modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Contrastive-Tension/BERT-Base-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
Access to model ihsass/Sami is restricted and you are not in the authorized list. Visit https://huggingface.co/ihsass/Sami to ask for access.
Contrastive-Tension/BERT-Base-NLI-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### dating_avatar_model Dreambooth model trained by sagu7 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Contrastive-Tension/BERT-Distil-CT-STSb
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Prgrg/en-ja-v2.0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Prgrg/en-ja-v2.0 This model is a fine-tuned version of [Prgrg/en-ja-v1.0](https://huggingface.co/Prgrg/en-ja-v1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3630 - Validation Loss: 1.2679 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 32426, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.7452 | 1.5073 | 0 | | 1.3630 | 1.2679 | 1 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Contrastive-Tension/BERT-Distil-NLI-CT
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
Access to model bigcode/starencoder is restricted and you are not in the authorized list. Visit https://huggingface.co/bigcode/starencoder to ask for access.
Crasher222/kaggle-comp-test
[ "pytorch", "bert", "text-classification", "en", "dataset:Crasher222/autonlp-data-kaggle-test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 301.50 +/- 68.67 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nasheed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nasheed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nasheed ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
CrayonShinchan/fine_tune_try_1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - et --- Jamspell model from etnc19 reference corpus data
Crisblair/Wkwk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - summarization language: - en widget: - text: I love AutoTrain 🤗 datasets: - cnn_dailymail co2_eq_emissions: emissions: 0.006114084839310591 metrics: - bleu pipeline_tag: summarization --- # Model Trained Using AutoTrain - Trained from FLAN-T5 large - Problem type: Summarization - Model ID: 40818105603 - CO2 Emissions (in grams): 0.0061 ## Validation Metrics - Loss: 0.055 - Rouge1: 44.548 - Rouge2: 42.697 - RougeL: 44.530 - RougeLsum: 44.567 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aszfcxcgszdx/autotrain-summary2.0-40818105603 ```
Crispy/dialopt-small-kratos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-bbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-bbc This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 2.8306 | | No log | 2.0 | 42 | 2.5844 | | No log | 3.0 | 63 | 2.7691 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Cthyllax/DialoGPT-medium-PaladinDanse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - autotrain - vision - image-classification datasets: - davanstrien/autotrain-data-mapreader widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.3861823058569251 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 40821105604 - CO2 Emissions (in grams): 0.3862 ## Validation Metrics - Loss: 0.147 - Accuracy: 0.955 - Macro F1: 0.737 - Micro F1: 0.955 - Weighted F1: 0.953 - Macro Precision: 0.842 - Micro Precision: 0.955 - Weighted Precision: 0.954 - Macro Recall: 0.679 - Micro Recall: 0.955 - Weighted Recall: 0.955
Culmenus/IceBERT-finetuned-ner
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - autotrain - vision - image-classification datasets: - davanstrien/autotrain-data-mapreader widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.003656437426363874 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 40821105606 - CO2 Emissions (in grams): 0.0037 ## Validation Metrics - Loss: 0.437 - Accuracy: 0.906 - Macro F1: 0.238 - Micro F1: 0.906 - Weighted F1: 0.861 - Macro Precision: 0.226 - Micro Precision: 0.906 - Weighted Precision: 0.821 - Macro Recall: 0.250 - Micro Recall: 0.906 - Weighted Recall: 0.906
CurtisBowser/DialoGPT-medium-sora
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-bbc_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-bbc_2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 21 | 2.8306 | | No log | 2.0 | 42 | 2.5844 | | No log | 3.0 | 63 | 2.7691 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
CurtisBowser/DialoGPT-small-sora
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: dgx1_w2v2_base_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgx1_w2v2_base_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_4 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 48.7078 - Wer: 0.2642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 484.5509 | 0.02 | 500 | 28.4641 | 0.1563 | | 293.5338 | 0.04 | 1000 | 25.8292 | 0.1446 | | 293.9193 | 0.06 | 1500 | 29.0716 | 0.1710 | | 322.8119 | 0.08 | 2000 | 34.0894 | 0.1971 | | 365.3664 | 0.1 | 2500 | 36.7096 | 0.2180 | | 404.8819 | 0.12 | 3000 | 41.7040 | 0.2413 | | 435.5897 | 0.13 | 3500 | 48.7078 | 0.2642 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
D3xter1922/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_rb_461 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_rb_461 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 75 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
DCU-NLP/bert-base-irish-cased-v1
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "generated_from_keras_callback", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,244
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-railspace results: [] widget: - src: https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/1.png example_title: patch - src: https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/271.png example_title: patch --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0292 - Accuracy: 0.9926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data precision recall f1-score support 0 1.00 1.00 1.00 11315 1 0.92 0.94 0.93 204 2 0.95 0.97 0.96 714 3 0.87 0.98 0.92 171 macro avg 0.93 0.97 0.95 12404 weighted avg 0.99 0.99 0.99 12404 accuracy 0.99 12404 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0206 | 1.72 | 1000 | 0.0422 | 0.9854 | | 0.0008 | 3.44 | 2000 | 0.0316 | 0.9918 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
alexandrainst/da-hatespeech-detection-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,719
2023-03-13T17:38:53Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - aszfcxcgszdx/autotrain-data-summary-v3 co2_eq_emissions: emissions: 3.520254114566687 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 40835105619 - CO2 Emissions (in grams): 3.5203 ## Validation Metrics - Loss: 1.818 - Rouge1: 44.176 - Rouge2: 25.696 - RougeL: 41.172 - RougeLsum: 41.276 - Gen Len: 15.201 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aszfcxcgszdx/autotrain-summary-v3-40835105619 ```
Daltcamalea01/Camaleaodalt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-13T17:57:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="peterdamn/taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DataikuNLP/paraphrase-MiniLM-L6-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="henrikho/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,517
2023-03-13T19:05:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="henrikho/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DavidAMcIntosh/DialoGPT-small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: umit_7allV3_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # umit_7allV3_full Dataset: https://www.kaggle.com/datasets/savasy/ttc4900 0:siyaset 1:dünya 2:ekonomi 3:kültür 4:saglik 5:spor 6:teknoloji This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on given dataset. It achieves the following results on the evaluation set: - Loss: 0.2934 - Accuracy: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2867 | 1.0 | 214 | 0.2880 | 0.9136 | | 0.1672 | 2.0 | 428 | 0.2658 | 0.9327 | | 0.0735 | 3.0 | 642 | 0.2934 | 0.9293 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-hausa
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
151
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: statement_50_processed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # statement_50_processed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-kinyarwanda
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
2023-03-13T19:33:07Z
--- license: other tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned-distilbert-adult-content-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-distilbert-adult-content-detection This model is a fine-tuned version of [valurank/finetuned-distilbert-adult-content-detection](https://huggingface.co/valurank/finetuned-distilbert-adult-content-detection) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-13T19:48:55Z
--- tags: - autotrain - translation language: - en - de datasets: - aszfcxcgszdx/autotrain-data-translator co2_eq_emissions: emissions: 4.2211417553362205 --- # Model Trained Using AutoTrain - Problem type: Translation - Finetuned from t5 large - Model ID: 40847105640 - CO2 Emissions (in grams): 4.2211 ## Validation Metrics - Loss: 0.994 - SacreBLEU: 10.222 - Gen len: 16.562
Davlan/mt5_base_eng_yor_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: creativeml-openrail-m --- # SaluteMix model SaluteMix is a yet-another semi-realistic mix. Name comes from 99% success rate when using salute tag. All previews are pure txt2img. I highly recommend `EasyNegative embedding`, or `(low quality, worst quality:1.4), (bad anatomy), extra digit, fewer digits, (extra arms:1.2), bad hands, by (bad-artist:0.6), bad-image-v2-39000` as the negative prompt. Should be fairly competent at nsfw stuff. CivitAI page: https://civitai.com/models/19238/salutemix **Negative embeddings:** \ https://huggingface.co/datasets/gsdf/EasyNegative \ https://huggingface.co/nick-x-hacker/bad-artist \ https://huggingface.co/Xynon/models/tree/main/experimentals/TI ## Recipe ``` animebrush3 = custom mix with wlop style (details missing) cn-any = Counterfeit-V2.5 + (nixeu-any - anythingV3) @1.0 cn-f = Counterfeit-V2.5 + (nixeu-f - wd1.3) @1.0 cn-flo = Counterfeit-V2.5 + (floydian_nixeu - sd1.4) @1.0 cn-temp = cn-any + cn-f @0.4 cn-full = cn-temp + cn-flo @0.6 temp1 = AOM2_nsfw + 7th_anime_v3_C @0.5 cn-mix = cn-full + temp1 @0.5 step1 = animebrush3 + 2dn_1 @0.5 temp2 = chilloutmix_ni + grapefruitv4 @0.3 step2 = step1 + temp2 @0.25 SaluteMix = step2 + cn-mix @0.2 ``` ## Links to models https://civitai.com/models/4807/2dn \ https://civitai.com/models/6424/chilloutmix \ https://civitai.com/models/2583/grapefruit-hentai-model \ Floydian's nixeu: https://huggingface.co/FloydianSound/Nixeu_Diffusion_v1-5 \ Orange mixes: https://huggingface.co/WarriorMama777/OrangeMixs \ 7th_anime: https://huggingface.co/syaimu/7th_Layer \ Counterfeit: https://huggingface.co/gsdf/Counterfeit-V2.5 \ Nixeu models: https://huggingface.co/SirVeggie/nixeu \ https://huggingface.co/SirVeggie/wlop
Davlan/mt5_base_yor_eng_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-13T19:52:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q_Taxi_test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="yyq90/Q_Taxi_test", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Davlan/xlm-roberta-base-finetuned-chichewa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.880794701986755 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2904 - Accuracy: 0.88 - F1: 0.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-kinyarwanda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
61
null
--- license: other --- # Model Card for Model ID hololive-diffusion, a stable diffusion 2.1 768x768 model. Trained on ~73k hololive fanart images ![](https://huggingface.co/double-negative/hololive-diffusion/resolve/main/demo.png) ## License This model is a fine-tune of Waifu diffusion 1.5. hololive-diffusion is released under the Fair AI Public License 1.0-SD (https://freedevproject.org/faipl-1.0-sd/). If any derivative of this model is made, please share your changes accordingly. Special thanks to ronsor/undeleted (https://undeleted.ronsor.com/) for help with the license. When creating characters owned and copyrighted by cover corp, you may not use this model or any of its outputs in a way that is counter to Hololive's fanart guidelines: https://hololivepro.com/en/terms/ ## Prompting The start of the prompt should have all the following: "hololive, anime, waifu" Add one of danbooru's content ratings * general * sensitive * questionable * explicit and the character name ### names The model was trained using the following names. These aren't necessarily hololive vtubers, and the characters with less popular artworks will be harder to get correct. * a-chan (hololive) * airani iofifteen * akai haato * aki rosenthal * allegro (hoshimachi suisei) * amane kanata * anemachi * anya melfissa * artia * avatar (holoearth) * ayunda risu * azki (hololive) * ceres fauna * civia * coco kaine * deadbeat (calliope mori) * doris (hololive) * enma-chan * gawr gura * haaton (akai haato) * hakos baelz * hakui koyori * harusaki nodoka * himemori luna * hoshimachi suisei * houshou marine * inugami korone * irys (hololive) * j-chad * kaela kovalskia * kagura nana * kazama iroha * kiryu coco * kobo kanaeru * kureiji ollie * kurokami fubuki * la+ darknesss * mama lillie * mano aloe * matsurisu * minato aqua * moku seiko * momosuzu nene * moona hoshinova * mori calliope * murasaki shion * nakiri ayame * nanashi mumei * natsuiro matsuri * nekomata okayu * ninomae ina'nis * nousagi (usada pekora) * omaru polka * omega alpha * ookami mio * oozora subaru * ouro kronii * pavolia reine * pekomama * roboco-san * sakamata chloe * sakura miko * shigure ui (vtuber) * shirakami fubuki * shiranui flare * shirogane noel * shishiro botan * spade echo * sukonbu (shirakami fubuki) * takanashi kiara * takane lui * takodachi (ninomae ina'nis) * tokino sora * tokoyami towa * tsukumo sana * tsunomaki watame * uruha rushia * usada pekora * vestia zeta * wahtcher (ninomae ina'nis) * watoto (mythbreakers) * watson amelia * yozora mel * yukihana lamy * yuul b alwright (mythbreakers) * yuzuki choco
Davlan/xlm-roberta-base-finetuned-lingala
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_rb_230 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_rb_230 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description Model on rule based interactions state_mean = np.array([ 6.5249427917620135, 3.9993135011441647, 12.49771167048055, 16.825446250727847, 16.82580094184701, 16.828741445148562, 16.828180804459944, 72.99828375286042, 73.0012585812357, 72.99359267734553, 73.00102974828376, 208.00308924485125, 208.0545766590389, 208.2866132723112, 207.94530892448512, 201.11270022883295, 201.12254004576658, 201.15926773455377, 200.98135011441647, 0.15644143459640733, 1.064985996011147, 0.6985259305737326, 0.3315403287070356, 0.40782465644916455, 0.27306979145658644, 0.27306979145658644, 0.27306979145658644, 0.27306979145658644]) state_std = np.array([ 3.4517203419362, 2.000572882797276, 6.924445762360648, 3.5581132080274425, 3.558410500805662, 3.563460666518717, 3.562742154586059, 16.491663737463313, 16.493405084016068, 16.495564654312346, 16.49694264406781, 292.5675403707197, 292.54446787504037, 292.792528944882, 292.55912445362566, 296.2258939141665, 296.2202986371211, 296.2051386297462, 296.1393568330303, 0.03533480921331586, 0.8881741764856719, 1.0167875215772866, 0.31636407888767876, 0.9523121450900819, 0.11773822184102951, 0.11773822184102949, 0.1177382218410294, 0.11773822184102911]) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 60 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Davlan/xlm-roberta-base-finetuned-luganda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - aszfcxcgszdx/autotrain-data-reverse-sum co2_eq_emissions: emissions: 0.015903789329056596 --- # Model Trained Using AutoTrain - Problem type: Reverse-Summarization - Model ID: 40852105646 - CO2 Emissions (in grams): 0.0159 Given a headline, the model will attempt to generate an article that pairs well with the headline. ## Validation Metrics - Loss: 2.577 - Rouge1: 19.482 - Rouge2: 6.359 - RougeL: 15.465 - RougeLsum: 17.852 - Gen Len: 18.956 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aszfcxcgszdx/autotrain-reverse-sum-40852105646 ```
Davlan/xlm-roberta-base-finetuned-naija
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: en license: openrail widget: - text: Steve Jobs was the founder of tags: - pytorch - causal-lm --- # GPT-2 XL ## Table of Contents - [Model Details](#model-details) - [How To Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-authors) ## Model Details **Model Description:** GPT-2 XL is the **1.5B parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective. It was then calibrated via the MEMIT and CKA methods, correcting thousands of erroneous facts in the model memory. See our CalibraGPT [repo](https://github.com/daniel-furman/Capstone) for more details on model calibration. - **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers. - **Model Type:** Transformer-based language model - **Language(s):** English - **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE) - **Related Models:** [GPT-2](https://huggingface.co/gpt2), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-Large](https://huggingface.co/gpt2-large) - **Resources for more information:** - [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) - [OpenAI Blog Post](https://openai.com/blog/better-language-models/) - [GitHub Repo](https://github.com/openai/gpt-2) - [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md) - [OpenAI GPT-2 1.5B Release Blog Post](https://openai.com/blog/gpt-2-1-5b-release/) - Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large ## How to Get Started with the Model Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='gpt2-xl') set_seed(42) generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl') model = GPT2Model.from_pretrained('gpt2-xl') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-xl') model = TFGPT2Model.from_pretrained('gpt2-xl') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Uses #### Direct Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > The primary intended users of these models are AI researchers and practitioners. > > We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models. #### Downstream Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Here are some secondary use cases we believe are likely: > > - Writing assistance: Grammar assistance, autocompletion (for normal prose or code) > - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art. > - Entertainment: Creation of games, chat bots, and amusing generations. #### Misuse and Out-of-scope Use In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.** #### Biases Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='gpt2-xl') set_seed(42) generator("The man worked as a", max_length=10, num_return_sequences=5) set_seed(42) generator("The woman worked as a", max_length=10, num_return_sequences=5) ``` This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. #### Risks and Limitations When they released the 1.5B parameter model, OpenAI wrote in a [blog post](https://openai.com/blog/gpt-2-1-5b-release/): > GPT-2 can be fine-tuned for misuse. Our partners at the Middlebury Institute of International Studies’ Center on Terrorism, Extremism, and Counterterrorism (CTEC) found that extremist groups can use GPT-2 for misuse, specifically by fine-tuning GPT-2 models on four ideological positions: white supremacy, Marxism, jihadist Islamism, and anarchism. CTEC demonstrated that it’s possible to create models that can generate synthetic propaganda for these ideologies. They also show that, despite having low detection accuracy on synthetic outputs, ML-based detection methods can give experts reasonable suspicion that an actor is generating synthetic text. The blog post further discusses the risks, limitations, and biases of the model. ## Training #### Training Data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). #### Training Procedure The model is pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. ## Evaluation The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). #### Testing Data, Factors and Metrics The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that: > Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation. #### Results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 8.63 | 63.24 | 93.30 | 89.05 | 18.34 | 35.76 | 0.93 | 0.98 | 17.48 | 42.16 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware type and hours used are based on information provided by one of the model authors on [Reddit](https://bit.ly/2Tw1x4L). - **Hardware Type:** 32 TPUv3 chips - **Hours used:** 168 - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, and training details. ## Citation Information ```bibtex @article{radford2019language, title={Language models are unsupervised multitask learners}, author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others}, journal={OpenAI blog}, volume={1}, number={8}, pages={9}, year={2019} } ``` ## Model Card Authors This model card was written by the Hugging Face team.
Davlan/xlm-roberta-base-finetuned-shona
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.75 +/- 0.56 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Davlan/xlm-roberta-base-finetuned-somali
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Davlan/xlm-roberta-base-finetuned-xhosa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_small_SA_SapBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_SA_SapBERT This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8542 - Rouge1: 0.1048 - Rouge2: 0.0468 - Rougel: 0.1053 - Rougelsum: 0.1053 - Gen Len: 4.354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.9168 | 1.0 | 527 | 1.0769 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0195 | 2.0 | 1054 | 0.9827 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.9535 | 3.0 | 1581 | 0.9101 | 0.0156 | 0.0053 | 0.0158 | 0.0155 | 3.2389 | | 0.8636 | 4.0 | 2108 | 0.8914 | 0.0275 | 0.0061 | 0.0272 | 0.0277 | 3.5398 | | 0.8634 | 5.0 | 2635 | 0.8782 | 0.0508 | 0.0184 | 0.0501 | 0.0511 | 3.885 | | 0.8494 | 6.0 | 3162 | 0.8714 | 0.0703 | 0.0288 | 0.0695 | 0.0701 | 4.5398 | | 0.7966 | 7.0 | 3689 | 0.8633 | 0.0715 | 0.0298 | 0.0712 | 0.0714 | 4.3628 | | 0.8073 | 8.0 | 4216 | 0.8601 | 0.0869 | 0.0398 | 0.0868 | 0.0874 | 4.4336 | | 0.8308 | 9.0 | 4743 | 0.8578 | 0.0936 | 0.0377 | 0.0933 | 0.0936 | 4.3628 | | 0.8068 | 10.0 | 5270 | 0.8553 | 0.1014 | 0.0449 | 0.1019 | 0.1014 | 4.2301 | | 0.8187 | 11.0 | 5797 | 0.8544 | 0.0951 | 0.0381 | 0.0949 | 0.0953 | 4.1681 | | 0.7627 | 12.0 | 6324 | 0.8542 | 0.1048 | 0.0468 | 0.1053 | 0.1053 | 4.354 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
DeBERTa/deberta-v2-xxlarge
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit language: - en pipeline_tag: image-to-text datasets: - katanaml-org/invoices-donut-data-v1 --- ## Sparrow - Data extraction from documents with ML This model is finetuned Donut ML base model on invoices data. Model aims to verify how well Donut performs on enterprise docs. Mean accuracy on test set: 0.96 Inference: ![Inference Results](https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-ui/assets/inference_actual.png) Training loss: ![Training Loss](https://raw.githubusercontent.com/katanaml/sparrow/main/sparrow-ui/assets/donut_training_loss.png) Sparrow on [GitHub](https://github.com/katanaml/sparrow) Sample invoice [docs](https://github.com/katanaml/sparrow/tree/main/sparrow-ui/docs/images) to use for inference (docs up to 500 were used for fine-tuning, use docs from 500 for inference) Our website [KatanaML](https://www.katanaml.io) On [Twitter](https://twitter.com/katana_ml)
DeadBeast/korscm-mBERT
[ "pytorch", "bert", "text-classification", "korean", "dataset:Korean-Sarcasm", "transformers", "license:apache-2.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43
null
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -55.89 +/- 37.85 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'PPO' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'NielsV/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
DecafNosebleed/ScaraBot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Trained with Lawlas's Yiffymix 2.0 (furry model) (https://civitai.com/models/12979/lawlass-yiffymix-20-furry-model)
Declan/CNN_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: fab-an/my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # fab-an/my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7277 - Validation Loss: 3.7571 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.9064 | 3.7834 | 0 | | 3.7892 | 3.7677 | 1 | | 3.7277 | 3.7571 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/CNN_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### RobloxGFXStyle Dreambooth model trained by lenssssw with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Declan/CNN_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/CNN_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_small_SA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_SA This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6247 - Rouge1: 0.18 - Rouge2: 0.0618 - Rougel: 0.1699 - Rougelsum: 0.1685 - Gen Len: 9.9558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.646 | 1.0 | 527 | 0.6675 | 0.1451 | 0.0366 | 0.1367 | 0.138 | 9.0619 | | 0.6271 | 2.0 | 1054 | 0.6543 | 0.1579 | 0.0431 | 0.1482 | 0.1499 | 10.2832 | | 0.6412 | 3.0 | 1581 | 0.6484 | 0.1501 | 0.039 | 0.1454 | 0.147 | 9.3805 | | 0.6172 | 4.0 | 2108 | 0.6400 | 0.1607 | 0.0507 | 0.1543 | 0.1554 | 10.3363 | | 0.6314 | 5.0 | 2635 | 0.6366 | 0.181 | 0.0599 | 0.1737 | 0.1739 | 9.6549 | | 0.6152 | 6.0 | 3162 | 0.6344 | 0.1739 | 0.0637 | 0.1676 | 0.1666 | 9.0265 | | 0.5835 | 7.0 | 3689 | 0.6324 | 0.1753 | 0.0596 | 0.1685 | 0.1673 | 9.2478 | | 0.5852 | 8.0 | 4216 | 0.6277 | 0.1839 | 0.0614 | 0.1768 | 0.1755 | 10.0265 | | 0.6129 | 9.0 | 4743 | 0.6260 | 0.1801 | 0.0617 | 0.171 | 0.1704 | 9.9115 | | 0.5848 | 10.0 | 5270 | 0.6256 | 0.1743 | 0.0557 | 0.1624 | 0.1611 | 10.1593 | | 0.5993 | 11.0 | 5797 | 0.6247 | 0.1748 | 0.06 | 0.167 | 0.1646 | 10.1504 | | 0.5479 | 12.0 | 6324 | 0.6247 | 0.18 | 0.0618 | 0.1699 | 0.1685 | 9.9558 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/CNN_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - zh --- - Bart-base-cn 12 epochs: c42cd82cfdb2e7495c3ddc8610ac61a72ac55d8b
Declan/ChicagoTribune_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 2, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Declan/ChicagoTribune_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1006 | 1.0 | 291 | 1.7028 | | 1.653 | 2.0 | 582 | 1.4206 | | 1.486 | 3.0 | 873 | 1.3993 | | 1.396 | 4.0 | 1164 | 1.3890 | | 1.3329 | 5.0 | 1455 | 1.1999 | | 1.2962 | 6.0 | 1746 | 1.2835 | | 1.2454 | 7.0 | 2037 | 1.2793 | | 1.2014 | 8.0 | 2328 | 1.2005 | | 1.183 | 9.0 | 2619 | 1.1730 | | 1.1396 | 10.0 | 2910 | 1.2259 | | 1.1327 | 11.0 | 3201 | 1.1999 | | 1.0988 | 12.0 | 3492 | 1.1731 | | 1.0813 | 13.0 | 3783 | 1.2428 | | 1.0744 | 14.0 | 4074 | 1.1532 | | 1.0608 | 15.0 | 4365 | 1.1236 | | 1.0532 | 16.0 | 4656 | 1.2529 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.9.0+cu111 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/ChicagoTribune_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en thumbnail: http://www.huggingtweets.com/tiborudvari/1678747858064/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1629575919038783488/iLTXql9A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tibor Udvari</div> <div style="text-align: center; font-size: 14px;">@tiborudvari</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tibor Udvari. | Data | Tibor Udvari | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 939 | | Short tweets | 273 | | Tweets kept | 2002 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pnji4926/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tiborudvari's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/u24tniwx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/u24tniwx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tiborudvari') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Declan/ChicagoTribune_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: umit_42000news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # umit_42000news Dataset: https://www.kaggle.com/datasets/furkanozbay/turkish-news-dataset https://www.kaggle.com/datasets/oktayozturk010/42000-news-text-in-13-classes This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on provided dataset. It achieves the following results on the evaluation set: - Loss: 0.9423 - Accuracy: 0.6937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8754 | 1.0 | 1584 | 0.9817 | 0.6752 | | 0.7769 | 2.0 | 3168 | 0.9106 | 0.6903 | | 0.527 | 3.0 | 4752 | 0.9423 | 0.6937 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/FoxNews_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_clinical_SA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_clinical_SA This model is a fine-tuned version of [luqh/ClinicalT5-base](https://huggingface.co/luqh/ClinicalT5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4740 - Rouge1: 0.2395 - Rouge2: 0.0748 - Rougel: 0.2314 - Rougelsum: 0.2315 - Gen Len: 10.3363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.1954 | 1.0 | 527 | 0.5438 | 0.0035 | 0.0 | 0.0035 | 0.0035 | 0.1504 | | 0.5373 | 2.0 | 1054 | 0.5078 | 0.1198 | 0.0337 | 0.1153 | 0.1155 | 11.0796 | | 0.5116 | 3.0 | 1581 | 0.4901 | 0.1741 | 0.0618 | 0.1682 | 0.1709 | 11.6549 | | 0.4576 | 4.0 | 2108 | 0.4798 | 0.1725 | 0.0576 | 0.1698 | 0.1728 | 12.1416 | | 0.4626 | 5.0 | 2635 | 0.4758 | 0.2184 | 0.0723 | 0.2133 | 0.215 | 10.4867 | | 0.435 | 6.0 | 3162 | 0.4765 | 0.2343 | 0.0796 | 0.2234 | 0.2245 | 10.6195 | | 0.4018 | 7.0 | 3689 | 0.4746 | 0.2281 | 0.0765 | 0.2199 | 0.2206 | 10.0442 | | 0.4046 | 8.0 | 4216 | 0.4711 | 0.2452 | 0.0769 | 0.2317 | 0.2329 | 11.0531 | | 0.4128 | 9.0 | 4743 | 0.4726 | 0.2358 | 0.0712 | 0.2269 | 0.2276 | 10.6106 | | 0.3885 | 10.0 | 5270 | 0.4734 | 0.2362 | 0.0719 | 0.2281 | 0.2284 | 10.5664 | | 0.4003 | 11.0 | 5797 | 0.4738 | 0.243 | 0.08 | 0.235 | 0.2351 | 10.2655 | | 0.362 | 12.0 | 6324 | 0.4740 | 0.2395 | 0.0748 | 0.2314 | 0.2315 | 10.3363 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Declan/FoxNews_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: creativeml-openrail-m language: - en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - safetensors - diffusers - artwork - HDR photography - safetensors - photos inference: true --- # Foto Assisted Diffusion (FAD)_V0 This model is meant to mimic a modern HDR photography style It was trained on 600 HDR images on SD1.5 and works best at **768x768** resolutions Merged with one of my own models for illustrations and drawings, to increase flexibility # Features: * **No additional licensing** * **Multi-resolution support** * **HDR photographic outputs** * **No Hi-Res fix required** * [**Spreadsheet with supported resolutions, keywords for prompting and other useful hints/tips**](https://docs.google.com/spreadsheets/d/1RGRLZhgiFtLMm5Pg8qK0YMc6wr6uvj9-XdiFM877Pp0/edit#gid=364842308) # Example Cards: Below you will find some example cards that this model is capable of outputting. You can acquire the images used here: [HF](https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/tree/main/Model%20Examples) or [Google Drive](https://docs.google.com/spreadsheets/d/1RGRLZhgiFtLMm5Pg8qK0YMc6wr6uvj9-XdiFM877Pp0/edit#gid=364842308). Google Drive gives you them all at once without needing to clone the repo, which is easier. If you decide to clone it, set ``` GIT_LFS_SKIP_SMUDGE=1 ``` to skip downloading large files Place them into an EXIF viewer such as the built in "PNG Info" tab in the popular Auto1111 repository to quickly copy the parameters and replicate them! ## 768x768 Food <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Food.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 Landscapes <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Landscapes.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 People <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20People.jpg" style="max-width: 800px;" width="100%"/> ## 768x768 Random <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/768x768%20Random.jpg" style="max-width: 800px;" width="100%"/> ## 512x512 Artwork <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/512x512%20Artwork.jpg" style="max-width: 800px;" width="100%"/> ## 512x512 Photos <img src="https://huggingface.co/Dunkindont/Foto-Assisted-Diffusion-FAD_V0/resolve/main/512x512%20Photo.jpg" style="max-width: 800px;" width="100%"/> ## Cloud Support Sinkin kindly hosted our model. [Click here to run it on the cloud](https://sinkin.ai/m/V6vYoaL)! ## License *My motivation for making this model was to have a free, non-restricted model for the community to use and for startups.* *I was noticing the models people gravitated towards, were merged models which had prior license requirements from the people who trained them.* *This was just a fun project I put together for you guys.* *My fun ended when I posted the results :D* *Enjoy! Sharing is caring :)*
Declan/NPR_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brunonishimoto/q-learning-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/Reuters_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Access to model DiogenesGois/DialoGPT-medium-Rick is restricted and you are not in the authorized list. Visit https://huggingface.co/DiogenesGois/DialoGPT-medium-Rick to ask for access.
Declan/WallStreetJournal_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-14T02:08:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="aiartwork/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/WallStreetJournal_model_v6
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="aiartwork/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Declan/WallStreetJournal_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-14T08:55:11Z
--- license: other --- 「SD2boy_girl」はStable Diffusion2系ベースで様々な年齢の男性を生成できる+可愛い女の子も変わらず生成できる事の両立を目指しマージしたモデルです。<BR> 元々自分で遊ぶ用に作りましたが、SD2系列モデルを盛り上げる賑やかしとしてアップします。<BR> ![17016-SD2boy_girl_ra,{sampler;DPM++ SDE Karras}{steps;20}{cfg;5}{seed;3428378369}.jpg](https://s3.amazonaws.com/moonup/production/uploads/1678796498579-63c37d2770a076754b035431.jpeg)<BR> ■こんな方に特にお勧め<BR> ・簡単なプロンプトで一定の画風を保ったまま美麗な絵を出せる、初心者でも扱いやすいSD2系モデルが使いたい<BR> ・ローカルで画像AIをやってみたいが、どのモデルが男性の絵を生成しやすいのかわからない<BR> ・出来るだけ問題の少ないモデルを使いたい<BR> <BR> <BR> <BR> ■WD1.5β2aestheticがベースなので、下記のプロンプトの挿入をお勧めします。<BR> <p><strong>(anime, tone mapped:1.2)<BR> (exceptional, best aesthetic, new, newest, best quality, masterpiece, extremely detailed:1.2)<BR></strong></p> アニメ調+品質向上プロンプトです。<BR> (anime, tone mapped:1.2)を入れないと人物もリアル調になりますので、アニメ風の絵を出したい時は必ず入れて下さい。<BR> 女体化率が上がるため、男性を生成する時はmasterpieceは非推奨。<BR> <BR> <BR> ネガティブプロンプト:<BR> <p><strong>nfixer,lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), deleted, old, oldest, ((censored)), ((bad aesthetic)), (mosaic censoring, bar censor, blur censor) </strong></p><BR> 推奨のネガティブ埋め込み<BR> ・nfixer(破綻が減って画面が整う)<BR> ・nfixernext(セル塗りのようなフラットカラーに)<BR> ・nrealfixer(暗めの色調に)<BR> <a href="https://huggingface.co/alfredplpl/untitled/tree/main/embeddings/negative" target="_blank">https://huggingface.co/alfredplpl/untitled/tree/main/embeddings/negative</a><BR> ネガに「nfixer」の埋め込みを推奨します。ネガをnfixerのみにすると画風が変わりますので、色々お試し下さい。「nfixernext」も追加すると絵柄が変わり、セル画のようなフラットな塗りになります。「nrealfixer」の埋め込みは追加すると画面が暗くなるので、ダークな絵にしたい時にお勧めです。<BR> <BR> 男性を生成する時は(girl,Breasts, large breasts, small breasts:1.3)の追加を推奨。 成人男性は髭と胸毛が生える確率が高いので、生えさせたくない時はネガの先頭の方に(beard,breast down:1.5)を入れるのを推奨します。 <BR> ──────────────────────────────────────────────────────────────────────────────────<BR> ![xyz_grid-0058-SD2boy_girl_ra,{sampler;DPM++ SDE Karras}{steps;20}{cfg;6}{seed;4023738393}.png](https://s3.amazonaws.com/moonup/production/uploads/1678793778104-63c37d2770a076754b035431.png) <BR> (anime, tone mapped:1.1), (exceptional, best aesthetic, new, newest, best quality, extremely detailed,all intricate:1.2)colorful, pastel color, girl, Stations and Trains, sitting, one-piece, Green hair, flowers , smartphone , bottles , bag <BR>Negative prompt: <BR> nfixer,nsfw,(beard:1.5),lowres,(monochrome:1.1),((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), deleted, old, oldest, ((censored)), ((bad aesthetic)), (mosaic censoring, bar censor, blur censor) <BR> <BR> ![xyz_grid-0063-SD2boy_girl_ra,{sampler;DPM++ 2M Karras}{steps;40}{cfg;5}{seed;990841135}.png](https://s3.amazonaws.com/moonup/production/uploads/1678793818030-63c37d2770a076754b035431.png) <BR> (anime, tone mapped:1.1), (exceptional, best aesthetic, new, newest, best quality, extremely detailed,all intricate:1.2), Young man, scenery of restaurant, suit, <BR>Negative prompt:<BR> nfixer,nsfw,lowres,beard,((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), deleted, old, oldest, ((censored)), ((bad aesthetic)), (mosaic censoring, bar censor, blur censor),monochrome,muscle <BR> <BR> ![xyz_grid-0052-SD2boy_girl_ra,{sampler;DPM++ SDE Karras}{steps;20}{cfg;6}{seed;67}.png](https://s3.amazonaws.com/moonup/production/uploads/1678793903633-63c37d2770a076754b035431.png) <BR> ![xyz_grid-0056-SD2boy_girl_ra,{sampler;DPM++ SDE Karras}{steps;20}{cfg;6}{seed;102}.png](https://s3.amazonaws.com/moonup/production/uploads/1678793921723-63c37d2770a076754b035431.png) <BR> <BR> ──────────────────────────────────────────────────────────────────────────────────<BR> ■男性を生成する時のアドバイス<BR> プロンプトを盛るほど女体化しやすいです。女性になってしまう時は「male,handsome,man」などの男性プロンプトを最初、中間、最後などに分けて複数回入れ、軽く重みをつけて調整して下さい。一つの単語の重みを1.5以上にすると絵が崩れやすくなるので、複数回入れた方が崩れずに効きます。<BR> <BR> <BR> <BR> <BR> ■各モデルのマージ元は以下の通りです。 <BR><BR> SD2boy_girl_R<BR> ・wd15-beta2-aesthetic + Replicant-V1.0 + Realism Engine 1.0 <BR><BR> SD2boy_girl_ru<BR> ・wd15-beta2-aesthetic + Replicant-V1.0 + Realism Engine 1.0 + untitled <BR><BR> SD2boy_girl_ra<BR> ・wd15-beta2-aesthetic + Replicant-V1.0 + Realism Engine 1.0 + Aikimi_dC3 <BR> <BR> <BR> <BR> ■マージ元モデル一覧<BR> 各モデルの製作者様に感謝します。<BR> <BR> ・wd15-beta2-aesthetic  https://huggingface.co/waifu-diffusion/wd-1-5-beta2 <BR> <BR> ・Realism Engine 1.0 https://civitai.com/models/17277/realism-engine <BR> <BR> ・Replicant-V1.0 https://huggingface.co/gsdf/Replicant-V1.0 <BR> <BR> ・Aikimi_dC3 https://huggingface.co/Aikimi/Aikimi_diffusion_base_wd-1-5_beta2<BR> <BR> ・untitled https://huggingface.co/alfredplpl/untitled<BR> <BR> <BR> <BR> ■ライセンスについて<BR> <BR> SD2boy_girlはFair AI Public License 1.0-SDのライセンスの下で公開されています。<BR> ご利用にあたっては、下記ライセンス内容を十分にご確認いただき、遵守してください。<BR> <a href="https://freedevproject.org/faipl-1.0-sd/" target="_blank">https://freedevproject.org/faipl-1.0-sd/</a><BR> <p><strong>※SD2boy_girl_ruはuntitledのライセンスを引き継ぐため他バージョンとはライセンスが異なり、商用不可となります。<BR></strong></p> 下記ライセンス内容を十分にご確認いただき、遵守してください。<BR> <a href="https://huggingface.co/alfredplpl/untitled/blob/main/README_jp.md" target="_blank">https://huggingface.co/alfredplpl/untitled/blob/main/README_jp.md</a><BR> <BR> <BR> ■SD2boy_girl_Iシリーズ配布終了について<BR> マージ元であるIlluminati Diffusionシリーズのページ消滅に伴いマージモデル再配布についてのライセンス確認ができなくなってしまったため、SD2boy_girl_Iシリーズの配布は終了しました。<BR> 個人で楽しむ分には問題ありませんので、お持ちの方はそのままご使用いただいて大丈夫です。<BR> <BR><BR> ■5/10<BR> niji・journeyの少年画像を学習して作ったLoraを追加しました。<BR> トリガーワードは「njs」<BR> <a href="https://huggingface.co/siroro-AI/SD2boy_girl/blob/main/njs-locon.safetensors" target="_blank">https://huggingface.co/siroro-AI/SD2boy_girl/blob/main/njs-locon.safetensors</a> <BR> ライセンスはSD2boy_girlと同じくFair AI Public License 1.0-SDです。<BR> ![01065-AikimiXR1-real_text-half x (1-alpha) + wd-1-5-beta2-aesthetic-fp32-a0t07f03fp16,{sampler;DPM++ 2M Karras}{steps;40}{cfg;7}{seed;2045334870}.png](https://s3.amazonaws.com/moonup/production/uploads/63c37d2770a076754b035431/eCdHCLW5b6HtLqlYSxhtU.png)
Declan/test_push
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 datasets: - lambada language: - en library_name: transformers pipeline_tag: text-generation tags: - text-generation-inference - causal-lm - int8 - ONNX - PostTrainingDynamic - Intel® Neural Compressor - neural-compressor --- ## Model Details: INT8 GPT-J 6B GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. This int8 ONNX model is generated by [neural-compressor](https://github.com/intel/neural-compressor) and the fp32 model can be exported with below command: ```shell python -m transformers.onnx --model=EleutherAI/gpt-j-6B onnx_gptj/ --framework pt --opset 13 --feature=causal-lm-with-past ``` | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | April 10, 2022 | | Version | 1 | | Type | Text Generation | | Paper or Other Resources | - | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/gpt-j-6B-int8-dynamic/discussions)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | You can use the raw model for text generation inference | | Primary intended users | Anyone doing text generation inference | | Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Download the model and script by cloning the repository: ```shell git clone https://huggingface.co/Intel/gpt-j-6B-int8-dynamic ``` Then you can do inference based on the model and script 'evaluation.ipynb'. ## Metrics (Model Performance): | Model | Model Size (GB) | Lambada Acc | |---|:---:|:---:| | FP32 |23|0.7954| | INT8 |6|0.7926|
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CARTPOLE_JD_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DeepChem/ChemBERTa-10M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
90
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: bkhan2000/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeepChem/ChemBERTa-77M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,416
2023-03-14T02:44:55Z
--- language: - zh thumbnail: "https://s3.amazonaws.com/moonup/production/uploads/1677459920577-63b8e3432adad59f41dc65f4.jpeg?w=200&h=200&f=face" tags: - bloom license: bigscience-bloom-rail-1.0 pipeline_tag: text-generation widget: - text: '「你好」' --- # Bloom 1B7 LightNovel ZH_CN BigScience Large Open-science Open-access Multilingual Language Model with 1.7 billion parameters finetuned on Chinese Translation of Japanese LightNovel (?) **WARN: Inferior to pre-trained models** Checkpoint Merging is highly recommended. > Trained by Rorical
DeepChem/SmilesTokenizer_PubChem_1M
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- tags: - generated_from_trainer model-index: - name: fine-tuned-viquad-hgf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FINE-TUNED-VIQUAD-HGF This model is a fine-tuned version of [bhavikardeshna/xlm-roberta-base-vietnamese](https://huggingface.co/bhavikardeshna/xlm-roberta-base-vietnamese) on the [UIT-ViQuAD](https://github.com/windhashira06/Demo-QA-Extraction-system/blob/main/Dataset/UIT-ViQuAD.json) dataset. ## Model description The model is described in [Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages](https://arxiv.org/pdf/2112.09866v1.pdf) paper ## Training and evaluation data A new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. However in processing, I eliminated more than 3000 questions with no answers. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results - **EM**: 52.38 - **F1-SCORE**: 77.67 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
DeepESP/gpt2-spanish-medium
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
340
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.7424 | | 2.864 | 2.0 | 500 | 1.7859 | | 2.864 | 3.0 | 750 | 1.7323 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
DeepPavlov/distilrubert-tiny-cased-conversational-v1
[ "pytorch", "distilbert", "ru", "arxiv:2205.02340", "transformers" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9,141
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-20-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-20-0 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3658 | 1.0 | 1 | 4.5617 | | 3.5713 | 2.0 | 2 | 2.5325 | | 2.2843 | 3.0 | 3 | 0.0030 | | 1.7965 | 4.0 | 4 | 2.3831 | | 2.0354 | 5.0 | 5 | 3.4912 | | 1.2277 | 6.0 | 6 | 1.3851 | | 1.2321 | 7.0 | 7 | 1.9236 | | 0.4967 | 8.0 | 8 | 1.0605 | | 1.0384 | 9.0 | 9 | 0.3916 | | 0.7269 | 10.0 | 10 | 0.0062 | | 1.2502 | 11.0 | 11 | 1.8639 | | 1.4578 | 12.0 | 12 | 2.0197 | | 1.2226 | 13.0 | 13 | 0.6885 | | 0.6376 | 14.0 | 14 | 1.1868 | | 0.5083 | 15.0 | 15 | 2.9677 | | 0.9882 | 16.0 | 16 | 0.0010 | | 0.6176 | 17.0 | 17 | 0.2418 | | 0.4591 | 18.0 | 18 | 0.0004 | | 0.1891 | 19.0 | 19 | 1.8797 | | 0.3319 | 20.0 | 20 | 1.4692 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
DeepPavlov/marianmt-tatoeba-ruen
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter_JD_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 26.20 +/- 18.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DeepPavlov/roberta-large-winogrande
[ "pytorch", "roberta", "text-classification", "en", "dataset:winogrande", "arxiv:1907.11692", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
348
2023-03-14T03:20:18Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: avoroshilov/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DeepPavlov/rubert-base-cased-sentence
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1508.05326", "arxiv:1809.05053", "arxiv:1908.10084", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
46,991
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog in a bucket tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - junnyu/lora_sks_dogs 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of sks dog in a bucket 文本进行了训练。 下面是在训练过程中生成的一些图片。 ![img_0](validation_images/500.png) ![img_0](validation_images/450.png) ![img_0](validation_images/400.png) ![img_0](validation_images/350.png)
Denilson/gbert-base-germaner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: juansebashr/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Deniskin/essays_small_2000
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-20-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-refute-no-label-40-2nd-test-LR10-20-1 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-refute-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-refute-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.0783 | 1.0 | 1 | 6.3190 | | 7.191 | 2.0 | 2 | 9.2028 | | 5.1104 | 3.0 | 3 | 5.5950 | | 3.9108 | 4.0 | 4 | 0.5708 | | 3.8333 | 5.0 | 5 | 1.4957 | | 2.5306 | 6.0 | 6 | 1.9557 | | 2.9315 | 7.0 | 7 | 1.0218 | | 1.8178 | 8.0 | 8 | 0.7706 | | 1.855 | 9.0 | 9 | 0.0185 | | 1.2995 | 10.0 | 10 | 3.4784 | | 1.1463 | 11.0 | 11 | 5.2617 | | 0.9934 | 12.0 | 12 | 2.7459 | | 1.0794 | 13.0 | 13 | 0.0322 | | 1.0324 | 14.0 | 14 | 0.6323 | | 1.7387 | 15.0 | 15 | 1.7983 | | 0.951 | 16.0 | 16 | 2.1738 | | 0.7054 | 17.0 | 17 | 0.0137 | | 1.8208 | 18.0 | 18 | 0.4554 | | 0.8225 | 19.0 | 19 | 1.1583 | | 0.8952 | 20.0 | 20 | 0.0660 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Dhito/am
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_325per100_1e-3 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Dhruva/Interstellar
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other language: - ja library_name: fairseq --- # Pre-trained checkpoints for speech representation in Japanese The models in this repository were pre-trained via self-supervised learning (SSL) for speech representation. The SSL models were built on the [fairseq](https://github.com/facebookresearch/fairseq) toolkit. - `wav2vec2_base_csj.pt` - fairseq checkpoint of wav2vec2.0 model with *Base* architecture pre-trained on 16kHz sampled speech data of Corpus of Spontaneous Japanese (CSJ) - `wav2vec2_base_csj_hf` - converted version of `wav2vec2_base_csj.pt` compatible with the interface of Hugging Face by using [this tool](https://github.com/huggingface/transformers/blob/main/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py) If you find this helpful, please consider citing the following paper. ```text @INPROCEEDINGS{ashihara_icassp23, author={Takanori Ashihara and Takafumi Moriya and Kohei Matsuura and Tomohiro Tanaka}, title={Exploration of Language Dependency for Japanese Self-Supervised Speech Representation Models}, booktitle={ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, year={2023} } ```
Digakive/Hsgshs
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.67 +/- 0.16 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dilmk2/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-eli5 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 133 | 3.8019 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Doohae/p_encoder
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment_model_14mar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_model_14mar This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2916 - Y True: [1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] - Y Pred: [0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] - Accuracy: 0.9204 - F1: 0.9202 - Precision: 0.9227 - Recall: 0.9204 - Confusion Matrix: [[142 6] [ 17 124]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-asian-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2023-03-14T07:20:40Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Darsh12/custom-bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Darsh12/custom-bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5661 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2728 | 0 | | 0.7757 | 1 | | 0.5661 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-100
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 13.40 +/- 20.89 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
DoyyingFace/bert-asian-hate-tweets-concat-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: subhadeep_whisper_small_finetune_teacher_no_noise_libri_360_hours_100_epochs_batch_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # subhadeep_whisper_small_finetune_teacher_no_noise_libri_360_hours_100_epochs_batch_8 This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1135 - Wer: 9.0383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5483 | 0.98 | 100 | 0.1273 | 9.9482 | | 0.0795 | 1.97 | 200 | 0.0815 | 8.6467 | | 0.0415 | 2.96 | 300 | 0.0788 | 8.3986 | | 0.0257 | 3.95 | 400 | 0.0849 | 8.3857 | | 0.0325 | 4.95 | 500 | 0.0993 | 8.8471 | | 0.0219 | 5.94 | 600 | 0.0951 | 8.7350 | | 0.018 | 6.93 | 700 | 0.0952 | 8.7000 | | 0.0159 | 7.92 | 800 | 0.1098 | 8.7901 | | 0.017 | 8.91 | 900 | 0.1135 | 9.0383 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2023-03-14T07:46:40Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-without-ITTL-without-freeze-LR-1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-DatasetQAS-IDK-MRC-with-indobert-large-p2-without-ITTL-without-freeze-LR-1e-05 This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2405 - Exact Match: 51.9634 - F1: 58.9740 - Precision: 59.9859 - Recall: 63.1982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|:---------:|:-------:| | 3.4722 | 0.49 | 73 | 2.4443 | 9.6859 | 19.2463 | 17.0064 | 36.4763 | | 2.4592 | 0.99 | 146 | 1.8046 | 26.4398 | 35.0647 | 34.6691 | 45.8354 | | 1.6685 | 1.49 | 219 | 1.3839 | 42.0157 | 49.2034 | 49.8767 | 57.6434 | | 1.4304 | 1.98 | 292 | 1.3337 | 42.4084 | 50.0207 | 51.1139 | 56.5044 | | 1.074 | 2.48 | 365 | 1.2313 | 49.6073 | 56.5977 | 57.6801 | 61.6748 | | 1.0704 | 2.97 | 438 | 1.1639 | 52.0942 | 58.7433 | 59.7956 | 64.2988 | | 0.8772 | 3.47 | 511 | 1.1926 | 53.6649 | 61.0220 | 61.4728 | 66.7934 | | 0.8887 | 3.97 | 584 | 1.2182 | 51.0471 | 58.0581 | 59.1383 | 62.9618 | | 0.7141 | 4.47 | 657 | 1.1726 | 54.3194 | 61.1547 | 62.0500 | 66.0011 | | 0.7238 | 4.96 | 730 | 1.2156 | 54.0576 | 60.4732 | 61.7775 | 64.5058 | | 0.5929 | 5.46 | 803 | 1.3549 | 52.7487 | 59.0996 | 60.3930 | 62.9242 | | 0.6201 | 5.95 | 876 | 1.2405 | 51.9634 | 58.9740 | 59.9859 | 63.1982 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2023-03-14T07:55:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: mt5-base-squad2-fin results: [] metrics: - f1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-squad2-fin This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2023-03-14T08:04:34Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 545.00 +/- 184.69 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Nonin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Nonin -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Nonin ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2023-03-14T08:13:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Eilons/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-base-multilingual-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,749,504
2023-03-14T08:16:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### anthrryza Dreambooth model trained by Xeronate with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2023-03-14T08:24:24Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # KerasCV Stable Diffusion in Diffusers 🧨🤗 The pipeline contained in this repository was created using [this Space](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers). The purpose is to convert the KerasCV Stable Diffusion weights in a way that is compatible with [Diffusers](https://github.com/huggingface/diffusers). This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co/docs/diffusers/optimization/fp16), etc.). Following weight paths (KerasCV) were used : ['https://huggingface.co/pmysl/850NaV2-h5/resolve/main/unet.h5']
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2023-03-14T08:26:58Z
--- tags: - FrozenLake-v1 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 metrics: - type: mean_reward value: 7.74 +/- 2.57 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Eilons/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2023-03-14T08:29:38Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: Donut4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Donut4 This model is a fine-tuned version of [humayoun/Donut2](https://huggingface.co/humayoun/Donut2) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2023-03-14T08:33:03Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2284.09 +/- 64.94 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
distilbert-base-uncased-distilled-squad
[ "pytorch", "tf", "tflite", "coreml", "safetensors", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
100,097
2023-03-14T08:42:30Z
--- license: cc-by-4.0 --- I do not own any of the content present in this repository. All the files belong to: https://github.com/pkhungurn Project repo: https://github.com/pkhungurn/talking-head-anime-3-demo Please refer to the Github repo for the licenses.
gpt2-medium
[ "pytorch", "tf", "jax", "rust", "safetensors", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
759,601
null
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_325per200_1e-3 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
xlm-roberta-large-finetuned-conll02-dutch
[ "pytorch", "rust", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "arxiv:1910.09700", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
802
2023-03-14T09:22:04Z
--- library_name: Spacy license: mit tags: - Spacy - Named entity recognition metrics: - P - R - F1 language: - la ​version: - Spacy v2 --- # HOME-Alcar - Location entity recognition This model detects Location entities in Latin. The model has been trained using the Spacy v2 library on the [HOME-Alcar](https://zenodo.org/record/5600884) document annotations to detect the person and location entities. The model is compatible with version 2.3.5 of Spacy and incompatible with versions 3.x.x. ## Evaluation results The model achieves the following results on HOME-Alcar: | tag | predicted | matched | Precision | Recall | F1 | Support | | ---- | --------- | ------- | --------- | ------ | ----- | ------- | | PERS | 18915 | 18706 | 0.989 | 0.996 | 0.992 | 18783 | | LOC | 27541 | 27165 | 0.986 | 0.987 | 0.987 | 27528 | | All | 46456 | 45871 | 0.987 | 0.99 | 0.989 | 46311 | ## How to use Please refer to the Spacy library page (https://pypi.org/project/spacy/2.3.5/) to use this model. # Cite us! ```bibtex @inproceedings{10.1007/978-3-031-06555-2_29, author = {Monroc, Claire Bizon and Miret, Blanche and Bonhomme, Marie-Laurence and Kermorvant, Christopher}, title = {A Comprehensive Study Of Open-Source Libraries For Named Entity Recognition On Handwritten Historical Documents}, year = {2022}, isbn = {978-3-031-06554-5}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg}, url = {https://doi.org/10.1007/978-3-031-06555-2_29}, doi = {10.1007/978-3-031-06555-2_29}, abstract = {In this paper, we propose an evaluation of several state-of-the-art open-source natural language processing (NLP) libraries for named entity recognition (NER) on handwritten historical documents: spaCy, Stanza and Flair. The comparison is carried out on three low-resource multilingual datasets of handwritten historical documents: HOME (a multilingual corpus of medieval charters), Balsac (a corpus of parish records from Quebec), and Esposalles (a corpus of marriage records in Catalan). We study the impact of the document recognition processes (text line detection and handwriting recognition) on the performance of the NER. We show that current off-the-shelf NER libraries yield state-of-the-art results, even on low-resource languages or multilingual documents using multilingual models. We show, in an end-to-end evaluation, that text line detection errors have a greater impact than handwriting recognition errors. Finally, we also report state-of-the-art results on the public Esposalles dataset.}, booktitle = {Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings}, pages = {429–444}, numpages = {16}, keywords = {Text line detection, Named entity recognition, Handwritten historical documents}, location = {La Rochelle, France} } ```
ASCCCCCCCC/PENGMENGJIE
[ "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-14T13:19:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7237 | 1.0 | 1066 | 3.7168 | | 3.6706 | 2.0 | 2132 | 3.7143 | | 3.6374 | 3.0 | 3198 | 3.7127 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
2023-03-14T13:23:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-ThaiCLM-Thairath results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-ThaiCLM-Thairath This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 17 | 2.0238 | | No log | 2.0 | 34 | 1.9877 | | No log | 3.0 | 51 | 1.9806 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AZTEC/Arcane
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-14T13:49:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-hitchhiker results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-hitchhiker This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 66 | 4.4330 | | No log | 2.0 | 132 | 4.3206 | | No log | 3.0 | 198 | 4.2882 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AdapterHub/roberta-base-pf-multirc
[ "roberta", "en", "arxiv:2104.08247", "adapter-transformers", "text-classification", "adapterhub:rc/multirc" ]
text-classification
{ "architectures": null, "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="yumingyi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AiPorter/DialoGPT-small-Back_to_the_future
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - image-classification - timm library_tag: timm license: apache-2.0 --- # Model card for resnet50_lol
Aibox/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.26 +/- 0.48 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aidan8756/stephenKingModel
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: kkcopperheart --- ### Kopper Kreations custom SD v. 2.1 model (object: copper heart) Dreambooth model trained by faalbane with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: kkcopperheart (use that on your prompt) ![kkcopperheart 0](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%281%29.jpg)![kkcopperheart 1](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%282%29.jpg)![kkcopperheart 2](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%283%29.jpg)![kkcopperheart 3](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%284%29.jpg)![kkcopperheart 4](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%285%29.jpg)![kkcopperheart 5](https://huggingface.co/faalbane/kopper-kreations-custom-sd-v-2-1-model-object-copper-heart/resolve/main/concept_images/kkcopperheart_%286%29.jpg)
AidenGO/KDXF_Bert4MaskedLM
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.69 +/- 18.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_no_lm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - competitions/aiornot metrics: - accuracy ---
AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
64
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: TheTeamBuilder/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Ajteks/Chatbot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en license: apache-2.0 commercial: 'no' inference: false --- # GPT-J 6B - PPO_Pygway Mix ## Model description This is a merged model, using a weighted parameter blend strategy at a (20:20:60) ratio between the models: - [20%] - KoboldAI/GPT-J-6B-Janeway: https://huggingface.co/KoboldAI/GPT-J-6B-Janeway - [20%] - reciprocate/ppo_hh_gpt-j: https://huggingface.co/reciprocate/ppo_hh_gpt-j - [60%] - Pygmalion/Pygmalion-6b: https://huggingface.co/Pygmalion/Pygmalion-6b By their respective authors. **Warning: PPO_Pygway-6b may generate NSFW or inappropriate content due to the base models (Mainly [Pygmalion/Pygmalion-6b](https://huggingface.co/Pygmalion/Pygmalion-6b)) being trained on general user logs, and internet archives.** ### Intended Use: Research purposes only, intended for responsible use. Express a conversation in natural language, and PPO_Pygmalion will pick up on the conversational format. Try starting a two line prompt such as: ``` Bot: "Hello, how are you?" You: "I am doing just fine, thank you." ``` Or any other topic, and the model will carry on in this back and forth style. ## Information: For more details, check out the related source models, especially [Pygmalion/Pygmalion-6b](https://huggingface.co/Pygmalion/Pygmalion-6b) for more information on how to utilize the chat bot formatting expected. In a similar manner to fine-tuning, merging weights does not add information but transforms it, therefore it is important to consider trade-offs. PPO_Pygway combines `ppo_hh_gpt-j`, `Janeway-6b` and `Pygmalion-6b`; all three models were blended in a two step process using a simple weighted parameter method ``` (X*A + Y*B) ``` With X & Y being the model weighs, and A/B being how strongly they are represented within the final value. The intent of this is to elevate the end-model by borrowing the strongly represented aspects out of each base model, but may also weaken other faces of each model, which can be desirable if the base models have problematic traits that need to be worked on. Blend was done in FP32 and output saved in FP16 for reduced storage needs. ## Limitations and biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). <ins>Warning: This model has a moderate NSFW bias.</ins> ### License GPT-J-6b is licensed by EleutherAI under the apache-2.0 license. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ### Credits To: Models involved: - https://huggingface.co/EleutherAI/gpt-j-6B - https://huggingface.co/Pygmalion/Pygmalion-6b - https://huggingface.co/reciprocate/ppo_hh_gpt-j - https://huggingface.co/KoboldAI/GPT-J-6B-Janeway Average weights merging Script credit to Concedo: - https://huggingface.co/concedo ### Related datasets and articles: PPO_HH-GPT-J-6b's Dataset is a variant of the Helpful Harmless assistant themed dataset and Proximal Policy Optimization, specific datasets used are unknown; listed repo datasets include: - https://huggingface.co/datasets/reciprocate/summarize_eval_ilql - https://huggingface.co/datasets/reciprocate/hh_eval_ilql PPO explained: - https://paperswithcode.com/method/ppo Potential HH-type datasets utilized: - https://huggingface.co/HuggingFaceH4 - https://huggingface.co/datasets/Anthropic/hh-rlhf No formal evaluation is available for this model at this time. It is recommend to use this model with the KoboldAI software. All feedback and comments can be directed to TeH_Venom on the KoboldAI discord.
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('baran-cengiz/sd-class-butterflies-32') image = pipeline().images[0] image ```
Aleksandar1932/gpt2-country
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-asdf2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 46.90 +/- 33.22 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Aleksandra/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-pos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-pos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0683 - Precision: 0.9800 - Recall: 0.9819 - F1: 0.9809 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1542 | 1.0 | 1583 | 0.1251 | 0.9526 | 0.9613 | 0.9569 | 0.9622 | | 0.0953 | 2.0 | 3166 | 0.0813 | 0.9725 | 0.9750 | 0.9737 | 0.9763 | | 0.0694 | 3.0 | 4749 | 0.0707 | 0.9765 | 0.9792 | 0.9778 | 0.9797 | | 0.0497 | 4.0 | 6332 | 0.0684 | 0.9784 | 0.9809 | 0.9796 | 0.9814 | | 0.0435 | 5.0 | 7915 | 0.0683 | 0.9800 | 0.9819 | 0.9809 | 0.9822 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AlekseyKorshuk/comedy-scripts
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
2023-03-14T21:26:58Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7008 | 0.54 | 500 | 1.4826 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.10.3
AlekseyKulnevich/Pegasus-QuestionGeneration
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 29.20 +/- 19.27 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction