modelId
stringlengths
4
81
tags
sequence
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
DTAI-KULeuven/robbertje-1-gb-bort
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
# Text classifier using DistilBERT to determine Partisanship ## This is one of the single-class partisan detecting models. (see leftpartisan/leftcenterpartisan/rightcenterpartisan/centerpartisan) label_0 refers to "other" while label_1 refers to "right" (right as in right-leaning). This was trained with 40,000 articles. ### Best Practices This model was optimized for 512 token-length text. Any text below 150 tokens will result in inaccurate results.
DTAI-KULeuven/robbertje-1-gb-non-shuffled
[ "pytorch", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2101.05716", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "RobBERTje", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
53
null
# DistilBERT Yelp Review Sentiment This model is used for sentiment analysis on english yelp reviews. It is a DistilBERT model trained on 1 million reviews from the yelp open dataset. It is a regression model, with outputs in the range of ~-2 to ~2. With -2 being 1 star and 2 being 5 stars. It was trained using the [ktrain](https://github.com/amaiya/ktrain) because of it's ease of use. Example use: ``` tokenizer = AutoTokenizer.from_pretrained( 'distilbert-base-uncased', use_fast=True) model = TFAutoModelForSequenceClassification.from_pretrained( "spentaur/yelp") review = "This place is great!" input_ids = tokenizer.encode(review, return_tensors='tf') pred = model(input_ids)[0][0][0].numpy() # pred should === 1.9562385 ```
alexandrainst/da-binary-emotion-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,066
2021-09-25T10:05:51Z
--- tags: - conversational --- #Sherlock DialoGPT Model
alexandrainst/da-ner-base
[ "pytorch", "tf", "bert", "token-classification", "da", "dataset:dane", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
78
2022-02-28T11:16:26Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-AUS-to-US co2_eq_emissions: 3.3930796843275846 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 601516964 - CO2 Emissions (in grams): 3.3930796843275846 ## Validation Metrics - Loss: 1.9823806285858154 - Rouge1: 42.8783 - Rouge2: 7.4603 - RougeL: 42.8492 - RougeLsum: 43.0556 - Gen Len: 2.8952 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-AUS-to-US-601516964 ```
alexandrainst/da-sentiment-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "arxiv:1910.09700", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,432
null
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-AUS-to-US2 co2_eq_emissions: 1.1512164322839105 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 606817121 - CO2 Emissions (in grams): 1.1512164322839105 ## Validation Metrics - Loss: 2.0312094688415527 - Rouge1: 34.8844 - Rouge2: 5.2023 - RougeL: 34.6339 - RougeLsum: 34.8555 - Gen Len: 3.1792 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-AUS-to-US2-606817121 ```
alexandrainst/da-subjectivivity-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "dataset:DDSC/twitter-sent", "dataset:DDSC/europarl", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
846
2022-02-28T09:57:19Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-UK-to-US co2_eq_emissions: 1.113131499202784 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 600416931 - CO2 Emissions (in grams): 1.113131499202784 ## Validation Metrics - Loss: 1.8278849124908447 - Rouge1: 45.7945 - Rouge2: 8.5245 - RougeL: 45.8031 - RougeLsum: 45.9067 - Gen Len: 3.0622 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-UK-to-US-600416931 ```
alexandrainst/da-ned-base
[ "pytorch", "tf", "xlm-roberta", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
2022-03-01T13:11:42Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-US-to-UK co2_eq_emissions: 3.3271667948644614 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 604417040 - CO2 Emissions (in grams): 3.3271667948644614 ## Validation Metrics - Loss: 1.919085144996643 - Rouge1: 39.2808 - Rouge2: 4.905 - RougeL: 39.113 - RougeLsum: 39.1463 - Gen Len: 3.4611 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US-to-UK-604417040 ```
DaWang/demo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-US-to-UK2 co2_eq_emissions: 1.1913570653422176 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 606317091 - CO2 Emissions (in grams): 1.1913570653422176 ## Validation Metrics - Loss: 1.9264822006225586 - Rouge1: 44.2035 - Rouge2: 6.134 - RougeL: 43.9114 - RougeLsum: 44.0231 - Gen Len: 3.6134 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US-to-UK2-606317091 ```
Dablio/Dablio
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-03-02T10:33:38Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-US_to_AUS co2_eq_emissions: 1.4276876566788055 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 607117159 - CO2 Emissions (in grams): 1.4276876566788055 ## Validation Metrics - Loss: 1.5177973508834839 - Rouge1: 46.134 - Rouge2: 10.578 - RougeL: 45.8856 - RougeLsum: 46.0088 - Gen Len: 3.7283 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-US_to_AUS-607117159 ```
DaisyMak/bert-finetuned-squad-accelerate-10epoch_transformerfrozen
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,907
null
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-mnli-headless`, has been pretrained for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective and finetuned on the [Multi-Genre Natural Language Inference (MNLI)](https://cims.nyu.edu/~sbowman/multinli/) dataset. This is a "headless" model with the final classification layer removed, and this will allow Transformers to automatically reinitialize the final classification layer before you begin finetuning on your data. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper presents 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-mnli-headless`, is the "finetuned with bells and whistles" MNLI-finetuned SqueezeBERT model. In this particular model, we have removed the final classification layer -- in other words, it is "headless." We recommend using this model if you intend to finetune the model on your own data. Using this model means that your final layer will automatically be reinitialized when you start finetuning on your data. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
Daivakai/DialoGPT-small-saitama
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-uncased`, is a pretrained model for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper results from 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-uncased`, has been pretrained but not finetuned. For most text classification tasks, we recommend using squeezebert-mnli-headless as a starting point. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
Daltcamalea01/Camaleaodalt
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-11-08T00:20:56Z
--- thumbnail: "https://en.memesrandom.com/wp-content/uploads/2020/11/juega-ajedrez.jpeg" widget: - text: "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]" - example_title: Empty Board - text: "6Q1/5k2/3P4/1R3p2/P4P2/7Q/6RK/8 b - - 2 60 Black <MOVE_SEP> [MASK]" - example_title: Late Game Board --- # BertHarmon Research done at Johns Hopkins University by Michael DeLeo Contact: [email protected] ![iu-13](logo.png) ## Introduction BertHarmon is a BERT model trained for the task of Chess. ![IMG_0145](chess-example.GIF) ## Sample Usage ```python from transformers import pipeline task = pipeline('fill-mask', model='squish/BertHarmon') task("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]") ``` The base string consists of the FEN_position followed by the player color and a move seperator. Finally with the [MASK] token. The mask token is the algebraic notation for a chess move to be taken givent the current board state in FEN Notation ## Links [Github](https://github.com/deleomike/NLP-Chess) [HuggingFace](https://huggingface.co/squish/BertHarmon)
DamolaMack/Classyfied
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
Danbi/distilroberta-base-finetuned-wikitext2
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-07-03T05:50:34Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pollution results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7129629850387573 --- # pollution Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### air pollution ![air pollution](images/air_pollution_new.jpg) #### land pollution ![land pollution](images/land_pollution.jpg) #### water pollution ![water pollution](images/water_pollution.jpg)
DataikuNLP/camembert-base
[ "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2021-10-09T05:47:08Z
--- tags: - conversational --- # Harry Potter DialoGPT Model
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
[ "pytorch", "bert", "arxiv:1908.10084", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,517
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9844313470062116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Precision: 0.9266 - Recall: 0.9381 - F1: 0.9323 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0616 | 1.0 | 878 | 0.0604 | 0.9195 | 0.9370 | 0.9282 | 0.9833 | | 0.0328 | 2.0 | 1756 | 0.0588 | 0.9258 | 0.9375 | 0.9316 | 0.9841 | | 0.0246 | 3.0 | 2634 | 0.0590 | 0.9266 | 0.9381 | 0.9323 | 0.9844 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1 - Datasets 1.9.0 - Tokenizers 0.10.3
DavidSpaceG/MSGIFSR
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Breaking Bad DialoGPT Model
Davlan/bert-base-multilingual-cased-finetuned-hausa
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
151
2021-08-22T17:20:07Z
--- tags : - conversational --- #Rick Sanchez DialoGPT Model
Davlan/bert-base-multilingual-cased-finetuned-luo
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: Bengali datasets: - custom metrics: - wer tags: - bn - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: finetune-wav2vec2-large-xlsr-bengali results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: custom type: custom args: ben metrics: - name: Test WER type: wer value: 0.011 --- # finetune-wav2vec2-large-xlsr-bengali *** ## Usage ***
Davlan/bert-base-multilingual-cased-finetuned-swahili
[ "pytorch", "tf", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
67
2022-02-11T12:42:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Wer: 0.4111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2982 | 17.86 | 500 | 2.4580 | 1.1089 | | 0.9644 | 35.71 | 1000 | 0.1250 | 0.5156 | | 0.1767 | 53.57 | 1500 | 0.0310 | 0.4267 | | 0.0912 | 71.43 | 2000 | 0.0149 | 0.4178 | | 0.0505 | 89.29 | 2500 | 0.0068 | 0.4111 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Davlan/bert-base-multilingual-cased-finetuned-yoruba
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
21
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1064 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5537 | 4.03 | 500 | 0.6078 | 1.0 | | 0.5444 | 8.06 | 1000 | 0.4990 | 0.9994 | | 0.3744 | 12.1 | 1500 | 0.5530 | 1.0 | | 0.2863 | 16.13 | 2000 | 0.6401 | 1.0 | | 0.2357 | 20.16 | 2500 | 0.6485 | 1.0 | | 0.1933 | 24.19 | 3000 | 0.7448 | 0.9994 | | 0.162 | 28.22 | 3500 | 0.7502 | 1.0 | | 0.1325 | 32.26 | 4000 | 0.7801 | 1.0 | | 0.1169 | 36.29 | 4500 | 0.8334 | 1.0 | | 0.1031 | 40.32 | 5000 | 0.8269 | 1.0 | | 0.0913 | 44.35 | 5500 | 0.8432 | 1.0 | | 0.0793 | 48.39 | 6000 | 0.8738 | 1.0 | | 0.0694 | 52.42 | 6500 | 0.8897 | 1.0 | | 0.0613 | 56.45 | 7000 | 0.8966 | 1.0 | | 0.0548 | 60.48 | 7500 | 0.9398 | 1.0 | | 0.0444 | 64.51 | 8000 | 0.9548 | 1.0 | | 0.0386 | 68.55 | 8500 | 0.9647 | 1.0 | | 0.0359 | 72.58 | 9000 | 0.9901 | 1.0 | | 0.0299 | 76.61 | 9500 | 1.0151 | 1.0 | | 0.0259 | 80.64 | 10000 | 1.0526 | 1.0 | | 0.022 | 84.67 | 10500 | 1.0754 | 1.0 | | 0.0189 | 88.71 | 11000 | 1.0688 | 1.0 | | 0.0161 | 92.74 | 11500 | 1.0914 | 1.0 | | 0.0138 | 96.77 | 12000 | 1.1064 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Davlan/byt5-base-yor-eng-mt
[ "pytorch", "t5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- language: - en thumbnail: tags: - translation - facebook - convAI license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- # Blenderbot-3B ## Model description + [Paper](https://arxiv.org/abs/1907.06616). + [Original PARLAI Code] The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration mname = "facebook/wmt19-en-ru" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "Machine learning is great, isn't it?" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # Машинное обучение - это здорово, не так ли? ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- en-ru | [36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724) | 33.47 The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Facebook FAIR's WMT19 News Translation Task Submission}, author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle={Proc. of WMT}, } ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints)
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/m2m100_418M-yor-eng-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2020-06-23T23:24:07Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mT5_base_yoruba_adr
[ "pytorch", "mt5", "text2text-generation", "arxiv:2003.10564", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mbart50-large-eng-yor-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mbart50-large-yor-eng-mt
[ "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MBartForConditionalGeneration" ], "model_type": "mbart", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2020-06-23T22:34:37Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mt5-small-en-pcm
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2020-06-23T22:35:43Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mt5-small-pcm-en
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2020-06-20T17:03:02Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/mt5_base_eng_yor_mt
[ "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2020-06-23T22:37:16Z
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
Davlan/xlm-roberta-base-finetuned-chichewa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2020-09-10T15:58:47Z
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Davlan/xlm-roberta-base-finetuned-hausa
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
234
2020-09-14T18:40:53Z
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Davlan/xlm-roberta-base-finetuned-lingala
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2020-05-14T13:13:06Z
### opus-mt-INSULAR_CELTIC-en * source languages: ga,cy,br,gd,kw,gv * target languages: en * OPUS readme: [ga+cy+br+gd+kw+gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ga+cy+br+gd+kw+gv-en/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus+techiaith+bt-2020-04-30.zip](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.zip) * test set translations: [opus+techiaith+bt-2020-04-30.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.test.txt) * test set scores: [opus+techiaith+bt-2020-04-30.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ga.en | 28.4 | 0.446 |
Davlan/xlm-roberta-base-finetuned-luganda
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2020-10-11T17:14:04Z
--- language: - en - he tags: - translation license: apache-2.0 --- ### en-he * source group: English * target group: Hebrew * OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md) * model: transformer * source language(s): eng * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip) * test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt) * test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.heb | 37.9 | 0.602 | ### System Info: - hf_name: en-he - source_languages: eng - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'he'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt - src_alpha3: eng - tgt_alpha3: heb - chrF2_score: 0.602 - bleu: 37.9 - brevity_penalty: 1.0 - ref_len: 60359.0 - src_name: English - tgt_name: Hebrew - train_date: 2020-10-04 00:00:00 - src_alpha2: en - tgt_alpha2: he - prefer_old: False - short_pair: en-he - helsinki_git_sha: 7b1a514877868084fd74350d261519e092b5b2dc - transformers_git_sha: 8e58566183ee49f9dbc4819a95a678fcfb1b7528 - port_machine: MacBook-Pro.local - port_time: 2020-10-11-13:07
Declan/HuffPost_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: - en tags: - punctuation license: mit datasets: - yelp_polarity metrics: - f1 --- # ✨ bert-restore-punctuation [![forthebadge](https://forthebadge.com/images/badges/gluten-free.svg)]() This a bert-base-uncased model finetuned for punctuation restoration on [Yelp Reviews](https://www.tensorflow.org/datasets/catalog/yelp_polarity_reviews). The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[! ? . , - : ; ' ]** The model also restores the upper-casing of words. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. First, install the package. ```bash pip install rpunct ``` 2. Sample python code. ```python from rpunct import RestorePuncts # The default language is 'english' rpunct = RestorePuncts() rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated 3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""") # Outputs the following: # In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the # resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms # thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. # Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more # sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves. ``` **This model works on arbitrarily large text in English language and uses GPU if available.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for finetuning the model: | Language | Number of text samples| | -------- | ----------------- | | English | 560,000 | We found the best convergence around _**3 epochs**_, which is what presented here and available via a download. ----------------------------------------------- ## 🎯 Accuracy The fine-tuned model obtained the following accuracy on 45,990 held-out text samples: | Accuracy | Overall F1 | Eval Support | | -------- | ---------------------- | ------------------- | | 91% | 90% | 45,990 Below is a breakdown of the performance of the model by each label: | label | precision | recall | f1-score | support| | --------- | -------------|-------- | ----------|--------| | **!** | 0.45 | 0.17 | 0.24 | 424 | **!+Upper** | 0.43 | 0.34 | 0.38 | 98 | **'** | 0.60 | 0.27 | 0.37 | 11 | **,** | 0.59 | 0.51 | 0.55 | 1522 | **,+Upper** | 0.52 | 0.50 | 0.51 | 239 | **-** | 0.00 | 0.00 | 0.00 | 18 | **.** | 0.69 | 0.84 | 0.75 | 2488 | **.+Upper** | 0.65 | 0.52 | 0.57 | 274 | **:** | 0.52 | 0.31 | 0.39 | 39 | **:+Upper** | 0.36 | 0.62 | 0.45 | 16 | **;** | 0.00 | 0.00 | 0.00 | 17 | **?** | 0.54 | 0.48 | 0.51 | 46 | **?+Upper** | 0.40 | 0.50 | 0.44 | 4 | **none** | 0.96 | 0.96 | 0.96 |35352 | **Upper** | 0.84 | 0.82 | 0.83 | 5442 ----------------------------------------------- ## ☕ Contact Contact [Daulet Nurmanbetov]([email protected]) for questions, feedback and/or requests for similar models. -----------------------------------------------
Declan/NPR_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: apache-2.0 tags: - gpt2 - text-generation --- # Model Card for alias-gpt2-small-x21 # Model Details ## Model Description More information needed - **Developed by:** Stanford CRFM - **Shared by [Optional]:** Stanford CRFM - **Model type:** Text Generation - **Language(s) (NLP):** More information needed - **License:** Apache 2.0 - **Parent Model:** [GPT-2](https://huggingface.co/gpt2?text=My+name+is+Thomas+and+my+main) - **Resources for more information:** - [GitHub Repo](https://github.com/stanford-crfm/mistral) # Uses ## Direct Use This model can be used for the task of Text Generation. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** More information needed **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Stanford CRFM in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/alias-gpt2-small-x21") model = AutoModelForCausalLM.from_pretrained("stanford-crfm/alias-gpt2-small-x21") ``` </details>
Declan/Politico_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - corenlp library_tag: corenlp language: de license: gpl-2.0 --- # Core NLP model for german CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP). This card and repo were automatically prepared with `hugging_corenlp.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-03-16 00:59:49.707
Declan/WallStreetJournal_model_v5
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - stanza - token-classification library_name: stanza language: cu license: apache-2.0 --- # Stanza model for Old_Church_Slavonic (cu) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:33:14.960
Declan/WallStreetJournal_model_v6
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - stanza - token-classification library_name: stanza language: cy license: apache-2.0 --- # Stanza model for Welsh (cy) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:33:43.715
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - stanza - token-classification library_name: stanza language: en license: apache-2.0 --- # Stanza model for English (en) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:42:13.476
DeepChem/ChemBERTa-77M-MTR
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "RobertaForRegression" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,169
null
--- tags: - stanza - token-classification library_name: stanza language: fo license: apache-2.0 --- # Stanza model for Faroese (fo) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:49:18.695
DeepESP/gpt2-spanish
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,463
null
--- tags: - stanza - token-classification library_name: stanza language: ga license: apache-2.0 --- # Stanza model for Irish (ga) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:51:43.678
DeepPavlov/rubert-base-cased
[ "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "transformers", "has_space" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
148,127
null
--- tags: - stanza - token-classification library_name: stanza language: is license: apache-2.0 --- # Stanza model for Icelandic (is) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 03:59:32.918
DeepPavlov/xlm-roberta-large-en-ru-mnli
[ "pytorch", "xlm-roberta", "text-classification", "en", "ru", "dataset:glue", "dataset:mnli", "transformers", "xlm-roberta-large", "xlm-roberta-large-en-ru", "xlm-roberta-large-en-ru-mnli", "has_space" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
227
null
--- tags: - stanza - token-classification library_name: stanza language: it license: apache-2.0 --- # Stanza model for Italian (it) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 04:00:57.646
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2021-09-07T12:11:01Z
--- tags: - stanza - token-classification library_name: stanza language: ko license: apache-2.0 --- # Stanza model for Korean (ko) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 04:06:35.694
DeltaHub/adapter_t5-3b_cola
[ "pytorch", "transformers" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - stanza - token-classification library_name: stanza language: la license: apache-2.0 --- # Stanza model for Latin (la) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 04:07:29.374
DewiBrynJones/wav2vec2-large-xlsr-welsh
[ "cy", "dataset:common_voice", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - stanza - token-classification library_name: stanza language: uk license: apache-2.0 --- # Stanza model for Ukrainian (uk) Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Find more about it in [our website](https://stanfordnlp.github.io/stanza) and our [GitHub repository](https://github.com/stanfordnlp/stanza). This card and repo were automatically prepared with `hugging_stanza.py` in the `stanfordnlp/huggingface-models` repo Last updated 2023-05-19 04:34:02.120
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-8
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- language: de widget: - text: "Heute ist sehr schönes Wetter in" license: mit --- # German GPT-2 model In this repository we release (yet another) GPT-2 model, that was trained on ~90 GB from the ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4). The model is meant to be an entry point for fine-tuning on other texts, and it is definitely not as good or "dangerous" as the English GPT-3 model. We do not plan extensive PR or staged releases for this model 😉 --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, this GPT-2 model can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of this released GPT-2 model for German is to boost research on (large) pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done for English only. --- # Changelog * 17.10.2021: We highly recommend to try the Text Generation Pipeline in Transformers. The quality of the generated text from the Inference Widget here can be lower. * 06.09.2021: Initial release. Detailed information about training parameters coming soon. # Text Generation The following code snippet can be used to generate text with this German GPT-2 model: ```python from transformers import pipeline model_name = "stefan-it/german-gpt2-larger" pipe = pipeline('text-generation', model=model_name, tokenizer=model_name) text = pipe("Der Sinn des Lebens ist es", max_length=200)[0]["generated_text"] print(text) ``` # Training Data The following archives are used for training the (first version) of this GPT-2 model: * `de_head_0000_2015-48.tar.gz` * `de_head_0000_2016-18.tar.gz` * `de_head_0000_2016-44.tar.gz` * `de_head_0000_2017-13.tar.gz` * `de_head_0000_2017-30.tar.gz` * `de_head_0000_2017-39.tar.gz` * `de_head_0000_2017-51.tar.gz` * `de_head_0000_2018-09.tar.gz` * `de_head_0000_2018-17.tar.gz` * `de_head_0000_2018-30.tar.gz` * `de_head_0000_2018-39.tar.gz` * `de_head_0000_2018-51.tar.gz` * `de_head_0000_2019-18.tar.gz` * `de_head_0000_2019-30.tar.gz` * `de_head_0006_2019-09.tar.gz` * `de_head_0006_2019-18.tar.gz` * `de_head_0006_2019-30.tar.gz` * `de_head_0006_2019-47.tar.gz` * `de_head_0006_2020-10.tar.gz` * `de_head_0007_2018-30.tar.gz` * `de_head_0007_2018-51.tar.gz` * `de_head_0007_2019-09.tar.gz` * `de_head_0007_2019-18.tar.gz` * `de_head_0007_2019-47.tar.gz` * `de_head_0007_2020-10.tar.gz` Details and URLs can be found on the [GC4](https://german-nlp-group.github.io/projects/gc4-corpus.html) page. Archives are then extracted and NLTK (`german` model) is used to sentence split the corpus. This results in a total training corpus size of 90GB. # Training Details We use the recently re-trained `dbmdz/german-gpt2` ([version 2](https://huggingface.co/dbmdz/german-gpt2)!) model as back-bone model. Thus, the tokenizer and vocab is the same as used in the `dbmdz/german-gpt2` model. The model was trained on a v3-8 TPU, with the following parameters: ```bash python ./run_clm_flax.py --output_dir=/mnt/datasets/german-gpt2-larger/ --name_or_path dbmdz/german-gpt2 --do_train --do_eval --block_size=512 --per_device_train_batch_size=16 --per_device_eval_batch_size=16 --learning_rate=5e-3 --warmup_steps=1000 --adam_beta1=0.9 --adam_beta2=0.98 --weight_decay=0.01 --overwrite_output_dir --num_train_epochs=20 --logging_steps=500 --save_steps=2500 --eval_steps=2500 --train_file /mnt/datasets/gc4/train.txt --validation_file /mnt/datasets/gc4/validation.txt --preprocessing_num_workers 16 ``` Training took around 17 days for 20 epochs. # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download this model from their S3 storage 🤗 This project heavily profited from the amazing Hugging Face [Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104). Many thanks for the great organization and discussions during and after the week!
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2021-10-09T08:57:17Z
# T5 ## Overview The T5 model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. The abstract from the paper is the following: *Transfer learning, where a model is first pre-trained on a data-rich task before being finetuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.* This model was contributed by [stevekola](https://huggingface.co/stevekola). The original code can be found [here](https://github.com/google-research/text-to-text-transfer-transformer). **Pretraining Dataset:** [C4](https://www.tensorflow.org/datasets/catalog/c4) ## Usage Example ``` from huggingface_hub import snapshot_download import tensorflow_text import tensorflow as tf import os CACHE_DIR = "hfhub_cache" os.mkdir(CACHE_DIR) snapshot_download(repo_id="stevekola/T5", cache_dir=CACHE_DIR) saved_model_path = os.path.join(CACHE_DIR, os.listdir(CACHE_DIR)[0]) model = tf.saved_model.load(saved_model_path, ["serve"]) def predict_fn(x): return model.signatures['serving_default'](tf.constant(x))['outputs'].numpy() def answer(question): return predict_fn([question])[0].decode('utf-8') for question in [ "translate English to French: where do we go from here", "translate English to German: where do we go from here", "translate English to Romanian: where do we go from here", "cola sentence: where do we go from here", "stsb sentence1: I'm overjoyed about today's event. sentence2: I'm so happy today", "summarize: Nigeria is losing about 6 billion to 9 billion yearly to the non-passage of the bill, which would have given legal teeth to the water sub-sector for optimal performance like other sectors.", ]: print(answer(question)) ``` ## Test it Out You can test the [Gradio](https://huggingface.co/spaces/stevekola/T5-multitasks-gradio/) and [Streamlit](https://huggingface.co/spaces/stevekola/T5-multitasks-streamlit) implementations on Spaces!
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2020-09-02T22:53:15Z
--- language: "en" thumbnail: "https://raw.githubusercontent.com/stevhliu/satsuma/master/images/astroGPT-thumbnail.png" widget: - text: "Jan 18, 2020" - text: "Feb 14, 2020" - text: "Jul 04, 2020" --- # astroGPT 🪐 ## Model description This is a GPT-2 model fine-tuned on Western zodiac signs. For more information about GPT-2, take a look at 🤗 Hugging Face's GPT-2 [model card](https://huggingface.co/gpt2). You can use astroGPT to generate a daily horoscope by entering the current date. ## How to use To use this model, simply enter the current date like so `Mon DD, YEAR`: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("stevhliu/astroGPT") model = AutoModelWithLMHead.from_pretrained("stevhliu/astroGPT") input_ids = tokenizer.encode('Sep 03, 2020', return_tensors='pt').to('cuda') sample_output = model.generate(input_ids, do_sample=True, max_length=75, top_k=20, top_p=0.97) print(sample_output) ``` ## Limitations and bias astroGPT inherits the same biases that affect GPT-2 as a result of training on a lot of non-neutral content on the internet. The model does not currently support zodiac sign-specific generation and only returns a general horoscope. While the generated text may occasionally mention a specific zodiac sign, this is due to how the horoscopes were originally written by it's human authors. ## Data The data was scraped from [Horoscope.com](https://www.horoscope.com/us/index.aspx) and trained on 4.7MB of text. The text was collected from four categories (daily, love, wellness, career) and span from 09/01/19 to 08/01/2020. The archives only store horoscopes dating a year back from the current date. ## Training and results The text was tokenized using the fast GPT-2 BPE [tokenizer](https://huggingface.co/transformers/model_doc/gpt2.html#gpt2tokenizerfast). It has a vocabulary size of 50,257 and sequence length of 1024 tokens. The model was trained with on one of Google Colaboratory's GPU's for approximately 2.5 hrs with [fastai's](https://docs.fast.ai/) learning rate finder, discriminative learning rates and 1cycle policy. See table below for a quick summary of the training procedure and results. | dataset size | epochs | lr | training time | train_loss | valid_loss | perplexity | |:-------------:|:------:|:-----------------:|:-------------:|:----------:|:----------:|:----------:| | 5.9MB |32 | slice(1e-7,1e-5) | 2.5 hrs | 2.657170 | 2.642387 | 14.046692 |
bert-base-german-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
175,983
null
--- license: apache-2.0 datasets: - billsum tags: - summarization - t5 widget: - text: "The people of the State of California do enact as follows: SECTION 1. The\ \ Legislature hereby finds and declares as follows: (a) Many areas of the state\ \ are disproportionately impacted by drought because they are heavily dependent\ \ or completely reliant on groundwater from basins that are in overdraft and in\ \ which the water table declines year after year or from basins that are contaminated.\ \ (b) There are a number of state grant and loan programs that provide financial\ \ assistance to communities to address drinking water and wastewater needs. Unfortunately,\ \ there is no program in place to provide similar assistance to individual homeowners\ \ who are reliant on their own groundwater wells and who may not be able to afford\ \ conventional private loans to undertake vital water supply, water quality, and\ \ wastewater improvements. (c) The program created by this act is intended to\ \ bridge that gap by providing low-interest loans, grants, or both, to individual\ \ homeowners to undertake actions necessary to provide safer, cleaner, and more\ \ reliable drinking water and wastewater treatment. These actions may include,\ \ but are not limited to, digging deeper wells, improving existing wells and related\ \ equipment, addressing drinking water contaminants in the homeowner\u2019s water,\ \ or connecting to a local water or wastewater system. SEC. 2. Chapter 6.6 (commencing\ \ with Section 13486) is added to Division 7 of the Water Code, to read: CHAPTER\ \ 6.6. Water and Wastewater Loan and Grant Program 13486. (a) The board shall\ \ establish a program in accordance with this chapter to provide low-interest\ \ loans and grants to local agencies for low-interest loans and grants to eligible\ \ applicants for any of the following purposes:" example_title: Water use - text: "The people of the State of California do enact as follows: SECTION 1. Section\ \ 2196 of the Elections Code is amended to read: 2196. (a) (1) Notwithstanding\ \ any other provision of law, a person who is qualified to register to vote and\ \ who has a valid California driver\u2019s license or state identification card\ \ may submit an affidavit of voter registration electronically on the Internet\ \ Web site of the Secretary of State. (2) An affidavit submitted pursuant to this\ \ section is effective upon receipt of the affidavit by the Secretary of State\ \ if the affidavit is received on or before the last day to register for an election\ \ to be held in the precinct of the person submitting the affidavit. (3) The affiant\ \ shall affirmatively attest to the truth of the information provided in the affidavit.\ \ (4) For voter registration purposes, the applicant shall affirmatively assent\ \ to the use of his or her signature from his or her driver\u2019s license or\ \ state identification card. (5) For each electronic affidavit, the Secretary\ \ of State shall obtain an electronic copy of the applicant\u2019s signature from\ \ his or her driver\u2019s license or state identification card directly from\ \ the Department of Motor Vehicles. (6) The Secretary of State shall require a\ \ person who submits an affidavit pursuant to this section to submit all of the\ \ following: (A) The number from his or her California driver\u2019s license or\ \ state identification card. (B) His or her date of birth. (C) The last four digits\ \ of his or her social security number. (D) Any other information the Secretary\ \ of State deems necessary to establish the identity of the affiant. (7) Upon\ \ submission of an affidavit pursuant to this section, the electronic voter registration\ \ system shall provide for immediate verification of both of the following:" example_title: Election metrics: - rouge model-index: - name: t5-small-finetuned-billsum-ca_test results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum args: default metrics: - name: Rouge1 type: rouge value: 12.6315 - task: type: summarization name: Summarization dataset: name: billsum type: billsum config: default split: test metrics: - name: ROUGE-1 type: rouge value: 12.1368 verified: true - name: ROUGE-2 type: rouge value: 4.6017 verified: true - name: ROUGE-L type: rouge value: 10.0767 verified: true - name: ROUGE-LSUM type: rouge value: 10.6892 verified: true - name: loss type: loss value: 2.897707462310791 verified: true - name: gen_len type: gen_len value: 19.0 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-billsum-ca_test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Rouge1: 12.6315 - Rouge2: 6.9839 - Rougel: 10.9983 - Rougelsum: 11.9383 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 2.4805 | 9.9389 | 4.1239 | 8.3979 | 9.1599 | 19.0 | | 3.1564 | 2.0 | 990 | 2.3833 | 12.1026 | 6.5196 | 10.5123 | 11.4527 | 19.0 | | 2.66 | 3.0 | 1485 | 2.3496 | 12.5389 | 6.8686 | 10.8798 | 11.8636 | 19.0 | | 2.5671 | 4.0 | 1980 | 2.3376 | 12.6315 | 6.9839 | 10.9983 | 11.9383 | 19.0 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2021-11-18T00:32:42Z
--- language: - py - en thumbnail: "url to a thumbnail used in social sharing" tags: - Code2TextGeneration - Code2TextSummarisation license: apache-2.0 datasets: - code_x_glue_ct_code_to_text - code_x_glue_ct_code_to_text (python) metrics: - code-x-bleu --- pretrained model: https://huggingface.co/Salesforce/codet5-small finetuning dataset: https://huggingface.co/datasets/code_x_glue_ct_code_to_text (only the python split) official inference check point (for comparison, using base, not small, size): https://storage.googleapis.com/sfr-codet5-data-research/finetuned_models/summarize_python_codet5_base.bin for fine-tuning process metrics see [this w&b report](https://wandb.ai/stmnk/CodeT5/reports/Code-T5-code_x_glue_code2text--VmlldzoxMjM4MTUy?accessToken=5stsbg6bn2x0m6svrosxtq0zv3vhlgzr4cjcyapw52xq5puc09wo6f8li40ln7fm) <!-- <iframe src="https://wandb.ai/stmnk/CodeT5/reports/Code-T5-code_x_glue_code2text--VmlldzoxMjM4MTUy" style="border:none;height:1024px;width:100%"> -->
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2022-01-21T03:19:17Z
--- language: - nl license: apache-2.0 tags: - nl - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 ---
gpt2-xl
[ "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "en", "arxiv:1910.09700", "transformers", "license:mit", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
308,781
2021-03-30T13:21:19Z
--- language: en thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png tags: - luke - named entity recognition - entity typing - relation classification - question answering license: apache-2.0 --- ## LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention **LUKE** (**L**anguage **U**nderstanding with **K**nowledge-based **E**mbeddings) is a new pre-trained contextualized representation of words and entities based on transformer. LUKE treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. LUKE adopts an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. LUKE achieves state-of-the-art results on five popular NLP benchmarks including **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive question answering), **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)** (cloze-style question answering), **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation classification), and **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing). Please check the [official repository](https://github.com/studio-ousia/luke) for more details and updates. This is the LUKE large model with 24 hidden layers, 1024 hidden size. The total number of parameters in this model is 483M. It is trained using December 2018 version of Wikipedia. ### Experimental results The experimental results are provided as follows: | Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA | | ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- | | Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) | | Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) | | Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) | | Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | | Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) | ### Citation If you find LUKE useful for your work, please cite the following paper: ```latex @inproceedings{yamada2020luke, title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention}, author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto}, booktitle={EMNLP}, year={2020} } ```
007J/smile
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2021-09-26T20:37:42Z
--- tags: - conversational --- # Dwight DialoGPT Model You can find the code [here](https://github.com/sudo-apt-Abrar/BearsandBeets)
AKulk/wav2vec2-base-timit-epochs15
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2021-09-02T22:23:29Z
--- language: en datasets: - superb tags: - speech - audio - wav2vec2 - audio-classification license: apache-2.0 widget: - example_title: Speech Commands "down" src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav - example_title: Speech Commands "go" src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav --- # Wav2Vec2-Large for Keyword Spotting ## Model description This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands). The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting). ## Usage examples You can use the model via the Audio Classification pipeline: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "ks", split="test") classifier = pipeline("audio-classification", model="superb/wav2vec2-large-superb-ks") labels = classifier(dataset[0]["file"], top_k=5) ``` Or use the model directly: ```python import torch from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor from torchaudio.sox_effects import apply_effects_file effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]] def map_to_array(example): speech, _ = apply_effects_file(example["file"], effects) example["speech"] = speech.squeeze(0).numpy() return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ks", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ks") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ks") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9666` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
39
2022-01-24T18:17:11Z
--- tags: - spacy - token-classification language: - en widget: - text: "Light dissolved inorganic carbon (DIC) resulting from the oxidation of hydrocarbons." - text: "RAFs are plotted for a selection of neurons in the dorsal zone (DZ) of auditory cortex in Figure 1." - text: "Images were acquired using a GE 3.0T MRI scanner with an upgrade for echo-planar imaging (EPI)." model-index: - name: en_abbreviation_detection_roberta_lar results: - task: name: AbbreviationDetection type: token-classification metrics: - name: Precision type: precision value: 0.9611772641 - name: Recall type: recall value: 0.9446958783 - name: F Score type: f_score value: 0.9528653083 --- | Feature | Description | | --- | --- | | **Name** | `en_abbreviation_detection_roberta_lar` | | **Version** | `0.0.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `transformer`, `abbreviationDetection` | | **Components** | `transformer`, `abbreviationDetection` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | PLOSDataset-LREC22-Submitted | | **License** | cc-by-sa-4.0 | | **Author** | [Diptesh Kanojia](https://dipteshkanojia.github.io) | ### Label Scheme <details> <summary>View label scheme (3 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`abbreviationDetection`** | `AC`, `LF`, `O` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 95.29 | | `ENTS_P` | 96.12 | | `ENTS_R` | 94.47 | | `TRANSFORMER_LOSS` | 287952.16 | | `NER_LOSS` | 608954.79 |
AlbertHSU/BertTEST
[ "pytorch" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
## TextAttack Model Cardand the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8245445829338447, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlbertHSU/ChineseFoodBert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8970588235294118, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alberto15Romero/GptNeo
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9073707642839476, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlchemistDude/DialoGPT-medium-Gon
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.776173285198556, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Ale/Alen
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 64. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9254587155963303, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/bert-srb-ner
[ "pytorch", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2020-06-28T22:46:23Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8808630393996247, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/distilbert-srb-base-cased-oscar
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
## albert-base-v2 fine-tuned with TextAttack on the rotten_tomatoes dataset This `albert-base-v2` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 128, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8855534709193246, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the snli dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 64. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9060150375939849, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/distilbert-srb-ner-setimes
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 3e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.975078947368421, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/distilbert-srb-ner
[ "pytorch", "distilbert", "token-classification", "sr", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
## TextAttack Model Card This `bert-base-cased` model was fine-tuned for sequence classificationusing TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 128, a learning rate of 1e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8244429996636282, as measured by the eval set pearson correlation, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar/electra-srb-ner
[ "pytorch", "safetensors", "electra", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
{ "architectures": [ "ElectraForTokenClassification" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8774509803921569, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar1932/gpt2-country
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar1932/gpt2-rock-124439808
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5633802816901409, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar1932/gpt2-soul
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
## TextAttack Model CardThis `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9514473684210526, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandar1932/gpt2-spanish-classics
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.89088, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandra/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.875234521575985, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Aleksandra/herbert-base-cased-finetuned-squad
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2020-06-25T19:58:18Z
## bert-base-uncased fine-tuned with TextAttack on the rotten_tomatoes dataset This `bert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 64, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.875234521575985, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlekseyKorshuk/bert
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
null
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9699473684210527, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alerosae/SocratesGPT-2
[ "pytorch", "gpt2", "feature-extraction", "en", "transformers", "text-generation" ]
text-generation
{ "architectures": [ "GPT2Model" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
## TextAttack Model Card This `distilbert-base-cased` model was fine-tuned for sequence classificationusing TextAttack and the snli dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 256, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8768542979069295, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alessandro/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Cardand the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8235858101629914, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru
[ "pytorch", "xlm-roberta", "question-answering", "en", "ru", "multilingual", "arxiv:1912.09723", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,012
null
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8578431372549019, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlexN/xls-r-300m-fr-0
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.6570397111913358, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlexN/xls-r-300m-pt
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
null
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 128, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5633802816901409, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlexaMerens/Owl
[ "license:cc" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model CardThis `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9478947368421052, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AlexaRyck/KEITH
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.88, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alexander-Learn/bert-finetuned-ner-accelerate
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 128, a learning rate of 1e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8395872420262664, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alexander-Learn/bert-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
## TextAttack Model CardSince this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
Alexander-Learn/bert-finetuned-squad-accelerate
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
## TextAttack Model Cardrate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
AmitT/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: In tf_transformers ```python from tf_transformers.models import BertModel from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] inputs_tf["input_type_ids"] = inputs["token_type_ids"] inputs_tf["input_mask"] = inputs["attention_mask"] outputs_tf = model(inputs_tf) ``` ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-cased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
Amrrs/indian-foods
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index", "autotrain_compatible" ]
image-classification
{ "architectures": [ "ViTForImageClassification" ], "model_type": "vit", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT large model (uncased) whole word masking Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same. The training is identical -- each masked WordPiece token is predicted independently. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. This model has the following configuration: - 24-layer - 1024 hidden dimension - 16 attention heads - 336M parameters. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: In tf_transformers ```python from tf_transformers.models import BertModel from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-large-cased-whole-word-masking') model = BertModel.from_pretrained("bert-large-cased-whole-word-masking") text = "Replace me by any text you'd like." inputs_tf = {} inputs = tokenizer(text, return_tensors='tf') inputs_tf["input_ids"] = inputs["input_ids"] inputs_tf["input_type_ids"] = inputs["token_type_ids"] inputs_tf["input_mask"] = inputs["attention_mask"] outputs_tf = model(inputs_tf) ``` ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Model | SQUAD 1.1 F1/EM | Multi NLI Accuracy ---------------------------------------- | :-------------: | :----------------: BERT-Large, Cased (Whole Word Masking) | 92.9/86.7 | 86.46 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Andrey78/my_nlp_test_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: indian-snacks results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6696428656578064 --- # indian-snacks Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### chalk ![chalk](images/chalk.jpg) #### crayon ![crayon](images/crayon.jpg) #### marker ![marker](images/marker.jpg) #### pencil ![pencil](images/pencil.jpg) #### pens ![pens](images/pens.jpg)
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9211076096482195 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2274 - Accuracy: 0.921 - F1: 0.9211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8308 | 1.0 | 250 | 0.3319 | 0.8955 | 0.8897 | | 0.2516 | 2.0 | 500 | 0.2274 | 0.921 | 0.9211 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - conversational --- # Harry Potter DialoGPT MOdel
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_1
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- title: ArcaneGAN emoji: 🚀 colorFrom: blue colorTo: blue sdk: gradio app_file: app.py pinned: false --- # Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- language: - english thumbnail: tags: - token classification license: datasets: - EMBO/sd-panels metrics: - --- # sd-ner ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang) and fine-tuned for token classification on the SourceData [sd-panels](https://huggingface.co/datasets/EMBO/sd-panels) dataset to perform Named Entity Recognition of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is for Named Entity Recognition of biological entitie used in SourceData annotations (https://sourcedata.embo.org), including small molecules, gene products (genes and proteins), subcellular components, cell line and cell types, organ and tissues, species as well as experimental methods. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s> F. Western blot of input and eluates of Upf1 domains purification in a Nmd4-HA strain. The band with the # might corresponds to a dimer of Upf1-CH, bands marked with a star correspond to residual signal with the anti-HA antibodies (Nmd4). Fragments in the eluate have a smaller size because the protein A part of the tag was removed by digestion with the TEV protease. G6PDH served as a loading control in the input samples </s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-ner') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-panels dataset](https://huggingface.co/datasets/EMBO/biolang) wich includes manually annotated examples. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Command: `python -m tokcl.train /data/json/sd_panels NER --num_train_epochs=3.5` - Tokenizer vocab size: 50265 - Training data: EMBO/biolang MLM - Training with 31410 examples. - Evaluating on 8861 examples. - Training on 15 features: O, I-SMALL_MOLECULE, B-SMALL_MOLECULE, I-GENEPROD, B-GENEPROD, I-SUBCELLULAR, B-SUBCELLULAR, I-CELL, B-CELL, I-TISSUE, B-TISSUE, I-ORGANISM, B-ORGANISM, I-EXP_ASSAY, B-EXP_ASSAY - Epochs: 3.5 - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On test set with `sklearn.metrics`: ``` precision recall f1-score support CELL 0.77 0.81 0.79 3477 EXP_ASSAY 0.71 0.70 0.71 7049 GENEPROD 0.86 0.90 0.88 16140 ORGANISM 0.80 0.82 0.81 2759 SMALL_MOLECULE 0.78 0.82 0.80 4446 SUBCELLULAR 0.71 0.75 0.73 2125 TISSUE 0.70 0.75 0.73 1971 micro avg 0.79 0.82 0.81 37967 macro avg 0.76 0.79 0.78 37967 weighted avg 0.79 0.82 0.81 37967 ```
AnonymousSub/rule_based_only_classfn_epochs_1_shard_10
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - conversational --- # Rick DialogPT Model
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-small This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3763 - Wer: 0.1791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2277 | 0.26 | 400 | 0.2601 | 0.2291 | | 0.2932 | 0.53 | 800 | 0.2950 | 0.2670 | | 0.3019 | 0.79 | 1200 | 0.3247 | 0.2766 | | 0.2987 | 1.05 | 1600 | 0.3031 | 0.2606 | | 0.261 | 1.32 | 2000 | 0.2994 | 0.2620 | | 0.2651 | 1.58 | 2400 | 0.3134 | 0.2700 | | 0.264 | 1.85 | 2800 | 0.3016 | 0.2641 | | 0.2475 | 2.11 | 3200 | 0.3135 | 0.2661 | | 0.2269 | 2.37 | 3600 | 0.3029 | 0.2562 | | 0.2389 | 2.64 | 4000 | 0.3035 | 0.2549 | | 0.2319 | 2.9 | 4400 | 0.3022 | 0.2551 | | 0.2123 | 3.16 | 4800 | 0.3256 | 0.2638 | | 0.2094 | 3.43 | 5200 | 0.3227 | 0.2712 | | 0.2121 | 3.69 | 5600 | 0.3085 | 0.2596 | | 0.207 | 3.96 | 6000 | 0.3041 | 0.2597 | | 0.1809 | 4.22 | 6400 | 0.3122 | 0.2524 | | 0.1846 | 4.48 | 6800 | 0.3254 | 0.2579 | | 0.1885 | 4.75 | 7200 | 0.2958 | 0.2437 | | 0.1923 | 5.01 | 7600 | 0.3136 | 0.2502 | | 0.1626 | 5.27 | 8000 | 0.3059 | 0.2488 | | 0.1704 | 5.54 | 8400 | 0.3082 | 0.2515 | | 0.1674 | 5.8 | 8800 | 0.3196 | 0.2509 | | 0.1691 | 6.06 | 9200 | 0.3193 | 0.25 | | 0.1499 | 6.33 | 9600 | 0.3529 | 0.2635 | | 0.1568 | 6.59 | 10000 | 0.3241 | 0.2481 | | 0.1538 | 6.86 | 10400 | 0.3354 | 0.2476 | | 0.1503 | 7.12 | 10800 | 0.3180 | 0.2402 | | 0.136 | 7.38 | 11200 | 0.3230 | 0.2397 | | 0.1413 | 7.65 | 11600 | 0.3178 | 0.2451 | | 0.147 | 7.91 | 12000 | 0.3170 | 0.2389 | | 0.1341 | 8.17 | 12400 | 0.3380 | 0.2501 | | 0.1329 | 8.44 | 12800 | 0.3265 | 0.2414 | | 0.1314 | 8.7 | 13200 | 0.3281 | 0.2482 | | 0.1312 | 8.97 | 13600 | 0.3259 | 0.2539 | | 0.12 | 9.23 | 14000 | 0.3291 | 0.2424 | | 0.1193 | 9.49 | 14400 | 0.3302 | 0.2412 | | 0.1189 | 9.76 | 14800 | 0.3376 | 0.2407 | | 0.1217 | 10.02 | 15200 | 0.3334 | 0.2400 | | 0.1118 | 10.28 | 15600 | 0.3359 | 0.2368 | | 0.1139 | 10.55 | 16000 | 0.3239 | 0.2335 | | 0.1106 | 10.81 | 16400 | 0.3374 | 0.2352 | | 0.1081 | 11.07 | 16800 | 0.3585 | 0.2434 | | 0.1063 | 11.34 | 17200 | 0.3639 | 0.2472 | | 0.1041 | 11.6 | 17600 | 0.3399 | 0.2423 | | 0.1062 | 11.87 | 18000 | 0.3410 | 0.2388 | | 0.1012 | 12.13 | 18400 | 0.3597 | 0.2413 | | 0.0953 | 12.39 | 18800 | 0.3440 | 0.2296 | | 0.097 | 12.66 | 19200 | 0.3440 | 0.2269 | | 0.0968 | 12.92 | 19600 | 0.3498 | 0.2333 | | 0.0902 | 13.18 | 20000 | 0.3471 | 0.2290 | | 0.0868 | 13.45 | 20400 | 0.3462 | 0.2266 | | 0.0892 | 13.71 | 20800 | 0.3373 | 0.2227 | | 0.0902 | 13.97 | 21200 | 0.3377 | 0.2240 | | 0.0846 | 14.24 | 21600 | 0.3484 | 0.2237 | | 0.0839 | 14.5 | 22000 | 0.3706 | 0.2260 | | 0.0834 | 14.77 | 22400 | 0.3430 | 0.2268 | | 0.0841 | 15.03 | 22800 | 0.3489 | 0.2259 | | 0.076 | 15.29 | 23200 | 0.3626 | 0.2281 | | 0.0771 | 15.56 | 23600 | 0.3624 | 0.2268 | | 0.0773 | 15.82 | 24000 | 0.3440 | 0.2252 | | 0.0759 | 16.08 | 24400 | 0.3532 | 0.2170 | | 0.0745 | 16.35 | 24800 | 0.3686 | 0.2188 | | 0.0713 | 16.61 | 25200 | 0.3691 | 0.2195 | | 0.0718 | 16.88 | 25600 | 0.3470 | 0.2108 | | 0.0685 | 17.14 | 26000 | 0.3756 | 0.2179 | | 0.0689 | 17.4 | 26400 | 0.3542 | 0.2149 | | 0.0671 | 17.67 | 26800 | 0.3461 | 0.2165 | | 0.0737 | 17.93 | 27200 | 0.3473 | 0.2238 | | 0.0669 | 18.19 | 27600 | 0.3441 | 0.2138 | | 0.0629 | 18.46 | 28000 | 0.3721 | 0.2155 | | 0.0632 | 18.72 | 28400 | 0.3667 | 0.2126 | | 0.0647 | 18.98 | 28800 | 0.3579 | 0.2097 | | 0.0603 | 19.25 | 29200 | 0.3670 | 0.2130 | | 0.0604 | 19.51 | 29600 | 0.3750 | 0.2142 | | 0.0619 | 19.78 | 30000 | 0.3804 | 0.2160 | | 0.0603 | 20.04 | 30400 | 0.3764 | 0.2124 | | 0.0577 | 20.3 | 30800 | 0.3858 | 0.2097 | | 0.0583 | 20.57 | 31200 | 0.3520 | 0.2089 | | 0.0561 | 20.83 | 31600 | 0.3615 | 0.2079 | | 0.0545 | 21.09 | 32000 | 0.3824 | 0.2032 | | 0.0525 | 21.36 | 32400 | 0.3858 | 0.2091 | | 0.0524 | 21.62 | 32800 | 0.3956 | 0.2099 | | 0.0527 | 21.89 | 33200 | 0.3667 | 0.2025 | | 0.0514 | 22.15 | 33600 | 0.3708 | 0.2032 | | 0.0506 | 22.41 | 34000 | 0.3815 | 0.2053 | | 0.0478 | 22.68 | 34400 | 0.3671 | 0.2007 | | 0.049 | 22.94 | 34800 | 0.3758 | 0.2003 | | 0.0477 | 23.2 | 35200 | 0.3786 | 0.2014 | | 0.045 | 23.47 | 35600 | 0.3732 | 0.1998 | | 0.0426 | 23.73 | 36000 | 0.3737 | 0.2010 | | 0.0444 | 23.99 | 36400 | 0.3600 | 0.1990 | | 0.0433 | 24.26 | 36800 | 0.3689 | 0.1976 | | 0.0442 | 24.52 | 37200 | 0.3787 | 0.1968 | | 0.0419 | 24.79 | 37600 | 0.3652 | 0.1961 | | 0.042 | 25.05 | 38000 | 0.3820 | 0.1964 | | 0.0419 | 25.31 | 38400 | 0.3786 | 0.1919 | | 0.0376 | 25.58 | 38800 | 0.3842 | 0.1934 | | 0.0385 | 25.84 | 39200 | 0.3767 | 0.1900 | | 0.0396 | 26.1 | 39600 | 0.3688 | 0.1888 | | 0.0371 | 26.37 | 40000 | 0.3815 | 0.1894 | | 0.0363 | 26.63 | 40400 | 0.3748 | 0.1878 | | 0.0377 | 26.9 | 40800 | 0.3713 | 0.1852 | | 0.0352 | 27.16 | 41200 | 0.3734 | 0.1851 | | 0.0355 | 27.42 | 41600 | 0.3776 | 0.1874 | | 0.0333 | 27.69 | 42000 | 0.3867 | 0.1841 | | 0.0348 | 27.95 | 42400 | 0.3823 | 0.1839 | | 0.0329 | 28.21 | 42800 | 0.3795 | 0.1822 | | 0.0325 | 28.48 | 43200 | 0.3711 | 0.1813 | | 0.0328 | 28.74 | 43600 | 0.3721 | 0.1781 | | 0.0312 | 29.0 | 44000 | 0.3803 | 0.1816 | | 0.0318 | 29.27 | 44400 | 0.3758 | 0.1794 | | 0.0302 | 29.53 | 44800 | 0.3792 | 0.1784 | | 0.0339 | 29.8 | 45200 | 0.3763 | 0.1791 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2021-02-23T08:40:44Z
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # Wav2Vec2-Base-960h This repository is a reimplementation of [official Facebook’s wav2vec](https://huggingface.co/facebook/wav2vec2-base-960h). There is no description of converting the wav2vec [pretrain model](https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20) to a pytorch.bin file. We are rebuilding pytorch.bin from the pretrain model. Here is the conversion method. ```bash pip install transformers[sentencepiece] pip install fairseq -U git clone https://github.com/huggingface/transformers.git cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py . wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small_960h.pt -O ./wav2vec_small_960h.pt mkdir dict wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt mkdir outputs python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./wav2vec_small_960h.pt --dict_path ./dict ``` # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and tokenizer tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # define function to read in sound file def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") ds = ds.map(map_to_array) # tokenize input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.4 | 8.6 | # Reference [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Facebook's huggingface Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) [Paper](https://arxiv.org/abs/2006.11477)
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300M-teste2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300M-teste2 This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-01-09T20:19:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-300m-teste4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300m-teste4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3276 - Wer: 0.3489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.0237 | 0.49 | 100 | 4.2075 | 0.9792 | | 3.313 | 0.98 | 200 | 3.0232 | 0.9792 | | 2.9469 | 1.47 | 300 | 2.7591 | 0.9792 | | 1.4217 | 1.96 | 400 | 0.8397 | 0.6219 | | 0.5598 | 2.45 | 500 | 0.6085 | 0.5087 | | 0.4507 | 2.94 | 600 | 0.4512 | 0.4317 | | 0.2775 | 3.43 | 700 | 0.3839 | 0.3751 | | 0.2047 | 3.92 | 800 | 0.3276 | 0.3489 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_squad2.0
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2021-11-21T17:29:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3637 - Wer: 0.2982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.591 | 1.15 | 400 | 0.9128 | 0.6517 | | 0.5049 | 2.31 | 800 | 0.4596 | 0.4437 | | 0.2871 | 3.46 | 1200 | 0.3964 | 0.3905 | | 0.2077 | 4.61 | 1600 | 0.3958 | 0.3744 | | 0.1695 | 5.76 | 2000 | 0.4040 | 0.3720 | | 0.1478 | 6.92 | 2400 | 0.3866 | 0.3651 | | 0.1282 | 8.07 | 2800 | 0.3987 | 0.3674 | | 0.1134 | 9.22 | 3200 | 0.4128 | 0.3688 | | 0.1048 | 10.37 | 3600 | 0.3928 | 0.3561 | | 0.0938 | 11.53 | 4000 | 0.4048 | 0.3619 | | 0.0848 | 12.68 | 4400 | 0.4229 | 0.3555 | | 0.0798 | 13.83 | 4800 | 0.3974 | 0.3468 | | 0.0688 | 14.98 | 5200 | 0.3870 | 0.3503 | | 0.0658 | 16.14 | 5600 | 0.3875 | 0.3351 | | 0.061 | 17.29 | 6000 | 0.4133 | 0.3417 | | 0.0569 | 18.44 | 6400 | 0.3915 | 0.3414 | | 0.0526 | 19.6 | 6800 | 0.3957 | 0.3231 | | 0.0468 | 20.75 | 7200 | 0.4110 | 0.3301 | | 0.0407 | 21.9 | 7600 | 0.3866 | 0.3186 | | 0.0384 | 23.05 | 8000 | 0.3976 | 0.3193 | | 0.0363 | 24.21 | 8400 | 0.3910 | 0.3177 | | 0.0313 | 25.36 | 8800 | 0.3656 | 0.3109 | | 0.0293 | 26.51 | 9200 | 0.3712 | 0.3092 | | 0.0277 | 27.66 | 9600 | 0.3613 | 0.3054 | | 0.0249 | 28.82 | 10000 | 0.3783 | 0.3015 | | 0.0234 | 29.97 | 10400 | 0.3637 | 0.2982 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_wikiqa
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
---- tags: - conversational --- # Harry Potter DialoGPT Model
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "RobertaModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - conversational - transformers datasets: - multi_woz_v22 metrics: - perplexity widget: - text: "I would like to have breakfast." --- ## DialoGPT_MWOZ This is a fine-tuned model of DialoGPT (medium) on the MultiWOZ v2.2 dataset. It is intended to be used as a conversational system. The dataset it's trained on is limited in scope, as it covers only certain domains such as restaurants, hotel, taxi, train, hospital and police. The perplexity achieved on the test and validation sets are 10.25 and 10.71, respectively. More information about the original pre-trained model can be found [here](https://huggingface.co/microsoft/DialoGPT-medium) * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | I would like to have breakfast. | |Bot | There are several options for Chinese in the city centre. Are you looking for a particular price range? | |User | I'm looking for free food | |Bot | There are 4 Chinese restaurants that are in the cheap price range. 3 in centre and one in north. | |User | Not good enough | |Bot | How about Charlie Chan? It is a Chinese restaurant in the centre of town. | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work was accepted at the Northern Lights Deep Learning (NLDL) conference 2022. Arxiv paper: [https://arxiv.org/pdf/2110.06273.pdf](https://arxiv.org/pdf/2110.06273.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_mwoz") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_mwoz") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT_MWOZ_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))