modelId
stringlengths
4
81
tags
sequence
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en tags: - conversational - transformers datasets: - GDC metrics: - perplexity license: cc-by-4.0 widget: - text: "Jag ska fika." --- ## DialoGPT_SV This is a fine-tuned model of the DialoGPT (medium) on the Swedish Gothenburg Dialogue Corpus (GDC). It is intended to be used as a Swedish conversational system. The GDC dataset it's trained on is limited in scope, as it's from the transcription of dialogues of about 25 different social activities, including debates, academic seminars and situations. The dataset has about 108K turns. The perplexity achieved on the test and validation sets (from 80:10:10 split) are 27.81 and 27.81, respectivley. More information about the original pre-trained model can be found [here](https://huggingface.co/microsoft/DialoGPT-medium) * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | Jag ska fika | |Bot | ja det är ju så att jag kanske inte kan få den att göra det | |User | tack så mycket | |Bot | tack tack ses vi om sex vecko igen | Please, find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work was accepted at the Northern Lights Deep Learning (NLDL) conference 2022. Arxiv paper: [https://arxiv.org/pdf/2110.06273.pdf](https://arxiv.org/pdf/2110.06273.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_sv") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_sv") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Swedish_GDC_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - text classification - transformers datasets: - PCL metrics: - F1 inference: false --- ## T5Base-PCL This is a fine-tuned model of T5 (base) on the patronizing and condenscending language (PCL) dataset by Pérez-Almendros et al (2020) used for Task 4 competition of SemEval-2022. It is intended to be used as a classification model for identifying PCL (0 - neg; 1 - pos). The task prefix we used for the T5 model is 'classification: '. The dataset it's trained on is limited in scope, as it covers only some news texts covering about 20 English-speaking countries. The macro F1 score achieved on the test set, based on the official evaluation, is 0.5452. More information about the original pre-trained model can be found [here](https://huggingface.co/t5-base) * Classification examples: |Prediction | Input | |---------|------------| |0 | selective kindness : in europe , some refugees are more equal than others | |1 | he said their efforts should not stop only at creating many graduates but also extended to students from poor families so that they could break away from the cycle of poverty | ### How to use ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch model = T5ForConditionalGeneration.from_pretrained("tosin/pcl_22") tokenizer = T5Tokenizer.from_pretrained("t5-base") # use the source tokenizer because T5 finetuned tokenizer breaks tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer("he said their efforts should not stop only at creating many graduates but also extended to students from poor families so that they could break away from the cycle of poverty", padding=True, truncation=True, return_tensors='pt').input_ids outputs = model.generate(input_ids) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) print(pred)
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - conversational --- # Addy DialoGPT Model
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-01-14T06:41:11Z
--- tags: - conversational --- # Shy DialoGPT Model
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2022-01-18T04:02:15Z
--- tags: - conversational --- #Parry Bot DialoGPT Model
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- tags: - conversational --- #KATARA DialoGPT Model
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - conversational --- #SOKKA DialoGPT Model
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
23
null
--- tags: - conversational --- # Harry Potter Dialog-GPT Model
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- tags: - text-to-image - torch inference: false datasets: - laion/laion_100m_vqgan_f8 --- This model is trained collaboratively — it is a part of the NeurIPS 2021 demonstration ["Training Transformers Together"](https://training-transformers-together.github.io/). The latest model checkpoint will be uploaded to this repository every 6 hours until the training stops. # Model Description We train a model similar to [OpenAI DALL-E](https://openai.com/blog/dall-e/) — a Transformer model that generates images from text descriptions. Training happens collaboratively — volunteers from all over the Internet contribute to the training using hardware available to them. We use [LAION-400M](https://laion.ai/laion-400-open-dataset/), the world's largest openly available image-text-pair dataset with 400 million samples. Our model is based on the [dalle‑pytorch](https://github.com/lucidrains/DALLE-pytorch) implementation by [Phil Wang](https://github.com/lucidrains) with a few tweaks to make it communication-efficient. # Training You can check our [dashboard](https://huggingface.co/spaces/training-transformers-together/Dashboard) to see what is happening during the collaborative training (loss over time, number of active sessions over time, contribution of each participant, leaderboard, etc. ). # How to Use You can start from our [Colab notebook for running inference](https://colab.research.google.com/drive/1Vkb-4nhEEH1a5vrKtpL4MTNiUTPdpPUl?usp=sharing). # Limitations This model is created only as a demonstration of the new distributed training methods. **It should not be used for anything besides research purposes.** The authors have done only the most basic dataset filtering, so the model may be susceptible to biases in the training data and/or generate inappropriate content. At the moment, the model's generative capabilities are limited due to the absence of extensive experiments with the architecture and incomplete training.
AnonymousSub/unsup-consert-base
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2021-09-02T03:44:56Z
--- tags: - conversational --- # Discord Model Medium 7 epochs
AnonymousSub/unsup-consert-emanuals
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
null
# Intent Detection with BERT This model was trained on the [CLINC150](https://arxiv.org/abs/1909.02027) dataset for customer intent detection. The dataset can be found on the [Hub](https://huggingface.co/datasets/clinc_oos). The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb).
AnonymousSub/unsup-consert-papers-bert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2021-10-28T13:59:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GitHub issues dataset. The model is used in Chapter 9: Dealing with Few to No Labels in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/09_few-to-no-labels.ipynb). It achieves the following results on the evaluation set: - Loss: 1.2520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0949 | 1.0 | 291 | 1.7072 | | 1.649 | 2.0 | 582 | 1.4409 | | 1.4835 | 3.0 | 873 | 1.4099 | | 1.3938 | 4.0 | 1164 | 1.3858 | | 1.3326 | 5.0 | 1455 | 1.2004 | | 1.2949 | 6.0 | 1746 | 1.2955 | | 1.2451 | 7.0 | 2037 | 1.2682 | | 1.1992 | 8.0 | 2328 | 1.1938 | | 1.1784 | 9.0 | 2619 | 1.1686 | | 1.1397 | 10.0 | 2910 | 1.2050 | | 1.1293 | 11.0 | 3201 | 1.2058 | | 1.1006 | 12.0 | 3492 | 1.1680 | | 1.0835 | 13.0 | 3783 | 1.2414 | | 1.0757 | 14.0 | 4074 | 1.1522 | | 1.062 | 15.0 | 4365 | 1.1176 | | 1.0535 | 16.0 | 4656 | 1.2520 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
AnonymousSub/unsup-consert-papers
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2021-08-11T12:00:29Z
# CodeParrot This is a small version of the CodeParrot tokenizer trained on the [CodeParrot Python code dataset](https://huggingface.co/datasets/transformersbook/codeparrot). The tokenizer is trained in Chapter 10: Training Transformers from Scratch in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/10_transformers-from-scratch.ipynb).
AriakimTaiyo/DialoGPT-small-Rikka
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
# GPT-2 Fine-tuning With Vietnamese Six Eight Poems ## Model description This is a Vietnamese GPT-2 Six Eight Poet Model which is trained on the 10mb of Six Eight poems dataset, based on the Vietnamese Wiki GPT2 pretrained model (https://huggingface.co/danghuy1999/gpt2-viwiki) ## Purpose This model was made only for fun and experimental study ## Dataset The dataset is about 10k lines of Vietnamese Six Eight poems ## Result - Train Loss: 2.7 - Val loss: 4.5 ## How to use You can use this model to generate Six Eight poems given any starting words ## Example ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained("tuanle/GPT2_Poet") model = AutoModelForCausalLM.from_pretrained("tuanle/GPT2_Poet").to(device) text = "hỏi rằng nàng" input_ids = tokenizer.encode(text, return_tensors='pt').to(device) min_length = 60 max_length = 100 sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=max_length, min_length=min_length, # temperature = .8, # top_k= 100, top_p = 0.8, num_beams= 10, # early_stopping=True, no_repeat_ngram_size= 2, num_return_sequences= 3) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist(), skip_special_tokens=True))) print('\n---') ``` ## Demo - Input: "hỏi rằng nàng" - Output: hỏi rằng nàng đã nói ra\ cớ sao nàng lại hỏi han sự tình\ vân tiên nói lại những lời\ thưa rằng ở chốn am mây một mình\ từ đây mới biết rõ ràng\ ở đây cũng gặp một người ở đây\ hai người gặp lại gặp nhau\ thấy lời nàng mới hỏi tra việc này\ nguyệt nga hỏi việc bấy lâu\ khen rằng đạo sĩ ở đầu cửa thiền
Ashkanmh/bert-base-parsbert-uncased-finetuned
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2021-09-17T02:02:43Z
# TUNiB-Electra We release several new versions of the [ELECTRA](https://arxiv.org/abs/2003.10555) model, which we name TUNiB-Electra. There are two motivations. First, all the existing pre-trained Korean encoder models are monolingual, that is, they have knowledge about Korean only. Our bilingual models are based on the balanced corpora of Korean and English. Second, we want new off-the-shelf models trained on much more texts. To this end, we collected a large amount of Korean text from various sources such as blog posts, comments, news, web novels, etc., which sum up to 100 GB in total. ## How to use You can use this model directly with [transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoModel, AutoTokenizer # Small Model (Korean-only model) tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-small') model = AutoModel.from_pretrained('tunib/electra-ko-small') ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-small') >>> tokenizer.tokenize("tunib is a natural language processing tech startup.") ['tun', '##ib', 'is', 'a', 'natural', 'language', 'processing', 'tech', 'startup', '.'] >>> tokenizer.tokenize("튜닙은 자연어처리 테크 스타트업입니다.") ['튜', '##닙', '##은', '자연', '##어', '##처리', '테크', '스타트업', '##입니다', '.'] ``` ## Results on Korean downstream tasks | |**# Params** |**Avg.**| **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) |**Korean-Hate-Speech (Dev)**<br/>(F1)| | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :----------------: | |***TUNiB-Electra-ko-small*** | 14M | 81.29| **89.56** | 84.98 | 72.85 | 77.08 | 78.76 | **94.98** | 61.17 / 87.64 | **64.50** | |***TUNiB-Electra-ko-en-small*** | 18M | 81.44 | 89.28 | 85.15 | 75.75 | 77.06 | 77.61 | 93.79 | 80.55 / 89.77 |63.13 | | [KoELECTRA-small-v3](https://github.com/monologg/KoELECTRA) | 14M | **82.58** | 89.36 | **85.40** | **77.45** | **78.60** | **80.79** | 94.85 | **82.11 / 91.13** | 63.07 |
Ashl3y/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - th widget: - text: "ความรัก" - text: "อยากรู้" - text: "ไหนว่า" --- # Generate Thai Lyrics (แต่งเพลงไทยด้วย GPT-2) GPT-2 for Thai lyrics generation. We use [GPT-2 base Thai](https://huggingface.co/flax-community/gpt2-base-thai) as a pre-trained model for [Siamzone lyrics](https://www.siamzone.com/music/thailyric/) เราเทรนโมเดล GPT-2 สำหรับใช้แต่งเนื้อเพลงไทยด้วยเนื้อเพลงจากเว็บไซต์ Siamzone ## Example use ``` py from transformers import pipeline from transformers import GPT2Model, GPT2TokenizerFast, AutoModelForCausalLM, AutoTokenizer model_name = "tupleblog/generate-thai-lyrics" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model.config.pad_token_id = model.config.eos_token_id nlp = pipeline( "text-generation", model=model, tokenizer=tokenizer ) text = "ความรัก" nlp(text, max_length=100, top_k=40, temperature=0.8) # varying the temperature and top-k produce different output ```
Augustab/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-11body-0context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-11body-0context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.8068 - Wer: 0.1976 - Mer: 0.1904 - Wil: 0.2816 - Wip: 0.7184 - Hits: 602335 - Substitutions: 75050 - Deletions: 39435 - Insertions: 27185 - Cer: 0.1625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:-------------:|:---------:|:----------:|:------:| | 0.8909 | 1.0 | 746 | 0.7722 | 0.3120 | 0.2861 | 0.3989 | 0.6011 | 558138 | 99887 | 58795 | 64983 | 0.2652 | | 0.6786 | 2.0 | 1492 | 0.7021 | 0.2226 | 0.2122 | 0.3069 | 0.6931 | 592242 | 78773 | 45805 | 34978 | 0.1862 | | 0.5627 | 3.0 | 2238 | 0.6996 | 0.2104 | 0.2016 | 0.2942 | 0.7058 | 597381 | 76593 | 42846 | 31392 | 0.1752 | | 0.489 | 4.0 | 2984 | 0.7161 | 0.2030 | 0.1952 | 0.2865 | 0.7135 | 599808 | 75155 | 41857 | 28506 | 0.1684 | | 0.4355 | 5.0 | 3730 | 0.7389 | 0.2000 | 0.1924 | 0.2837 | 0.7163 | 601815 | 75247 | 39758 | 28335 | 0.1651 | | 0.3836 | 6.0 | 4476 | 0.7537 | 0.1992 | 0.1918 | 0.2829 | 0.7171 | 601846 | 75046 | 39928 | 27815 | 0.1640 | | 0.3617 | 7.0 | 5222 | 0.7743 | 0.1995 | 0.1918 | 0.2832 | 0.7168 | 602287 | 75268 | 39265 | 28445 | 0.1642 | | 0.3258 | 8.0 | 5968 | 0.7907 | 0.1971 | 0.1899 | 0.2809 | 0.7191 | 602800 | 74887 | 39133 | 27258 | 0.1620 | | 0.3225 | 9.0 | 6714 | 0.8035 | 0.1981 | 0.1908 | 0.2823 | 0.7177 | 602418 | 75372 | 39030 | 27625 | 0.1630 | | 0.3162 | 10.0 | 7460 | 0.8068 | 0.1976 | 0.1904 | 0.2816 | 0.7184 | 602335 | 75050 | 39435 | 27185 | 0.1625 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
Augustvember/WokkaBot99
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-01-20T14:21:17Z
--- language: en license: apache-2.0 datasets: - openwebtext --- # DistilRoBERTa base model Forked from https://huggingface.co/distilroberta-base
Augustvember/WokkaBotF
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en pipeline_tag: zero-shot-classification tags: - mobilebert datasets: - multi_nli metrics: - accuracy --- # Model Card for MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices # Model Details ## Model Description This model is the Multi-Genre Natural Language Inference (MNLI) fine-turned version of the [uncased MobileBERT model](https://huggingface.co/google/mobilebert-uncased). - **Developed by:** Typeform - **Shared by [Optional]:** Typeform - **Model type:** Zero-Shot-Classification - **Language(s) (NLP):** English - **License:** More information needed - **Parent Model:** [uncased MobileBERT model](https://huggingface.co/google/mobilebert-uncased). - **Resources for more information:** More information needed # Uses ## Direct Use This model can be used for the task of zero-shot classification ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data See [the multi_nli dataset card](https://huggingface.co/datasets/multi_nli) for more information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See [the multi_nli dataset card](https://huggingface.co/datasets/multi_nli) for more information. ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Typeform in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("typeform/mobilebert-uncased-mnli") model = AutoModelForSequenceClassification.from_pretrained("typeform/mobilebert-uncased-mnli") ``` </details>
Augustvember/wokka4
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - null model_index: - name: xlm-roberta-base-finetuned-chaii results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-chaii This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.92 | 1.0 | 899 | 0.4482 | | 0.8055 | 2.0 | 1798 | 0.3225 | | 0.7485 | 3.0 | 2697 | 0.4651 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-distilBERT
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.8685291700903862 - name: Recall type: recall value: 0.841273450824332 - name: F1 type: f1 value: 0.8546840706942359 - name: Accuracy type: accuracy value: 0.9824748714976435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0940 - Precision: 0.8685 - Recall: 0.8413 - F1: 0.8547 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0564 | 1.0 | 2904 | 0.0943 | 0.8505 | 0.8118 | 0.8307 | 0.9798 | | 0.0321 | 2.0 | 5808 | 0.0907 | 0.8610 | 0.8235 | 0.8419 | 0.9814 | | 0.0198 | 3.0 | 8712 | 0.0940 | 0.8685 | 0.8413 | 0.8547 | 0.9825 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
[ "pytorch", "roberta", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9290229566374626 - name: Recall type: recall value: 0.9371294328224634 - name: F1 type: f1 value: 0.9330585876587213 - name: Accuracy type: accuracy value: 0.9839547555880344 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Precision: 0.9290 - Recall: 0.9371 - F1: 0.9331 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2276 | 1.0 | 878 | 0.0685 | 0.9204 | 0.9246 | 0.9225 | 0.9814 | | 0.0498 | 2.0 | 1756 | 0.0622 | 0.9238 | 0.9358 | 0.9298 | 0.9833 | | 0.0298 | 3.0 | 2634 | 0.0608 | 0.9290 | 0.9371 | 0.9331 | 0.9840 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-roBERTa
[ "pytorch", "roberta", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "中国的首都是[MASK]京" --- # Chinese ALBERT ## Model description This is the set of Chinese ALBERT models pre-trained by UER-py. You can download the model either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **ALBERT-Base** | [**L=12/H=768 (Base)**][base] | | **ALBERT-Large** | [**L=24/H=1024 (Large)**][large] | ## How to use You can use the model directly with a pipeline for text generation: ```python >>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") >>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall") >>> unmasker = FillMaskPipeline(model, tokenizer) >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '中 国 的 首 都 是 北 京 。', 'score': 0.8528032898902893, 'token': 1266, 'token_str': '北'}, {'sequence': '中 国 的 首 都 是 南 京 。', 'score': 0.07667620480060577, 'token': 1298, 'token_str': '南'}, {'sequence': '中 国 的 首 都 是 东 京 。', 'score': 0.020440367981791496, 'token': 691, 'token_str': '东'}, {'sequence': '中 国 的 首 都 是 维 京 。', 'score': 0.010197942145168781, 'token': 5335, 'token_str': '维'}, {'sequence': '中 国 的 首 都 是 汴 京 。', 'score': 0.0075391442514956, 'token': 3745, 'token_str': '汴'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, AlbertModel tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFAlbertModel tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of ALBERT-Base Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_albert_seq128_dataset.pt \ --seq_length 128 --processes_num 32 --data_processor albert ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/albert/base_config.json \ --output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_albert_seq512_dataset.pt \ --seq_length 512 --processes_num 32 --data_processor albert ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \ --config_path models/albert/base_config.json \ --output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path cluecorpussmall_albert_base_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin ``` ### BibTeX entry and citation info ``` @article{lan2019albert, title={Albert: A lite bert for self-supervised learning of language representations}, author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu}, journal={arXiv preprint arXiv:1909.11942}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall [large]:https://huggingface.co/uer/albert-large-chinese-cluecorpussmall
Azaghast/GPT2-SCP-ContainmentProcedures
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: Chinese datasets: CLUECorpusSmall widget: - text: "作为电子[MASK]的平台,京东绝对是领先者。如今的刘强[MASK]已经是身价过[MASK]的老板。" --- # Chinese BART ## Model description This model is pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). ## How to use You can use this model directly with a pipeline for text2text generation : ```python >>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/bart-chinese-6-960-cluecorpussmall") >>> model = BartForConditionalGeneration.from_pretrained("uer/bart-chinese-6-960-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False) [{'generated_text': '中 国 的 首 都 是 北 京'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) Common Crawl and some short messages are used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512. we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6 ``` ### BibTeX entry and citation info ``` @article{lewis2019bart, title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension}, author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1910.13461}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
Azaghast/GPT2-SCP-Miscellaneous
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
Azizun/Geotrend-10-epochs
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
Azura/data
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-01-26T11:36:00Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
Azuris/DialoGPT-medium-envy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2021-01-26T11:45:59Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
Azuris/DialoGPT-medium-senorita
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2020-11-25T07:48:39Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
Azuris/DialoGPT-small-envy
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BAHIJA/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2021-01-26T11:52:56Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BE/demo-sentiment2021
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2020-12-13T06:06:12Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BJTK2/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BOON/electra-xlnet
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BSC-LT/roberta-base-bne-capitel-pos
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BSC-LT/roberta-base-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
594
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BSC-LT/roberta-large-bne-capitel-ner
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
BSen/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: zh widget: - text: "[CLS]国 色 天 香 , 姹 紫 嫣 红 , 碧 水 青 云 欣 共 赏 -" --- # Chinese Couplet GPT2 Model ## Model description The model is used to generate Chinese couplets. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-couplet](https://huggingface.co/uer/gpt2-chinese-couplet). Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, the output results of Hosted inference API (right) may not be properly displayed.. ## How to use You can use the model directly with a pipeline for text generation: When the parameter skip_special_tokens is True: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True) [{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}] ``` When the parameter skip_special_tokens is False: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True) [{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 我 酒 不 辞 [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP]'}] ``` ## Training data Training data contains 700,000 Chinese couplets which are collected by [couplet-clean-dataset](https://github.com/v-zich/couplet-clean-dataset). ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 25,000 steps with a sequence length of 64. ``` python3 preprocess.py --corpus_path corpora/couplet.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path couplet_dataset.pt --processes_num 16 \ --seq_length 64 --data_processor lm ``` ``` python3 pretrain.py --dataset_path couplet_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/couplet_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 25000 --save_checkpoint_steps 5000 --report_steps 1000 \ --learning_rate 5e-4 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path couplet_gpt2_model.bin-25000 \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
BW/TEST
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: zh widget: - text: "[CLS] 万 叠 春 山 积 雨 晴 ," - text: "[CLS] 大 漠" --- # Chinese Poem GPT2 Model ## Model description The model is used to generate Chinese ancient poems. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-poem](https://huggingface.co/uer/gpt2-chinese-poem]). Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, the output results of Hosted inference API (right) may not be properly displayed. ## How to use You can use the model directly with a pipeline for text generation: When the parameter skip_special_tokens is True: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 丛 竹 隠 疏 花 。 水 影 落 寒 濑 , 竹 声 随 暮 鸦 。 茅 茨 数 间 屋 , 烟 火 两 三 家 。 安 得 携 琴 酒 , 相 逢 烟 雨 赊 。 向 湖 边 过 , 偏 怜 雪 里 看 。 浮 峦 如 画 出 , 远 树 与 天 连 。 月 上 僧 房 静 , 风 回 萤 火 寒 。 幽 情 何 可 写 , 赖 有 子 期 弹 。 棠 真'}] ``` When the parameter skip_special_tokens is False: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=100, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 秀 出 何 其 雄 。 矫 矫 云 间 质 , 映 日 生 玲 珑 。 根 大 乱 石 结 , 枝 高 青 云 蒙 。 常 因 风 露 晚 , 隠 映 瑶 台 中 。 忽 闻 山 石 裂 , 万 里 吹 天 风 。 又 觉 此 身 高 , 迥 出 凡 境 空 。 清 影 落 潭 水 , 暗 香 来 逈 峰 。 却 寻 白 太 白 , 月 影 摇 江 东 。 [SEP] 而 非'}] ``` ## Training data Training data contains 800,000 Chinese ancient poems which are collected by [chinese-poetry](https://github.com/chinese-poetry/chinese-poetry) and [Poetry](https://github.com/Werneror/Poetry) projects. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 200,000 steps with a sequence length of 128. We use extended vocabulary to handle out-of-vocabulary words. The Chinese character that occurs greater than or equal to 100 in poem corpus is added to the vocabulary. ``` python3 preprocess.py --corpus_path corpora/poem.txt \ --vocab_path models/poem_zh_vocab.txt \ --dataset_path poem_dataset.pt --processes_num 16 \ --seq_length 128 --data_processor lm ``` ``` python3 pretrain.py --dataset_path poem_dataset.pt \ --vocab_path models/poem_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/poem_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 200000 --save_checkpoint_steps 50000 --report_steps 1000 \ --learning_rate 5e-4 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path poem_gpt2_model.bin-200000 \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
Babelscape/wikineural-multilingual-ner
[ "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "de", "en", "es", "fr", "it", "nl", "pl", "pt", "ru", "multilingual", "dataset:Babelscape/wikineural", "transformers", "named-entity-recognition", "sequence-tagger-model", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
41,608
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。" --- # Chinese Pegasus ## Model description This model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). You can download the set of Chinese PEGASUS models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | ----------------- | :----------------------------: | | **PEGASUS-Base** | [**L=12/H=768 (Base)**][base] | | **PEGASUS-Large** | [**L=16/H=1024 (Large)**][large] | ## How to use You can use this model directly with a pipeline for text2text generation (take the case of PEGASUS-Base): ```python >>> from transformers import BertTokenizer, PegasusForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> model = PegasusForConditionalGeneration.from_pretrained("uer/pegasus-base-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("内容丰富、版式设计考究、图片华丽、印制精美。[MASK]纸箱内还放了充气袋用于保护。", max_length=50, do_sample=False) [{'generated_text': '书 的 质 量 很 好 。'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512. Taking the case of PEGASUS-Base ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --data_processor gsg --sentence_selection_strategy random ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_pegasus_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/pegasus/base_config.json \ --output_model_path models/cluecorpussmall_pegasus_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 8 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_pegasus_from_uer_to_huggingface.py --input_model_path cluecorpussmall_pegasus_base_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @inproceedings{zhang2020pegasus, title={Pegasus: Pre-training with extracted gap-sentences for abstractive summarization}, author={Zhang, Jingqing and Zhao, Yao and Saleh, Mohammad and Liu, Peter}, booktitle={International Conference on Machine Learning}, pages={11328--11339}, year={2020}, organization={PMLR} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [base]:https://huggingface.co/uer/pegasus-base-chinese-cluecorpussmall [large]:https://huggingface.co/uer/pegasus-large-chinese-cluecorpussmall
Backedman/DialoGPT-small-Anika
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: zh widget: - text: "这本书真的很不错" --- # Chinese RoBERTa-Base Models for Text Classification ## Model description This is the set of 5 Chinese RoBERTa-Base classification models fine-tuned by [UER-py](https://arxiv.org/abs/1909.05658). You can download the 5 Chinese RoBERTa-Base classification models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the links below: | Dataset | Link | | :-----------: | :-------------------------------------------------------: | | **JD full** | [**roberta-base-finetuned-jd-full-chinese**][jd_full] | | **JD binary** | [**roberta-base-finetuned-jd-binary-chinese**][jd_binary] | | **Dianping** | [**roberta-base-finetuned-dianping-chinese**][dianping] | | **Ifeng** | [**roberta-base-finetuned-ifeng-chinese**][ifeng] | | **Chinanews** | [**roberta-base-finetuned-chinanews-chinese**][chinanews] | ## How to use You can use this model directly with a pipeline for text classification (take the case of roberta-base-finetuned-chinanews-chinese): ```python >>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("北京上个月召开了两会") [{'label': 'mainland China politics', 'score': 0.7211663722991943}] ``` ## Training data 5 Chinese text classification datasets are used. JD full, JD binary, and Dianping datasets consist of user reviews of different sentiment polarities. Ifeng and Chinanews consist of first paragraphs of news articles of different topic classes. They are collected by [Glyph](https://github.com/zhangxiangxiao/glyph) project and more details are discussed in corresponding [paper](https://arxiv.org/abs/1708.02657). ## Training procedure Models are fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. We use the same hyper-parameters on different models. Taking the case of roberta-base-finetuned-chinanews-chinese ``` python3 run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/chinanews/train.tsv \ --dev_path datasets/glyph/chinanews/dev.tsv \ --output_model_path models/chinanews_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/chinanews_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{zhang2017encoding, title={Which encoding is the best for text classification in chinese, english, japanese and korean?}, author={Zhang, Xiang and LeCun, Yann}, journal={arXiv preprint arXiv:1708.02657}, year={2017} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [jd_full]:https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese [jd_binary]:https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese [dianping]:https://huggingface.co/uer/roberta-base-finetuned-dianping-chinese [ifeng]:https://huggingface.co/uer/roberta-base-finetuned-ifeng-chinese [chinanews]:https://huggingface.co/uer/roberta-base-finetuned-chinanews-chinese
Bagus/SER-LSSED
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: zh widget: - text: "这本书真的很不错" --- # Chinese RoBERTa-Base Models for Text Classification ## Model description This is the set of 5 Chinese RoBERTa-Base classification models fine-tuned by [UER-py](https://arxiv.org/abs/1909.05658). You can download the 5 Chinese RoBERTa-Base classification models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the links below: | Dataset | Link | | :-----------: | :-------------------------------------------------------: | | **JD full** | [**roberta-base-finetuned-jd-full-chinese**][jd_full] | | **JD binary** | [**roberta-base-finetuned-jd-binary-chinese**][jd_binary] | | **Dianping** | [**roberta-base-finetuned-dianping-chinese**][dianping] | | **Ifeng** | [**roberta-base-finetuned-ifeng-chinese**][ifeng] | | **Chinanews** | [**roberta-base-finetuned-chinanews-chinese**][chinanews] | ## How to use You can use this model directly with a pipeline for text classification (take the case of roberta-base-finetuned-chinanews-chinese): ```python >>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("北京上个月召开了两会") [{'label': 'mainland China politics', 'score': 0.7211663722991943}] ``` ## Training data 5 Chinese text classification datasets are used. JD full, JD binary, and Dianping datasets consist of user reviews of different sentiment polarities. Ifeng and Chinanews consist of first paragraphs of news articles of different topic classes. They are collected by [Glyph](https://github.com/zhangxiangxiao/glyph) project and more details are discussed in corresponding [paper](https://arxiv.org/abs/1708.02657). ## Training procedure Models are fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. We use the same hyper-parameters on different models. Taking the case of roberta-base-finetuned-chinanews-chinese ``` python3 run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/chinanews/train.tsv \ --dev_path datasets/glyph/chinanews/dev.tsv \ --output_model_path models/chinanews_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/chinanews_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{zhang2017encoding, title={Which encoding is the best for text classification in chinese, english, japanese and korean?}, author={Zhang, Xiang and LeCun, Yann}, journal={arXiv preprint arXiv:1708.02657}, year={2017} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [jd_full]:https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese [jd_binary]:https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese [dianping]:https://huggingface.co/uer/roberta-base-finetuned-dianping-chinese [ifeng]:https://huggingface.co/uer/roberta-base-finetuned-ifeng-chinese [chinanews]:https://huggingface.co/uer/roberta-base-finetuned-chinanews-chinese
Bagus/wav2vec2-large-xlsr-bahasa-indonesia
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice_id_6.1", "transformers", "audio", "speech", "bahasa-indonesia", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: zh widget: - text: "这本书真的很不错" --- # Chinese RoBERTa-Base Models for Text Classification ## Model description This is the set of 5 Chinese RoBERTa-Base classification models fine-tuned by [UER-py](https://arxiv.org/abs/1909.05658). You can download the 5 Chinese RoBERTa-Base classification models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the links below: | Dataset | Link | | :-----------: | :-------------------------------------------------------: | | **JD full** | [**roberta-base-finetuned-jd-full-chinese**][jd_full] | | **JD binary** | [**roberta-base-finetuned-jd-binary-chinese**][jd_binary] | | **Dianping** | [**roberta-base-finetuned-dianping-chinese**][dianping] | | **Ifeng** | [**roberta-base-finetuned-ifeng-chinese**][ifeng] | | **Chinanews** | [**roberta-base-finetuned-chinanews-chinese**][chinanews] | ## How to use You can use this model directly with a pipeline for text classification (take the case of roberta-base-finetuned-chinanews-chinese): ```python >>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("北京上个月召开了两会") [{'label': 'mainland China politics', 'score': 0.7211663722991943}] ``` ## Training data 5 Chinese text classification datasets are used. JD full, JD binary, and Dianping datasets consist of user reviews of different sentiment polarities. Ifeng and Chinanews consist of first paragraphs of news articles of different topic classes. They are collected by [Glyph](https://github.com/zhangxiangxiao/glyph) project and more details are discussed in corresponding [paper](https://arxiv.org/abs/1708.02657). ## Training procedure Models are fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. We use the same hyper-parameters on different models. Taking the case of roberta-base-finetuned-chinanews-chinese ``` python3 run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/chinanews/train.tsv \ --dev_path datasets/glyph/chinanews/dev.tsv \ --output_model_path models/chinanews_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/chinanews_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{zhang2017encoding, title={Which encoding is the best for text classification in chinese, english, japanese and korean?}, author={Zhang, Xiang and LeCun, Yann}, journal={arXiv preprint arXiv:1708.02657}, year={2017} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [jd_full]:https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese [jd_binary]:https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese [dianping]:https://huggingface.co/uer/roberta-base-finetuned-dianping-chinese [ifeng]:https://huggingface.co/uer/roberta-base-finetuned-ifeng-chinese [chinanews]:https://huggingface.co/uer/roberta-base-finetuned-chinanews-chinese
Bagus/wav2vec2-xlsr-japanese-speech-emotion-recognition
[ "pytorch", "wav2vec2", "audio-classification", "ja", "dataset:jtes", "transformers", "audio", "speech", "speech-emotion-recognition", "has_space" ]
audio-classification
{ "architectures": [ "HubertForSequenceClassification" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "最近一趟去北京的[MASK]几点发车" --- # Chinese word-based RoBERTa Miniatures ## Model description This is the set of 5 Chinese word-based RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Most Chinese pre-trained weights are based on Chinese character. Compared with character-based models, word-based models are faster (because of shorter sequence length) and have better performance according to our experimental results. To this end, we released the 5 Chinese word-based RoBERTa models of different sizes. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. Notice that the output results of Hosted inference API (right) are not properly displayed. When the predicted word has multiple characters, the single word instead of entire sentence is displayed. One can click **JSON Output** for normal output results. You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **word-based RoBERTa-Tiny** | [**L=2/H=128 (Tiny)**][2_128] | | **word-based RoBERTa-Mini** | [**L=4/H=256 (Mini)**][4_256] | | **word-based RoBERTa-Small** | [**L=4/H=512 (Small)**][4_512] | | **word-based RoBERTa-Medium** | [**L=8/H=512 (Medium)**][8_512] | | **word-based RoBERTa-Base** | [**L=12/H=768 (Base)**][12_768] | Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny(char) | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | **RoBERTa-Tiny(word)** | **74.4(+2.1)** | **86.7** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** | | RoBERTa-Mini(char) | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | **RoBERTa-Mini(word)** | **76.9(+1.0)** | **88.5** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** | | RoBERTa-Small(char) | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | **RoBERTa-Small(word)** | **78.4(+1.5)** | **89.7** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** | | RoBERTa-Medium(char) | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | **RoBERTa-Medium(word)** | **79.1(+1.1)** | **90.0** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** | | RoBERTa-Base(char) | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | | **RoBERTa-Base(word)** | **80.4(+0.7)** | **91.1** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of word-based RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall') >>> unmasker("[MASK]的首都是北京。") [ {'sequence': '中国 的首都是北京。', 'score': 0.21525809168815613, 'token': 2873, 'token_str': '中国'}, {'sequence': '北京 的首都是北京。', 'score': 0.15194718539714813, 'token': 9502, 'token_str': '北京'}, {'sequence': '我们 的首都是北京。', 'score': 0.08854265511035919, 'token': 4215, 'token_str': '我们'}, {'sequence': '美国 的首都是北京。', 'score': 0.06808705627918243, 'token': 7810, 'token_str': '美国'}, {'sequence': '日本 的首都是北京。', 'score': 0.06071401759982109, 'token': 7788, 'token_str': '日本'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, BertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFBertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Since BertTokenizer does not support sentencepiece, AlbertTokenizer is used here. ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. Google's [sentencepiece](https://github.com/google/sentencepiece) is used for word segmentation. The sentencepiece model is trained on CLUECorpusSmall corpus: ``` >>> import sentencepiece as spm >>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt', model_prefix='cluecorpussmall_spm', vocab_size=100000, max_sentence_length=1024, max_sentencepiece_length=6, user_defined_symbols=['[MASK]','[unused1]','[unused2]', '[unused3]','[unused4]','[unused5]','[unused6]', '[unused7]','[unused8]','[unused9]','[unused10]'], pad_id=0, pad_piece='[PAD]', unk_id=1, unk_piece='[UNK]', bos_id=2, bos_piece='[CLS]', eos_id=3, eos_piece='[SEP]', train_extremely_large_corpus=True ) ``` ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of word-based RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-word-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-word-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-word-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-word-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall
Bala/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "最近一趟去北京的[MASK]几点发车" --- # Chinese word-based RoBERTa Miniatures ## Model description This is the set of 5 Chinese word-based RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Most Chinese pre-trained weights are based on Chinese character. Compared with character-based models, word-based models are faster (because of shorter sequence length) and have better performance according to our experimental results. To this end, we released the 5 Chinese word-based RoBERTa models of different sizes. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. Notice that the output results of Hosted inference API (right) are not properly displayed. When the predicted word has multiple characters, the single word instead of entire sentence is displayed. One can click **JSON Output** for normal output results. You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **word-based RoBERTa-Tiny** | [**L=2/H=128 (Tiny)**][2_128] | | **word-based RoBERTa-Mini** | [**L=4/H=256 (Mini)**][4_256] | | **word-based RoBERTa-Small** | [**L=4/H=512 (Small)**][4_512] | | **word-based RoBERTa-Medium** | [**L=8/H=512 (Medium)**][8_512] | | **word-based RoBERTa-Base** | [**L=12/H=768 (Base)**][12_768] | Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny(char) | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | **RoBERTa-Tiny(word)** | **74.4(+2.1)** | **86.7** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** | | RoBERTa-Mini(char) | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | **RoBERTa-Mini(word)** | **76.9(+1.0)** | **88.5** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** | | RoBERTa-Small(char) | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | **RoBERTa-Small(word)** | **78.4(+1.5)** | **89.7** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** | | RoBERTa-Medium(char) | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | **RoBERTa-Medium(word)** | **79.1(+1.1)** | **90.0** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** | | RoBERTa-Base(char) | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | | **RoBERTa-Base(word)** | **80.4(+0.7)** | **91.1** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of word-based RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall') >>> unmasker("[MASK]的首都是北京。") [ {'sequence': '中国 的首都是北京。', 'score': 0.21525809168815613, 'token': 2873, 'token_str': '中国'}, {'sequence': '北京 的首都是北京。', 'score': 0.15194718539714813, 'token': 9502, 'token_str': '北京'}, {'sequence': '我们 的首都是北京。', 'score': 0.08854265511035919, 'token': 4215, 'token_str': '我们'}, {'sequence': '美国 的首都是北京。', 'score': 0.06808705627918243, 'token': 7810, 'token_str': '美国'}, {'sequence': '日本 的首都是北京。', 'score': 0.06071401759982109, 'token': 7788, 'token_str': '日本'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, BertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFBertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Since BertTokenizer does not support sentencepiece, AlbertTokenizer is used here. ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. Google's [sentencepiece](https://github.com/google/sentencepiece) is used for word segmentation. The sentencepiece model is trained on CLUECorpusSmall corpus: ``` >>> import sentencepiece as spm >>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt', model_prefix='cluecorpussmall_spm', vocab_size=100000, max_sentence_length=1024, max_sentencepiece_length=6, user_defined_symbols=['[MASK]','[unused1]','[unused2]', '[unused3]','[unused4]','[unused5]','[unused6]', '[unused7]','[unused8]','[unused9]','[unused10]'], pad_id=0, pad_piece='[PAD]', unk_id=1, unk_piece='[UNK]', bos_id=2, bos_piece='[CLS]', eos_id=3, eos_piece='[SEP]', train_extremely_large_corpus=True ) ``` ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of word-based RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-word-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-word-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-word-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-word-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall
BalajiSathesh/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: zh datasets: CLUECorpusSmall widget: - text: "最近一趟去北京的[MASK]几点发车" --- # Chinese word-based RoBERTa Miniatures ## Model description This is the set of 5 Chinese word-based RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Most Chinese pre-trained weights are based on Chinese character. Compared with character-based models, word-based models are faster (because of shorter sequence length) and have better performance according to our experimental results. To this end, we released the 5 Chinese word-based RoBERTa models of different sizes. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. Notice that the output results of Hosted inference API (right) are not properly displayed. When the predicted word has multiple characters, the single word instead of entire sentence is displayed. One can click **JSON Output** for normal output results. You can download the 5 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **word-based RoBERTa-Tiny** | [**L=2/H=128 (Tiny)**][2_128] | | **word-based RoBERTa-Mini** | [**L=4/H=256 (Mini)**][4_256] | | **word-based RoBERTa-Small** | [**L=4/H=512 (Small)**][4_512] | | **word-based RoBERTa-Medium** | [**L=8/H=512 (Medium)**][8_512] | | **word-based RoBERTa-Base** | [**L=12/H=768 (Base)**][12_768] | Compared with [char-based models](https://huggingface.co/uer/chinese_roberta_L-2_H-128), word-based models achieve better results in most cases. Here are scores on the devlopment set of six Chinese tasks: | Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny(char) | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | **RoBERTa-Tiny(word)** | **74.4(+2.1)** | **86.7** | **93.2** | **82.0** | **66.4** | **58.2** | **59.6** | | RoBERTa-Mini(char) | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | **RoBERTa-Mini(word)** | **76.9(+1.0)** | **88.5** | **94.1** | **85.4** | **66.9** | **59.2** | **67.3** | | RoBERTa-Small(char) | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | **RoBERTa-Small(word)** | **78.4(+1.5)** | **89.7** | **94.7** | **87.4** | **67.6** | **60.9** | **69.8** | | RoBERTa-Medium(char) | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | **RoBERTa-Medium(word)** | **79.1(+1.1)** | **90.0** | **95.1** | **88.0** | **67.8** | **60.6** | **73.0** | | RoBERTa-Base(char) | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | | **RoBERTa-Base(word)** | **80.4(+0.7)** | **91.1** | **95.7** | **89.4** | **68.0** | **61.5** | **76.8** | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of word-based RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-medium-word-chinese-cluecorpussmall') >>> unmasker("[MASK]的首都是北京。") [ {'sequence': '中国 的首都是北京。', 'score': 0.21525809168815613, 'token': 2873, 'token_str': '中国'}, {'sequence': '北京 的首都是北京。', 'score': 0.15194718539714813, 'token': 9502, 'token_str': '北京'}, {'sequence': '我们 的首都是北京。', 'score': 0.08854265511035919, 'token': 4215, 'token_str': '我们'}, {'sequence': '美国 的首都是北京。', 'score': 0.06808705627918243, 'token': 7810, 'token_str': '美国'}, {'sequence': '日本 的首都是北京。', 'score': 0.06071401759982109, 'token': 7788, 'token_str': '日本'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, BertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFBertModel tokenizer = AlbertTokenizer.from_pretrained('uer/roberta-medium-word-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-medium-word-chinese-cluecorpussmall") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` Since BertTokenizer does not support sentencepiece, AlbertTokenizer is used here. ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. Google's [sentencepiece](https://github.com/google/sentencepiece) is used for word segmentation. The sentencepiece model is trained on CLUECorpusSmall corpus: ``` >>> import sentencepiece as spm >>> spm.SentencePieceTrainer.train(input='cluecorpussmall.txt', model_prefix='cluecorpussmall_spm', vocab_size=100000, max_sentence_length=1024, max_sentencepiece_length=6, user_defined_symbols=['[MASK]','[unused1]','[unused2]', '[unused3]','[unused4]','[unused5]','[unused6]', '[unused7]','[unused8]','[unused9]','[unused10]'], pad_id=0, pad_piece='[PAD]', unk_id=1, unk_piece='[UNK]', bos_id=2, bos_piece='[CLS]', eos_id=3, eos_piece='[SEP]', train_extremely_large_corpus=True ) ``` ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of word-based RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --spm_model_path models/cluecorpussmall_spm.model \ --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq512_dataset.pt \ --spm_model_path models/cluecorpussmall_spm.model \ --pretrained_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_word_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_word_roberta_medium_seq128_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-word-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-word-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-word-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-word-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-word-chinese-cluecorpussmall
Banshee/dialoGPT-luke-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-08-23T08:18:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 --- 模型正在测试中
BaptisteDoyen/camembert-base-xnli
[ "pytorch", "tf", "camembert", "text-classification", "fr", "dataset:xnli", "transformers", "zero-shot-classification", "xnli", "nli", "license:mit", "has_space" ]
zero-shot-classification
{ "architectures": [ "CamembertForSequenceClassification" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
405,474
2021-02-26T08:51:05Z
--- language: zh datasets: CLUECorpusSmall widget: - text: "作为电子extra0的平台,京东绝对是领先者。如今的刘强extra1已经是身价过extra2的老板。" --- # Chinese T5 ## Model description This is the set of Chinese T5 models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). The Text-to-Text Transfer Transformer (T5) leverages a unified text-to-text format and attains state-of-the-art results on a wide variety of English-language NLP tasks. Following their work, we released a series of Chinese T5 models. You can download the set of Chinese T5 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **T5-Small** | [**L=6/H=512 (Small)**][small] | | **T5-Base** | [**L=12/H=768 (Base)**][base] | In T5, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with `<extra_id_0>`, `<extra_id_1>`, … up to `<extra_id_99>`. However, `<extra_id_xxx>` is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace `<extra_id_xxx>` with `extraxxx` in vocabulary and BertTokenizer regards `extraxxx` as one sentinel token. ## How to use You can use this model directly with a pipeline for text2text generation (take the case of T5-Small): ```python >>> from transformers import BertTokenizer, T5ForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> model = T5ForConditionalGeneration.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) [{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of T5-Small Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-3 --batch_size 64 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_small_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor t5 ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_t5_seq512_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --pretrained_model_path models/cluecorpussmall_t5_small_seq128_model.bin-1000000 \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-4 --batch_size 16 \ --span_masking --span_geo_prob 0.3 --span_max_length 5 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6 \ --type t5 ``` ### BibTeX entry and citation info ``` @article{2020t5, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, journal = {Journal of Machine Learning Research}, pages = {1-67}, year = {2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [small]:https://huggingface.co/uer/t5-small-chinese-cluecorpussmall [base]:https://huggingface.co/uer/t5-base-chinese-cluecorpussmall
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-10-20T12:12:01Z
--- language: hr datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Croatian version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
BatuhanYilmaz/bert-finetuned-mrpc
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-10-20T12:12:08Z
--- language: - id - en - multilingual datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Indonesian-English version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
BatuhanYilmaz/bert-finetuned-nerxD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-10-20T12:12:26Z
--- language: nl datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Dutch version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
2021-10-20T12:12:43Z
--- language: sr datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Serbian version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
BatuhanYilmaz/dummy
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-10-20T12:13:01Z
--- language: - tr - de - multilingual datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Turkish-German version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
BatuhanYilmaz/marian-finetuned-kde4-en-to-fr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-05-23T23:27:49Z
--- language: cs license: cc-by-nc-sa-4.0 tags: - RobeCzech - Czech - RoBERTa - ÚFAL --- # Model Card for RobeCzech # Model Details ## Model Description RobeCzech is a monolingual RoBERTa language representation model trained on Czech data. - **Developed by:** Institute of Formal and Applied Linguistics, Charles University, Prague (UFAL) - **Shared by:** Hugging Face and [LINDAT/CLARIAH-CZ](https://hdl.handle.net/11234/1-3691) - **Model type:** Fill-Mask - **Language(s) (NLP):** cs - **License:** cc-by-nc-sa-4.0 - **Model Architecture:** RoBERTa - **Resources for more information:** - [RobeCzech: Czech RoBERTa, a Monolingual Contextualized Language Representation Model](https://doi.org/10.1007/978-3-030-83527-9_17) - [arXiv preprint is also available](https://arxiv.org/abs/2105.11314) # Uses ## Direct Use Fill-Mask tasks. ## Downstream Use Morphological tagging and lemmatization, dependency parsing, named entity recognition, and semantic parsing. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf): > We trained RobeCzech on a collection of the following publicly available texts: > - SYN v4, a large corpus of contemporary written Czech, 4,188M tokens; > - Czes, a collection of Czech newspaper and magazine articles, 432M tokens; > - documents with at least 400 tokens from the Czech part of the web corpus.W2C , tokenized with MorphoDiTa, 16M tokens; > - plain texts extracted from Czech Wikipedia dump 20201020 using WikiEx-tractor, tokenized with MorphoDiTa, 123M tokens > All these corpora contain whole documents, even if the SYN v4 is > block-shuffled (blocks with at most 100 words respecting sentence boundaries > are permuted in a document) and in total contain 4,917M tokens. ## Training Procedure ### Preprocessing The texts are tokenized into subwords with a byte-level BPE (BBPE) tokenizer, which was trained on the entire corpus and we limit its vocabulary size to 52,000 items. ### Speeds, Sizes, Times The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf): > The training batch size is 8,192 and each training batch consists of sentences > sampled contiguously, even across document boundaries, such that the total > length of each sample is at most 512 tokens (FULL-SENTENCES setting). We use > Adam optimizer with β1 = 0.9 and β2 = 0.98 to minimize the masked > language-modeling objective. ### Software Used The [Fairseq](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta) implementation was used for training. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data The model creators note in the [associated paper](https://arxiv.org/pdf/2105.11314.pdf): > We evaluate RobeCzech in five NLP tasks, three of them leveraging frozen > contextualized word embeddings, two approached with fine-tuning: > - morphological analysis and lemmatization: frozen contextualized word embeddings, > - dependency parsing: frozen contextualized word embeddings, > - named entity recognition: frozen contextualized word embeddings, > - semantic parsing: fine-tuned, > - sentiment analysis: fine-tuned. ## Results | Model | Morphosynt PDT3.5 (POS) (LAS) | Morphosynt UD2.3 (XPOS) (LAS) | NER CNEC1.1 (nested) (flat) | Semant. PTG (Avg) (F1) | |-----------|---------------------------------|--------------------------------|------------------------------|-------------------------| | RobeCzech | 98.50 91.42 | 98.31 93.77 | 87.82 87.47 | 92.36 80.13 | # Environmental Impact - **Hardware Type:** 8 QUADRO P5000 GPU - **Hours used:** 2190 (~3 months) # Citation ``` @InProceedings{10.1007/978-3-030-83527-9_17, author={Straka, Milan and N{\'a}plava, Jakub and Strakov{\'a}, Jana and Samuel, David}, editor={Ek{\v{s}}tein, Kamil and P{\'a}rtl, Franti{\v{s}}ek and Konop{\'i}k, Miloslav}, title={{RobeCzech: Czech RoBERTa, a Monolingual Contextualized Language Representation Model}}, booktitle="Text, Speech, and Dialogue", year="2021", publisher="Springer International Publishing", address="Cham", pages="197--209", isbn="978-3-030-83527-9" } ``` # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("ufal/robeczech-base") model = AutoModelForMaskedLM.from_pretrained("ufal/robeczech-base") ``` </details>
BatuhanYilmaz/mlm-finetuned-imdb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-01-13T22:21:42Z
--- license: openrail datasets: - ncbi_disease language: - en tags: - disease - biology - medical widget: - text: "The patient was diagnosed with lung cancer and started chemotherapy." - text: "The patient has a history of heart disease and high blood pressure." - text: "The patient was diagnosed with diabetes and prescribed insulin therapy." --- # Model Description This model is a fine-tuned version of BioBERT on the NCBI disease dataset for named entity recognition (NER) of diseases. It can be used to extract disease mentions from unstructured text in the medical and biological domains. # Intended Use This model is intended for use in extracting disease mentions from unstructured text in the medical and biological domains. It can be used to improve information retrieval and knowledge extraction in these fields. # Training Data This model was trained on the [NCBI disease dataset](https://huggingface.co/datasets/ncbi_disease), which consists of 793 PubMed abstracts with 6892 disease mentions. # How to use You can use this model with the Hugging Face Transformers library. Here’s an example of how to load the model and use it to extract disease mentions from text: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("ugaray96/biobert_ncbi_disease_ner") model = AutoModelForTokenClassification.from_pretrained( "ugaray96/biobert_ncbi_disease_ner" ) ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer) text = "The patient was diagnosed with lung cancer and started chemotherapy. They also have a history of diabetes and heart disease." result = ner_pipeline(text) diseases = [] for entity in result: if entity["entity"] == "Disease": diseases.append(entity["word"]) elif entity["entity"] == "Disease Continuation" and diseases: diseases[-1] += f" {entity['word']}" print(f"Diseases: {', '.join(diseases)}") ``` This should output: `Diseases: lung cancer, diabetes, heart disease`
BatuhanYilmaz/mt5-small-finetuned-amazonbooks-en-es
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Ginger DialoGPT Model
Baybars/wav2vec2-xls-r-300m-cv8-turkish
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2021-10-30T16:56:35Z
--- language: - am thumbnail: "https://raw.githubusercontent.com/uhh-lt/amharicmodels/master/logo.png?token=AAIB2MYMI6TSIK7CHWYGHKTBQ3FQS" tags: - Amharic - Semetic language license: "mit" datasets: - Amharic corpus from LT group, UHH widget: - text: "አበበ <mask> በላ ።" - text: "የአገሪቱ አጠቃላይ የስንዴ አቅርቦት ሶስት አራተኛው የሚመረተው በአገር <mask> ነው።" - text: "ነገ ጥሩ <mask> የምንሰማ ይመስለኛል ።" - text: "ግንባታውን የሚያከናውነው ተቋራጭ በቅርቡ እንደሚገለጽ <mask> አቶ መላኩ፣ ሕንፃው 1.2 ቢሊዮን ብር የሚደርስ ወጪ እንደሚጠይቅ አስታውቀዋል ።" --- [![](https://raw.githubusercontent.com/uhh-lt/amharicmodels/master/logo.png?token=AAIB2MYMI6TSIK7CHWYGHKTBQ3FQS)](https://github.com/uhh-lt/amharicmodels) # Introduction This is the Amharic RoBERTa transformer-based LM. It is part of the effort to build benchmark datasets and models for Amharic NLP. # Examples If you want to test the model in the `Hosted inference API`, copy the following texts to the box (right side) Example 1: `አበበ <mask> በላ ። ` Example 2: `የአገሪቱ አጠቃላይ የስንዴ አቅርቦት ሶስት አራተኛው የሚመረተው በአገር <mask> ነው።` The example shows possible words for the `fill in the blank -- mask` task # Resources and publication More resource regarding Amharic NLP is available [here](https://github.com/uhh-lt/amharicmodels) If you use the model in your work, please cite the following [paper](https://www.mdpi.com/1999-5903/13/11/275) ``` @Article{fi13110275, AUTHOR = {Yimam, Seid Muhie and Ayele, Abinew Ali and Venkatesh, Gopalakrishnan and Gashaw, Ibrahim and Biemann, Chris}, TITLE = {Introducing Various Semantic Models for Amharic: Experimentation and Evaluation with Multiple Tasks and Datasets}, JOURNAL = {Future Internet}, VOLUME = {13}, YEAR = {2021}, NUMBER = {11}, ARTICLE-NUMBER = {275}, URL = {https://www.mdpi.com/1999-5903/13/11/275}, ISSN = {1999-5903}, DOI = {10.3390/fi13110275} } ```
Beelow/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Peppa Pig DialogGPT-small Model
Beri/legal-qa
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6-v2 Reranker finetuned on mMARCO ## Introduction mMiniLM-L6-v2-pt-msmarco-v1 is a multilingual miniLM-based model finetuned on a Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-pt-msmarco-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
BhanuSama/gpt2-finetuned-xsum
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v2 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the v2 version, the Portuguese dataset was translated using Google Translate. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mt5-base-mmarco-v1 is a mT5-based model fine-tuned on a multilingual translated version of MS MARCO passage dataset. This dataset, named Multi MS MARCO, is formed by 9 complete MS MARCO passages collection in 9 different languages. In the version v1, the datasets were translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT models. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-mmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-mmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Bharathdamu/wav2vec2-model-hindibhasha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-100k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-100k-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
Bhuvana/t5-base-spellchecker
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
93
null
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-10k-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
BigSalmon/BertaMyWorda
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: pt license: mit tags: - t5 - pytorch - tensorflow - pt - pt-br datasets: - brWaC widget: - text: "Texto de exemplo em português" inference: false --- # Portuguese T5 (aka "PTT5") ## Introduction PTT5 is a T5 model pretrained in the BrWac corpus, a large collection of web pages in Portuguese, improving T5's performance on Portuguese sentence similarity and entailment tasks. It's available in three sizes (small, base and large) and two vocabularies (Google's T5 original and ours, trained on Portuguese Wikipedia). For further information or requests, please go to [PTT5 repository](https://github.com/unicamp-dl/PTT5). ## Available models | Model | Size | #Params | Vocabulary | | :-: | :-: | :-: | :-: | | [unicamp-dl/ptt5-small-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-small-t5-vocab) | small | 60M | Google's T5 | | [unicamp-dl/ptt5-base-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-base-t5-vocab) | base | 220M | Google's T5 | | [unicamp-dl/ptt5-large-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-large-t5-vocab) | large | 740M | Google's T5 | | [unicamp-dl/ptt5-small-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-small-portuguese-vocab) | small | 60M | Portuguese | | **[unicamp-dl/ptt5-base-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab)** **(Recommended)** | **base** | **220M** | **Portuguese** | | [unicamp-dl/ptt5-large-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-large-portuguese-vocab) | large | 740M | Portuguese | ## Usage ```python # Tokenizer from transformers import T5Tokenizer # PyTorch (bare model, baremodel + language modeling head) from transformers import T5Model, T5ForConditionalGeneration # Tensorflow (bare model, baremodel + language modeling head) from transformers import TFT5Model, TFT5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-portuguese-vocab' tokenizer = T5Tokenizer.from_pretrained(model_name) # PyTorch model_pt = T5ForConditionalGeneration.from_pretrained(model_name) # TensorFlow model_tf = TFT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use PTT5, please cite: @article{ptt5_2020, title={PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data}, author={Carmo, Diedre and Piau, Marcos and Campiotti, Israel and Nogueira, Rodrigo and Lotufo, Roberto}, journal={arXiv preprint arXiv:2008.09144}, year={2020} }
BigSalmon/BestMask2
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - en - pt datasets: - EMEA - ParaCrawl 99k - CAPES - Scielo - JRC-Acquis - Biomedical Domain Corpora tags: - translation metrics: - bleu --- # Introduction This repository brings an implementation of T5 for translation in EN-PT tasks using a modest hardware setup. We propose some changes in tokenizator and post-processing that improves the result and used a Portuguese pretrained model for the translation. You can collect more informations in [our repository](https://github.com/unicamp-dl/Lite-T5-Translation). Also, check [our paper](https://aclanthology.org/2020.wmt-1.90.pdf)! # Usage Just follow "Use in Transformers" instructions. It is necessary to add a few words before to define the task to T5. You can also create a pipeline for it. An example with the phrase "I like to eat rice" is: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("unicamp-dl/translation-en-pt-t5") model = AutoModelForSeq2SeqLM.from_pretrained("unicamp-dl/translation-en-pt-t5") enpt_pipeline = pipeline('text2text-generation', model=model, tokenizer=tokenizer) enpt_pipeline("translate English to Portuguese: I like to eat rice.") ``` # Citation ```bibtex @inproceedings{lopes-etal-2020-lite, title = "Lite Training Strategies for {P}ortuguese-{E}nglish and {E}nglish-{P}ortuguese Translation", author = "Lopes, Alexandre and Nogueira, Rodrigo and Lotufo, Roberto and Pedrini, Helio", booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.wmt-1.90", pages = "833--840", } ```
BigSalmon/DaBlank
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- language: it tags: - sentiment - Italian license: mit widget: - text: Giuseppe Rossi è un ottimo politico --- # 🤗 + polibert_SA - POLItic BERT based Sentiment Analysis ## Model description This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!) #### Hands-on ```python import torch from torch import nn from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa") model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa") text = "Giuseppe Rossi è un pessimo politico" input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt') logits, = model(input_ids) logits = logits.squeeze(0) prob = nn.functional.softmax(logits, dim=0) # 0 Negative, 1 Neutral, 2 Positive print(prob.argmax().tolist()) ``` #### Hyperparameters - Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8** - Max epochs: **2** - Batch size: **16** ## Acknowledgments Thanks to the support from: the [Hugging Face](https://huggingface.co/), https://www.unioneprofessionisti.com https://www.unideeplearning.com/
BigSalmon/FormalBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
<div align="center"> **⚠️ Disclaimer:** The huggingface models currently give different results to the detoxify library (see issue [here](https://github.com/unitaryai/detoxify/issues/15)). For the most up to date models we recommend using the models from https://github.com/unitaryai/detoxify # 🙊 Detoxify ## Toxic Comment Classification with ⚡ Pytorch Lightning and 🤗 Transformers ![CI testing](https://github.com/unitaryai/detoxify/workflows/CI%20testing/badge.svg) ![Lint](https://github.com/unitaryai/detoxify/workflows/Lint/badge.svg) </div> ![Examples image](examples.png) ## Description Trained models & code to predict toxic comments on 3 Jigsaw challenges: Toxic comment classification, Unintended Bias in Toxic comments, Multilingual toxic comment classification. Built by [Laura Hanu](https://laurahanu.github.io/) at [Unitary](https://www.unitary.ai/), where we are working to stop harmful content online by interpreting visual content in context. Dependencies: - For inference: - 🤗 Transformers - ⚡ Pytorch lightning - For training will also need: - Kaggle API (to download data) | Challenge | Year | Goal | Original Data Source | Detoxify Model Name | Top Kaggle Leaderboard Score | Detoxify Score |-|-|-|-|-|-|-| | [Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) | 2018 | build a multi-headed model that’s capable of detecting different types of of toxicity like threats, obscenity, insults, and identity-based hate. | Wikipedia Comments | `original` | 0.98856 | 0.98636 | [Jigsaw Unintended Bias in Toxicity Classification](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification) | 2019 | build a model that recognizes toxicity and minimizes this type of unintended bias with respect to mentions of identities. You'll be using a dataset labeled for identity mentions and optimizing a metric designed to measure unintended bias. | Civil Comments | `unbiased` | 0.94734 | 0.93639 | [Jigsaw Multilingual Toxic Comment Classification](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification) | 2020 | build effective multilingual models | Wikipedia Comments + Civil Comments | `multilingual` | 0.9536 | 0.91655* *Score not directly comparable since it is obtained on the validation set provided and not on the test set. To update when the test labels are made available. It is also noteworthy to mention that the top leadearboard scores have been achieved using model ensembles. The purpose of this library was to build something user-friendly and straightforward to use. ## Limitations and ethical considerations If words that are associated with swearing, insults or profanity are present in a comment, it is likely that it will be classified as toxic, regardless of the tone or the intent of the author e.g. humorous/self-deprecating. This could present some biases towards already vulnerable minority groups. The intended use of this library is for research purposes, fine-tuning on carefully constructed datasets that reflect real world demographics and/or to aid content moderators in flagging out harmful content quicker. Some useful resources about the risk of different biases in toxicity or hate speech detection are: - [The Risk of Racial Bias in Hate Speech Detection](https://homes.cs.washington.edu/~msap/pdfs/sap2019risk.pdf) - [Automated Hate Speech Detection and the Problem of Offensive Language](https://arxiv.org/pdf/1703.04009.pdf%201.pdf) - [Racial Bias in Hate Speech and Abusive Language Detection Datasets](https://arxiv.org/pdf/1905.12516.pdf) ## Quick prediction The `multilingual` model has been trained on 7 different languages so it should only be tested on: `english`, `french`, `spanish`, `italian`, `portuguese`, `turkish` or `russian`. ```bash # install detoxify pip install detoxify ``` ```python from detoxify import Detoxify # each model takes in either a string or a list of strings results = Detoxify('original').predict('example text') results = Detoxify('unbiased').predict(['example text 1','example text 2']) results = Detoxify('multilingual').predict(['example text','exemple de texte','texto de ejemplo','testo di esempio','texto de exemplo','örnek metin','пример текста']) # optional to display results nicely (will need to pip install pandas) import pandas as pd print(pd.DataFrame(results, index=input_text).round(5)) ``` For more details check the Prediction section. ## Labels All challenges have a toxicity label. The toxicity labels represent the aggregate ratings of up to 10 annotators according the following schema: - **Very Toxic** (a very hateful, aggressive, or disrespectful comment that is very likely to make you leave a discussion or give up on sharing your perspective) - **Toxic** (a rude, disrespectful, or unreasonable comment that is somewhat likely to make you leave a discussion or give up on sharing your perspective) - **Hard to Say** - **Not Toxic** More information about the labelling schema can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data). ### Toxic Comment Classification Challenge This challenge includes the following labels: - `toxic` - `severe_toxic` - `obscene` - `threat` - `insult` - `identity_hate` ### Jigsaw Unintended Bias in Toxicity Classification This challenge has 2 types of labels: the main toxicity labels and some additional identity labels that represent the identities mentioned in the comments. Only identities with more than 500 examples in the test set (combined public and private) are included during training as additional labels and in the evaluation calculation. - `toxicity` - `severe_toxicity` - `obscene` - `threat` - `insult` - `identity_attack` - `sexual_explicit` Identity labels used: - `male` - `female` - `homosexual_gay_or_lesbian` - `christian` - `jewish` - `muslim` - `black` - `white` - `psychiatric_or_mental_illness` A complete list of all the identity labels available can be found [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data). ### Jigsaw Multilingual Toxic Comment Classification Since this challenge combines the data from the previous 2 challenges, it includes all labels from above, however the final evaluation is only on: - `toxicity` ## How to run First, install dependencies ```bash # clone project git clone https://github.com/unitaryai/detoxify # create virtual env python3 -m venv toxic-env source toxic-env/bin/activate # install project pip install -e detoxify cd detoxify # for training pip install -r requirements.txt ``` ## Prediction Trained models summary: |Model name| Transformer type| Data from |:--:|:--:|:--:| |`original`| `bert-base-uncased` | Toxic Comment Classification Challenge |`unbiased`| `roberta-base`| Unintended Bias in Toxicity Classification |`multilingual`| `xlm-roberta-base`| Multilingual Toxic Comment Classification For a quick prediction can run the example script on a comment directly or from a txt containing a list of comments. ```bash # load model via torch.hub python run_prediction.py --input 'example' --model_name original # load model from from checkpoint path python run_prediction.py --input 'example' --from_ckpt_path model_path # save results to a .csv file python run_prediction.py --input test_set.txt --model_name original --save_to results.csv # to see usage python run_prediction.py --help ``` Checkpoints can be downloaded from the latest release or via the Pytorch hub API with the following names: - `toxic_bert` - `unbiased_toxic_roberta` - `multilingual_toxic_xlm_r` ```bash model = torch.hub.load('unitaryai/detoxify','toxic_bert') ``` Importing detoxify in python: ```python from detoxify import Detoxify results = Detoxify('original').predict('some text') results = Detoxify('unbiased').predict(['example text 1','example text 2']) results = Detoxify('multilingual').predict(['example text','exemple de texte','texto de ejemplo','testo di esempio','texto de exemplo','örnek metin','пример текста']) # to display results nicely import pandas as pd print(pd.DataFrame(results,index=input_text).round(5)) ``` ## Training If you do not already have a Kaggle account: - you need to create one to be able to download the data - go to My Account and click on Create New API Token - this will download a kaggle.json file - make sure this file is located in ~/.kaggle ```bash # create data directory mkdir jigsaw_data cd jigsaw_data # download data kaggle competitions download -c jigsaw-toxic-comment-classification-challenge kaggle competitions download -c jigsaw-unintended-bias-in-toxicity-classification kaggle competitions download -c jigsaw-multilingual-toxic-comment-classification ``` ## Start Training ### Toxic Comment Classification Challenge ```bash python create_val_set.py python train.py --config configs/Toxic_comment_classification_BERT.json ``` ### Unintended Bias in Toxicicity Challenge ```bash python train.py --config configs/Unintended_bias_toxic_comment_classification_RoBERTa.json ``` ### Multilingual Toxic Comment Classification This is trained in 2 stages. First, train on all available data, and second, train only on the translated versions of the first challenge. The [translated data](https://www.kaggle.com/miklgr500/jigsaw-train-multilingual-coments-google-api) can be downloaded from Kaggle in french, spanish, italian, portuguese, turkish, and russian (the languages available in the test set). ```bash # stage 1 python train.py --config configs/Multilingual_toxic_comment_classification_XLMR.json # stage 2 python train.py --config configs/Multilingual_toxic_comment_classification_XLMR_stage2.json ``` ### Monitor progress with tensorboard ```bash tensorboard --logdir=./saved ``` ## Model Evaluation ### Toxic Comment Classification Challenge This challenge is evaluated on the mean AUC score of all the labels. ```bash python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv ``` ### Unintended Bias in Toxicicity Challenge This challenge is evaluated on a novel bias metric that combines different AUC scores to balance overall performance. More information on this metric [here](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview/evaluation). ```bash python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv # to get the final bias metric python model_eval/compute_bias_metric.py ``` ### Multilingual Toxic Comment Classification This challenge is evaluated on the AUC score of the main toxic label. ```bash python evaluate.py --checkpoint saved/lightning_logs/checkpoints/example_checkpoint.pth --test_csv test.csv ``` ### Citation ``` @misc{Detoxify, title={Detoxify}, author={Hanu, Laura and {Unitary team}}, howpublished={Github. https://github.com/unitaryai/detoxify}, year={2020} } ```
BigSalmon/GPTT
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2021-12-05T21:04:20Z
--- language: - en pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - anli - multi_nli - snli --- # sbert-roberta-large-anli-mnli-snli This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model is weight initialized by RoBERTa-large and trained on ANLI (Nie et al., 2020), MNLI (Williams et al., 2018), and SNLI (Bowman et al., 2015) using the [`training_nli.py`](https://github.com/UKPLab/sentence-transformers/blob/v0.3.5/examples/training/nli/training_nli.py) example script. Training Details: - Learning rate: 2e-5 - Batch size: 8 - Pooling: Mean - Training time: ~20 hours on one [NVIDIA GeForce RTX 2080 Ti](https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ```bash pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer("usc-isi/sbert-roberta-large-anli-mnli-snli") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (Hugging Face Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: first, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python import torch from transformers import AutoModel, AutoTokenizer # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["This is an example sentence", "Each sentence is converted"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli") model = AutoModel.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"]) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results See section 4.1 of our paper for evaluation results. ## Full Model Architecture ```text SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors For more information about the project, see our paper: > Ciosici, Manuel, et al. "Machine-Assisted Script Curation." _Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations_, Association for Computational Linguistics, 2021, pp. 8–17. _ACLWeb_, <https://www.aclweb.org/anthology/2021.naacl-demos.2>. ## References - Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. [A large annotated corpus for learning natural language inference](https://doi.org/10.18653/v1/D15-1075). In _Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing_, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics. - Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. [AdversarialNLI: A new benchmark for natural language understanding](https://doi.org/10.18653/v1/2020.acl-main.441). In _Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics_, pages 4885–4901, Online. Association for Computational Linguistics. - Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. [A broad-coverage challenge corpus for sentence understanding through inference](https://doi.org/10.18653/v1/N18-1101). In _Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)_, pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.
BigSalmon/InformalToFormalLincoln15
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: ja inference: false --- # yuyuyui-chatbot This model is based on [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium) and finetuned on Yuyuyui scenario corpus. ## Usage The model takes a sequence of utterances (context) to generate a subsequent utterance (response). Each utterance begins with a **character token** and ends with an **EOS token**. Use the unspecified character token `<某>` for user inputs. Put a character token after your question or query to generate a response from a specific character. In this case, make sure that an EOS token is not appended automatically by the tokenizer. Otherwise the model will interpret the trailing EOS as an empty utterance and try to add another random character token. Simple example: ```python from transformers import T5Tokenizer, AutoModelForCausalLM tokenizer = T5Tokenizer.from_pretrained("ushikado/yuyuyui-chatbot") model = AutoModelForCausalLM.from_pretrained("ushikado/yuyuyui-chatbot") query_text = "<某>神樹様について教えてください。</s><上里 ひなた>" input_tensor = tokenizer.encode(query_text, add_special_tokens=False, return_tensors="pt") output_list = model.generate(input_tensor, max_length=100, do_sample=True, pad_token_id=tokenizer.eos_token_id) output_text = tokenizer.decode(output_list[0]) print(output_text) """ <某> 神樹様について教えてください。</s> <上里 ひなた> 造反神は、神樹様の分裂を煽り出して、神樹様の中の一体感を高める存在です。</s> """ ``` Accumulate dialog history to make responses more context-aware: ```python class Interlocutor(): def __init__(self, tokenizer, model, character_token, max_context_length=512, max_response_length=128): self.tokenizer = tokenizer self.model = model self.character_token = character_token self.max_context_length = max_context_length self.max_response_length = max_response_length self.context = "" return def generate(self, query): nanigashi = self.tokenizer.additional_special_tokens[0] nanigashi_id = self.tokenizer.additional_special_tokens_ids[0] self.context += nanigashi + query + self.tokenizer.eos_token + self.character_token context_tensor = self.tokenizer.encode(self.context, add_special_tokens=False, return_tensors="pt") context_length = context_tensor.size()[-1] if self.max_context_length < context_length: context_tensor = context_tensor.narrow(1, context_length - self.max_context_length, self.max_context_length) context_length = context_tensor.size()[-1] max_length = context_length + self.max_response_length context_tensor = self.model.generate(context_tensor, do_sample=True, max_length=max_length, pad_token_id=self.tokenizer.eos_token_id) self.context = re.sub(self.tokenizer.eos_token, "", self.tokenizer.decode(context_tensor[0])) response = self.context[self.context.rindex(self.character_token) + len(self.character_token) : ].strip() print(response) interlocutor = Interlocutor(tokenizer, model, "<加賀城 雀>") interlocutor.generate("何しようかな。") """ そうだなぁ。せっかく徳島に来たんだから、何か食べたいよなー。</s> """ interlocutor.generate("例えば?") """ スパムとかいう高級料理はちょっとなぁ。あとは可愛い雑貨とか、おやつとか。</s> """ interlocutor.generate("徳島ラーメンじゃないの?") """ あー、確か徳島ラーメンってのがあって、それも美味しいんだよね。</s> """ interlocutor.generate("ここから近いお店があるんだって。行ってみよう!") """ わー! 何だか賑やかでいい感じだね。</s> """ interlocutor.generate("さっそく注文するね。") """ んー! ずっーと揚げ鶏が好きだったけど、今日は初めてまるまる鶏肉を注文してみるよ。</s> """ print(interlocutor.context) """ <某> 何しようかな。</s> <加賀城 雀> そうだなぁ。せっかく徳島に来たんだから、何か食べたいよなー。</s> <某> 例えば?</s> <加賀城 雀> スパムとかいう高級料理はちょっとなぁ。あとは可愛い雑貨とか、おやつとか。</s> <某> 徳島ラーメンじゃないの?</s> <加賀城 雀> あー、確か徳島ラーメンってのがあって、それも美味しいんだよね。</s> <某> ここから近いお店があるんだって。行ってみよう!</s> <加賀城 雀> わー! 何だか賑やかでいい感じだね。</s> <某> さっそく注文するね。</s> <加賀城 雀> んー! ずっーと揚げ鶏が好きだったけど、今日は初めてまるまる鶏肉を注文してみるよ。</s> """ ``` ## List of character tokens `<某>` is _unspecified (nanigashi)_. Use for user inputs or mobs. ```plain <某> <結城 友奈> <東郷 美森> <犬吠埼 風> <犬吠埼 樹> <三好 夏凜> <乃木 園子> <鷲尾 須美> <三ノ輪 銀> <乃木 若葉> <上里 ひなた> <土居 球子> <伊予島 杏> <郡 千景> <高嶋 友奈> <白鳥 歌野> <藤森 水都> <秋原 雪花> <古波蔵 棗> <楠 芽吹> <加賀城 雀> <弥勒 夕海子> <山伏 しずく> <山伏 シズク> <国土 亜耶> <赤嶺 友奈> <弥勒 蓮華> <桐生 静> <安芸 真鈴> <花本 美佳> ``` ## Licence TBD.
BigSalmon/InformalToFormalLincoln19
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - en tags: - conversational-search # Example: audio metrics: - f1 datasets: - uva-irlab/canard_quretec model-index: - name: QuReTec results: - task: name: Conversational search # Example: Speech Recognition type: conversational # Example: automatic-speech-recognition dataset: name: CANARD # Example: Common Voice zh-CN type: canard # Example: common_voice metrics: - name: Micro F1 # Example: Test WER type: f1 # Example: wer value: 68.7 # Example: 20.90 - name: Micro Recall type: recall value: 66.1 - name: Micro Precision type: precision value: 71.5 --- # QuReTec: query resolution model QuReTeC is a query resolution model. It finds the relevant terms in a question history. It is based on **bert-large-uncased** with a max sequence length of 300. # Config details Training and evaluation was done using the following BertConfig: ```json BertConfig { "_name_or_path": "uva-irlab/quretec", "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": 0.1, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.4, "hidden_size": 1024, "id2label": { "0": "[PAD]", "1": "O", "2": "REL", "3": "[CLS]", "4": "[SEP]" }, "initializer_range": 0.02, "intermediate_size": 4096, "label2id": { "O": 1, "REL": 2, "[CLS]": 3, "[PAD]": 0, "[SEP]": 4 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.6.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 30522 } ``` # Original authors QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). # Contributions Uploaded by G. Scheuer ([website](https://giguruscheuer.com))
BigSalmon/InformalToFormalLincoln21
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
# Nyströmformer Nyströmformer model for masked language modeling (MLM) pretrained on BookCorpus and English Wikipedia for sequence length 512. ## About Nyströmformer The Nyströmformer model was proposed in [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh. The abstract from the paper is the following: Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences — a topic being actively studied in the community. To address this limitation, we propose Nyströmformer — a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nyström method to approximate standard self-attention with O(n) complexity. The scalability of Nyströmformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nyströmformer performs favorably relative to other efficient self-attention methods. Our code is available at this https URL. ## Usage ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uw-madison/nystromformer-512') >>> unmasker("Paris is the [MASK] of France.") [{'score': 0.829957902431488, 'token': 1030, 'token_str': 'capital', 'sequence': 'paris is the capital of france.'}, {'score': 0.022157637402415276, 'token': 16081, 'token_str': 'birthplace', 'sequence': 'paris is the birthplace of france.'}, {'score': 0.01904447190463543, 'token': 197, 'token_str': 'name', 'sequence': 'paris is the name of france.'}, {'score': 0.017583081498742104, 'token': 1107, 'token_str': 'kingdom', 'sequence': 'paris is the kingdom of france.'}, {'score': 0.005948934704065323, 'token': 148, 'token_str': 'city', 'sequence': 'paris is the city of france.'}] ```
BigSalmon/InformalToFormalLincoln22
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
# YOSO YOSO model for masked language modeling (MLM) for sequence length 4096. ## About YOSO The YOSO model was proposed in [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. The abstract from the paper is the following: Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at this https URL ## Usage ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uw-madison/yoso-4096') >>> unmasker("Paris is the [MASK] of France.") [{'score': 0.024274500086903572, 'token': 812, 'token_str': ' capital', 'sequence': 'Paris is the capital of France.'}, {'score': 0.022863076999783516, 'token': 3497, 'token_str': ' Republic', 'sequence': 'Paris is the Republic of France.'}, {'score': 0.01383623294532299, 'token': 1515, 'token_str': ' French', 'sequence': 'Paris is the French of France.'}, {'score': 0.013550693169236183, 'token': 2201, 'token_str': ' Paris', 'sequence': 'Paris is the Paris of France.'}, {'score': 0.011591030284762383, 'token': 270, 'token_str': ' President', 'sequence': 'Paris is the President of France.'}] ```
BigSalmon/InformalToFormalLincoln23
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2021-09-17T05:01:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilgpt2-finetuned-wikitext2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5974 | 1.0 | 2334 | 3.6426 | | 3.5891 | 2.0 | 4668 | 3.6426 | | 3.572 | 3.0 | 7002 | 3.6426 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.11.0 - Tokenizers 0.10.3
BigSalmon/InformalToFormalLincoln25
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - conversational --- # Rick and Morty DialoGPT Model (small)
BigSalmon/MrLincoln10
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-dansk-CV-80 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-dansk-CV-80 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for Danish, using the [mozilla-foundation/common_voice_8_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6394 - eval_wer: 0.3682 - eval_runtime: 104.0466 - eval_samples_per_second: 13.359 - eval_steps_per_second: 1.672 - epoch: 21.28 - step: 2000 ## Model description ASR Danish model ## Intended uses & limitations More information needed ## Training and evaluation data Danish subset of [mozilla-foundation/common_voice_8_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
BigSalmon/MrLincoln13
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
[www.github.com/vahmohh/masters-thesis](https://www.github.com/vahmohh/masters-thesis) The model has been built upon the pre-trained T5 model by fine-tuning it on SQuAD dataset for the porpuse of automatic question and answer generation. The following format should be used for generating questions. ```sh generate question: domain_specific_text </sep> answer_1 </sep> answer_2 </sep> ... </sep> answer_n </end> ``` Output: ```sh question_1 </sep> question_2 </sep> ... </sep> question_n </end> ``` The following format should be used for generating answers. ```sh generate answer: domain_specific_text </end> ``` Output: ```sh answer_1 </sep> answer_2 </sep> ... </sep> answer_n </end> ```
BigSalmon/MrLincoln3
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- language: en license: mit datasets: - AI4Bharat IndicNLP Corpora --- # IndicBERT IndicBERT is a multilingual ALBERT model pretrained exclusively on 12 major Indian languages. It is pre-trained on our novel monolingual corpus of around 9 billion tokens and subsequently evaluated on a set of diverse tasks. IndicBERT has much fewer parameters than other multilingual models (mBERT, XLM-R etc.) while it also achieves a performance on-par or better than these models. The 12 languages covered by IndicBERT are: Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu. The code can be found [here](https://github.com/divkakwani/indic-bert). For more information, checkout our [project page](https://indicnlp.ai4bharat.org/) or our [paper](https://indicnlp.ai4bharat.org/papers/arxiv2020_indicnlp_corpus.pdf). ## Pretraining Corpus We pre-trained indic-bert on AI4Bharat's monolingual corpus. The corpus has the following distribution of languages: | Language | as | bn | en | gu | hi | kn | | | ----------------- | ------ | ------ | ------ | ------ | ------ | ------ | ------- | | **No. of Tokens** | 36.9M | 815M | 1.34B | 724M | 1.84B | 712M | | | **Language** | **ml** | **mr** | **or** | **pa** | **ta** | **te** | **all** | | **No. of Tokens** | 767M | 560M | 104M | 814M | 549M | 671M | 8.9B | ## Evaluation Results IndicBERT is evaluated on IndicGLUE and some additional tasks. The results are summarized below. For more details about the tasks, refer our [official repo](https://github.com/divkakwani/indic-bert) #### IndicGLUE Task | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ News Article Headline Prediction | 89.58 | 95.52 | **95.87** Wikipedia Section Title Prediction| **73.66** | 66.33 | 73.31 Cloze-style multiple-choice QA | 39.16 | 27.98 | **41.87** Article Genre Classification | 90.63 | 97.03 | **97.34** Named Entity Recognition (F1-score) | **73.24** | 65.93 | 64.47 Cross-Lingual Sentence Retrieval Task | 21.46 | 13.74 | **27.12** Average | 64.62 | 61.09 | **66.66** #### Additional Tasks Task | Task Type | mBERT | XLM-R | IndicBERT -----| ----- | ----- | ------ | ----- BBC News Classification | Genre Classification | 60.55 | **75.52** | 74.60 IIT Product Reviews | Sentiment Analysis | 74.57 | **78.97** | 71.32 IITP Movie Reviews | Sentiment Analaysis | 56.77 | **61.61** | 59.03 Soham News Article | Genre Classification | 80.23 | **87.6** | 78.45 Midas Discourse | Discourse Analysis | 71.20 | **79.94** | 78.44 iNLTK Headlines Classification | Genre Classification | 87.95 | 93.38 | **94.52** ACTSA Sentiment Analysis | Sentiment Analysis | 48.53 | 59.33 | **61.18** Winograd NLI | Natural Language Inference | 56.34 | 55.87 | **56.34** Choice of Plausible Alternative (COPA) | Natural Language Inference | 54.92 | 51.13 | **58.33** Amrita Exact Paraphrase | Paraphrase Detection | **93.81** | 93.02 | 93.75 Amrita Rough Paraphrase | Paraphrase Detection | 83.38 | 82.20 | **84.33** Average | | 69.84 | **74.42** | 73.66 \* Note: all models have been restricted to a max_seq_length of 128. ## Downloads The model can be downloaded [here](https://storage.googleapis.com/ai4bharat-public-indic-nlp-corpora/models/indic-bert-v1.tar.gz). Both tf checkpoints and pytorch binaries are included in the archive. Alternatively, you can also download it from [Huggingface](https://huggingface.co/ai4bharat/indic-bert). ## Citing If you are using any of the resources, please cite the following article: ``` @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ``` We would like to hear from you if: - You are using our resources. Please let us know how you are putting these resources to use. - You have any feedback on these resources. ## License The IndicBERT code (and models) are released under the MIT License. ## Contributors - Divyanshu Kakwani - Anoop Kunchukuttan - Gokul NC - Satish Golla - Avik Bhattacharyya - Mitesh Khapra - Pratyush Kumar This work is the outcome of a volunteer effort as part of [AI4Bharat initiative](https://ai4bharat.org). ## Contact - Anoop Kunchukuttan ([[email protected]](mailto:[email protected])) - Mitesh Khapra ([[email protected]](mailto:[email protected])) - Pratyush Kumar ([[email protected]](mailto:[email protected]))
BigSalmon/PhraseBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2020-06-13T10:40:02Z
--- datasets: - squad --- # BART-LARGE finetuned on SQuADv1 This is bart-large model finetuned on SQuADv1 dataset for question answering task ## Model details BART was propsed in the [paper](https://arxiv.org/abs/1910.13461) **BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension**. BART is a seq2seq model intended for both NLG and NLU tasks. To use BART for question answering tasks, we feed the complete document into the encoder and decoder, and use the top hidden state of the decoder as a representation for each word. This representation is used to classify the token. As given in the paper bart-large achives comparable to ROBERTa on SQuAD. Another notable thing about BART is that it can handle sequences with upto 1024 tokens. | Param | #Value | |---------------------|--------| | encoder layers | 12 | | decoder layers | 12 | | hidden size | 4096 | | num attetion heads | 16 | | on disk size | 1.63GB | ## Model training This model was trained on google colab v100 GPU. You can find the fine-tuning colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1I5cK1M_0dLaf5xoewh6swcm5nAInfwHy?usp=sharing). ## Results The results are actually slightly worse than given in the paper. In the paper the authors mentioned that bart-large achieves 88.8 EM and 94.6 F1 | Metric | #Value | |--------|--------| | EM | 86.8022| | F1 | 92.7342| ## Model in Action 🚀 ```python3 from transformers import BartTokenizer, BartForQuestionAnswering import torch tokenizer = BartTokenizer.from_pretrained('valhalla/bart-large-finetuned-squadv1') model = BartForQuestionAnswering.from_pretrained('valhalla/bart-large-finetuned-squadv1') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" encoding = tokenizer(question, text, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2] all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]) answer = tokenizer.convert_tokens_to_ids(answer.split()) answer = tokenizer.decode(answer) #answer => 'a nice puppet' ``` > Created with ❤️ by Suraj Patil [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/patil-suraj/) [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/psuraj28)
BigSalmon/Rowerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- datasets: - mnli tags: - distilbart - distilbart-mnli pipeline_tag: zero-shot-classification --- # DistilBart-MNLI distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `bart-large-mnli` and finetune more on the same data. | | matched acc | mismatched acc | | ------------------------------------------------------------------------------------ | ----------- | -------------- | | [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 | | [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 | | [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 | | [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 | | [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 | This is a very simple and effective technique, as we can see the performance drop is very little. Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing). ## Fine-tuning If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below Clone and install transformers from source ```bash git clone https://github.com/huggingface/transformers.git pip install -qqq -U ./transformers ``` Download MNLI data ```bash python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI ``` Create student model ```bash python create_student.py \ --teacher_model_name_or_path facebook/bart-large-mnli \ --student_encoder_layers 12 \ --student_decoder_layers 6 \ --save_path student-bart-mnli-12-6 \ ``` Start fine-tuning ```bash python run_glue.py args.json ``` You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).
BigSalmon/SimplifyText
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- datasets: - mnli tags: - distilbart - distilbart-mnli pipeline_tag: zero-shot-classification --- # DistilBart-MNLI distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `bart-large-mnli` and finetune more on the same data. | | matched acc | mismatched acc | | ------------------------------------------------------------------------------------ | ----------- | -------------- | | [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 | | [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 | | [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 | | [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 | | [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 | This is a very simple and effective technique, as we can see the performance drop is very little. Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing). ## Fine-tuning If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below Clone and install transformers from source ```bash git clone https://github.com/huggingface/transformers.git pip install -qqq -U ./transformers ``` Download MNLI data ```bash python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI ``` Create student model ```bash python create_student.py \ --teacher_model_name_or_path facebook/bart-large-mnli \ --student_encoder_layers 12 \ --student_decoder_layers 6 \ --save_path student-bart-mnli-12-6 \ ``` Start fine-tuning ```bash python run_glue.py args.json ``` You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).
BigSalmon/T52
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
8
null
--- datasets: - mnli tags: - distilbart - distilbart-mnli pipeline_tag: zero-shot-classification --- # DistilBart-MNLI distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `bart-large-mnli` and finetune more on the same data. | | matched acc | mismatched acc | | ------------------------------------------------------------------------------------ | ----------- | -------------- | | [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 | | [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 | | [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 | | [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 | | [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 | This is a very simple and effective technique, as we can see the performance drop is very little. Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing). ## Fine-tuning If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below Clone and install transformers from source ```bash git clone https://github.com/huggingface/transformers.git pip install -qqq -U ./transformers ``` Download MNLI data ```bash python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI ``` Create student model ```bash python create_student.py \ --teacher_model_name_or_path facebook/bart-large-mnli \ --student_encoder_layers 12 \ --student_decoder_layers 6 \ --save_path student-bart-mnli-12-6 \ ``` Start fine-tuning ```bash python run_glue.py args.json ``` You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).
BigSalmon/T5F
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2020-09-20T13:54:16Z
--- datasets: - mnli tags: - distilbart - distilbart-mnli pipeline_tag: zero-shot-classification --- # DistilBart-MNLI distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `bart-large-mnli` and finetune more on the same data. | | matched acc | mismatched acc | | ------------------------------------------------------------------------------------ | ----------- | -------------- | | [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 | | [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 | | [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 | | [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 | | [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 | This is a very simple and effective technique, as we can see the performance drop is very little. Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing). ## Fine-tuning If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below Clone and install transformers from source ```bash git clone https://github.com/huggingface/transformers.git pip install -qqq -U ./transformers ``` Download MNLI data ```bash python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI ``` Create student model ```bash python create_student.py \ --teacher_model_name_or_path facebook/bart-large-mnli \ --student_encoder_layers 12 \ --student_decoder_layers 6 \ --save_path student-bart-mnli-12-6 \ ``` Start fine-tuning ```bash python run_glue.py args.json ``` You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).
BigSalmon/T5Salmon
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2020-10-26T18:28:16Z
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: 'generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>' - text: 'question: What is 42 context: 42 is the answer to life, the universe and everything. </s>' license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qa-qg-hl](https://huggingface.co/valhalla/t5-base-qa-qg-hl) model trained for question answering and answer aware question generation tasks. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qa-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything.` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("multitask-qa-qg", model="valhalla/distilt5-qa-qg-hl-12-6") # to generate questions simply pass the text nlp("42 is the answer to life, the universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] # for qa pass a dict with "question" and "context" nlp({ "question": "What is 42 ?", "context": "42 is the answer to life, the universe and everything." }) => 'the answer to life, the universe and everything' ```
BigSalmon/TS3
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: <hl> 42 <hl> is the answer to life, the universe and everything. </s> - text: Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s> - text: Although <hl> practicality <hl> beats purity </s> license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens. For example `<hl> 42 <hl> is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation", model="valhalla/distilt5-qg-hl-12-6") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] ```
BigTooth/DialoGPT-Megumin
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
# ELECTRA-BASE-DISCRIMINATOR finetuned on SQuADv1 This is electra-base-discriminator model finetuned on SQuADv1 dataset for for question answering task. ## Model details As mentioned in the original paper: ELECTRA is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SQuAD 2.0 dataset. | Param | #Value | |---------------------|--------| | layers | 12 | | hidden size | 768 | | num attetion heads | 12 | | on disk size | 436MB | ## Model training This model was trained on google colab v100 GPU. You can find the fine-tuning colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11yo-LaFsgggwmDSy2P8zD3tzf5cCb-DU?usp=sharing). ## Results The results are actually slightly better than given in the paper. In the paper the authors mentioned that electra-base achieves 84.5 EM and 90.8 F1 | Metric | #Value | |--------|--------| | EM | 85.0520| | F1 | 91.6050| ## Model in Action 🚀 ```python3 from transformers import pipeline nlp = pipeline('question-answering', model='valhalla/electra-base-discriminator-finetuned_squadv1') nlp({ 'question': 'What is the answer to everything ?', 'context': '42 is the answer to life the universe and everything' }) => {'answer': '42', 'end': 2, 'score': 0.981274963050339, 'start': 0} ``` > Created with ❤️ by Suraj Patil [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/patil-suraj/) [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/psuraj28)
Bilz/DialoGPT-small-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- datasets: - squad_v1 license: mit --- # LONGFORMER-BASE-4096 fine-tuned on SQuAD v1 This is longformer-base-4096 model fine-tuned on SQuAD v1 dataset for question answering task. [Longformer](https://arxiv.org/abs/2004.05150) model created by Iz Beltagy, Matthew E. Peters, Arman Coha from AllenAI. As the paper explains it > `Longformer` is a BERT-like model for long documents. The pre-trained model can handle sequences with upto 4096 tokens. ## Model Training This model was trained on google colab v100 GPU. You can find the fine-tuning colab here [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1zEl5D-DdkBKva-DdreVOmN0hrAfzKG1o?usp=sharing). Few things to keep in mind while training longformer for QA task, by default longformer uses sliding-window local attention on all tokens. But For QA, all question tokens should have global attention. For more details on this please refer the paper. The `LongformerForQuestionAnswering` model automatically does that for you. To allow it to do that 1. The input sequence must have three sep tokens, i.e the sequence should be encoded like this ` <s> question</s></s> context</s>`. If you encode the question and answer as a input pair, then the tokenizer already takes care of that, you shouldn't worry about it. 2. `input_ids` should always be a batch of examples. ## Results |Metric | # Value | |-------------|---------| | Exact Match | 85.1466 | | F1 | 91.5415 | ## Model in Action 🚀 ```python import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering, tokenizer = AutoTokenizer.from_pretrained("valhalla/longformer-base-4096-finetuned-squadv1") model = AutoModelForQuestionAnswering.from_pretrained("valhalla/longformer-base-4096-finetuned-squadv1") text = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." question = "What has Huggingface done ?" encoding = tokenizer(question, text, return_tensors="pt") input_ids = encoding["input_ids"] # default is local attention everywhere # the forward method will automatically set global attention on question tokens attention_mask = encoding["attention_mask"] start_scores, end_scores = model(input_ids, attention_mask=attention_mask) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores) :torch.argmax(end_scores)+1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # output => democratized NLP ``` The `LongformerForQuestionAnswering` isn't yet supported in `pipeline` . I'll update this card once the support has been added. > Created with ❤️ by Suraj Patil [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/patil-suraj/) [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/psuraj28)
Bimal/my_bot_model
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: - multilingual tags: - text-2-text-generation - m2m_100 --- # Model Card for KeywordIdentifier # Model Details ## Model Description More information needed - **Developed by:** Facebook - **Shared by [Optional]:** Suraj Patil - **Model type:** Text2Text Generation - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** [M2M100]https://huggingface.co/facebook/m2m100_418M) - **Resources for more information:** - [M2M100 Associated Paper](https://arxiv.org/abs/2010.11125) # Uses ## Direct Use This model can be used for the task of Text2Text Generation. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** More information needed ```bibtex @misc{fan2020englishcentric, title={Beyond English-Centric Multilingual Machine Translation}, author={Angela Fan and Shruti Bhosale and Holger Schwenk and Zhiyi Ma and Ahmed El-Kishky and Siddharth Goyal and Mandeep Baines and Onur Celebi and Guillaume Wenzek and Vishrav Chaudhary and Naman Goyal and Tom Birch and Vitaliy Liptchinsky and Sergey Edunov and Edouard Grave and Michael Auli and Armand Joulin}, year={2020}, eprint={2010.11125}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] See the [model hub](https://huggingface.co/models?filter=m2m_100) for more fine-tuned versions. # Model Card Authors [optional] Suraj Patil in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("valhalla/m2m100_tiny_random") model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/m2m100_tiny_random") ``` </details>
BinksSachary/ShaxxBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- TODO: [To be filled] ## Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer import soundfile as sf from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_small").to("cuda") tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_small", do_upper_case=True) def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 4.3 | 9.0 |
Bman/DialoGPT-medium-harrypotter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other tags: - generated_from_trainer model-index: - name: distilbert-allsides results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-allsides This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9138 - Acc: 0.7094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7667 | 1.0 | 822 | 0.7003 | 0.6820 | | 0.6893 | 2.0 | 1644 | 0.6619 | 0.6981 | | 0.6177 | 3.0 | 2466 | 0.6736 | 0.7064 | | 0.595 | 4.0 | 3288 | 0.6642 | 0.7091 | | 0.5179 | 5.0 | 4110 | 0.6936 | 0.7121 | | 0.4698 | 6.0 | 4932 | 0.7670 | 0.7106 | | 0.463 | 7.0 | 5754 | 0.8537 | 0.7121 | | 0.4345 | 8.0 | 6576 | 0.9138 | 0.7094 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
BobBraico/distilbert-base-uncased-finetuned-imdb-accelerate
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: other language: en datasets: - valurank/wikirev-bias --- # DistilROBERTA fine-tuned for bias detection This model is based on [distilroberta-base](https://huggingface.co/distilroberta-base) pretrained weights, with a classification head fine-tuned to classify text into 2 categories (neutral, biased). ## Training data The dataset used to fine-tune the model is [wikirev-bias](https://huggingface.co/datasets/valurank/wikirev-bias), extracted from English wikipedia revisions, see https://github.com/rpryzant/neutralizing-bias for details on the WNC wiki edits corpus. ## Inputs Similar to its base model, this model accepts inputs with a maximum length of 512 tokens.
BrianTin/MTBERT
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-fiqa-flm-sq-flit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-fiqa-flm-sq-flit This model is a fine-tuned version of bert-base-uncased on a custom dataset created for question answering in financial domain. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. The model was further processed as below for the specific downstream QA task. 1. Pretrained for domain adaptation with Masked language modeling (MLM) objective with the FIQA challenge Opinion-based QA task is available here - https://drive.google.com/file/d/1BlWaV-qVPfpGyJoWQJU9bXQgWCATgxEP/view 2. Pretrained with MLM objective with custom generated dataset for Banking and Finance. 3. Fine Tuned with SQuAD V2 dataset for QA task adaptation. 4. Fine Tuned with custom labeled dataset in SQuAD format for domain and task adaptation. ## Intended uses & limitations The model is intended to be used for a custom Questions Answering system in the BFSI domain. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Brinah/1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - generated_from_trainer model-index: - name: roberta-base-fiqa-flm-sq-flit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-fiqa-flm-sq-flit This model is a fine-tuned version of roberta-base on a custom dataset create for question answering in financial domain. ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. The model was further processed as below for the specific downstream QA task. 1. Pretrained for domain adaptation with Masked language modeling (MLM) objective with the FIQA challenge Opinion-based QA task is available here - https://drive.google.com/file/d/1BlWaV-qVPfpGyJoWQJU9bXQgWCATgxEP/view 2. Pretrained with MLM objective with custom generated dataset for Banking and Finance. 3. Fine Tuned with SQuAD V2 dataset for QA task adaptation. 4. Fine Tuned with custom labeled dataset in SQuAD format for domain and task adaptation. ## Intended uses & limitations The model is intended to be used for a custom Questions Answering system in the BFSI domain. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Brykee/DialoGPT-medium-Morty
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- language: et datasets: - common_voice - NST Estonian ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 - Estonian by Vasilis results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice et type: common_voice args: et metrics: - name: Test WER type: wer value: 30.658320 - name: Test CER type: cer value: 5.261490 --- # Wav2Vec2-Large-XLSR-53-Estonian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "et", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Estonian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "et", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian") model.to("cuda") chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 30.658320 % ## Training Common voice `train` and `validation` sets were used for finetuning for 20000 steps (approx. 116 epochs). Both the `feature extractor` (`Wav2Vec2FeatureExtractor`) and `feature projection` (`Wav2Vec2FeatureProjection`) layer were frozen. Only the `encoder` layer (`Wav2Vec2EncoderStableLayerNorm`) was finetuned.
Bryson575x/riceboi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: fi datasets: - common_voice - CSS10 finnish: Single Speaker Speech Dataset metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: V XLSR Wav2Vec2 Large 53 - finnish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 38.335242 - name: Test CER type: cer value: 6.552408 --- # Wav2Vec2-Large-XLSR-53-finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on finnish using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 finnish: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the finnish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data replacements = {"…": "", "–": ''} resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() for key, value in replacements.items(): batch["sentence"] = batch["sentence"].replace(key, value) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 38.335242 % ## Training The Common Voice train dataset was used for training. Also all of `CSS10 Finnish` was used using the normalized transcripts. After 20000 steps the models was finetuned using the common voice train and validation sets for 2000 steps more.
Bubb-les/DisloGPT-medium-HarryPotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: el datasets: - common_voice - CSS10 Greek: Single Speaker Speech Dataset metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: V XLSR Wav2Vec2 Large 53 - greek results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 18.996669 - name: Test CER type: cer value: 5.781874 --- # Wav2Vec2-Large-XLSR-53-greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 Greek: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/greek-single-speaker-speech-dataset). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data normalize_greek_letters = {"ς": "σ"} # normalize_greek_letters = {"ά": "α", "έ": "ε", "ί": "ι", 'ϊ': "ι", "ύ": "υ", "ς": "σ", "ΐ": "ι", 'ϋ': "υ", "ή": "η", "ώ": "ω", 'ό': "ο"} remove_chars_greek = {"a": "", "h": "", "n": "", "g": "", "o": "", "v": "", "e": "", "r": "", "t": "", "«": "", "»": "", "m": "", '́': '', "·": "", "’": "", '´': ""} replacements = {**normalize_greek_letters, **remove_chars_greek} resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() for key, value in replacements.items(): batch["sentence"] = batch["sentence"].replace(key, value) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 18.996669 % ## Training The Common Voice train dataset was used for training. Also all of `CSS10 Greek` was used using the normalized transcripts. During text preprocessing letter `ς` is normalized to `σ` the reason is that both letters sound the same with `ς` only used as the ending character of words. So, the change can be mapped up to proper dictation easily. I tried removing all accents from letters as well that improved `WER` significantly. The model was reaching `17%` WER easily without having converged. However, the text preprocessing needed to do after to fix transcrtiptions would be more complicated. A language model should fix things easily though. Another thing that could be tried out would be to change all of `ι`, `η` ... etc to a single character since all sound the same. similar for `o` and `ω` these should help the acoustic model part significantly since all these characters map to the same sound. But further text normlization would be needed.
BumBelDumBel/TRUMP
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: sv-SE datasets: - common_voice - NST Swedish ASR Database metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: V XLSR Wav2Vec2 Large 53 - Swedish results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sv-SE type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 14.695793 - name: Test CER type: cer value: 5.264666 --- # Wav2Vec2-Large-XLSR-53-Swedish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice) and parts for the [NST Swedish ASR Database](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-16/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Swedish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sv-SE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish") model.to("cuda") chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 14.695793 % ## Training As first step used Common Voice train dataset and parts from NST as can be found [here](https://github.com/se-asr/nst/tree/master). Part of NST where removed using this mask ```python mask = [(5 < len(x.split()) < 20) and np.average([len(entry) for entry in x.split()]) > 5 for x in dataset['transcript'].tolist()] ``` After training like this for 20000 steps the model was finetuned on all of nst data using the mask ```python mask = [(1 < len(x.split()) < 25) and np.average([len(entry) for entry in x.split()]) > 3 for x in dataset['transcript'].tolist()] ``` and all of common voice for 100000 more steps approximately 16 epochs.
BumBelDumBel/ZORK-AI-TEST
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - et - robust-speech-event - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - Estonian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 52.47 - name: Test CER type: cer value: 12.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 61.02 - name: Test CER type: cer value: 21.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 59.23 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 69.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.8824 - Wer: 0.5246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.0296 | 2.79 | 500 | 0.8106 | 0.8029 | | 0.9339 | 5.59 | 1000 | 0.7419 | 0.7932 | | 0.8925 | 8.38 | 1500 | 0.7137 | 0.7706 | | 0.8484 | 11.17 | 2000 | 0.7020 | 0.7677 | | 0.7521 | 13.97 | 2500 | 0.7043 | 0.7375 | | 0.719 | 16.76 | 3000 | 0.6617 | 0.7428 | | 0.656 | 19.55 | 3500 | 0.6388 | 0.7202 | | 0.6085 | 22.35 | 4000 | 0.6211 | 0.6960 | | 0.5598 | 25.14 | 4500 | 0.6132 | 0.6644 | | 0.4969 | 27.93 | 5000 | 0.6065 | 0.6521 | | 0.4638 | 30.73 | 5500 | 0.6978 | 0.6577 | | 0.4385 | 33.52 | 6000 | 0.5994 | 0.6565 | | 0.396 | 36.31 | 6500 | 0.6170 | 0.6258 | | 0.3861 | 39.11 | 7000 | 0.6486 | 0.6217 | | 0.3602 | 41.9 | 7500 | 0.6508 | 0.6115 | | 0.3251 | 44.69 | 8000 | 0.7022 | 0.6253 | | 0.3197 | 47.49 | 8500 | 0.7706 | 0.6215 | | 0.3013 | 50.28 | 9000 | 0.6419 | 0.5999 | | 0.2813 | 53.07 | 9500 | 0.6908 | 0.5959 | | 0.286 | 55.87 | 10000 | 0.7151 | 0.5916 | | 0.2645 | 58.66 | 10500 | 0.7181 | 0.5860 | | 0.2535 | 61.45 | 11000 | 0.7877 | 0.5979 | | 0.247 | 64.25 | 11500 | 0.8199 | 0.6129 | | 0.2412 | 67.04 | 12000 | 0.7679 | 0.5884 | | 0.2404 | 69.83 | 12500 | 0.7266 | 0.5816 | | 0.2293 | 72.63 | 13000 | 0.7928 | 0.5795 | | 0.2176 | 75.42 | 13500 | 0.7916 | 0.5846 | | 0.2143 | 78.21 | 14000 | 0.7954 | 0.5765 | | 0.2185 | 81.01 | 14500 | 0.8317 | 0.5907 | | 0.2057 | 83.8 | 15000 | 0.8016 | 0.5851 | | 0.1895 | 86.59 | 15500 | 0.8080 | 0.5679 | | 0.1883 | 89.39 | 16000 | 0.8103 | 0.5712 | | 0.1802 | 92.18 | 16500 | 0.8383 | 0.5644 | | 0.1826 | 94.97 | 17000 | 0.8799 | 0.5657 | | 0.1717 | 97.77 | 17500 | 0.8620 | 0.5709 | | 0.1701 | 100.56 | 18000 | 0.8717 | 0.5662 | | 0.1623 | 103.35 | 18500 | 0.8534 | 0.5594 | | 0.158 | 106.15 | 19000 | 0.8595 | 0.5546 | | 0.1508 | 108.94 | 19500 | 0.8574 | 0.5545 | | 0.142 | 111.73 | 20000 | 0.8671 | 0.5537 | | 0.1395 | 114.53 | 20500 | 0.8436 | 0.5525 | | 0.1373 | 117.32 | 21000 | 0.8808 | 0.5482 | | 0.1338 | 120.11 | 21500 | 0.9024 | 0.5418 | | 0.1278 | 122.91 | 22000 | 0.9143 | 0.5409 | | 0.1207 | 125.7 | 22500 | 0.8917 | 0.5358 | | 0.1203 | 128.49 | 23000 | 0.9041 | 0.5341 | | 0.1083 | 131.28 | 23500 | 0.8884 | 0.5341 | | 0.1147 | 134.08 | 24000 | 0.8910 | 0.5255 | | 0.1129 | 136.87 | 24500 | 0.8826 | 0.5241 | | 0.1029 | 139.66 | 25000 | 0.8824 | 0.5246 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Buntan/xlm-roberta-base-finetuned-marc-en
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Moved here: https://huggingface.co/google/bigbird-base-trivia-itc
Bwehfuk/Ron
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Moved here: https://huggingface.co/google/bigbird-pegasus-large-arxiv
CALM/CALM
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Moved here: https://huggingface.co/google/bigbird-pegasus-large-bigpatent