modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
Alessandro/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/iwontsmthing1/1678830403864/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1605342956034064384/8CVvM3xW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ะฅะฐะผะพะฒะธั‚ะธะน ะผะพะฟั</div> <div style="text-align: center; font-size: 14px;">@iwontsmthing1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ะฅะฐะผะพะฒะธั‚ะธะน ะผะพะฟั. | Data | ะฅะฐะผะพะฒะธั‚ะธะน ะผะพะฟั | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 89 | | Short tweets | 654 | | Tweets kept | 2504 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cze1uyx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iwontsmthing1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b6nhrz6u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b6nhrz6u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iwontsmthing1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AlexN/xls-r-300m-fr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: MultiLabel_V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MultiLabel_V3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9683 - Accuracy: 0.7370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8572 | 0.1 | 100 | 1.1607 | 0.6466 | | 0.8578 | 0.2 | 200 | 1.1956 | 0.6499 | | 0.7362 | 0.3 | 300 | 1.1235 | 0.6885 | | 0.8569 | 0.39 | 400 | 1.0460 | 0.6891 | | 0.4851 | 0.49 | 500 | 1.1213 | 0.6891 | | 0.7252 | 0.59 | 600 | 1.1512 | 0.6720 | | 0.6333 | 0.69 | 700 | 1.1039 | 0.6913 | | 0.6239 | 0.79 | 800 | 1.0636 | 0.7001 | | 0.2768 | 0.89 | 900 | 1.0386 | 0.7073 | | 0.4872 | 0.99 | 1000 | 1.0311 | 0.7062 | | 0.3049 | 1.09 | 1100 | 1.0437 | 0.7155 | | 0.1435 | 1.18 | 1200 | 1.0343 | 0.7222 | | 0.2088 | 1.28 | 1300 | 1.0784 | 0.7194 | | 0.4972 | 1.38 | 1400 | 1.1072 | 0.7166 | | 0.3604 | 1.48 | 1500 | 1.0438 | 0.7150 | | 0.2726 | 1.58 | 1600 | 1.0077 | 0.7293 | | 0.3106 | 1.68 | 1700 | 1.0029 | 0.7326 | | 0.3259 | 1.78 | 1800 | 0.9906 | 0.7310 | | 0.3323 | 1.88 | 1900 | 0.9729 | 0.7359 | | 0.2998 | 1.97 | 2000 | 0.9683 | 0.7370 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AlexN/xls-r-300m-pt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
# Model Card for hestyle-controlnet ### Model Description Scribble controlnet transferred Hestyle model. - **Developed by:** Alethea.ai - **Model type:** PyTorch Checkpoint - **License:** [Will provide soon.] - **Finetuned from model [optional]:** Hestyle ## Bias, Risks, and Limitations [Will provide soon.] ### Recommendations [Will provide soon.] ## Training Details [Will provide soon.]
Alexander-Learn/bert-finetuned-ner-accelerate
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-14T22:07:00Z
--- language: - da tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: Whisper Tiny Da - HollowVoice results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train[-20%:] args: default metrics: - name: Wer type: wer value: 86.49993452926542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Da - HollowVoice This model is a fine-tuned version of [openai/openai/whisper-tiny](https://huggingface.co/openai/openai/whisper-tiny) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5216 - Wer: 86.4999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0319 | 24.39 | 1000 | 0.5216 | 86.4999 | | 0.0031 | 48.78 | 2000 | 0.5156 | 89.3545 | | 0.0017 | 73.17 | 3000 | 0.5267 | 89.7342 | | 0.0013 | 97.56 | 4000 | 0.5312 | 90.9781 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
AlirezaBaneshi/testPersianQA
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m language: - en tags: - LoRA - Lycoris - stable diffusion - ffxiv - final fantasy xiv - meteion --- # 24 Cans of Monster: Meteion FFXIV Lycoris Model Full previews are here at the moment: https://civitai.com/models/19689/24-cans-of-monster-meteion-ffxiv-endwalker-spoilers I will be adding those in a folder in about 5 minutes though! # WHAT GAME IS IT? Final Fantasy XIV, Meteion is a charachter in the most recent of expansions 6.0 / Endwalker. This includes both her WORLD ENDING form, and her birb form as well as her existenial crisis she needs a snickers and a can of technicolor goo. # Wait THIS IS A LYCORIS UPDATE! Yes you'll need this: https://github.com/KohakuBlueleaf/a1111-sd-webui-locon # Support Us! We stream a lot of our testing on twitch: https://www.twitch.tv/duskfallcrew any chance you can spare a coffee or three? https://ko-fi.com/DUSKFALLcrew If you want custom LoRA OR MODEL trained an option will become available on the Patreon: https://www.patreon.com/earthndusk # A Meme If you WILL: This LoRA will end the world if you don't each her the proper ettiqutte. ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/c20f5349-3f20-4d54-f452-7e07c9aaca00.png) No, the meme is not in the dataset, this is just a meme we had laying around. # Official Samples by Us using NyanMixAbsurdRes2: ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/00003-4151221668.png) ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/00005-621001286.png) ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/00007-1864954522.png) ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/00009-3758289519.png) ![24cansofmonster_0](https://huggingface.co/Duskfallcrew/24cansofmonster/resolve/main/Met24cans%20samples/00011-2386850701.png)
Aliskin/xlm-roberta-base-finetuned-marc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: unit4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Allybaby21/Allysai
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- <h1 align="center">arabert-finetuned-caner</h1> <p align="center">An ongoing project for implementation of NLP methods in the field of islamic studies.</p> ### Named Entity Recognition briefly: * We had to prepair CANERCorpus dataset which is avialable at [huggingface](https://huggingface.co/datasets/caner/). The dataset was not in the BIO format so model couldn't learn anything from it. We used an html version of dataset available on github and extracted a HuggingFace format dataset from it with BIO tags. * Fine tunning started from a pre-traind model named "bert-base-arabertv02" and after 3 epoch of training model on the above mentioned dataset (80% splitted to training data and 20% to validation data), reached the following results: (evaluation is done by using compute metrics of python evaluate module. note that precision is overall precision, recall is overall recall and so on.) ![alt text](./eval.jpg) * Trained model is available at [huggingface](https://huggingface.co/ArefSadeghian/arabert-finetuned-caner) and you can use it with the following code snippet: ```python !pip install transformers from transformers import pipeline model_checkpoint = "ArefSadeghian/arabert-finetuned-caner" # Replace this with above latest checkpoint token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" ) s = "ุญูŽุฏู‘ูŽุซูŽู†ูŽุง ุนูŽุจู’ุฏ ุงู„ู„ู‘ูŽู‡ูุŒ ุญูŽุฏู‘ูŽุซูŽู†ููŠ ุนูุจูŽูŠู’ุฏู ุงู„ู„ู‘ูŽู‡ู ุจู’ู†ู ุนูู…ูŽุฑูŽ ุงู„ู’ู‚ูŽูˆูŽุงุฑููŠุฑููŠู‘ูุŒ ุญูŽุฏู‘ูŽุซูŽู†ูŽุง ูŠููˆู†ูุณู ุจู’ู†ู ุฃูŽุฑู’ู‚ูŽู…ูŽุŒ ุญูŽุฏู‘ูŽุซูŽู†ูŽุง ูŠูŽุฒููŠุฏู ุจู’ู†ู ุฃูŽุจููŠ ุฒููŠูŽุงุฏูุŒ ุนูŽู†ู’ ุนูŽุจู’ุฏู ุงู„ุฑู‘ูŽุญู’ู…ูŽู†ู ุจู’ู†ู ุฃูŽุจููŠ ู„ูŽูŠู’ู„ูŽู‰ุŒ ู‚ูŽุงู„ูŽ ุดูŽู‡ูุฏู’ุชู ุนูŽู„ููŠู‘ู‹ุง ุฑูŽุถููŠูŽ ุงู„ู„ู‘ูŽู‡ู ุนูŽู†ู’ู‡ู ูููŠ ุงู„ุฑู‘ูŽุญูŽุจูŽุฉู ูŠูŽู†ู’ุดูุฏู ุงู„ู†ู‘ูŽุงุณูŽ ุฃูŽู†ู’ุดูุฏู ุงู„ู„ู‘ูŽู‡ูŽ ู…ูŽู†ู’ ุณูŽู…ูุนูŽ ุฑูŽุณููˆู„ูŽ ุงู„ู„ู‘ูŽู‡ู ุตูŽู„ู‘ูŽู‰ ุงู„ู„ู‘ูŽู‡ู ุนูŽู„ูŽูŠู’ู‡ู ูˆูŽุณูŽู„ู‘ูŽู…ูŽ ูŠูŽู‚ููˆู„ู ูŠูŽูˆู’ู…ูŽ ุบูŽุฏููŠุฑู ุฎูู…ู‘ู ู…ูŽู†ู’ ูƒูู†ู’ุชู ู…ูŽูˆู’ู„ูŽุงู‡ู ููŽุนูŽู„ููŠู‘ูŒ ู…ูŽูˆู’ู„ูŽุงู‡ู ู„ูŽู…ู‘ูŽุง ู‚ูŽุงู…ูŽ ููŽุดูŽู‡ูุฏูŽ ู‚ูŽุงู„ูŽ ุนูŽุจู’ุฏู ุงู„ุฑู‘ูŽุญู’ู…ูŽู†ู ููŽู‚ูŽุงู…ูŽ ุงุซู’ู†ูŽุง ุนูŽุดูŽุฑูŽ ุจูŽุฏู’ุฑููŠู‘ู‹ุง ูƒูŽุฃูŽู†ู‘ููŠ ุฃูŽู†ู’ุธูุฑู ุฅูู„ูŽู‰ ุฃูŽุญูŽุฏูู‡ูู…ู’ ููŽู‚ูŽุงู„ููˆุง ู†ูŽุดู’ู‡ูŽุฏู ุฃูŽู†ู‘ูŽุง ุณูŽู…ูุนู’ู†ูŽุง ุฑูŽุณููˆู„ูŽ ุงู„ู„ู‘ูŽู‡ู ุตูŽู„ู‘ูŽู‰ ุงู„ู„ู‘ูŽู‡ู ุนูŽู„ูŽูŠู’ู‡ู ูˆูŽุณูŽู„ู‘ูŽู…ูŽ ูŠูŽู‚ููˆู„ู ูŠูŽูˆู’ู…ูŽ ุบูŽุฏููŠุฑู ุฎูู…ู‘ู ุฃูŽู„ูŽุณู’ุชู ุฃูŽูˆู’ู„ูŽู‰ ุจูุงู„ู’ู…ูุคู’ู…ูู†ููŠู†ูŽ ู…ูู†ู’ ุฃูŽู†ู’ููุณูู‡ูู…ู’ ูˆูŽุฃูŽุฒู’ูˆูŽุงุฌููŠ ุฃูู…ู‘ูŽู‡ูŽุงุชูู‡ูู…ู’ ููŽู‚ูู„ู’ู†ูŽุง ุจูŽู„ูŽู‰ ูŠูŽุง ุฑูŽุณููˆู„ูŽ ุงู„ู„ู‘ูŽู‡ู ู‚ูŽุงู„ูŽ ููŽู…ูŽู†ู’ ูƒูู†ู’ุชู ู…ูŽูˆู’ู„ูŽุงู‡ู ููŽุนูŽู„ููŠู‘ูŒ ู…ูŽูˆู’ู„ูŽุงู‡ู ุงู„ู„ู‘ูŽู‡ูู…ู‘ูŽ ูˆูŽุงู„ู ู…ูŽู†ู’ ูˆูŽุงู„ูŽุงู‡ู ูˆูŽุนูŽุงุฏู ู…ูŽู†ู’ ุนูŽุงุฏูŽุงู‡ู" token_classifier(s) ``` * This model is deployed on a Huggingface space using Gradio. So you can use it online [here](https://huggingface.co/spaces/ArefSadeghian/ArefSadeghian-arabert-finetuned-caner)!
Aloka/mbart50-ft-si-en
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
Alstractor/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
40
null
# AMR prediction with LGBMClassifier models This repository contains a Python script for predicting antimicrobial resistance (AMR) using the LGBMClassifier model. The script reads input datasets from a directory, applies feature extraction techniques to obtain k-mer features, trains and tests the models using cross-validation, and outputs the results in text files. ![Retrospectives](https://user-images.githubusercontent.com/43249674/224884310-71214a69-3f27-4628-ad21-bb34c6daac45.jpg) ## Getting Started These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. ### Prerequisites This script requires the following Python libraries: pandas scikit-learn numpy tqdm lightgbm hyperopt joblib bayesian-optimization skopt ### Installing Clone the repository to your local machine and install the required libraries: ```bash $ git clone https://github.com/username/repo.git $ cd repo $ pip install -r requirements.txt ``` ### Usage To use the script, execute the following command: css Copy code ```bash $ python main.py ``` ## Code Structure The main script consists of several sections: 1 Import necessary libraries 2 Set seed for reproducibility 3 Define function to get list of models to evaluate 4 Load list of selected samples 5 Call function to get list of models 6 Initialize KFold cross-validation 7 Iterate over values of k to read the corresponding k-mer feature dataset 8 Iterate over the models list 9 Write results to text file ## Data Description The input datasets are CSV files containing bacterial genomic sequences and their corresponding resistance profiles for selected antibiotics. The script reads these files from a directory and applies k-mer feature extraction techniques to obtain numerical feature vectors. ## Models The script uses two models for AMR prediction: Random Forest and LGBMClassifier. ## Output The script outputs the results of each model to a text file in the specified output directory. The results include accuracy, precision, recall, F1 score, and area under the ROC curve. ## Authors Gabriel Sousa - gabrieltxs ## License This project is licensed under the MIT License - see the LICENSE.md file for details. [![MIT License](https://img.shields.io/badge/License-MIT-green.svg)](https://choosealicense.com/licenses/mit/)
Amalq/distilroberta-base-finetuned-anxiety-depression
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.31 +/- 21.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AmanPriyanshu/DistilBert-Sentiment-Analysis
[ "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1848.82 +/- 105.51 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AmazonScience/qanlu
[ "pytorch", "roberta", "question-answering", "en", "dataset:atis", "transformers", "license:cc-by-4.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
494
null
--- language: - en - cy pipeline_tag: translation tags: - translation - marian metrics: - bleu - cer - wer - wil - wip - chrf widget: - text: "The doctor will be late to attend to patients this morning." example_title: "Example 1" license: apache-2.0 model-index: - name: "mt-dspec-health-en-cy" results: - task: name: Translation type: translation metrics: - name: SacreBLEU type: bleu value: 54.16 - name: CER type: cer value: 0.31 - name: WER type: wer value: 0.47 - name: WIL type: wil value: 0.67 - name: WIP type: wip value: 0.33 - name: SacreBLEU CHRF type: chrf value: 69.03 --- # mt-dspec-health-en-cy A language translation model for translating between English and Welsh, specialised to the specific domain of Health and care. This model was trained using custom DVC pipeline employing [Marian NMT](https://marian-nmt.github.io/), the datasets prepared were generated from the following sources: - [UK Government Legislation data](https://www.legislation.gov.uk) - [OPUS-cy-en](https://opus.nlpl.eu/) - [Cofnod Y Cynulliad](https://record.assembly.wales/) - [Cofion Techiaith Cymru](https://cofion.techiaith.cymru) The data was split into train, validation and tests sets, the test set containing health-specific segments from TMX files selected at random from the [Cofion Techiaith Cymru](https://cofion.techiaith.cymru) website, which have been pre-classified as pertaining to the specific domain. Having extracted the test set, the aggregation of remaining data was then split into 10 training and validation sets, and fed into 10 marian training sessions. A website demonstrating use of this model is available at http://cyfieithu.techiaith.cymru. ## Evaluation Evaluation was done using the python libraries [SacreBLEU](https://github.com/mjpost/sacrebleu) and [torchmetrics](https://torchmetrics.readthedocs.io/en/stable/). ## Usage Ensure you have the prerequisite python libraries installed: ```bash pip install transformers sentencepiece ``` ```python import trnasformers model_id = "techiaith/mt-spec-health-en-cy" tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_id) translate = transformers.pipeline("translation", model=model, tokenizer=tokenizer) translated = translate("The doctor will be late to attend to patients this morning.") print(translated["translation_text"]) ```
Amba/wav2vec2-large-xls-r-300m-tr-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - cy license: apache-2.0 pipeline_tag: translation tags: - translation - marian metrics: - bleu - cer - chrf - cer - wer - wil - wip widget: - text: "The Curriculum and Assessment (Wales) Act 2021 (the Act) established the Curriculum for Wales and replaced the general curriculum used up until that point." example_title: "Example 1" model-index: - name: mt-dspec-legislation-en-cy results: - task: name: Translation type: translation metrics: - type: bleu value: 65.51 - type: cer value: 0.28 - type: chrf value: 74.69 - type: wer value: 0.39 - type: wil value: 0.54 - type: wip value: 0.46 --- # mt-dspec-legislation-en-cy A language translation model for translating between English and Welsh, specialised to the specific domain of Legislation. This model was trained using custom DVC pipeline employing [Marian NMT](https://marian-nmt.github.io/), the datasets prepared were generated from the following sources: - [UK Government Legislation data](https://www.legislation.gov.uk) - [OPUS-cy-en](https://opus.nlpl.eu/) - [Cofnod Y Cynulliad](https://record.assembly.wales/) - [Cofion Techiaith Cymru](https://cofion.techiaith.cymru) The data was split into train, validation and test sets; the test set containing legislation-specific segments were selected randomly from TMX files originating from the [Cofion Techiaith Cymru](https://cofion.techiaith.cymru) website, which have been pre-classified as pertaining to the specific domain, and data files scraped from the UK Government Legislation website. Having extracted the test set, the aggregation of remaining data was then split into 10 training and validation sets, and fed into 10 marian training sessions. ## Evaluation Evaluation scores were produced using the python libraries [SacreBLEU](https://github.com/mjpost/sacrebleu) and [torchmetrics](https://torchmetrics.readthedocs.io/en/stable/). ## Usage Ensure you have the prerequisite python libraries installed: ```bsdh pip install transformers sentencepiece ``` ```python import trnasformers model_id = "techiaith/mt-spec-health-en-cy" tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_id) translate = transformers.pipeline("translation", model=model, tokenizer=tokenizer) translated = translate( "The Curriculum and Assessment (Wales) Act 2021 (the Act) " "established the Curriculum for Wales and replaced the general " "curriculum used up until that point." ) print(translated["translation_text"]) ```
Andranik/TestQaV1
[ "pytorch", "rust", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.67 +/- 18.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AndrewNLP/redditDepressionPropensityClassifiers
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_decay results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_decay** Agent Playing **CartPole-v1** This is a trained model of a DQPN_decay agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_decay.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_decay]" python -m cleanrl_utils.enjoy --exp-name DQPN_decay --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed1/raw/main/dqpn_decay.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_decay.py --exp-name DQPN_decay --seed 1 --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk ``` # Hyperparameters ```python {'alg_type': 'dqpn_decay.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'end_policy_network_frequency': 200, 'env_id': 'CartPole-v1', 'evaluation_fraction': 0.7, 'exp_name': 'DQPN_decay', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'start_policy_network_frequency': 10000, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Andrey1989/mbart-finetuned-en-to-kk
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_decay results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_decay** Agent Playing **CartPole-v1** This is a trained model of a DQPN_decay agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_decay.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_decay]" python -m cleanrl_utils.enjoy --exp-name DQPN_decay --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed3/raw/main/dqpn_decay.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQPN_decay-seed3/raw/main/poetry.lock poetry install --all-extras python dqpn_decay.py --exp-name DQPN_decay --seed 3 --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk ``` # Hyperparameters ```python {'alg_type': 'dqpn_decay.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'end_policy_network_frequency': 200, 'env_id': 'CartPole-v1', 'evaluation_fraction': 0.7, 'exp_name': 'DQPN_decay', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_tau': 1.0, 'save_model': True, 'seed': 3, 'start_e': 1.0, 'start_policy_network_frequency': 10000, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Andrey78/my_nlp_test_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en thumbnail: http://www.huggingtweets.com/barackobama-joebiden-realdonaldtrump/1678850778048/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/874276197357596672/kUuht00m_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1329647526807543809/2SGvnHYV_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Donald J. Trump & Joe Biden & Barack Obama</div> <div style="text-align: center; font-size: 14px;">@barackobama-joebiden-realdonaldtrump</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Donald J. Trump & Joe Biden & Barack Obama. | Data | Donald J. Trump | Joe Biden | Barack Obama | | --- | --- | --- | --- | | Tweets downloaded | 3173 | 3250 | 3250 | | Retweets | 1077 | 661 | 321 | | Short tweets | 519 | 26 | 19 | | Tweets kept | 1577 | 2563 | 2910 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/br58nwn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barackobama-joebiden-realdonaldtrump's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13j83o80) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13j83o80/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/barackobama-joebiden-realdonaldtrump') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Andrianos/bert-base-greek-punctuation-prediction-finetuned
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit datasets: - koliskos/fake_news language: - en --- # Model Card for Model ID Model is used to detect whether a news story is fake or legitimate. - **Developed by:** koliskos - **Model type:** Text Classification - **Language(s) (NLP):** English - **License:** mit - **Finetuned from model:** DistilBERT - **Repository:** koliskos/fine_tuned_fake_news_classifier ## Uses This model is meant to classify news articles as real or fake. ## Bias, Risks, and Limitations This model could potentially assume "fake" to be the default prediction for news stories that contain names that are seen heavily within fake news articles, ex: a news story about someone named Hillary may be labeled fake even if it is real because the name Hillary is heavily grounded within the context of Hillary Clinton. ## Model Card Contact spkolisko "at" wellesley.edu
AnonymousSub/AR_consert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-RealLifeViolenceSituations-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-RealLifeViolenceSituations-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1618 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 800 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.1065 | 0.25 | 200 | 0.9598 | 0.1470 | | 0.067 | 1.25 | 400 | 0.9625 | 0.1415 | | 0.0058 | 2.25 | 600 | 0.9625 | 0.1415 | | 0.0274 | 3.25 | 800 | 0.9625 | 0.1415 | | 0.0274 | 1.0 | 801 | 0.1411 | 0.9626 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-15T05:40:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-confluence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-confluence This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: xlm-roberta-clickbait-spoiling-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-clickbait-spoiling-2 This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 400 | 2.7691 | | 3.0496 | 2.0 | 800 | 2.7095 | | 2.4457 | 3.0 | 1200 | 2.7918 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/SR_declutr
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93052 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2372 - Accuracy: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2346 | 1.0 | 1563 | 0.1895 | 0.9280 | | 0.1531 | 2.0 | 3126 | 0.2372 | 0.9305 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/SR_rule_based_bert_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit --- Pretrained models of our method **DirectMHP** Title: *DirectMHP: Direct 2D Multi-Person Head Pose Estimation with Full-range Angles* Paper link: https://arxiv.org/abs/2302.01110 Code link: https://github.com/hnuzhy/DirectMHP # Mulit-Person Head Pose Estimation Task (trained on CMU-HPE) * DirectMHP-S --> [cmu_s_1280_e200_t40_lw010_best.pt](./cmu_s_1280_e200_t40_lw010_best.pt) * DirectMHP-M --> [cmu_m_1280_e200_t40_lw010_best.pt](./cmu_m_1280_e200_t40_lw010_best.pt) # Mulit-Person Head Pose Estimation Task (trained on AGORA-HPE) * DirectMHP-S --> [agora_s_1280_e300_t40_lw010_best.pt](./agora_s_1280_e300_t40_lw010_best.pt) * DirectMHP-M --> [agora_m_1280_e300_t40_lw010_best.pt](./agora_m_1280_e300_t40_lw010_best.pt) # Single HPE datasets with YOLOv5+COCO format * Resorted images used in our DirectMHP: [300W-LP.zip](./300W_LP.zip), [AFLW2000.zip](./AFLW2000.zip) and [BIWI_test.zip](./BIWI_test.zip). * Resorted corresponding json files: [train_300W_LP.json](./train_300W_LP.json), [val_AFLW2000.json](./val_AFLW2000.json) and [BIWI_test.json](./BIWI_test.json). # Single HPE Task Pretrained on WiderFace and Finetuning on 300W-LP * DirectMHP-S --> [300wlp_s_512_e50_finetune_best.pt](./300wlp_s_512_e50_finetune_best.pt) * DirectMHP-M --> [300wlp_m_512_e50_finetune_best.pt](./300wlp_m_512_e50_finetune_best.pt) # Single HPE SixDRepNet Re-trained on AGORA-HPE and CMU-HPE * AGORA-HPE --> [SixDRepNet_AGORA_bs256_e100_epoch_last.pth](./SixDRepNet_AGORA_bs256_e100_epoch_last.pth) * CMU-HPE --> [SixDRepNet_CMU_bs256_e100_epoch_last.pth](./SixDRepNet_CMU_bs256_e100_epoch_last.pth)
AnonymousSub/SR_rule_based_hier_quadruplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-03-15T06:30:59Z
--- license: mit language: - en --- # BERT-Tiny (uncased) This is the smallest version of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) released by [google-research/bert](https://github.com/google-research/bert). These BERT models was released as TensorFlow checkpoints, however, this is the converted version to PyTorch. More information can be found in [google-research/bert](https://github.com/google-research/bert) or [lyeoni/convert-tf-to-pytorch](https://github.com/lyeoni/convert-tf-to-pytorch). ## Evaluation Here are the evaluation scores (F1/Accuracy) for the MPRC task. |Model|MRPC| |-|:-:| |BERT-Tiny|81.22/68.38| |BERT-Mini|81.43/69.36| |BERT-Small|81.41/70.34| |BERT-Medium|83.33/73.53| |BERT-Base|85.62/78.19| ### References ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ```
AnonymousSub/SR_rule_based_hier_triplet_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-03-15T06:33:28Z
--- language: - en datasets: - en_core_web_sm thumbnail: >- https://huggingface.co/giovannefeitosa/chatbot-about-pele/raw/main/images/pele.jpeg tags: - question-answering - chatbot - brazil license: cc-by-nc-4.0 pipeline_tag: text2text-generation library_name: sklearn --- # Chatbot about Pele This is demo project. > library_name: sklearn
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit language: - ko --- # Kconvo-roberta: Korean conversation RoBERTa ([github](https://github.com/HeoTaksung/Domain-Robust-Retraining-of-Pretrained-Language-Model)) - There are many PLMs (Pretrained Language Models) for Korean, but most of them are trained with written language. - Here, we introduce a retrained PLM for prediction of Korean conversation data where we use verbal data for training. ## Usage ```python # Kconvo-roberta from transformers import RobertaTokenizerFast, RobertaModel tokenizer_roberta = RobertaTokenizerFast.from_pretrained("yeongjoon/Kconvo-roberta") model_roberta = RobertaModel.from_pretrained("yeongjoon/Kconvo-roberta") ``` ----------------- ## Domain Robust Retraining of Pretrained Language Model - Kconvo-roberta uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the base model and retrained additionaly with the conversation dataset. - The retrained dataset was collected through the [National Institute of the Korean Language](https://corpus.korean.go.kr/request/corpusRegist.do) and [AI-Hub](https://www.aihub.or.kr/aihubdata/data/list.do?pageIndex=1&currMenu=115&topMenu=100&dataSetSn=&srchdataClCode=DATACL001&srchOrder=&SrchdataClCode=DATACL002&searchKeyword=&srchDataRealmCode=REALM002&srchDataTy=DATA003), and the collected dataset is as follows. ``` - National Institute of the Korean Language * ์˜จ๋ผ์ธ ๋Œ€ํ™” ๋ง๋ญ‰์น˜ 2021 * ์ผ์ƒ ๋Œ€ํ™” ๋ง๋ญ‰์น˜ 2020 * ๊ตฌ์–ด ๋ง๋ญ‰์น˜ * ๋ฉ”์‹ ์ € ๋ง๋ญ‰์น˜ - AI-Hub * ์˜จ๋ผ์ธ ๊ตฌ์–ด์ฒด ๋ง๋ญ‰์น˜ ๋ฐ์ดํ„ฐ * ์ƒ๋‹ด ์Œ์„ฑ * ํ•œ๊ตญ์–ด ์Œ์„ฑ * ์ž์œ ๋Œ€ํ™” ์Œ์„ฑ(์ผ๋ฐ˜๋‚จ์—ฌ) * ์ผ์ƒ์ƒํ™œ ๋ฐ ๊ตฌ์–ด์ฒด ํ•œ-์˜ ๋ฒˆ์—ญ ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ ๋ฐ์ดํ„ฐ * ํ•œ๊ตญ์ธ ๋Œ€ํ™”์Œ์„ฑ * ๊ฐ์„ฑ ๋Œ€ํ™” ๋ง๋ญ‰์น˜ * ์ฃผ์ œ๋ณ„ ํ…์ŠคํŠธ ์ผ์ƒ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ * ์šฉ๋„๋ณ„ ๋ชฉ์ ๋Œ€ํ™” ๋ฐ์ดํ„ฐ * ํ•œ๊ตญ์–ด SNS ```
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1369 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 136, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: indonesian_financial_sentiment_analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indonesian_financial_sentiment_analysis This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Accuracy: 0.9560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 102 | 0.1650 | 0.9396 | | No log | 2.0 | 204 | 0.1788 | 0.9560 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Perse90/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
AnonymousSub/bert_mean_diff_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-15T07:54:09Z
--- library_name: keras license: apache-2.0 datasets: - kailashsp/class-images pipeline_tag: text-to-image --- ## Model description This is a Stable Diffusion model fine-tuned using Dreambooth on pokemon to get cuter pokemons ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | inner_optimizer.class_name | Custom>RMSprop | | inner_optimizer.config.name | RMSprop | | inner_optimizer.config.weight_decay | None | | inner_optimizer.config.clipnorm | None | | inner_optimizer.config.global_clipnorm | None | | inner_optimizer.config.clipvalue | None | | inner_optimizer.config.use_ema | False | | inner_optimizer.config.ema_momentum | 0.99 | | inner_optimizer.config.ema_overwrite_frequency | 100 | | inner_optimizer.config.jit_compile | True | | inner_optimizer.config.is_legacy_optimizer | False | | inner_optimizer.config.learning_rate | 0.0010000000474974513 | | inner_optimizer.config.rho | 0.9 | | inner_optimizer.config.momentum | 0.0 | | inner_optimizer.config.epsilon | 1e-07 | | inner_optimizer.config.centered | False | | dynamic | True | | initial_scale | 32768.0 | | dynamic_growth_steps | 2000 | | training_precision | mixed_float16 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
AnonymousSub/bert_mean_diff_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-15T07:55:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-finetuned-cryptos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-cryptos This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8215 - Accuracy: 0.7346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 65 | 0.7617 | 0.6923 | | No log | 2.0 | 130 | 0.7784 | 0.7269 | | No log | 3.0 | 195 | 0.8215 | 0.7346 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2
AnonymousSub/bert_triplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit language: - en --- # BERT-Medium (uncased) This is one of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) released by [google-research/bert](https://github.com/google-research/bert). These BERT models was released as TensorFlow checkpoints, however, this is the converted version to PyTorch. More information can be found in [google-research/bert](https://github.com/google-research/bert) or [lyeoni/convert-tf-to-pytorch](https://github.com/lyeoni/convert-tf-to-pytorch). ## Evaluation Here are the evaluation scores (F1/Accuracy) for the MPRC task. |Model|MRPC| |-|:-:| |BERT-Tiny|81.22/68.38| |BERT-Mini|81.43/69.36| |BERT-Small|81.41/70.34| |BERT-Medium|83.33/73.53| |BERT-Base|85.62/78.19| ### References ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ```
AnonymousSub/cline-emanuals-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ### How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousSub/cline-s10-AR
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2023-03-15T08:05:48Z
--- license: mit language: - en --- # BERT-Small (uncased) This is one of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) released by [google-research/bert](https://github.com/google-research/bert). These BERT models was released as TensorFlow checkpoints, however, this is the converted version to PyTorch. More information can be found in [google-research/bert](https://github.com/google-research/bert) or [lyeoni/convert-tf-to-pytorch](https://github.com/lyeoni/convert-tf-to-pytorch). ## Evaluation Here are the evaluation scores (F1/Accuracy) for the MPRC task. |Model|MRPC| |-|:-:| |BERT-Tiny|81.22/68.38| |BERT-Mini|81.43/69.36| |BERT-Small|81.41/70.34| |BERT-Medium|83.33/73.53| |BERT-Base|85.62/78.19| ### References ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ```
AnonymousSub/cline-s10-SR
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T08:07:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.94 +/- 17.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/cline
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: T5_Translation_ko_jp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # KoT5_Translate_ko_jp This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3331 - Bleu: 44.5463 ## Model description ํ•œ๊ตญ์–ด-์ผ๋ณธ์–ด ๋ฒˆ์—ญ๊ธฐ ๋ชจ๋ธ์„ ์œ„ํ•ด์„œ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. KETI-AIR๋‹˜์ด ๊ณต์œ ํ•ด์ฃผ์‹  ke-t5-base์— Text2Text Task๋กœ ํ•œ๊ตญ์–ด-์ผ๋ณธ์–ด Translate๋ฅผ ์œ„ํ•ด์„œ Fine-Tuning ์ง„ํ–‰ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ## Training and evaluation data [noahkim/Kor_Jpn_Translation_Dataset](https://huggingface.co/datasets/noahkim/Kor_Jpn_Translation_Dataset) ์ œ๊ฐ€ AIHub์—์„œ ๋‹ค์šด ๋ฐ›์•„ ํ—ˆ๊น…ํŽ˜์ด์Šค์— ๊ณต์œ ํ•œ ํ•œ๊ตญ์–ด-์ผ๋ณธ์–ด ๋ฌธํ™” ๋ถ„์•ผ ์ด์ค‘ ๋ง๋ญ‰์น˜๋ฅผ Fine-Tuning ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ™œ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค. ## Supported Tasks and Leaderboards Translation ## Languages Kor Jpan ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 3.8739 | 0.08 | 500 | 1.7216 | 3.3261 | | 1.2621 | 0.15 | 1000 | 0.6792 | 28.6184 | | 0.7413 | 0.23 | 1500 | 0.5153 | 35.9355 | | 0.635 | 0.3 | 2000 | 0.4807 | 38.4874 | | 0.5643 | 0.38 | 2500 | 0.4322 | 40.7997 | | 0.5137 | 0.46 | 3000 | 0.4027 | 41.9025 | | 0.4806 | 0.53 | 3500 | 0.3862 | 42.5947 | | 0.4552 | 0.61 | 4000 | 0.3721 | 42.9976 | | 0.4395 | 0.69 | 4500 | 0.3585 | 43.5369 | | 0.4213 | 0.76 | 5000 | 0.3487 | 44.0028 | | 0.411 | 0.84 | 5500 | 0.3418 | 44.1845 | | 0.3992 | 0.91 | 6000 | 0.3348 | 44.3701 | | 0.3966 | 0.99 | 6500 | 0.3331 | 44.5463 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/cline_emanuals
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "LecbertForPreTraining" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: creativeml-openrail-m datasets: - Duskfallcrew/FFXIV_Data_and_Lora - Duskfallcrew/miqoteupdate language: - en tags: - Lycoris - LoHA - Lora - stable diffusion - text to image - ffxiv - miqote --- Output udpates coming soon, we have some but if you need to see them before we put them here- we have the models up on Civit: https://civitai.com/models/14823 Data sets listed because one is private - this was because the LoRA trainer had a subject option to upload data to here but i forgot we did it already . Data set here: https://huggingface.co/datasets/Duskfallcrew/FFXIV_Data_and_Lora Also noted: The MIQOTE UPDATE LoRA is a LYCORIS/LoHA and needs the special A1111 plugin: https://github.com/KohakuBlueleaf/a1111-sd-webui-locon
AnonymousSub/consert-emanuals-s10-SR
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('darren-01/sd-class-butterflies-32') image = pipeline().images[0] image ```
AnonymousSub/consert-s10-AR
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- library_name: stable-baselines3 tags: - Taxi-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward verified: false --- # **DQN** Agent playing **Taxi-v3** This is a trained model of a **DQN** agent playing **Taxi-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AnonymousSub/declutr-emanuals-techqa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-15T08:25:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: generative_reader_nq_squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # generative_reader_nq_squad_v2 This model is a fine-tuned version of [Atnafu/mt5-base-squad2-fin](https://huggingface.co/Atnafu/mt5-base-squad2-fin) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/declutr-model
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-15T08:26:35Z
# โ– hakoA & hakoB ![sample5](https://huggingface.co/852wa/hako/resolve/main/img/05.png) ![sample6](https://huggingface.co/852wa/hako/resolve/main/img/06.png) ![sample7](https://huggingface.co/852wa/hako/resolve/main/img/07.png) ![sample8](https://huggingface.co/852wa/hako/resolve/main/img/08.png) I conducted custom fine-tuning on wd15-beta2-aesthetic, which is based on the SD2.1 architecture, available at https://huggingface.co/waifu-diffusion/wd-1-5-beta2. SD2.1็ณปใงใ‚ใ‚‹wd15-beta2-aesthetic https://huggingface.co/waifu-diffusion/wd-1-5-beta2ใ€€ ใซๅฏพใ—ใฆ็‹ฌ่‡ชใฎ่ฟฝๅŠ ๅญฆ็ฟ’ใ‚’่กŒใ„ใพใ—ใŸใ€‚ # โ– Setting It is recommended to use "(anime:1.2)" as the prompt and "nsfw,messy,blush,nfixer" as the negative prompt. If the output is not at least 768 pixels on the shorter side, there is a possibility that the facial features may be distorted. "(anime:1.2)" creates a flat, anime-like image style. promptใซใฏใ€Œ(anime:1.2)ใ€ negative promptใซใฏใ€Œnsfw,messy,blush,nfixerใ€ ใ‚’ๅ…ฅใ‚Œใ‚‹ใ“ใจใ‚’ใŠใ™ใ™ใ‚ใ—ใพใ™ใ€‚ ใ€Œ(anime:1.2)ใ€ใฏใƒ•ใƒฉใƒƒใƒˆใชใ‚ขใƒ‹ใƒก่ชฟใฎใ‚คใƒกใƒผใ‚ธใซใชใ‚Šใพใ™ใ€‚ ็Ÿญ่พบใŒ768pxไปฅไธŠใงใฎๅ‡บๅŠ›ใงใชใ„ๅ ดๅˆใ€้ก”ใฎๆ็”ปใŒๅดฉใ‚Œใ‚‹ๅฏ่ƒฝๆ€งใŒใ‚ใ‚Šใพใ™ใ€‚ # โ– Licence Model hakoA and hakoB are released under the Fair AI Public License 1.0-SD. Please refer to the following link for the license terms: https://freedevproject.org/faipl-1.0-sd/ hakoAใ€hakoBใฏFair AI Public License 1.0-SDใฎใƒฉใ‚คใ‚ปใƒณใ‚นไธ‹ใงใฎๅ…ฌ้–‹ใงใ™ใ€‚ ไธ‹่จ˜ใƒฉใ‚คใ‚ปใƒณใ‚นๅ†…ๅฎนใ‚’็ขบ่ชใใ ใ•ใ„ใ€‚ https://freedevproject.org/faipl-1.0-sd/ ![sample1](https://huggingface.co/852wa/hako/resolve/main/img/01.png) ``` (anime:1.2),(hyper extreme detailed:1.0),amazing quality,Beautiful Illustration,1girl,breasts,maid_apron,happy smile,cafe with waitresses dressed in cute maid costumes Negative prompt: nsfw,messy,blush,nfixer, Steps: 28, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 1386462091, Size: 768x1152 ``` ![sample2](https://huggingface.co/852wa/hako/resolve/main/img/02.png) ``` (anime:1.2),( stylish pose:1.1), (smile:1), (king (throne:1.1) :1.3), Negative prompt: nsfw,messy,blush,nfixer, Steps: 28, Sampler: DPM++ SDE Karras, CFG scale: 5, Seed: 2137539252, Size: 768x1152 ``` ![sample3](https://huggingface.co/852wa/hako/resolve/main/img/03.png) ``` (anime:1.2),(masterpiece:1.2), (high quality:1.2), (watercolor painting:1.1),anatomy,1 girl,solo,(cowboy shot:1.1), perfect face,18yo,(from front),school girl, black hair,black cardigan,ribbon,(white hat:1.1),closed eyes,arms behind back,tree,calm,(darkness lighting:1.4),(night:1.4), standing ,kawaii face, depth of field Negative prompt: nsfw,messy,blush,nfixer, Steps: 28, Sampler: DPM++ SDE Karras, CFG scale: 5, Seed: 260664233, Size: 768x1152 ``` ![sample4](https://huggingface.co/852wa/hako/resolve/main/img/04.png) ``` (anime:1.2),(1girl, 12yo, flat:1.2)white dress outdoor Negative prompt: nsfw,messy,blush,nfixer, Steps: 28, Sampler: DPM++ SDE Karras, CFG scale: 5, Seed: 2617311573, Size: 768x1152 ```
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-15T08:58:08Z
--- tags: - autotrain - vision - image-classification datasets: - mouss/autotrain-data-bikes_1 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.41665410499999395 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 41171106189 - CO2 Emissions (in grams): 0.4167 ## Validation Metrics - Loss: 0.368 - Accuracy: 0.818 - Precision: 0.882 - Recall: 0.789 - AUC: 0.921 - F1: 0.833
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T09:32:36Z
1 OneCount: 8619 -- Precision: 0.875624 0 ZeroCount: 345 -- Precision: 0.785507
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa_copy
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T10:11:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.0767 | 1.0 | 794 | 3.7406 | | 3.8158 | 2.0 | 1588 | 3.6718 | | 3.7557 | 3.0 | 2382 | 3.6302 | | 3.6758 | 4.0 | 3176 | 3.5968 | | 3.6383 | 5.0 | 3970 | 3.5704 | | 3.5762 | 6.0 | 4764 | 3.5524 | | 3.5415 | 7.0 | 5558 | 3.5360 | | 3.5116 | 8.0 | 6352 | 3.5195 | | 3.485 | 9.0 | 7146 | 3.5116 | | 3.4587 | 10.0 | 7940 | 3.5033 | | 3.429 | 11.0 | 8734 | 3.4950 | | 3.4179 | 12.0 | 9528 | 3.4882 | | 3.3985 | 13.0 | 10322 | 3.4845 | | 3.3812 | 14.0 | 11116 | 3.4825 | | 3.3671 | 15.0 | 11910 | 3.4795 | | 3.3547 | 16.0 | 12704 | 3.4751 | | 3.3472 | 17.0 | 13498 | 3.4744 | | 3.3393 | 18.0 | 14292 | 3.4743 | | 3.3334 | 19.0 | 15086 | 3.4740 | | 3.3309 | 20.0 | 15880 | 3.4740 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-15T10:13:18Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 521.50 +/- 219.83 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Christian90 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Christian90 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Christian90 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-15T10:14:42Z
# Vocabulary Trimmed [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg): `vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-5000` This model is a trimmed version of [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-koquad-qg | vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-5000 | |:---------------------------|:---------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 49,184,128 | | parameter_size_embedding | 256,103,424 | 5,122,048 | | vocab_size | 250,101 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 5000 | 2 |
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T10:14:49Z
# Vocabulary Trimmed [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg): `vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-5000` This model is a trimmed version of [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-ruquad-qg | vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-5000 | |:---------------------------|:---------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 49,185,152 | | parameter_size_embedding | 256,103,424 | 5,123,072 | | vocab_size | 250,101 | 5,003 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 5000 | 2 |
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
2023-03-15T10:15:01Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg): `vocabtrimmer/mt5-small-esquad-qg-trimmed-es-5000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg | vocabtrimmer/mt5-small-esquad-qg-trimmed-es-5000 | |:---------------------------|:---------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 49,185,152 | | parameter_size_embedding | 256,103,424 | 5,123,072 | | vocab_size | 250,101 | 5,003 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 5000 | 2 |
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-03-15T10:15:02Z
# Vocabulary Trimmed [lmqg/mt5-small-frquad-qg](https://huggingface.co/lmqg/mt5-small-frquad-qg): `vocabtrimmer/mt5-small-frquad-qg-trimmed-fr-5000` This model is a trimmed version of [lmqg/mt5-small-frquad-qg](https://huggingface.co/lmqg/mt5-small-frquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-frquad-qg | vocabtrimmer/mt5-small-frquad-qg-trimmed-fr-5000 | |:---------------------------|:---------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 49,185,152 | | parameter_size_embedding | 256,103,424 | 5,123,072 | | vocab_size | 250,101 | 5,003 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 5000 | 2 |
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T10:15:05Z
# Vocabulary Trimmed [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg): `vocabtrimmer/mt5-small-itquad-qg-trimmed-it-5000` This model is a trimmed version of [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-itquad-qg | vocabtrimmer/mt5-small-itquad-qg-trimmed-it-5000 | |:---------------------------|:---------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 49,185,152 | | parameter_size_embedding | 256,103,424 | 5,123,072 | | vocab_size | 250,101 | 5,003 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 5000 | 2 |
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-15T10:30:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: clinico-roberta-biomedical-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinico-roberta-biomedical-finetuned This model is a fine-tuned version of [joheras/roberta-base-biomedical-clinical-es-finetuned-clinais](https://huggingface.co/joheras/roberta-base-biomedical-clinical-es-finetuned-clinais) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9272 - Precision: 0.5095 - Recall: 0.6463 - F1: 0.5698 - Accuracy: 0.8623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2199 | 0.0033 | 0.0053 | 0.0040 | 0.5756 | | No log | 2.0 | 50 | 0.7306 | 0.2031 | 0.2642 | 0.2296 | 0.8021 | | No log | 3.0 | 75 | 0.6366 | 0.2967 | 0.3811 | 0.3336 | 0.8235 | | No log | 4.0 | 100 | 0.6135 | 0.3497 | 0.4653 | 0.3993 | 0.8304 | | No log | 5.0 | 125 | 0.5845 | 0.3421 | 0.4537 | 0.3900 | 0.8331 | | No log | 6.0 | 150 | 0.5697 | 0.3307 | 0.4421 | 0.3784 | 0.8390 | | No log | 7.0 | 175 | 0.5415 | 0.3211 | 0.4495 | 0.3746 | 0.8471 | | No log | 8.0 | 200 | 0.5430 | 0.3589 | 0.5179 | 0.4240 | 0.8567 | | No log | 9.0 | 225 | 0.5513 | 0.3342 | 0.5474 | 0.4150 | 0.8604 | | No log | 10.0 | 250 | 0.5681 | 0.3769 | 0.5768 | 0.4559 | 0.8582 | | No log | 11.0 | 275 | 0.5813 | 0.3756 | 0.5863 | 0.4579 | 0.8553 | | No log | 12.0 | 300 | 0.6096 | 0.4181 | 0.5968 | 0.4918 | 0.8574 | | No log | 13.0 | 325 | 0.6318 | 0.3978 | 0.6042 | 0.4797 | 0.8539 | | No log | 14.0 | 350 | 0.6309 | 0.3892 | 0.5968 | 0.4711 | 0.8553 | | No log | 15.0 | 375 | 0.6559 | 0.3987 | 0.5968 | 0.4781 | 0.8565 | | No log | 16.0 | 400 | 0.6391 | 0.4275 | 0.6021 | 0.5 | 0.8560 | | No log | 17.0 | 425 | 0.6812 | 0.4388 | 0.6074 | 0.5095 | 0.8584 | | No log | 18.0 | 450 | 0.6901 | 0.4287 | 0.6137 | 0.5048 | 0.8563 | | No log | 19.0 | 475 | 0.6834 | 0.4572 | 0.6074 | 0.5217 | 0.8581 | | 0.3478 | 20.0 | 500 | 0.7050 | 0.4397 | 0.6179 | 0.5138 | 0.8573 | | 0.3478 | 21.0 | 525 | 0.7004 | 0.4462 | 0.6242 | 0.5204 | 0.8591 | | 0.3478 | 22.0 | 550 | 0.7038 | 0.4264 | 0.6126 | 0.5028 | 0.8599 | | 0.3478 | 23.0 | 575 | 0.7384 | 0.4416 | 0.6284 | 0.5187 | 0.8576 | | 0.3478 | 24.0 | 600 | 0.7197 | 0.4479 | 0.62 | 0.5201 | 0.8619 | | 0.3478 | 25.0 | 625 | 0.7412 | 0.4381 | 0.6221 | 0.5141 | 0.8559 | | 0.3478 | 26.0 | 650 | 0.7535 | 0.4489 | 0.6242 | 0.5222 | 0.8566 | | 0.3478 | 27.0 | 675 | 0.7534 | 0.4657 | 0.6432 | 0.5402 | 0.8586 | | 0.3478 | 28.0 | 700 | 0.7672 | 0.4525 | 0.6168 | 0.5220 | 0.8567 | | 0.3478 | 29.0 | 725 | 0.7680 | 0.4637 | 0.6316 | 0.5348 | 0.8599 | | 0.3478 | 30.0 | 750 | 0.7590 | 0.4611 | 0.6242 | 0.5304 | 0.8607 | | 0.3478 | 31.0 | 775 | 0.7671 | 0.4732 | 0.6326 | 0.5414 | 0.8625 | | 0.3478 | 32.0 | 800 | 0.7921 | 0.4674 | 0.6337 | 0.5380 | 0.8590 | | 0.3478 | 33.0 | 825 | 0.8037 | 0.4828 | 0.6358 | 0.5488 | 0.8574 | | 0.3478 | 34.0 | 850 | 0.8376 | 0.4644 | 0.6242 | 0.5326 | 0.8534 | | 0.3478 | 35.0 | 875 | 0.8346 | 0.4815 | 0.6284 | 0.5452 | 0.8552 | | 0.3478 | 36.0 | 900 | 0.8249 | 0.4750 | 0.6305 | 0.5418 | 0.8567 | | 0.3478 | 37.0 | 925 | 0.8420 | 0.4580 | 0.6305 | 0.5306 | 0.8548 | | 0.3478 | 38.0 | 950 | 0.8341 | 0.4773 | 0.6305 | 0.5433 | 0.8550 | | 0.3478 | 39.0 | 975 | 0.8085 | 0.4792 | 0.6316 | 0.5450 | 0.8653 | | 0.0274 | 40.0 | 1000 | 0.7954 | 0.4992 | 0.6474 | 0.5637 | 0.8651 | | 0.0274 | 41.0 | 1025 | 0.8145 | 0.4923 | 0.6421 | 0.5573 | 0.8635 | | 0.0274 | 42.0 | 1050 | 0.8290 | 0.4911 | 0.6368 | 0.5545 | 0.8610 | | 0.0274 | 43.0 | 1075 | 0.8468 | 0.4821 | 0.6379 | 0.5492 | 0.8571 | | 0.0274 | 44.0 | 1100 | 0.8274 | 0.4791 | 0.6389 | 0.5476 | 0.8625 | | 0.0274 | 45.0 | 1125 | 0.8583 | 0.4831 | 0.6305 | 0.5470 | 0.8551 | | 0.0274 | 46.0 | 1150 | 0.8420 | 0.4726 | 0.6347 | 0.5418 | 0.8589 | | 0.0274 | 47.0 | 1175 | 0.8631 | 0.5029 | 0.64 | 0.5632 | 0.8564 | | 0.0274 | 48.0 | 1200 | 0.8421 | 0.4911 | 0.64 | 0.5558 | 0.8617 | | 0.0274 | 49.0 | 1225 | 0.8564 | 0.5071 | 0.6411 | 0.5662 | 0.8631 | | 0.0274 | 50.0 | 1250 | 0.8659 | 0.4845 | 0.6263 | 0.5464 | 0.8603 | | 0.0274 | 51.0 | 1275 | 0.8596 | 0.4860 | 0.64 | 0.5525 | 0.8632 | | 0.0274 | 52.0 | 1300 | 0.8713 | 0.4856 | 0.6368 | 0.5510 | 0.8593 | | 0.0274 | 53.0 | 1325 | 0.8888 | 0.4868 | 0.64 | 0.5530 | 0.8585 | | 0.0274 | 54.0 | 1350 | 0.8591 | 0.4816 | 0.6337 | 0.5473 | 0.8610 | | 0.0274 | 55.0 | 1375 | 0.8755 | 0.4996 | 0.64 | 0.5611 | 0.8615 | | 0.0274 | 56.0 | 1400 | 0.8749 | 0.5095 | 0.6484 | 0.5706 | 0.8583 | | 0.0274 | 57.0 | 1425 | 0.8867 | 0.5025 | 0.6453 | 0.5650 | 0.8580 | | 0.0274 | 58.0 | 1450 | 0.8905 | 0.4947 | 0.6337 | 0.5556 | 0.8579 | | 0.0274 | 59.0 | 1475 | 0.8911 | 0.4881 | 0.6495 | 0.5574 | 0.8596 | | 0.0099 | 60.0 | 1500 | 0.9220 | 0.4914 | 0.6347 | 0.5540 | 0.8570 | | 0.0099 | 61.0 | 1525 | 0.8687 | 0.4786 | 0.6368 | 0.5465 | 0.8594 | | 0.0099 | 62.0 | 1550 | 0.9080 | 0.4906 | 0.6337 | 0.5531 | 0.8575 | | 0.0099 | 63.0 | 1575 | 0.9004 | 0.4831 | 0.6337 | 0.5483 | 0.8583 | | 0.0099 | 64.0 | 1600 | 0.8906 | 0.4778 | 0.6337 | 0.5448 | 0.8619 | | 0.0099 | 65.0 | 1625 | 0.8870 | 0.4959 | 0.6368 | 0.5576 | 0.8618 | | 0.0099 | 66.0 | 1650 | 0.8843 | 0.4851 | 0.6358 | 0.5503 | 0.8611 | | 0.0099 | 67.0 | 1675 | 0.8923 | 0.4912 | 0.6453 | 0.5578 | 0.8618 | | 0.0099 | 68.0 | 1700 | 0.8864 | 0.4898 | 0.6337 | 0.5525 | 0.8615 | | 0.0099 | 69.0 | 1725 | 0.8974 | 0.4943 | 0.6411 | 0.5582 | 0.8615 | | 0.0099 | 70.0 | 1750 | 0.8851 | 0.4821 | 0.6379 | 0.5492 | 0.8611 | | 0.0099 | 71.0 | 1775 | 0.8958 | 0.4920 | 0.6453 | 0.5583 | 0.8593 | | 0.0099 | 72.0 | 1800 | 0.8880 | 0.4988 | 0.6411 | 0.5610 | 0.8618 | | 0.0099 | 73.0 | 1825 | 0.8959 | 0.4852 | 0.6379 | 0.5512 | 0.8606 | | 0.0099 | 74.0 | 1850 | 0.9036 | 0.4773 | 0.6305 | 0.5433 | 0.8598 | | 0.0099 | 75.0 | 1875 | 0.9031 | 0.4864 | 0.6389 | 0.5523 | 0.8615 | | 0.0099 | 76.0 | 1900 | 0.9243 | 0.4907 | 0.6368 | 0.5543 | 0.8590 | | 0.0099 | 77.0 | 1925 | 0.9285 | 0.4877 | 0.6453 | 0.5555 | 0.8590 | | 0.0099 | 78.0 | 1950 | 0.9261 | 0.5074 | 0.6516 | 0.5705 | 0.8598 | | 0.0099 | 79.0 | 1975 | 0.9374 | 0.5037 | 0.64 | 0.5637 | 0.8580 | | 0.0061 | 80.0 | 2000 | 0.9165 | 0.5021 | 0.6316 | 0.5594 | 0.8621 | | 0.0061 | 81.0 | 2025 | 0.9307 | 0.5162 | 0.6368 | 0.5702 | 0.8582 | | 0.0061 | 82.0 | 2050 | 0.9369 | 0.4911 | 0.6358 | 0.5541 | 0.8574 | | 0.0061 | 83.0 | 2075 | 0.9293 | 0.5191 | 0.6421 | 0.5741 | 0.8584 | | 0.0061 | 84.0 | 2100 | 0.9187 | 0.5004 | 0.6453 | 0.5637 | 0.8629 | | 0.0061 | 85.0 | 2125 | 0.9293 | 0.4927 | 0.6379 | 0.5560 | 0.8623 | | 0.0061 | 86.0 | 2150 | 0.9200 | 0.5041 | 0.6453 | 0.5660 | 0.8634 | | 0.0061 | 87.0 | 2175 | 0.9273 | 0.4992 | 0.6421 | 0.5617 | 0.8631 | | 0.0061 | 88.0 | 2200 | 0.9325 | 0.5021 | 0.6442 | 0.5643 | 0.8623 | | 0.0061 | 89.0 | 2225 | 0.9245 | 0.4844 | 0.6389 | 0.5511 | 0.8630 | | 0.0061 | 90.0 | 2250 | 0.9291 | 0.4979 | 0.6368 | 0.5589 | 0.8593 | | 0.0061 | 91.0 | 2275 | 0.9264 | 0.5083 | 0.6432 | 0.5678 | 0.8622 | | 0.0061 | 92.0 | 2300 | 0.9283 | 0.5025 | 0.6411 | 0.5634 | 0.8619 | | 0.0061 | 93.0 | 2325 | 0.9264 | 0.5008 | 0.6442 | 0.5635 | 0.8613 | | 0.0061 | 94.0 | 2350 | 0.9205 | 0.5079 | 0.6463 | 0.5688 | 0.8626 | | 0.0061 | 95.0 | 2375 | 0.9223 | 0.5121 | 0.6484 | 0.5722 | 0.8625 | | 0.0061 | 96.0 | 2400 | 0.9244 | 0.5045 | 0.6421 | 0.5651 | 0.8620 | | 0.0061 | 97.0 | 2425 | 0.9248 | 0.5062 | 0.6463 | 0.5677 | 0.8622 | | 0.0061 | 98.0 | 2450 | 0.9277 | 0.5037 | 0.6453 | 0.5658 | 0.8621 | | 0.0061 | 99.0 | 2475 | 0.9272 | 0.5083 | 0.6463 | 0.5690 | 0.8623 | | 0.0046 | 100.0 | 2500 | 0.9272 | 0.5095 | 0.6463 | 0.5698 | 0.8623 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
2023-03-15T10:30:38Z
# Vocabulary Trimmed [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg): `vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-10000` This model is a trimmed version of [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-ruquad-qg | vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-10000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 54,305,152 | | parameter_size_embedding | 256,103,424 | 10,243,072 | | vocab_size | 250,101 | 10,003 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 10000 | 2 |
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-03-15T10:31:35Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 60000 | 2 |
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2023-03-15T10:34:22Z
Universele Mark Rutte model. Gebruik trigger mrkrut en je gezonde boerenverstand ;-) Muppet prompt: (mrkrut) as a (muppet), vray renderer, highly detailed felt, hyper real photo realistic artstation cgsociety masterpiece Seed:415127944 Resolutie: 512x768 Sampler: Euler Steps: 50 GFC: 8.0
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
2023-03-15T10:36:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: christoph-sl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: sl split: test args: sl metrics: - name: Wer type: wer value: 20.06411190441498 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # christoph-sl This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3313 - Wer: 20.0641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0153 | 6.08 | 1000 | 0.2795 | 26.4607 | | 0.0013 | 12.16 | 2000 | 0.3083 | 22.2352 | | 0.0001 | 18.24 | 3000 | 0.3251 | 21.5066 | | 0.0001 | 24.32 | 4000 | 0.3313 | 20.0641 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AnonymousSub/specter-bert-model_copy
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T10:36:53Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,183,104 | | parameter_size_embedding | 256,114,688 | 5,121,024 | | vocab_size | 250,112 | 5,001 | | compression_rate_full | 100.0 | 16.38 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 5000 | 2 |
AnonymousSub/specter-bert-model_copy_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
2023-03-15T10:38:49Z
# Vocabulary Trimmed [lmqg/mt5-small-jaquad-qg](https://huggingface.co/lmqg/mt5-small-jaquad-qg): `vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-15000` This model is a trimmed version of [lmqg/mt5-small-jaquad-qg](https://huggingface.co/lmqg/mt5-small-jaquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-jaquad-qg | vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-15000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 59,424,128 | | parameter_size_embedding | 256,103,424 | 15,362,048 | | vocab_size | 250,101 | 15,002 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 15000 | 2 |
AnonymousSub/specter-bert-model_squad2.0
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2023-03-15T10:38:51Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg): `vocabtrimmer/mt5-small-esquad-qg-trimmed-es-10000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg | vocabtrimmer/mt5-small-esquad-qg-trimmed-es-10000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 54,304,128 | | parameter_size_embedding | 256,103,424 | 10,242,048 | | vocab_size | 250,101 | 10,002 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 10000 | 2 |
AnonymousSub/unsup-consert-emanuals
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2023-03-15T10:44:20Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-90000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-90000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 136,223,104 | | parameter_size_embedding | 256,114,688 | 92,161,024 | | vocab_size | 250,112 | 90,001 | | compression_rate_full | 100.0 | 45.38 | | compression_rate_embedding | 100.0 | 35.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 90000 | 2 |
AnonymousSub/unsup-consert-papers-bert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-03-15T10:44:20Z
# Vocabulary Trimmed [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg): `vocabtrimmer/mt5-small-itquad-qg-trimmed-it-15000` This model is a trimmed version of [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-itquad-qg | vocabtrimmer/mt5-small-itquad-qg-trimmed-it-15000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 59,424,128 | | parameter_size_embedding | 256,103,424 | 15,362,048 | | vocab_size | 250,101 | 15,002 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 15000 | 2 |
Anonymreign/savagebeta
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T10:45:41Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ko-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ko-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 30000 | 2 |
Anorak/nirvana
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:Anorak/autonlp-data-Niravana-test2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-03-15T10:46:02Z
# Vocabulary Trimmed [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg): `vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-15000` This model is a trimmed version of [lmqg/mt5-small-ruquad-qg](https://huggingface.co/lmqg/mt5-small-ruquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-ruquad-qg | vocabtrimmer/mt5-small-ruquad-qg-trimmed-ru-15000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 59,424,128 | | parameter_size_embedding | 256,103,424 | 15,362,048 | | vocab_size | 250,101 | 15,002 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 15000 | 2 |
Anthos23/distilbert-base-uncased-finetuned-sst2
[ "tf", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_keras_callback", "license:apache-2.0" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
2023-03-15T10:47:20Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1157.23 +/- 101.67 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Anthos23/my-awesome-model
[ "pytorch", "tf", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
2023-03-15T10:47:33Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 14.93 +/- 4.97 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r yovchev/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Antony/mint_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T10:51:21Z
# Vocabulary Trimmed [lmqg/mt5-small-jaquad-qg](https://huggingface.co/lmqg/mt5-small-jaquad-qg): `vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-30000` This model is a trimmed version of [lmqg/mt5-small-jaquad-qg](https://huggingface.co/lmqg/mt5-small-jaquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-jaquad-qg | vocabtrimmer/mt5-small-jaquad-qg-trimmed-ja-30000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 74,784,128 | | parameter_size_embedding | 256,103,424 | 30,722,048 | | vocab_size | 250,101 | 30,002 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 30000 | 2 |
gaurishhs/API
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T10:54:44Z
# Vocabulary Trimmed [lmqg/mt5-small-frquad-qg](https://huggingface.co/lmqg/mt5-small-frquad-qg): `vocabtrimmer/mt5-small-frquad-qg-trimmed-fr-60000` This model is a trimmed version of [lmqg/mt5-small-frquad-qg](https://huggingface.co/lmqg/mt5-small-frquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-frquad-qg | vocabtrimmer/mt5-small-frquad-qg-trimmed-fr-60000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 60000 | 2 |
ArBert/albert-base-v2-finetuned-ner-agglo
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-15T11:01:04Z
# Vocabulary Trimmed [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg): `vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-30000` This model is a trimmed version of [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-koquad-qg | vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-30000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 74,784,128 | | parameter_size_embedding | 256,103,424 | 30,722,048 | | vocab_size | 250,101 | 30,002 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 30000 | 2 |
ArBert/albert-base-v2-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-03-15T11:03:48Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ja-120000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ja-120000 | |:---------------------------|:-------------------|:-------------------------------------------| | parameter_size_full | 300,176,768 | 166,943,104 | | parameter_size_embedding | 256,114,688 | 122,881,024 | | vocab_size | 250,112 | 120,001 | | compression_rate_full | 100.0 | 55.61 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 120000 | 2 |
ArBert/albert-base-v2-finetuned-ner
[ "pytorch", "tensorboard", "albert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
2023-03-15T11:04:45Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-TASTESet-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-TASTESet-ner This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4970 - Precision: 0.8662 - Recall: 0.8989 - F1: 0.8822 - Accuracy: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 31 | 1.8592 | 0.3077 | 0.4305 | 0.3589 | 0.4376 | | No log | 2.0 | 62 | 1.3188 | 0.4793 | 0.5445 | 0.5098 | 0.5884 | | No log | 3.0 | 93 | 1.1581 | 0.5382 | 0.6134 | 0.5733 | 0.6391 | | No log | 4.0 | 124 | 1.1373 | 0.6480 | 0.5964 | 0.6211 | 0.6522 | | No log | 5.0 | 155 | 0.8784 | 0.6969 | 0.7370 | 0.7164 | 0.7425 | | No log | 6.0 | 186 | 0.7242 | 0.7472 | 0.7823 | 0.7643 | 0.7930 | | No log | 7.0 | 217 | 0.6340 | 0.7869 | 0.8258 | 0.8058 | 0.8225 | | No log | 8.0 | 248 | 0.5766 | 0.7832 | 0.8562 | 0.8180 | 0.8391 | | No log | 9.0 | 279 | 0.5200 | 0.8087 | 0.8702 | 0.8383 | 0.8583 | | No log | 10.0 | 310 | 0.4981 | 0.8495 | 0.8722 | 0.8607 | 0.8642 | | No log | 11.0 | 341 | 0.4732 | 0.8510 | 0.8836 | 0.8670 | 0.8762 | | No log | 12.0 | 372 | 0.4884 | 0.8593 | 0.8801 | 0.8696 | 0.8746 | | No log | 13.0 | 403 | 0.4701 | 0.8444 | 0.8893 | 0.8663 | 0.8825 | | No log | 14.0 | 434 | 0.4759 | 0.8576 | 0.8898 | 0.8734 | 0.8814 | | No log | 15.0 | 465 | 0.4765 | 0.8596 | 0.8945 | 0.8767 | 0.8840 | | No log | 16.0 | 496 | 0.4817 | 0.8610 | 0.8984 | 0.8793 | 0.8881 | | 0.7221 | 17.0 | 527 | 0.4904 | 0.8572 | 0.8989 | 0.8775 | 0.8869 | | 0.7221 | 18.0 | 558 | 0.4971 | 0.8640 | 0.8969 | 0.8802 | 0.8869 | | 0.7221 | 19.0 | 589 | 0.4954 | 0.8595 | 0.9024 | 0.8804 | 0.8894 | | 0.7221 | 20.0 | 620 | 0.4970 | 0.8662 | 0.8989 | 0.8822 | 0.8889 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
ArBert/roberta-base-finetuned-ner-gmm-twitter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:16:20Z
# Vocabulary Trimmed [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg): `vocabtrimmer/mt5-small-itquad-qg-trimmed-it-60000` This model is a trimmed version of [lmqg/mt5-small-itquad-qg](https://huggingface.co/lmqg/mt5-small-itquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-itquad-qg | vocabtrimmer/mt5-small-itquad-qg-trimmed-it-60000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 60000 | 2 |
ArBert/roberta-base-finetuned-ner-gmm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:19:04Z
# Vocabulary Trimmed [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg): `vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-60000` This model is a trimmed version of [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-koquad-qg | vocabtrimmer/mt5-small-koquad-qg-trimmed-ko-60000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 60000 | 2 |
Aracatto/Catto
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:23:44Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: unsupervised-fine-tune-roberta-exist-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unsupervised-fine-tune-roberta-exist-5 This model is a fine-tuned version of [nouman-10/unsupervised-exist-rb](https://huggingface.co/nouman-10/unsupervised-exist-rb) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7029 - Accuracy: 0.6512 - F1: 0.6512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 194 | 1.0614 | 0.625 | 0.625 | | No log | 2.0 | 388 | 1.0071 | 0.6047 | 0.6047 | | 1.0299 | 3.0 | 582 | 1.0507 | 0.6512 | 0.6512 | | 1.0299 | 4.0 | 776 | 1.0833 | 0.6453 | 0.6453 | | 1.0299 | 5.0 | 970 | 1.1711 | 0.6337 | 0.6337 | | 0.5093 | 6.0 | 1164 | 1.3761 | 0.6366 | 0.6366 | | 0.5093 | 7.0 | 1358 | 1.4950 | 0.6424 | 0.6424 | | 0.211 | 8.0 | 1552 | 1.5941 | 0.6337 | 0.6337 | | 0.211 | 9.0 | 1746 | 1.6544 | 0.6570 | 0.6570 | | 0.211 | 10.0 | 1940 | 1.7029 | 0.6512 | 0.6512 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
AragornII/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:26:13Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg): `vocabtrimmer/mt5-small-esquad-qg-trimmed-es-30000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg | vocabtrimmer/mt5-small-esquad-qg-trimmed-es-30000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 74,784,128 | | parameter_size_embedding | 256,103,424 | 30,722,048 | | vocab_size | 250,101 | 30,002 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
Arcanos/1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1572.51 +/- 52.53 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Archie/myProject
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:36:51Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg): `vocabtrimmer/mt5-small-esquad-qg-trimmed-es-120000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg | vocabtrimmer/mt5-small-esquad-qg-trimmed-es-120000 | |:---------------------------|:---------------------------|:-----------------------------------------------------| | parameter_size_full | 300,165,504 | 166,944,128 | | parameter_size_embedding | 256,103,424 | 122,882,048 | | vocab_size | 250,101 | 120,002 | | compression_rate_full | 100.0 | 55.62 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 120000 | 2 |
Arghyad/Loki_small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ru-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ru-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 5000 | 2 |
Aries/T5_question_answering
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
5
2023-03-15T11:44:12Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.71 +/- 0.25 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Arina/Erine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:45:03Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-ru-15000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-ru-15000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 59,423,104 | | parameter_size_embedding | 256,114,688 | 15,361,024 | | vocab_size | 250,112 | 15,001 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 15000 | 2 |
ArjunKadya/HuggingFace
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:45:53Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.00 +/- 0.56 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Arkadiusz/Test-model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:47:51Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.76 +/- 6.59 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r peterdamn/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Arnold/common_voiceha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:51:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Prgrg/ja-en-JESC-v3.0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Prgrg/ja-en-JESC-v3.0 This model is a fine-tuned version of [Prgrg/ja-en-JESC-v2.0](https://huggingface.co/Prgrg/ja-en-JESC-v2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.8267 - Validation Loss: 7.8094 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 150000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.3432 | 6.9622 | 0 | | 5.2217 | 7.5277 | 1 | | 5.1853 | 7.5818 | 2 | | 4.9986 | 7.5179 | 3 | | 4.8957 | 7.7693 | 4 | | 4.8267 | 7.8094 | 5 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T11:52:01Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg): `vocabtrimmer/mt5-small-esquad-qg-trimmed-es-60000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg](https://huggingface.co/lmqg/mt5-small-esquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg | vocabtrimmer/mt5-small-esquad-qg-trimmed-es-60000 | |:---------------------------|:---------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T12:06:27Z
--- license: openrail language: - en datasets: - ErfanMoosaviMonazzah/fake-news-detection-English metrics: - f1 pipeline_tag: text-classification tags: - fake news detection - tiny bert widget: - text: "Militant blast, gun attack kill 18 police in Egypt's Sinai" example_title: "True News" - text: "Trump Is Literally Causing Business Owners To Go Broke Because Of His Mar-a-Lago Trips" example_title: "Fake News" --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A fine-tuned version of tiny bert to detect fake news. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Erfan Moosavi Monazzah](https://huggingface.co/ErfanMoosaviMonazzah) - **Language:** English - **Finetuned from model:** [Tiny BERT](https://huggingface.co/prajjwal1/bert-tiny)
Ashkanmh/bert-base-parsbert-uncased-finetuned
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-fr-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-fr-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 30000 | 2 |
Augustvember/WokkaBot9
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T12:54:07Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 5000 | 2 |
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-03-15T12:56:38Z
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-10000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-10000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 54,303,104 | | parameter_size_embedding | 256,114,688 | 10,241,024 | | vocab_size | 250,112 | 10,001 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 10000 | 2 |
Axon/resnet34-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-es-60000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-es-60000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 105,503,104 | | parameter_size_embedding | 256,114,688 | 61,441,024 | | vocab_size | 250,112 | 60,001 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
Ayah/GPT2-DBpedia
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-it-5000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-it-5000 | |:---------------------------|:-------------------|:-----------------------------------------| | parameter_size_full | 300,176,768 | 49,184,128 | | parameter_size_embedding | 256,114,688 | 5,122,048 | | vocab_size | 250,112 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 5000 | 2 |
Aybars/ModelOnTquad
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-it-15000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-it-15000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 59,423,104 | | parameter_size_embedding | 256,114,688 | 15,361,024 | | vocab_size | 250,112 | 15,001 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 15000 | 2 |
Aybars/XLM_Turkish
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-03-15T13:27:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [nferruz/ProtGPT2](https://huggingface.co/nferruz/ProtGPT2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6699 - Accuracy: 0.7571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 220 | 3.8564 | 0.4857 | | No log | 2.0 | 440 | 2.7515 | 0.6096 | | 4.1568 | 3.0 | 660 | 2.2463 | 0.6780 | | 4.1568 | 4.0 | 880 | 1.9817 | 0.7152 | | 2.2818 | 5.0 | 1100 | 1.8278 | 0.7353 | | 2.2818 | 6.0 | 1320 | 1.7313 | 0.7486 | | 1.8444 | 7.0 | 1540 | 1.6847 | 0.7553 | | 1.8444 | 8.0 | 1760 | 1.6699 | 0.7571 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
Ayham/albert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
# Vocabulary Trimmed [google/mt5-small](https://huggingface.co/google/mt5-small): `vocabtrimmer/mt5-small-trimmed-it-30000` This model is a trimmed version of [google/mt5-small](https://huggingface.co/google/mt5-small) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | google/mt5-small | vocabtrimmer/mt5-small-trimmed-it-30000 | |:---------------------------|:-------------------|:------------------------------------------| | parameter_size_full | 300,176,768 | 74,783,104 | | parameter_size_embedding | 256,114,688 | 30,721,024 | | vocab_size | 250,112 | 30,001 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 30000 | 2 |
Ayham/bert_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="YashGajjar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ayham/bertgpt2_cnn
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcoper-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -4.80 +/- 0.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Ayham/distilbert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1556.86 +/- 35.82 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/distilbert_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Ayham/roberta_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-03-15T13:54:42Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - aszfcxcgszdx/autotrain-data-multi-lingual-summarization co2_eq_emissions: emissions: 13.328572874208332 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 41234106312 - CO2 Emissions (in grams): 13.3286 ## Validation Metrics - Loss: 1.508 - Rouge1: 44.068 - Rouge2: 20.883 - RougeL: 37.071 - RougeLsum: 40.613 - Gen Len: 17.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aszfcxcgszdx/autotrain-multi-lingual-summarization-41234106312 ```
Ayham/roberta_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - aszfcxcgszdx/autotrain-data-multi-lingual-summarization co2_eq_emissions: emissions: 12.703463244389663 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 41234106313 - CO2 Emissions (in grams): 12.7035 ## Validation Metrics - Loss: 1.508 - Rouge1: 44.142 - Rouge2: 21.000 - RougeL: 37.127 - RougeLsum: 40.611 - Gen Len: 17.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/aszfcxcgszdx/autotrain-multi-lingual-summarization-41234106313 ```
Ayham/roberta_gpt2_new_max64_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: - uz license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Ayham/roberta_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: clinico-xlm-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinico-xlm-roberta-finetuned This model is a fine-tuned version of [joheras/xlm-roberta-base-finetuned-clinais](https://huggingface.co/joheras/xlm-roberta-base-finetuned-clinais) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1866 - Precision: 0.4629 - Recall: 0.6281 - F1: 0.5330 - Accuracy: 0.8501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2657 | 0.0046 | 0.0103 | 0.0064 | 0.5444 | | No log | 2.0 | 50 | 0.7933 | 0.1430 | 0.2609 | 0.1848 | 0.7711 | | No log | 3.0 | 75 | 0.6467 | 0.2741 | 0.4325 | 0.3356 | 0.8061 | | No log | 4.0 | 100 | 0.5961 | 0.3151 | 0.5217 | 0.3929 | 0.8233 | | No log | 5.0 | 125 | 0.5628 | 0.3288 | 0.5217 | 0.4034 | 0.8289 | | No log | 6.0 | 150 | 0.5540 | 0.2884 | 0.4920 | 0.3636 | 0.8377 | | No log | 7.0 | 175 | 0.5475 | 0.2960 | 0.4954 | 0.3706 | 0.8381 | | No log | 8.0 | 200 | 0.6013 | 0.3034 | 0.5297 | 0.3858 | 0.8347 | | No log | 9.0 | 225 | 0.6026 | 0.2989 | 0.5297 | 0.3822 | 0.8368 | | No log | 10.0 | 250 | 0.6055 | 0.3352 | 0.5366 | 0.4127 | 0.8422 | | No log | 11.0 | 275 | 0.6757 | 0.2982 | 0.5275 | 0.3810 | 0.8385 | | No log | 12.0 | 300 | 0.6287 | 0.3135 | 0.5355 | 0.3954 | 0.8464 | | No log | 13.0 | 325 | 0.7429 | 0.3441 | 0.5492 | 0.4231 | 0.8402 | | No log | 14.0 | 350 | 0.6883 | 0.3203 | 0.5538 | 0.4059 | 0.8491 | | No log | 15.0 | 375 | 0.7311 | 0.3550 | 0.5698 | 0.4374 | 0.8427 | | No log | 16.0 | 400 | 0.7084 | 0.3518 | 0.5595 | 0.4320 | 0.8481 | | No log | 17.0 | 425 | 0.7104 | 0.3545 | 0.5629 | 0.4350 | 0.8533 | | No log | 18.0 | 450 | 0.7958 | 0.3572 | 0.5709 | 0.4395 | 0.8381 | | No log | 19.0 | 475 | 0.7453 | 0.3616 | 0.5755 | 0.4442 | 0.8516 | | 0.3605 | 20.0 | 500 | 0.7714 | 0.3573 | 0.5744 | 0.4405 | 0.8430 | | 0.3605 | 21.0 | 525 | 0.8162 | 0.3664 | 0.5744 | 0.4474 | 0.8469 | | 0.3605 | 22.0 | 550 | 0.7999 | 0.3711 | 0.5847 | 0.4540 | 0.8527 | | 0.3605 | 23.0 | 575 | 0.8143 | 0.3968 | 0.5938 | 0.4757 | 0.8537 | | 0.3605 | 24.0 | 600 | 0.8394 | 0.4078 | 0.5892 | 0.4820 | 0.8516 | | 0.3605 | 25.0 | 625 | 0.8772 | 0.3778 | 0.5675 | 0.4536 | 0.8397 | | 0.3605 | 26.0 | 650 | 0.8670 | 0.3991 | 0.6178 | 0.4850 | 0.8549 | | 0.3605 | 27.0 | 675 | 0.8739 | 0.3886 | 0.5904 | 0.4687 | 0.8491 | | 0.3605 | 28.0 | 700 | 0.9461 | 0.4081 | 0.5973 | 0.4849 | 0.8447 | | 0.3605 | 29.0 | 725 | 0.9134 | 0.4267 | 0.6064 | 0.5009 | 0.8448 | | 0.3605 | 30.0 | 750 | 0.9127 | 0.4057 | 0.5984 | 0.4836 | 0.8440 | | 0.3605 | 31.0 | 775 | 0.9738 | 0.4129 | 0.5995 | 0.4890 | 0.8435 | | 0.3605 | 32.0 | 800 | 1.0001 | 0.4074 | 0.5892 | 0.4818 | 0.8442 | | 0.3605 | 33.0 | 825 | 0.9532 | 0.4133 | 0.6030 | 0.4905 | 0.8470 | | 0.3605 | 34.0 | 850 | 0.9532 | 0.4080 | 0.6041 | 0.4871 | 0.8481 | | 0.3605 | 35.0 | 875 | 0.9876 | 0.4108 | 0.6087 | 0.4905 | 0.8483 | | 0.3605 | 36.0 | 900 | 0.9456 | 0.4219 | 0.6247 | 0.5037 | 0.8521 | | 0.3605 | 37.0 | 925 | 0.9513 | 0.4180 | 0.6121 | 0.4968 | 0.8468 | | 0.3605 | 38.0 | 950 | 0.9905 | 0.4120 | 0.6110 | 0.4922 | 0.8506 | | 0.3605 | 39.0 | 975 | 0.9983 | 0.4365 | 0.6247 | 0.5139 | 0.8522 | | 0.0271 | 40.0 | 1000 | 1.0220 | 0.4224 | 0.6076 | 0.4984 | 0.8480 | | 0.0271 | 41.0 | 1025 | 1.0323 | 0.4114 | 0.6110 | 0.4917 | 0.8474 | | 0.0271 | 42.0 | 1050 | 1.0651 | 0.4266 | 0.6121 | 0.5028 | 0.8482 | | 0.0271 | 43.0 | 1075 | 1.0778 | 0.4101 | 0.5927 | 0.4848 | 0.8534 | | 0.0271 | 44.0 | 1100 | 1.0190 | 0.4216 | 0.6087 | 0.4981 | 0.8469 | | 0.0271 | 45.0 | 1125 | 1.0374 | 0.4245 | 0.6144 | 0.5021 | 0.8544 | | 0.0271 | 46.0 | 1150 | 1.0792 | 0.4383 | 0.6018 | 0.5072 | 0.8518 | | 0.0271 | 47.0 | 1175 | 1.0888 | 0.4267 | 0.6190 | 0.5051 | 0.8478 | | 0.0271 | 48.0 | 1200 | 1.1022 | 0.4498 | 0.6156 | 0.5198 | 0.8490 | | 0.0271 | 49.0 | 1225 | 1.1646 | 0.4398 | 0.6064 | 0.5099 | 0.8453 | | 0.0271 | 50.0 | 1250 | 1.1448 | 0.4505 | 0.6087 | 0.5178 | 0.8478 | | 0.0271 | 51.0 | 1275 | 1.1288 | 0.4388 | 0.6110 | 0.5108 | 0.8455 | | 0.0271 | 52.0 | 1300 | 1.1077 | 0.4579 | 0.6224 | 0.5276 | 0.8478 | | 0.0271 | 53.0 | 1325 | 1.0931 | 0.4373 | 0.6064 | 0.5081 | 0.8465 | | 0.0271 | 54.0 | 1350 | 1.1044 | 0.4478 | 0.6087 | 0.5160 | 0.8471 | | 0.0271 | 55.0 | 1375 | 1.0895 | 0.4343 | 0.6087 | 0.5069 | 0.8500 | | 0.0271 | 56.0 | 1400 | 1.0768 | 0.4501 | 0.6144 | 0.5196 | 0.8532 | | 0.0271 | 57.0 | 1425 | 1.1164 | 0.4356 | 0.6190 | 0.5113 | 0.8510 | | 0.0271 | 58.0 | 1450 | 1.1378 | 0.4507 | 0.6167 | 0.5208 | 0.8505 | | 0.0271 | 59.0 | 1475 | 1.1510 | 0.4583 | 0.6156 | 0.5254 | 0.8500 | | 0.0063 | 60.0 | 1500 | 1.1126 | 0.4654 | 0.6224 | 0.5326 | 0.8514 | | 0.0063 | 61.0 | 1525 | 1.1535 | 0.4548 | 0.6156 | 0.5231 | 0.8515 | | 0.0063 | 62.0 | 1550 | 1.1362 | 0.4535 | 0.6247 | 0.5255 | 0.8505 | | 0.0063 | 63.0 | 1575 | 1.1321 | 0.4723 | 0.6247 | 0.5379 | 0.8546 | | 0.0063 | 64.0 | 1600 | 1.0995 | 0.4626 | 0.6304 | 0.5337 | 0.8561 | | 0.0063 | 65.0 | 1625 | 1.1263 | 0.4546 | 0.6190 | 0.5242 | 0.8498 | | 0.0063 | 66.0 | 1650 | 1.1251 | 0.4712 | 0.6270 | 0.5380 | 0.8549 | | 0.0063 | 67.0 | 1675 | 1.1592 | 0.4745 | 0.6281 | 0.5406 | 0.8501 | | 0.0063 | 68.0 | 1700 | 1.1552 | 0.4571 | 0.6281 | 0.5292 | 0.8514 | | 0.0063 | 69.0 | 1725 | 1.1602 | 0.4618 | 0.6224 | 0.5302 | 0.8520 | | 0.0063 | 70.0 | 1750 | 1.1631 | 0.4669 | 0.6304 | 0.5365 | 0.8527 | | 0.0063 | 71.0 | 1775 | 1.1784 | 0.4824 | 0.6259 | 0.5448 | 0.8487 | | 0.0063 | 72.0 | 1800 | 1.1779 | 0.4681 | 0.6213 | 0.5339 | 0.8527 | | 0.0063 | 73.0 | 1825 | 1.1656 | 0.4478 | 0.6236 | 0.5213 | 0.8531 | | 0.0063 | 74.0 | 1850 | 1.1743 | 0.4620 | 0.6190 | 0.5291 | 0.8528 | | 0.0063 | 75.0 | 1875 | 1.1623 | 0.4529 | 0.6270 | 0.5259 | 0.8520 | | 0.0063 | 76.0 | 1900 | 1.1597 | 0.4831 | 0.6201 | 0.5431 | 0.8507 | | 0.0063 | 77.0 | 1925 | 1.1603 | 0.4743 | 0.6236 | 0.5388 | 0.8520 | | 0.0063 | 78.0 | 1950 | 1.1551 | 0.4505 | 0.6190 | 0.5214 | 0.8500 | | 0.0063 | 79.0 | 1975 | 1.1740 | 0.4772 | 0.6213 | 0.5398 | 0.8511 | | 0.0026 | 80.0 | 2000 | 1.1463 | 0.4706 | 0.6224 | 0.5360 | 0.8519 | | 0.0026 | 81.0 | 2025 | 1.1757 | 0.4603 | 0.6167 | 0.5271 | 0.8472 | | 0.0026 | 82.0 | 2050 | 1.1754 | 0.4541 | 0.6224 | 0.5251 | 0.8457 | | 0.0026 | 83.0 | 2075 | 1.1713 | 0.4588 | 0.6178 | 0.5266 | 0.8476 | | 0.0026 | 84.0 | 2100 | 1.2023 | 0.4631 | 0.6247 | 0.5319 | 0.8473 | | 0.0026 | 85.0 | 2125 | 1.1819 | 0.4841 | 0.6259 | 0.5459 | 0.8471 | | 0.0026 | 86.0 | 2150 | 1.1878 | 0.4611 | 0.6236 | 0.5302 | 0.8470 | | 0.0026 | 87.0 | 2175 | 1.1827 | 0.4694 | 0.6236 | 0.5356 | 0.8485 | | 0.0026 | 88.0 | 2200 | 1.1787 | 0.4552 | 0.6213 | 0.5254 | 0.8506 | | 0.0026 | 89.0 | 2225 | 1.1811 | 0.4762 | 0.6293 | 0.5421 | 0.8488 | | 0.0026 | 90.0 | 2250 | 1.1849 | 0.4573 | 0.6247 | 0.5280 | 0.8493 | | 0.0026 | 91.0 | 2275 | 1.1779 | 0.4505 | 0.6247 | 0.5235 | 0.8502 | | 0.0026 | 92.0 | 2300 | 1.2042 | 0.4672 | 0.6201 | 0.5329 | 0.8493 | | 0.0026 | 93.0 | 2325 | 1.1955 | 0.4712 | 0.6270 | 0.5380 | 0.8501 | | 0.0026 | 94.0 | 2350 | 1.1950 | 0.4696 | 0.6281 | 0.5374 | 0.8503 | | 0.0026 | 95.0 | 2375 | 1.1958 | 0.4769 | 0.6270 | 0.5418 | 0.8489 | | 0.0026 | 96.0 | 2400 | 1.1819 | 0.4564 | 0.6281 | 0.5286 | 0.8496 | | 0.0026 | 97.0 | 2425 | 1.1853 | 0.4677 | 0.6304 | 0.5370 | 0.8501 | | 0.0026 | 98.0 | 2450 | 1.1822 | 0.4637 | 0.6281 | 0.5335 | 0.8501 | | 0.0026 | 99.0 | 2475 | 1.1841 | 0.4571 | 0.6281 | 0.5292 | 0.8498 | | 0.0014 | 100.0 | 2500 | 1.1866 | 0.4629 | 0.6281 | 0.5330 | 0.8501 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
Ayham/xlnet_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction