modelId
stringlengths 4
81
| tags
list | pipeline_tag
stringclasses 17
values | config
dict | downloads
int64 0
59.7M
| first_commit
timestamp[ns, tz=UTC] | card
stringlengths 51
438k
|
---|---|---|---|---|---|---|
Denilson/gbert-base-germaner
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 19.40 +/- 11.67
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Deniskin/emailer_medium_300
|
[
"pytorch",
"gpt2",
"text-generation",
"transformers"
] |
text-generation
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 14 | null |
---
tags:
- fastai
---
# Amazing!
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
# Some next steps
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
---
# Model card
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
|
Deniskin/essays_small_2000i
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinfoce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
Deniskin/gpt3_medium
|
[
"pytorch",
"gpt2",
"text-generation",
"transformers",
"has_space"
] |
text-generation
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 52 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: pythia-70M
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythia-70M
This model is a fine-tuned version of [EleutherAI/pythia-70M](https://huggingface.co/EleutherAI/pythia-70M) on the imdb dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Denver/distilbert-base-uncased-finetuned-squad
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -181.88 +/- 167.18
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.0003
'num_envs': 4
'num_steps': 64
'anneal_lr': True
'gae': True
'gamma': 0.98
'gae_lambda': 0.95
'num_minibatches': 8
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'frangiral/ppo-LunarLander-v2-1'
'batch_size': 256
'minibatch_size': 32}
```
|
DeskDown/MarianMixFT_en-fil
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for my first Diffusion Model which is for unconditional image generation of beautiful butterflies.
This model is trained on a dataset of butterflies of image size 32*32
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('NvkAnirudh/sd-butterflies32')
image = pipeline().images[0]
image
```
|
DeskDown/MarianMixFT_en-hi
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: pythia-160M
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythia-160M
This model is a fine-tuned version of [EleutherAI/pythia-160M](https://huggingface.co/EleutherAI/pythia-160M) on the imdb dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DeskDown/MarianMixFT_en-ms
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: ksathur/bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ksathur/bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0871
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1310, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 0.1770 | 0 |
| 0.1526 | 1 |
| 0.1185 | 2 |
| 0.1124 | 3 |
| 0.0871 | 4 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.0
- Tokenizers 0.13.2
|
DeskDown/MarianMixFT_en-my
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 7 | 2023-02-22T10:54:28Z |
---
license: openrail
tags:
- stable-diffusion
- lora
---
## Duelyst Codex Landscape LORA
(Model Card will be updated later with proper example images and prompt settings, WIP)
<img src="https://huggingface.co/cadaeic/duelyst-codex-lora/resolve/main/im_20230222110424_000_988913356.png"/>
**Prompt:** painting of a fantasy landscape of a castle
---
LORA trained on open source fantasy landscape art from the shut down game [Duelyst](https://en.wikipedia.org/wiki/Duelyst), whose assets have been uploaded to GitHub under the CC0 license.
Dataset obtained from [The Public Conscious](http://library.lowframerate.games/), a collection of public domain images.
### Notes
- Trained over Stable Diffusion 1.5 and will work with SD 1.x models
- Overtrained on fantasy landscapes
- My very first Lora, and pretty much a test Lora!
- Trained with [this Colab notebook](https://colab.research.google.com/github/Linaqruf/kohya-trainer/blob/main/kohya-LoRA-finetuner.ipynb) using default settings with a free Google colab account for 40 minutes
---
<img src="https://huggingface.co/cadaeic/duelyst-codex-lora/resolve/main/im_20230222110707_001_141397401.png"/>
**Prompt:** fantasy painting of a fat grey british shorthair cat
|
DeskDown/MarianMixFT_en-th
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### first_avartar Dreambooth model trained by zhoubinjason with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)!
To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars).
Sample pictures of this concept:


|
DeskDown/MarianMixFT_en-vi
|
[
"pytorch",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
license: openrail
---

```
Model : Microworld v3~4
Base : Seek.art (Mega v1.0), OpenJourney v1.5
Type : Dreambooth SD Training
Epochs : 5000
Encoder : 350
Images : 50~
Captions: Yes
Trigger : microworld
Credits : Barret, Coreco, PublicPrompts, PromptHero
```

```
Model : mw4_critters
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, food_crit
Credits : Barret, Plasm0
```

```
Model : mw4_knollingcase
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, knollingcase
Credits : Barret, Aybeeceedee
```

```
Model : mw4_steampunk
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, steampunkai
Credits : Barret, KoningWouter
```


```
Model : mw4_characters
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, cbzbb
Credits : Barret, RichVIP
```

```
Model : mw4_clay
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, clayitization
Credits : Barret, Plasm0
```


```
Model : mw4_shatter
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, mdjrny-shttr
Credits : Barret, ShadoWxShinigamI
```

```
Model : mw4_disney
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, modern disney style
Credits : Barret, nitrosocke
```

```
Model : mw4_inkpunk
Base : mw4
Type : SD Merge
Weight : 0.5
Trigger : microworld, nvinkpunk
Credits : Barret, Envvi Ai
```
|
DeskDown/MarianMix_en-ja-10
|
[
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 1 | null |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.05 +/- 15.60
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
DeskDown/MarianMix_en-zh-10
|
[
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
license: other
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: opt-125m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-125m
This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the imdb dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DeskDown/MarianMix_en-zh_to_vi-ms-hi-ja
|
[
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"MarianMTModel"
],
"model_type": "marian",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-finetuned-subjqa-movies_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-subjqa-movies_2
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Despin89/test
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.71 +/- 0.45
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="AigizK/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Devid/DialoGPT-small-Miku
|
[
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] |
conversational
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 10 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: G-e-o-r-g-e/ppo-PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Devrim/prism-default
|
[
"license:mit"
] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 552.50 +/- 174.46
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sheryliza -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sheryliza -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sheryliza
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
DevsIA/imagenes
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | 2023-02-22T11:13:43Z |
---
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 523.50 +/- 219.93
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[dqn_atari]"
python -m cleanrl_utils.enjoy --exp-name dqn_atari --env-id SpaceInvadersNoFrameskip-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/ssw1591/SpaceInvadersNoFrameskip-v4/raw/main/dqn_atari.py
curl -OL https://huggingface.co/ssw1591/SpaceInvadersNoFrameskip-v4/raw/main/pyproject.toml
curl -OL https://huggingface.co/ssw1591/SpaceInvadersNoFrameskip-v4/raw/main/poetry.lock
poetry install --all-extras
python dqn_atari.py --env-id SpaceInvadersNoFrameskip-v4 --total-timesteps 1000000 --capture-video --save-model --cuda --upload-model --hf-entity ssw1591 --seed 2
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': True,
'cuda': True,
'end_e': 0.01,
'env_id': 'SpaceInvadersNoFrameskip-v4',
'exp_name': 'dqn_atari',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'ssw1591',
'learning_rate': 0.0001,
'learning_starts': 80000,
'save_model': True,
'seed': 2,
'start_e': 1,
'target_network_frequency': 1000,
'tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 1000000,
'track': False,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
DewiBrynJones/wav2vec2-large-xlsr-welsh
|
[
"cy",
"dataset:common_voice",
"audio",
"automatic-speech-recognition",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0",
"model-index"
] |
automatic-speech-recognition
|
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4898 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Dhruva/Interstellar
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
- scikit-learn-intelex
model_format: pickle
model_file: model-optimized.pkl
widget:
structuredData:
x0:
- -2.91869894329896
- 1.2861311367611363
- -0.17676780746347887
x1:
- 4.378017491251676
- -3.150744413325807
- -3.268596999474564
x10:
- 0.8047174523586147
- -1.2969581776011339
- 0.31762144434782824
x11:
- -3.2390344195350487
- 1.1959946004673214
- 0.7563114595834011
x12:
- -0.5746008540164298
- 3.3486745844798804
- 2.948767259442758
x13:
- 3.5915430703361673
- 3.5265729573580655
- 0.015963649217312414
x14:
- 0.8137258237766396
- -3.6846723813183138
- -0.0726270826536789
x2:
- 1.660608706929798
- -2.915945269906298
- -0.2966018717870358
x3:
- 5.717843051082721
- 0.6565179693281937
- 3.2575477536637036
x4:
- -1.319254071176227
- 3.2948523559028287
- 1.5435232801320602
x5:
- -2.9780546324477646
- -1.3618488406102902
- 1.5867699986090962
x6:
- 1.6471024314152358
- 1.3658191827488237
- -1.4529064414158699
x7:
- 0.3525021389263907
- 1.3302365122960365
- 0.09438131139298833
x8:
- -0.44858117376143913
- 0.9049016837557153
- 2.195212749960551
x9:
- 0.5394501179095126
- -2.85779169799503
- 1.3981326527555564
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|------------------|-----------|
| algorithm | auto |
| leaf_size | 30 |
| metric | minkowski |
| metric_params | |
| n_jobs | |
| n_neighbors | 3 |
| p | 2 |
| weights | uniform |
</details>
### Model Plot
The model plot is below.
<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>KNeighborsClassifier(n_neighbors=3)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">KNeighborsClassifier</label><div class="sk-toggleable__content"><pre>KNeighborsClassifier(n_neighbors=3)</pre></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
|
Digakive/Hsgshs
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 8.82 +/- 3.19
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r frangiral/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Dilmk2/DialoGPT-small-harrypotter
|
[
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] |
conversational
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 13 | null |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: validation
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8616803278688524
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1377
- F1: 0.8617
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2577 | 1.0 | 525 | 0.1668 | 0.8145 |
| 0.1285 | 2.0 | 1050 | 0.1376 | 0.8495 |
| 0.0812 | 3.0 | 1575 | 0.1377 | 0.8617 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DimaOrekhov/transformer-method-name
|
[
"pytorch",
"encoder-decoder",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: final_model_category
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# final_model_category
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0769
- F1: 0.9648
- Roc Auc: 0.9727
- Accuracy: 0.9129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.1418 | 1.0 | 3445 | 0.1373 | 0.9339 | 0.9495 | 0.8409 |
| 0.124 | 2.0 | 6890 | 0.1221 | 0.9411 | 0.9534 | 0.8571 |
| 0.1201 | 3.0 | 10335 | 0.1123 | 0.9466 | 0.9592 | 0.8705 |
| 0.0918 | 4.0 | 13780 | 0.0933 | 0.9547 | 0.9640 | 0.8891 |
| 0.0779 | 5.0 | 17225 | 0.0804 | 0.9635 | 0.9712 | 0.9129 |
| 0.0694 | 6.0 | 20670 | 0.0769 | 0.9648 | 0.9727 | 0.9129 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
Dizoid/Lll
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: sheryliza/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Doohae/q_encoder
|
[
"pytorch"
] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
tags:
- generated_from_trainer
datasets:
- city_learn
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset.
## Model description
state_mean = np.array(
[6.51944444e+00, 3.98379630e+00, 1.25000000e+01, 1.67850000e+01, 1.67849190e+01, 1.67851968e+01, 1.67854977e+01, 7.28990741e+01, 7.29056713e+01, 7.29093750e+01, 7.29134259e+01, 2.07319097e+02, 2.07319097e+02, 2.07185417e+02, 2.07236111e+02, 2.01118634e+02, 2.01118634e+02, 2.00806481e+02, 2.00887616e+02, 1.56366486e-01, 1.05916886e+00, 6.96371636e-01, 2.91179937e-01, 3.99157702e-01, 2.73105321e-01, 2.73105321e-01, 2.73105321e-01, 2.73105321e-01])
state_std = np.array(
[3.47125753e+00, 2.00155513e+00, 6.92218755e+00, 3.55389420e+00, 3.55381195e+00, 3.55403913e+00, 3.55461251e+00, 1.65420140e+01, 1.65465337e+01, 1.65478974e+01, 1.65489647e+01, 2.91883900e+02, 2.91883900e+02, 2.91755278e+02, 2.91833913e+02, 2.96415007e+02, 2.96415007e+02, 2.96260649e+02, 2.96305327e+02, 3.53750260e-02, 8.83521126e-01, 1.01549677e+00, 3.23319869e-01, 9.20646312e-01, 1.17879328e-01, 1.17879328e-01, 1.17879328e-01, 1.17879328e-01])
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 360
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DoyyingFace/bert-asian-hate-tweets-asian-unclean-with-clean-valid
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 33 | null |
---
license: wtfpl
---
Lora Backup. In case that civitai get 502/503 or even worse one day.
---
Lora备份.以防哪天civitai什么的炸了。
====
角色
====
Abigail Swimsuit 阿比盖尔(水着)
Ishtar 伊什塔尔
Colossus Omega Chan 高达酱
Angela Balzac 安洁拉·巴尔扎克
Ayachi Nene 绫地宁宁
Minato Aqua Nurse 凑阿库娅(护士)
Tyrca Corrupted 狄璐卡(恶堕)
Yui 优衣(礼服)
Haneoka Meimi 羽丘芽美(怪盗圣少女)
Azami (Kagerou Project) 蓟(阳炎Project)
Mikoshi Chiyo (Genshin Impact) 御舆千代(原神)
Sustainer of Heavenly Principles (Genshin Impact) 天理的维系者(原神)
Streetward Rambler/Young Madame Ping (Genshin Impact) 歌尘浪市真君/年轻的萍姥姥(原神)
Sandrone (Genshin Impact) “木偶”桑多涅(原神)
Dunyarzad (Genshin Impact) 迪娜泽黛(原神)
Hu Tao (Lawson) (Genshin Impact) 胡桃 罗森联动 (原神)
Yoimiya (Lawson) (Genshin Impact) 宵宫 罗森联动 (原神)
Shiraori/Kumoko(Human Form) 白织/蜘蛛子(人形态)
Sophia Keren 索菲亚/吸血子
Shichimiya Satone(Chuunibyou Koi) 七宫智音(中二恋)
DSR-50 Highest Bid & Red Peony (Girls' Frontline) DSR-50 最高出价&红牡丹
Akiyama Mizuki (Project Sekai) 晓山瑞希
Platinum Shimmering Dew (Arknights) 白金 灿阳朝露 (明日方舟)
Shdow Futaba (Persona5) 暗影双叶(P5)
Hatsune(Summer) Princess Connect! 初音(夏日) 公主连结
绀紫之心 礼服
绀紫之心 混沌形态/恶堕
绀紫妹妹 混沌形态/恶堕
========
碧蓝航线
========
恐怖 万圣节
比叡 睡裙
伏罗希洛夫 温泉
德意志 泳装
斯佩 日常+礼服
武藏 堇色月影
塔什干 休息日
确捷 泳装
腓特烈大帝 婚纱
夕立 圣诞节
Chen Hai Cerulean Ripples 镇海(潋滟水色)
Neptune Princess of the Reindeers 海王星(圣诞节)
Dido Doll 黛朵(礼服)
Drake Swimsuit 德雷克(泳装)
Brest 布雷斯特
Veneto Swimsuit 维托里奥·维内托(泳装)
Amagi Swimsuit 天城(泳装)
Chapayev Prisoner 恰巴耶夫(囚服)
Formidable Swimsuit 可畏(泳装)
Hwah Jah Jiangshi/Zombie 华甲(僵尸)
La Galissonnière Black Cat 拉加利索尼埃(黑猫)
Manchester Succubus Nurse 曼彻斯特(魅魔护士)
Nagato Babydoll 长门(睡衣)
Perseus 英仙座
Shimakaze Alice 岛风(爱丽丝)
Tashkent Bound 塔什干(受缚)
Albion 阿尔比恩
Albion Succubus 阿尔比恩(魅魔)
Janus Succubus 雅努斯(魅魔)
Kashino Swimsuit 樫野(泳装)
Yet-san Ruqun 逸仙(襦裙)
Massachusetts Cocktail Dress 马萨诸塞(礼服)
========
概念/服装
========
不挠女仆装Cos
绫地宁宁Cos
Erotic Jiangshi Costume 涩情僵尸装
Swimsuit Pull 扯泳衣
Azure Horizons China Dress 天狼星碧波青云奶盖旗袍
Le Malin's Bunnysuit 恶毒兔女郎cos
Seyana Meme
Naked Hoodie 裸体卫衣
Naked Bathrobe 裸体浴袍
Riding Machine 骑马机
Mouth Holding Bikini 嘴叼比基尼
Bruce Lee's Jumpsuit 李小龙外套
Marilyn Monroe Dress Tug Cosplay 梦露压裙子Cosplay
Human Dog 犬化调教
Naked Bandage 果体绷带
Dangerous Beast 危险野兽
Plant Girl 植物娘
Barcode on Breasts 胸部条形码
Soap Bubble Censor 泡沫遮胸
Carrot Insertion 种萝卜
Delivery 躺在箱里
Mechanical Restrained 机械四肢拘束
Hair Censor 头发遮胸
Hair Over Crotch 头发遮三点
Girl In Cocktail Glass 坐在鸡尾酒杯里
Flower on Pussy 花朵遮阴
Straitjacket 拘束衣
Through Screen 钻出屏幕
Crotch Plate 遮阴板
Crucifixion 十字架
|
albert-base-v1
|
[
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"exbert",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 38,156 | 2023-02-22T13:05:54Z |
---
license: gpl-3.0
language:
- en
pipeline_tag: text2text-generation
tags:
- code
- asr
- inverse text normalization
datasets:
- pavanBuduguppa/asr_inverse_text_normalization
---
---
---
# asr_inverse_text_normalization
Finetuned a facebook/bart-base Pretrained model on the ASR inverse text normalization dataset by treating it as a seq2seq task. Other approaches which may be considered is by considering it as a TokenClassification task and the one mentioned here https://machinelearning.apple.com/research/inverse-text-normal.
## Model description
BART (Bidirectional and Auto-Regressive Transformers) is a pre-trained transformer-based neural network model developed by Facebook AI Research (FAIR) for various natural language processing (NLP) tasks
The BART architecture is based on the Transformer model, which is a type of neural network architecture that processes sequential input data, such as text, by applying self-attention mechanisms to capture the relationships between different words in the input sequence.
BART includes both auto-regressive and bidirectional encoder-decoder transformer architectures, which enable it to perform both generation and prediction tasks
BART was trained on a diverse range of NLP tasks, including machine translation, summarization, and question answering, and has shown strong performance across multiple benchmarks.
Its training process involves corrupting text with different types of noise and training the model to reconstruct the original text, which has been shown to improve the model's ability to generalize to new tasks and outperform other pre-trained language models like GPT and BERT
The model flavour which was chosen is that of "facebook/bart-base" and columns "after" is used as the source while "before" column is used as the targets.
## Intended uses & limitations
This model can be used as an out-of-the-box solution to the invesrse text normalization which can convert ASR generated un-normalized text such as
"my c v v for my card is five six seven and it expires on november twenty three" -> "my CVV for my card is 567 and it expires on November 23"
The model needs to be explored for various min and max length setting at the time of generation for your specific usecase
### How to use
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="pavanBuduguppa/asr_inverse_text_normalization")
>>> generator("my c v v for my card is five six seven and it expires on november twenty three")
```
## Training data
All credits and rights for the training data belongs to Google. The data was merely obtained and processed for this model and the original data can be found here https://www.kaggle.com/competitions/text-normalization-challenge-english-language/data
|
albert-base-v2
|
[
"pytorch",
"tf",
"jax",
"rust",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4,785,283 | 2023-02-22T13:08:19Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: Isaacgv/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
albert-large-v2
|
[
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 26,792 | 2023-02-22T13:15:40Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 290.01 +/- 20.76
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
albert-xxlarge-v2
|
[
"pytorch",
"tf",
"safetensors",
"albert",
"fill-mask",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1909.11942",
"transformers",
"exbert",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 42,640 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-iemocap8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-iemocap8
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8968
- Accuracy: 0.6654
- F1: 0.6723
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.319412088241492e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 51 | 1.0531 | 0.5597 | 0.5655 |
| 1.0284 | 2.0 | 102 | 0.9370 | 0.6227 | 0.6304 |
| 1.0284 | 3.0 | 153 | 0.8796 | 0.6722 | 0.6765 |
| 0.4432 | 4.0 | 204 | 0.9785 | 0.6654 | 0.6727 |
| 0.4432 | 5.0 | 255 | 1.0664 | 0.6586 | 0.6634 |
| 0.2492 | 6.0 | 306 | 1.1291 | 0.6499 | 0.6606 |
| 0.2492 | 7.0 | 357 | 1.1847 | 0.6702 | 0.6777 |
| 0.1707 | 8.0 | 408 | 1.4084 | 0.6508 | 0.6534 |
| 0.1707 | 9.0 | 459 | 1.3468 | 0.6702 | 0.6762 |
| 0.1461 | 10.0 | 510 | 1.4245 | 0.6634 | 0.6710 |
| 0.1461 | 11.0 | 561 | 1.4865 | 0.6499 | 0.6600 |
| 0.1262 | 12.0 | 612 | 1.4616 | 0.6576 | 0.6656 |
| 0.1262 | 13.0 | 663 | 1.5335 | 0.6663 | 0.6711 |
| 0.1203 | 14.0 | 714 | 1.4855 | 0.6731 | 0.6806 |
| 0.1203 | 15.0 | 765 | 1.5825 | 0.6712 | 0.6792 |
| 0.1023 | 16.0 | 816 | 1.7145 | 0.6731 | 0.6794 |
| 0.1023 | 17.0 | 867 | 1.6676 | 0.6751 | 0.6823 |
| 0.0976 | 18.0 | 918 | 1.8013 | 0.6693 | 0.6719 |
| 0.0976 | 19.0 | 969 | 1.7192 | 0.6673 | 0.6755 |
| 0.0937 | 20.0 | 1020 | 1.7837 | 0.6654 | 0.6731 |
| 0.0937 | 21.0 | 1071 | 1.7779 | 0.6760 | 0.6831 |
| 0.0901 | 22.0 | 1122 | 1.8352 | 0.6615 | 0.6687 |
| 0.0901 | 23.0 | 1173 | 1.8601 | 0.6596 | 0.6656 |
| 0.0844 | 24.0 | 1224 | 1.9129 | 0.6625 | 0.6719 |
| 0.0844 | 25.0 | 1275 | 1.8507 | 0.6731 | 0.6784 |
| 0.0829 | 26.0 | 1326 | 1.8582 | 0.6673 | 0.6735 |
| 0.0829 | 27.0 | 1377 | 1.8670 | 0.6770 | 0.6825 |
| 0.0839 | 28.0 | 1428 | 1.8763 | 0.6741 | 0.6800 |
| 0.0839 | 29.0 | 1479 | 1.8925 | 0.6702 | 0.6769 |
| 0.0802 | 30.0 | 1530 | 1.8968 | 0.6654 | 0.6723 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
bert-base-chinese
|
[
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"zh",
"arxiv:1810.04805",
"transformers",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3,377,486 | 2023-02-22T13:26:16Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: polgrad-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
bert-base-german-dbmdz-cased
|
[
"pytorch",
"jax",
"bert",
"fill-mask",
"de",
"transformers",
"license:mit",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 1,814 | 2023-02-22T13:28:35Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: mikato/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
bert-base-german-dbmdz-uncased
|
[
"pytorch",
"jax",
"safetensors",
"bert",
"fill-mask",
"de",
"transformers",
"license:mit",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 68,305 | 2023-02-22T13:29:22Z |
---
license: mit
---
Model Description
[Mixture of Diffusers](https://arxiv.org/abs/2302.02412)
|
bert-base-multilingual-uncased
|
[
"pytorch",
"tf",
"jax",
"safetensors",
"bert",
"fill-mask",
"multilingual",
"af",
"sq",
"ar",
"an",
"hy",
"ast",
"az",
"ba",
"eu",
"bar",
"be",
"bn",
"inc",
"bs",
"br",
"bg",
"my",
"ca",
"ceb",
"ce",
"zh",
"cv",
"hr",
"cs",
"da",
"nl",
"en",
"et",
"fi",
"fr",
"gl",
"ka",
"de",
"el",
"gu",
"ht",
"he",
"hi",
"hu",
"is",
"io",
"id",
"ga",
"it",
"ja",
"jv",
"kn",
"kk",
"ky",
"ko",
"la",
"lv",
"lt",
"roa",
"nds",
"lm",
"mk",
"mg",
"ms",
"ml",
"mr",
"min",
"ne",
"new",
"nb",
"nn",
"oc",
"fa",
"pms",
"pl",
"pt",
"pa",
"ro",
"ru",
"sco",
"sr",
"scn",
"sk",
"sl",
"aze",
"es",
"su",
"sw",
"sv",
"tl",
"tg",
"ta",
"tt",
"te",
"tr",
"uk",
"ud",
"uz",
"vi",
"vo",
"war",
"cy",
"fry",
"pnb",
"yo",
"dataset:wikipedia",
"arxiv:1810.04805",
"transformers",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 328,585 | null |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
distilbert-base-uncased-finetuned-sst-2-english
|
[
"pytorch",
"tf",
"rust",
"safetensors",
"distilbert",
"text-classification",
"en",
"dataset:sst2",
"dataset:glue",
"arxiv:1910.01108",
"doi:10.57967/hf/0181",
"transformers",
"license:apache-2.0",
"model-index",
"has_space"
] |
text-classification
|
{
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3,060,704 | 2023-02-22T13:59:21Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.73 +/- 0.64
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
distilgpt2
|
[
"pytorch",
"tf",
"jax",
"tflite",
"rust",
"coreml",
"safetensors",
"gpt2",
"text-generation",
"en",
"dataset:openwebtext",
"arxiv:1910.01108",
"arxiv:2201.08542",
"arxiv:2203.12574",
"arxiv:1910.09700",
"arxiv:1503.02531",
"transformers",
"exbert",
"license:apache-2.0",
"model-index",
"co2_eq_emissions",
"has_space"
] |
text-generation
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 1,611,668 | 2023-02-22T14:01:37Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fl_image_category_ds
metrics:
- accuracy
model-index:
- name: project_name
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: fl_image_category_ds
type: fl_image_category_ds
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6621621621621622
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# project_name
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fl_image_category_ds dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9537
- Accuracy: 0.6622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3368 | 1.0 | 88 | 1.2575 | 0.5448 |
| 1.1146 | 2.0 | 176 | 1.0928 | 0.6038 |
| 0.9667 | 3.0 | 264 | 1.0195 | 0.6223 |
| 0.9005 | 4.0 | 352 | 0.9832 | 0.6373 |
| 0.8432 | 5.0 | 440 | 0.9537 | 0.6622 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Aakansha/hs
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | 2023-02-22T18:51:41Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 7.21 +/- 2.30
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r NoNameFound/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Aarav/MeanMadCrazy_HarryPotterBot
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AdapterHub/bert-base-uncased-pf-emo
|
[
"bert",
"en",
"dataset:emo",
"arxiv:2104.08247",
"adapter-transformers",
"text-classification"
] |
text-classification
|
{
"architectures": null,
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 13.55 +/- 5.33
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r GrimReaperSam/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AdapterHub/bert-base-uncased-pf-scitail
|
[
"bert",
"en",
"dataset:scitail",
"arxiv:2104.08247",
"adapter-transformers",
"text-classification",
"adapterhub:nli/scitail"
] |
text-classification
|
{
"architectures": null,
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 2 | null |
---
tags:
- autotrain
- token-classification
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Andrei95/autotrain-data-jobbert15
co2_eq_emissions:
emissions: 1.6240218297608988
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 3669997969
- CO2 Emissions (in grams): 1.6240
## Validation Metrics
- Loss: 0.293
- Accuracy: 0.902
- Precision: 0.547
- Recall: 0.672
- F1: 0.603
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Andrei95/autotrain-jobbert15-3669997969
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("Andrei95/autotrain-jobbert15-3669997969", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Andrei95/autotrain-jobbert15-3669997969", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
AdapterHub/roberta-base-pf-mit_movie_trivia
|
[
"roberta",
"en",
"arxiv:2104.08247",
"adapter-transformers",
"token-classification",
"adapterhub:ner/mit_movie_trivia"
] |
token-classification
|
{
"architectures": null,
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Freeway-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Freeway-v5
type: Freeway-v5
metrics:
- type: mean_reward
value: 22.20 +/- 1.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Freeway-v5**
This is a trained model of a PPO agent playing Freeway-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Freeway-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Freeway-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AdapterHub/roberta-base-pf-pmb_sem_tagging
|
[
"roberta",
"en",
"arxiv:2104.08247",
"adapter-transformers",
"token-classification",
"adapterhub:semtag/pmb"
] |
token-classification
|
{
"architectures": null,
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- DemonAttack-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: DemonAttack-v5
type: DemonAttack-v5
metrics:
- type: mean_reward
value: 113614.00 +/- 2737.82
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **DemonAttack-v5**
This is a trained model of a PPO agent playing DemonAttack-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DemonAttack-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'DemonAttack-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AdapterHub/roberta-base-pf-quail
|
[
"roberta",
"en",
"dataset:quail",
"arxiv:2104.08247",
"adapter-transformers"
] | null |
{
"architectures": null,
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Movie_Review_Sentiment_Analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Movie_Review_Sentiment_Analysis
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2865
- Accuracy: 0.8986
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2923 | 1.0 | 2500 | 0.2865 | 0.8986 |
| 0.1782 | 2.0 | 5000 | 0.3732 | 0.903 |
| 0.0819 | 3.0 | 7500 | 0.4211 | 0.9164 |
| 0.0434 | 4.0 | 10000 | 0.4677 | 0.9176 |
| 0.0106 | 5.0 | 12500 | 0.5555 | 0.9216 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_10
|
[
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 9 | null |
---
tags:
- Solaris-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Solaris-v5
type: Solaris-v5
metrics:
- type: mean_reward
value: 1604.00 +/- 1006.97
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Solaris-v5**
This is a trained model of a PPO agent playing Solaris-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Solaris-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Solaris-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_30-epoch_30
|
[
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
tags:
- Solaris-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Solaris-v5
type: Solaris-v5
metrics:
- type: mean_reward
value: 2300.00 +/- 721.17
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Solaris-v5**
This is a trained model of a PPO agent playing Solaris-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Solaris-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Solaris-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Solaris-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Ahmad/parsT5
|
[
"jax",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"T5ForConditionalGeneration"
],
"model_type": "t5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 12 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9480193882667558
- name: Recall
type: recall
value: 0.9545607539548974
- name: F1
type: f1
value: 0.9512788259958073
- name: Accuracy
type: accuracy
value: 0.9917448697480628
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0400
- Precision: 0.9480
- Recall: 0.9546
- F1: 0.9513
- Accuracy: 0.9917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0529 | 1.0 | 1756 | 0.0418 | 0.9390 | 0.9423 | 0.9406 | 0.9901 |
| 0.0197 | 2.0 | 3512 | 0.0436 | 0.9338 | 0.9493 | 0.9415 | 0.9904 |
| 0.0109 | 3.0 | 5268 | 0.0400 | 0.9480 | 0.9546 | 0.9513 | 0.9917 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
AidenGO/KDXF_Bert4MaskedLM
|
[
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
tags:
- Surround-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Surround-v5
type: Surround-v5
metrics:
- type: mean_reward
value: -2.70 +/- 4.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Surround-v5**
This is a trained model of a PPO agent playing Surround-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Surround-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Surround-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Surround-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Akash7897/distilbert-base-uncased-finetuned-cola
|
[
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] |
text-classification
|
{
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 31 | null |
---
tags:
- WizardOfWor-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: WizardOfWor-v5
type: WizardOfWor-v5
metrics:
- type: mean_reward
value: 10170.00 +/- 7145.08
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5**
This is a trained model of a PPO agent playing WizardOfWor-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id WizardOfWor-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Akashamba/distilbert-base-uncased-finetuned-ner
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- YarsRevenge-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: YarsRevenge-v5
type: YarsRevenge-v5
metrics:
- type: mean_reward
value: 75440.50 +/- 9320.18
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5**
This is a trained model of a PPO agent playing YarsRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id YarsRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'YarsRevenge-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Akashpb13/Central_kurdish_xlsr
|
[
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ckb",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] |
automatic-speech-recognition
|
{
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 10 | null |
---
tags:
- YarsRevenge-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: YarsRevenge-v5
type: YarsRevenge-v5
metrics:
- type: mean_reward
value: 91629.60 +/- 9983.31
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5**
This is a trained model of a PPO agent playing YarsRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id YarsRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'YarsRevenge-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Aklily/Lilys
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
Access to model KaiNylund/2017-m0-finetuned-gpt2-124M is restricted and you are not in the authorized list. Visit https://huggingface.co/KaiNylund/2017-m0-finetuned-gpt2-124M to ask for access.
|
AkshatSurolia/BEiT-FaceMask-Finetuned
|
[
"pytorch",
"beit",
"image-classification",
"dataset:Face-Mask18K",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] |
image-classification
|
{
"architectures": [
"BeitForImageClassification"
],
"model_type": "beit",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 239 | null |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 19920.00 +/- 3871.90
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AkshaySg/GrammarCorrection
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Tennis-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Tennis-v5
type: Tennis-v5
metrics:
- type: mean_reward
value: -1.80 +/- 2.44
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Tennis-v5**
This is a trained model of a PPO agent playing Tennis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Tennis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Tennis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Tennis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Tennis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Tennis-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Tennis-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlanDev/dall-e-better
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Asterix-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Asterix-v5
type: Asterix-v5
metrics:
- type: mean_reward
value: 13460.00 +/- 8569.39
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Asterix-v5**
This is a trained model of a PPO agent playing Asterix-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asterix-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asterix-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Asterix-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Aleksandar/bert-srb-ner
|
[
"pytorch",
"bert",
"token-classification",
"dataset:wikiann",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] |
token-classification
|
{
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
tags:
- Asteroids-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Asteroids-v5
type: Asteroids-v5
metrics:
- type: mean_reward
value: 2855.00 +/- 1100.61
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Asteroids-v5**
This is a trained model of a PPO agent playing Asteroids-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Asteroids-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Asteroids-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Aleksandar/electra-srb-oscar
|
[
"pytorch",
"electra",
"fill-mask",
"transformers",
"generated_from_trainer",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"ElectraForMaskedLM"
],
"model_type": "electra",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
tags:
- Alien-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Alien-v5
type: Alien-v5
metrics:
- type: mean_reward
value: 1673.00 +/- 591.90
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Alien-v5**
This is a trained model of a PPO agent playing Alien-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Alien-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Alien-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Aleksandar1932/distilgpt2-rock
|
[
"pytorch",
"gpt2",
"text-generation",
"transformers"
] |
text-generation
|
{
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 11 | null |
---
tags:
- Alien-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Alien-v5
type: Alien-v5
metrics:
- type: mean_reward
value: 1522.00 +/- 419.80
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Alien-v5**
This is a trained model of a PPO agent playing Alien-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Alien-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Alien-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlekseyKulnevich/Pegasus-HeaderGeneration
|
[
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
tags:
- UpNDown-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: UpNDown-v5
type: UpNDown-v5
metrics:
- type: mean_reward
value: 280919.00 +/- 14355.34
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **UpNDown-v5**
This is a trained model of a PPO agent playing UpNDown-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id UpNDown-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'UpNDown-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlekseyKulnevich/Pegasus-QuestionGeneration
|
[
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 17 | null |
---
tags:
- BattleZone-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BattleZone-v5
type: BattleZone-v5
metrics:
- type: mean_reward
value: 29600.00 +/- 7269.11
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **BattleZone-v5**
This is a trained model of a PPO agent playing BattleZone-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BattleZone-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'BattleZone-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlekseyKulnevich/Pegasus-Summarization
|
[
"pytorch",
"pegasus",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"PegasusForConditionalGeneration"
],
"model_type": "pegasus",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 7 | null |
---
tags:
- UpNDown-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: UpNDown-v5
type: UpNDown-v5
metrics:
- type: mean_reward
value: 148898.00 +/- 30046.15
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **UpNDown-v5**
This is a trained model of a PPO agent playing UpNDown-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id UpNDown-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'UpNDown-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Alessandro/model_name
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | 2023-02-22T23:30:50Z |
---
tags:
- BattleZone-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BattleZone-v5
type: BattleZone-v5
metrics:
- type: mean_reward
value: 32600.00 +/- 4200.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **BattleZone-v5**
This is a trained model of a PPO agent playing BattleZone-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id BattleZone-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BattleZone-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'BattleZone-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlexN/xls-r-300m-pt
|
[
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pt",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"robust-speech-event",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] |
automatic-speech-recognition
|
{
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 15 | null |
---
tags:
- Bowling-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Bowling-v5
type: Bowling-v5
metrics:
- type: mean_reward
value: 38.10 +/- 2.70
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Bowling-v5**
This is a trained model of a PPO agent playing Bowling-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Bowling-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Bowling-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlexaMerens/Owl
|
[
"license:cc"
] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | 2023-02-22T23:33:30Z |
---
tags:
- Berzerk-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Berzerk-v5
type: Berzerk-v5
metrics:
- type: mean_reward
value: 1038.00 +/- 228.46
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Berzerk-v5**
This is a trained model of a PPO agent playing Berzerk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Berzerk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Berzerk-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AlexaRyck/KEITH
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Berzerk-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Berzerk-v5
type: Berzerk-v5
metrics:
- type: mean_reward
value: 1389.00 +/- 331.50
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Berzerk-v5**
This is a trained model of a PPO agent playing Berzerk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Berzerk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Berzerk-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
AliPotter24/a
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
tags:
- Atlantis-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Atlantis-v5
type: Atlantis-v5
metrics:
- type: mean_reward
value: 928890.00 +/- 30089.45
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Atlantis-v5**
This is a trained model of a PPO agent playing Atlantis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Atlantis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock
poetry install --all-extras
python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'actor_devices': ['gpu:0'],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 15360,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'distributed': True,
'ent_coef': 0.01,
'env_id': 'Atlantis-v5',
'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn',
'gae_lambda': 0.95,
'gamma': 0.99,
'global_learner_decices': ['gpu:1', 'gpu:3'],
'hf_entity': 'cleanrl',
'learner_device_ids': [1],
'learner_devices': ['gpu:1'],
'learning_rate': 0.00025,
'local_batch_size': 7680,
'local_minibatch_size': 1920,
'local_num_envs': 60,
'local_rank': 0,
'max_grad_norm': 0.5,
'minibatch_size': 3840,
'norm_adv': True,
'num_envs': 120,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3255,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanba',
'world_size': 2}
```
|
Andres2015/HiggingFaceTest
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
license: apache-2.0
datasets:
- race
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
inference: false
---
# t5-large fine-tuned to RACE for Generating Distractors
- Input: `question <sep> answer <sep> context`
- Output: list of 3 distractors
## Model Details
t5-large model is fine-tuned to the RACE dataset where the input is the concatenation of (question, answer, context) and the output is a list of 3 distractors. This is the second component in the question generation pipeline (i.e. `g2`) in our [MQAG paper](https://arxiv.org/abs/2301.12307),
or please refer to the GitHub repo of this project: https://github.com/potsawee/mqag0.
## How to Use the Model
Use the code below to get started with the model.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-race-Distractor")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-race-Distractor")
>>> context = r"""
... World number one Novak Djokovic says he is hoping for a "positive decision" to allow him
... to play at Indian Wells and the Miami Open next month. The United States has extended
... its requirement for international visitors to be vaccinated against Covid-19. Proof of vaccination
... will be required to enter the country until at least 10 April, but the Serbian has previously
... said he is unvaccinated. The 35-year-old has applied for special permission to enter the country.
... Indian Wells and the Miami Open - two of the most prestigious tournaments on the tennis calendar
... outside the Grand Slams - start on 6 and 20 March respectively. Djokovic says he will return to
... the ATP tour in Dubai next week after claiming a record-extending 10th Australian Open title
... and a record-equalling 22nd Grand Slam men's title last month.""".replace("\n", "")
>>> question = "What is the best title for the passage?"
>>> answer = "Djokovic's application for special permission to enter the United States"
>>> input_text = " ".join([question, tokenizer.sep_token, answer, tokenizer.sep_token, context])
>>> inputs = tokenizer(input_text, return_tensors="pt")
>>> outputs = model.generate(**inputs, max_new_tokens=128)
>>> distractors = tokenizer.decode(outputs[0], skip_special_tokens=False)
>>> distractors = distractors.replace(tokenizer.pad_token, "").replace(tokenizer.eos_token, "")
>>> distractors = [y.strip() for y in distractors.split(tokenizer.sep_token)]
>>> print(distractors)
['The United States has extended its requirement for international visitors to be vaccinated against Covid-19',
"Djokovic's return to the ATP tour in Dubai",
"Djokovic's hope for a positive decision to allow him to play at Indian Wells and the Miami Open"]
```
## Citation
```bibtex
@article{manakul2023mqag,
title={MQAG: Multiple-choice Question Answering and Generation for Assessing Information Consistency in Summarization},
author={Manakul, Potsawee and Liusie, Adian and Gales, Mark JF},
journal={arXiv preprint arXiv:2301.12307},
year={2023}
}
```
|
Andrija/SRoBERTa-XL-NER
|
[
"pytorch",
"roberta",
"token-classification",
"hr",
"sr",
"multilingual",
"dataset:hr500k",
"transformers",
"license:apache-2.0",
"autotrain_compatible"
] |
token-classification
|
{
"architectures": [
"RobertaForTokenClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: electra-base-emotion-Tweet_About_Disaster_Or_Not
results: []
language:
- en
---
# electra-base-emotion-Tweet_About_Disaster_Or_Not
This model is a fine-tuned version of [bhadresh-savani/electra-base-emotion](https://huggingface.co/bhadresh-savani/electra-base-emotion) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3276
- Accuracy: 0.8857
- F1: 0.7246
- Recall: 0.7991
- Precision: 0.6628
## Model description
This is a binary classification model to determine if tweet input samples are about a disaster or not.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Transformer%20Comparison/Is%20This%20Tweet%20Referring%20to%20a%20Disaster%20or%20Not%3F%20-%20ELECTRA.ipynb
### Associated Projects
This project is part of a comparison of multiple transformers. The others can be found at the following links:
- https://huggingface.co/DunnBC22/roberta-base-Tweet_About_Disaster_Or_Not
- https://huggingface.co/DunnBC22/deberta-v3-small-Tweet_About_Disaster_Or_Not
- https://huggingface.co/DunnBC22/albert-base-v2-Tweet_About_Disaster_Or_Not
- https://huggingface.co/DunnBC22/ernie-2.0-base-en-Tweet_About_Disaster_Or_Not
- https://huggingface.co/DunnBC22/distilbert-base-uncased-Tweet_About_Disaster_Or_Not
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
The main limitation is the quality of the data source.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/vstepanenko/disaster-tweets
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.4633 | 1.0 | 143 | 0.3938 | 0.8373 | 0.6490 | 0.7991 | 0.5463 |
| 0.3566 | 2.0 | 286 | 0.3551 | 0.8575 | 0.6860 | 0.8271 | 0.5861 |
| 0.3078 | 3.0 | 429 | 0.3416 | 0.8909 | 0.7220 | 0.7523 | 0.6940 |
| 0.2813 | 4.0 | 572 | 0.3276 | 0.8857 | 0.7246 | 0.7991 | 0.6628 |
| 0.2592 | 5.0 | 715 | 0.3279 | 0.8892 | 0.7273 | 0.7850 | 0.6774 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.12.1
|
Andrija/SRoBERTa-XL
|
[
"pytorch",
"roberta",
"fill-mask",
"hr",
"sr",
"multilingual",
"dataset:oscar",
"dataset:srwac",
"dataset:leipzig",
"dataset:cc100",
"dataset:hrwac",
"transformers",
"masked-lm",
"license:apache-2.0",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 54 | null |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# tags-allnli-GroNLP-bert-base-dutch-cased
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
model = AutoModel.from_pretrained(textgain/tags-allnli-GroNLP-bert-base-dutch-cased)
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4687 with parameters:
```
{'batch_size': 128}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 3000,
"warmup_steps": 300.0,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
Anirbanbhk/Hate-speech-Pretrained-movies
|
[
"tf",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 20 | null |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 287.95 +/- 13.15
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/AR_rule_based_bert_triplet_epochs_1_shard_1
|
[
"pytorch",
"bert",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 2 | null |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 12.50 +/- 5.67
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r rahul-t-p/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
license: apache-2.0
---
# Introduction
Libraries in this repository are intended for use in
https://github.com/k2-fsa/sherpa-onnx
They are downloaded from
https://mvnrepository.com/artifact/com.microsoft.onnxruntime/onnxruntime-android/1.14.0
```
wget https://repo1.maven.org/maven2/com/microsoft/onnxruntime/onnxruntime-android/1.14.0/onnxruntime-android-1.14.0.aar
mv onnxruntime-android-1.14.0.aar onnxruntime-android-1.14.0.zip
unzip onnxruntime-android-1.14.0.zip
cd onnxruntime-android-1.14.0
tree .
```
```
.
├── AndroidManifest.xml
├── R.txt
├── arm64-v8a
├── armeabi-v7a
├── classes.jar
├── headers
│ ├── cpu_provider_factory.h
│ ├── nnapi_provider_factory.h
│ ├── onnxruntime_c_api.h
│ ├── onnxruntime_cxx_api.h
│ └── onnxruntime_cxx_inline.h
├── jni
│ ├── arm64-v8a
│ │ ├── libonnxruntime.so
│ │ └── libonnxruntime4j_jni.so
│ ├── armeabi-v7a
│ │ ├── libonnxruntime.so
│ │ └── libonnxruntime4j_jni.so
│ ├── x86
│ │ ├── libonnxruntime.so
│ │ └── libonnxruntime4j_jni.so
│ └── x86_64
│ ├── libonnxruntime.so
│ └── libonnxruntime4j_jni.so
├── x86
└── x86_64
10 directories, 16 files
```
|
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_1
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: SD-sentiment-model-BERT-v1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# SD-sentiment-model-BERT-v1
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0686
- Train Accuracy: 0.9786
- Validation Loss: 0.4576
- Validation Accuracy: 0.8860
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.3289 | 0.8543 | 0.3989 | 0.8560 | 0 |
| 0.0686 | 0.9786 | 0.4576 | 0.8860 | 1 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.11.0
- Datasets 2.9.0
- Tokenizers 0.13.2
|
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: kobert-finetuned-review
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobert-finetuned-review
This model is a fine-tuned version of [skt/kobert-base-v1](https://huggingface.co/skt/kobert-base-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2235
- Accuracy: 0.92
- F1: 0.9245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 160
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.99 | 93 | 0.1984 | 0.926 | 0.9267 |
| No log | 1.99 | 186 | 0.2235 | 0.92 | 0.9245 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
AnonymousSub/SR_EManuals-RoBERTa
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 1 | null |
---
license: mit
tags:
- NLP
datasets:
- Yaxin/SemEval2014Task4Raw
metrics:
- f1
- precision
- recall
pipeline_tag: text2text-generation
---
# ate_tk-instruct-base-def-pos-neg-neut-restaurants
This model is finetuned for the Aspect Term Extraction (ATE) subtask. The finetuning was carried out by adding prompts of the form:
- definition + 2 positive examples + 2 negative examples + 2 neutral examples.
The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the restaurants domains.**
The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be
found [here](https://github.com/kevinscaria/InstructABSA).
For the ATE subtask, this model is the current SOTA.
## Training data
InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews
from laptops and restaurant domains and their corresponding aspect term and polarity labels.
### BibTeX entry and citation info
If you use this model in your work, please cite the following paper:
```bibtex
@inproceedings{Scaria2023InstructABSAIL,
title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis},
author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral},
year={2023}
}
```
|
AnonymousSub/T5_pubmedqa_question_generation
|
[
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] |
text2text-generation
|
{
"architectures": [
"T5ForConditionalGeneration"
],
"model_type": "t5",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": true,
"length_penalty": 2,
"max_length": 200,
"min_length": 30,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"prefix": "summarize: "
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to German: "
},
"translation_en_to_fr": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to French: "
},
"translation_en_to_ro": {
"early_stopping": true,
"max_length": 300,
"num_beams": 4,
"prefix": "translate English to Romanian: "
}
}
}
| 6 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- 10th_science_tamil_to_english
model-index:
- name: 10th_science_ta_to_eng
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 10th_science_ta_to_eng
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the 10th_science_tamil_to_english dataset.
It achieves the following results on the evaluation set:
- eval_loss: 4.2536
- eval_wer: 133.3041
- eval_runtime: 194.5706
- eval_samples_per_second: 1.994
- eval_steps_per_second: 0.128
- epoch: 13.0
- step: 5000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.2.dev0
- Tokenizers 0.13.2
|
AnonymousSub/bert_mean_diff_epochs_1_shard_1
|
[
"pytorch",
"bert",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-ag-news-finetuned-dwnews-categories
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-ag-news-finetuned-dwnews-categories
This model is a fine-tuned version of [nateraw/bert-base-uncased-ag-news](https://huggingface.co/nateraw/bert-base-uncased-ag-news) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8659
- Accuracy: 0.74
- Precision Weighted: 0.7435
- Precision Macro: 0.7557
- Recall Weighted: 0.74
- Recall Macro: 0.7304
- F1 Weighted: 0.7294
- F1 Macro: 0.7250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Precision Macro | Recall Weighted | Recall Macro | F1 Weighted | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:---------------:|:------------:|:-----------:|:--------:|
| 1.8428 | 0.25 | 50 | 1.5099 | 0.53 | 0.5008 | 0.4655 | 0.53 | 0.3544 | 0.4363 | 0.3246 |
| 1.3134 | 0.5 | 100 | 1.2200 | 0.605 | 0.4765 | 0.4247 | 0.605 | 0.4681 | 0.5207 | 0.4261 |
| 1.1562 | 0.75 | 150 | 1.0473 | 0.68 | 0.7007 | 0.6603 | 0.68 | 0.5534 | 0.6483 | 0.5507 |
| 1.0008 | 1.0 | 200 | 0.9491 | 0.67 | 0.6281 | 0.5935 | 0.67 | 0.5881 | 0.6390 | 0.5778 |
| 0.8173 | 1.25 | 250 | 0.9218 | 0.7 | 0.7028 | 0.6599 | 0.7 | 0.6694 | 0.6874 | 0.6417 |
| 0.8385 | 1.5 | 300 | 0.8900 | 0.715 | 0.7250 | 0.7131 | 0.715 | 0.6600 | 0.7059 | 0.6637 |
| 0.6988 | 1.75 | 350 | 0.9198 | 0.7 | 0.6941 | 0.6875 | 0.7 | 0.6825 | 0.6866 | 0.6704 |
| 0.6851 | 2.0 | 400 | 0.8607 | 0.72 | 0.7248 | 0.7310 | 0.72 | 0.6978 | 0.7067 | 0.6965 |
| 0.548 | 2.25 | 450 | 0.8659 | 0.74 | 0.7435 | 0.7557 | 0.74 | 0.7304 | 0.7294 | 0.7250 |
| 0.4898 | 2.5 | 500 | 0.9184 | 0.73 | 0.7379 | 0.7079 | 0.73 | 0.7599 | 0.7229 | 0.7203 |
| 0.5683 | 2.75 | 550 | 0.9207 | 0.72 | 0.7188 | 0.7089 | 0.72 | 0.7429 | 0.7150 | 0.7195 |
| 0.4971 | 3.0 | 600 | 0.9256 | 0.72 | 0.7257 | 0.7104 | 0.72 | 0.7384 | 0.7141 | 0.7126 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
AnonymousSub/cline-emanuals-s10-AR
|
[
"pytorch",
"roberta",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 27 | null |
---
pipeline_tag: image-classification
library_name: fastai
---
|
AnonymousSub/cline-emanuals-techqa
|
[
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] |
question-answering
|
{
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
library_name: rl-algo-impls
tags:
- procgen-starpilot-easy
- ppo
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 33.2 +/- 22.75
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: procgen-starpilot-easy
type: procgen-starpilot-easy
---
# **PPO** Agent playing **procgen-starpilot-easy**
This is a trained model of a **PPO** agent playing **procgen-starpilot-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb.
## Training Results
This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
| algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
|:-------|:----------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------|
| ppo | starpilot | 1 | 29.375 | 21.989 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/sbgk2hzd) |
| ppo | starpilot | 2 | 28.3438 | 19.8622 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/11cs8fmu) |
| ppo | starpilot | 3 | 33.2031 | 22.7536 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/bvevxrot) |
### Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to.
By default training goes to a rl-algo-impls project while benchmarks go to
rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best
models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run `wandb
login`.
## Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest
implementation could be sufficiently different to not be able to reproduce similar
results. You might need to checkout the commit the agent was trained on:
[21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a).
```
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/bvevxrot
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb)
notebook.
## Training
If you want the highest chance to reproduce these results, you'll want to checkout the
commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While
training is deterministic, different hardware will give different results.
```
python train.py --algo ppo --env procgen-starpilot-easy --seed 3
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb)
notebook.
## Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda
Labs instance. In a Lambda Labs instance terminal:
```
git clone [email protected]:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
```
### Alternative: Google Colab Pro+
As an alternative,
[colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb),
can be used. However, this requires a Google Colab Pro+ subscription and running across
4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
## Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very
close and has some additional data:
```
algo: ppo
algo_hyperparams:
batch_size: 2048
clip_range: 0.2
clip_range_vf: 0.2
ent_coef: 0.01
gae_lambda: 0.95
gamma: 0.999
learning_rate: 0.0005
n_epochs: 3
n_steps: 256
vf_coef: 0.5
env: procgen-starpilot-easy
env_hyperparams:
is_procgen: true
make_kwargs:
distribution_mode: easy
n_envs: 64
normalize: true
env_id: starpilot
eval_params:
deterministic: false
ignore_first_episode: true
n_timesteps: 25000000
policy_hyperparams:
activation_fn: relu
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
init_layers_orthogonal: true
seed: 3
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_21ee1ab
- host_138-2-238-100
```
|
AnonymousSub/cline_emanuals
|
[
"pytorch",
"roberta",
"transformers"
] | null |
{
"architectures": [
"LecbertForPreTraining"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 3 | null |
---
library_name: rl-algo-impls
tags:
- procgen-bigfish-easy
- ppo
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 23.64 +/- 16.3
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: procgen-bigfish-easy
type: procgen-bigfish-easy
---
# **PPO** Agent playing **procgen-bigfish-easy**
This is a trained model of a **PPO** agent playing **procgen-bigfish-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb.
## Training Results
This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
| algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
|:-------|:--------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------|
| ppo | bigfish | 1 | 23.6406 | 16.3041 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/mg5h9dhc) |
| ppo | bigfish | 2 | 18.0469 | 14.8959 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/r6oxvsed) |
| ppo | bigfish | 3 | 16.7656 | 17.2335 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/udygbbmi) |
### Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to.
By default training goes to a rl-algo-impls project while benchmarks go to
rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best
models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run `wandb
login`.
## Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest
implementation could be sufficiently different to not be able to reproduce similar
results. You might need to checkout the commit the agent was trained on:
[21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a).
```
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/mg5h9dhc
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb)
notebook.
## Training
If you want the highest chance to reproduce these results, you'll want to checkout the
commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While
training is deterministic, different hardware will give different results.
```
python train.py --algo ppo --env procgen-bigfish-easy --seed 1
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb)
notebook.
## Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda
Labs instance. In a Lambda Labs instance terminal:
```
git clone [email protected]:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
```
### Alternative: Google Colab Pro+
As an alternative,
[colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb),
can be used. However, this requires a Google Colab Pro+ subscription and running across
4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
## Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very
close and has some additional data:
```
algo: ppo
algo_hyperparams:
batch_size: 2048
clip_range: 0.2
clip_range_vf: 0.2
ent_coef: 0.01
gae_lambda: 0.95
gamma: 0.999
learning_rate: 0.0005
n_epochs: 3
n_steps: 256
vf_coef: 0.5
env: procgen-bigfish-easy
env_hyperparams:
is_procgen: true
make_kwargs:
distribution_mode: easy
n_envs: 64
normalize: true
env_id: bigfish
eval_params:
deterministic: false
ignore_first_episode: true
n_timesteps: 25000000
policy_hyperparams:
activation_fn: relu
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
init_layers_orthogonal: true
seed: 1
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_21ee1ab
- host_138-2-238-100
```
|
AnonymousSub/cline_squad2.0
|
[
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] |
question-answering
|
{
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
library_name: rl-algo-impls
tags:
- procgen-bossfight-easy
- ppo
- deep-reinforcement-learning
- reinforcement-learning
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 9.91 +/- 5.37
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: procgen-bossfight-easy
type: procgen-bossfight-easy
---
# **PPO** Agent playing **procgen-bossfight-easy**
This is a trained model of a **PPO** agent playing **procgen-bossfight-easy** using the [/sgoodfriend/rl-algo-impls](https://github.com/sgoodfriend/rl-algo-impls) repo.
All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/f3w1hwyb.
## Training Results
This model was trained from 3 trainings of **PPO** agents using different initial seeds. These agents were trained by checking out [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).
| algo | env | seed | reward_mean | reward_std | eval_episodes | best | wandb_url |
|:-------|:----------|-------:|--------------:|-------------:|----------------:|:-------|:-----------------------------------------------------------------------------|
| ppo | bossfight | 1 | 8.03125 | 6.37125 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/ok9cp59v) |
| ppo | bossfight | 2 | 9.90625 | 5.36982 | 64 | * | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/goavynh9) |
| ppo | bossfight | 3 | 8.98438 | 5.94635 | 64 | | [wandb](https://wandb.ai/sgoodfriend/rl-algo-impls-benchmarks/runs/b5yxrur0) |
### Prerequisites: Weights & Biases (WandB)
Training and benchmarking assumes you have a Weights & Biases project to upload runs to.
By default training goes to a rl-algo-impls project while benchmarks go to
rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best
models and the model weights are uploaded to WandB.
Before doing anything below, you'll need to create a wandb account and run `wandb
login`.
## Usage
/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls
Note: While the model state dictionary and hyperaparameters are saved, the latest
implementation could be sufficiently different to not be able to reproduce similar
results. You might need to checkout the commit the agent was trained on:
[21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a).
```
# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/goavynh9
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_enjoy.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_enjoy.ipynb)
notebook.
## Training
If you want the highest chance to reproduce these results, you'll want to checkout the
commit the agent was trained on: [21ee1ab](https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a). While
training is deterministic, different hardware will give different results.
```
python train.py --algo ppo --env procgen-bossfight-easy --seed 2
```
Setup hasn't been completely worked out yet, so you might be best served by using Google
Colab starting from the
[colab_train.ipynb](https://github.com/sgoodfriend/rl-algo-impls/blob/main/colab_train.ipynb)
notebook.
## Benchmarking (with Lambda Labs instance)
This and other models from https://api.wandb.ai/links/sgoodfriend/f3w1hwyb were generated by running a script on a Lambda
Labs instance. In a Lambda Labs instance terminal:
```
git clone [email protected]:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh
```
### Alternative: Google Colab Pro+
As an alternative,
[colab_benchmark.ipynb](https://github.com/sgoodfriend/rl-algo-impls/tree/main/benchmarks#:~:text=colab_benchmark.ipynb),
can be used. However, this requires a Google Colab Pro+ subscription and running across
4 separate instances because otherwise running all jobs will exceed the 24-hour limit.
## Hyperparameters
This isn't exactly the format of hyperparams in hyperparams/ppo.yml, but instead the Wandb Run Config. However, it's very
close and has some additional data:
```
algo: ppo
algo_hyperparams:
batch_size: 2048
clip_range: 0.2
clip_range_vf: 0.2
ent_coef: 0.01
gae_lambda: 0.95
gamma: 0.999
learning_rate: 0.0005
n_epochs: 3
n_steps: 256
vf_coef: 0.5
env: procgen-bossfight-easy
env_hyperparams:
is_procgen: true
make_kwargs:
distribution_mode: easy
n_envs: 64
normalize: true
env_id: bossfight
eval_params:
deterministic: false
ignore_first_episode: true
n_timesteps: 25000000
policy_hyperparams:
activation_fn: relu
cnn_feature_dim: 256
cnn_layers_init_orthogonal: false
cnn_style: impala
init_layers_orthogonal: true
seed: 2
use_deterministic_algorithms: true
wandb_entity: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_21ee1ab
- host_138-2-238-100
```
|
AnonymousSub/consert-emanuals-s10-SR
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 29 | null |
---
license: mit
tags:
- generated_from_trainer
datasets:
- go_emotions
metrics:
- f1
model-index:
- name: roberta-large-go-emotions-2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: test
args: simplified
metrics:
- name: F1
type: f1
value: 0.5180
- task:
name: Text Classification
type: text-classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: validation
args: simplified
metrics:
- name: F1
type: f1
value: 0.5203
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-go-emotions-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset. It achieves the following results on the test set (with a threshold of 0.15):
- Accuracy: 0.44020
- Precision: 0.5041
- Recall: 0.5461
- F1: 0.5180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Validation Loss | Accuracy | Precision | Recall | F1 |
| ------------- | ----- | --------------- | -------- | --------- | ------ | ------ |
| No log | 1.0 | 0.0889 | 0.4043 | 0.4807 | 0.4568 | 0.4446 |
| 0.1062 | 2.0 | 0.0828 | 0.4113 | 0.4608 | 0.5363 | 0.4868 |
| 0.1062 | 3.0 | 0.0813 | 0.4201 | 0.5198 | 0.5612 | 0.5227 |
| No log | 4.0 | 0.0862 | 0.4292 | 0.5012 | 0.5558 | 0.5208 |
| 0.0597 | 5.0 | 0.0924 | 0.4329 | 0.5164 | 0.5362 | 0.5151 |
| 0.0597 | 6.0 | 0.0956 | 0.4445 | 0.5241 | 0.5328 | 0.5161 |
| No log | 7.0 | 0.0962 | 0.4648 | 0.5138 | 0.5277 | 0.5151 |
| 0.0458 | 8.0 | 0.0962 | 0.4462 | 0.5257 | 0.5270 | 0.5203 |
| 0.0458 | 9.0 | 0.1029 | 0.4432 | 0.5076 | 0.5249 | 0.5111 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
AnonymousSub/consert-s10-AR
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 31 | null |
---
tags:
- conversational
---
# Penny DialoGPT Model
|
AnonymousSub/declutr-biomed-roberta-papers
|
[
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 7 | null |
---
tags:
- conversational
---
# Penny DialoGPT Model
|
AnonymousSub/declutr-model-emanuals
|
[
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] |
fill-mask
|
{
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: police-lethal-force-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# police-lethal-force-classifier
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0087
- Accuracy: 0.9980
- F1-score: 0.9964
- Recall: 0.9965
- Precision: 0.9963
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Recall | Precision |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:------:|:---------:|
| 0.0138 | 1.0 | 12050 | 0.0132 | 0.9973 | 0.9951 | 0.9953 | 0.9949 |
| 0.0091 | 2.0 | 24100 | 0.0087 | 0.9980 | 0.9964 | 0.9965 | 0.9963 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2
|
AnonymousSub/declutr-model_squad2.0
|
[
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] |
question-answering
|
{
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 2 | null |
---
tags:
- autotrain
- summarization
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- zaib32/autotrain-data-bart_jobs_description
co2_eq_emissions:
emissions: 5.188589459184297
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 3667398231
- CO2 Emissions (in grams): 5.1886
## Validation Metrics
- Loss: 1.129
- Rouge1: 66.484
- Rouge2: 42.519
- RougeL: 53.467
- RougeLsum: 62.459
- Gen Len: 129.500
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/zaib32/autotrain-bart_jobs_description-3667398231
```
|
AnonymousSub/declutr-model_wikiqa
|
[
"pytorch",
"roberta",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 26 | null |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.53 +/- 17.26
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AnonymousSub/declutr-s10-SR
|
[
"pytorch",
"roberta",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 36 | 2023-02-23T08:17:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: Michunie/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/dummy_2
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 39 | null |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: iubeda/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AnonymousSub/hier_triplet_epochs_1_shard_1
|
[
"pytorch",
"bert",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentiment_test23feb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_test23feb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5188
- Y True: [2 2 1 0 1 2 0 1 0 2 0 1 1 0 1 2 1 2 1 1 2 2 0 0 2 1 1 2 0 0 0 0 1 2 2 0 1
1 1 2 1 1 0 0 2 1 2 0 1 2 2 2 1 2 1 2 0 1 1 2 0 1 1 1 0 0 1 1 1 0 0 0 2 0
1 1 0 1 2 0 0 1 0 2 1 1 0 0 1 0 2 0 1 1 0 2 1 0 2 2 2 0 1 0 1 0 1 0 0 1 1
1 1 2 1 2 0 1 2 0 0 0 2 1 1 0 1 0 1 0 2 0 0 1 1 1 1 0 0 1 0 2 1 1 0 1 1 1
1 2 0 1 1 2 1 2 2 1 2 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 1 0 2 0 0 2 0 1 0 2 2
1 1 0 1 0 2 1 0 0 0 2 2 1 0 1 0 0 0 2 1 0 1 2 0 2 1 1 2 1 1 2 0 0 1 0 1 2
2 2 1 1 0 2 1 0]
- Y Pred: [0 1 1 0 1 2 0 2 0 1 0 1 2 0 1 1 1 1 1 1 2 1 0 0 1 1 1 2 0 0 0 0 1 0 2 0 1
1 1 2 1 1 1 0 2 1 1 0 1 2 2 2 1 0 1 2 0 1 1 2 0 1 2 1 0 0 1 1 1 0 0 0 2 0
1 1 2 1 2 0 0 0 0 2 1 1 0 0 1 0 2 0 1 1 0 2 1 0 1 2 0 0 1 0 1 0 1 0 0 1 2
2 1 2 1 2 0 1 2 0 0 0 0 2 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 0 2 1 1
1 2 0 1 1 2 1 2 1 1 2 1 0 2 0 0 0 0 2 0 0 0 1 1 0 2 1 2 0 0 0 2 0 1 2 2 2
1 1 0 1 2 0 1 0 0 0 0 2 1 0 1 0 0 0 0 1 0 1 1 0 2 1 1 2 1 1 1 0 0 1 0 1 0
1 0 1 1 0 2 1 2]
- Accuracy: 0.8217
- F1: 0.8146
- Precision: 0.8154
- Recall: 0.8217
- Confusion Matrix: [[76 1 5]
[ 2 79 7]
[11 15 34]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2
|
AnonymousSub/hier_triplet_epochs_1_shard_10
|
[
"pytorch",
"bert",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 8 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- NLP-MINI-PROJECT/rabbi_kook
metrics:
- rouge
model-index:
- name: kook-model-output-dir
results:
- task:
name: Summarization
type: summarization
dataset:
name: NLP-MINI-PROJECT/rabbi_kook
type: NLP-MINI-PROJECT/rabbi_kook
metrics:
- name: Rouge1
type: rouge
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kook-model-output-dir
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the NLP-MINI-PROJECT/rabbi_kook dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2130
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 42.7877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 2.9.0
- Tokenizers 0.11.0
|
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_wikiqa
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 33 | null |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_wikiqa
|
[
"pytorch",
"bert",
"text-classification",
"transformers"
] |
text-classification
|
{
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 30 | null |
---
language: en
thumbnail: http://www.huggingtweets.com/arvidkahl-marckohlbrugge-yadavajay/1677143666796/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1504671983799177217/Sx9SN3mk_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1554412013706792961/wMVtjqeE_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1201525049766883328/QPimCC9z_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ajay Yadav & Marc Köhlbrugge & Arvid Kahl</div>
<div style="text-align: center; font-size: 14px;">@arvidkahl-marckohlbrugge-yadavajay</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ajay Yadav & Marc Köhlbrugge & Arvid Kahl.
| Data | Ajay Yadav | Marc Köhlbrugge | Arvid Kahl |
| --- | --- | --- | --- |
| Tweets downloaded | 3249 | 3248 | 3239 |
| Retweets | 282 | 303 | 435 |
| Short tweets | 522 | 416 | 457 |
| Tweets kept | 2445 | 2529 | 2347 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/k744x91d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @arvidkahl-marckohlbrugge-yadavajay's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ycq5gzxc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ycq5gzxc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/arvidkahl-marckohlbrugge-yadavajay')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 6 | null |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 9.79 +/- 4.30
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r besa2001/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 136.50 +/- 60.04
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ssw1591 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ssw1591 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ssw1591
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_squad2.0
|
[
"pytorch",
"roberta",
"question-answering",
"transformers",
"autotrain_compatible"
] |
question-answering
|
{
"architectures": [
"RobertaForQuestionAnswering"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 4 | null |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: bert-finetuned-ner-per-v8
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-per-v8
This model is a fine-tuned version of [BeardedJohn/bert-finetuned-ner-ubb-conll-endava-only-misc-v2](https://huggingface.co/BeardedJohn/bert-finetuned-ner-ubb-conll-endava-only-misc-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 846, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.0
- Tokenizers 0.13.2
|
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 5 | null |
---
tags:
- autotrain
- translation
language:
- unk
- unk
datasets:
- Tritkoman/autotrain-data-oldenglish2
co2_eq_emissions:
emissions: 5.451467518019884
---
# Model Trained Using AutoTrain
- Problem type: Translation
- Model ID: 3680498282
- CO2 Emissions (in grams): 5.4515
## Validation Metrics
- Loss: 3.265
- SacreBLEU: 6.433
- Gen len: 16.747
|
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
|
[
"pytorch",
"roberta",
"feature-extraction",
"transformers"
] |
feature-extraction
|
{
"architectures": [
"RobertaModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 2 | 2023-02-23T10:08:53Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 12.12 +/- 5.77
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r moodlep/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
AntonClaesson/finetuning_test
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: loso_m07_main_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loso_m07_main_1
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0752
- Wer: 1.62
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.6242 | 0.96 | 500 | 3.4099 | 1.0 |
| 2.6899 | 1.92 | 1000 | 1.6890 | 2.3556 |
| 1.0312 | 2.88 | 1500 | 0.3006 | 1.9356 |
| 0.3173 | 3.84 | 2000 | 0.1852 | 1.7044 |
| 0.1357 | 4.8 | 2500 | 0.1000 | 1.5333 |
| 0.079 | 5.76 | 3000 | 0.0877 | 1.6156 |
| 0.0559 | 6.72 | 3500 | 0.0752 | 1.62 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.13.1+cu116
- Datasets 1.18.3
- Tokenizers 0.13.2
|
Antony/mint_model
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.63 +/- 4.89
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r iubeda/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Appolo/TestModel
|
[] | null |
{
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
}
| 0 | null |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.59 +/- 17.80
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.