modelId
stringlengths
4
81
tags
sequence
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
CohleM/bert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 2. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.7001 eval_f1 = 87.9777 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt/raw/main/nncf_bert_squad_qat.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-26750 \ --nncf_config $MODELROOT/nncf_bert_squad_qat.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` ### tile-alignment to evaluate tile-alignment checkpoint, add ```--tile_alignment``` and point ```--qat_checkpoint``` to checkpoint with 'tilealigned' postfix. Use branch ```tld-poc``` with commit id ```c525c52cq```
CohleM/mbert-nepali-tokenizer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This model is a downstream fine-tuning of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid). "filled" means unstructured fine-grained sparsified parameters are allowed to learn during fine-tuning. "lt" means distillation of larger model as teacher, i.e. ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.3311 eval_f1 = 87.69 eval_samples = 10784 ``` This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified). To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 3. # Eval The model cannot be evaluated with HF QA example out-of-the-box as the final dimension of the model architecture has been realized. Follow the custom setup below. ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} ``` This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt ``` Add ```--optimize_model_before_eval``` and ```--optimized_checkpoint /path/to/clone``` during evaluation. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-cropped WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --optimized_checkpoint /path/to/clone/bert-base-squadv1-block-pruning-hybrid-filled-lt \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
Coldestadam/Breakout_Mentors_SpongeBob_Model
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers. ``` eval_exact_match = 78.5241 eval_f1 = 86.4138 eval_samples = 10784 ``` This model is a replication of [block pruning paper](https://arxiv.org/abs/2109.04838) with its open-sourced codebase (forked and modified). To reproduce this model, pls follow [documentation here](https://github.com/vuiseng9/nn_pruning/blob/reproduce-evaluation/reproduce-eval/readme.md) until step 2. # Eval The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13.0, v4.9.1. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below. ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} ``` Add ```--optimize_model_before_eval``` during evaluation. ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
ComCom/gpt2-large
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-pruneofa-90pc-bt```](https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 0% upon initialization. Custom reverse masking and sparsity freezing are applied. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.6623 eval_f1 = 87.7147 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 5647610d5ee2bf9f1324604e6579bca1c391e260 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 5dd7402e9a316041dea4ff67508c01047323616e pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash wget https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-pruneofa-90pc-bt-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --pruneofa_qat \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-pruneofa-90pc-bt-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-pruneofa-90pc-bt-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --dataset_name squad \ --qat_checkpoint $MODELROOT/checkpoint-22000 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-pruneofa-90pc-bt-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
ComCom/gpt2-medium
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
This model is transfer-learning of [bert-base pruneofa 90% sparse](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) on Squadv1 dataset. ``` eval_exact_match = 80.2933 eval_f1 = 87.6788 eval_samples = 10784 ``` # Train use https://github.com/IntelLabs/Model-Compression-Research-Package.git see ```pruneofa-transfer-learning.sh``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-pruneofa-90pc-bt WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
ComCom/gpt2
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
This model is a quantized-aware transfer learning of bert-base-uncased on Squadv1 using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 2. Custom distillation with fine-tuned model [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1) ``` eval_exact_match = 80.8136 eval_f1 = 88.2594 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash wget https://huggingface.co/vuiseng9/bert-base-squadv1-qat-bt/raw/main/nncf_bert_squad_qat.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-qat-bt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=2 python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher csarron/bert-base-uncased-squad-v1 \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-qat-bt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-qat-bt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-uncased-squad \ --dataset_name squad \ --qat_checkpoint $MODELROOT/checkpoint-10750 \ --nncf_config $MODELROOT/nncf_bert_squad_qat.json \ --to_onnx $OUTDIR/bert-base-squadv1-qat-bt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
ComCom-Dev/gpt2-bible-test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This model is a fork of [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1). ``` eval_exact_match = 80.9082 eval_f1 = 88.2275 eval_samples = 10784 ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1 WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1 \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
Cometasonmi451/Mine
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This model is developed with transformers v4.10.3. # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-based-uncased-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path bert-base-uncased \ --task_name mnli \ --do_eval \ --do_train \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --max_seq_length 128 \ --num_train_epochs 3 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-based-uncased-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path vuiseng9/bert-base-uncased-mnli \ --task_name mnli \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
cometrain/neurotitle-rugpt3-small
[ "pytorch", "gpt2", "text-generation", "ru", "en", "dataset:All-NeurIPS-Papers-Scraper", "transformers", "Cometrain AutoCode", "Cometrain AlphaML", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
null
This model is developed with transformers v4.10.3. # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_eval \ --do_train \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --doc_stride 128 \ --max_seq_length 384 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --eval_steps 250 \ --save_steps 2500 \ --logging_steps 1 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-uncased-squad WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-uncased-squad \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
Connor/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
Connor-tech/bert_cn_finetuning
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
Connorvr/BrightBot-small
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
Connorvr/TeachingGen
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
ConstellationBoi/Oop
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
Contrastive-Tension/BERT-Base-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
### Reproducibility ```bash # 1. install nncf # checkout nncf 9c2845eeb38b4ab1b6d4ca19e31a1886e5bdf17c # patch b/nncf/torch/sparsity/magnitude/algo.py def sparsify_params(self): from collections import OrderedDict sparse_sd = OrderedDict() with torch.no_grad(): for sparse_info in self.sparsified_module_info: for n, m in self.model.named_modules(): if m == sparse_info.module: sparse_sd[n+'.weight'] = m.weight*sparse_info.operand.binary_mask model_sd = self.model.state_dict() for k, v in sparse_sd.items(): assert k in model_sd, "key not exists!" model_sd[k] = sparse_sd[k] self.model.load_state_dict(model_sd) # 2. transformers fork git clone https://github.com/vuiseng9/transformers cd transformers && git checkout gen-hybrid-sparse # 3. follow # transformers/examples/pytorch/question-answering/gen-hybrid-sparse/vscode-launch.json ``` ### Key Content ``` gen_hybrid_sparse โ”œโ”€โ”€ 90pc_sparse-02_head-0512_ffnn โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-02_head-0512_ffnn-8bit.onnx โ”‚ย ย  โ”œโ”€โ”€ ir โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-02_head-0512_ffnn-8bit.bin โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-02_head-0512_ffnn-8bit.mapping โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-02_head-0512_ffnn-8bit.xml โ”œโ”€โ”€ 90pc_sparse-04_head-1024_ffnn โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-04_head-1024_ffnn-8bit.onnx โ”‚ย ย  โ”œโ”€โ”€ ir โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-04_head-1024_ffnn-8bit.bin โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-04_head-1024_ffnn-8bit.mapping โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-04_head-1024_ffnn-8bit.xml โ”œโ”€โ”€ 90pc_sparse-06_head-1536_ffnn โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-06_head-1536_ffnn-8bit.onnx โ”‚ย ย  โ”œโ”€โ”€ ir โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-06_head-1536_ffnn-8bit.bin โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-06_head-1536_ffnn-8bit.mapping โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-06_head-1536_ffnn-8bit.xml โ”œโ”€โ”€ 90pc_sparse-08_head-2048_ffnn โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-08_head-2048_ffnn-8bit.onnx โ”‚ย ย  โ”œโ”€โ”€ ir โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-08_head-2048_ffnn-8bit.bin โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-08_head-2048_ffnn-8bit.mapping โ”‚ย ย  โ”‚ย ย  โ”œโ”€โ”€ 90pc_sparse-08_head-2048_ffnn-8bit.xml โ””โ”€โ”€ 90pc_unstructured_sparse โ”œโ”€โ”€ 90pc_unstructured_sparse-8bit.onnx โ””โ”€โ”€ ir โ”œโ”€โ”€ 90pc_unstructured_sparse-8bit.bin โ”œโ”€โ”€ 90pc_unstructured_sparse-8bit.mapping โ”œโ”€โ”€ 90pc_unstructured_sparse-8bit.xml ```
Contrastive-Tension/BERT-Base-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
This model is developed with transformers v4.9.1. ``` m = 0.8444 eval_samples = 9815 mm = 0.8495 eval_samples = 9832 ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-mnli NEPOCH=3 WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR python run_glue.py \ --model_name_or_path bert-base-uncased \ --task_name mnli \ --max_seq_length 128 \ --do_train \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs $NEPOCH \ --logging_steps 1 \ --evaluation_strategy steps \ --save_steps 3000 \ --do_eval \ --per_device_eval_batch_size 128 \ --eval_steps 250 \ --output_dir $OUTDIR --overwrite_output_dir ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path vuiseng9/bert-mnli \ --task_name mnli \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
Contrastive-Tension/BERT-Base-Swe-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
126
null
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-arxiv-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-ft/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name ccdv/arxiv-summarization \ --do_train \ --adafactor \ --learning_rate 8e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 10000 \ --save_strategy steps \ --save_steps 5000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-arxiv-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-eval/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-arxiv \ --dataset_name ccdv/arxiv-summarization \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 5 epochs, this model is the checkpoint @150000 steps, 5.91 epoch, 34hrs) with lowest eval loss during training. Test/predict with this checkpoint should give results below. Note that we observe model at 80000 steps is closed to published result from HF. ``` ***** predict metrics ***** predict_gen_len = 210.0925 predict_loss = 1.7192 predict_rouge1 = 46.1383 predict_rouge2 = 19.1393 predict_rougeL = 27.7573 predict_rougeLsum = 41.583 predict_runtime = 2:40:25.86 predict_samples = 6440 predict_samples_per_second = 0.669 predict_steps_per_second = 0.084 ```
Contrastive-Tension/BERT-Distil-CT-STSb
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-billsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name billsum \ --do_train \ --adafactor \ --learning_rate 2e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-billsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-billsum \ --dataset_name billsum \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@12000 steps, 6.6epoch, 210mins) with lowest eval loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 179.7363 predict_loss = 1.2452 predict_rouge1 = 56.8657 predict_rouge2 = 38.6531 predict_rougeL = 44.8399 predict_rougeLsum = 51.6266 predict_runtime = 1:19:28.20 predict_samples = 3269 predict_samples_per_second = 0.686 predict_steps_per_second = 0.086 ```
Contrastive-Tension/BERT-Distil-NLI-CT
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 3db4b452 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1 # 2 cards on xsum NEPOCH=10 RUNID=pegasus-xsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name xsum \ --do_train \ --adafactor \ --learning_rate 1e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 8 \ --do_eval \ --per_device_eval_batch_size 8 \ --num_beams 8 \ --max_source_length 512 \ --max_target_length 64 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-xsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-xsum \ --dataset_name xsum \ --max_source_length 512 \ --max_target_length 64 \ --do_predict \ --per_device_eval_batch_size 16 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@62000 steps, 4.9epoch, 20hrs) with lower loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 24.0499 predict_loss = 1.5801 predict_rouge1 = 47.2124 predict_rouge2 = 24.3673 predict_rougeL = 39.0055 predict_rougeLsum = 39.0007 predict_runtime = 0:34:23.32 predict_samples = 11334 predict_samples_per_second = 5.493 predict_steps_per_second = 0.344 ```
Contrastive-Tension/BERT-Large-CT-STSb
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-100h This is a fork of [```facebook/wav2vec2-base-100h```](https://huggingface.co/facebook/wav2vec2-base-100h) ### Changes & Notes 1. Document reproducible evaluation (below) to new transformer and datasets version. 2. Use batch size of 1 to reproduce results. 3. Validated with ```transformers v4.15.0```, ```datasets 1.18.0``` 4. You may need to manually install pypkg ```librosa```, ```jiwer``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # librispeech_eval = load_dataset("librispeech_asr", "other", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") def map_to_array(batch): # speech, _ = sf.read(batch["file"]) # batch["speech"] = speech batch["speech"] = batch['audio']['array'] return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean/test" | "other/test" | |--------------| ------------| | 6.1 | 13.5 |
Contrastive-Tension/BERT-Large-NLI-CT
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
## TrOCR (small-sized model, fine-tuned on Synthetic Math Expression Dataset) TrOCR model fine-tuned on the Synthetic Math Expression Dataset. It was introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr). Disclaimer: The team releasing TrOCR did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens. ## Intended uses & limitations You can use the raw model for optical character recognition (OCR) on single text-line images. See the model hub to look for fine-tuned versions on a task that interests you. ## How to use Here is how to use this model in PyTorch: ```python from transformers import VisionEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer from PIL import Image import requests # load image from the IAM database url = 'https://drive.google.com/uc?export=view&id=15dUjO44YDe1Agw_Qi8MyODRHpUFaCFw-' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") feature_extractor = AutoFeatureExtractor.from_pretrained('vukpetar/trocr-small-photomath') tokenizer = AutoTokenizer.from_pretrained("vukpetar/trocr-small-photomath") model = VisionEncoderDecoderModel.from_pretrained('vukpetar/trocr-small-photomath') pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## BibTeX entry and citation info @misc{li2021trocr, title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, year={2021}, eprint={2109.10282}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Contrastive-Tension/RoBerta-Large-CT-STSb
[ "pytorch", "tf", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: - ja license: apache-2.0 tags: - audio - automatic-speech-recognition - speech datasets: - Japanese accent datasets metrics: - wer # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: Wav2vec2 Accent Japanese results: - task: type: Speech Recognition # Required. Example: automatic-speech-recognition name: automatic-speech-recognition # Optional. Example: Speech Recognition dataset: type: accent_voice name: Japanese accent datasets args: ja metrics: - type: wer # Required. value: 15.82 # Required. name: Test WER --- # Wav2Vec2 Accent Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese accent dataset When using this model, make sure that your speech input is sampled at 16kHz. ## Test Result WER: 15.82%
Cooker/cicero-similis
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: ja datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Japanese Hiragana by Chien Vu results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 24.74 - name: Test CER type: cer value: 10.99 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python !pip install mecab-python3 !pip install unidic-lite !pip install pykakasi !python -m unidic download import torch import torchaudio import librosa from datasets import load_dataset import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' kakasi = pykakasi.kakasi() kakasi.setMode("J","H") kakasi.setMode("K","H") kakasi.setMode("r","Hepburn") conv = kakasi.getConverter() # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip()) batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install mecab-python3 !pip install unidic-lite !pip install pykakasi !python -m unidic download import torch import librosa import torchaudio from datasets import load_dataset, load_metric import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re #config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' kakasi = pykakasi.kakasi() kakasi.setMode("J","H") kakasi.setMode("K","H") kakasi.setMode("r","Hepburn") conv = kakasi.getConverter() # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model.to("cuda") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip()) batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # evaluate function def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` ## Test Result **WER:** 24.74%, **CER:** 10.99% ## Training The Common Voice `train`, `validation` datasets and Japanese speech corpus datasets were used for training.
Cool/Demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: ja datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Japanese by Chien Vu results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 30.84 - name: Test CER type: cer value: 17.85 widget: - example_title: Japanese speech corpus sample 1 src: https://u.pcloud.link/publink/show?code=XZwhAlXZFOtXiqKHMzmYS9wXrCP8Yb7EtRd7 - example_title: Japanese speech corpus sample 2 src: https://u.pcloud.link/publink/show?code=XZ6hAlXZ5ccULt0YtrhJFl7LygKg0SJzKX0k --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python !pip install mecab-python3 !pip install unidic-lite !python -m unidic download import torch import torchaudio import librosa from datasets import load_dataset import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = wakati.parse(batch["sentence"]).strip() batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install mecab-python3 !pip install unidic-lite !python -m unidic download import torch import librosa import torchaudio from datasets import load_dataset, load_metric import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re #config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese") model.to("cuda") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = wakati.parse(batch["sentence"]).strip() batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # evaluate function def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` ## Test Result **WER:** 30.84%, **CER:** 17.85% ## Training The Common Voice `train`, `validation` datasets and Japanese speech corpus `basic5000` datasets were used for training.
Coolhand/Abuela
[ "en", "image_restoration", "superresolution", "license:mit" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.98 - name: Test CER (with LM) type: cer value: 3.42 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.88 - name: Test CER (with LM) type: cer value: 3.35 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 28.07 - name: Test CER (with LM) type: cer value: 16.27 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.89 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10. ### Total training data: ~60 hours ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 10.96 | 10.91 | |with 4-grams LM| 7.98 | 7.88 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 4.28 | 4.22 | |with 4-grams LM| 3.42 | 3.35 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 | | 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 | | 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 | | 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 | | 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 | | 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 | | 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 | | 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 | | 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 | | 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 | | 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 | | 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 | | 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 | | 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 | | 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 | | 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 | | 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 | | 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 | | 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 | | 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 | | 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 | | 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 | | 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 | | 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 | | 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 | | 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 | | 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 | | 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 | | 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Coolhand/Sentiment
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-53-ja results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 15.37 - name: Test CER (with LM) type: cer value: 6.91 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 16.09 - name: Test CER (with LM) type: cer value: 7.15 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 37.96 - name: Test CER (with LM) type: cer value: 21.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 26.02 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 15.74 | 25.10 | |with 4-grams LM| 15.37 | 16.09 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 9.51 | 9.95 | |with 4-grams LM| 6.91 | 7.15 | ## Evaluation Please use the eval.py file to run the evaluation: ```python python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 4.7776 | 4.73 | 1500 | 2.9540 | 0.9772 | 0.8489 | | 1.9076 | 9.46 | 3000 | 0.7146 | 0.5371 | 0.2484 | | 1.507 | 14.2 | 4500 | 0.5843 | 0.4689 | 0.2196 | | 1.3742 | 18.93 | 6000 | 0.5286 | 0.4321 | 0.1988 | | 1.2776 | 23.66 | 7500 | 0.5007 | 0.4056 | 0.1870 | | 1.2003 | 28.39 | 9000 | 0.4676 | 0.3848 | 0.1802 | | 1.1281 | 33.12 | 10500 | 0.4524 | 0.3694 | 0.1720 | | 1.0657 | 37.85 | 12000 | 0.4449 | 0.3590 | 0.1681 | | 1.0129 | 42.59 | 13500 | 0.4266 | 0.3423 | 0.1617 | | 0.9691 | 47.32 | 15000 | 0.4214 | 0.3375 | 0.1587 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
CopymySkill/DialoGPT-medium-atakan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 11.77 - name: Test CER (with LM) type: cer value: 5.22 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 12.23 - name: Test CER (with LM) type: cer value: 5.33 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 29.35 - name: Test CER (with LM) type: cer value: 16.43 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.48 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 16.97 | 17.95 | |with 4-grams LM| 11.77 | 12.23| ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 6.82 | 7.05 | |with 4-grams LM| 5.22 | 5.33 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vutankiet2901/wav2vec2-xls-r-1b-ja --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.484 | 9.49 | 1500 | 1.1849 | 0.7543 | 0.4099 | | 1.3582 | 18.98 | 3000 | 0.4320 | 0.3489 | 0.1591 | | 1.1716 | 28.48 | 4500 | 0.3835 | 0.3175 | 0.1454 | | 1.0951 | 37.97 | 6000 | 0.3732 | 0.3033 | 0.1405 | | 1.04 | 47.47 | 7500 | 0.3485 | 0.2898 | 0.1360 | | 0.9768 | 56.96 | 9000 | 0.3386 | 0.2787 | 0.1309 | | 0.9129 | 66.45 | 10500 | 0.3363 | 0.2711 | 0.1272 | | 0.8614 | 75.94 | 12000 | 0.3386 | 0.2676 | 0.1260 | | 0.8092 | 85.44 | 13500 | 0.3356 | 0.2610 | 0.1240 | | 0.7658 | 94.93 | 15000 | 0.3316 | 0.2564 | 0.1218 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Corvus/DialoGPT-medium-CaptainPrice-Extended
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Fine-Tuned MarianMT translation model for translating text from English to Dutch. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-nl. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/Eng_to_dutch_marianmt.ipynb
Corvus/DialoGPT-medium-CaptainPrice
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Fine-Tuned MarianMT translation model for translating text from English to Italian. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-it. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/En_to_it_marianmt.ipynb
CouchCat/ma_ner_v6_distil
[ "pytorch", "distilbert", "token-classification", "en", "transformers", "ner", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-no_paragraph-to-paragraph results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-no_paragraph-to-paragraph This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0713 - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | 0.767 | 1.0 | 576 | 0.0713 | 0.0 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
CouchCat/ma_ner_v7_distil
[ "pytorch", "distilbert", "token-classification", "en", "transformers", "ner", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-no_paragraph-to-yes_paragraph-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-no_paragraph-to-yes_paragraph-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 0.006 | 1.0 | 8081 | 0.0002 | 0.0 | 19.0 | | 0.0032 | 2.0 | 16162 | 0.0001 | 0.0 | 19.0 | | 0.0026 | 3.0 | 24243 | 0.0001 | 0.0 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Craig/paraphrase-MiniLM-L6-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,026
2021-07-10T13:36:22Z
--- language: id tags: - indonesian-roberta-base-sentiment-classifier license: mit datasets: - indonlu widget: - text: "Jangan sampai saya telpon bos saya ya!" --- ## Indonesian RoBERTa Base Sentiment Classifier Indonesian RoBERTa Base Sentiment Classifier is a sentiment-text-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`indonlu`](https://hf.co/datasets/indonlu)'s `SmSA` dataset consisting of Indonesian comments and reviews. After training, the model achieved an evaluation accuracy of 94.36% and F1-macro of 92.42%. On the benchmark test set, the model achieved an accuracy of 93.2% and F1-macro of 91.02%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------------------------- | ------- | ------------ | ------------------------------- | | `indonesian-roberta-base-sentiment-classifier` | 124M | RoBERTa Base | `SmSA` | ## Evaluation Results The model was trained for 5 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.342600 | 0.213551 | 0.928571 | 0.898539 | 0.909803 | 0.890694 | | 2 | 0.190700 | 0.213466 | 0.934127 | 0.901135 | 0.925297 | 0.882757 | | 3 | 0.125500 | 0.219539 | 0.942857 | 0.920901 | 0.927511 | 0.915193 | | 4 | 0.083600 | 0.235232 | 0.943651 | 0.924227 | 0.926494 | 0.922048 | | 5 | 0.059200 | 0.262473 | 0.942063 | 0.920583 | 0.924084 | 0.917351 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "w11wo/indonesian-roberta-base-sentiment-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Jangan sampai saya telpon bos saya ya!") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `SmSA` dataset that may be carried over into the results of this model. ## Author Indonesian RoBERTa Base Sentiment Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If used, please cite the following: ```bibtex @misc {wilson_wongso_2023, author = { {Wilson Wongso} }, title = { indonesian-roberta-base-sentiment-classifier (Revision e402e46) }, year = 2023, url = { https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier }, doi = { 10.57967/hf/0644 }, publisher = { Hugging Face } } ```
Culmenus/IceBERT-finetuned-ner
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: lo tags: - lao-roberta-base-pos-tagger license: mit widget: - text: "เบฎเป‰เบญเบ‡ เบกเปˆเบงเบ™ เปเบ—เป‰ เบชเบฝเบ‡เบ”เบต เบญเบดเบซเบผเบต" --- ## Lao RoBERTa Base POS Tagger Lao RoBERTa Base POS Tagger is a part-of-speech token-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Lao RoBERTa Base](https://huggingface.co/w11wo/lao-roberta-base) model, which is then fine-tuned on the [`Yunshan Cup 2020`](https://github.com/GKLMIP/Yunshan-Cup-2020) dataset consisting of tag-labelled Lao corpus. After training, the model achieved an evaluation accuracy of 83.14%. On the benchmark test set, the model achieved an accuracy of 83.30%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ----------------------------- | ------- | ------------ | ------------------------------- | | `lao-roberta-base-pos-tagger` | 124M | RoBERTa Base | `Yunshan Cup 2020` | ## Evaluation Results The model was trained for 15 epochs, with a batch size of 8, a learning rate of 5e-5, with cosine annealing to 0. The best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | | ----- | ------------- | --------------- | -------- | | 1 | 1.026100 | 0.733780 | 0.746021 | | 2 | 0.646900 | 0.659625 | 0.775688 | | 3 | 0.500400 | 0.576214 | 0.798523 | | 4 | 0.385400 | 0.606503 | 0.805269 | | 5 | 0.288000 | 0.652493 | 0.809092 | | 6 | 0.204600 | 0.671678 | 0.815216 | | 7 | 0.145200 | 0.704693 | 0.818209 | | 8 | 0.098700 | 0.830561 | 0.816998 | | 9 | 0.066100 | 0.883329 | 0.825232 | | 10 | 0.043900 | 0.933347 | 0.825664 | | 11 | 0.027200 | 0.992055 | 0.828449 | | 12 | 0.017300 | 1.054874 | 0.830819 | | 13 | 0.011500 | 1.081638 | 0.830940 | | 14 | 0.008500 | 1.094252 | 0.831304 | | 15 | 0.007400 | 1.097428 | 0.831442 | ## How to Use ### As Token Classifier ```python from transformers import pipeline pretrained_name = "w11wo/lao-roberta-base-pos-tagger" nlp = pipeline( "token-classification", model=pretrained_name, tokenizer=pretrained_name ) nlp("เบฎเป‰เบญเบ‡ เบกเปˆเบงเบ™ เปเบ—เป‰ เบชเบฝเบ‡เบ”เบต เบญเบดเบซเบผเบต") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `Yunshan Cup 2020` dataset that may be carried over into the results of this model. ## Author Lao RoBERTa Base POS Tagger was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
Culmenus/opus-mt-de-is-finetuned-de-to-is_35g65cc_2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: su tags: - sundanese-roberta-base-emotion-classifier license: mit widget: - text: "Wah, รฉta gรฉlo, keren pisan!" --- ## Sundanese RoBERTa Base Emotion Classifier Sundanese RoBERTa Base Emotion Classifier is an emotion-text-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Sundanese RoBERTa Base](https://hf.co/w11wo/sundanese-roberta-base) model, which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 98.41% and F1-macro of 98.43%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ------------ | ------------------------------- | | `sundanese-roberta-base-emotion-classifier` | 124M | RoBERTa Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.801800 | 0.293695 | 0.900794 | 0.899048 | 0.903466 | 0.900406 | | 2 | 0.208700 | 0.185291 | 0.936508 | 0.935520 | 0.939460 | 0.935540 | | 3 | 0.089700 | 0.150287 | 0.956349 | 0.956569 | 0.956500 | 0.958612 | | 4 | 0.025600 | 0.130889 | 0.972222 | 0.972865 | 0.973029 | 0.973184 | | 5 | 0.002200 | 0.100031 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 6 | 0.001300 | 0.104971 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 7 | 0.000600 | 0.107744 | 0.980159 | 0.980174 | 0.980814 | 0.979743 | | 8 | 0.000500 | 0.102327 | 0.980159 | 0.980171 | 0.979970 | 0.980430 | | 9 | 0.000500 | 0.101935 | 0.984127 | 0.984376 | 0.984073 | 0.984741 | | 10 | 0.000400 | 0.105965 | 0.984127 | 0.984142 | 0.983720 | 0.984741 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-roberta-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Wah, รฉta gรฉlo, keren pisan!") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese RoBERTa Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
Daltcamalea01/Camaleaodalt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en datasets: - speechcolab/gigaspeech ---
Davlan/byt5-base-yor-eng-mt
[ "pytorch", "t5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - de license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-de results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 87.0 - type: accuracy name: Dutch Test accuracy value: 89.6 - type: accuracy name: German Test accuracy value: 97.2 - type: accuracy name: Italian Test accuracy value: 85.6 - type: accuracy name: French Test accuracy value: 84.8 - type: accuracy name: Spanish Test accuracy value: 88.4 - type: accuracy name: Russian Test accuracy value: 89.4 - type: accuracy name: Swedish Test accuracy value: 92.3 - type: accuracy name: Norwegian Test accuracy value: 87.7 - type: accuracy name: Danish Test accuracy value: 88.9 - type: accuracy name: Low Saxon Test accuracy value: 44.3 - type: accuracy name: Akkadian Test accuracy value: 21.4 - type: accuracy name: Armenian Test accuracy value: 85.6 - type: accuracy name: Welsh Test accuracy value: 69.0 - type: accuracy name: Old East Slavic Test accuracy value: 67.7 - type: accuracy name: Albanian Test accuracy value: 84.6 - type: accuracy name: Slovenian Test accuracy value: 76.5 - type: accuracy name: Guajajara Test accuracy value: 18.1 - type: accuracy name: Kurmanji Test accuracy value: 74.1 - type: accuracy name: Turkish Test accuracy value: 75.6 - type: accuracy name: Finnish Test accuracy value: 83.8 - type: accuracy name: Indonesian Test accuracy value: 82.2 - type: accuracy name: Ukrainian Test accuracy value: 89.0 - type: accuracy name: Polish Test accuracy value: 86.6 - type: accuracy name: Portuguese Test accuracy value: 87.8 - type: accuracy name: Kazakh Test accuracy value: 80.6 - type: accuracy name: Latin Test accuracy value: 75.8 - type: accuracy name: Old French Test accuracy value: 36.3 - type: accuracy name: Buryat Test accuracy value: 49.8 - type: accuracy name: Kaapor Test accuracy value: 11.7 - type: accuracy name: Korean Test accuracy value: 61.4 - type: accuracy name: Estonian Test accuracy value: 86.6 - type: accuracy name: Croatian Test accuracy value: 88.8 - type: accuracy name: Gothic Test accuracy value: 8.1 - type: accuracy name: Swiss German Test accuracy value: 54.4 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 25.0 - type: accuracy name: Naija Test accuracy value: 28.2 - type: accuracy name: Latvian Test accuracy value: 83.9 - type: accuracy name: Chinese Test accuracy value: 52.6 - type: accuracy name: Tagalog Test accuracy value: 72.1 - type: accuracy name: Bambara Test accuracy value: 17.5 - type: accuracy name: Lithuanian Test accuracy value: 82.6 - type: accuracy name: Galician Test accuracy value: 85.2 - type: accuracy name: Vietnamese Test accuracy value: 60.8 - type: accuracy name: Greek Test accuracy value: 88.7 - type: accuracy name: Catalan Test accuracy value: 86.8 - type: accuracy name: Czech Test accuracy value: 87.4 - type: accuracy name: Erzya Test accuracy value: 33.6 - type: accuracy name: Bhojpuri Test accuracy value: 46.5 - type: accuracy name: Thai Test accuracy value: 62.4 - type: accuracy name: Marathi Test accuracy value: 86.5 - type: accuracy name: Basque Test accuracy value: 77.3 - type: accuracy name: Slovak Test accuracy value: 87.6 - type: accuracy name: Kiche Test accuracy value: 21.6 - type: accuracy name: Yoruba Test accuracy value: 16.6 - type: accuracy name: Warlpiri Test accuracy value: 21.5 - type: accuracy name: Tamil Test accuracy value: 84.2 - type: accuracy name: Maltese Test accuracy value: 15.3 - type: accuracy name: Ancient Greek Test accuracy value: 62.0 - type: accuracy name: Icelandic Test accuracy value: 84.1 - type: accuracy name: Mbya Guarani Test accuracy value: 20.5 - type: accuracy name: Urdu Test accuracy value: 68.0 - type: accuracy name: Romanian Test accuracy value: 83.5 - type: accuracy name: Persian Test accuracy value: 76.0 - type: accuracy name: Apurina Test accuracy value: 22.2 - type: accuracy name: Japanese Test accuracy value: 36.2 - type: accuracy name: Hungarian Test accuracy value: 86.7 - type: accuracy name: Hindi Test accuracy value: 73.0 - type: accuracy name: Classical Chinese Test accuracy value: 28.6 - type: accuracy name: Komi Permyak Test accuracy value: 34.9 - type: accuracy name: Faroese Test accuracy value: 76.6 - type: accuracy name: Sanskrit Test accuracy value: 9.4 - type: accuracy name: Livvi Test accuracy value: 50.9 - type: accuracy name: Arabic Test accuracy value: 79.4 - type: accuracy name: Wolof Test accuracy value: 21.1 - type: accuracy name: Bulgarian Test accuracy value: 91.1 - type: accuracy name: Akuntsu Test accuracy value: 14.4 - type: accuracy name: Makurap Test accuracy value: 1.4 - type: accuracy name: Kangri Test accuracy value: 40.5 - type: accuracy name: Breton Test accuracy value: 60.0 - type: accuracy name: Telugu Test accuracy value: 83.2 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 38.7 - type: accuracy name: Karelian Test accuracy value: 64.4 - type: accuracy name: Upper Sorbian Test accuracy value: 65.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.8 - type: accuracy name: Komi Zyrian Test accuracy value: 28.4 - type: accuracy name: Irish Test accuracy value: 66.3 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 8.0 - type: accuracy name: Manx Test accuracy value: 20.6 - type: accuracy name: Skolt Sami Test accuracy value: 25.8 - type: accuracy name: Afrikaans Test accuracy value: 88.9 - type: accuracy name: Old Turkish Test accuracy value: 31.7 - type: accuracy name: Tupinamba Test accuracy value: 20.9 - type: accuracy name: Belarusian Test accuracy value: 89.5 - type: accuracy name: Serbian Test accuracy value: 89.8 - type: accuracy name: Moksha Test accuracy value: 31.3 - type: accuracy name: Western Armenian Test accuracy value: 77.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.5 - type: accuracy name: Khunsari Test accuracy value: 35.1 - type: accuracy name: Hebrew Test accuracy value: 91.7 - type: accuracy name: Uyghur Test accuracy value: 71.5 - type: accuracy name: Chukchi Test accuracy value: 29.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: German This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") ```
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- language: - el license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-el results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.6 - type: accuracy name: Dutch Test accuracy value: 82.2 - type: accuracy name: German Test accuracy value: 82.6 - type: accuracy name: Italian Test accuracy value: 82.0 - type: accuracy name: French Test accuracy value: 78.7 - type: accuracy name: Spanish Test accuracy value: 82.2 - type: accuracy name: Russian Test accuracy value: 88.4 - type: accuracy name: Swedish Test accuracy value: 87.4 - type: accuracy name: Norwegian Test accuracy value: 82.1 - type: accuracy name: Danish Test accuracy value: 85.9 - type: accuracy name: Low Saxon Test accuracy value: 49.8 - type: accuracy name: Akkadian Test accuracy value: 24.4 - type: accuracy name: Armenian Test accuracy value: 84.0 - type: accuracy name: Welsh Test accuracy value: 68.9 - type: accuracy name: Old East Slavic Test accuracy value: 75.0 - type: accuracy name: Albanian Test accuracy value: 87.7 - type: accuracy name: Slovenian Test accuracy value: 77.2 - type: accuracy name: Guajajara Test accuracy value: 25.8 - type: accuracy name: Kurmanji Test accuracy value: 74.3 - type: accuracy name: Turkish Test accuracy value: 75.3 - type: accuracy name: Finnish Test accuracy value: 83.4 - type: accuracy name: Indonesian Test accuracy value: 75.4 - type: accuracy name: Ukrainian Test accuracy value: 88.6 - type: accuracy name: Polish Test accuracy value: 84.0 - type: accuracy name: Portuguese Test accuracy value: 82.4 - type: accuracy name: Kazakh Test accuracy value: 80.5 - type: accuracy name: Latin Test accuracy value: 77.3 - type: accuracy name: Old French Test accuracy value: 52.5 - type: accuracy name: Buryat Test accuracy value: 56.0 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 59.9 - type: accuracy name: Estonian Test accuracy value: 83.6 - type: accuracy name: Croatian Test accuracy value: 84.9 - type: accuracy name: Gothic Test accuracy value: 20.2 - type: accuracy name: Swiss German Test accuracy value: 43.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 33.5 - type: accuracy name: Naija Test accuracy value: 42.7 - type: accuracy name: Latvian Test accuracy value: 84.9 - type: accuracy name: Chinese Test accuracy value: 42.1 - type: accuracy name: Tagalog Test accuracy value: 66.7 - type: accuracy name: Bambara Test accuracy value: 28.2 - type: accuracy name: Lithuanian Test accuracy value: 85.3 - type: accuracy name: Galician Test accuracy value: 82.1 - type: accuracy name: Vietnamese Test accuracy value: 62.8 - type: accuracy name: Greek Test accuracy value: 98.0 - type: accuracy name: Catalan Test accuracy value: 80.4 - type: accuracy name: Czech Test accuracy value: 85.0 - type: accuracy name: Erzya Test accuracy value: 43.9 - type: accuracy name: Bhojpuri Test accuracy value: 45.0 - type: accuracy name: Thai Test accuracy value: 58.6 - type: accuracy name: Marathi Test accuracy value: 85.3 - type: accuracy name: Basque Test accuracy value: 72.4 - type: accuracy name: Slovak Test accuracy value: 82.8 - type: accuracy name: Kiche Test accuracy value: 36.2 - type: accuracy name: Yoruba Test accuracy value: 28.9 - type: accuracy name: Warlpiri Test accuracy value: 38.9 - type: accuracy name: Tamil Test accuracy value: 83.0 - type: accuracy name: Maltese Test accuracy value: 22.3 - type: accuracy name: Ancient Greek Test accuracy value: 64.2 - type: accuracy name: Icelandic Test accuracy value: 80.7 - type: accuracy name: Mbya Guarani Test accuracy value: 32.4 - type: accuracy name: Urdu Test accuracy value: 53.0 - type: accuracy name: Romanian Test accuracy value: 83.7 - type: accuracy name: Persian Test accuracy value: 74.4 - type: accuracy name: Apurina Test accuracy value: 41.3 - type: accuracy name: Japanese Test accuracy value: 30.0 - type: accuracy name: Hungarian Test accuracy value: 80.2 - type: accuracy name: Hindi Test accuracy value: 60.0 - type: accuracy name: Classical Chinese Test accuracy value: 30.1 - type: accuracy name: Komi Permyak Test accuracy value: 44.2 - type: accuracy name: Faroese Test accuracy value: 72.9 - type: accuracy name: Sanskrit Test accuracy value: 40.4 - type: accuracy name: Livvi Test accuracy value: 65.2 - type: accuracy name: Arabic Test accuracy value: 76.6 - type: accuracy name: Wolof Test accuracy value: 28.0 - type: accuracy name: Bulgarian Test accuracy value: 89.6 - type: accuracy name: Akuntsu Test accuracy value: 26.7 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 43.1 - type: accuracy name: Breton Test accuracy value: 63.5 - type: accuracy name: Telugu Test accuracy value: 85.3 - type: accuracy name: Cantonese Test accuracy value: 48.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.6 - type: accuracy name: Karelian Test accuracy value: 71.0 - type: accuracy name: Upper Sorbian Test accuracy value: 69.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.2 - type: accuracy name: Komi Zyrian Test accuracy value: 36.5 - type: accuracy name: Irish Test accuracy value: 61.3 - type: accuracy name: Nayini Test accuracy value: 43.6 - type: accuracy name: Munduruku Test accuracy value: 29.4 - type: accuracy name: Manx Test accuracy value: 33.8 - type: accuracy name: Skolt Sami Test accuracy value: 31.5 - type: accuracy name: Afrikaans Test accuracy value: 85.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 29.2 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 85.2 - type: accuracy name: Moksha Test accuracy value: 43.8 - type: accuracy name: Western Armenian Test accuracy value: 76.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.8 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 75.7 - type: accuracy name: Chukchi Test accuracy value: 34.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Greek This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") ```
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- language: - en license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-en results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 96.0 - type: accuracy name: Dutch Test accuracy value: 90.4 - type: accuracy name: German Test accuracy value: 88.6 - type: accuracy name: Italian Test accuracy value: 87.8 - type: accuracy name: French Test accuracy value: 87.4 - type: accuracy name: Spanish Test accuracy value: 90.3 - type: accuracy name: Russian Test accuracy value: 91.0 - type: accuracy name: Swedish Test accuracy value: 94.0 - type: accuracy name: Norwegian Test accuracy value: 89.6 - type: accuracy name: Danish Test accuracy value: 91.6 - type: accuracy name: Low Saxon Test accuracy value: 57.4 - type: accuracy name: Akkadian Test accuracy value: 26.4 - type: accuracy name: Armenian Test accuracy value: 88.5 - type: accuracy name: Welsh Test accuracy value: 70.6 - type: accuracy name: Old East Slavic Test accuracy value: 76.5 - type: accuracy name: Albanian Test accuracy value: 82.3 - type: accuracy name: Slovenian Test accuracy value: 79.0 - type: accuracy name: Guajajara Test accuracy value: 17.2 - type: accuracy name: Kurmanji Test accuracy value: 76.9 - type: accuracy name: Turkish Test accuracy value: 79.1 - type: accuracy name: Finnish Test accuracy value: 87.2 - type: accuracy name: Indonesian Test accuracy value: 86.9 - type: accuracy name: Ukrainian Test accuracy value: 87.6 - type: accuracy name: Polish Test accuracy value: 87.2 - type: accuracy name: Portuguese Test accuracy value: 90.0 - type: accuracy name: Kazakh Test accuracy value: 82.5 - type: accuracy name: Latin Test accuracy value: 79.6 - type: accuracy name: Old French Test accuracy value: 53.4 - type: accuracy name: Buryat Test accuracy value: 58.8 - type: accuracy name: Kaapor Test accuracy value: 9.2 - type: accuracy name: Korean Test accuracy value: 64.0 - type: accuracy name: Estonian Test accuracy value: 88.4 - type: accuracy name: Croatian Test accuracy value: 87.9 - type: accuracy name: Gothic Test accuracy value: 20.5 - type: accuracy name: Swiss German Test accuracy value: 47.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 32.0 - type: accuracy name: Naija Test accuracy value: 47.5 - type: accuracy name: Latvian Test accuracy value: 87.5 - type: accuracy name: Chinese Test accuracy value: 47.5 - type: accuracy name: Tagalog Test accuracy value: 73.5 - type: accuracy name: Bambara Test accuracy value: 27.7 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 87.1 - type: accuracy name: Vietnamese Test accuracy value: 66.4 - type: accuracy name: Greek Test accuracy value: 87.6 - type: accuracy name: Catalan Test accuracy value: 89.7 - type: accuracy name: Czech Test accuracy value: 88.1 - type: accuracy name: Erzya Test accuracy value: 47.6 - type: accuracy name: Bhojpuri Test accuracy value: 50.7 - type: accuracy name: Thai Test accuracy value: 59.5 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 76.0 - type: accuracy name: Slovak Test accuracy value: 88.5 - type: accuracy name: Kiche Test accuracy value: 25.4 - type: accuracy name: Yoruba Test accuracy value: 18.5 - type: accuracy name: Warlpiri Test accuracy value: 29.1 - type: accuracy name: Tamil Test accuracy value: 83.4 - type: accuracy name: Maltese Test accuracy value: 21.1 - type: accuracy name: Ancient Greek Test accuracy value: 66.8 - type: accuracy name: Icelandic Test accuracy value: 84.8 - type: accuracy name: Mbya Guarani Test accuracy value: 24.1 - type: accuracy name: Urdu Test accuracy value: 67.0 - type: accuracy name: Romanian Test accuracy value: 85.7 - type: accuracy name: Persian Test accuracy value: 76.7 - type: accuracy name: Apurina Test accuracy value: 28.6 - type: accuracy name: Japanese Test accuracy value: 34.1 - type: accuracy name: Hungarian Test accuracy value: 86.0 - type: accuracy name: Hindi Test accuracy value: 74.1 - type: accuracy name: Classical Chinese Test accuracy value: 29.4 - type: accuracy name: Komi Permyak Test accuracy value: 47.4 - type: accuracy name: Faroese Test accuracy value: 77.0 - type: accuracy name: Sanskrit Test accuracy value: 25.6 - type: accuracy name: Livvi Test accuracy value: 63.2 - type: accuracy name: Arabic Test accuracy value: 80.7 - type: accuracy name: Wolof Test accuracy value: 26.1 - type: accuracy name: Bulgarian Test accuracy value: 90.8 - type: accuracy name: Akuntsu Test accuracy value: 18.3 - type: accuracy name: Makurap Test accuracy value: 5.5 - type: accuracy name: Kangri Test accuracy value: 43.0 - type: accuracy name: Breton Test accuracy value: 64.1 - type: accuracy name: Telugu Test accuracy value: 84.7 - type: accuracy name: Cantonese Test accuracy value: 54.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 53.7 - type: accuracy name: Karelian Test accuracy value: 69.7 - type: accuracy name: Upper Sorbian Test accuracy value: 75.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.3 - type: accuracy name: Komi Zyrian Test accuracy value: 39.9 - type: accuracy name: Irish Test accuracy value: 67.0 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 12.3 - type: accuracy name: Manx Test accuracy value: 25.4 - type: accuracy name: Skolt Sami Test accuracy value: 29.9 - type: accuracy name: Afrikaans Test accuracy value: 89.3 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 23.1 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 88.4 - type: accuracy name: Moksha Test accuracy value: 44.1 - type: accuracy name: Western Armenian Test accuracy value: 80.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.0 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 90.6 - type: accuracy name: Uyghur Test accuracy value: 75.8 - type: accuracy name: Chukchi Test accuracy value: 32.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: English This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") ```
Davlan/mt5_base_eng_yor_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
--- language: - fro license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-fro results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 73.4 - type: accuracy name: Dutch Test accuracy value: 73.1 - type: accuracy name: German Test accuracy value: 70.7 - type: accuracy name: Italian Test accuracy value: 72.6 - type: accuracy name: French Test accuracy value: 79.3 - type: accuracy name: Spanish Test accuracy value: 78.0 - type: accuracy name: Russian Test accuracy value: 68.8 - type: accuracy name: Swedish Test accuracy value: 76.8 - type: accuracy name: Norwegian Test accuracy value: 69.6 - type: accuracy name: Danish Test accuracy value: 74.2 - type: accuracy name: Low Saxon Test accuracy value: 40.3 - type: accuracy name: Akkadian Test accuracy value: 38.3 - type: accuracy name: Armenian Test accuracy value: 64.7 - type: accuracy name: Welsh Test accuracy value: 56.3 - type: accuracy name: Old East Slavic Test accuracy value: 67.5 - type: accuracy name: Albanian Test accuracy value: 66.5 - type: accuracy name: Slovenian Test accuracy value: 64.2 - type: accuracy name: Guajajara Test accuracy value: 15.0 - type: accuracy name: Kurmanji Test accuracy value: 59.9 - type: accuracy name: Turkish Test accuracy value: 57.2 - type: accuracy name: Finnish Test accuracy value: 66.3 - type: accuracy name: Indonesian Test accuracy value: 66.9 - type: accuracy name: Ukrainian Test accuracy value: 66.7 - type: accuracy name: Polish Test accuracy value: 67.3 - type: accuracy name: Portuguese Test accuracy value: 73.1 - type: accuracy name: Kazakh Test accuracy value: 58.5 - type: accuracy name: Latin Test accuracy value: 65.3 - type: accuracy name: Old French Test accuracy value: 93.3 - type: accuracy name: Buryat Test accuracy value: 43.2 - type: accuracy name: Kaapor Test accuracy value: 25.8 - type: accuracy name: Korean Test accuracy value: 50.3 - type: accuracy name: Estonian Test accuracy value: 66.1 - type: accuracy name: Croatian Test accuracy value: 72.0 - type: accuracy name: Gothic Test accuracy value: 38.1 - type: accuracy name: Swiss German Test accuracy value: 34.6 - type: accuracy name: Assyrian Test accuracy value: 8.2 - type: accuracy name: North Sami Test accuracy value: 23.0 - type: accuracy name: Naija Test accuracy value: 40.4 - type: accuracy name: Latvian Test accuracy value: 65.2 - type: accuracy name: Chinese Test accuracy value: 36.4 - type: accuracy name: Tagalog Test accuracy value: 53.3 - type: accuracy name: Bambara Test accuracy value: 13.4 - type: accuracy name: Lithuanian Test accuracy value: 64.1 - type: accuracy name: Galician Test accuracy value: 71.6 - type: accuracy name: Vietnamese Test accuracy value: 46.7 - type: accuracy name: Greek Test accuracy value: 72.9 - type: accuracy name: Catalan Test accuracy value: 76.9 - type: accuracy name: Czech Test accuracy value: 68.8 - type: accuracy name: Erzya Test accuracy value: 25.4 - type: accuracy name: Bhojpuri Test accuracy value: 41.2 - type: accuracy name: Thai Test accuracy value: 52.2 - type: accuracy name: Marathi Test accuracy value: 51.5 - type: accuracy name: Basque Test accuracy value: 59.6 - type: accuracy name: Slovak Test accuracy value: 70.7 - type: accuracy name: Kiche Test accuracy value: 19.7 - type: accuracy name: Yoruba Test accuracy value: 18.3 - type: accuracy name: Warlpiri Test accuracy value: 15.8 - type: accuracy name: Tamil Test accuracy value: 62.0 - type: accuracy name: Maltese Test accuracy value: 28.1 - type: accuracy name: Ancient Greek Test accuracy value: 56.3 - type: accuracy name: Icelandic Test accuracy value: 70.6 - type: accuracy name: Mbya Guarani Test accuracy value: 16.8 - type: accuracy name: Urdu Test accuracy value: 54.2 - type: accuracy name: Romanian Test accuracy value: 69.1 - type: accuracy name: Persian Test accuracy value: 65.4 - type: accuracy name: Apurina Test accuracy value: 24.5 - type: accuracy name: Japanese Test accuracy value: 31.0 - type: accuracy name: Hungarian Test accuracy value: 62.5 - type: accuracy name: Hindi Test accuracy value: 58.3 - type: accuracy name: Classical Chinese Test accuracy value: 41.9 - type: accuracy name: Komi Permyak Test accuracy value: 30.3 - type: accuracy name: Faroese Test accuracy value: 62.5 - type: accuracy name: Sanskrit Test accuracy value: 37.8 - type: accuracy name: Livvi Test accuracy value: 40.2 - type: accuracy name: Arabic Test accuracy value: 66.2 - type: accuracy name: Wolof Test accuracy value: 26.8 - type: accuracy name: Bulgarian Test accuracy value: 72.5 - type: accuracy name: Akuntsu Test accuracy value: 24.2 - type: accuracy name: Makurap Test accuracy value: 19.2 - type: accuracy name: Kangri Test accuracy value: 36.4 - type: accuracy name: Breton Test accuracy value: 47.3 - type: accuracy name: Telugu Test accuracy value: 58.4 - type: accuracy name: Cantonese Test accuracy value: 33.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 57.3 - type: accuracy name: Karelian Test accuracy value: 49.4 - type: accuracy name: Upper Sorbian Test accuracy value: 52.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 48.3 - type: accuracy name: Komi Zyrian Test accuracy value: 26.6 - type: accuracy name: Irish Test accuracy value: 46.7 - type: accuracy name: Nayini Test accuracy value: 41.0 - type: accuracy name: Munduruku Test accuracy value: 15.6 - type: accuracy name: Manx Test accuracy value: 16.1 - type: accuracy name: Skolt Sami Test accuracy value: 20.0 - type: accuracy name: Afrikaans Test accuracy value: 77.0 - type: accuracy name: Old Turkish Test accuracy value: 2.7 - type: accuracy name: Tupinamba Test accuracy value: 23.5 - type: accuracy name: Belarusian Test accuracy value: 67.8 - type: accuracy name: Serbian Test accuracy value: 74.1 - type: accuracy name: Moksha Test accuracy value: 27.3 - type: accuracy name: Western Armenian Test accuracy value: 61.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 42.8 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 62.5 - type: accuracy name: Uyghur Test accuracy value: 55.0 - type: accuracy name: Chukchi Test accuracy value: 20.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Old French This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") ```
Davlan/xlm-roberta-base-finetuned-igbo
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68
null
--- language: - hi license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hi results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 75.9 - type: accuracy name: Dutch Test accuracy value: 72.3 - type: accuracy name: German Test accuracy value: 69.4 - type: accuracy name: Italian Test accuracy value: 68.1 - type: accuracy name: French Test accuracy value: 67.1 - type: accuracy name: Spanish Test accuracy value: 70.2 - type: accuracy name: Russian Test accuracy value: 82.9 - type: accuracy name: Swedish Test accuracy value: 77.4 - type: accuracy name: Norwegian Test accuracy value: 72.4 - type: accuracy name: Danish Test accuracy value: 74.9 - type: accuracy name: Low Saxon Test accuracy value: 48.0 - type: accuracy name: Akkadian Test accuracy value: 21.7 - type: accuracy name: Armenian Test accuracy value: 82.1 - type: accuracy name: Welsh Test accuracy value: 59.4 - type: accuracy name: Old East Slavic Test accuracy value: 63.6 - type: accuracy name: Albanian Test accuracy value: 68.5 - type: accuracy name: Slovenian Test accuracy value: 71.3 - type: accuracy name: Guajajara Test accuracy value: 18.5 - type: accuracy name: Kurmanji Test accuracy value: 71.8 - type: accuracy name: Turkish Test accuracy value: 75.4 - type: accuracy name: Finnish Test accuracy value: 80.3 - type: accuracy name: Indonesian Test accuracy value: 76.6 - type: accuracy name: Ukrainian Test accuracy value: 80.8 - type: accuracy name: Polish Test accuracy value: 81.1 - type: accuracy name: Portuguese Test accuracy value: 71.5 - type: accuracy name: Kazakh Test accuracy value: 82.0 - type: accuracy name: Latin Test accuracy value: 69.3 - type: accuracy name: Old French Test accuracy value: 44.0 - type: accuracy name: Buryat Test accuracy value: 53.9 - type: accuracy name: Kaapor Test accuracy value: 10.8 - type: accuracy name: Korean Test accuracy value: 57.8 - type: accuracy name: Estonian Test accuracy value: 81.0 - type: accuracy name: Croatian Test accuracy value: 79.8 - type: accuracy name: Gothic Test accuracy value: 8.6 - type: accuracy name: Swiss German Test accuracy value: 42.2 - type: accuracy name: Assyrian Test accuracy value: 16.3 - type: accuracy name: North Sami Test accuracy value: 26.2 - type: accuracy name: Naija Test accuracy value: 35.8 - type: accuracy name: Latvian Test accuracy value: 80.2 - type: accuracy name: Chinese Test accuracy value: 37.1 - type: accuracy name: Tagalog Test accuracy value: 71.3 - type: accuracy name: Bambara Test accuracy value: 22.2 - type: accuracy name: Lithuanian Test accuracy value: 81.3 - type: accuracy name: Galician Test accuracy value: 70.7 - type: accuracy name: Vietnamese Test accuracy value: 60.6 - type: accuracy name: Greek Test accuracy value: 69.5 - type: accuracy name: Catalan Test accuracy value: 68.7 - type: accuracy name: Czech Test accuracy value: 78.8 - type: accuracy name: Erzya Test accuracy value: 36.3 - type: accuracy name: Bhojpuri Test accuracy value: 61.2 - type: accuracy name: Thai Test accuracy value: 52.8 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 78.8 - type: accuracy name: Slovak Test accuracy value: 78.9 - type: accuracy name: Kiche Test accuracy value: 21.7 - type: accuracy name: Yoruba Test accuracy value: 19.3 - type: accuracy name: Warlpiri Test accuracy value: 23.5 - type: accuracy name: Tamil Test accuracy value: 85.7 - type: accuracy name: Maltese Test accuracy value: 16.3 - type: accuracy name: Ancient Greek Test accuracy value: 54.9 - type: accuracy name: Icelandic Test accuracy value: 70.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.2 - type: accuracy name: Urdu Test accuracy value: 89.7 - type: accuracy name: Romanian Test accuracy value: 72.1 - type: accuracy name: Persian Test accuracy value: 78.1 - type: accuracy name: Apurina Test accuracy value: 22.9 - type: accuracy name: Japanese Test accuracy value: 29.3 - type: accuracy name: Hungarian Test accuracy value: 75.4 - type: accuracy name: Hindi Test accuracy value: 93.7 - type: accuracy name: Classical Chinese Test accuracy value: 18.4 - type: accuracy name: Komi Permyak Test accuracy value: 34.3 - type: accuracy name: Faroese Test accuracy value: 64.9 - type: accuracy name: Sanskrit Test accuracy value: 14.0 - type: accuracy name: Livvi Test accuracy value: 57.9 - type: accuracy name: Arabic Test accuracy value: 73.9 - type: accuracy name: Wolof Test accuracy value: 24.9 - type: accuracy name: Bulgarian Test accuracy value: 81.3 - type: accuracy name: Akuntsu Test accuracy value: 16.2 - type: accuracy name: Makurap Test accuracy value: 2.7 - type: accuracy name: Kangri Test accuracy value: 52.8 - type: accuracy name: Breton Test accuracy value: 49.5 - type: accuracy name: Telugu Test accuracy value: 85.4 - type: accuracy name: Cantonese Test accuracy value: 42.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 35.1 - type: accuracy name: Karelian Test accuracy value: 64.9 - type: accuracy name: Upper Sorbian Test accuracy value: 64.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 60.1 - type: accuracy name: Komi Zyrian Test accuracy value: 29.7 - type: accuracy name: Irish Test accuracy value: 56.5 - type: accuracy name: Nayini Test accuracy value: 39.7 - type: accuracy name: Munduruku Test accuracy value: 9.3 - type: accuracy name: Manx Test accuracy value: 25.3 - type: accuracy name: Skolt Sami Test accuracy value: 26.9 - type: accuracy name: Afrikaans Test accuracy value: 71.9 - type: accuracy name: Old Turkish Test accuracy value: 43.0 - type: accuracy name: Tupinamba Test accuracy value: 21.3 - type: accuracy name: Belarusian Test accuracy value: 80.5 - type: accuracy name: Serbian Test accuracy value: 79.9 - type: accuracy name: Moksha Test accuracy value: 34.3 - type: accuracy name: Western Armenian Test accuracy value: 74.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 49.1 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 81.2 - type: accuracy name: Uyghur Test accuracy value: 75.8 - type: accuracy name: Chukchi Test accuracy value: 27.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Hindi This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hi") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hi") ```
Davlan/xlm-roberta-base-masakhaner
[ "pytorch", "xlm-roberta", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - lzh license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-lzh results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 33.6 - type: accuracy name: Dutch Test accuracy value: 30.9 - type: accuracy name: German Test accuracy value: 31.1 - type: accuracy name: Italian Test accuracy value: 31.1 - type: accuracy name: French Test accuracy value: 30.3 - type: accuracy name: Spanish Test accuracy value: 30.6 - type: accuracy name: Russian Test accuracy value: 37.1 - type: accuracy name: Swedish Test accuracy value: 35.6 - type: accuracy name: Norwegian Test accuracy value: 32.7 - type: accuracy name: Danish Test accuracy value: 35.0 - type: accuracy name: Low Saxon Test accuracy value: 19.0 - type: accuracy name: Akkadian Test accuracy value: 25.9 - type: accuracy name: Armenian Test accuracy value: 40.9 - type: accuracy name: Welsh Test accuracy value: 27.3 - type: accuracy name: Old East Slavic Test accuracy value: 36.4 - type: accuracy name: Albanian Test accuracy value: 31.6 - type: accuracy name: Slovenian Test accuracy value: 31.1 - type: accuracy name: Guajajara Test accuracy value: 13.9 - type: accuracy name: Kurmanji Test accuracy value: 36.5 - type: accuracy name: Turkish Test accuracy value: 42.7 - type: accuracy name: Finnish Test accuracy value: 45.0 - type: accuracy name: Indonesian Test accuracy value: 40.6 - type: accuracy name: Ukrainian Test accuracy value: 36.0 - type: accuracy name: Polish Test accuracy value: 35.3 - type: accuracy name: Portuguese Test accuracy value: 34.8 - type: accuracy name: Kazakh Test accuracy value: 45.4 - type: accuracy name: Latin Test accuracy value: 37.9 - type: accuracy name: Old French Test accuracy value: 33.4 - type: accuracy name: Buryat Test accuracy value: 27.2 - type: accuracy name: Kaapor Test accuracy value: 19.6 - type: accuracy name: Korean Test accuracy value: 44.8 - type: accuracy name: Estonian Test accuracy value: 41.4 - type: accuracy name: Croatian Test accuracy value: 34.2 - type: accuracy name: Gothic Test accuracy value: 12.3 - type: accuracy name: Swiss German Test accuracy value: 18.1 - type: accuracy name: Assyrian Test accuracy value: 3.5 - type: accuracy name: North Sami Test accuracy value: 8.9 - type: accuracy name: Naija Test accuracy value: 25.4 - type: accuracy name: Latvian Test accuracy value: 45.0 - type: accuracy name: Chinese Test accuracy value: 53.2 - type: accuracy name: Tagalog Test accuracy value: 34.0 - type: accuracy name: Bambara Test accuracy value: 13.9 - type: accuracy name: Lithuanian Test accuracy value: 44.0 - type: accuracy name: Galician Test accuracy value: 29.0 - type: accuracy name: Vietnamese Test accuracy value: 40.9 - type: accuracy name: Greek Test accuracy value: 31.3 - type: accuracy name: Catalan Test accuracy value: 29.6 - type: accuracy name: Czech Test accuracy value: 35.4 - type: accuracy name: Erzya Test accuracy value: 9.6 - type: accuracy name: Bhojpuri Test accuracy value: 22.9 - type: accuracy name: Thai Test accuracy value: 51.6 - type: accuracy name: Marathi Test accuracy value: 36.8 - type: accuracy name: Basque Test accuracy value: 42.1 - type: accuracy name: Slovak Test accuracy value: 36.3 - type: accuracy name: Kiche Test accuracy value: 11.9 - type: accuracy name: Yoruba Test accuracy value: 10.9 - type: accuracy name: Warlpiri Test accuracy value: 15.0 - type: accuracy name: Tamil Test accuracy value: 53.4 - type: accuracy name: Maltese Test accuracy value: 9.4 - type: accuracy name: Ancient Greek Test accuracy value: 31.9 - type: accuracy name: Icelandic Test accuracy value: 38.4 - type: accuracy name: Mbya Guarani Test accuracy value: 7.1 - type: accuracy name: Urdu Test accuracy value: 33.4 - type: accuracy name: Romanian Test accuracy value: 33.5 - type: accuracy name: Persian Test accuracy value: 35.2 - type: accuracy name: Apurina Test accuracy value: 11.9 - type: accuracy name: Japanese Test accuracy value: 39.6 - type: accuracy name: Hungarian Test accuracy value: 37.2 - type: accuracy name: Hindi Test accuracy value: 33.0 - type: accuracy name: Classical Chinese Test accuracy value: 88.0 - type: accuracy name: Komi Permyak Test accuracy value: 11.3 - type: accuracy name: Faroese Test accuracy value: 30.3 - type: accuracy name: Sanskrit Test accuracy value: 20.6 - type: accuracy name: Livvi Test accuracy value: 29.1 - type: accuracy name: Arabic Test accuracy value: 34.9 - type: accuracy name: Wolof Test accuracy value: 17.0 - type: accuracy name: Bulgarian Test accuracy value: 34.3 - type: accuracy name: Akuntsu Test accuracy value: 19.3 - type: accuracy name: Makurap Test accuracy value: 21.2 - type: accuracy name: Kangri Test accuracy value: 19.8 - type: accuracy name: Breton Test accuracy value: 27.4 - type: accuracy name: Telugu Test accuracy value: 49.4 - type: accuracy name: Cantonese Test accuracy value: 53.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 27.9 - type: accuracy name: Karelian Test accuracy value: 32.8 - type: accuracy name: Upper Sorbian Test accuracy value: 22.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 29.8 - type: accuracy name: Komi Zyrian Test accuracy value: 9.7 - type: accuracy name: Irish Test accuracy value: 29.5 - type: accuracy name: Nayini Test accuracy value: 32.1 - type: accuracy name: Munduruku Test accuracy value: 14.4 - type: accuracy name: Manx Test accuracy value: 16.8 - type: accuracy name: Skolt Sami Test accuracy value: 5.3 - type: accuracy name: Afrikaans Test accuracy value: 31.8 - type: accuracy name: Old Turkish Test accuracy value: 13.6 - type: accuracy name: Tupinamba Test accuracy value: 9.4 - type: accuracy name: Belarusian Test accuracy value: 36.7 - type: accuracy name: Serbian Test accuracy value: 33.9 - type: accuracy name: Moksha Test accuracy value: 10.4 - type: accuracy name: Western Armenian Test accuracy value: 34.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 29.2 - type: accuracy name: Khunsari Test accuracy value: 23.0 - type: accuracy name: Hebrew Test accuracy value: 44.8 - type: accuracy name: Uyghur Test accuracy value: 44.6 - type: accuracy name: Chukchi Test accuracy value: 7.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Classical Chinese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh") ```
Davlan/xlm-roberta-base-ner-hrl
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "XLMRobertaForTokenClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
760
null
--- language: - mr license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-mr results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 67.4 - type: accuracy name: Dutch Test accuracy value: 61.5 - type: accuracy name: German Test accuracy value: 66.9 - type: accuracy name: Italian Test accuracy value: 64.8 - type: accuracy name: French Test accuracy value: 61.7 - type: accuracy name: Spanish Test accuracy value: 60.1 - type: accuracy name: Russian Test accuracy value: 68.1 - type: accuracy name: Swedish Test accuracy value: 68.4 - type: accuracy name: Norwegian Test accuracy value: 64.1 - type: accuracy name: Danish Test accuracy value: 66.4 - type: accuracy name: Low Saxon Test accuracy value: 51.7 - type: accuracy name: Akkadian Test accuracy value: 23.7 - type: accuracy name: Armenian Test accuracy value: 74.4 - type: accuracy name: Welsh Test accuracy value: 50.1 - type: accuracy name: Old East Slavic Test accuracy value: 57.8 - type: accuracy name: Albanian Test accuracy value: 61.9 - type: accuracy name: Slovenian Test accuracy value: 60.1 - type: accuracy name: Guajajara Test accuracy value: 20.5 - type: accuracy name: Kurmanji Test accuracy value: 60.0 - type: accuracy name: Turkish Test accuracy value: 71.8 - type: accuracy name: Finnish Test accuracy value: 74.5 - type: accuracy name: Indonesian Test accuracy value: 59.0 - type: accuracy name: Ukrainian Test accuracy value: 67.1 - type: accuracy name: Polish Test accuracy value: 65.0 - type: accuracy name: Portuguese Test accuracy value: 66.7 - type: accuracy name: Kazakh Test accuracy value: 73.8 - type: accuracy name: Latin Test accuracy value: 66.2 - type: accuracy name: Old French Test accuracy value: 48.6 - type: accuracy name: Buryat Test accuracy value: 57.0 - type: accuracy name: Kaapor Test accuracy value: 19.2 - type: accuracy name: Korean Test accuracy value: 59.7 - type: accuracy name: Estonian Test accuracy value: 75.4 - type: accuracy name: Croatian Test accuracy value: 63.8 - type: accuracy name: Gothic Test accuracy value: 20.0 - type: accuracy name: Swiss German Test accuracy value: 46.8 - type: accuracy name: Assyrian Test accuracy value: 16.1 - type: accuracy name: North Sami Test accuracy value: 37.1 - type: accuracy name: Naija Test accuracy value: 37.9 - type: accuracy name: Latvian Test accuracy value: 75.6 - type: accuracy name: Chinese Test accuracy value: 49.7 - type: accuracy name: Tagalog Test accuracy value: 55.1 - type: accuracy name: Bambara Test accuracy value: 28.9 - type: accuracy name: Lithuanian Test accuracy value: 75.9 - type: accuracy name: Galician Test accuracy value: 65.5 - type: accuracy name: Vietnamese Test accuracy value: 61.0 - type: accuracy name: Greek Test accuracy value: 70.4 - type: accuracy name: Catalan Test accuracy value: 57.9 - type: accuracy name: Czech Test accuracy value: 64.9 - type: accuracy name: Erzya Test accuracy value: 47.7 - type: accuracy name: Bhojpuri Test accuracy value: 41.9 - type: accuracy name: Thai Test accuracy value: 44.1 - type: accuracy name: Marathi Test accuracy value: 89.0 - type: accuracy name: Basque Test accuracy value: 71.8 - type: accuracy name: Slovak Test accuracy value: 61.3 - type: accuracy name: Kiche Test accuracy value: 25.7 - type: accuracy name: Yoruba Test accuracy value: 22.8 - type: accuracy name: Warlpiri Test accuracy value: 42.9 - type: accuracy name: Tamil Test accuracy value: 73.5 - type: accuracy name: Maltese Test accuracy value: 26.7 - type: accuracy name: Ancient Greek Test accuracy value: 63.5 - type: accuracy name: Icelandic Test accuracy value: 64.0 - type: accuracy name: Mbya Guarani Test accuracy value: 29.7 - type: accuracy name: Urdu Test accuracy value: 50.3 - type: accuracy name: Romanian Test accuracy value: 63.3 - type: accuracy name: Persian Test accuracy value: 61.0 - type: accuracy name: Apurina Test accuracy value: 38.4 - type: accuracy name: Japanese Test accuracy value: 40.5 - type: accuracy name: Hungarian Test accuracy value: 69.4 - type: accuracy name: Hindi Test accuracy value: 52.7 - type: accuracy name: Classical Chinese Test accuracy value: 32.4 - type: accuracy name: Komi Permyak Test accuracy value: 50.1 - type: accuracy name: Faroese Test accuracy value: 58.0 - type: accuracy name: Sanskrit Test accuracy value: 34.1 - type: accuracy name: Livvi Test accuracy value: 65.3 - type: accuracy name: Arabic Test accuracy value: 55.9 - type: accuracy name: Wolof Test accuracy value: 27.8 - type: accuracy name: Bulgarian Test accuracy value: 63.2 - type: accuracy name: Akuntsu Test accuracy value: 23.1 - type: accuracy name: Makurap Test accuracy value: 17.1 - type: accuracy name: Kangri Test accuracy value: 48.8 - type: accuracy name: Breton Test accuracy value: 50.8 - type: accuracy name: Telugu Test accuracy value: 82.0 - type: accuracy name: Cantonese Test accuracy value: 52.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 42.8 - type: accuracy name: Karelian Test accuracy value: 61.8 - type: accuracy name: Upper Sorbian Test accuracy value: 54.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 55.8 - type: accuracy name: Komi Zyrian Test accuracy value: 47.0 - type: accuracy name: Irish Test accuracy value: 50.1 - type: accuracy name: Nayini Test accuracy value: 48.7 - type: accuracy name: Munduruku Test accuracy value: 18.6 - type: accuracy name: Manx Test accuracy value: 31.1 - type: accuracy name: Skolt Sami Test accuracy value: 40.8 - type: accuracy name: Afrikaans Test accuracy value: 66.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 29.9 - type: accuracy name: Belarusian Test accuracy value: 65.4 - type: accuracy name: Serbian Test accuracy value: 62.6 - type: accuracy name: Moksha Test accuracy value: 46.8 - type: accuracy name: Western Armenian Test accuracy value: 70.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 47.4 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 77.1 - type: accuracy name: Uyghur Test accuracy value: 73.2 - type: accuracy name: Chukchi Test accuracy value: 33.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Marathi This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-mr") ```
Dbluciferm3737/U
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - sl license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sl results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 81.7 - type: accuracy name: Dutch Test accuracy value: 83.1 - type: accuracy name: German Test accuracy value: 81.2 - type: accuracy name: Italian Test accuracy value: 81.3 - type: accuracy name: French Test accuracy value: 79.9 - type: accuracy name: Spanish Test accuracy value: 84.9 - type: accuracy name: Russian Test accuracy value: 91.5 - type: accuracy name: Swedish Test accuracy value: 86.0 - type: accuracy name: Norwegian Test accuracy value: 78.4 - type: accuracy name: Danish Test accuracy value: 83.7 - type: accuracy name: Low Saxon Test accuracy value: 41.9 - type: accuracy name: Akkadian Test accuracy value: 17.3 - type: accuracy name: Armenian Test accuracy value: 84.3 - type: accuracy name: Welsh Test accuracy value: 65.5 - type: accuracy name: Old East Slavic Test accuracy value: 74.1 - type: accuracy name: Albanian Test accuracy value: 76.6 - type: accuracy name: Slovenian Test accuracy value: 97.6 - type: accuracy name: Guajajara Test accuracy value: 22.5 - type: accuracy name: Kurmanji Test accuracy value: 75.7 - type: accuracy name: Turkish Test accuracy value: 75.4 - type: accuracy name: Finnish Test accuracy value: 81.2 - type: accuracy name: Indonesian Test accuracy value: 81.8 - type: accuracy name: Ukrainian Test accuracy value: 92.6 - type: accuracy name: Polish Test accuracy value: 93.2 - type: accuracy name: Portuguese Test accuracy value: 84.0 - type: accuracy name: Kazakh Test accuracy value: 79.4 - type: accuracy name: Latin Test accuracy value: 76.7 - type: accuracy name: Old French Test accuracy value: 40.3 - type: accuracy name: Buryat Test accuracy value: 53.1 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 61.9 - type: accuracy name: Estonian Test accuracy value: 82.2 - type: accuracy name: Croatian Test accuracy value: 93.1 - type: accuracy name: Gothic Test accuracy value: 6.2 - type: accuracy name: Swiss German Test accuracy value: 40.7 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 22.5 - type: accuracy name: Naija Test accuracy value: 33.9 - type: accuracy name: Latvian Test accuracy value: 86.0 - type: accuracy name: Chinese Test accuracy value: 39.7 - type: accuracy name: Tagalog Test accuracy value: 72.0 - type: accuracy name: Bambara Test accuracy value: 23.5 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 82.5 - type: accuracy name: Vietnamese Test accuracy value: 67.3 - type: accuracy name: Greek Test accuracy value: 79.7 - type: accuracy name: Catalan Test accuracy value: 79.0 - type: accuracy name: Czech Test accuracy value: 94.1 - type: accuracy name: Erzya Test accuracy value: 40.1 - type: accuracy name: Bhojpuri Test accuracy value: 46.5 - type: accuracy name: Thai Test accuracy value: 53.2 - type: accuracy name: Marathi Test accuracy value: 87.7 - type: accuracy name: Basque Test accuracy value: 74.6 - type: accuracy name: Slovak Test accuracy value: 95.5 - type: accuracy name: Kiche Test accuracy value: 24.7 - type: accuracy name: Yoruba Test accuracy value: 17.1 - type: accuracy name: Warlpiri Test accuracy value: 27.5 - type: accuracy name: Tamil Test accuracy value: 83.4 - type: accuracy name: Maltese Test accuracy value: 18.4 - type: accuracy name: Ancient Greek Test accuracy value: 60.8 - type: accuracy name: Icelandic Test accuracy value: 80.0 - type: accuracy name: Mbya Guarani Test accuracy value: 23.7 - type: accuracy name: Urdu Test accuracy value: 61.6 - type: accuracy name: Romanian Test accuracy value: 82.4 - type: accuracy name: Persian Test accuracy value: 78.6 - type: accuracy name: Apurina Test accuracy value: 29.2 - type: accuracy name: Japanese Test accuracy value: 25.5 - type: accuracy name: Hungarian Test accuracy value: 74.6 - type: accuracy name: Hindi Test accuracy value: 67.4 - type: accuracy name: Classical Chinese Test accuracy value: 14.8 - type: accuracy name: Komi Permyak Test accuracy value: 40.3 - type: accuracy name: Faroese Test accuracy value: 75.0 - type: accuracy name: Sanskrit Test accuracy value: 14.3 - type: accuracy name: Livvi Test accuracy value: 58.2 - type: accuracy name: Arabic Test accuracy value: 79.8 - type: accuracy name: Wolof Test accuracy value: 24.7 - type: accuracy name: Bulgarian Test accuracy value: 90.4 - type: accuracy name: Akuntsu Test accuracy value: 20.6 - type: accuracy name: Makurap Test accuracy value: 6.2 - type: accuracy name: Kangri Test accuracy value: 44.2 - type: accuracy name: Breton Test accuracy value: 53.2 - type: accuracy name: Telugu Test accuracy value: 83.4 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 41.9 - type: accuracy name: Karelian Test accuracy value: 64.7 - type: accuracy name: Upper Sorbian Test accuracy value: 79.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 67.2 - type: accuracy name: Komi Zyrian Test accuracy value: 33.3 - type: accuracy name: Irish Test accuracy value: 63.0 - type: accuracy name: Nayini Test accuracy value: 32.1 - type: accuracy name: Munduruku Test accuracy value: 10.1 - type: accuracy name: Manx Test accuracy value: 22.0 - type: accuracy name: Skolt Sami Test accuracy value: 27.4 - type: accuracy name: Afrikaans Test accuracy value: 74.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 22.5 - type: accuracy name: Belarusian Test accuracy value: 90.2 - type: accuracy name: Serbian Test accuracy value: 94.4 - type: accuracy name: Moksha Test accuracy value: 37.6 - type: accuracy name: Western Armenian Test accuracy value: 73.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 55.0 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 81.2 - type: accuracy name: Uyghur Test accuracy value: 72.1 - type: accuracy name: Chukchi Test accuracy value: 30.2 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Slovenian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sl") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sl") ```
DeBERTa/deberta-v2-xxlarge
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - sr license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sr results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.9 - type: accuracy name: Dutch Test accuracy value: 84.0 - type: accuracy name: German Test accuracy value: 82.7 - type: accuracy name: Italian Test accuracy value: 82.6 - type: accuracy name: French Test accuracy value: 83.6 - type: accuracy name: Spanish Test accuracy value: 87.3 - type: accuracy name: Russian Test accuracy value: 90.6 - type: accuracy name: Swedish Test accuracy value: 85.5 - type: accuracy name: Norwegian Test accuracy value: 79.0 - type: accuracy name: Danish Test accuracy value: 84.1 - type: accuracy name: Low Saxon Test accuracy value: 47.9 - type: accuracy name: Akkadian Test accuracy value: 30.2 - type: accuracy name: Armenian Test accuracy value: 84.2 - type: accuracy name: Welsh Test accuracy value: 67.4 - type: accuracy name: Old East Slavic Test accuracy value: 75.9 - type: accuracy name: Albanian Test accuracy value: 74.6 - type: accuracy name: Slovenian Test accuracy value: 85.8 - type: accuracy name: Guajajara Test accuracy value: 25.6 - type: accuracy name: Kurmanji Test accuracy value: 75.8 - type: accuracy name: Turkish Test accuracy value: 76.2 - type: accuracy name: Finnish Test accuracy value: 81.7 - type: accuracy name: Indonesian Test accuracy value: 80.5 - type: accuracy name: Ukrainian Test accuracy value: 92.3 - type: accuracy name: Polish Test accuracy value: 91.8 - type: accuracy name: Portuguese Test accuracy value: 84.7 - type: accuracy name: Kazakh Test accuracy value: 79.7 - type: accuracy name: Latin Test accuracy value: 77.0 - type: accuracy name: Old French Test accuracy value: 54.3 - type: accuracy name: Buryat Test accuracy value: 58.6 - type: accuracy name: Kaapor Test accuracy value: 14.6 - type: accuracy name: Korean Test accuracy value: 60.6 - type: accuracy name: Estonian Test accuracy value: 84.4 - type: accuracy name: Croatian Test accuracy value: 97.0 - type: accuracy name: Gothic Test accuracy value: 17.1 - type: accuracy name: Swiss German Test accuracy value: 42.9 - type: accuracy name: Assyrian Test accuracy value: 16.1 - type: accuracy name: North Sami Test accuracy value: 31.2 - type: accuracy name: Naija Test accuracy value: 38.7 - type: accuracy name: Latvian Test accuracy value: 85.1 - type: accuracy name: Chinese Test accuracy value: 41.3 - type: accuracy name: Tagalog Test accuracy value: 77.5 - type: accuracy name: Bambara Test accuracy value: 27.6 - type: accuracy name: Lithuanian Test accuracy value: 85.3 - type: accuracy name: Galician Test accuracy value: 84.9 - type: accuracy name: Vietnamese Test accuracy value: 65.8 - type: accuracy name: Greek Test accuracy value: 83.9 - type: accuracy name: Catalan Test accuracy value: 85.7 - type: accuracy name: Czech Test accuracy value: 94.8 - type: accuracy name: Erzya Test accuracy value: 43.1 - type: accuracy name: Bhojpuri Test accuracy value: 47.9 - type: accuracy name: Thai Test accuracy value: 60.5 - type: accuracy name: Marathi Test accuracy value: 84.0 - type: accuracy name: Basque Test accuracy value: 74.9 - type: accuracy name: Slovak Test accuracy value: 94.6 - type: accuracy name: Kiche Test accuracy value: 31.5 - type: accuracy name: Yoruba Test accuracy value: 21.8 - type: accuracy name: Warlpiri Test accuracy value: 37.7 - type: accuracy name: Tamil Test accuracy value: 83.9 - type: accuracy name: Maltese Test accuracy value: 22.7 - type: accuracy name: Ancient Greek Test accuracy value: 59.0 - type: accuracy name: Icelandic Test accuracy value: 79.6 - type: accuracy name: Mbya Guarani Test accuracy value: 29.4 - type: accuracy name: Urdu Test accuracy value: 63.0 - type: accuracy name: Romanian Test accuracy value: 82.1 - type: accuracy name: Persian Test accuracy value: 78.7 - type: accuracy name: Apurina Test accuracy value: 30.1 - type: accuracy name: Japanese Test accuracy value: 28.7 - type: accuracy name: Hungarian Test accuracy value: 78.4 - type: accuracy name: Hindi Test accuracy value: 66.6 - type: accuracy name: Classical Chinese Test accuracy value: 27.3 - type: accuracy name: Komi Permyak Test accuracy value: 40.2 - type: accuracy name: Faroese Test accuracy value: 76.1 - type: accuracy name: Sanskrit Test accuracy value: 32.5 - type: accuracy name: Livvi Test accuracy value: 62.6 - type: accuracy name: Arabic Test accuracy value: 80.9 - type: accuracy name: Wolof Test accuracy value: 30.7 - type: accuracy name: Bulgarian Test accuracy value: 92.2 - type: accuracy name: Akuntsu Test accuracy value: 32.6 - type: accuracy name: Makurap Test accuracy value: 12.3 - type: accuracy name: Kangri Test accuracy value: 44.4 - type: accuracy name: Breton Test accuracy value: 58.0 - type: accuracy name: Telugu Test accuracy value: 77.8 - type: accuracy name: Cantonese Test accuracy value: 44.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.4 - type: accuracy name: Karelian Test accuracy value: 69.8 - type: accuracy name: Upper Sorbian Test accuracy value: 77.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.8 - type: accuracy name: Komi Zyrian Test accuracy value: 36.1 - type: accuracy name: Irish Test accuracy value: 67.9 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 19.2 - type: accuracy name: Manx Test accuracy value: 33.1 - type: accuracy name: Skolt Sami Test accuracy value: 33.0 - type: accuracy name: Afrikaans Test accuracy value: 79.6 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 31.4 - type: accuracy name: Belarusian Test accuracy value: 91.0 - type: accuracy name: Serbian Test accuracy value: 99.1 - type: accuracy name: Moksha Test accuracy value: 40.2 - type: accuracy name: Western Armenian Test accuracy value: 75.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 57.1 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 71.0 - type: accuracy name: Chukchi Test accuracy value: 29.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Serbian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sr") ```
Declan/CNN_model_v7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: "en" tags: - dstc10 - knowledge title-body validation widget: - text: "Can you accommodate large groups? It does not offer free WiFi." - text: "Is there a gym on site? It does not have an onsite fitness center." --- This is the model used for knowledge clustering where we feed title-body pair and the classifier predicts if the pair is valid or not. For further information, please refer to https://github.com/yctam/dstc10_track2_task2 for the Github repository. Credit: Jiakai Zou, Wilson Tam --- ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification def single_test(tokenizer, title_body_pair): result = tokenizer([title_body_pair], return_tensors="pt") model.eval() outputs = model(**result) predictions = outputs.logits.argmax(dim=-1) # There was a mistake in flipping the labels. return True if predictions == 0 else False if __name__ == '__main__': model_name = "wilsontam/bert-base-uncased-dstc10-kb-title-body-validate" config = AutoConfig.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForSequenceClassification.from_pretrained(".") sentence = "Can I check in anytime?" body = "Yes, 24 Hours Front Desk Avaliable." print(single_test((sentence, body))) # Expect: True ```
Declan/CNN_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: "en" tags: - dstc10 - knowledge cluster classifier widget: - text: "oh and we'll mi thing uh is there bike clo ars or bike crac where i can park my thee" - text: "oh and one more thing uhhh is there bike lockers or a bike rack where i can park my bike" - text: "ni yeah that sounds great ummm dold you have the any idea er could you check for me if there's hat three wifie available there" - text: "nice yeah that sounds great ummm do you have any idea or could you check for me if there's uhhh free wi-fi available there" - text: "perfect and what is the check kin time for that" --- This is the model used for knowledge cluster classification for the DSTC10 track2 knowledge selection task, trained with double heads, i.e., classifier head and LM head using ASR error simulator for model training. For further information, please refer to https://github.com/yctam/dstc10_track2_task2 for the Github repository. You can use this model and use our source code to predict knowledge clusters under ASR errors. AAAI 2022 workshop paper: https://github.com/shanemoon/dstc10/raw/main/papers/dstc10_aaai22_track2_21.pdf ---
Declan/ChicagoTribune_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: "en" tags: - dstc10 widget: - text: "Can you accommodate large [MASK] ?" --- # Goal This Bert model is trained using DSTC9 training + validation data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Shuhan Yuan, Wilson Tam
Declan/ChicagoTribune_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: "en" tags: - dstc9 widget: - text: "Yes, I'm going to be in Chinatown, San Francisco and am looking" - text: "Can you find me one that is in the" --- This GPT2 model is trained using DSTC9 data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Jia-Chen Jason Gu, Wilson Tam
Declan/ChicagoTribune_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: tr widget: - text: "Mustafa Kemal Atatรผrk 19 Mayฤฑs 1919'da Samsun'a รงฤฑktฤฑ." --- # Turkish Named Entity Recognition (NER) Model ## This repository is cloned from https://huggingface.co/akdeniz27/bert-base-turkish-cased-ner. This is the tensorflow version. This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/bert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("winvoker/bert-base-turkish-cased-ner-tf") tokenizer = AutoTokenizer.from_pretrained("winvoker/bert-base-turkish-cased-ner-tf") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("<your text here>") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9933935699477056 * f1: 0.9592969472710453 * precision: 0.9543530277931161 * recall: 0.9642923563325274 Evaluation results with the test sets proposed in ["Kรผรงรผk, D., Kรผรงรผk, D., Arฤฑcฤฑ, N. 2016. Tรผrkรงe Varlฤฑk ฤฐsmi Tanฤฑma iรงin bir Veri Kรผmesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal ฤฐลŸleme, ฤฐletiลŸim ve Uygulamalarฤฑ Kurultayฤฑ. Zonguldak, Tรผrkiye."](https://ieeexplore.ieee.org/document/7495744) paper. * Test Set Acc. Prec. Rec. F1-Score * 20010000 0.9946 0.9871 0.9463 0.9662 * 20020000 0.9928 0.9134 0.9206 0.9170 * 20030000 0.9942 0.9814 0.9186 0.9489 * 20040000 0.9943 0.9660 0.9522 0.9590 * 20050000 0.9971 0.9539 0.9932 0.9732 * 20060000 0.9993 0.9942 0.9942 0.9942 * 20070000 0.9970 0.9806 0.9439 0.9619 * 20080000 0.9988 0.9821 0.9649 0.9735 * 20090000 0.9977 0.9891 0.9479 0.9681 * 20100000 0.9961 0.9684 0.9293 0.9485 * Overall 0.9961 0.9720 0.9516 0.9617
Declan/ChicagoTribune_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: ar datasets: - tydiqa widget: - text: "ู…ุง ู‡ูˆ ู†ุธุงู… ุงู„ุญูƒู… ููŠ ู„ุจู†ุงู†ุŸ" context: "ู„ุจู†ุงู† ุฃูˆ (ุฑุณู…ูŠุง: ุงู„ุฌู…ู‡ูˆุฑูŠุฉ ุงู„ู„ุจู†ุงู†ูŠุฉ)ุŒ ู‡ูŠ ุฏูˆู„ุฉ ุนุฑุจูŠุฉ ูˆุงู‚ุนุฉ ููŠ ุงู„ุดุฑู‚ ุงู„ุฃูˆุณุท ููŠ ุบุฑุจ ุงู„ู‚ุงุฑุฉ ุงู„ุขุณูŠูˆูŠุฉ. ุชุญุฏู‡ุง ุณูˆุฑูŠุง ู…ู† ุงู„ุดู…ุงู„ ูˆ ุงู„ุดุฑู‚ุŒ ูˆ ูู„ุณุทูŠู† ุงู„ู…ุญุชู„ุฉ - ุฅุณุฑุงุฆูŠู„ ู…ู† ุงู„ุฌู†ูˆุจุŒ ูˆุชุทู„ ู…ู† ุฌู‡ุฉ ุงู„ุบุฑุจ ุนู„ู‰ ุงู„ุจุญุฑ ุงู„ุฃุจูŠุถ ุงู„ู…ุชูˆุณุท. ู‡ูˆ ุจู„ุฏ ุฏูŠู…ู‚ุฑุงุทูŠ ุฌู…ู‡ูˆุฑูŠ ุทูˆุงุฆููŠ. ู…ุนุธู… ุณูƒุงู†ู‡ ู…ู† ุงู„ุนุฑุจ ุงู„ู…ุณู„ู…ูŠู† ูˆ ุงู„ู…ุณูŠุญูŠูŠู†. ูˆุจุฎู„ุงู ุบุงู„ุจูŠุฉ ุงู„ุฏูˆู„ ุงู„ุนุฑุจูŠุฉ ู‡ู†ุงูƒ ูˆุฌูˆุฏ ูุนุงู„ ู„ู„ู…ุณูŠุญูŠูŠู† ููŠ ุงู„ุญูŠุงุฉ ุงู„ุนุงู…ุฉ ูˆุงู„ุณูŠุงุณูŠุฉ. ู‡ุงุฌุฑ ูˆุงู†ุชุดุฑ ุฃุจู†ุงุคู‡ ุญูˆู„ ุงู„ุนุงู„ู… ู…ู†ุฐ ุฃูŠุงู… ุงู„ููŠู†ูŠู‚ูŠูŠู†ุŒ ูˆุญุงู„ูŠุง ูุฅู† ุนุฏุฏ ุงู„ู„ุจู†ุงู†ูŠูŠู† ุงู„ู…ู‡ุงุฌุฑูŠู† ูŠู‚ุฏุฑ ุจุถุนู ุนุฏุฏ ุงู„ู„ุจู†ุงู†ูŠูŠู† ุงู„ู…ู‚ูŠู…ูŠู†. ูˆุงุฌู‡ ู„ุจู†ุงู† ู…ู†ุฐ ุงู„ู‚ุฏู… ุชุนุฏุฏ ุงู„ุญุถุงุฑุงุช ุงู„ุชูŠ ุนุจุฑุช ููŠู‡ ุฃูˆ ุงุญุชู„ุช ุฃุฑุงุถูŠู‡ ูˆุฐู„ูƒ ู„ู…ูˆู‚ุนู‡ ุงู„ูˆุณุทูŠ ุจูŠู† ุงู„ุดู…ุงู„ ุงู„ุฃูˆุฑูˆุจูŠ ูˆุงู„ุฌู†ูˆุจ ุงู„ุนุฑุจูŠ ูˆุงู„ุดุฑู‚ ุงู„ุขุณูŠูˆูŠ ูˆุงู„ุบุฑุจ ุงู„ุฃูุฑูŠู‚ูŠุŒ ูˆูŠุนุฏ ู‡ุฐุง ุงู„ู…ูˆู‚ุน ุงู„ู…ุชูˆุณุท ู…ู† ุฃุจุฑุฒ ุงู„ุฃุณุจุงุจ ู„ุชู†ูˆุน ุงู„ุซู‚ุงูุงุช ููŠ ู„ุจู†ุงู†ุŒ ูˆููŠ ุงู„ูˆู‚ุช ุฐุงุชู‡ ู…ู† ุงู„ุฃุณุจุงุจ ุงู„ู…ุคุฏูŠุฉ ู„ู„ุญุฑูˆุจ ูˆุงู„ู†ุฒุงุนุงุช ุนู„ู‰ ู…ุฑ ุงู„ุนุตูˆุฑ ุชุฌู„ุช ุจุญุฑูˆุจ ุฃู‡ู„ูŠุฉ ูˆู†ุฒุงุน ู…ุตูŠุฑูŠ ู…ุน ุฅุณุฑุงุฆูŠู„. ูˆูŠุนูˆุฏ ุฃู‚ุฏู… ุฏู„ูŠู„ ุนู„ู‰ ุงุณุชูŠุทุงู† ุงู„ุฅู†ุณุงู† ููŠ ู„ุจู†ุงู† ูˆู†ุดูˆุก ุญุถุงุฑุฉ ุนู„ู‰ ุฃุฑุถู‡ ุฅู„ู‰ ุฃูƒุซุฑ ู…ู† 7000 ุณู†ุฉ. ููŠ ุงู„ู‚ุฏู…ุŒ ุณูƒู† ุงู„ููŠู†ูŠู‚ูŠูˆู† ุฃุฑุถ ู„ุจู†ุงู† ุงู„ุญุงู„ูŠุฉ ู…ุน ุฌุฒุก ู…ู† ุฃุฑุถ ุณูˆุฑูŠุง ูˆ ูู„ุณุทูŠู†ุŒ ูˆู‡ุคู„ุงุก ู‚ูˆู… ุณุงู…ูŠูˆู† ุงุชุฎุฐูˆุง ู…ู† ุงู„ู…ู„ุงุญุฉ ูˆุงู„ุชุฌุงุฑุฉ ู…ู‡ู†ุฉ ู„ู‡ู…ุŒ ูˆุงุฒุฏู‡ุฑุช ุญุถุงุฑุชู‡ู… ุทูŠู„ุฉ 2500 ุณู†ุฉ ุชู‚ุฑูŠุจุง (ู…ู† ุญูˆุงู„ูŠ ุณู†ุฉ 3000 ุญุชู‰ ุณู†ุฉ 539 ู‚.ู…). ูˆู‚ุฏ ู…ุฑุช ุนู„ู‰ ู„ุจู†ุงู† ุนุฏุฉ ุญุถุงุฑุงุช ูˆุดุนูˆุจ ุงุณุชู‚ุฑุช ููŠู‡ ู…ู†ุฐ ุนู‡ุฏ ุงู„ููŠู†ูŠู‚ูŠู†ุŒ ู…ุซู„ ุงู„ู…ุตุฑูŠูŠู† ุงู„ู‚ุฏู…ุงุกุŒ ุงู„ุขุดูˆุฑูŠูŠู†ุŒ ุงู„ูุฑุณุŒ ุงู„ุฅุบุฑูŠู‚ุŒ ุงู„ุฑูˆู…ุงู†ุŒ ุงู„ุฑูˆู… ุงู„ุจูŠุฒู†ุทูŠูŠู†ุŒ ุงู„ุนุฑุจุŒ ุงู„ุตู„ูŠุจูŠูŠู†ุŒ ุงู„ุฃุชุฑุงูƒ ุงู„ุนุซู…ุงู†ูŠูŠู†ุŒ ูุงู„ูุฑู†ุณูŠูŠู†." --- <img src="https://raw.githubusercontent.com/WissamAntoun/arabic-wikipedia-qa-streamlit/main/is2alni_logo.png" width="150" align="center"/> # Arabic QA AraELECTRA powered Arabic Wikipedia QA system with Streamlit [![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/wissamantoun/arabic-wikipedia-qa-streamlit/main) This model is trained on the Arabic section of ArTyDiQA using the colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hik0L_Dxg6WwJFcDPP1v74motSkst4gE?usp=sharing) # How to use: ```bash git clone https://github.com/aub-mind/arabert pip install pyarabic ``` ```python from arabert.preprocess import ArabertPreprocessor from transformers import pipeline prep = ArabertPreprocessor("aubmindlab/araelectra-base-discriminator") #or empty string it's the same qa_pipe =pipeline("question-answering",model="wissamantoun/araelectra-base-artydiqa") text = " ู…ุง ู‡ูˆ ู†ุธุงู… ุงู„ุญูƒู… ููŠ ู„ุจู†ุงู†ุŸ" context = """ ู„ุจู†ุงู† ุฃูˆ (ุฑุณู…ูŠู‹ู‘ุง: ุงู„ุฌูู…ู’ู‡ููˆุฑููŠูŽู‘ุฉ ุงู„ู„ุจู†ุงู†ูŠูŽู‘ุฉ)ุŒ ู‡ูŠ ุฏูˆู„ุฉ ุนุฑุจูŠู‘ุฉ ูˆุงู‚ูุนูŽุฉ ููŠ ุงู„ุดูŽุฑู‚ ุงู„ุฃูˆุณุท ููŠ ุบุฑุจ ุงู„ู‚ุงุฑุฉ ุงู„ุขุณูŠูˆูŠู‘ุฉ. ุชูŽุญูุฏู‘ู‡ุง ุณูˆุฑูŠุง ู…ู† ุงู„ุดู…ุงู„ ูˆโ€Œุงู„ุดุฑู‚ุŒ ูˆโ€Œูู„ุณุทูŠู† ุงู„ู…ุญุชู„ุฉ - ุฅุณุฑุงุฆูŠู„ ู…ู† ุงู„ุฌู†ูˆุจุŒ ูˆุชุทู„ ู…ู† ุฌู‡ุฉ ุงู„ุบุฑุจ ุนู„ู‰ ุงู„ุจุญุฑ ุงู„ุฃุจูŠุถ ุงู„ู…ุชูˆุณุท. ู‡ูˆ ุจู„ุฏ ุฏูŠู…ู‚ุฑุงุทูŠ ุฌู…ู‡ูˆุฑูŠ ุทูˆุงุฆููŠ. ู…ูุนุธู… ุณูƒุงู†ู‡ ู…ู† ุงู„ุนุฑุจ ุงู„ู…ุณู„ู…ูŠู† ูˆโ€Œุงู„ู…ุณูŠุญูŠูŠู†. ูˆุจุฎู„ุงู ุบุงู„ุจูŠู‘ุฉ ุงู„ุฏูˆู„ ุงู„ุนุฑุจูŠู‘ุฉ ู‡ู†ุงูƒ ูˆุฌูˆุฏ ูุนู‘ุงู„ ู„ู„ู…ุณูŠุญูŠูŠู† ููŠ ุงู„ุญูŠุงุฉ ุงู„ุนุงู…ู‘ุฉ ูˆุงู„ุณูŠุงุณูŠู‘ุฉ. ู‡ุงุฌุฑ ูˆุงู†ุชุดุฑ ุฃุจู†ุงุคู‡ ุญูˆู„ ุงู„ุนุงู„ู… ู…ู†ุฐ ุฃูŠุงู… ุงู„ููŠู†ูŠู‚ูŠูŠู†ุŒ ูˆุญุงู„ูŠู‹ู‘ุง ูุฅู† ุนุฏุฏ ุงู„ู„ุจู†ุงู†ูŠูŠู† ุงู„ู…ู‡ุงุฌุฑูŠู† ูŠูู‚ุฏูŽู‘ุฑ ุจุถุนู ุนุฏุฏ ุงู„ู„ุจู†ุงู†ูŠูŠู† ุงู„ู…ู‚ูŠู…ูŠู†. ูˆุงุฌู‡ ู„ุจู†ุงู† ู…ู†ุฐ ุงู„ู‚ุฏู… ุชุนุฏุฏ ุงู„ุญุถุงุฑุงุช ุงู„ุชูŠ ุนุจุฑุช ููŠู‡ ุฃูˆ ุงุญุชู„ู‘ุช ุฃุฑุงุถูŠู‡ ูˆุฐู„ูƒ ู„ู…ูˆู‚ุนู‡ ุงู„ูˆุณุทูŠ ุจูŠู† ุงู„ุดู…ุงู„ ุงู„ุฃูˆุฑูˆุจูŠ ูˆุงู„ุฌู†ูˆุจ ุงู„ุนุฑุจูŠ ูˆุงู„ุดุฑู‚ ุงู„ุขุณูŠูˆูŠ ูˆุงู„ุบุฑุจ ุงู„ุฃูุฑูŠู‚ูŠุŒ ูˆูŠุนุฏ ู‡ุฐุง ุงู„ู…ูˆู‚ุน ุงู„ู…ุชูˆุณุท ู…ู† ุฃุจุฑุฒ ุงู„ุฃุณุจุงุจ ู„ุชู†ูˆุน ุงู„ุซู‚ุงูุงุช ููŠ ู„ุจู†ุงู†ุŒ ูˆููŠ ุงู„ูˆู‚ุช ุฐุงุชู‡ ู…ู† ุงู„ุฃุณุจุงุจ ุงู„ู…ุคุฏูŠุฉ ู„ู„ุญุฑูˆุจ ูˆุงู„ู†ุฒุงุนุงุช ุนู„ู‰ ู…ุฑ ุงู„ุนุตูˆุฑ ุชุฌู„ุช ุจุญุฑูˆุจ ุฃู‡ู„ูŠุฉ ูˆู†ุฒุงุน ู…ุตูŠุฑูŠ ู…ุน ุฅุณุฑุงุฆูŠู„. ูˆูŠุนูˆุฏ ุฃู‚ุฏู… ุฏู„ูŠู„ ุนู„ู‰ ุงุณุชูŠุทุงู† ุงู„ุฅู†ุณุงู† ููŠ ู„ุจู†ุงู† ูˆู†ุดูˆุก ุญุถุงุฑุฉ ุนู„ู‰ ุฃุฑุถู‡ ุฅู„ู‰ ุฃูƒุซุฑ ู…ู† 7000 ุณู†ุฉ. ููŠ ุงู„ู‚ุฏู…ุŒ ุณูƒู† ุงู„ููŠู†ูŠู‚ูŠูˆู† ุฃุฑุถ ู„ุจู†ุงู† ุงู„ุญุงู„ูŠุฉ ู…ุน ุฌุฒุก ู…ู† ุฃุฑุถ ุณูˆุฑูŠุง ูˆโ€Œูู„ุณุทูŠู†ุŒ ูˆู‡ุคู„ุงุก ู‚ูˆู… ุณุงู…ูŠูˆู† ุงุชุฎุฐูˆุง ู…ู† ุงู„ู…ู„ุงุญุฉ ูˆุงู„ุชุฌุงุฑุฉ ู…ู‡ู†ุฉ ู„ู‡ู…ุŒ ูˆุงุฒุฏู‡ุฑุช ุญุถุงุฑุชู‡ู… ุทูŠู„ุฉ 2500 ุณู†ุฉ ุชู‚ุฑูŠุจู‹ุง (ู…ู† ุญูˆุงู„ูŠ ุณู†ุฉ 3000 ุญุชู‰ ุณู†ุฉ 539 ู‚.ู…). ูˆู‚ุฏ ู…ุฑู‘ุช ุนู„ู‰ ู„ุจู†ุงู† ุนุฏู‘ุฉ ุญุถุงุฑุงุช ูˆุดุนูˆุจ ุงุณุชู‚ุฑุช ููŠู‡ ู…ู†ุฐ ุนู‡ุฏ ุงู„ููŠู†ูŠู‚ูŠู†ุŒ ู…ุซู„ ุงู„ู…ุตุฑูŠูŠู† ุงู„ู‚ุฏู…ุงุกุŒ ุงู„ุขุดูˆุฑูŠูŠู†ุŒ ุงู„ูุฑุณุŒ ุงู„ุฅุบุฑูŠู‚ุŒ ุงู„ุฑูˆู…ุงู†ุŒ ุงู„ุฑูˆู… ุงู„ุจูŠุฒู†ุทูŠูŠู†ุŒ ุงู„ุนุฑุจุŒ ุงู„ุตู„ูŠุจูŠูŠู†ุŒ ุงู„ุฃุชุฑุงูƒ ุงู„ุนุซู…ุงู†ูŠูŠู†ุŒ ูุงู„ูุฑู†ุณูŠูŠู†. """ context = prep.preprocess(context)# don't forget to preprocess the question and the context to get the optimal results result = qa_pipe(question=text,context=context) """ {'answer': 'ุฏูŠู…ู‚ุฑุงุทูŠ ุฌู…ู‡ูˆุฑูŠ ุทูˆุงุฆููŠ', 'end': 241, 'score': 0.4910127818584442, 'start': 219} """ ``` # If you used this model please cite us as : ``` @misc{antoun2020araelectra, title={AraELECTRA: Pre-Training Text Discriminators for Arabic Language Understanding}, author={Wissam Antoun and Fady Baly and Hazem Hajj}, year={2020}, eprint={2012.15516}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Declan/NPR_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - conversational --- # DialoGPT Trained on the Speech of Fox Mulder from The X-Files
Declan/NewYorkPost_model_v1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - nl tags: - Named Entity Recognition - xlm-roberta datasets: - conll2002 metrics: - f1: 90.57 --- # XLM-RoBERTa base ConLL-2002 Dutch XLM-Roberta base model finetuned on ConLL-2002 Dutch train set, which is a Named Entity Recognition dataset containing the following classes: PER, LOC, ORG and MISC. Label mapping: { 0: O, 1: B-PER, 2: I-PER, 3: B-ORG, 4: I-ORG, 5: B-LOC, 6: I-LOC, 7: B-MISC, 8: I-MISC, } Results from https://arxiv.org/pdf/1911.02116.pdf reciprocated (original results were 90.39 F1, this finetuned version here scored 90.57).
Declan/Reuters_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Pretrained on: * Masked amino acid modeling Please see our [main model](https://huggingface.co/wukevin/tcr-bert) for additional details.
Declan/Reuters_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
# TCR transformer model See our full [codebase](https://github.com/wukevin/tcr-bert) and our [preprint](https://www.biorxiv.org/content/10.1101/2021.11.18.469186v1) for more information. This model is on: - Masked language modeling (masked amino acid or MAA modeling) - Classification across antigen labels from PIRD If you are looking for a model trained only on MAA, please see our [other model](https://huggingface.co/wukevin/tcr-bert-mlm-only). Example inputs: * `C A S S P V T G G I Y G Y T F` (binds to NLVPMVATV CMV antigen) * `C A T S G R A G V E Q F F` (binds to GILGFVFTL flu antigen)
DeepPavlov/rubert-base-cased
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
148,127
null
# Delish v6 (GPT-Neo 1.3B) This model is from the DelishBot project.
DeepPavlov/xlm-roberta-large-en-ru-mnli
[ "pytorch", "xlm-roberta", "text-classification", "en", "ru", "dataset:glue", "dataset:mnli", "transformers", "xlm-roberta-large", "xlm-roberta-large-en-ru", "xlm-roberta-large-en-ru-mnli", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
# GPT NEO 350M This hosts the pulled 350M that Eleuther removed. I am keeping it ๐Ÿ˜Ž
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
Step Training Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 240 2.513600 3.049892 0.082800 0.102600 0.085700 240 steps
DeltaHub/adapter_t5-3b_mrpc
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
\nTraining Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 2.880900 2.715085 0.121400 0.142300 0.117100 +200 steps total = 440 steps tokenization: max article: 8192 max abstract: 512
DeltaHub/adapter_t5-3b_qnli
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
Step Training Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 100 3.049500 2.605496 0.172300 0.186900 0.151200 200 3.019400 2.567277 0.165100 0.189400 0.145000 300 3.014400 2.538830 0.157000 0.179200 0.134200 400 2.867200 2.490068 0.163600 0.177100 0.136200 500 2.723700 2.465870 0.168400 0.195700 0.152300 600 2.925400 2.452575 0.169500 0.210100 0.159400 700 2.878900 2.440204 0.173400 0.198000 0.155800 800 3.156500 2.423908 0.172900 0.196300 0.152800 + 440 steps before total = 1240 steps
Denny29/DialoGPT-medium-asunayuuki
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - conversational --- # Joseph Joestar DialoGPT Model
DevsIA/imagenes
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
This is super resolution model to upscale anime like illustration image by 4x. This model can upscale 256x256 image to 1024x1024 within around 20[ms] on GPU and around 250[ms] on CPU. Example is [here](https://github.com/xiong-jie-y/ml-examples/tree/master/realtime_srgan_anime). All the models in this repository is under MIT License.
Dhritam/Zova-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9392329403951519 - name: Recall type: recall value: 0.9520363513968361 - name: F1 type: f1 value: 0.9455913079816131 - name: Accuracy type: accuracy value: 0.9864308000235474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0634 - Precision: 0.9392 - Recall: 0.9520 - F1: 0.9456 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0866 | 1.0 | 1756 | 0.0736 | 0.9157 | 0.9322 | 0.9239 | 0.9816 | | 0.0382 | 2.0 | 3512 | 0.0663 | 0.9326 | 0.9472 | 0.9398 | 0.9855 | | 0.0226 | 3.0 | 5268 | 0.0634 | 0.9392 | 0.9520 | 0.9456 | 0.9864 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
DicoTiar/wisdomfiy
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb-whole-word-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-whole-word-masking This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 3.3043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5536 | 1.0 | 157 | 3.3242 | | 3.4026 | 2.0 | 314 | 3.2848 | | 3.3708 | 3.0 | 471 | 3.2791 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
DimaOrekhov/cubert-method-name
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: ka datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec finetuned for Georgian results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ka type: common_voice args: ka metrics: - name: Test WER type: wer value: 45.28 --- # Wav2Vec2-Large-XLSR-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ka", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(sampling_rate, speech_array).squeeze() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import librosa test_dataset = load_dataset("common_voice", "ka", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\โ€œ]' resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 45.28 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](...)
DivyanshuSheth/T5-Seq2Seq-Final
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-issues-128 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.9845 | 1.0 | 1163 | 1.6403 | | 1.5695 | 2.0 | 2326 | 1.4212 | | 1.4221 | 3.0 | 3489 | 1.3714 | | 1.3302 | 4.0 | 4652 | 1.3592 | | 1.2734 | 5.0 | 5815 | 1.2781 | | 1.2143 | 6.0 | 6978 | 1.2286 | | 1.1704 | 7.0 | 8141 | 1.2492 | | 1.1261 | 8.0 | 9304 | 1.2044 | | 1.0812 | 9.0 | 10467 | 1.1878 | | 1.0657 | 10.0 | 11630 | 1.2177 | | 1.0319 | 11.0 | 12793 | 1.1428 | | 1.0063 | 12.0 | 13956 | 1.0910 | | 0.9731 | 13.0 | 15119 | 1.1111 | | 0.9674 | 14.0 | 16282 | 1.1699 | | 0.9391 | 15.0 | 17445 | 1.0805 | | 0.9381 | 16.0 | 18608 | 1.2109 | ### Framework versions - Transformers 4.8.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Doxophobia/DialoGPT-medium-celeste
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: en tags: - sagemaker - bart - summarization license: apache-2.0 - Training 3000 examples
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-existence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-existence This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9532 | 1.0 | 221 | 2.1697 | | 2.0959 | 2.0 | 442 | 1.9725 | | 1.9277 | 3.0 | 663 | 1.7944 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-100
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-mi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1069 | 1.0 | 97 | 2.3524 | | 2.1677 | 2.0 | 194 | 1.9426 | | 1.9197 | 3.0 | 291 | 2.0536 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-25
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-quantifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-quantifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2007 | 1.0 | 94 | 2.3496 | | 2.2332 | 2.0 | 188 | 1.8656 | | 2.0141 | 3.0 | 282 | 1.8479 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.11.0
DoyyingFace/bert-asian-hate-tweets-asonam-clean
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
# T5 for Semantic Parsing ## Model description T5 (small and large) finetuned on CoNaLa for semantic parsing (Natural Language descriptions to Python code) Paper: https://arxiv.org/pdf/2101.07138.pdf Code, data and how to use: https://github.com/ypapanik/t5-for-code-generation ### Cite ``` @misc{papanikolaou2021teach, title={Teach me how to Label: Labeling Functions from Natural Language with Text-to-text Transformers}, author={Yannis Papanikolaou}, year={2021}, eprint={2101.07138}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
>>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input)
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2022-02-05T11:56:49Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-300m-yaswanth-hindi2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-yaswanth-hindi2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7163 - Wer: 0.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | | 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | | 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | | 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | | 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | | 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | | 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | | 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | | 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | | 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | | 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | | 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | | 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | | 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | | 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | | 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | | 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | | 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | | 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | | 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | | 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | | 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
2021-10-19T00:20:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_00-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_00-15 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-18_16-15](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-18_16-15) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8998 | 19.0 | 0.3634 | 0.0387 | 0.1963 | 9.9428 | [71.94645844952593, 49.30006086427267, 35.36503683858004, 28.145941921072225] | 0.2294 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-base-german-dbmdz-cased
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,814
2021-10-19T00:08:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-small-2021-10-19_00-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-small-2021-10-19_00-01 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-small-2021-10-18_23-00](https://huggingface.co/yazdipour/text-to-sparql-t5-small-2021-10-18_23-00) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-------------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 2.4058 | 19.0 | 0.3946 | 0.0660 | 0.2253 | 9.8438 | [72.36042012161415, 47.920433996383366, 33.929754804506295, 26.416482707873435] | 0.2344 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2021-10-19T07:18:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-small-2021-10-19_07-12_RAW results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-small-2021-10-19_07-12_RAW This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 2.8581 | 19.0 | 0.3301 | 0.0433 | 0.1830 | 7.5917 | [69.82603479304139, 45.68226763348714, 32.33357717629846, 24.56861133935908] | 0.1903 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-base-multilingual-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,749,504
2021-10-17T23:43:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-17_23-40 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2649857699871063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-17_23-40 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2645 - Gen Len: 19.0 - P: 0.5125 - R: 0.0382 - F1: 0.2650 - Score: 5.1404 - Bleu-precisions: [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] - Bleu-bp: 0.0707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3513 | 1.0 | 4807 | 0.2645 | 19.0 | 0.5125 | 0.0382 | 0.2650 | 5.1404 | [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] | 0.0707 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-base-2021-10-18_16-15 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-18_16-15 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1294 - Gen Len: 19.0 - Bertscorer-p: 0.5827 - Bertscorer-r: 0.0812 - Bertscorer-f1: 0.3202 - Sacrebleu-score: 5.9410 - Sacrebleu-precisions: [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] - Bleu-bp: 0.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | nan | 1.0 | 4772 | 0.1294 | 19.0 | 0.5827 | 0.0812 | 0.3202 | 5.9410 | [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] | 0.0721 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2021-10-19T23:09:08Z
--- tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_23-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_23-02 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8300 | 19.0 | 0.3640 | 0.0346 | 0.1943 | 10.0358 | [72.88988261598658, 50.27455765710799, 35.93015446608462, 28.454070201643017] | 0.2281 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
2021-10-19T15:38:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-19_15-35_lastDS results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.3275993764400482 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-19_15-35_lastDS This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1310 - Gen Len: 19.0 - P: 0.5807 - R: 0.0962 - F1: 0.3276 - Score: 6.4533 - Bleu-precisions: [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516] - Bleu-bp: 0.0770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | nan | 1.0 | 4807 | 0.1310 | 19.0 | 0.5807 | 0.0962 | 0.3276 | 6.4533 | [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516] | 0.0770 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-large-cased-whole-word-masking
[ "pytorch", "tf", "jax", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2,316
2021-10-15T01:04:21Z
--- tags: - generated_from_trainer model-index: - name: text-to-sparql-t5-small-2021-10-15_01-00 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-15_01-00 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:------:|:----------:|:-----------------------------------------------------------------:|:-------:| | No log | 1.0 | 26 | 4.1488 | 19.0 | 0.2368 | -0.0304 | 0.1003 | 0.8868 | [56.84848484848485, 25.0, 8.88888888888889, 0.041666666666666664] | 0.1851 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.2 - Tokenizers 0.10.3
bert-large-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
388,769
2021-10-17T18:52:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-17_18-47 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2345714420080185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-17_18-47 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Gen Len: 19.0 - P: 0.4582 - R: 0.0278 - F1: 0.2346 - Score: 3.5848 - Bleu-precisions: [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] - Bleu-bp: 0.0631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7575 | 1.0 | 4807 | 0.5258 | 19.0 | 0.4582 | 0.0278 | 0.2346 | 3.5848 | [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] | 0.0631 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2021-10-18T09:35:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-18_09-32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.26458749175071716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_09-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Gen Len: 19.0 - P: 0.4884 - R: 0.0583 - F1: 0.2646 - Score: 3.5425 - Bleu-precisions: [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] - Bleu-bp: 0.0609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7088 | 1.0 | 4772 | 0.5119 | 19.0 | 0.4884 | 0.0583 | 0.2646 | 3.5425 | [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] | 0.0609 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2021-10-18T12:15:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-small-2021-10-18_12-12 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_12-12 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Gen Len: 19.0 - Bertscorer-p: 0.5420 - Bertscorer-r: 0.0732 - Bertscorer-f1: 0.2972 - Sacrebleu-score: 4.8763 - Sacrebleu-precisions: [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] - Bleu-bp: 0.0697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | 0.4209 | 1.0 | 4772 | 0.3284 | 19.0 | 0.5420 | 0.0732 | 0.2972 | 4.8763 | [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] | 0.0697 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bert-large-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,058,496
2021-10-18T23:06:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-small-2021-10-18_23-00 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_23-00 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2284 - Gen Len: 19.0 - Bertscorer-p: 0.5644 - Bertscorer-r: 0.0815 - Bertscorer-f1: 0.3120 - Sacrebleu-score: 5.5690 - Sacrebleu-precisions: [89.6746395837541, 79.06489438259324, 71.93407601726916, 67.21220306665607] - Bleu-bp: 0.0728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:---------------------------------------------------------------------------:|:-------:| | 0.2808 | 1.0 | 4772 | 0.2284 | 19.0 | 0.5644 | 0.0815 | 0.3120 | 5.5690 | [89.6746395837541, 79.06489438259324, 71.93407601726916, 67.21220306665607] | 0.0728 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
camembert-base
[ "pytorch", "tf", "safetensors", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,440,898
2021-10-19T22:35:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-small-2021-10-19_22-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-small-2021-10-19_22-32 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-small-2021-10-19_10-17_lastDS](https://huggingface.co/yazdipour/text-to-sparql-t5-small-2021-10-19_10-17_lastDS) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-------------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 2.4477 | 19.0 | 0.3797 | 0.0727 | 0.2219 | 9.3495 | [73.47751849743882, 49.595519601742375, 35.346602608098834, 26.243305279265492] | 0.2180 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
ctrl
[ "pytorch", "tf", "ctrl", "en", "arxiv:1909.05858", "arxiv:1910.09700", "transformers", "license:bsd-3-clause", "has_space" ]
null
{ "architectures": null, "model_type": "ctrl", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17,007
2021-10-19T10:22:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-19_10-17_lastDS results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.3129461705684662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-19_10-17_lastDS This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2335 - Gen Len: 19.0 - P: 0.5580 - R: 0.0884 - F1: 0.3129 - Score: 5.9585 - Bleu-precisions: [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] - Bleu-bp: 0.0763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3166 | 1.0 | 4807 | 0.2335 | 19.0 | 0.5580 | 0.0884 | 0.3129 | 5.9585 | [90.11303396628615, 80.34125695971072, 73.81487011728768, 69.48796722990271] | 0.0763 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
distilbert-base-cased-distilled-squad
[ "pytorch", "tf", "rust", "safetensors", "openvino", "distilbert", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
257,745
2021-08-04T04:37:57Z
--- tags: autonlp language: ko widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - ybybybybybybyb/autonlp-data-revanalysis --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 6711455 ## Validation Metrics - Loss: 0.8241586089134216 - Accuracy: 0.7835820895522388 - Macro F1: 0.5297383029341792 - Micro F1: 0.783582089552239 - Weighted F1: 0.7130091019920225 - Macro Precision: 0.48787061994609165 - Micro Precision: 0.7835820895522388 - Weighted Precision: 0.6541416904694856 - Macro Recall: 0.5795454545454546 - Micro Recall: 0.7835820895522388 - Weighted Recall: 0.7835820895522388 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/ybybybybybybyb/autonlp-revanalysis-6711455 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
distilbert-base-german-cased
[ "pytorch", "safetensors", "distilbert", "fill-mask", "de", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
43,667
2021-11-15T19:28:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.509687043672971 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 - Matthews Correlation: 0.5097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5237 | 1.0 | 535 | 0.5117 | 0.4469 | | 0.3496 | 2.0 | 1070 | 0.5538 | 0.4965 | | 0.2377 | 3.0 | 1605 | 0.6350 | 0.4963 | | 0.1767 | 4.0 | 2140 | 0.7512 | 0.5097 | | 0.1383 | 5.0 | 2675 | 0.8647 | 0.5056 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
null
# Bert2Bert Summarization with ๐Ÿค— EncoderDecoder Framework [This is a TensorFlow version converted from the original PyTorch [Bert2Bert](https://huggingface.co/patrickvonplaten/bert2bert-cnn_dailymail-fp16)] This model is a Bert2Bert model fine-tuned on summarization. Bert2Bert is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `bert-base-uncased` BERT models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python bert2bert = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased") ``` The decoder of an `TFEncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``bert2bert`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `bert2bert-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the ๐Ÿค— EncoderDecoder Framework. The model can be used as follows: ```python from transformers import AutoTokenizer, TFEncoderDecoderModel loc = "ydshieh/bert2bert-cnn_dailymail-fp16" model = TFEncoderDecoderModel.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents.""" input_ids = tokenizer(article, return_tensors="tf").input_ids output_ids = model.generate(input_ids) summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(summary) # should produce # sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent mon ths. ``` ## Training script: For the original PyTorch BERT2BERT model, please follow this tutorial to see how to warm-start a BERT2BERT model: https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 16.12 | 17.07 | **16.1** |
gpt2-medium
[ "pytorch", "tf", "jax", "rust", "safetensors", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
759,601
2021-10-06T22:22:36Z
--- tags: - image-classification library_name: generic --- ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the ๐Ÿค— FlaxVisionEncoderDecoder Framework. The model can be used as follows: ```python import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as img: pixel_values = feature_extractor(images=img, return_tensors="np").pixel_values def generate_step(pixel_values): output_ids = model.generate(pixel_values, max_length=16, num_beams=4).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds preds = generate_step(pixel_values) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ```
ARCYVILK/gpt2-bot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-05-23T23:34:01Z
--- language: en tags: - bert - qqp - glue - torchdistill license: apache-2.0 datasets: - qqp metrics: - f1 - accuracy --- `bert-large-uncased` fine-tuned on QQP dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/qqp/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
Alerosae/SocratesGPT-2
[ "pytorch", "gpt2", "feature-extraction", "en", "transformers", "text-generation" ]
text-generation
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - conversational --- #Rick and Morty DialoGPT
Alexander-Learn/bert-finetuned-ner-accelerate
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- # language: protein tags: - protein language model datasets: - ProteinKG25 widget: - text: "D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T" --- # OntoProtein model Pretrained model on protein sequences using masked language modeling (MLM) and knowledge embedding (KE) objective objective. It was introduced in [this paper](https://openreview.net/pdf?id=yfe1VMYAXa4) and first released in [this repository](https://github.com/zjunlp/OntoProtein). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description OntoProtein is the first general framework that makes use of structure in GO (Gene Ontology) into protein pre-training models. We construct a novel large-scale knowledge graph that consists of GO and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph. We propose novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training. ### BibTeX entry and citation info ```bibtex @inproceedings{ zhang2022ontoprotein, title={OntoProtein: Protein Pretraining With Gene Ontology Embedding}, author={Ningyu Zhang and Zhen Bi and Xiaozhuan Liang and Siyuan Cheng and Haosen Hong and Shumin Deng and Qiang Zhang and Jiazhang Lian and Huajun Chen}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=yfe1VMYAXa4} } ```
Amalq/distilroberta-base-finetuned-anxiety-depression
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: autonlp language: en widget: - text: "I love AutoNLP ๐Ÿค—" datasets: - zwang199/autonlp-data-traffic_nlp_binary co2_eq_emissions: 1.171798205242445 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 537215209 - CO2 Emissions (in grams): 1.171798205242445 ## Validation Metrics - Loss: 0.3879534602165222 - Accuracy: 0.8597449908925319 - Precision: 0.8318042813455657 - Recall: 0.9251700680272109 - AUC: 0.9230158730158731 - F1: 0.8760064412238325 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/zwang199/autonlp-traffic_nlp_binary-537215209 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("zwang199/autonlp-traffic_nlp_binary-537215209", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("zwang199/autonlp-traffic_nlp_binary-537215209", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
AnonARR/qqp-bert
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kabelomalapane/Helsinki-NLP-opus-finetuned-en-to-zu This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5907 - Validation Loss: 1.6321 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations This model is to be used to translate English into Zulu. But there are still some problems in running this model, so it's still to be modified. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 783, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1622 | 1.7379 | 0 | | 1.7292 | 1.6529 | 1 | | 1.5907 | 1.6321 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
Anonymous/ReasonBERT-BERT
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: ernie_roberta_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ernie_roberta_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-03-04T08:48:29Z
--- datasets: - ticket-tagger metrics: - accuracy model-index: - name: distil-bert-uncased-finetuned-github-issues results: - task: name: Text Classification type: text-classification dataset: name: ticket tagger type: ticket tagger args: full metrics: - name: Accuracy type: accuracy value: 0.7862 --- # Model Description This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) and fine-tuning it on the [github ticket tagger dataset](https://tickettagger.blob.core.windows.net/datasets/dataset-labels-top3-30k-real.txt). It classifies issue into 3 common categories: Bug, Enhancement, Questions. It achieves the following results on the evaluation set: - Accuracy: 0.7862 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-5 - train_batch_size: 16 - optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0 - num_epochs: 5 ### Codes https://github.com/IvanLauLinTiong/IntelliLabel
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-03-04T09:03:25Z
--- datasets: - mc4 license: apache-2.0 --- # ByT5-Korean - large ByT5-Korean is a Korean specific extension of Google's [ByT5](https://github.com/google-research/byt5). A Korean syllable has three components (called Jamo): a beginning consonant, a middle vowel, and an optional final consonant; they are like individual characters of alphabet. While the ByT5's utf-8 encoding allows generic encoding for multiple languages, it is unnatural for Korean because it splits the bits representation of each Jamo in the middle. ByT5-Korean extends ByT5's utf-8 encoding with special care for Korean syllables; each Jamo is represented with a extra token. ByT5-Korean was pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) with 70% Korean and 30% English. ## Encoding Scheme ```text id: token 0: <pad> 1: <eos> 2: <unk> 3~258: utf-8 encoding 259~277: beginning consonants(์ดˆ์„ฑ), 19๊ฐœ(ใ„ฑใ„ฒใ„ดใ„ทใ„ธใ„นใ…ใ…‚ใ…ƒใ……ใ…†ใ…‡ใ…ˆใ…‰ใ…Šใ…‹ใ…Œใ…ใ…Ž) 278~298: middle vowel(์ค‘์„ฑ), 21๊ฐœ(ใ…ใ…ใ…‘ใ…’ใ…“ใ…”ใ…•ใ…–ใ…—ใ…˜ใ…™ใ…šใ…›ใ…œใ…ใ…žใ…Ÿใ… ใ…กใ…ขใ…ฃ) 299~326: final consonant(์ข…์„ฑ), ๋ฌด์ข…์„ฑ+27๊ฐœ(ใ„ฑใ„ฒใ„ณใ„ดใ„ตใ„ถใ„ทใ„นใ„บใ„ปใ„ผใ„ฝใ„พใ„ฟใ…€ใ…ใ…‚ใ…„ใ……ใ…†ใ…‡ใ…ˆใ…Šใ…‹ใ…Œใ…ใ…Ž) 327~384: from <extra_id_0> to <extra_id_57> ``` ## Example Inference ```python import torch from tokenizer import ByT5KoreanTokenizer # https://huggingface.co/everdoubling/byt5-Korean-large/blob/main/tokenizer.py from transformers import T5ForConditionalGeneration tokenizer_jamo = ByT5KoreanTokenizer() model = T5ForConditionalGeneration.from_pretrained('everdoubling/byt5-Korean-large') input_sentence = 'ํ•œ๊ตญ์–ด ์œ„ํ‚ค๋ฐฑ๊ณผ(์˜์–ด: Korean Wikipedia)๋Š” ํ•œ๊ตญ์–ด๋กœ ์šด์˜๋˜๋Š” ์œ„ํ‚ค๋ฐฑ๊ณผ์˜ ๋‹ค์–ธ์–ดํŒ ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋กœ์„œ, 2002๋…„ 10์›” 11์ผ์— <extra_id_0>. ๋˜ํ•œ ํ˜„์žฌ ํ•œ๊ตญ์–ด ์œ„ํ‚ค๋ฐฑ๊ณผ์—๋Š” ๋„˜๊ฒจ์ฃผ๊ธฐ, ํ† ๋ก , ๊ทธ๋ฆผ ๋“ฑ ํŽ˜์ด์ง€๋กœ ๋ถˆ๋ฆฌ๋Š” ๋ชจ๋“  ๋ฌธ์„œ๋ฅผ ํฌํ•จํ•˜๋ฉด ์ด 2,629,860๊ฐœ๊ฐ€ <extra_id_1>๋˜์–ด ์žˆ์œผ๋ฉฐ, ๋„˜๊ฒจ์ฃผ๊ธฐ๋ฅผ ํฌํ•จํ•œ ์ผ๋ฐ˜ ๋ฌธ์„œ ์ˆ˜๋Š” 1,278,560๊ฐœ,[1] ๊ทธ์ค‘ ๋„˜๊ฒจ์ฃผ๊ธฐ, ๋ง‰๋‹ค๋ฅธ ๋ฌธ์„œ๋ฅผ ์ œ์™ธํ•œ ์ผ๋ฐ˜ ๋ฌธ์„œ ์ˆ˜๋Š” 573,149๊ฐœ์ด๋‹ค.' input_ids_jamo = tokenizer_jamo(input_sentence).input_ids outputs_jamo = model_jamo.generate(torch.tensor([input_ids_jamo])) print(tokenizer_jamo.decode(outputs_jamo[0])) # <pad><extra_id_0>์„ค๋ฆฝ๋˜์—ˆ๋‹ค<extra_id_1>ฤ‘ฤ› ``` Additional information coming soon...
AnonymousSub/SR_EManuals-RoBERTa
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-03-04T12:37:20Z
--- language: - gn - es license: mit datasets: - wikipedia - wiktionary widget: - text: "Paraguay ha'e peteฤฉ tรกva oฤฉva [MASK] retรฃme " - text: "Augusto Roa Bastos ha'e peteฤฉ [MASK] arandu" --- # BETO+gn-base-cased [BETO-base-cased (pre-trained Spanish BERT model)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) fine-tuned for **Guarani** language modeling (Spanish + Guarani). Trained on Wikipedia + Wiktionary (~800K tokens).
AnonymousSub/SR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-03-04T17:28:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab-9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.03 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3