modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
ArBert/albert-base-v2-finetuned-ner-gmm-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: test3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test3 This model is a fine-tuned version of [jcblaise/bert-tagalog-base-cased](https://huggingface.co/jcblaise/bert-tagalog-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3960 - Accuracy: 0.8683 - Precision: 0.8316 - Recall: 0.8653 - F1: 0.8481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 151 | 0.3770 | 0.8431 | 0.8287 | 0.7951 | 0.8115 | | No log | 2.0 | 302 | 0.3561 | 0.8528 | 0.7959 | 0.8790 | 0.8354 | | No log | 3.0 | 453 | 0.3425 | 0.8647 | 0.8636 | 0.8094 | 0.8356 | | 0.3579 | 4.0 | 604 | 0.3541 | 0.8615 | 0.8090 | 0.8824 | 0.8441 | | 0.3579 | 5.0 | 755 | 0.3717 | 0.8611 | 0.8075 | 0.8836 | 0.8438 | | 0.3579 | 6.0 | 906 | 0.3657 | 0.8691 | 0.8352 | 0.8619 | 0.8483 | | 0.1703 | 7.0 | 1057 | 0.3826 | 0.8700 | 0.8370 | 0.8619 | 0.8493 | | 0.1703 | 8.0 | 1208 | 0.3960 | 0.8683 | 0.8316 | 0.8653 | 0.8481 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
ArBert/roberta-base-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2023-02-23T12:36:45Z
--- tags: - autotrain - translation language: - unk - unk datasets: - Tritkoman/autotrain-data-oldenglish5 co2_eq_emissions: emissions: 10.382242558236783 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3684798314 - CO2 Emissions (in grams): 10.3822 ## Validation Metrics - Loss: 2.959 - SacreBLEU: 11.287 - Gen len: 13.759
Aran/DialoGPT-medium-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- widget: - text: "generate analogy: mammal is to whale" example_title: "Analogy Example 1 (semantic relation)" - text: "generate analogy: wedding is to marriage" example_title: "Analogy Example 1 (semantic relation, metaphor)" - text: "generate analogy: London is to U.K." example_title: "Analogy Example 2 (entity)" - text: "generate analogy: actual is to actually" example_title: "Analogy Example 3 (morphological)" --- # relbert/t5-large-analogy This is [t5-large](https://huggingface.co/t5-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) for analogy generation, which is to generate a word pair (eg. `bird is to crow`) given a query (eg. `mammal is to whale`) so that the query and the generated word pair form an analogy statement. ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model="relbert/t5-large-analogy") output = pipe("generate analogy: mammal is to whale") print(output) >>> [{'generated_text': 'bird is to crow'}] ```
AriakimTaiyo/DialoGPT-medium-Kumiko
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit language: - en library_name: keras tags: - code pipeline_tag: image-classification --- <h1>README for Pathway Vision Transformer</h1><br> <p>PaViT is a Pathway Vision Transformer (PaViT)-based image recognition model developed by Ajibola Emmanuel Oluwaseun. The model is inspired by Google's PaLM (Pathways Language Model) and aims to demonstrate the potential of using few-shot learning techniques in image recognition tasks.</p> <h1>Model Performance</h1> PaViT was trained on a 4GB RAM CPU using a dataset of 15000 Kaggle images of 15 classes, achieving a remarkable 88% accuracy with 4 self-attention heads. The model's accuracy further improved to 96% when trained with 12 self-attention heads and 12 linearly stacked linear layers. These results demonstrate the model's impressive performance and fast training speed on a CPU, despite being trained on a relatively small dataset. <br>The uploaded weight was trained on image dataset of 3 classes (Cat, Dog and Wild animal) </br> <h1>Usage</h1> The model can be used for image recognition tasks by using the trained weights provided in the repository. The code can be modified to use custom datasets, and the model's performance can be further improved by adding more self-attention heads and linear layers. <h1>Contribution</h1> The author believes that PaViT has the potential to outperform existing Vision Transformer models and is eager to see it continue to evolve through the contributions of developers and other contributors. <br></br> Contributions to the project are welcome and can be made through pull requests. Developers can also report issues or suggest new features for the project. <h1>License</h1> <p>This project is licensed under the MIT License.</p> <h1>How to use:</h1> ```ruby #import Libraries !pip install huggingface_hub["tensorflow"] import matplotlib.pyplot as plt import cv2 from huggingface_hub import from_pretrained_keras ``` <h1>On inference</h1><br> ```ruby #load model model=from_pretrained_keras('Ajibola/PaViT') #load image image=cv2.imread('image_path') image=cv2.resize(image, (224, 224)) #224 is the default image size image=image.image.max() #Normalize the image to [0-1] prediction=model.predict(image) prediction=np.argmax(prediction, axis=-1) #Get Highest probability class ```
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sufficiency-ukp-balanced results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sufficiency-ukp-balanced This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1493 - Accuracy: 0.9559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 69 | 0.2807 | 0.9007 | | No log | 2.0 | 138 | 0.1804 | 0.9338 | | No log | 3.0 | 207 | 0.1493 | 0.9559 | | No log | 4.0 | 276 | 0.1558 | 0.9559 | | No log | 5.0 | 345 | 0.1601 | 0.9559 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: openrail --- Model coming asap Check the original model here: https://huggingface.co/wimvanhenden/blade-runner-2049-v1
ArpanZS/search_model
[ "joblib" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.41 +/- 0.71 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -177.37 +/- 85.15 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Yureeh/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
ArshdeepSekhon050/DialoGPT-medium-RickAndMorty
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit library_name: keras pipeline_tag: image-segmentation --- Semantic segmentation model for segmenting sidewalks from other object in an image.<br> Utilizes U-Net with Resnet34 backbone for transfer learning.<br> Trained on 512x512 images and expects images with even dimensions.<br>
Ashl3y/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-23T14:34:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 559.00 +/- 81.45 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga michalcisek5 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga michalcisek5 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga michalcisek5 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Aspect11/DialoGPT-Medium-LiSBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-02-23T14:42:51Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Leonhard17/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: IM_Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IM_Model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Augustvember/wokkabottest2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.47 +/- 20.56 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aurora/asdawd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mst_hp_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mst_hp_1 This model is a fine-tuned version of [Sjdan/mst_1](https://huggingface.co/Sjdan/mst_1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0452 - Wer: 1.1807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3325 | 1.36 | 500 | 0.9884 | 1.8972 | | 1.3794 | 2.72 | 1000 | 0.9791 | 1.6573 | | 0.9313 | 4.09 | 1500 | 0.4419 | 1.3988 | | 0.388 | 5.45 | 2000 | 0.1630 | 1.3645 | | 0.1358 | 6.81 | 2500 | 0.0452 | 1.1807 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
Ayham/albert_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine-tuned-IndoNLI-data_augmented-with_XLMR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-IndoNLI-data_augmented-with_XLMR This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1625 - Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5396 | 1.0 | 1 | 1.1625 | 0.12 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
Ayham/bert_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 311.00 +/- 3.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayham/bert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 5139.00 +/- 608.91 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayham/distilbert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - NameThisGame-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: NameThisGame-v5 type: NameThisGame-v5 metrics: - type: mean_reward value: 12910.00 +/- 1650.29 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayham/roberta_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: enlacinglines/SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ayham/robertagpt2_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-02-23T16:21:22Z
--- tags: - MsPacman-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacman-v5 type: MsPacman-v5 metrics: - type: mean_reward value: 1464.00 +/- 322.56 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MsPacman-v5** This is a trained model of a PPO agent playing MsPacman-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id MsPacman-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MsPacman-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayham/robertagpt2_xsum4
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 99.30 +/- 1.27 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayham/xlnet_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Kangaroo-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Kangaroo-v5 type: Kangaroo-v5 metrics: - type: mean_reward value: 4860.00 +/- 174.36 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Kangaroo-v5** This is a trained model of a PPO agent playing Kangaroo-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Kangaroo-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Kangaroo-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayran/DialoGPT-small-gandalf
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2023-02-23T16:27:35Z
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 17666.50 +/- 2869.59 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayran/DialoGPT-small-harry-potter-1-through-3
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-02-23T16:27:41Z
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 19562.00 +/- 38.42 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
Ayu/Shiriro
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 20034.00 +/- 180.80 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
AyushPJ/ai-club-inductions-21-nlp-ALBERT
[ "pytorch", "albert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-02-23T16:30:31Z
--- tags: - DoubleDunk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DoubleDunk-v5 type: DoubleDunk-v5 metrics: - type: mean_reward value: -0.20 +/- 1.66 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DoubleDunk-v5** This is a trained model of a PPO agent playing DoubleDunk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DoubleDunk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'DoubleDunk-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
AyushPJ/ai-club-inductions-21-nlp-ELECTRA-base-squad
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "ElectraForQuestionAnswering" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-02-23T16:31:07Z
--- tags: - DoubleDunk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DoubleDunk-v5 type: DoubleDunk-v5 metrics: - type: mean_reward value: -0.40 +/- 1.74 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DoubleDunk-v5** This is a trained model of a PPO agent playing DoubleDunk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_impala_atari_wrapper_naturecnn --env-id DoubleDunk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-cleanba_ppo_envpool_impala_atari_wrapper_naturecnn-seed1/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_impala_atari_wrapper_naturecnn.py --distributed --learner-device-ids 1 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'DoubleDunk-v5', 'exp_name': 'cleanba_ppo_envpool_impala_atari_wrapper_naturecnn', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:3'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1], 'learner_devices': ['gpu:1'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
[ "pytorch", "roberta", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 337.10 +/- 133.37 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AyushPJ/test-squad-trained-finetuned-squad
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="1itai1/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Azaghast/GPT2-SCP-Miscellaneous
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.41 +/- 2.49 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r SRobbins/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
BE/demo-sentiment2021
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BSC-LT/roberta-base-bne-capitel-ner
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mst_hp2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mst_hp2 This model is a fine-tuned version of [Sjdan/mst_1](https://huggingface.co/Sjdan/mst_1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Wer: 1.5888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.1539 | 1.36 | 500 | 2.8040 | 1.5607 | | 2.2802 | 2.72 | 1000 | 1.2387 | 2.3707 | | 1.1976 | 4.09 | 1500 | 0.4206 | 1.8754 | | 0.6861 | 5.45 | 2000 | 0.2622 | 1.6916 | | 0.5078 | 6.81 | 2500 | 0.2128 | 1.5888 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
BSC-LT/roberta-large-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 496.84 +/- 23.14 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BSC-LT/roberta-large-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- language: - no license: apache-2.0 tags: - whisper-event - norwegian datasets: - NbAiLab/NCC_S - NbAiLab/NPSC - NbAiLab/NST metrics: - wer model-index: - name: Whisper Small Norwegian Bokmål results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: nb_no split: validation args: nb_no metrics: - name: Wer type: wer value: 15.56 --- # Whisper Small Norwegian Bokmål This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) trained on NCC_S_3-NRKonly. It is currently in the middle of a large training. ## Model description The model is trained on a large corpus of roughly 4.000 hours of voice. The sources are subtitles from the Norwegian broadcaster NRK. ## Intended uses & limitations The model will be free for everyone to use when it is finished. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 128 - gradient_accumulation_steps: 2 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant with warmup - lr_scheduler_warmup_steps: 1000 - training_steps: 50.000 (currently @1.000) - mixed_precision_training: fp16 - deepspeed: true ### Live Training results See [Tensorboad Metrics](https://huggingface.co/NbAiLab/whisper-small-3NRKonly-nob/tensorboard)
BW/TEST
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: enlacinglines/PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Babelscape/rebel-large
[ "pytorch", "safetensors", "bart", "text2text-generation", "en", "dataset:Babelscape/rebel-dataset", "transformers", "seq2seq", "relation-extraction", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "BartForConditionalGeneration" ], "model_type": "bart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,458
2023-02-23T17:13:46Z
--- license: openrail++ tags: - stable-diffusion - text-to-image - openvino --- # Stable Diffusion v2-1 Model for OpenVINO A fork of [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) exported to OpenVINO using [Optimum Intel](https://github.com/huggingface/optimum-intel) 🤗 ```python from optimum.intel.openvino import OVStableDiffusionPipeline model_id = "echarlaix/stable-diffusion-2-1-openvino" pipe = OVStableDiffusionPipeline.from_pretrained(model_id) prompt = "sailing ship in storm by Rembrandt" image = pipe(prompt).images[0] image.save("sailing_ship.png") ```
Babelscape/wikineural-multilingual-ner
[ "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "sequence-tagger-model", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41,608
2023-02-23T17:13:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.19 +/- 20.25 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Babysittingyoda/DialoGPT-small-familyguy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2023-02-23T17:14:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93176 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2291 - Accuracy: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2289 | 1.0 | 1563 | 0.1912 | 0.9268 | | 0.1492 | 2.0 | 3126 | 0.2291 | 0.9318 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Bagus/SER-LSSED
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sd1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sd1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Wer: 1.8162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.0933 | 1.36 | 500 | 3.1846 | 1.0 | | 2.7062 | 2.72 | 1000 | 1.7891 | 2.3240 | | 1.0986 | 4.09 | 1500 | 0.3844 | 2.1682 | | 0.3024 | 5.45 | 2000 | 0.0961 | 1.8006 | | 0.1238 | 6.81 | 2500 | 0.0617 | 1.8162 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
Bagus/ser-japanese
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mst_hp3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mst_hp3 This model is a fine-tuned version of [Sjdan/mst_1](https://huggingface.co/Sjdan/mst_1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0270 - Wer: 1.4050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3299 | 1.36 | 500 | 0.5122 | 1.8785 | | 0.6247 | 2.72 | 1000 | 0.1506 | 1.5639 | | 0.3223 | 4.09 | 1500 | 0.0540 | 1.7539 | | 0.1549 | 5.45 | 2000 | 0.0296 | 1.5265 | | 0.0893 | 6.81 | 2500 | 0.0270 | 1.4050 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
Bala/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sd5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sd5 This model is a fine-tuned version of [Theju/sd5](https://huggingface.co/Theju/sd5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0472 - Wer: 1.1713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.536 | 0.68 | 500 | 2.4893 | 2.5109 | | 2.0499 | 1.36 | 1000 | 1.3903 | 2.3178 | | 1.2147 | 2.04 | 1500 | 0.5195 | 1.8536 | | 0.6346 | 2.72 | 2000 | 0.1633 | 1.2617 | | 0.3675 | 3.41 | 2500 | 0.1510 | 1.3115 | | 0.2561 | 4.09 | 3000 | 0.1246 | 1.6760 | | 0.1612 | 4.77 | 3500 | 0.0781 | 1.4330 | | 0.111 | 5.45 | 4000 | 0.0811 | 1.3676 | | 0.0669 | 6.13 | 4500 | 0.0582 | 1.1900 | | 0.0575 | 6.81 | 5000 | 0.0472 | 1.1713 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.13.1+cu116 - Datasets 1.18.3 - Tokenizers 0.13.2
BaptisteDoyen/camembert-base-xnli
[ "pytorch", "tf", "camembert", "text-classification", "fr", "dataset:xnli", "transformers", "zero-shot-classification", "xnli", "nli", "license:mit", "has_space" ]
zero-shot-classification
{ "architectures": [ "CamembertForSequenceClassification" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
405,474
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.12 +/- 17.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Barleysack/AERoberta2
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -160.58 +/- 103.91 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo_utils' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'toinsson/ppo-cartpole-v0' 'huggingface_token': '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' 'batch_size': 512 'minibatch_size': 128} ```
Barytes/hellohf
[ "tf", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - generated_from_trainer model-index: - name: vlad-gpt2-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vlad-gpt2-generator This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 29 | 4.4130 | | No log | 2.0 | 58 | 4.3853 | | No log | 3.0 | 87 | 4.3768 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 189.30 +/- 84.71 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'SuburbanLion/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
Baybars/debateGPT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### roboetics-mix - Clean from civit.ai https://civitai.com/models/3738/roboetics-mix
Baybars/wav2vec2-xls-r-300m-cv8-turkish
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
All models banned from Civitai for various reasons (not legal ones). Do what you want with that.
BearThreat/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 --- ```python from optimum.intel.openvino import OVStableDiffusionPipeline model_id = "hf-internal-testing/tiny-stable-diffusion-openvino" pipe = OVStableDiffusionPipeline.from_pretrained(model_id) ```
Bee-Garbs/DialoGPT-cartman-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scibert_scivocab_uncased-v10-ES-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased-v10-ES-ner This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4185 - Precision: 0.6897 - Recall: 0.7616 - F1: 0.7239 - Accuracy: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3431 | 1.75 | 500 | 0.2748 | 0.6883 | 0.7114 | 0.6996 | 0.9210 | | 0.1592 | 3.5 | 1000 | 0.3008 | 0.7108 | 0.7598 | 0.7345 | 0.9255 | | 0.0891 | 5.24 | 1500 | 0.3634 | 0.6839 | 0.7132 | 0.6983 | 0.9214 | | 0.0484 | 6.99 | 2000 | 0.3894 | 0.6831 | 0.7505 | 0.7152 | 0.9239 | | 0.029 | 8.74 | 2500 | 0.4185 | 0.6897 | 0.7616 | 0.7239 | 0.9263 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Bella4322/Sarah
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-23T18:49:29Z
--- language: en thumbnail: http://www.huggingtweets.com/1jo_0-inkspirate_art/1677178518645/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1555297913361793025/56-M8aWg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1587822296978579457/OIGp8r5g_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Inkspirate | Commission Open & 一条レイ</div> <div style="text-align: center; font-size: 14px;">@1jo_0-inkspirate_art</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Inkspirate | Commission Open & 一条レイ. | Data | Inkspirate | Commission Open | 一条レイ | | --- | --- | --- | | Tweets downloaded | 2005 | 3231 | | Retweets | 805 | 800 | | Short tweets | 373 | 2027 | | Tweets kept | 827 | 404 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/i3h4iuki/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @1jo_0-inkspirate_art's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xnss78wm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xnss78wm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/1jo_0-inkspirate_art') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BenGeorge/MyModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.73 +/- 18.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Benicio/t5-small-finetuned-en-to-ru
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
50
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 22.40 +/- 58.52 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Bharathdamu/wav2vec2-large-xls-r-300m-hindi2-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: openrail language: - en - id library_name: diffusers tags: - art --- # Embedding for Diffusion Model Some of them are not mine, but I love to collect em, so all rights reserved into their owner. ## Screenshots ![App Screenshot](https://huggingface.co/ilahazs/embeddings/resolve/main/image/example-1.png) ![App Screenshot](https://huggingface.co/ilahazs/embeddings/resolve/main/image/example-2.png) ## Tech Type **Client:** Embeddings **Server:** AI generated art
Bia18/Beatriz
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# Yolov4 Models https://openvisionapi.com # License AGPLv3
Biasface/DDDC2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 language: - en metrics: - sacrebleu library_name: transformers pipeline_tag: text-generation --- # Model Card for DistilGutenMystery <!-- Provide a quick summary of what the model is/does. [Optional] --> Fine-tuned version of DistilGPT2 on a corpus of 20 various mystery/detective style novels collected from Project Gutenberg. # Table of Contents - [Model Card for DistilGutenMystery](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Out-of-Scope Use](#out-of-scope-use) - [Bias, Risks, and Limitations](#bias-risks-and-limitations) - [Recommendations](#recommendations) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) - [Testing Data, Factors & Metrics](#testing-data-factors--metrics) - [Testing Data](#testing-data) - [Factors](#factors) - [Metrics](#metrics) - [Results](#results) - [Model Card Authors [optional]](#model-card-authors-optional) - [Model Card Contact](#model-card-contact) - [How to Get Started with the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> Fine-tuned version of DistilGPT2 on a corpus of 20 various mystery/detective style novels collected from Project Gutenberg. - **Developed by:** More information needed - **Shared by [Optional]:** More information needed - **Model type:** Language model - **Language(s) (NLP):** en - **License:** apache-2.0 - **Parent Model:** More information needed - **Resources for more information:** More information needed - [GitHub Repo](https://github.umn.edu/quigl088/Distil-Guten-Mystery) # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> Aiding story writing and brainstorming for novels. Possible use for generating nonsensical and absurd texts. ## Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> This model does not distinguish fact from fiction, therefore the model is not intended to support use-cases that require the generated text to be true. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. There's the possibility of out-dated language being used that might reflect certain bias' and if the model is ever to be deployed it is highly recommended to do further bias related fine-tuning and other related testing. ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Corpus was created from 20 books about mystery and detective stories collected from project Gutenberg (gutenberg.org/ on 2/20/23) for the purpose of aiding in story writing for mystery/detective novels. In total there are 1,048,519 tokens in the entire corpus collected from the following 20 various mystery/detective style books: The Extraordinary Adventures of Arsène Lupin, Gentleman-Burglar, by Maurice Leblanc: 55,726 tokens The Crimson Cryptogram A Detective Story by Fergus Hume: 60,179 tokens The House of a Thousand Candles by Meredith Nicholson: 83,133 tokens Tracked by Wireless by William Le Queux: 76,236 tokens Behind the Green Door, by Mildred A. Wirt: 43,705 tokens The house on the cliff by Franklin W. Dixon: 41,721 tokens Tales of Secret Egypt by Sax Rohmer: 76,892 tokens The Haunted Bookshop by Christopher Morley: 63,269 tokens Whispering Walls, by Mildred A. Wirt: 42,388 tokens The Clock Struck One by Fergus Hume: 61,614 tokens McAllister and His Double by Arthur Cheney Train: 65,583 tokens The Three Eyes by Maurice Leblanc: 62,887 tokens Ghost Beyond the Gate by Mildred A. Wirt: 41,172 tokens The Motor Rangers Through the Sierras by John Henry Goldfrap: 49,285 tokens Peggy Finds the Theatre by Virginia Hughes: 41,575 tokens The Puzzle in the Pond by Margaret Sutton: 36,485 tokens Jack the runaway; or, On the road with a circus by Frank V. Webster: 42,814 tokens The Camp Fire Girls Solve a Mystery; Or, The Christmas Adventure at Carver House: 50,286 tokens Danger at the Drawbridge by Mildred A. Wirt: 42,075 tokens Voice from the Cave by Mildred A. Wirt: 39,064 tokens ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing Each story was downloaded from Project Gutenberg, where the “Gutenberg” specific texts were removed from the document, along with chapter headings. Then stories were combined into a single text document that was then loaded as a dataset, sampled by paragraph. Stated hyper-parameters for training: num_train+epochs=30, per_device+train_batch_size=32, and all other trainer values were left as default values. Additionally, the tokenizer was set with padding_side=’left’, and the model’s pad_token_id was set to the tokenizer.eos_token_id, and num_labels=0. # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> More information needed ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> More information needed ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> The fine-tuned model was evaluated using the sacrebleu metric. ## Results score: 0.2458566059729917 counts: [56008, 5821, 552, 181] totals: [1014368, 985984, 957908, 930569] precisions: [5.52146755418152, 0.5903746916785668, 0.057625575733786544, 0.019450465252979627] bp: 1.0 sys_len: 1014368 ref_len: 212162 # Model Card Authors [optional] <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. --> Hugging Face, Jack Quigley # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('jquigl/DistilGutenMystery') model = AutoModelForCausalLM.from_pretrained('jquigl/DistilGutenMystery') generator = pipeline('text-generation', model = model, tokenizer = tokenizer) gen = generator("It was a strange ending to a", min_length = 100, max_length = 150, num_return_sequences=3) </details>
BigDaddyNe1L/Hhaa
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-23T20:08:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: finetuned-byt5-small-french-financial-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-byt5-small-french-financial-summarization This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3908 - Rouge1: 38.3821 - Rouge2: 25.1524 - Rougel: 32.4821 - Rougelsum: 33.6907 - Gen Len: 255.0 - Bertscore: 0.7099 - Bartscore: 0.5213 - Bleurt: -0.5166 - Meteor: 0.3293 - Frugal Score (mover-score): 0.3950 - Frugal Score (bert-score): 0.3950 - Cider: 2.0671 - Infolm Kl Divergence: -1.8542 - Infolm Beta Divergence: 1.349 - Infolm L1 Distance: 1.1568 - Infolm Fisher Rao Distance: 1.6107 - Baryscore: 0.8075 - Depthscore: 0.1326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bertscore | Bartscore | Bleurt | Meteor | Frugal Score (mover-score) | Frugal Score (bert-score) | Cider | Infolm Kl Divergence | Infolm Beta Divergence | Infolm L1 Distance | Infolm Fisher Rao Distance | Baryscore | Depthscore | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:---------:|:-------:|:------:|:--------------------------:|:-------------------------:|:------:|:--------------------:|:----------------------:|:------------------:|:--------------------------:|:---------:|:----------:| | 1.6567 | 1.0 | 388 | 0.4711 | 5.0871 | 1.1231 | 4.9658 | 4.9611 | 19.0 | 0.5846 | 0.2422 | -1.517 | 0.0165 | -0.1685 | -0.1685 | 0.0000 | -3.0673 | 2.2832 | 1.4655 | 2.0738 | 1.0352 | 0.1853 | | 0.5737 | 2.0 | 776 | 0.4319 | 5.1032 | 0.9523 | 4.8016 | 4.8303 | 19.0 | 0.5837 | 0.2416 | -1.5066 | 0.0156 | -0.1632 | -0.1632 | 0.0000 | -3.0586 | 2.2843 | 1.4734 | 2.0705 | 1.0352 | 0.1787 | | 0.4973 | 3.0 | 1164 | 0.4149 | 5.3057 | 0.921 | 4.907 | 4.9704 | 19.0 | 0.5901 | 0.2427 | -1.5002 | 0.015 | -0.1608 | -0.1608 | 0.0000 | -2.9793 | 2.1962 | 1.4493 | 2.0508 | 0.9943 | 0.168 | | 0.4684 | 4.0 | 1552 | 0.4099 | 5.3502 | 0.9357 | 4.9875 | 5.0373 | 19.0 | 0.5876 | 0.2422 | -1.4993 | 0.0147 | -0.1619 | -0.1619 | 0.0000 | -3.0476 | 2.2649 | 1.466 | 2.0704 | 0.9943 | 0.168 | | 0.4451 | 5.0 | 1940 | 0.4009 | 5.1829 | 0.9931 | 4.953 | 4.9566 | 19.0 | 0.5875 | 0.2409 | -1.4945 | 0.0149 | -0.1624 | -0.1624 | 0.0000 | -2.9977 | 2.2391 | 1.4634 | 2.0625 | 1.0352 | 0.168 | | 0.4296 | 6.0 | 2328 | 0.4006 | 5.2969 | 1.0497 | 5.0524 | 5.095 | 19.0 | 0.5885 | 0.2409 | -1.4904 | 0.0149 | -0.1608 | -0.1608 | 0.0000 | -3.0277 | 2.2529 | 1.4648 | 2.068 | 1.0352 | 0.168 | | 0.417 | 7.0 | 2716 | 0.3939 | 5.3043 | 1.1314 | 5.1078 | 5.1487 | 19.0 | 0.5886 | 0.2413 | -1.4883 | 0.0157 | -0.1609 | -0.1609 | 0.0000 | -3.0082 | 2.2557 | 1.4666 | 2.0657 | 0.9845 | 0.168 | | 0.4093 | 8.0 | 3104 | 0.3919 | 5.3213 | 1.0211 | 5.0701 | 5.1163 | 19.0 | 0.5889 | 0.2414 | -1.4896 | 0.0148 | -0.1611 | -0.1611 | 0.0000 | -3.0291 | 2.2436 | 1.4615 | 2.0644 | 1.0352 | 0.168 | | 0.4023 | 9.0 | 3492 | 0.3918 | 5.3035 | 1.0808 | 5.0803 | 5.1161 | 19.0 | 0.5905 | 0.2410 | -1.4863 | 0.0152 | -0.1613 | -0.1613 | 0.0000 | -3.0528 | 2.273 | 1.4684 | 2.0708 | 1.0352 | 0.168 | | 0.4008 | 10.0 | 3880 | 0.3908 | 5.3011 | 1.0808 | 5.1077 | 5.1454 | 19.0 | 0.5906 | 0.2414 | -1.4860 | 0.0152 | -0.1611 | -0.1611 | 0.0000 | -3.0383 | 2.2605 | 1.4686 | 2.0694 | 1.0352 | 0.168 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.0 - Tokenizers 0.13.2
BigSalmon/BestMask2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: This is the Mem logo. --- ### Mem, Jasper, Writer testing Dreambooth model trained by ktkeller with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: This is the Jasper logo. (use that on your prompt) This is the Mem logo. (use that on your prompt) ![This is the Mem logo. 0](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Mem%20logo._%281%29.jpg)![This is the Mem logo. 1](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Mem%20logo._%282%29.jpg)![This is the Mem logo. 2](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Mem%20logo._%283%29.jpg)![This is the Mem logo. 3](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Mem%20logo._%284%29.jpg)![This is the Jasper logo. 4](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Jasper%20logo._%281%29.jpg)![This is the Jasper logo. 5](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Jasper%20logo._%282%29.jpg)![This is the Jasper logo. 6](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Jasper%20logo._%283%29.jpg)![This is the Jasper logo. 7](https://huggingface.co/ktkeller/mem-jasper-writer-testing/resolve/main/concept_images/This%20is%20the%20Jasper%20logo._%284%29.jpg)
BigSalmon/DaBlank
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 29.30 +/- 12.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BigSalmon/InformalToFormalLincoln19
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - pt library_name: nemo datasets: - mozilla-foundation/common_voice_12_0 tags: - automatic-speech-recognition model-index: - name: stt_pt_citrinet_512_gamma_0_25 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 12.0 type: mozilla-foundation/common_voice_12_0 config: clean split: test args: language: pt metrics: - name: Test WER type: wer value: 6.033 license: bsd-3-clause --- # NVIDIA Streaming Citrinet 512 (pt-PT) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Citrinet--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-36M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-pt--PT-lightgrey#model-badge)](#datasets) | ## Attribution As initial checkpoint used [stt_en_citrinet_512_gamma_0_25](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_citrinet_512_gamma_0_25) by [NVIDIA](https://github.com/NVIDIA) licensed under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
### Training Code ```python from torch.utils.data import dataset from datasets import load_dataset, load_from_disk from tqdm import tqdm from datasets import load_metric from transformers import ( Seq2SeqTrainer, Seq2SeqTrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq ) import evaluate import os from datasets import load_dataset import numpy as np MAX_LENGTH_INPUT = 512+128 MAX_LENGTH_OUTPUT = 2 from datasets import load_dataset class Seq2SeqDataset(dataset.Dataset): def __init__(self, tokenizer, type_data='train'): # Set up the datasets data_path = "CarperAI/openai_summarize_comparisons" if type_data == 'train': dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="train") else: dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="test").select(range(20000)) self.prompts = [] self.outputs = [] inputs = dataset["prompt"] choosen = dataset["chosen"] rejected = dataset["rejected"] for i, (inp, ch, re) in enumerate(zip(inputs, choosen, rejected)): choice_first = np.random.choice([ch, re]) res = "A" if choice_first == ch else "B" choice_second = ch if choice_first == re else re prompt = f"""POST: {inp}\n\nRESPONSE A: {choice_first}\n\nRESPONSE B: {choice_second}\n\nWhich response is better? RESPONSE""" output = f"{res}" self.prompts.append(prompt) self.outputs.append(output) print("Example prompt: ", self.prompts[0]) print("Example output: ", self.outputs[0]) self.tokenizer = tokenizer def __len__(self): return len(self.prompts) def __getitem__(self, idx): input_text = self.prompts[idx] output_text = self.outputs[idx] model_input = self.tokenizer( input_text, max_length=MAX_LENGTH_INPUT, padding='max_length', truncation=True ) with self.tokenizer.as_target_tokenizer(): labels = self.tokenizer( output_text, max_length=MAX_LENGTH_OUTPUT, padding='max_length', truncation=True )["input_ids"] model_input['labels'] = labels model_input['labels'] = [-100 if token == self.tokenizer.pad_token_id else token for token in model_input['labels']] return model_input import wandb wandb.init(name="stanfordnlp/SteamSHP-flan-t5-xl", project="trlx", entity="pvduy") if __name__=="__main__": config = { "logging_steps": 100, "eval_steps": 100, "save_steps": 500, "batch_size": 4, "batch_size_val": 4, "warmup_steps": 100, "accum_steps": 2, "num_beams": 3, "output_dir": "flan-t5-rm", } accuracy_metric = evaluate.load("accuracy") def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) acc = sum(np.array(labels_str) == np.array(pred_str)) / len(labels_str) return {"accuracy": acc} training_args = Seq2SeqTrainingArguments( output_dir=config["output_dir"], do_train=True, num_train_epochs=5, do_eval=False, predict_with_generate=True, adam_beta1=0.9, adam_beta2=0.999, learning_rate=5e-5, half_precision_backend=True, bf16=True, per_device_train_batch_size=config["batch_size"], per_device_eval_batch_size=config["batch_size_val"], logging_steps=config["logging_steps"], evaluation_strategy="epoch", warmup_steps=config["warmup_steps"], eval_accumulation_steps=1, lr_scheduler_type="linear", save_strategy="epoch", gradient_accumulation_steps=config["accum_steps"], deepspeed='configs/ds_configs/ds_config_gpt_2.json', ) tokenizer = AutoTokenizer.from_pretrained("stanfordnlp/SteamSHP-flan-t5-xl") model = AutoModelForSeq2SeqLM.from_pretrained("stanfordnlp/SteamSHP-flan-t5-xl") train_dataset = Seq2SeqDataset(tokenizer, type_data='train') val_dataset = Seq2SeqDataset(tokenizer, type_data='val') print("Train dataset size: ", len(train_dataset)) print("Val dataset size: ", len(val_dataset)) params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"Number of trainable parameters: {params}") trainer = Seq2SeqTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=compute_metrics, ) trainer.train() ``` ### Inference Code ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from datasets import load_dataset import numpy as np import torch from tqdm import tqdm dataset = load_dataset("CarperAI/openai_summarize_comparisons", split="test") tokenizer = AutoTokenizer.from_pretrained("flan-t5-rm/checkpoint-4338/") model = AutoModelForSeq2SeqLM.from_pretrained("flan-t5-rm/checkpoint-4338/") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) df = dataset.to_pandas() predictions = [] for i, row in tqdm(df.iterrows(), total=len(df)): prompt = f"""POST: {row["prompt"]}\n\nRESPONSE A: {row["chosen"]}\n\nRESPONSE B: {row["rejected"]}\n\nWhich response is better? RESPONSE""" x = tokenizer([prompt], return_tensors='pt').input_ids.to(device) y = model.generate(x, max_new_tokens=1) predictions.append(tokenizer.batch_decode(y, skip_special_tokens=True)[0]) print("Accuracy: ", sum(np.array(predictions) == 'A') / len(predictions)) ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
null
--- tags: - chemistry - molecule - drug --- # Roberta Zinc 480m This is a Roberta style masked language model trained on ~480m SMILES strings from the [ZINC database](https://zinc.docking.org/). The model has ~102m parameters and was trained for 150000 iterations with a batch size of 4096 to a validation loss of ~0.122. This model is useful for generating embeddings from SMILES strings. ```python from transformers import RobertaTokenizerFast, RobertaForMaskedLM, DataCollatorWithPadding tokenizer = RobertaTokenizerFast.from_pretrained("entropy/roberta_zinc_480m", max_len=128) model = RobertaForMaskedLM.from_pretrained('entropy/roberta_zinc_480m') collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt') smiles = ['Brc1cc2c(NCc3ccccc3)ncnc2s1', 'Brc1cc2c(NCc3ccccn3)ncnc2s1', 'Brc1cc2c(NCc3cccs3)ncnc2s1', 'Brc1cc2c(NCc3ccncc3)ncnc2s1', 'Brc1cc2c(Nc3ccccc3)ncnc2s1'] inputs = collator(tokenizer(smiles)) outputs = model(**inputs, output_hidden_states=True) full_embeddings = outputs[1][-1] mask = inputs['attention_mask'] embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)) ``` --- license: mit ---
CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
73
null
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image - safetensors --- ---- # SD-Silicon SD-Silicon: A series of general-purpose models based off the experimental automerger, autoMBW. A collaborative creation of Xerxemi#6423 & Xynon#7407. ![](https://raw.githubusercontent.com/Xerxemi/SD-Silicon-README/master/webp/panaroma.webp "") All models listed have baked WD1.3 VAE. However, for the purposes of this model series, external VAE is also recommended. ---- # Licence This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here :https://huggingface.co/spaces/CompVis/stable-diffusion-license # Terms of use - **Clearly indicate where modifications have been made.** If you used it for merging, please state what steps you took to do so. ---- # --base models-- Silicon28: a.k.a. extestg4. The first model of autoMBW to match/surpass quality of manual merge block weight merges. Silicon29: a.k.a. extesto4. a similar, but much larger list of merges based off the list of Silicon28. First good model to be constructed on a semi-stabilized autoMBW codebase. # --specialty models-- Silicon28-negzero: a.k.a. extestg4-negzero. A negatively finetuned version of Silicon28 for 10 epochs off a dataset of 3990 images. Better at some, worse at others. Silicon29-dark: a.k.a. extesto4-dark. Silicon29, but merged with noise offset. Gives darker output than the original base. # --future models-- More will be posted soon<sup>TM</sup> ---- # Recommended Settings Sampler: DPM++ 2M Steps: 42 + 42 | can probably go lower, I just run at this Upscaler: Latent (bicubic antialiased) Denoising: ~0.5 to ~0.6 CFG: 13 ---- more comparisons here: https://medium.com/@media_97267/the-automated-stable-diffusion-checkpoint-merger-autombw-44f8dfd38871 Note: all comparison photos are pure Silicon29 with the latent bicubic antialiased upscaler. ![](https://raw.githubusercontent.com/Xerxemi/SD-Silicon-README/master/webp/angel3.webp "") ![](https://raw.githubusercontent.com/Xerxemi/SD-Silicon-README/master/webp/sundown2.webp "") ![](https://raw.githubusercontent.com/Xerxemi/SD-Silicon-README/master/webp/mountain2.webp "") ![](https://raw.githubusercontent.com/Xerxemi/SD-Silicon-README/master/webp/landscape2.webp "") ---- # Q: Why is this named Silicon? A: Silicon's atomic number is 14. This line of models was originally supposed to be the 14th experimental model in Xynon/models, a.k.a. experimental14a/b/c. # Q: Where do I find the automerger used to make these models? A: https://github.com/Xerxemi/sdweb-auto-MBW | preliminary article here: https://medium.com/@media_97267/the-automated-stable-diffusion-checkpoint-merger-autombw-44f8dfd38871 ----
CAMeL-Lab/bert-base-arabic-camelbert-ca
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
580
null
--- license: mit tags: - NLP datasets: - Yaxin/SemEval2014Task4Raw metrics: - f1 - precision - recall pipeline_tag: text2text-generation --- # joint_tk-instruct-base-def-pos-laptops This model is finetuned for the Joint Task. The finetuning was carried out by adding prompts of the form: - definition + 2 positive examples The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the laptops domains.** The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be found [here](https://github.com/kevinscaria/InstructABSA). For the Joint Task, this model is the current SOTA. ## Training data InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews from laptops and restaurant domains and their corresponding aspect term and polarity labels. ### BibTeX entry and citation info If you use this model in your work, please cite the following paper: ```bibtex @inproceedings{Scaria2023InstructABSAIL, title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis}, author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral}, year={2023} } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.15 +/- 14.00 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
54
null
--- license: mit tags: - NLP datasets: - Yaxin/SemEval2014Task4Raw metrics: - f1 - precision - recall pipeline_tag: text2text-generation language: - en --- # joint_tk-instruct-base-def-pos-neg-neut-laptops This model is finetuned for the Joint Task. The finetuning was carried out by adding prompts of the form: - definition + 2 positive examples + 2 negative examples + 2 neutral examples The prompt is prepended onto each input review. It is important to note that **this model output was finetuned on samples from the laptops domains.** The code for the official implementation of the paper [**InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis**](https://arxiv.org/abs/2302.08624) can be found [here](https://github.com/kevinscaria/InstructABSA). For the Joint Task, this model is the current SOTA. ## Training data InstructABSA models are trained on the benchmark dataset for Aspect Based Sentiment Analysis tasks viz. SemEval 2014. This [dataset](https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools) consists of reviews from laptops and restaurant domains and their corresponding aspect term and polarity labels. ### BibTeX entry and citation info If you use this model in your work, please cite the following paper: ```bibtex @inproceedings{Scaria2023InstructABSAIL, title={InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis}, author={Kevin Scaria and Himanshu Gupta and Saurabh Arjun Sawant and Swaroop Mishra and Chitta Baral}, year={2023} } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus26
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
45
null
--- license: mit language: - ko pipeline_tag: text-generation widget: - text: 딥러닝 모델은 --- # gpt2-ko Korean gpt2 model, trained from scratch. ```python from transformers import pipeline pipe = pipeline("text-generation", model="mykor/gpt2-ko") ``` ```python >>> pipe("오늘 점심 뭐먹지?") [{'generated_text': '오늘 점심 뭐먹지?치킨과 족발 먹으려고 ㅎ난 치킨먹구싶당 ㅎㅎ나 낼 아침에 먹을겡 ㅎ치킨 먹고시퍼 ㅎㅎ난 치킨에닭도리탕..난 닭도리탕~난 치킨먹었어 ㅎ치킨은 족'}] ``` ```python >>> pipe("애플은 이번 업데이트를 통해") [{'generated_text': "애플은 이번 업데이트를 통해 안드로이드 플랫폼 내에서 '모바일 카드'를 판매할 예정'이라며 '기존에는 안드로이드 마켓 내에서만 결제가 가능했다.앞으로는 pc를 통해 결제할 수 있을 것'이라고 덧붙였다.한편, sk텔레콤은 이달 초에도 '갤럭시 s8"}] ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus6
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
34
null
--- tags: - autotrain - text-classification - healthcare - sdoh - social determinants of health language: - en widget: - text: The Patient is homeless - text: The pt misuses prescription medicine - text: The patient often goes hungry because they can't afford enough food - text: >- The patient's family is struggling to pay the rent and is at risk of being evicted from their apartment - text: The patient lives in a neighborhood with poor public transportation options - text: >- The patient was a victim of exploitation of dependency, causing them to feel taken advantage of and vulnerable - text: >- The patient's family has had to move in with relatives due to financial difficulties - text: >- The patient's insurance plan has annual limits on certain preventive care services, such as screenings and vaccines. - text: >- The depression may be provoking the illness or making it more difficult to manage - text: >- Due to the language barrier, the patient is having difficulty communicating their medical history to the healthcare provider. datasets: - reachosen/autotrain-data-sdohv7 co2_eq_emissions: emissions: 0.01134763220649804 pipeline_tag: text-classification --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3701198597 - CO2 Emissions (in grams): 0.0113 ## Validation Metrics - Loss: 0.057 - Accuracy: 0.990 - Macro F1: 0.990 - Micro F1: 0.990 - Weighted F1: 0.990 - Macro Precision: 0.990 - Micro Precision: 0.990 - Weighted Precision: 0.991 - Macro Recall: 0.990 - Micro Recall: 0.990 - Weighted Recall: 0.990 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/reachosen/autotrain-sdohv7-3701198597 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("reachosen/autotrain-sdohv7-3701198597", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("reachosen/autotrain-sdohv7-3701198597", use_auth_token=True) inputs = tokenizer("The Patient is homeless", return_tensors="pt") outputs = model(**inputs) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
132
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.55 +/- 16.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,862
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2x-12-3-6-6-1-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
75
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: dotunadegbite/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
71
null
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3990 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1012 | 0.1 | 398 | 1.9809 | 0.38 | | 1.0416 | 1.1 | 796 | 1.6140 | 0.56 | | 0.2096 | 2.1 | 1194 | 1.5776 | 0.66 | | 0.7101 | 3.1 | 1592 | 1.2004 | 0.74 | | 1.2344 | 4.1 | 1990 | 1.9621 | 0.58 | | 0.1809 | 5.1 | 2388 | 1.6322 | 0.71 | | 0.0011 | 6.1 | 2786 | 1.8266 | 0.71 | | 0.0951 | 7.1 | 3184 | 1.5910 | 0.78 | | 0.4047 | 8.1 | 3582 | 1.9999 | 0.7 | | 0.0011 | 9.1 | 3980 | 1.5903 | 0.78 | | 0.001 | 10.0 | 3990 | 1.5903 | 0.78 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-eighth
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: deberta-v3-small-Tweet_About_Disaster_Or_Not results: [] language: - en --- # deberta-v3-small-Tweet_About_Disaster_Or_Not This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2942 - Accuracy: 0.9050 - F1: 0.7453 - Recall: 0.7453 - Precision: 0.7453 ## Model description This is a binary classification model to determine if tweet input samples are about a disaster or not. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Transformer%20Comparison/Is%20This%20Tweet%20Referring%20to%20a%20Disaster%20or%20Not%3F%20-%20DeBERTa.ipynb ### Associated Projects This project is part of a comparison of multiple transformers. The others can be found at the following links: - https://huggingface.co/DunnBC22/roberta-base-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/albert-base-v2-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/electra-base-emotion-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/ernie-2.0-base-en-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/distilbert-base-uncased-Tweet_About_Disaster_Or_Not ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. The main limitation is the quality of the data source. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/vstepanenko/disaster-tweets ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.4167 | 1.0 | 143 | 0.3148 | 0.8830 | 0.7164 | 0.7925 | 0.6537 | | 0.255 | 2.0 | 286 | 0.2942 | 0.9050 | 0.7453 | 0.7453 | 0.7453 | | 0.1935 | 3.0 | 429 | 0.3022 | 0.8874 | 0.7288 | 0.8113 | 0.6615 | | 0.1512 | 4.0 | 572 | 0.3405 | 0.8786 | 0.7172 | 0.8255 | 0.6341 | | 0.1192 | 5.0 | 715 | 0.3618 | 0.8909 | 0.7373 | 0.8208 | 0.6692 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-msa-half
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: roberta-base-Tweet_About_Disaster_Or_Not results: [] language: - en --- # roberta-base-Tweet_About_Disaster_Or_Not This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2640 - Accuracy: 0.8989 - F1: 0.7569 - Recall: 0.8211 - Precision: 0.7020 ## Model description This is a binary classification model to determine if tweet input samples are about a disaster or not. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Binary%20Classification/Transformer%20Comparison/Is%20This%20Tweet%20Referring%20to%20a%20Disaster%20or%20Not%3F%20-%20RoBERTa.ipynb ### Associated Projects This project is part of a comparison of multiple transformers. The others can be found at the following links: - https://huggingface.co/DunnBC22/deberta-v3-small-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/albert-base-v2-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/electra-base-emotion-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/ernie-2.0-base-en-Tweet_About_Disaster_Or_Not - https://huggingface.co/DunnBC22/distilbert-base-uncased-Tweet_About_Disaster_Or_Not ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. The main limitation is the quality of the data source. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/vstepanenko/disaster-tweets ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.372 | 1.0 | 143 | 0.3067 | 0.8690 | 0.7205 | 0.8807 | 0.6095 | | 0.2356 | 2.0 | 286 | 0.2640 | 0.8989 | 0.7569 | 0.8211 | 0.7020 | | 0.165 | 3.0 | 429 | 0.3029 | 0.8997 | 0.7635 | 0.8440 | 0.6970 | | 0.1118 | 4.0 | 572 | 0.3256 | 0.8971 | 0.7578 | 0.8394 | 0.6906 | | 0.0766 | 5.0 | 715 | 0.3733 | 0.9024 | 0.7711 | 0.8578 | 0.7004 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.12.1
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
229
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### PendantTest_SD21_v1 Dreambooth model trained by DFStewart with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/DFStewart/pendanttest-sd21-v1/resolve/main/sample_images/sample.png)
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-seinfeld results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-seinfeld This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3835 | 0.99 | 26 | 3.2201 | | 3.316 | 1.99 | 52 | 3.1480 | | 3.2054 | 2.99 | 78 | 3.1031 | | 3.1206 | 3.99 | 104 | 3.0799 | | 3.0525 | 4.99 | 130 | 3.0655 | | 2.9891 | 5.99 | 156 | 3.0589 | | 2.9358 | 6.99 | 182 | 3.0504 | | 2.8765 | 7.99 | 208 | 3.0493 | | 2.8189 | 8.99 | 234 | 3.0497 | | 2.7579 | 9.99 | 260 | 3.0471 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aidatatang_200zh license: cc-by-4.0 --- ## ESPnet2 ASR model ### `pyf98/aidatatang_200zh_e_branchformer_e16` This model was trained by Yifan Peng using aidatatang_200zh recipe in [espnet](https://github.com/espnet/espnet/). References: - [E-Branchformer: Branchformer with Enhanced merging for speech recognition (SLT 2022)](https://arxiv.org/abs/2210.00077) - [Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding (ICML 2022)](https://proceedings.mlr.press/v162/peng22a.html) ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 232a317a66eda6c5caee094db4b714bc912dce95 pip install -e . cd egs2/aidatatang_200zh/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model pyf98/aidatatang_200zh_e_branchformer_e16 ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Feb 22 23:08:40 CST 2023` - python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]` - espnet version: `espnet 202301` - pytorch version: `pytorch 1.13.1` - Git hash: `232a317a66eda6c5caee094db4b714bc912dce95` - Commit date: `Wed Feb 22 14:22:01 2023 -0600` ## exp/asr_train_asr_e_branchformer_e16_linear1024_lr1e-3_newspecaug_raw_zh_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|24216|82.4|17.6|0.0|0.0|17.6|17.6| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|48144|79.9|20.1|0.0|0.0|20.1|20.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/dev|24216|234524|96.7|2.9|0.4|0.2|3.4|17.6| |decode_asr_lm_lm_train_lm_transformer_zh_char_valid.loss.ave_asr_model_valid.acc.ave/test|48144|468933|96.1|3.5|0.4|0.2|4.1|20.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_e_branchformer_e16_linear1024_lr1e-3_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_e_branchformer_e16_linear1024_lr1e-3_newspecaug_raw_zh_char_sp ngpu: 1 seed: 0 num_workers: 6 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38803 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char_sp/train/speech_shape - exp/asr_stats_raw_zh_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char_sp/valid/speech_shape - exp/asr_stats_raw_zh_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - sound - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 35000 token_list: - <blank> - <unk> - 我 - 的 - 你 - 么 - 不 - 是 - 了 - 一 - 有 - 天 - 什 - 好 - 在 - 个 - 怎 - 吗 - 话 - 要 - 给 - 电 - 上 - 没 - 人 - 说 - 到 - 啊 - 就 - 这 - 时 - 来 - 下 - 想 - 打 - 点 - 去 - 还 - 看 - 道 - 多 - 明 - 那 - 知 - 以 - 今 - 能 - 会 - 哪 - 都 - 可 - 大 - 吧 - 机 - 样 - 里 - 十 - 现 - 们 - 过 - 吃 - 开 - 家 - 回 - 发 - 中 - 呢 - 听 - 候 - 为 - 也 - 日 - 爱 - 歌 - 三 - 起 - 小 - 二 - 心 - 子 - 手 - 生 - 最 - 儿 - 学 - 放 - 信 - 女 - 号 - 几 - 和 - 老 - 晚 - 少 - 车 - 叫 - 快 - 用 - 自 - 年 - 睡 - 问 - 事 - 后 - 五 - 乐 - 安 - 出 - 找 - 帮 - 意 - 觉 - 气 - 国 - 得 - 情 - 请 - 早 - 地 - 做 - 首 - 真 - 公 - 近 - 对 - 办 - 很 - 行 - 己 - 呀 - 八 - 友 - 如 - 六 - 节 - 喜 - 新 - 欢 - 西 - 间 - 月 - 班 - 他 - 网 - 方 - 分 - 播 - 笑 - 查 - 息 - 名 - 四 - 成 - 东 - 美 - 零 - 市 - 饭 - 世 - 朋 - 玩 - 州 - 果 - 才 - 七 - 别 - 把 - 谁 - 九 - 再 - 平 - 太 - 干 - 思 - 关 - 谢 - 高 - 语 - 理 - 些 - 界 - 着 - 长 - 钱 - 动 - 曲 - 感 - 聊 - 片 - 何 - 面 - 男 - 音 - 工 - 南 - 午 - 本 - 通 - 火 - 经 - 路 - 星 - 唱 - Q - 业 - 讲 - 英 - 北 - 服 - 短 - 妈 - 海 - 文 - 跟 - 作 - 票 - 只 - 等 - 刚 - 码 - 字 - 影 - 附 - 婆 - 见 - 又 - 祝 - 无 - 该 - 提 - 末 - 让 - 法 - 定 - 买 - 告 - 照 - 体 - 考 - 床 - 醒 - 记 - 前 - 题 - 走 - 加 - 主 - 从 - 视 - 张 - 身 - 两 - 钟 - 京 - 于 - 收 - 阳 - 哈 - 店 - 山 - 院 - 站 - 百 - 宝 - 所 - 诉 - 期 - 之 - 嘛 - 夜 - 第 - 游 - 比 - 系 - 昨 - 费 - 交 - 水 - 应 - 次 - 周 - 亲 - 联 - 全 - 福 - 江 - 孩 - 区 - 广 - 头 - 接 - O - 校 - 已 - 空 - 门 - 认 - 相 - 度 - 实 - 活 - 色 - 假 - 白 - 算 - 外 - 流 - 啦 - 花 - 然 - 结 - 每 - 休 - 边 - 部 - 位 - 场 - 半 - 王 - 声 - 件 - 力 - 金 - 重 - 识 - 正 - 华 - 光 - 衣 - 载 - 死 - 价 - 翻 - 图 - 城 - 脑 - 同 - 久 - 译 - 特 - 物 - 搜 - 务 - 报 - 线 - 哦 - 卡 - E - 当 - A - 爸 - 圣 - 完 - 幺 - 合 - P - 雨 - 黄 - 种 - 司 - 直 - I - 她 - 哥 - 书 - 银 - 试 - 解 - 穿 - 酒 - 准 - 换 - 望 - 被 - S - 原 - 内 - 诞 - 带 - 介 - 口 - 清 - N - 马 - 习 - 否 - 置 - 啥 - 索 - 戏 - 与 - 懂 - 飞 - 需 - 性 - 错 - 送 - 级 - 器 - 单 - 离 - 远 - 备 - 师 - 课 - 注 - 因 - 难 - 其 - 像 - 元 - 消 - 表 - 便 - 球 - 风 - 教 - 故 - 科 - 李 - 常 - 林 - 龙 - 呵 - 数 - 代 - 总 - 忘 - 商 - 变 - 婚 - 苹 - 红 - 格 - 坐 - 绍 - 答 - 量 - 冷 - 青 - 询 - 春 - 神 - 省 - 蛋 - 姐 - 陪 - 兴 - 利 - 台 - 句 - 万 - 计 - 保 - 刘 - 传 - 深 - 管 - 运 - 德 - 医 - 容 - 品 - 越 - 亮 - 词 - 河 - 化 - 宁 - 始 - 武 - 希 - 洗 - 复 - 设 - 处 - 技 - 房 - T - 您 - 取 - 眼 - 县 - 笨 - 术 - 温 - 永 - 受 - 更 - 先 - 尔 - 程 - 彩 - 演 - 忙 - 专 - 愿 - 进 - 湖 - 建 - 况 - 伤 - 喝 - 底 - 卖 - 功 - 录 - 改 - H - 剧 - 预 - 梦 - L - 达 - 连 - 馆 - 包 - 写 - 客 - C - 汉 - 条 - G - 幸 - 民 - 读 - 职 - 目 - 但 - 贝 - 妹 - 资 - 较 - 雪 - 赛 - 除 - 招 - 园 - 住 - 超 - 汽 - 病 - B - 软 - 反 - 而 - 证 - 员 - 黑 - 庆 - D - 求 - 排 - 装 - 岁 - 顾 - 产 - 航 - 言 - 斯 - 拨 - 历 - 烦 - 及 - 药 - 入 - 式 - 军 - 餐 - 志 - 至 - 双 - 米 - 版 - 掉 - 千 - 者 - 充 - 微 - 失 - 转 - M - 亚 - 克 - 座 - 丽 - 络 - 战 - 使 - 猪 - 具 - 闹 - 限 - 址 - 基 - 油 - 漂 - 陈 - Y - 川 - 强 - 挺 - 奇 - 杰 - 政 - 向 - 速 - 康 - 差 - 贵 - 搞 - 义 - 奖 - 份 - 户 - 楼 - 苏 - 任 - 健 - 易 - 毛 - 型 - 石 - 礼 - 款 - 持 - 卫 - 怕 - 恋 - 邮 - 集 - R - 铁 - 圳 - 拿 - 云 - 队 - 鱼 - 慢 - 顺 - 害 - 属 - 傻 - 营 - 菜 - 货 - 麻 - 咋 - 坏 - 冒 - 累 - 杨 - 闻 - 治 - 选 - 段 - K - 香 - 闭 - 兰 - 牌 - 局 - 留 - 舍 - 非 - 推 - 室 - 简 - 拉 - 修 - 终 - 郑 - 切 - U - 将 - 村 - 沙 - 存 - 帅 - 诗 - 率 - 密 - 巴 - 频 - 士 - 初 - 楚 - 股 - 热 - 古 - 制 - 支 - 肉 - 岛 - 统 - 适 - 肥 - 鸡 - 调 - 街 - 类 - 牛 - 导 - 农 - 值 - 食 - 镇 - 棍 - 移 - 韩 - W - 嗯 - 订 - 呼 - 命 - V - 必 - 宿 - 皮 - 升 - 确 - 随 - 步 - 育 - 标 - 唐 - 精 - 决 - 木 - 由 - 弟 - 往 - 肯 - 够 - 或 - 指 - 阿 - 象 - 料 - 念 - 助 - 许 - 共 - 母 - 约 - 罗 - 板 - 秋 - 配 - 魔 - 宜 - 般 - 荐 - 扰 - 舒 - 逼 - 狗 - 嘿 - 博 - 售 - 满 - 疼 - 脸 - 整 - 抱 - 季 - 减 - 养 - 怀 - 免 - 未 - 乘 - F - 社 - 妇 - 列 - 爷 - 删 - 旦 - 弄 - 概 - 停 - 拜 - 维 - 领 - 示 - 套 - 汇 - 昌 - 晨 - 痛 - 购 - 奥 - 铃 - 案 - 济 - 鬼 - 背 - 港 - 待 - 浪 - 桥 - 血 - 冬 - 烧 - 优 - 拍 - 际 - 急 - 杭 - 称 - 遇 - 赶 - 旅 - 智 - 角 - 财 - 玉 - 团 - 形 - 论 - 静 - 景 - 退 - 普 - 呗 - 乡 - 参 - 胡 - 伦 - 讨 - 艺 - 辈 - 毒 - 此 - 轻 - 苦 - 咱 - 画 - 泰 - 宾 - 雄 - 销 - 奶 - 突 - 波 - 各 - 冰 - 块 - 夏 - 低 - 兵 - 厅 - 羊 - 杀 - 紧 - 泉 - 朝 - 谈 - 足 - 孕 - 夫 - 厂 - 聪 - 续 - 庄 - 诺 - 牙 - 质 - 立 - 依 - 仙 - 跑 - 盘 - 豆 - 它 - 怪 - 猜 - 漫 - 毕 - 兄 - 颜 - 险 - 厦 - 验 - 防 - 登 - 敢 - 乖 - 晓 - 护 - 迎 - 逗 - 摩 - 佳 - 观 - 骗 - 烟 - 细 - 临 - 惠 - 围 - 寞 - 效 - 源 - 寂 - 肚 - 暖 - 饺 - 斗 - 模 - 端 - 疗 - 付 - 绝 - 秘 - 展 - 乎 - 按 - 富 - 靠 - 范 - 规 - 刻 - 折 - 娘 - 厌 - 申 - 章 - 补 - 笔 - 锅 - 破 - 田 - 齐 - 滨 - 皇 - 族 - 典 - 史 - 左 - 蓝 - 灵 - 澡 - 秀 - 诚 - 土 - 测 - 凤 - 剑 - 响 - 倒 - 睛 - 惯 - 乌 - 币 - 扣 - 吴 - 输 - 徐 - 弃 - 纪 - 堂 - 环 - 甲 - 菲 - 缘 - 讯 - 根 - 落 - 启 - 泡 - 饿 - 积 - 府 - 递 - 绩 - 择 - 吉 - 布 - 显 - 童 - 租 - 洋 - 组 - 划 - 编 - 签 - 舞 - 困 - 贴 - 负 - 派 - 裤 - 担 - 桂 - 却 - 丝 - 丰 - 箱 - 赵 - 群 - 序 - 训 - 酸 - 惜 - 圆 - 评 - 压 - 俩 - 状 - 官 - 酷 - 鲁 - 孙 - 草 - 极 - 势 - 斤 - 腾 - 泽 - 素 - 尽 - 姓 - 屏 - 聚 - 莞 - 乱 - 雅 - 尼 - 趣 - 伟 - 肤 - 勇 - 右 - 徽 - 投 - 丹 - 尾 - 托 - 争 - 鸟 - 激 - 印 - 良 - 眠 - 松 - 跳 - 途 - 篮 - 粉 - 脚 - 屁 - 鞋 - 麦 - 则 - 估 - 津 - 努 - 距 - 胸 - 央 - 珍 - 盖 - 哭 - 洲 - 练 - 敏 - 雷 - 曾 - 恩 - 挂 - 据 - 览 - 耳 - 材 - 泪 - 吸 - 味 - 劳 - 父 - 孤 - 玛 - 旁 - 阴 - 态 - 创 - 树 - 脱 - 研 - 驾 - 拾 - 灯 - 虎 - 爆 - 嘉 - 湾 - 躺 - 猫 - 莫 - 昆 - 痘 - 阅 - 射 - 刷 - 卓 - 珠 - 峰 - 胖 - 坚 - 造 - 举 - 棒 - 梅 - 引 - 吵 - 蒙 - 详 - 借 - 瓜 - 池 - 束 - 芳 - 淘 - 寻 - 释 - 沈 - 虑 - 锦 - 胜 - 荣 - 委 - 默 - 另 - 浏 - 并 - 检 - 冠 - 独 - 厉 - 顶 - 钓 - 骂 - 且 - 欧 - 威 - 熟 - 获 - 兽 - 严 - 炎 - 含 - 厕 - 盛 - 翼 - 盟 - 余 - 姨 - 洛 - 映 - 狼 - 谅 - 众 - 宽 - 断 - 止 - 狂 - 凉 - 姑 - 辉 - 若 - 册 - 谷 - 幻 - 篇 - 瓶 - 席 - 恐 - 柔 - 迪 - 供 - 追 - 控 - 爽 - 互 - 嫁 - 宋 - 宫 - 瑞 - 滚 - 增 - 额 - 页 - 刀 - 娱 - 茶 - 钢 - 疯 - 梁 - 承 - 娜 - 须 - 陆 - 燕 - 迟 - 君 - 恶 - 遍 - 纸 - 项 - 丁 - 腿 - 误 - 殊 - 迅 - 锁 - 宇 - 媳 - 培 - 居 - 寄 - 纯 - 嘴 - 浙 - 境 - 搭 - 杯 - 插 - 朱 - 溪 - 甘 - 权 - 窝 - 警 - 糖 - 迷 - 圈 - 凯 - 帝 - 暴 - 逛 - 艳 - 击 - 颗 - 坦 - 杂 - 冲 - 谓 - 救 - 轮 - 晕 - 虽 - 塔 - 叔 - 凰 - 懒 - 议 - 肖 - 郎 - 辛 - 透 - 拥 - 鼠 - 顿 - 批 - 兔 - 尚 - 聘 - 藏 - 赚 - 继 - 享 - 欺 - 潮 - 即 - 甜 - 骨 - 悲 - 幕 - 滴 - 闲 - 液 - 缺 - 琴 - 蜜 - 善 - 暗 - 镜 - 蔡 - 吹 - 核 - 忆 - 键 - 辑 - 岗 - 例 - 涛 - 宏 - 刺 - 郭 - 降 - 秦 - 剩 - 绿 - 桌 - 咖 - 呐 - 叶 - 贸 - 架 - 账 - 亡 - 佛 - 哎 - 乳 - 归 - 忍 - 异 - 侠 - 龄 - 炒 - 洁 - 似 - 虚 - 贷 - 征 - 抽 - 败 - 枪 - 幼 - 丫 - 危 - 慰 - 究 - 婷 - 肃 - 箭 - 灰 - 届 - 律 - 秒 - 淡 - 偷 - 炫 - 鲜 - 浦 - 萨 - 旧 - 硬 - 操 - 混 - 施 - 散 - 咨 - 妻 - 吻 - 榜 - 呆 - 废 - 野 - 糕 - 骑 - 炼 - 震 - 恭 - 悔 - 跨 - 曼 - 啡 - 俊 - 晶 - 胃 - 汤 - 尊 - 貌 - 封 - 羽 - 赞 - 尸 - 隐 - 丢 - 霸 - 醉 - 盗 - 盐 - 浩 - 著 - 档 - 赢 - 幽 - 责 - 鼻 - 辣 - 恒 - 朵 - 慕 - 旗 - 娃 - 饰 - 仁 - 亦 - 竟 - 柳 - 郁 - 唯 - 夕 - 钻 - 均 - 劲 - 庭 - 巧 - 饮 - 涨 - 辆 - 傅 - 企 - 趟 - 避 - 党 - 染 - 扬 - 玲 - 筋 - 烤 - 桃 - 唉 - 慧 - 欲 - 寒 - 闷 - 某 - 恨 - 私 - 淮 - 惊 - 弱 - 弹 - 沉 - 兼 - 弯 - 残 - 偶 - 锋 - 贺 - 咯 - 纳 - 戴 - 抢 - 宗 - 浴 - 宵 - 莲 - 嗨 - 喊 - 奕 - 壁 - 症 - 冻 - 致 - 屋 - 喽 - 伊 - 绵 - 玫 - 固 - 籍 - 监 - 耐 - 井 - 寝 - 露 - 虫 - 盒 - 凡 - 摇 - 傲 - 烈 - 姿 - 陕 - 裸 - 袋 - 帐 - 凌 - 寿 - 茂 - 鹏 - 寓 - 柴 - 妞 - 森 - 既 - 紫 - 萝 - 层 - 苗 - 腊 - 邓 - 宣 - 锡 - 袜 - 陌 - 狮 - 碰 - 晴 - 塘 - 妃 - 祥 - 苍 - 针 - 敌 - 腰 - 犯 - 欠 - 垃 - 卸 - 迹 - 暑 - 祖 - 泳 - 阵 - 熊 - 励 - 澳 - 添 - 拳 - 岳 - 益 - 瘦 - 虹 - 圾 - 植 - 坡 - 攻 - 略 - 墙 - 描 - 遗 - 噢 - 窗 - 吐 - 肌 - 陵 - 逃 - 浮 - 摸 - 戒 - 哟 - 翰 - 勿 - 库 - 涯 - 妖 - 宠 - 脾 - 革 - 探 - 糊 - 采 - 惹 - 衡 - 赤 - 魏 - 羡 - 综 - 舟 - 疆 - 痴 - 催 - 朗 - 坛 - 悠 - 岭 - 驶 - 括 - 嘻 - 辽 - 粥 - 煮 - 灭 - 杜 - 域 - 令 - 替 - 翔 - 坤 - 潘 - 抓 - 铜 - 构 - 卷 - 茫 - 丑 - 涂 - 掌 - 饱 - 肝 - 疾 - 罩 - 谱 - 愚 - 抗 - 琳 - 夸 - 汪 - 墨 - 沟 - 翅 - 肠 - 患 - 柏 - 僵 - 稳 - 延 - 胆 - 伴 - 爬 - 滋 - 歉 - 轩 - 尿 - 铺 - 忠 - 黎 - 膀 - 邯 - 郸 - 愉 - 霉 - 翁 - 妙 - 隆 - 鸭 - 锻 - 涵 - 挣 - 副 - 罪 - 穷 - 恢 - 巨 - 吓 - 眉 - 棉 - 汗 - 溜 - 奏 - 滩 - 愁 - X - 执 - 霞 - 魂 - 姆 - 摄 - 偏 - 纠 - 瑰 - 洪 - 协 - 牧 - 飘 - 炸 - 悦 - 艾 - 织 - 敬 - 驹 - 欣 - 董 - 邦 - 勒 - 守 - 伙 - 狐 - 税 - 湘 - 遥 - 储 - 脏 - 坊 - 腐 - 横 - 仔 - 仪 - 判 - 忽 - 哇 - 罚 - 爹 - 怖 - 竹 - 孔 - 捡 - 挑 - 肿 - 漠 - 尘 - 焦 - 塞 - 熬 - 谊 - 樱 - 返 - 莉 - 堵 - 捷 - 惑 - 绕 - 蛇 - 竞 - 耍 - 违 - 卧 - 蝶 - J - 俗 - 滑 - 占 - 怜 - 舅 - 乔 - 泸 - 臭 - 策 - 骚 - 莱 - 岩 - 魅 - 兑 - 姥 - 兆 - 萍 - 烂 - 损 - 述 - 撒 - 烫 - 炮 - 忧 - 遵 - 桑 - 俺 - 彭 - 净 - 胶 - 柯 - 绑 - 碟 - 卜 - 饼 - 船 - 佩 - 妆 - 齿 - 厚 - 娟 - 醋 - 丘 - 恼 - 萧 - 析 - 润 - 潭 - 番 - 鹰 - 葡 - 萄 - 唤 - 胎 - 逊 - 峡 - 舰 - 障 - 伯 - 猴 - 膜 - 访 - 贤 - 耀 - 晒 - 狠 - 豪 - 剪 - 帖 - 幂 - 融 - 诱 - 韶 - 晋 - 拼 - 洞 - 氧 - 察 - 裁 - 寨 - 熙 - 喂 - 拖 - 污 - 乾 - 湿 - 嫌 - 拒 - 蕉 - 哲 - 薇 - 绒 - 婴 - 莎 - 稿 - 瞎 - 寺 - 徒 - 伞 - 碎 - 阜 - 填 - 琪 - 敦 - 柜 - 侣 - 搬 - 孟 - 蓉 - 筒 - 偿 - 献 - 径 - 畅 - 粤 - 悟 - 隔 - 赖 - 慈 - 哄 - 襄 - 扮 - 睁 - 彻 - 陶 - 瓷 - 荷 - 寸 - 牵 - 痒 - 芝 - 繁 - 倍 - 闪 - 梧 - 怒 - 蝴 - 嵩 - 赣 - 嘞 - 狱 - 猛 - 咳 - 媒 - 斌 - 斑 - 奋 - 叉 - 龟 - 贱 - 疑 - 暂 - 靓 - 叹 - 仓 - 撞 - 姜 - 疤 - 矿 - 芬 - 勤 - 纱 - 帆 - 迁 - 囧 - 佑 - 囊 - 侯 - 鼓 - 葛 - 沃 - 莹 - 诊 - 筑 - 酱 - 咬 - 糟 - 拯 - 鹤 - 驴 - 胞 - 枝 - 俄 - 呃 - 鹿 - 磨 - 姚 - 灾 - 扫 - 荡 - 吊 - 犬 - 菊 - 茹 - 链 - 嫉 - 妒 - 旺 - 夺 - 裙 - 湛 - 氏 - 鞍 - 抵 - 娇 - 耶 - 截 - 辞 - 硫 - 禁 - 怡 - 跌 - 刮 - 苑 - 媛 - 摆 - 盾 - 械 - 旋 - 卢 - 霆 - 驰 - 擦 - 符 - 肺 - 谜 - 霍 - 仅 - 迈 - 碗 - 邪 - 曹 - 咪 - 煌 - 疫 - 屠 - 握 - 奔 - Z - 燃 - 沧 - 谦 - 馨 - 嫖 - 阻 - 冯 - 振 - 雕 - 闯 - 薄 - 宙 - 倾 - 嗽 - 椒 - 墓 - 尤 - 夹 - 潇 - 骤 - 壮 - 屈 - 颖 - 菠 - 吞 - 鸣 - 渴 - 堰 - 厨 - 督 - 驻 - 腹 - 岸 - 蛮 - 翠 - 肾 - 娼 - 券 - 尖 - 丸 - 鸿 - 厘 - 召 - 劝 - 牡 - 韦 - 拔 - 灏 - 弦 - 萌 - 惩 - 倩 - 诸 - 扎 - 庙 - 炉 - 潜 - 措 - 磊 - 脂 - 郊 - 虾 - 霜 - 猎 - 蝎 - 玄 - 钰 - 审 - 蜂 - 巷 - 敷 - 拟 - 钥 - 匙 - 婉 - 纽 - 芜 - 贾 - 串 - 靖 - 抛 - 彼 - 亏 - 挽 - 贼 - 穴 - 授 - 鼎 - 孝 - 玮 - 氓 - 劫 - 俞 - 谎 - 莆 - 隋 - 钠 - 赔 - 谐 - 纶 - 闰 - 昏 - 逆 - 璇 - 樊 - 禽 - 宅 - 碳 - 妮 - 亭 - 杆 - 蠢 - 鄙 - 蜀 - 阶 - 贫 - 辰 - 盼 - 呜 - 芦 - 株 - 腔 - 巾 - 羞 - 堡 - 亿 - 踩 - 憾 - 浓 - 阔 - 塑 - 趋 - 蓄 - 桶 - 葱 - 菇 - 咒 - 蟹 - 肩 - 柿 - 缓 - 漳 - 祸 - 挤 - 巢 - 抚 - 詹 - 豫 - 俱 - 悉 - 溶 - 粒 - 谭 - 诛 - 贡 - 沿 - 躲 - 慌 - 芙 - 蒋 - 乃 - 雀 - 姻 - 岂 - 悄 - 辕 - 斜 - 捕 - 扇 - 割 - 啤 - 纲 - 纤 - 祛 - 躁 - 殖 - 珊 - 氢 - 允 - 丈 - 蹈 - 邀 - 哼 - 坑 - 吾 - 淋 - 扩 - 愤 - 潍 - 尺 - 耗 - 鉴 - 闽 - 乙 - 渭 - 触 - 撑 - 咸 - 灿 - 缩 - 蔬 - 凑 - 渡 - 梭 - 粗 - 袁 - 菌 - 妓 - 稍 - 辐 - 哀 - 浆 - 厢 - 荆 - 踪 - 桐 - 邢 - 蜡 - 奉 - 淑 - 洒 - 扁 - 蕾 - 燥 - 硕 - 牢 - 蛙 - 仍 - 侵 - 稀 - 芒 - 吕 - 跪 - 绪 - 誓 - 旭 - 阁 - 屌 - 凭 - 裹 - 崇 - 纬 - 援 - 怨 - 茄 - 埋 - 棋 - 誉 - 瑜 - 蹲 - 扯 - 跃 - 昧 - 螺 - 毅 - 叮 - 喷 - 壶 - 喉 - 脆 - 瓦 - 碧 - 奴 - 煤 - 伍 - 娶 - 雁 - 骄 - 泣 - 眷 - 屯 - 赏 - 覆 - 揍 - 绯 - 逸 - 屎 - 彦 - 辨 - 攀 - 涉 - 泥 - 廊 - 菱 - 薛 - 衍 - 荒 - 铭 - 沂 - 麟 - 咏 - 扑 - 祈 - 喔 - 磁 - 歇 - 栋 - 沫 - 漏 - 玻 - 璃 - 逝 - 葵 - 溃 - 堆 - 锐 - 楠 - 毫 - 谋 - 勾 - 梯 - 氯 - 杏 - 赌 - 鑫 - 崔 - 颠 - 邱 - 肪 - 掘 - 昭 - 悬 - 奈 - 筷 - 轨 - 诵 - 葫 - 挡 - 梨 - 缠 - 僧 - 抬 - 邻 - 栏 - 饶 - 庚 - 灌 - 呦 - 摊 - 狄 - 汕 - 缴 - 罢 - 瞌 - 腺 - 辖 - 摔 - 棵 - 弗 - 琼 - 揭 - 淀 - 仑 - 粮 - 扔 - 剂 - 邵 - 辅 - 悍 - 袖 - 侨 - 巡 - 仗 - 逢 - 挥 - 翘 - 柱 - 狸 - 赫 - 耽 - 押 - 昂 - 瘤 - 枣 - 癌 - 伏 - 秤 - 脉 - 穹 - 敲 - 贪 - 促 - 拆 - 勉 - 祷 - 弊 - 膏 - 禾 - 契 - 挨 - 纵 - 疲 - 蜘 - 蛛 - 冈 - 雾 - 娄 - 甫 - 裂 - 侦 - 愈 - 臂 - 甩 - 戈 - 钙 - 簿 - 淄 - 蓬 - 夷 - 汁 - 凶 - 匹 - 皆 - 凝 - 仰 - 叛 - 蒲 - 谣 - 砖 - 呈 - 浅 - 瞬 - 丞 - 粘 - 痕 - 癫 - 禺 - 靴 - 尝 - 枫 - 鹅 - 衷 - 暮 - 媚 - 堪 - 臣 - 瑟 - 榕 - 蘑 - 遂 - 舌 - 藤 - 遭 - 芭 - 暧 - 犹 - 砸 - 浇 - 晰 - 矮 - 禹 - 隶 - 蚊 - 塌 - 峪 - 渊 - 摘 - 崩 - 瞧 - 炭 - 瑶 - 纷 - 毁 - 瞒 - 橙 - 渣 - 霹 - 雳 - 粽 - 侧 - 胀 - 捐 - 栈 - 颈 - 伪 - 役 - 予 - 钝 - 菏 - 铠 - 稻 - 赠 - 芽 - 龚 - 幅 - 莓 - 轿 - 炖 - 炬 - 溢 - 扭 - 垂 - 坎 - 嚏 - 枯 - 绣 - 蒸 - 旬 - 迫 - 浒 - 肇 - 庸 - 蒂 - 踏 - 雯 - 埃 - 础 - 狙 - 陷 - 伽 - 滔 - 沦 - 祭 - 唠 - 瀑 - 矛 - 乒 - 乓 - 窍 - 渠 - 泛 - 陇 - 蒜 - 捉 - 扶 - 诀 - 纹 - 踢 - 馋 - 薪 - 坪 - 廉 - 荔 - 骏 - 颁 - 伸 - 贞 - 沾 - 疮 - 兮 - 擎 - 驱 - 馒 - 挖 - 韵 - 姬 - 砍 - 矫 - 巫 - 疙 - 瘩 - 峨 - 抄 - 函 - 歪 - 倚 - 昔 - 涕 - 憨 - 淇 - 宴 - 埠 - 渐 - 胳 - 膊 - 趁 - 擅 - 刑 - 渝 - 噬 - 斋 - 妍 - 债 - 邹 - 嫂 - 娥 - 践 - 禅 - 牲 - 帽 - 吨 - 腻 - 掖 - 榴 - 啸 - 纺 - 鞭 - 豚 - 爵 - 蹄 - 咙 - 澈 - 疹 - 氛 - 抑 - 绸 - 抹 - 奎 - 酬 - 坟 - 诶 - 勋 - 卑 - 沪 - 蚁 - 揉 - 锄 - 泌 - 槽 - 镖 - 卿 - 甸 - 帕 - 镁 - 盲 - 汾 - 携 - 宰 - 虞 - 瓣 - 辩 - 豌 - 樟 - 璐 - 沁 - 钦 - 蔚 - 彬 - 卦 - 轰 - 锈 - 茎 - 蹦 - 拐 - 坝 - 饥 - 捏 - 碑 - 嗓 - 澄 - 惨 - 沽 - 鄂 - 逻 - 谍 - 屿 - 聋 - 憋 - 泼 - 枕 - 盆 - 衫 - 慎 - 黛 - 轶 - 咽 - 匠 - 蚂 - 捶 - 脊 - 蚌 - 剥 - 穆 - 喇 - 叭 - 凳 - 滥 - 撤 - 蓑 - 笠 - 黔 - 诡 - 颐 - 闵 - 稚 - 茨 - 捆 - 芯 - 涩 - 哑 - 盈 - 衰 - 奢 - 贩 - 循 - 韭 - 绘 - 鸳 - 唇 - 恳 - 妥 - 杠 - 刊 - 戚 - 巩 - 胁 - 蜗 - 筝 - 漆 - 劈 - 泄 - 噩 - 椎 - 渔 - 氨 - 橘 - 仲 - 洱 - 绥 - 仿 - 耿 - 蚕 - 倦 - 葬 - 捞 - 拓 - 冤 - 御 - 忌 - 慨 - 弥 - 寡 - 昵 - 撕 - 鲤 - 隧 - 倡 - 臀 - 毙 - 蕊 - 甚 - 睹 - 哒 - 仇 - 栓 - 抒 - 滁 - 讶 - 皱 - 剖 - 闸 - 耻 - 顽 - 茅 - 碱 - 霏 - 坠 - 邑 - 嗦 - 缝 - 枚 - 垫 - 畜 - 侄 - 悴 - 庞 - 鸯 - 俏 - 铅 - 衔 - 浑 - 抖 - 逮 - 犀 - 滕 - 遮 - 淹 - 挪 - 柠 - 檬 - 荨 - 沛 - 喻 - 尹 - 抉 - 爪 - 甄 - 冀 - 蝉 - 汰 - 丧 - 愧 - 畏 - 屑 - 屉 - 娩 - 艰 - 弓 - 炜 - 框 - 娅 - 酵 - 掩 - 宪 - 枉 - 淫 - 糗 - 奸 - 岚 - 诅 - 釜 - 萱 - 窦 - 喆 - 浣 - 庐 - 阑 - 劣 - 窄 - 赈 - 茉 - 帜 - 缸 - 嫩 - 迦 - 憔 - 鸽 - 朴 - 洽 - 榆 - 烹 - 箫 - 荚 - 箍 - 稣 - 肢 - 磷 - 袭 - 橡 - 鸦 - 瞅 - 匡 - 禧 - 痣 - 勃 - 翡 - 篱 - 烽 - 衢 - 讪 - 烛 - 宥 - 铝 - 镯 - 钉 - 披 - 昼 - 跆 - 笈 - 喘 - 惫 - 唧 - 螂 - 涌 - 揣 - 旨 - 袄 - 笼 - 蛔 - 毯 - 凸 - 倪 - 碌 - 懈 - 履 - 鱿 - 菩 - 汝 - 赴 - 焉 - 钛 - 畔 - 掰 - 骆 - 崖 - 髓 - 彪 - 啰 - 撸 - 拌 - 漯 - 犒 - 蔽 - 漱 - 赐 - 饪 - 玖 - 弘 - 卵 - 沭 - 梓 - 禄 - 晖 - 籁 - 熏 - 祠 - 荟 - 伐 - 柄 - 昕 - 琶 - 鞠 - 豹 - 萎 - 裕 - 曰 - 苇 - 沌 - 牺 - 轴 - 薯 - 潞 - 痫 - 曦 - 腋 - 坞 - 隙 - 妊 - 娠 - 蝙 - 蝠 - 赘 - 咧 - 翩 - 棚 - 冕 - 旱 - 棱 - 巍 - 偕 - 杉 - 梵 - 嫦 - 煎 - 泊 - 辟 - 丛 - 艘 - 懦 - 郫 - 搅 - 佬 - 阖 - 焰 - 澜 - 琢 - 挚 - 嫣 - 啧 - 兜 - 趴 - 皂 - 窃 - 嘟 - 崛 - 睿 - 刃 - 绳 - 哗 - 窟 - 嗑 - 吭 - 朔 - 喵 - 粹 - 酶 - 辜 - 诫 - 筹 - 亩 - 椅 - 佐 - 俑 - 狡 - 陛 - 曙 - 攒 - 诈 - 叙 - 杖 - 馅 - 锌 - 矜 - 绮 - 刁 - 阙 - 亢 - 讼 - 驼 - 晃 - 逍 - 仕 - 芋 - 拇 - 掏 - 瘾 - 腕 - 魁 - 鲍 - 殷 - 荤 - 亨 - 凄 - 硝 - 嬛 - 藻 - 诣 - 桔 - 疡 - 氰 - 佰 - 鸠 - 埔 - 皋 - 谚 - 麒 - 廖 - 鳄 - 蹉 - 阎 - 琦 - 丙 - 烯 - 涮 - 絮 - 潢 - 郴 - 遛 - 琵 - 殿 - 蹭 - 笛 - 钾 - 辙 - 炊 - 廷 - 拦 - 哆 - 逐 - 钞 - 赋 - 孽 - 沸 - 龈 - 雌 - 玟 - 麓 - 焊 - 谨 - 衬 - 灸 - 栖 - 卉 - 脐 - 栽 - 扒 - 酚 - 肱 - 闺 - 猥 - 钩 - 羁 - 吱 - 吼 - 蹊 - 跷 - 磕 - 坷 - 蝇 - 唔 - 褶 - 钮 - 鹭 - 咔 - 沐 - 棠 - 锷 - 滞 - 肛 - 糜 - 噜 - 涧 - 儒 - 琅 - 捎 - 泵 - 葩 - 芥 - 轲 - 猾 - 拱 - 墅 - 蕲 - 馁 - 佚 - 渤 - 崎 - 峻 - 赎 - 霄 - 羯 - 缅 - 韧 - 勘 - 皖 - 顷 - 喀 - 忏 - 圭 - 槟 - 榔 - 兹 - 坂 - 镒 - 堕 - 蟒 - 芹 - 浃 - 哉 - 晏 - 绐 - 陀 - 茵 - 倘 - 缆 - 浊 - 碍 - 惰 - 濮 - 杵 - 削 - 裘 - 嗅 - 呕 - 绊 - 哩 - 腩 - 撇 - 郝 - 铿 - 锵 - 赃 - 缪 - 卤 - 吝 - 涟 - 冶 - 匪 - 婿 - 蛳 - 搏 - 圩 - 旷 - 汞 - 鹦 - 茱 - 粪 - 崂 - 陋 - 掐 - 郡 - 哮 - 邸 - 帘 - 柚 - 鬓 - 剃 - 忻 - 羔 - 聆 - 刹 - 嗷 - 罕 - 沥 - 钗 - 尴 - 尬 - 莽 - 捧 - 拽 - 懵 - 噶 - 虐 - 囚 - 囡 - 颓 - 亥 - 傍 - 疏 - 乞 - 丐 - 皓 - 孜 - 愣 - 檐 - 橱 - 绅 - 噻 - 痊 - 鳞 - 瞳 - 衩 - 捂 - 吔 - 螳 - 暇 - 嘎 - 缤 - 镍 - 吟 - 斥 - 饲 - 鲢 - 猩 - 狒 - 腼 - 腆 - 轼 - 梗 - 熨 - 荫 - 糙 - 妾 - 粕 - 烘 - 壹 - 骥 - 秽 - 熔 - 歹 - 谬 - 侈 - 蜈 - 蚣 - 婵 - 渍 - 斩 - 棕 - 辱 - 醇 - 磅 - 礴 - 颊 - 彝 - 庾 - 叠 - 忒 - 稽 - 幢 - 嘱 - 醛 - 砂 - 炳 - 拂 - 殇 - 邬 - 冥 - 擒 - 汶 - 罐 - 镑 - 祁 - 氮 - 怆 - 羌 - 拧 - 芸 - 堀 - 婊 - 暄 - 挎 - 躬 - 噎 - 菅 - 奂 - 龌 - 龊 - 睬 - 燎 - 鲈 - 拢 - 啬 - 脖 - 尧 - 馗 - 皎 - 滤 - 镶 - 椭 - 狈 - 澎 - 阉 - 侃 - 婕 - 脓 - 桨 - 阪 - 湃 - 溏 - 箕 - 蚯 - 蚓 - 呛 - 矩 - 彤 - 惟 - 鹉 - 讽 - 募 - 惦 - 飓 - 抠 - 肮 - 溟 - 膝 - 芗 - 逞 - 娌 - 湮 - 舵 - 挫 - 椰 - 螃 - 绽 - 蟑 - 聂 - 拘 - 萸 - 洼 - 弛 - 澧 - 玺 - 芊 - 枢 - 鲨 - 毋 - 搂 - 跎 - 趾 - 琐 - 徘 - 徊 - 濡 - 咩 - 钏 - 舔 - 烷 - 胺 - 拙 - 溺 - 竖 - 蕴 - 巅 - 魄 - 吖 - 啵 - 庇 - 灼 - 遣 - 怠 - 枭 - 乏 - 缕 - 掂 - 秩 - 蜕 - 泾 - 汀 - 肆 - 倔 - 吒 - 矣 - 豁 - 仨 - 俯 - 嘲 - 瞪 - 唬 - 骋 - 辍 - 曝 - 泻 - 鼾 - 捣 - 妨 - 撵 - 撮 - 猕 - 浜 - 哺 - 睫 - 荧 - 噪 - 栗 - 垣 - 獒 - 冼 - 瞄 - 刍 - 硅 - 翊 - 泓 - 枥 - 凋 - 匣 - 孢 - 飙 - 俭 - 珑 - 嵊 - 佣 - 祟 - 枞 - 蓟 - 斧 - 镕 - 棺 - 痔 - 娴 - 苔 - 笙 - 蔻 - 芮 - 迭 - 暨 - 诏 - 癜 - 芷 - 臧 - 驿 - 珂 - 藕 - 笋 - 竭 - 歼 - 铉 - 恹 - 雇 - 诲 - 漓 - 扳 - 寰 - 颂 - 缈 - 砣 - 戳 - 疣 - 寮 - 甥 - 牦 - 衅 - 湄 - 汨 - 褐 - 腑 - 啼 - 惭 - 痰 - 梳 - 驮 - 阮 - 壳 - 慷 - 牟 - 捺 - 瘁 - 锂 - 狩 - 沱 - 烁 - 摞 - 楷 - 楞 - 瑾 - 饯 - 灶 - 薰 - 伎 - 忐 - 忑 - 煽 - 骁 - 娲 - 赁 - 锑 - 嵌 - 苞 - 咫 - 锴 - 岐 - 蓓 - 毽 - 黏 - 攸 - 恰 - 惶 - 矶 - 簸 - 坨 - 踝 - 掺 - 榨 - 阀 - 婢 - 纨 - 搓 - 闫 - 瘫 - 垢 - 蚀 - 貂 - 壑 - 婧 - 腥 - 兖 - 觅 - 壤 - 珉 - 胭 - 惧 - 僻 - 峥 - 炀 - 蔗 - 铂 - 宛 - 巳 - 氟 - 秸 - 菁 - 鹃 - 疱 - 矢 - 拭 - 缀 - 朦 - 胧 - 筏 - 贯 - 汐 - 蛤 - 蟆 - 迩 - 犁 - 馈 - 叽 - 喳 - 袈 - 裟 - 啃 - 敞 - 踊 - 雏 - 朽 - 撩 - 恙 - 亵 - 淤 - 垦 - 眺 - 熄 - 衲 - 伺 - 墟 - 孚 - 墩 - 猬 - 堤 - 鞘 - 署 - 陂 - 鬟 - 萤 - 悯 - 恃 - 峙 - 咄 - 奠 - 跺 - 笆 - 啄 - 殆 - 赅 - 锭 - 铛 - 枷 - 姗 - 驭 - 嘀 - 煲 - 腚 - 霖 - 孪 - 翟 - 濒 - 邂 - 逅 - 筱 - 霓 - 窈 - 窕 - 眨 - 耸 - 羚 - 尉 - 谀 - 竿 - 蛟 - 籽 - 铲 - 潼 - 匆 - 肽 - 戬 - 岔 - 奚 - 裴 - 嘏 - 玥 - 妯 - 昙 - 烨 - 吏 - 鼹 - 筵 - 崭 - 涪 - 來 - 瘆 - 彰 - 杞 - 疽 - 琥 - A - 栾 - 庵 - 窘 - 擀 - 痤 - 蟾 - 唾 - 嚼 - 癖 - 蛹 - 浸 - 狭 - 迂 - 脍 - 炙 - 覃 - 悖 - 阆 - 铸 - 洮 - 瑙 - 呷 - 呸 - 谛 - 膨 - 柑 - 眯 - 奘 - 吆 - 孰 - 珈 - 曜 - 拈 - 麝 - 嘘 - 缚 - 徕 - 糸 - 崴 - 藓 - 婺 - 揽 - 溧 - 熠 - 膳 - 犊 - 贬 - 脯 - 剿 - 鼬 - 焕 - 胛 - 拷 - 勺 - 鲫 - 炅 - 卒 - 刨 - 糯 - 瘪 - 雍 - 襟 - 酋 - 胤 - 戟 - 褔 - 惆 - 怅 - 阂 - 扉 - 锚 - 砌 - 祺 - 淅 - 濠 - 匀 - 隍 - 氦 - 绫 - 濑 - 佝 - 偻 - 翎 - 颌 - 咚 - 疖 - 媲 - 祗 - 寅 - 靡 - 稞 - 骝 - 锏 - 焖 - 栀 - 蝗 - 甭 - 罄 - 酪 - 酮 - 嘢 - 钨 - 涎 - 沼 - 嚯 - 阱 - 驸 - 爰 - 酌 - 绛 - 畴 - 辄 - 藜 - 碚 - 馥 - 茧 - 鲛 - 溅 - 浯 - 沮 - 蹿 - 诠 - 姊 - 藉 - 骡 - 褪 - 酞 - 臻 - 靛 - 譬 - 粼 - 肘 - 孺 - 苟 - 瓯 - 蕨 - 冉 - 稠 - 蒿 - 锤 - 焙 - 蜃 - 淌 - 瘸 - 汲 - 噼 - 啪 - 橇 - 虔 - 裳 - 煞 - 淳 - 锟 - 摧 - 篷 - 癞 - 凹 - 汹 - 樵 - 睐 - 叁 - 飒 - 舶 - 驷 - 嘚 - 垮 - 妩 - 焚 - 扪 - 溥 - 鹊 - 鹄 - 汴 - 妁 - 廓 - 谙 - 苛 - 喏 - 嬉 - 裆 - 谔 - 哝 - 岑 - 喧 - 咆 - 茁 - 霎 - 泷 - 笃 - 沣 - 戮 - 蓦 - 滢 - 碜 - 滇 - 妤 - 盯 - 眶 - 婶 - 侍 - 崽 - 辘 - 轳 - 斓 - 郢 - 泞 - 窖 - 镭 - 痹 - 缉 - 镐 - 膛 - 睦 - 歧 - 扦 - 筛 - 嵘 - 茗 - 戎 - 萦 - 柒 - 咀 - 诋 - 搁 - 婪 - 漾 - 瀚 - 绎 - 盏 - 庹 - 吩 - 咐 - 堇 - 矾 - 茯 - 苓 - 潦 - 嘁 - 噫 - 窑 - 鳗 - 孵 - 彷 - 徨 - 耕 - 晗 - 撂 - 猿 - 昊 - 淼 - 驯 - 垒 - 铤 - 胱 - 桦 - 铮 - 坳 - 厥 - 叨 - 烙 - 苷 - 殴 - 鸥 - 蜥 - 蜴 - 湟 - 衙 - 敖 - 阐 - 穗 - 攥 - 俾 - 锥 - 粱 - 绰 - 漕 - 钕 - 硼 - 蚤 - 铢 - 疚 - 挟 - 昱 - 栅 - 煦 - 鳝 - 枸 - 锯 - 茜 - 悼 - 跤 - 犍 - 衿 - 筐 - 恪 - 琛 - 砝 - 秆 - 歆 - 晾 - 慑 - 蜍 - 诃 - 盔 - 寇 - 璧 - 鹩 - 恤 - 匿 - 踉 - 焗 - 戍 - 憎 - 桓 - 裔 - 梢 - 蝼 - 贿 - 诽 - 橄 - 榄 - 蔺 - 鲅 - 鳖 - 荞 - 槐 - 砚 - 癣 - 胚 - 沅 - 菀 - 荀 - 亳 - 铵 - 垌 - 釉 - 摁 - 瑕 - 疵 - 泗 - 逵 - 饵 - 旌 - 磺 - 彗 - 娣 - 晟 - 惘 - 棘 - 屹 - 逾 - 淞 - 逑 - 茴 - 楹 - 珀 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 16 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 preprocessor: default preprocessor_conf: {} required: - output_dir - token_list version: '202301' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
133
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model_TrainTestSplit_berturk_v2_24Feb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_TrainTestSplit_berturk_v2_24Feb This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Precision: 0.9999 - Recall: 0.9999 - F1: 0.9999 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 196 | 0.0058 | 0.9982 | 0.9980 | 0.9981 | 0.9986 | | No log | 2.0 | 392 | 0.0042 | 0.9987 | 0.9986 | 0.9986 | 0.9990 | | 0.0132 | 3.0 | 588 | 0.0042 | 0.9985 | 0.9988 | 0.9986 | 0.9990 | | 0.0132 | 4.0 | 784 | 0.0022 | 0.9993 | 0.9992 | 0.9992 | 0.9993 | | 0.0132 | 5.0 | 980 | 0.0020 | 0.9993 | 0.9992 | 0.9993 | 0.9995 | | 0.0069 | 6.0 | 1176 | 0.0013 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | | 0.0069 | 7.0 | 1372 | 0.0008 | 0.9997 | 0.9997 | 0.9997 | 0.9998 | | 0.0035 | 8.0 | 1568 | 0.0008 | 0.9997 | 0.9997 | 0.9997 | 0.9998 | | 0.0035 | 9.0 | 1764 | 0.0006 | 0.9996 | 0.9997 | 0.9996 | 0.9997 | | 0.0035 | 10.0 | 1960 | 0.0004 | 0.9998 | 0.9999 | 0.9998 | 0.9999 | | 0.0019 | 11.0 | 2156 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | | 0.0019 | 12.0 | 2352 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | | 0.0012 | 13.0 | 2548 | 0.0004 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | | 0.0012 | 14.0 | 2744 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | | 0.0012 | 15.0 | 2940 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.19 +/- 25.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
574
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-40 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.9062 | 1.0 | 1 | 5.6418 | | 4.5785 | 2.0 | 2 | 5.3839 | | 6.6562 | 3.0 | 3 | 5.0883 | | 4.0274 | 4.0 | 4 | 4.4272 | | 2.9225 | 5.0 | 5 | 4.1994 | | 1.9388 | 6.0 | 6 | 2.9638 | | 2.6745 | 7.0 | 7 | 2.4477 | | 2.0988 | 8.0 | 8 | 2.4030 | | 2.3506 | 9.0 | 9 | 3.5475 | | 1.734 | 10.0 | 10 | 0.1426 | | 1.8435 | 11.0 | 11 | 2.2994 | | 1.5274 | 12.0 | 12 | 1.5195 | | 1.5668 | 13.0 | 13 | 1.3508 | | 1.4771 | 14.0 | 14 | 1.5684 | | 1.4649 | 15.0 | 15 | 0.0011 | | 1.0896 | 16.0 | 16 | 2.2005 | | 0.9002 | 17.0 | 17 | 0.0748 | | 1.2433 | 18.0 | 18 | 0.4664 | | 1.4224 | 19.0 | 19 | 1.5759 | | 0.791 | 20.0 | 20 | 0.4863 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- license: mit tags: - generated_from_trainer model-index: - name: gpt-neo-125M-finetuned-seinfeld results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-finetuned-seinfeld This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5154 | 0.99 | 26 | 3.4073 | | 3.3109 | 1.99 | 52 | 3.2356 | | 3.1383 | 2.99 | 78 | 3.1584 | | 3.0213 | 3.99 | 104 | 3.1206 | | 2.9253 | 4.99 | 130 | 3.1032 | | 2.8361 | 5.99 | 156 | 3.0963 | | 2.7517 | 6.99 | 182 | 3.1016 | | 2.6606 | 7.99 | 208 | 3.1131 | | 2.5651 | 8.99 | 234 | 3.1442 | | 2.4641 | 9.99 | 260 | 3.1742 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
CAUKiel/JavaBERT
[ "pytorch", "safetensors", "bert", "fill-mask", "code", "arxiv:2110.10404", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388
null
--- tags: - generated_from_trainer metrics: - wer model-index: - name: finetune_teacher_clean_mozilla_200_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_teacher_clean_mozilla_200_epochs This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 51.1994 - Wer: 0.2767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 192.4936 | 29.41 | 1000 | 31.6902 | 0.3122 | | 123.9408 | 58.82 | 2000 | 36.2166 | 0.3028 | | 87.1469 | 88.23 | 3000 | 43.5998 | 0.3144 | | 62.0674 | 117.64 | 4000 | 44.5869 | 0.2944 | | 44.2649 | 147.06 | 5000 | 47.9859 | 0.2825 | | 33.7306 | 176.47 | 6000 | 51.1994 | 0.2767 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
CLAck/vi-en
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-02-24T05:49:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: sanskritikhare142/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # sanskritikhare142/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5633 - Validation Loss: 1.7706 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4834 | 2.1551 | 0 | | 1.8264 | 1.7706 | 1 | | 1.5633 | 1.7706 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.0 - Tokenizers 0.13.2
CLEE/CLEE
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: DesignOrder/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-02-24T09:50:44Z
--- language: en thumbnail: http://www.huggingtweets.com/wafyru/1677232609181/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1609988239183728642/2QQ6lp1v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wafer</div> <div style="text-align: center; font-size: 14px;">@wafyru</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wafer. | Data | Wafer | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 142 | | Short tweets | 1260 | | Tweets kept | 1828 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qbo0j7d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wafyru's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vpzkxoj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vpzkxoj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wafyru') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dccuchile/bert-base-spanish-wwm-uncased-finetuned-qa-mlqa
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - NLP-MINI-PROJECT/rabbi_kook metrics: - rouge model-index: - name: kook-model-output-dir-2 results: - task: name: Summarization type: summarization dataset: name: NLP-MINI-PROJECT/rabbi_kook type: NLP-MINI-PROJECT/rabbi_kook metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-rabbi-kook This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the NLP-MINI-PROJECT/rabbi_kook dataset. It achieves the following results on the evaluation set: - Loss: 2.7677 - Gen Len: 115.8184 ## Model description Summarization model of fine-tuned mt5-small with Rabbi-Kook paragraphs and summaries. ## Intended uses & limitations Summarization of Rabbi-Kook style paragraphs. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.11.0
dccuchile/bert-base-spanish-wwm-uncased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2023-02-24T10:00:09Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Ralist Dreambooth model trained by Jokinglemon007 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
dccuchile/distilbert-base-spanish-uncased-finetuned-mldoc
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - shrinath-suresh/qa-10k model-index: - name: bart-qa10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-qa10k This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the shrinath-suresh/qa-10k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.10.0 - Tokenizers 0.13.2
dccuchile/distilbert-base-spanish-uncased-finetuned-xnli
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2023-02-24T10:11:17Z
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: base Turkish Whisper (bTW) results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base Turkish Whisper (bTW) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset. It achieves the following results on the evaluation set: - Loss: 2.1975 - Wer: 1.6817 - Cer: 1.2800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 1.5514 | 33.31 | 100 | 1.6389 | 0.8196 | 0.8754 | | 0.1703 | 66.62 | 200 | 1.6896 | 1.0058 | 0.6987 | | 0.0039 | 99.92 | 300 | 1.9380 | 1.7011 | 1.1631 | | 0.0015 | 133.31 | 400 | 2.0324 | 1.6950 | 1.2498 | | 0.0008 | 166.62 | 500 | 2.0957 | 1.4898 | 1.0992 | | 0.0005 | 199.92 | 600 | 2.1417 | 1.7320 | 1.2528 | | 0.0004 | 233.31 | 700 | 2.1681 | 1.6077 | 1.1845 | | 0.0003 | 266.62 | 800 | 2.1847 | 1.625 | 1.2008 | | 0.0003 | 299.92 | 900 | 2.1944 | 1.6515 | 1.2196 | | 0.0003 | 333.31 | 1000 | 2.1975 | 1.6817 | 1.2800 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.13.2
dccuchile/distilbert-base-spanish-uncased
[ "pytorch", "distilbert", "fill-mask", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
670
2023-02-24T10:11:48Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: whisper-base-ft-common-language-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base-ft-common-language-id This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 1.0725 - Accuracy: 0.7525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5291 | 1.0 | 694 | 2.4787 | 0.4806 | | 1.5801 | 2.0 | 1388 | 1.6258 | 0.6260 | | 1.0144 | 3.0 | 2082 | 1.2886 | 0.6816 | | 0.7442 | 4.0 | 2776 | 1.0783 | 0.7237 | | 0.4802 | 5.0 | 3470 | 1.0582 | 0.7266 | | 0.3378 | 6.0 | 4164 | 1.0173 | 0.7417 | | 0.1941 | 7.0 | 4858 | 1.0054 | 0.7446 | | 0.1424 | 8.0 | 5552 | 1.0213 | 0.7508 | | 0.1242 | 9.0 | 6246 | 1.0567 | 0.7495 | | 0.1527 | 10.0 | 6940 | 1.0725 | 0.7525 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
Chaewon/mmnt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-02-24T10:28:41Z
This is a dataset containing the JOB-light workload along with the associated ground truth cardinality on the IMDB dataset for each query. JOB-light is a workload derived from the Join Order Benchmark (JOB) containing 70 queries, which does not contain any predicates on strings nor disjunctions and limits to four joins at most.
Chaewon/mnmt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AigizK/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Chaewon/mnmt_decoder_en_gpt2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-24T10:35:21Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.63 +/- 4.53 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dbaibak/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Chaima/TunBerto
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-02-24T10:38:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Leonhard17/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ChaitanyaU/FineTuneLM
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: tmvar-bert-base-cased-finetuned-24-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmvar-bert-base-cased-finetuned-24-02 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Chakita/KNUBert
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # OpenVINO Stable Diffusion This repository contains the models from [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) from RunwayML converted to OpenVINO, for accelerated inference on CPU with OpenVINO's integration into Optimum: [optimum-intel](https://github.com/huggingface/optimum-intel#openvino). Please check out the [source model repository](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more information about the model and its license. To install the requirements for this demo, do `pip install optimum[openvino]`. This installs all the necessary dependencies, including Transformers and OpenVINO. For more detailed steps, please see this [installation guide](https://github.com/helena-intel/optimum-intel/wiki/OpenVINO-Integration-Installation-Guide). The simplest way to generate an image with stable diffusion takes only two lines of code, as shown below. The first line downloads the model from the Hugging Face hub (if it has not been downloaded before) and loads it; the second line generates an image. ``` from optimum.intel.openvino import OVStableDiffusionPipeline stable_diffusion = OVStableDiffusionPipeline.from_pretrained("helenai/runwayml-stable-diffusion-v1-5-ov-fp32") images = stable_diffusion("sailing ship in storm by Leonardo da Vinci").images ``` The following example code uses static shapes for even faster inference. Using larger image sizes will require more memory and take longer to generate. If you have an 11th generation or later Intel Core processor, you can use the integrated GPU for inference, and if you have an Intel discrete GPU, you can use that. Add the line `stable_diffusion.to("GPU")` before `stable_diffusion.compile()` in the example below. Model loading will take some time the first time, but will be faster after that, because the model will be cached. On GPU, for stable diffusion only static shapes are supported at the moment. ```python from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline batch_size = 1 num_images_per_prompt = 1 height = 256 width = 256 # load the model and reshape to static shapes for faster inference model_id = "helenai/runwayml-stable-diffusion-v1-5-ov-fp32" stable_diffusion = OVStableDiffusionPipeline.from_pretrained(model_id, compile=False) stable_diffusion.reshape( batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images_per_prompt) stable_diffusion.compile() # generate image! prompt = "sailing ship in storm by Leonardo da Vinci" images = stable_diffusion(prompt, height=height, width=width, num_images_per_prompt=num_images_per_prompt).images images[0].save("result.png") ```
Chakita/KROBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-pokemons-256_500_epochs ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 3 - eval_batch_size: 10 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Yagorka/ddpm-pokemons-256_500_epochs/tensorboard?#scalars)
Chakita/KannadaBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - anime language: - en library_name: diffusers pipeline_tag: text-to-image text: meitu --- [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Duskfallcrew/Animated_Dreams) ### Animated Dreams Dreambooth model trained by Duskfallcrew with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) # Coffee is nice: https://ko-fi.com/DUSKFALLcrew Concept tag: Meitu # Model Updates on CivIt: https://civitai.com/user/duskfallcrew # Sample Images Are available here ![Meitu 0](https://huggingface.co/Duskfallcrew/animutest/resolve/main/Concept_Stuff/00152.png) ![Meitu 0](https://huggingface.co/Duskfallcrew/animutest/resolve/main/Concept_Stuff/00145.png) ![Meitu 0](https://huggingface.co/Duskfallcrew/animutest/resolve/main/Concept_Stuff/00144.png) # More sample images will be added to the folder with text files here: https://huggingface.co/Duskfallcrew/animutest/tree/main/Concept_Stuff
Chun/w-zh2en-mto
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-02-24T12:21:33Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: conversationv8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conversationv8 This model is a fine-tuned version of [gorkemgoknar/gpt2chatbotenglish](https://huggingface.co/gorkemgoknar/gpt2chatbotenglish) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 28 - eval_batch_size: 28 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
Culmenus/XLMR-ENIS-finetuned-ner
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: Ping hair tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - bo These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "Ping hair " using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: Ping ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "nl", "fr", "en", "arxiv:2104.09947", "transformers", "Dutch", "French", "English", "Tweets", "Topic classification" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
167
2023-02-24T17:18:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="BarefootBayes/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```