4240 | 0.6143 | 0.4417 | 0.1715 | 0.2242 | 0.3717 | 0.6379 | 0.8165 | | 0.3087 | 92.0 | 6624 | 0.4421 | 0.4288 | 0.6162 | 0.4531 | 0.1739 | 0.2263 | 0.3652 | 0.6244 | 0.8125 | | 0.3207 | 93.0 | 6696 | 0.4352 | 0.4216 | 0.6129 | 0.4376 | 0.1702 | 0.2231 | 0.3782 | 0.6406 | 0.8184 | | 0.3064 | 94.0 | 6768 | 0.4398 | 0.4259 | 0.6148 | 0.4478 | 0.1727 | 0.2252 | 0.3685 | 0.6300 | 0.8147 | | 0.3076 | 95.0 | 6840 | 0.4385 | 0.4258 | 0.6147 | 0.4446 | 0.1724 | 0.2246 | 0.3669 | 0.6321 | 0.8135 | | 0.3181 | 96.0 | 6912 | 0.4393 | 0.4262 | 0.6150 | 0.4471 | 0.1728 | 0.2251 | 0.3663 | 0.6306 | 0.8147 | | 0.2956 | 97.0 | 6984 | 0.4392 | 0.4271 | 0.6156 | 0.4470 | 0.1731 | 0.2252 | 0.3650 | 0.6297 | 0.8141 | | 0.3026 | 98.0 | 7056 | 0.4390 | 0.4260 | 0.6151 | 0.4462 | 0.1726 | 0.2250 | 0.3669 | 0.6317 | 0.8144 | | 0.329 | 99.0 | 7128 | 0.4362 | 0.4242 | 0.6156 | 0.4389 | 0.1713 | 0.2238 | 0.3716 | 0.6380 | 0.8156 | | 0.3095 | 100.0 | 7200 | 0.4380 | 0.4255 | 0.6150 | 0.4444 | 0.1724 | 0.2247 | 0.3675 | 0.6329 | 0.8147 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-igbo
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.11 +/- 15.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/xlm-roberta-base-finetuned-kinyarwanda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_cola_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_cola_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6180 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.647 | 1.0 | 34 | 0.6332 | 0.0 | | 0.6203 | 2.0 | 68 | 0.6210 | 0.0 | | 0.6092 | 3.0 | 102 | 0.6180 | 0.0 | | 0.6077 | 4.0 | 136 | 0.6185 | 0.0 | | 0.6083 | 5.0 | 170 | 0.6184 | 0.0 | | 0.607 | 6.0 | 204 | 0.6185 | 0.0 | | 0.6078 | 7.0 | 238 | 0.6186 | 0.0 | | 0.6087 | 8.0 | 272 | 0.6184 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-lingala
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_cola_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6165 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6103 | 1.0 | 34 | 0.6217 | 0.0 | | 0.6077 | 2.0 | 68 | 0.6179 | 0.0 | | 0.606 | 3.0 | 102 | 0.6182 | 0.0 | | 0.6062 | 4.0 | 136 | 0.6165 | 0.0 | | 0.5906 | 5.0 | 170 | 0.6183 | 0.0961 | | 0.5491 | 6.0 | 204 | 0.6250 | 0.0495 | | 0.512 | 7.0 | 238 | 0.6579 | 0.1173 | | 0.4877 | 8.0 | 272 | 0.6908 | 0.1043 | | 0.464 | 9.0 | 306 | 0.6860 | 0.1197 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-luganda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_cola_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_cola_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6140 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6159 | 1.0 | 34 | 0.6201 | 0.0 | | 0.6081 | 2.0 | 68 | 0.6188 | 0.0 | | 0.6067 | 3.0 | 102 | 0.6185 | 0.0 | | 0.6082 | 4.0 | 136 | 0.6197 | 0.0 | | 0.6077 | 5.0 | 170 | 0.6180 | 0.0 | | 0.6043 | 6.0 | 204 | 0.6140 | 0.0 | | 0.5772 | 7.0 | 238 | 0.6189 | 0.0944 | | 0.5369 | 8.0 | 272 | 0.6379 | 0.1201 | | 0.5082 | 9.0 | 306 | 0.6448 | 0.0828 | | 0.4948 | 10.0 | 340 | 0.6781 | 0.1243 | | 0.4788 | 11.0 | 374 | 0.6972 | 0.1021 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-luo
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-dialogsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-dialogsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2771 - Rouge1: 36.5788 - Rouge2: 13.75 - Rougel: 30.9066 - Rougelsum: 32.8118 - Gen Len: 18.846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4705 | 1.0 | 4154 | 1.3514 | 34.3952 | 11.8123 | 28.9797 | 31.003 | 18.76 | | 1.418 | 2.0 | 8308 | 1.3023 | 35.904 | 12.9905 | 30.3195 | 32.1809 | 18.83 | | 1.3933 | 3.0 | 12462 | 1.2832 | 36.1796 | 13.6096 | 30.6577 | 32.5292 | 18.884 | | 1.3875 | 4.0 | 16616 | 1.2771 | 36.5788 | 13.75 | 30.9066 | 32.8118 | 18.846 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-naija
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_mrpc_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6887254901960784 - name: F1 type: f1 value: 0.7829059829059829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mrpc_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5873 - Accuracy: 0.6887 - F1: 0.7829 - Combined Score: 0.7358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6677 | 1.0 | 15 | 0.6479 | 0.6838 | 0.8122 | 0.7480 | | 0.6455 | 2.0 | 30 | 0.6395 | 0.6838 | 0.8122 | 0.7480 | | 0.6399 | 3.0 | 45 | 0.6331 | 0.6838 | 0.8122 | 0.7480 | | 0.6361 | 4.0 | 60 | 0.6288 | 0.6838 | 0.8122 | 0.7480 | | 0.6352 | 5.0 | 75 | 0.6262 | 0.6838 | 0.8122 | 0.7480 | | 0.6315 | 6.0 | 90 | 0.6252 | 0.6838 | 0.8122 | 0.7480 | | 0.6331 | 7.0 | 105 | 0.6244 | 0.6838 | 0.8122 | 0.7480 | | 0.6292 | 8.0 | 120 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6314 | 9.0 | 135 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6296 | 10.0 | 150 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 11.0 | 165 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.63 | 12.0 | 180 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6337 | 13.0 | 195 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6299 | 14.0 | 210 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6297 | 15.0 | 225 | 0.6230 | 0.6838 | 0.8122 | 0.7480 | | 0.6248 | 16.0 | 240 | 0.6187 | 0.6838 | 0.8122 | 0.7480 | | 0.6065 | 17.0 | 255 | 0.5999 | 0.6936 | 0.8164 | 0.7550 | | 0.5624 | 18.0 | 270 | 0.6007 | 0.6838 | 0.7659 | 0.7249 | | 0.5185 | 19.0 | 285 | 0.5891 | 0.6838 | 0.7772 | 0.7305 | | 0.4664 | 20.0 | 300 | 0.5873 | 0.6887 | 0.7829 | 0.7358 | | 0.4248 | 21.0 | 315 | 0.5893 | 0.6936 | 0.7764 | 0.7350 | | 0.3844 | 22.0 | 330 | 0.5949 | 0.7010 | 0.7798 | 0.7404 | | 0.3551 | 23.0 | 345 | 0.5942 | 0.7034 | 0.7866 | 0.7450 | | 0.3314 | 24.0 | 360 | 0.6040 | 0.7034 | 0.7881 | 0.7458 | | 0.3181 | 25.0 | 375 | 0.6162 | 0.7010 | 0.7867 | 0.7438 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-shona
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6813725490196079 - name: F1 type: f1 value: 0.8104956268221574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mrpc_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5996 - Accuracy: 0.6814 - F1: 0.8105 - Combined Score: 0.7459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6343 | 1.0 | 15 | 0.6246 | 0.6838 | 0.8122 | 0.7480 | | 0.6276 | 2.0 | 30 | 0.6234 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 3.0 | 45 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6279 | 4.0 | 60 | 0.6205 | 0.6838 | 0.8122 | 0.7480 | | 0.6168 | 5.0 | 75 | 0.5996 | 0.6814 | 0.8105 | 0.7459 | | 0.5632 | 6.0 | 90 | 0.6020 | 0.6936 | 0.7954 | 0.7445 | | 0.5021 | 7.0 | 105 | 0.6094 | 0.6936 | 0.7841 | 0.7389 | | 0.4263 | 8.0 | 120 | 0.6844 | 0.6299 | 0.7113 | 0.6706 | | 0.3476 | 9.0 | 135 | 0.7218 | 0.6373 | 0.7098 | 0.6735 | | 0.2966 | 10.0 | 150 | 0.7759 | 0.7010 | 0.7953 | 0.7481 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-somali
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_mrpc_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6887254901960784 - name: F1 type: f1 value: 0.7783595113438045 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mrpc_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5927 - Accuracy: 0.6887 - F1: 0.7784 - Combined Score: 0.7335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6412 | 1.0 | 15 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6281 | 2.0 | 30 | 0.6238 | 0.6838 | 0.8122 | 0.7480 | | 0.629 | 3.0 | 45 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6296 | 4.0 | 60 | 0.6236 | 0.6838 | 0.8122 | 0.7480 | | 0.6323 | 5.0 | 75 | 0.6228 | 0.6838 | 0.8122 | 0.7480 | | 0.6272 | 6.0 | 90 | 0.6209 | 0.6838 | 0.8122 | 0.7480 | | 0.6175 | 7.0 | 105 | 0.6000 | 0.6838 | 0.8122 | 0.7480 | | 0.5733 | 8.0 | 120 | 0.5927 | 0.6887 | 0.7784 | 0.7335 | | 0.5199 | 9.0 | 135 | 0.5969 | 0.6936 | 0.7818 | 0.7377 | | 0.4423 | 10.0 | 150 | 0.6369 | 0.6765 | 0.7700 | 0.7233 | | 0.3645 | 11.0 | 165 | 0.6708 | 0.6838 | 0.7832 | 0.7335 | | 0.3203 | 12.0 | 180 | 0.7179 | 0.6446 | 0.7249 | 0.6847 | | 0.2778 | 13.0 | 195 | 0.7517 | 0.6740 | 0.7726 | 0.7233 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-swahili
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
40
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_cola_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_cola_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6175 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6129 | 1.0 | 34 | 0.6212 | 0.0 | | 0.6085 | 2.0 | 68 | 0.6175 | 0.0 | | 0.6055 | 3.0 | 102 | 0.6199 | 0.0 | | 0.588 | 4.0 | 136 | 0.6251 | 0.0706 | | 0.5402 | 5.0 | 170 | 0.6351 | 0.1240 | | 0.4995 | 6.0 | 204 | 0.6698 | 0.0812 | | 0.4745 | 7.0 | 238 | 0.7124 | 0.0916 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-wolof
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6029654036243822 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6564 - Accuracy: 0.6030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.679 | 1.0 | 410 | 0.6614 | 0.5938 | | 0.6496 | 2.0 | 820 | 0.6564 | 0.6030 | | 0.6268 | 3.0 | 1230 | 0.6635 | 0.5978 | | 0.6055 | 4.0 | 1640 | 0.6714 | 0.5933 | | 0.5836 | 5.0 | 2050 | 0.6964 | 0.5913 | | 0.5602 | 6.0 | 2460 | 0.7319 | 0.5832 | | 0.5385 | 7.0 | 2870 | 0.7653 | 0.5718 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-xhosa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_qnli_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.604978949295259 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6582 - Accuracy: 0.6050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6858 | 1.0 | 410 | 0.6653 | 0.6013 | | 0.658 | 2.0 | 820 | 0.6582 | 0.6050 | | 0.6395 | 3.0 | 1230 | 0.6607 | 0.6022 | | 0.6229 | 4.0 | 1640 | 0.6699 | 0.6000 | | 0.6087 | 5.0 | 2050 | 0.6770 | 0.5929 | | 0.5946 | 6.0 | 2460 | 0.6980 | 0.5951 | | 0.581 | 7.0 | 2870 | 0.7427 | 0.5854 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-yoruba
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_qnli_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.604978949295259 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6554 - Accuracy: 0.6050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6802 | 1.0 | 410 | 0.6614 | 0.5988 | | 0.6514 | 2.0 | 820 | 0.6554 | 0.6050 | | 0.6306 | 3.0 | 1230 | 0.6610 | 0.5938 | | 0.6105 | 4.0 | 1640 | 0.6700 | 0.5942 | | 0.5925 | 5.0 | 2050 | 0.6833 | 0.5891 | | 0.5725 | 6.0 | 2460 | 0.7225 | 0.5898 | | 0.5537 | 7.0 | 2870 | 0.7806 | 0.5810 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-zulu
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_mrpc_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mrpc_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6089 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6363 | 1.0 | 15 | 0.6257 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 2.0 | 30 | 0.6230 | 0.6838 | 0.8122 | 0.7480 | | 0.6302 | 3.0 | 45 | 0.6227 | 0.6838 | 0.8122 | 0.7480 | | 0.6217 | 4.0 | 60 | 0.6089 | 0.6838 | 0.8122 | 0.7480 | | 0.5729 | 5.0 | 75 | 0.6097 | 0.6838 | 0.7817 | 0.7328 | | 0.4868 | 6.0 | 90 | 0.6395 | 0.6789 | 0.7791 | 0.7290 | | 0.3906 | 7.0 | 105 | 0.7014 | 0.6838 | 0.7725 | 0.7282 | | 0.3014 | 8.0 | 120 | 0.7773 | 0.6814 | 0.7735 | 0.7274 | | 0.2538 | 9.0 | 135 | 0.8550 | 0.6789 | 0.7730 | 0.7259 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-ner-hrl
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
760
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_qnli_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6055280981145891 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qnli_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6542 - Accuracy: 0.6055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6751 | 1.0 | 410 | 0.6575 | 0.6022 | | 0.6476 | 2.0 | 820 | 0.6542 | 0.6055 | | 0.6228 | 3.0 | 1230 | 0.6622 | 0.5982 | | 0.5989 | 4.0 | 1640 | 0.6712 | 0.5894 | | 0.5711 | 5.0 | 2050 | 0.7102 | 0.5845 | | 0.5413 | 6.0 | 2460 | 0.7776 | 0.5772 | | 0.5116 | 7.0 | 2870 | 0.8393 | 0.5678 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-wikiann-ner
[ "pytorch", "tf", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
235
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_cola_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6144 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6135 | 1.0 | 67 | 0.6178 | 0.0 | | 0.6079 | 2.0 | 134 | 0.6178 | 0.0 | | 0.6073 | 3.0 | 201 | 0.6181 | 0.0 | | 0.6066 | 4.0 | 268 | 0.6167 | 0.0 | | 0.6049 | 5.0 | 335 | 0.6144 | 0.0 | | 0.5699 | 6.0 | 402 | 0.6194 | 0.1196 | | 0.5015 | 7.0 | 469 | 0.6724 | 0.1179 | | 0.4668 | 8.0 | 536 | 0.7723 | 0.1198 | | 0.4425 | 9.0 | 603 | 0.7053 | 0.0810 | | 0.4272 | 10.0 | 670 | 0.8389 | 0.1207 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-large-masakhaner
[ "pytorch", "tf", "xlm-roberta", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,449
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_qqp_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7756863715063071 - name: F1 type: f1 value: 0.6671804469888803 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qqp_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4818 - Accuracy: 0.7757 - F1: 0.6672 - Combined Score: 0.7214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5528 | 1.0 | 1422 | 0.5115 | 0.7528 | 0.6284 | 0.6906 | | 0.4965 | 2.0 | 2844 | 0.4960 | 0.7614 | 0.6420 | 0.7017 | | 0.4769 | 3.0 | 4266 | 0.4904 | 0.7650 | 0.6382 | 0.7016 | | 0.4619 | 4.0 | 5688 | 0.4901 | 0.7680 | 0.6526 | 0.7103 | | 0.4489 | 5.0 | 7110 | 0.4844 | 0.7709 | 0.6663 | 0.7186 | | 0.4366 | 6.0 | 8532 | 0.4860 | 0.7721 | 0.6712 | 0.7217 | | 0.425 | 7.0 | 9954 | 0.4860 | 0.7747 | 0.6636 | 0.7192 | | 0.414 | 8.0 | 11376 | 0.4818 | 0.7757 | 0.6672 | 0.7214 | | 0.4027 | 9.0 | 12798 | 0.4871 | 0.7786 | 0.6722 | 0.7254 | | 0.3926 | 10.0 | 14220 | 0.4919 | 0.7749 | 0.6932 | 0.7340 | | 0.3824 | 11.0 | 15642 | 0.4890 | 0.7801 | 0.6823 | 0.7312 | | 0.3718 | 12.0 | 17064 | 0.4981 | 0.7801 | 0.6970 | 0.7385 | | 0.3629 | 13.0 | 18486 | 0.4989 | 0.7805 | 0.6968 | 0.7386 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/xlm-roberta-large-ner-hrl
[ "pytorch", "tf", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,322
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_qqp_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8029680930002473 - name: F1 type: f1 value: 0.7323432565015792 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qqp_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4425 - Accuracy: 0.8030 - F1: 0.7323 - Combined Score: 0.7677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.53 | 1.0 | 1422 | 0.5023 | 0.7557 | 0.6592 | 0.7075 | | 0.479 | 2.0 | 2844 | 0.4823 | 0.7679 | 0.6483 | 0.7081 | | 0.4522 | 3.0 | 4266 | 0.4788 | 0.7741 | 0.6474 | 0.7108 | | 0.4263 | 4.0 | 5688 | 0.4753 | 0.7829 | 0.6911 | 0.7370 | | 0.4009 | 5.0 | 7110 | 0.4536 | 0.7906 | 0.7194 | 0.7550 | | 0.3772 | 6.0 | 8532 | 0.4497 | 0.7949 | 0.7200 | 0.7574 | | 0.3548 | 7.0 | 9954 | 0.4453 | 0.8010 | 0.7201 | 0.7606 | | 0.3332 | 8.0 | 11376 | 0.4425 | 0.8030 | 0.7323 | 0.7677 | | 0.3132 | 9.0 | 12798 | 0.4654 | 0.7938 | 0.7375 | 0.7657 | | 0.2951 | 10.0 | 14220 | 0.4551 | 0.8056 | 0.7423 | 0.7739 | | 0.2777 | 11.0 | 15642 | 0.4675 | 0.8120 | 0.7374 | 0.7747 | | 0.2625 | 12.0 | 17064 | 0.4946 | 0.8082 | 0.7451 | 0.7766 | | 0.2473 | 13.0 | 18486 | 0.5041 | 0.8102 | 0.7469 | 0.7786 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Dawit/DialogGPT-small-ironman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_qqp_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.790972050457581 - name: F1 type: f1 value: 0.7234348921687338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qqp_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4568 - Accuracy: 0.7910 - F1: 0.7234 - Combined Score: 0.7572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5339 | 1.0 | 1422 | 0.5031 | 0.7551 | 0.6484 | 0.7018 | | 0.4835 | 2.0 | 2844 | 0.4866 | 0.7650 | 0.6504 | 0.7077 | | 0.4587 | 3.0 | 4266 | 0.4792 | 0.7694 | 0.6422 | 0.7058 | | 0.4369 | 4.0 | 5688 | 0.4851 | 0.7745 | 0.6716 | 0.7230 | | 0.4155 | 5.0 | 7110 | 0.4705 | 0.7791 | 0.6970 | 0.7380 | | 0.3961 | 6.0 | 8532 | 0.4633 | 0.7858 | 0.7093 | 0.7476 | | 0.3772 | 7.0 | 9954 | 0.4572 | 0.7908 | 0.7176 | 0.7542 | | 0.3593 | 8.0 | 11376 | 0.4568 | 0.7910 | 0.7234 | 0.7572 | | 0.3422 | 9.0 | 12798 | 0.4661 | 0.7927 | 0.7227 | 0.7577 | | 0.3265 | 10.0 | 14220 | 0.4596 | 0.7983 | 0.7290 | 0.7636 | | 0.3119 | 11.0 | 15642 | 0.4635 | 0.7977 | 0.7255 | 0.7616 | | 0.2961 | 12.0 | 17064 | 0.4857 | 0.8008 | 0.7309 | 0.7659 | | 0.2831 | 13.0 | 18486 | 0.4987 | 0.8037 | 0.7314 | 0.7676 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Dawn576/Dawn
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Bhaskarbha/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Daymarebait/Discord_BOT_RICK
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Bhaskarbha/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dayout/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: diffusers pipeline_tag: text-to-image datasets: - hearmeneigh/e621-rising-v1-curated tags: - not-for-all-audiences --- **Warning: THIS model is NOT suitable for use by minors. The model can/will generate X-rated/NFSW content.** > This model has been deprecated by [version 2](https://huggingface.co/hearmeneigh/sd21-e621-rising-v2). # E621 Rising: A Stable Diffusion 2.1 Model [epoch 19] * Guaranteed **NSFW** or your money back * Fine-tuned from [Stable Diffusion v2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) * 19 epochs of 450,000 images each, collected from [E621](https://e621.net/) and curated based on scores, favorite counts, and tag filtering. * Trained with [5,356 tags](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/blob/main/meta/tag-counts.json) * `512x512px` * Compatible with 🤗 `diffusers` * Compatible with `stable-diffusion-webui` * Likely compatible with anything that accepts [`.ckpt` and `.yaml` files](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/tree/main) ## Getting Started * [Stable Diffusion WebUI How-To](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/blob/main/guides/WEBUI.md) * [Python How-To](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/blob/main/guides/PYTHON.md) ## Examples <img src="https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/resolve/main/guides/example-1.jpg" width="512" height="512"> <img src="https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/resolve/main/guides/example-2.jpg" width="512" height="512"> ## Example Prompt ``` anthro solo female standing rating:questionable species:equine biped two_tone_fur grey_body grey_fur white_fur white_snout white_markings gloves_marking white_tail blue_eyes facial_markings white_hair white_mane evil_grin athletic_female meta:shaded meta:digital_media_artwork meta:detailed meta:digital_painting_artwork seductive looking_at_viewer tomboy tomb raider outfit ``` ## Changes From E621 See a [complete list of tags here](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/blob/main/meta/tag-counts.json). * Symbols have been prefixed with `symbol:`, e.g. `symbol:<3` * All categories except `general` have been prefixed with the category name, e.g. `copyright:somename`. The categories are: * `artist` * `copyright` * `character` * `species` * `invalid` * `meta` * `lore` * Tag names are all lowercase and only contain `a-z`, `0-9`, `/`, and `_` letters * `:` is used to separate the category name from the tag ### Additional Tags * Image rating * `rating:explicit` * `rating:questionable` * `rating:safe` ### Omissions Images with any of the following tags were omitted from training. No value judgment here, just needed to cull the E621 image library to a cost-efficient size. The complete list of _included_ tags is [available here](https://huggingface.co/hearmeneigh/sd21-e621-rising-v1/blob/main/meta/tag-counts.json). * `2_penises` * `4_balls` * `4_breasts` * `6_arms` * `6_breasts` * `amputee` * `baby` * `character:fenneko` * `character:fifi_la_fume` * `character:frisk_undertale` * `character:rouge_the_bat` * `character:toriel` * `child` * `chubby_female` * `chubby_gynomorph` * `copyright:101_dalmatians` * `copyright:adventure_time` * `copyright:alien_franchise` * `copyright:animal_crossing` * `copyright:chikn_nuggit` * `copyright:chip_n_dale_rescue_rangers` * `copyright:conkers_bad_fur_day` * `copyright:crash_team_racing_nitrofueled` * `copyright:crash_team_racing_series` * `copyright:cuphead_game` * `copyright:digimon` * `copyright:disgaea` * `copyright:donkey_kong_series` * `copyright:dragon_ball_z` * `copyright:ducktales` * `copyright:ducktales_2017` * `copyright:family_guy` * `copyright:five_nights_at_freddys` * `copyright:friendship_is_magic` * `copyright:how_to_train_your_dragon` * `copyright:jurassic_park` * `copyright:kelloggs` * `copyright:lady_and_the_tramp` * `copyright:lego` * `copyright:looney_tunes` * `copyright:magic_the_gathering` * `copyright:mario_bros` * `copyright:masters_of_the_universe` * `copyright:minecraft` * `copyright:mlp_g5` * `copyright:ms_paint_adventures` * `copyright:my_little_pony` * `copyright:ocarina_of_time` * `copyright:ori_and_the_blind_forest` * `copyright:ori_series` * `copyright:parappa_the_rapper` * `copyright:pokemon` * `copyright:regular_show` * `copyright:rick_and_morty` * `copyright:sam_and_max` * `copyright:scoobydoo_series` * `copyright:scottgames` * `copyright:shirt_cut_meme` * `copyright:sonic_the_hedgehog_series` * `copyright:spongebob_squarepants` * `copyright:star_trek` * `copyright:star_wars` * `copyright:starbound` * `copyright:super_planet_dolan` * `copyright:super_smash_bros` * `copyright:swat_kats` * `copyright:talespin` * `copyright:team_cherry` * `copyright:teen_titans` * `copyright:teenage_mutant_ninja_turtles` * `copyright:teenage_mutant_ninja_turtles_2022` * `copyright:the_amazing_world_of_gumball` * `copyright:the_legend_of_zelda` * `copyright:tiny_toon_adventures` * `copyright:tom_and_jerry` * `copyright:twilight_princess` * `copyright:um_jammer_lammy` * `copyright:wayforward` * `copyright:we_bare_bears` * `copyright:winnie_the_pooh_franchise` * `copyright:xcom` * `copyright:yugioh` * `cub` * `death` * `diaper` * `expansion` * `expression_sheet` * `favorites:below_50` * `feces` * `feral` * `feral_on_feral` * `filth` * `foot_fetish` * `foot_focus` * `gore` * `huge_areola` * `huge_butt` * `huge_butt` * `hyper` * `hyper_anus` * `hyper_balls` * `hyper_belly` * `hyper_breasts` * `hyper_butt` * `hyper_feet` * `hyper_genitalia` * `hyper_genitalia` * `hyper_hips` * `hyper_lips` * `hyper_muscles` * `hyper_nipples` * `hyper_penis` * `hyper_pregnancy` * `hyper_pussy` * `hyper_sheath` * `hyper_thighs` * `hyper_tongue` * `imminent_death` * `imminent_vore` * `inflation` * `loli` * `meta:3d_artwork` * `meta:comic` * `meta:compression_artifacts` * `meta:distracting_watermark` * `meta:line_art` * `meta:marker_artwork` * `meta:model_sheet` * `meta:monochrome` * `meta:pen_artwork` * `meta:pencil_artwork` * `meta:sketch` * `meta:sketch_page` * `meta:unfinished` * `micro` * `moobs` * `morbidly_obese` * `nightmare_fuel` * `obese` * `overweight` * `peeing` * `plushophilia` * `pooping` * `pregnant` * `scat` * `score:below_25` * `shota` * `smelly` * `snuff` * `soiling` * `species:animate_inanimate` * `species:arachnid` * `species:arachnid_humanoid` * `species:avian` * `species:eldritch_abomination` * `species:food_creature` * `species:insect` * `species:insect_humanoid` * `species:living_aircraft` * `species:living_clothing` * `species:living_fruit` * `species:living_inflatable` * `species:living_machine` * `species:taur` * `species:wasp` * `square_crossover` * `style_parody` * `teats` * `tentacles` * `teratophilia` * `toddler` * `toony` * `transformation` * `udders` * `unusual_anatomy` * `unusual_genitalia` * `unusual_genitalia_placement` * `unusual_penis_placement` * `urethral` * `urethral_penetration` * `urine_stream` * `voluptuous` * `vore` * `watersports` * `young` ## Training Procedure * 204-272 images per batch (epoch variant) * `512x512px` image size * Adam optimizer * Beta1 = `0.9` * Beta2 = `0.999` * Weight decay = `1e-2` * Epsilon = `1e-08` * Constant learning rate `4e-6` * `bf16` mixed precision * 8 epochs of samples stretched to `512x512px` (ignore aspect ratio) * 9 epochs of samples resized to `512xH` or `Wx512px` with center crop (maintain aspect ratio) * 2 epochs of samples resized to `< 512x512px` (maintain aspect ratio) * Tags for each sample are shuffled for each epoch, starting from epoch 16
Dazai/Ko
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-25T05:05:07Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_qqp_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8082364580756863 - name: F1 type: f1 value: 0.7405200977275009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_qqp_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4322 - Accuracy: 0.8082 - F1: 0.7405 - Combined Score: 0.7744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.5251 | 1.0 | 1422 | 0.5016 | 0.7563 | 0.6686 | 0.7124 | | 0.466 | 2.0 | 2844 | 0.4668 | 0.7745 | 0.6459 | 0.7102 | | 0.4292 | 3.0 | 4266 | 0.4609 | 0.7854 | 0.6685 | 0.7270 | | 0.3971 | 4.0 | 5688 | 0.4463 | 0.7945 | 0.7190 | 0.7568 | | 0.3677 | 5.0 | 7110 | 0.4326 | 0.8001 | 0.7280 | 0.7641 | | 0.3398 | 6.0 | 8532 | 0.4511 | 0.8017 | 0.7361 | 0.7689 | | 0.3141 | 7.0 | 9954 | 0.4322 | 0.8082 | 0.7405 | 0.7744 | | 0.2891 | 8.0 | 11376 | 0.4373 | 0.8096 | 0.7434 | 0.7765 | | 0.266 | 9.0 | 12798 | 0.4793 | 0.7966 | 0.7440 | 0.7703 | | 0.2433 | 10.0 | 14220 | 0.5018 | 0.8143 | 0.7503 | 0.7823 | | 0.2235 | 11.0 | 15642 | 0.4917 | 0.8144 | 0.7428 | 0.7786 | | 0.2045 | 12.0 | 17064 | 0.5152 | 0.8166 | 0.7521 | 0.7844 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Dazai/Ok
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6911764705882353 - name: F1 type: f1 value: 0.7947882736156351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_mrpc_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6111 - Accuracy: 0.6912 - F1: 0.7948 - Combined Score: 0.7430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6431 | 1.0 | 29 | 0.6261 | 0.6838 | 0.8122 | 0.7480 | | 0.6296 | 2.0 | 58 | 0.6235 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 3.0 | 87 | 0.6237 | 0.6838 | 0.8122 | 0.7480 | | 0.6297 | 4.0 | 116 | 0.6238 | 0.6838 | 0.8122 | 0.7480 | | 0.6276 | 5.0 | 145 | 0.6207 | 0.6838 | 0.8122 | 0.7480 | | 0.6197 | 6.0 | 174 | 0.6213 | 0.6838 | 0.8122 | 0.7480 | | 0.6065 | 7.0 | 203 | 0.6284 | 0.6912 | 0.8043 | 0.7478 | | 0.5258 | 8.0 | 232 | 0.6111 | 0.6912 | 0.7948 | 0.7430 | | 0.4596 | 9.0 | 261 | 0.6506 | 0.7034 | 0.8052 | 0.7543 | | 0.3953 | 10.0 | 290 | 0.7271 | 0.7034 | 0.7932 | 0.7483 | | 0.3426 | 11.0 | 319 | 0.9509 | 0.6740 | 0.7542 | 0.7141 | | 0.2821 | 12.0 | 348 | 1.0021 | 0.6863 | 0.7808 | 0.7335 | | 0.2177 | 13.0 | 377 | 1.0359 | 0.6691 | 0.7676 | 0.7184 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Dbluciferm3737/Idk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6082738422112393 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_qnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6510 - Accuracy: 0.6083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6764 | 1.0 | 819 | 0.6516 | 0.6112 | | 0.6368 | 2.0 | 1638 | 0.6510 | 0.6083 | | 0.6131 | 3.0 | 2457 | 0.6546 | 0.6158 | | 0.5957 | 4.0 | 3276 | 0.6592 | 0.6101 | | 0.5825 | 5.0 | 4095 | 0.6751 | 0.5993 | | 0.5719 | 6.0 | 4914 | 0.6890 | 0.5993 | | 0.5618 | 7.0 | 5733 | 0.7025 | 0.5907 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Dbluciferm3737/U
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-01-25T05:17:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.86 +/- 19.71 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ddarkros/Test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Quite literally a dumpster, go look at https://huggingface.co/Aotsuyu/LoRA
DeadBeast/korscm-mBERT
[ "pytorch", "bert", "text-classification", "korean", "dataset:Korean-Sarcasm", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.70 +/- 0.45 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeadBeast/roberta-base-pretrained-mr
[ "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - generated_from_trainer model-index: - name: ko-jeolla-nmt-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko-jeolla-nmt-v2 This model is a fine-tuned version of [leadawon/ko-jeolla-nmt-v1](https://huggingface.co/leadawon/ko-jeolla-nmt-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2926 | 0.17 | 500 | 0.3283 | | 0.3111 | 0.33 | 1000 | 0.3344 | | 0.3009 | 0.5 | 1500 | 0.3138 | | 0.2868 | 0.66 | 2000 | 0.3030 | | 0.2653 | 0.83 | 2500 | 0.2969 | | 0.2493 | 0.99 | 3000 | 0.2911 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
DecafNosebleed/DialoGPT-small-ScaraBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - kp20k metrics: - rouge model-index: - name: keyphrase-extractions_bart-large results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kp20k type: kp20k config: generation split: train[:15%] args: generation metrics: - name: Rouge1 type: rouge value: 0.4713 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # keyphrase-extractions_bart-large This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the kp20k dataset. It achieves the following results on the evaluation set: - Loss: 1.7257 - Rouge1: 0.4713 - Rouge2: 0.2385 - Rougel: 0.384 - Rougelsum: 0.3841 - Gen Len: 18.3164 - Phrase match: 0.1917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Phrase match | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------------:| | 2.5104 | 1.0 | 730 | 1.8021 | 0.464 | 0.2336 | 0.3765 | 0.3766 | 18.9074 | 0.1784 | | 1.8436 | 2.0 | 1460 | 1.7473 | 0.4709 | 0.2381 | 0.3834 | 0.3836 | 17.8127 | 0.1891 | | 1.6864 | 3.0 | 2190 | 1.7257 | 0.4713 | 0.2385 | 0.384 | 0.3841 | 18.3164 | 0.1917 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
DecafNosebleed/ScaraBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m pipeline_tag: text-to-image --- ### Kate from [Aim for the Stars](https://moringmark.tumblr.com/post/188798125438/aim-for-the-stars) on Anything V3.0 via Dreambooth #### model by no3 This your Anything V3.0 model fine-tuned kate concept taught to Anything V3.0 with Dreambooth. It can be used by modifying the `instance_prompt`: **sks_kate** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts). ### note If you want to to use in UI like [AUTOMATIC1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) or any UI that's uses .ckpt files just download one file or more from here for your convenience. [kateA4-at3-beta1-pruned.ckpt](https://huggingface.co/no3/kate-at3-beta1/resolve/main/kateA4-at3-beta1.ckpt) 4.27 GB [kateA4-at3-beta1-pruned.ckpt](https://huggingface.co/no3/kate-at3-beta1/resolve/main/kateA4-at3-beta1-pruned.ckpt) 2.13 GB Uses less storage space, but untested yet If you have issues or questions feel free to visit the Community Tab and start discussion about it. Here are images used for training this concept: ![image 1](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/1.png) ![image 2](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/2.png) ![image 3](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/3.png) ![image 4](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/4.png) ![image 5](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/1c.png) ![image 6](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/2c.png) ![image 7](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/3c.png) ![image 8](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/4c.png) ![image 9](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/5c.png) ![image 10](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/6c.png) ![image 11](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/7c.png) ![image 12](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/8c.png) ![image 13](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/9c.png) ![image 14](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/10c.png) ![image 15](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/11c.png) ![image 16](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/1%20f.png) ![image 17](https://huggingface.co/no3/kate-at3-beta1/resolve/main/conept_images/2%20f.png)
Declan/Breitbart_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_rte_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_rte_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6932 | 1.0 | 10 | 0.6928 | 0.5271 | | 0.6934 | 2.0 | 20 | 0.6927 | 0.5271 | | 0.6934 | 3.0 | 30 | 0.6932 | 0.4729 | | 0.6931 | 4.0 | 40 | 0.6930 | 0.5271 | | 0.6936 | 5.0 | 50 | 0.6932 | 0.4440 | | 0.6932 | 6.0 | 60 | 0.6927 | 0.5271 | | 0.6932 | 7.0 | 70 | 0.6926 | 0.5271 | | 0.6928 | 8.0 | 80 | 0.6932 | 0.4477 | | 0.6935 | 9.0 | 90 | 0.6932 | 0.4260 | | 0.6933 | 10.0 | 100 | 0.6925 | 0.5271 | | 0.6929 | 11.0 | 110 | 0.6932 | 0.4440 | | 0.693 | 12.0 | 120 | 0.6935 | 0.4729 | | 0.6926 | 13.0 | 130 | 0.6931 | 0.5307 | | 0.6916 | 14.0 | 140 | 0.6932 | 0.5199 | | 0.6903 | 15.0 | 150 | 0.6943 | 0.4440 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/Breitbart_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_sst2_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7970183486238532 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_sst2_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4312 - Accuracy: 0.7970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6044 | 1.0 | 264 | 0.5127 | 0.7569 | | 0.363 | 2.0 | 528 | 0.4364 | 0.8016 | | 0.29 | 3.0 | 792 | 0.4312 | 0.7970 | | 0.2514 | 4.0 | 1056 | 0.4493 | 0.7993 | | 0.2279 | 5.0 | 1320 | 0.4654 | 0.8050 | | 0.2123 | 6.0 | 1584 | 0.4701 | 0.7970 | | 0.201 | 7.0 | 1848 | 0.5154 | 0.7936 | | 0.1904 | 8.0 | 2112 | 0.4989 | 0.8050 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/Breitbart_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Access to model Sootax/clap is restricted and you are not in the authorized list. Visit https://huggingface.co/Sootax/clap to ask for access.
Declan/Breitbart_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T06:22:59Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_sa_GLUE_Experiment_stsb_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.01641373482271163 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_stsb_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2501 - Pearson: 0.0145 - Spearmanr: 0.0164 - Combined Score: 0.0154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 8.5764 | 1.0 | 23 | 6.5600 | -0.0093 | -0.0112 | -0.0102 | | 7.7973 | 2.0 | 46 | 6.1824 | 0.0235 | 0.0229 | 0.0232 | | 7.3288 | 3.0 | 69 | 5.7819 | -0.0634 | -0.0621 | -0.0628 | | 6.8588 | 4.0 | 92 | 5.3627 | nan | nan | nan | | 6.3722 | 5.0 | 115 | 4.9405 | nan | nan | nan | | 5.8419 | 6.0 | 138 | 4.5257 | 0.0099 | 0.0107 | 0.0103 | | 5.3405 | 7.0 | 161 | 4.1302 | nan | nan | nan | | 4.8794 | 8.0 | 184 | 3.7607 | nan | nan | nan | | 4.4156 | 9.0 | 207 | 3.4218 | -0.0075 | -0.0067 | -0.0071 | | 3.991 | 10.0 | 230 | 3.1190 | 0.0246 | 0.0246 | 0.0246 | | 3.6029 | 11.0 | 253 | 2.8558 | -0.0034 | -0.0006 | -0.0020 | | 3.2636 | 12.0 | 276 | 2.6377 | nan | nan | nan | | 2.9656 | 13.0 | 299 | 2.4660 | 0.0137 | 0.0129 | 0.0133 | | 2.7028 | 14.0 | 322 | 2.3432 | nan | nan | nan | | 2.4851 | 15.0 | 345 | 2.2710 | 0.0132 | 0.0145 | 0.0138 | | 2.3576 | 16.0 | 368 | 2.2501 | 0.0145 | 0.0164 | 0.0154 | | 2.2531 | 17.0 | 391 | 2.2773 | nan | nan | nan | | 2.2045 | 18.0 | 414 | 2.3342 | -0.0082 | -0.0113 | -0.0098 | | 2.1967 | 19.0 | 437 | 2.3460 | nan | nan | nan | | 2.2041 | 20.0 | 460 | 2.3556 | -0.0025 | -0.0010 | -0.0017 | | 2.1816 | 21.0 | 483 | 2.3715 | 0.0142 | 0.0160 | 0.0151 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/Breitbart_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_rte_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_rte_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6951 | 1.0 | 10 | 0.6927 | 0.5271 | | 0.6935 | 2.0 | 20 | 0.6925 | 0.5271 | | 0.692 | 3.0 | 30 | 0.6931 | 0.5162 | | 0.694 | 4.0 | 40 | 0.6932 | 0.5090 | | 0.6923 | 5.0 | 50 | 0.6950 | 0.4729 | | 0.6932 | 6.0 | 60 | 0.6921 | 0.5271 | | 0.6926 | 7.0 | 70 | 0.6928 | 0.5235 | | 0.6917 | 8.0 | 80 | 0.6929 | 0.5271 | | 0.6896 | 9.0 | 90 | 0.6920 | 0.5271 | | 0.6758 | 10.0 | 100 | 0.7009 | 0.4801 | | 0.6273 | 11.0 | 110 | 0.7272 | 0.4946 | | 0.5267 | 12.0 | 120 | 0.7684 | 0.5199 | | 0.4413 | 13.0 | 130 | 0.8273 | 0.4946 | | 0.3725 | 14.0 | 140 | 0.8790 | 0.4946 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/Breitbart_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T06:28:18Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_wnli_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_wnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6894 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6929 | 1.0 | 3 | 0.6908 | 0.5634 | | 0.6926 | 2.0 | 6 | 0.6914 | 0.5634 | | 0.6934 | 3.0 | 9 | 0.6912 | 0.5634 | | 0.6924 | 4.0 | 12 | 0.6900 | 0.5634 | | 0.6935 | 5.0 | 15 | 0.6894 | 0.5634 | | 0.6933 | 6.0 | 18 | 0.6895 | 0.5634 | | 0.6932 | 7.0 | 21 | 0.6900 | 0.5634 | | 0.6928 | 8.0 | 24 | 0.6908 | 0.5634 | | 0.6937 | 9.0 | 27 | 0.6909 | 0.5634 | | 0.6933 | 10.0 | 30 | 0.6912 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/Breitbart_modelv7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: es datasets: - lmqg/qg_esquad pipeline_tag: text2text-generation tags: - question generation - answer extraction widget: - text: "generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India." example_title: "Question Generation Example 1" - text: "generate question: a <hl> noviembre <hl> , que es también la estación lluviosa." example_title: "Question Generation Example 2" - text: "generate question: como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013." example_title: "Question Generation Example 3" - text: "extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como." example_title: "Answer Extraction Example 1" - text: "extract answers: <hl> Los estudiosos y los histori a dores están divididos en cuanto a qué evento señala el final de la era helenística. <hl> El período helenístico se puede ver que termina con la conquista final del corazón griego por Roma en 146 a. C. tras la guerra aquea, con la derrota final del reino ptolemaico en la batalla de Actium en 31 a. Helenístico se distingue de helénico en que el primero abarca toda la esfera de influencia griega antigua directa, mientras que el segundo se refiere a la propia Grecia." example_title: "Answer Extraction Example 2" model-index: - name: lmqg/mbart-large-cc25-esquad-qg-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_esquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 7.61 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 20.95 - name: METEOR (Question Generation) type: meteor_question_generation value: 19.58 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 79.36 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 56.05 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer value: 81.13 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer value: 84.91 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer value: 77.75 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer value: 54.86 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer value: 57.16 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer value: 52.82 - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 21.5 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 46.66 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 40.42 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 86.7 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 77.96 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 70.95 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 52.81 --- # Model Card of `lmqg/mbart-large-cc25-esquad-qg-ae` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** es - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="lmqg/mbart-large-cc25-esquad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-esquad-qg-ae") # answer extraction answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.") # question generation question = pipe("extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 79.36 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 22.05 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 14.55 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 10.34 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 7.61 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 19.58 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 56.05 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 20.95 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 81.13 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | QAAlignedF1Score (MoverScore) | 54.86 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | QAAlignedPrecision (BERTScore) | 77.75 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | QAAlignedPrecision (MoverScore) | 52.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | QAAlignedRecall (BERTScore) | 84.91 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | QAAlignedRecall (MoverScore) | 57.16 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_esquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 52.81 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | AnswerF1Score | 70.95 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | BERTScore | 86.7 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_1 | 32.77 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_2 | 28.12 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_3 | 24.52 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | Bleu_4 | 21.5 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | METEOR | 40.42 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | MoverScore | 77.96 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | | ROUGE_L | 46.66 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_esquad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 5 - batch: 2 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 32 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Declan/CNN_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_sst2_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7981651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_sst2_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4491 - Accuracy: 0.7982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5372 | 1.0 | 264 | 0.4524 | 0.8005 | | 0.3132 | 2.0 | 528 | 0.4632 | 0.7913 | | 0.2501 | 3.0 | 792 | 0.4491 | 0.7982 | | 0.2176 | 4.0 | 1056 | 0.4819 | 0.7924 | | 0.1963 | 5.0 | 1320 | 0.4784 | 0.7878 | | 0.1793 | 6.0 | 1584 | 0.5427 | 0.7947 | | 0.1651 | 7.0 | 1848 | 0.5849 | 0.7867 | | 0.1515 | 8.0 | 2112 | 0.6103 | 0.7787 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/CNN_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_mnli_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5545158665581774 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9288 - Accuracy: 0.5545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0498 | 1.0 | 1534 | 0.9988 | 0.5084 | | 0.9757 | 2.0 | 3068 | 0.9532 | 0.5303 | | 0.9458 | 3.0 | 4602 | 0.9435 | 0.5377 | | 0.9272 | 4.0 | 6136 | 0.9306 | 0.5456 | | 0.9122 | 5.0 | 7670 | 0.9305 | 0.5474 | | 0.8992 | 6.0 | 9204 | 0.9294 | 0.5489 | | 0.8867 | 7.0 | 10738 | 0.9260 | 0.5522 | | 0.8752 | 8.0 | 12272 | 0.9319 | 0.5559 | | 0.8645 | 9.0 | 13806 | 0.9336 | 0.5604 | | 0.8545 | 10.0 | 15340 | 0.9200 | 0.5629 | | 0.8443 | 11.0 | 16874 | 0.9200 | 0.5664 | | 0.8338 | 12.0 | 18408 | 0.9298 | 0.5672 | | 0.8252 | 13.0 | 19942 | 0.9383 | 0.5647 | | 0.8168 | 14.0 | 21476 | 0.9428 | 0.5691 | | 0.8084 | 15.0 | 23010 | 0.9325 | 0.5730 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/CNN_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_rte_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_rte_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6919 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6944 | 1.0 | 10 | 0.6962 | 0.4729 | | 0.6955 | 2.0 | 20 | 0.6919 | 0.5271 | | 0.6929 | 3.0 | 30 | 0.6946 | 0.4729 | | 0.6945 | 4.0 | 40 | 0.6922 | 0.5271 | | 0.6922 | 5.0 | 50 | 0.6959 | 0.4729 | | 0.6926 | 6.0 | 60 | 0.6922 | 0.5271 | | 0.6921 | 7.0 | 70 | 0.6930 | 0.5126 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/CNN_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8004587155963303 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_sst2_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4277 - Accuracy: 0.8005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5012 | 1.0 | 264 | 0.4277 | 0.8005 | | 0.2971 | 2.0 | 528 | 0.5335 | 0.7833 | | 0.2415 | 3.0 | 792 | 0.4466 | 0.8131 | | 0.2092 | 4.0 | 1056 | 0.4814 | 0.8050 | | 0.1881 | 5.0 | 1320 | 0.5214 | 0.8039 | | 0.1685 | 6.0 | 1584 | 0.5085 | 0.8085 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/CNN_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-small This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5361 - Wer: 0.3380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.571 | 1.0 | 500 | 1.9252 | 1.0022 | | 0.8969 | 2.01 | 1000 | 0.5066 | 0.5292 | | 0.4326 | 3.01 | 1500 | 0.4523 | 0.4562 | | 0.2993 | 4.02 | 2000 | 0.4228 | 0.4202 | | 0.2335 | 5.02 | 2500 | 0.4252 | 0.4178 | | 0.2009 | 6.02 | 3000 | 0.4136 | 0.3910 | | 0.1552 | 7.03 | 3500 | 0.4747 | 0.3863 | | 0.1388 | 8.03 | 4000 | 0.4359 | 0.3859 | | 0.1226 | 9.04 | 4500 | 0.4367 | 0.3879 | | 0.1109 | 10.04 | 5000 | 0.4360 | 0.3760 | | 0.0991 | 11.04 | 5500 | 0.4899 | 0.3672 | | 0.0882 | 12.05 | 6000 | 0.4608 | 0.3653 | | 0.0792 | 13.05 | 6500 | 0.4882 | 0.3703 | | 0.0745 | 14.06 | 7000 | 0.4716 | 0.3625 | | 0.065 | 15.06 | 7500 | 0.4896 | 0.3651 | | 0.0596 | 16.06 | 8000 | 0.4831 | 0.3659 | | 0.0563 | 17.07 | 8500 | 0.5092 | 0.3585 | | 0.0536 | 18.07 | 9000 | 0.5376 | 0.3675 | | 0.0465 | 19.08 | 9500 | 0.5019 | 0.3534 | | 0.049 | 20.08 | 10000 | 0.4869 | 0.3723 | | 0.0423 | 21.08 | 10500 | 0.4947 | 0.3501 | | 0.0348 | 22.09 | 11000 | 0.5524 | 0.3453 | | 0.0315 | 23.09 | 11500 | 0.5369 | 0.3499 | | 0.0312 | 24.1 | 12000 | 0.5283 | 0.3519 | | 0.0258 | 25.1 | 12500 | 0.5202 | 0.3461 | | 0.0249 | 26.1 | 13000 | 0.5270 | 0.3449 | | 0.0236 | 27.11 | 13500 | 0.5388 | 0.3408 | | 0.0206 | 28.11 | 14000 | 0.5361 | 0.3388 | | 0.0224 | 29.12 | 14500 | 0.5361 | 0.3380 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
Declan/CNN_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T06:38:15Z
--- license: creativeml-openrail-m --- https://civitai.com/models/4867/abyssorangerobuttsmix2
Declan/FoxNews_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T06:47:19Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_qqp_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7976007914914668 - name: F1 type: f1 value: 0.7297109826589595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_qqp_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4349 - Accuracy: 0.7976 - F1: 0.7297 - Combined Score: 0.7637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.526 | 1.0 | 2843 | 0.5088 | 0.7492 | 0.6674 | 0.7083 | | 0.4762 | 2.0 | 5686 | 0.4782 | 0.7695 | 0.6583 | 0.7139 | | 0.4438 | 3.0 | 8529 | 0.4532 | 0.7847 | 0.6829 | 0.7338 | | 0.4161 | 4.0 | 11372 | 0.4602 | 0.7869 | 0.7135 | 0.7502 | | 0.3968 | 5.0 | 14215 | 0.4395 | 0.7955 | 0.7212 | 0.7583 | | 0.3815 | 6.0 | 17058 | 0.4392 | 0.7985 | 0.7190 | 0.7587 | | 0.3659 | 7.0 | 19901 | 0.4349 | 0.7976 | 0.7297 | 0.7637 | | 0.352 | 8.0 | 22744 | 0.4419 | 0.8005 | 0.7300 | 0.7652 | | 0.3399 | 9.0 | 25587 | 0.4454 | 0.7998 | 0.7317 | 0.7658 | | 0.327 | 10.0 | 28430 | 0.4614 | 0.7995 | 0.7359 | 0.7677 | | 0.3157 | 11.0 | 31273 | 0.4733 | 0.8000 | 0.7246 | 0.7623 | | 0.3041 | 12.0 | 34116 | 0.4738 | 0.8041 | 0.7283 | 0.7662 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/FoxNews_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_mnli_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5665174938974776 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9073 - Accuracy: 0.5665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0297 | 1.0 | 1534 | 0.9819 | 0.5076 | | 0.9555 | 2.0 | 3068 | 0.9376 | 0.5479 | | 0.9202 | 3.0 | 4602 | 0.9282 | 0.5506 | | 0.8951 | 4.0 | 6136 | 0.9175 | 0.5629 | | 0.8759 | 5.0 | 7670 | 0.9040 | 0.5750 | | 0.8587 | 6.0 | 9204 | 0.9110 | 0.5670 | | 0.8422 | 7.0 | 10738 | 0.9196 | 0.5693 | | 0.8261 | 8.0 | 12272 | 0.9521 | 0.5577 | | 0.8114 | 9.0 | 13806 | 0.9293 | 0.5744 | | 0.7967 | 10.0 | 15340 | 0.9075 | 0.5839 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/FoxNews_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_wnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6870 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6982 | 1.0 | 3 | 0.6870 | 0.5634 | | 0.6948 | 2.0 | 6 | 0.6911 | 0.5634 | | 0.6924 | 3.0 | 9 | 0.6917 | 0.5634 | | 0.6954 | 4.0 | 12 | 0.6886 | 0.5634 | | 0.6941 | 5.0 | 15 | 0.6893 | 0.5634 | | 0.6917 | 6.0 | 18 | 0.6930 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/FoxNews_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_mnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5885882831570383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8831 - Accuracy: 0.5886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0194 | 1.0 | 1534 | 0.9641 | 0.5250 | | 0.9428 | 2.0 | 3068 | 0.9256 | 0.5586 | | 0.9042 | 3.0 | 4602 | 0.9137 | 0.5684 | | 0.8725 | 4.0 | 6136 | 0.8912 | 0.5849 | | 0.8471 | 5.0 | 7670 | 0.8784 | 0.5930 | | 0.8242 | 6.0 | 9204 | 0.8841 | 0.5932 | | 0.8037 | 7.0 | 10738 | 0.8826 | 0.6006 | | 0.784 | 8.0 | 12272 | 0.9013 | 0.5946 | | 0.7647 | 9.0 | 13806 | 0.8934 | 0.6054 | | 0.7468 | 10.0 | 15340 | 0.8993 | 0.6042 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/FoxNews_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1753.30 +/- 354.24 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/HuffPost_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_sa_GLUE_Experiment_stsb_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.06351501126231118 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_stsb_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.3296 - Pearson: 0.0643 - Spearmanr: 0.0635 - Combined Score: 0.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 4.1667 | 1.0 | 23 | 2.3937 | 0.0211 | 0.0215 | 0.0213 | | 2.1645 | 2.0 | 46 | 2.3296 | 0.0643 | 0.0635 | 0.0639 | | 2.0445 | 3.0 | 69 | 2.5873 | 0.0574 | 0.0760 | 0.0667 | | 1.9177 | 4.0 | 92 | 2.5104 | 0.1360 | 0.1374 | 0.1367 | | 1.6933 | 5.0 | 115 | 2.4024 | 0.1910 | 0.2072 | 0.1991 | | 1.4482 | 6.0 | 138 | 2.5412 | 0.2007 | 0.2127 | 0.2067 | | 1.2485 | 7.0 | 161 | 2.5616 | 0.1943 | 0.2005 | 0.1974 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/HuffPost_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T07:01:19Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_wnli_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_wnli_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6861 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7012 | 1.0 | 3 | 0.7047 | 0.4366 | | 0.7043 | 2.0 | 6 | 0.6952 | 0.4366 | | 0.6928 | 3.0 | 9 | 0.6861 | 0.5634 | | 0.6998 | 4.0 | 12 | 0.6874 | 0.5634 | | 0.6927 | 5.0 | 15 | 0.6957 | 0.4366 | | 0.6952 | 6.0 | 18 | 0.7001 | 0.4366 | | 0.6966 | 7.0 | 21 | 0.6927 | 0.5634 | | 0.6917 | 8.0 | 24 | 0.6909 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/HuffPost_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T07:02:46Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 29.20 +/- 26.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Declan/HuffPost_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-01-25T07:05:01Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_mnli_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.6144222945484134 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_mnli_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8561 - Accuracy: 0.6144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0075 | 1.0 | 1534 | 0.9587 | 0.5303 | | 0.9233 | 2.0 | 3068 | 0.9005 | 0.5729 | | 0.8749 | 3.0 | 4602 | 0.8834 | 0.5888 | | 0.8389 | 4.0 | 6136 | 0.8564 | 0.6107 | | 0.8058 | 5.0 | 7670 | 0.8487 | 0.6142 | | 0.776 | 6.0 | 9204 | 0.8578 | 0.6220 | | 0.7467 | 7.0 | 10738 | 0.8618 | 0.6187 | | 0.7171 | 8.0 | 12272 | 0.8828 | 0.6207 | | 0.6876 | 9.0 | 13806 | 0.8901 | 0.6292 | | 0.6589 | 10.0 | 15340 | 0.8953 | 0.6219 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Declan/HuffPost_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - generated_from_trainer model-index: - name: jeolla-ko-nmt-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jeolla-ko-nmt-v1 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6661 | 1.0 | 3017 | 0.4137 | | 0.2839 | 2.0 | 6034 | 0.2249 | | 0.1932 | 3.0 | 9051 | 0.1815 | | 0.144 | 4.0 | 12068 | 0.1629 | | 0.1159 | 5.0 | 15085 | 0.1559 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2