modelId
stringlengths 4
81
| tags
sequence | pipeline_tag
stringclasses 17
values | config
dict | downloads
int64 0
59.7M
| first_commit
timestamp[ns, tz=UTC] | card
stringlengths 51
438k
|
---|---|---|---|---|---|---|
Augustvember/WokkaBot5 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ### Model information
* language : English
* fine tuning data : [squad 2.0](https://rajpurkar.github.io/SQuAD-explorer/)
* License : CC-BY-SA 4.0
* Base model : [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
* input : question, context
* output : answer
----
### Train information
* train_runtime : 7562.859
* train_steps_per_second : 1.077
* training_loss : 0.9661213896603117
* epoch: 3.0
----
### How to use
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained (
"seongju/squadv2-xlm-roberta-base"
)
model = AutoModelForSequenceClassification.from_pretrained (
"seongju/squadv2-xlm-roberta-base"
)
``` |
Ayran/DialoGPT-small-harry-potter-1-through-3 | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | null | ---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: glue-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8553921568627451
- name: F1
type: f1
value: 0.897391304347826
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8553921568627451
verified: true
- name: Precision
type: precision
value: 0.8716216216216216
verified: true
- name: Recall
type: recall
value: 0.9247311827956989
verified: true
- name: AUC
type: auc
value: 0.90464282737351
verified: true
- name: F1
type: f1
value: 0.897391304347826
verified: true
- name: loss
type: loss
value: 0.6564616560935974
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glue-mrpc
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6566
- Accuracy: 0.8554
- F1: 0.8974
- Combined Score: 0.8764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3
|
Babelscape/rebel-large | [
"pytorch",
"safetensors",
"bart",
"text2text-generation",
"en",
"dataset:Babelscape/rebel-dataset",
"transformers",
"seq2seq",
"relation-extraction",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"has_space"
] | text2text-generation | {
"architectures": [
"BartForConditionalGeneration"
],
"model_type": "bart",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9,458 | null |
---
language: "en"
tags:
- neural-search-query-classification
- neural-search
widget:
- text: "keyword query."
---
# KEYWORD QUERY VS STATEMENT/QUESTION CLASSIFIER FOR NEURAL SEARCH
| Train Loss | Validation Acc.| Test Acc.|
| ------------- |:-------------: | -----: |
| 0.000806 | 0.99 | 0.997 |
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-mini-finetune-question-detection")
model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/bert-mini-finetune-question-detection")
```
Trained to add feature for classifying queries between Keyword Query or Question + Statement Query using classification in [Haystack](https://github.com/deepset-ai/haystack/issues/611)
Problem Statement:
One common challenge that we saw in deployments: We need to distinguish between real questions and keyword queries that come in. We only want to route questions to the Reader branch in order to maximize the accuracy of results and minimize computation efforts/costs.
Baseline:
https://www.kaggle.com/shahrukhkhan/question-v-statement-detection
Dataset:
https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs
Kaggle Notebook:
https://www.kaggle.com/shahrukhkhan/question-vs-statement-classification-mini-bert/
|
Babelscape/wikineural-multilingual-ner | [
"pytorch",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"de",
"en",
"es",
"fr",
"it",
"nl",
"pl",
"pt",
"ru",
"multilingual",
"dataset:Babelscape/wikineural",
"transformers",
"named-entity-recognition",
"sequence-tagger-model",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 41,608 | null | # A Multi-task learning model with two prediction heads
* One prediction head classifies between keyword sentences vs statements/questions
* Other prediction head corresponds to classifier for statements vs questions
## Scores
##### Spaadia SQuaD Test acc: **0.9891**
##### Quora Keyword Pairs Test acc: **0.98048**
## Datasets:
Quora Keyword Pairs: https://www.kaggle.com/stefanondisponibile/quora-question-keyword-pairs
Spaadia SQuaD pairs: https://www.kaggle.com/shahrukhkhan/questions-vs-statementsclassificationdataset
## Article
[Medium article](https://medium.com/@shahrukhx01/multi-task-learning-with-transformers-part-1-multi-prediction-heads-b7001cf014bf)
## Demo Notebook
[Colab Notebook Multi-task Query classifiers](https://colab.research.google.com/drive/1R7WcLHxDsVvZXPhr5HBgIWa3BlSZKY6p?usp=sharing)
## Clone the model repo
```bash
git clone https://huggingface.co/shahrukhx01/bert-multitask-query-classifiers
```
```python
%cd bert-multitask-query-classifiers/
```
## Load model
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
```
## Run inference on both Tasks
```python
from multitask_model import BertForSequenceClassification
from transformers import AutoTokenizer
import torch
model = BertForSequenceClassification.from_pretrained(
"shahrukhx01/bert-multitask-query-classifiers",
task_labels_map={"quora_keyword_pairs": 2, "spaadia_squad_pairs": 2},
)
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/bert-multitask-query-classifiers")
## Keyword vs Statement/Question Classifier
input = ["keyword query", "is this a keyword query?"]
task_name="quora_keyword_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
## Statement vs Question Classifier
input = ["where is berlin?", "is this a keyword query?", "Berlin is in Germany."]
task_name="spaadia_squad_pairs"
sequence = tokenizer(input, padding=True, return_tensors="pt")['input_ids']
logits = model(sequence, task_name=task_name)[0]
predictions = torch.argmax(torch.softmax(logits, dim=1).detach().cpu(), axis=1)
for input, prediction in zip(input, predictions):
print(f"task: {task_name}, input: {input} \n prediction=> {prediction}")
print()
``` |
Babysittingyoda/DialoGPT-small-familyguy | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 13 | null | The distilbart-cnn-12-6-text2sql is fine-tuned on WIKISQL dataset.
```python
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
model = BartForConditionalGeneration.from_pretrained('shahrukhx01/distilbart-cnn-12-6-text2sql')
tokenizer = BartTokenizer.from_pretrained('shahrukhx01/distilbart-cnn-12-6-text2sql')
TEXT_QUERY = "what is the temperature of berlin "
inputs = tokenizer([TEXT_QUERY], max_length=1024, return_tensors='pt')
# Generate SQL
text_query_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in text_query_ids])
``` |
Backedman/DialoGPT-small-Anika | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | ---
tags:
- fuzzy-matching
- fuzzy-search
- entity-resolution
- record-linking
- structured-data-search
---
A Siamese BERT architecture trained at character levels tokens for embedding based Fuzzy matching.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer, util
word1 = "fuzzformer"
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match
word2 = "fizzformer"
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match
words = [word1, word2]
model = SentenceTransformer('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
fuzzy_embeddings = model.encode(words)
print("Fuzzy Match score:")
print(util.cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
```
## Usage (HuggingFace Transformers)
```python
import torch
from transformers import AutoTokenizer, AutoModel
from torch import Tensor, device
def cos_sim(a: Tensor, b: Tensor):
"""
borrowed from sentence transformers repo
Computes the cosine similarity cos_sim(a[i], b[j]) for all i and j.
:return: Matrix with res[i][j] = cos_sim(a[i], b[j])
"""
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
if len(a.shape) == 1:
a = a.unsqueeze(0)
if len(b.shape) == 1:
b = b.unsqueeze(0)
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
return torch.mm(a_norm, b_norm.transpose(0, 1))
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Words we want fuzzy embeddings for
word1 = "fuzzformer"
word1 = " ".join([char for char in word1]) ## divide the word to char level to fuzzy match
word2 = "fizzformer"
word2 = " ".join([char for char in word2]) ## divide the word to char level to fuzzy match
words = [word1, word2]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
model = AutoModel.from_pretrained('shahrukhx01/paraphrase-mpnet-base-v2-fuzzy-matcher')
# Tokenize sentences
encoded_input = tokenizer(words, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
fuzzy_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Fuzzy Match score:")
print(cos_sim(fuzzy_embeddings[0], fuzzy_embeddings[1]))
```
## ACKNOWLEDGEMENT
A big thank you to [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) as their implementation really expedited the implementation of Fuzzformer.
## Citation
To cite FuzzTransformer in your work, please use the following bibtex reference:
@misc{shahrukhkhan2021fuzzTransformer, <br>
author = {Shahrukh Khan},<br>
title = {FuzzTransformer: A character level embedding based Siamese transformer for fuzzy string matching.},<br>
year = 2021,<br>
publisher = {Coming soon},<br>
doi = {Coming soon},<br>
url = {Coming soon}<br>
}
|
Badr/model1 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "en"
tags:
- neural-search-query-classification
- neural-search
widget:
- text: "what did you eat in lunch?"
---
# KEYWORD STATEMENT VS QUESTION CLASSIFIER FOR NEURAL SEARCH
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/question-vs-statement-classifier")
model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/question-vs-statement-classifier")
```
Trained to add the feature for classifying queries between Question Query vs Statement Query using classification in [Haystack](https://github.com/deepset-ai/haystack/issues/611)
|
Bagus/SER-LSSED | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "en"
tags:
- boolean-qa
widget:
- text: "Is Berlin the smallest city of Germany? <s> Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits "
---
# Labels Map
LABEL_0 => **"NO"** <br/>
LABEL_1 => **"YES"**
```python
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
)
model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/roberta-base-boolq")
model.to(device)
#model.push_to_hub("roberta-base-boolq")
tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/roberta-base-boolq")
def predict(question, passage):
sequence = tokenizer.encode_plus(question, passage, return_tensors="pt")['input_ids'].to(device)
logits = model(sequence)[0]
probabilities = torch.softmax(logits, dim=1).detach().cpu().tolist()[0]
proba_yes = round(probabilities[1], 2)
proba_no = round(probabilities[0], 2)
print(f"Question: {question}, Yes: {proba_yes}, No: {proba_no}")
passage = """Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city,
according to the population within city limits."""
question = "Is Berlin the smallest city of Germany?"
predict(s_question, passage)
```
|
Bagus/ser-japanese | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ## Multiple Prediction Heads
* ExtractiveQA Head
* Three Class Classification Head, classes => (yes, no, extra_qa) to answer binary questions or direct to ExtractiveQA Head
## BoolQ Validation dataset Evaluation: <br/>
support => 3270 <br/>
accuracy => 0.73 <br/>
macro f1 => 0.71
## SQuAD Validation dataset Evaluation: <br/>
eval_HasAns_exact = 78.0196 <br/>
eval_HasAns_f1 = 84.0327 <br/>
eval_HasAns_total = 5928 <br/>
eval_NoAns_exact = 81.8167 <br/>
eval_NoAns_f1 = 81.8167 <br/>
eval_NoAns_total = 5945 <br/>
eval_best_exact = 79.9208 <br/>
eval_best_f1 = 82.9231 <br/>
eval_exact = 79.9208 <br/>
eval_f1 = 82.9231 <br/>
eval_samples = 12165 <br/>
eval_total = 11873
## Uasge in transformers
Import the script from [here](https://huggingface.co/shahrukhx01/roberta-base-squad2-boolq-baseline/blob/main/multitask_model.py)
```python
from multitask_model import RobertaForMultitaskQA
from transformers import RobertaTokenizerFast
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RobertaForMultitaskQA.from_pretrained(
"shahrukhx01/roberta-base-squad2-boolq-baseline",
task_labels_map={"squad_v2": 2, "boolq": 3},
).to(device)
tokenizer = RobertaTokenizerFast.from_pretrained("shahrukhx01/roberta-base-squad2-boolq-baseline")
``` |
Bagus/wav2vec2-large-xlsr-bahasa-indonesia | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"el",
"dataset:common_voice_id_6.1",
"transformers",
"audio",
"speech",
"bahasa-indonesia",
"license:apache-2.0"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | 2021-08-18T20:11:10Z | ---
language: "en"
tags:
- schema-aware-text2sql
- text2sql
- wikisql
widget:
- text: "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text"
---
```python
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
model = BartForConditionalGeneration.from_pretrained('shahrukhx01/schema-aware-denoising-bart-large-cnn-text2sql')
tokenizer = BartTokenizer.from_pretrained('shahrukhx01/schema-aware-denoising-bart-large-cnn-text2sql')
## add NL query with table schema
question = "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text"
inputs = tokenizer([question], max_length=1024, return_tensors='pt')
# Generate SQL
text_query_ids = model.generate(inputs['input_ids'], num_beams=4, min_length=0, max_length=125, early_stopping=True)
prediction = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in text_query_ids][0]
print(prediction)
``` |
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition | [
"pytorch",
"tensorboard",
"wav2vec2",
"el",
"dataset:aesdd",
"transformers",
"audio",
"audio-classification",
"speech",
"license:apache-2.0"
] | audio-classification | {
"architectures": [
"Wav2Vec2ForSpeechClassification"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 21 | 2021-08-12T06:10:50Z | ---
tags:
- wikisql
- text2sql
---
```python
from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
model = BartForConditionalGeneration.from_pretrained('shahrukhx01/schema-aware-distilbart-cnn-12-6-text2sql')
tokenizer = BartTokenizer.from_pretrained('shahrukhx01/schema-aware-distilbart-cnn-12-6-text2sql')
## add NL query with table schema
question = "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text"
inputs = tokenizer([question], max_length=1024, return_tensors='pt')
# Generate SQL
text_query_ids = model.generate(inputs['input_ids'], num_beams=4, min_length=0, max_length=125, early_stopping=True)
prediction = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in text_query_ids][0]
print(prediction)
``` |
Balgow/prod_desc | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-02-18T18:41:25Z | # wav2vec2-xls-r-1b-dv-with-lm
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. |
Barbarameerr/Barbara | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
widget:
- text: "What is COVID-19?"
context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic."
- text: "Where was COVID-19 first discovered?"
context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event."
- text: "What is Post-COVID syndrome?"
context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction."
---
# covid_qa_mpnet
This model is a fine-tuned version of [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on our COVID-19 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2477 | 1.0 | 3895 | 0.1869 |
| 0.1838 | 2.0 | 7790 | 0.1352 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Barleysack/klue-roberta-LSTM | [
"pytorch",
"roberta",
"transformers"
] | null | {
"architectures": [
"QAWithLSTMModel"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | 2021-11-19T15:38:21Z | ---
license: apache-2.0
tags:
- generated_from_trainer
- summarization
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-arxiv-cs-finetuned-arxiv-cs-full
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-arxiv-cs-finetuned-arxiv-cs-full
This model is a fine-tuned version of [shamikbose89/mt5-small-finetuned-arxiv-cs](https://huggingface.co/shamikbose89/mt5-small-finetuned-arxiv-cs) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4037
- Rouge1: 39.8923
- Rouge2: 20.9831
- Rougel: 35.8642
- Rougelsum: 35.8511
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.9675 | 1.0 | 500 | 1.5573 | 36.4989 | 18.4839 | 33.2984 | 33.2917 |
| 1.7523 | 2.0 | 1000 | 1.4972 | 37.7911 | 19.0357 | 33.5725 | 33.6058 |
| 1.6611 | 3.0 | 1500 | 1.4593 | 38.5822 | 19.4928 | 34.215 | 34.2531 |
| 1.6187 | 4.0 | 2000 | 1.4492 | 39.1219 | 20.8705 | 35.1969 | 35.2255 |
| 1.5864 | 5.0 | 2500 | 1.4289 | 39.7304 | 21.0654 | 35.6602 | 35.6667 |
| 1.5553 | 6.0 | 3000 | 1.4184 | 40.0696 | 21.0883 | 35.9536 | 35.9132 |
| 1.5215 | 7.0 | 3500 | 1.4163 | 39.1956 | 20.6757 | 35.5016 | 35.5196 |
| 1.5038 | 8.0 | 4000 | 1.4148 | 39.2373 | 20.3114 | 35.1676 | 35.1532 |
| 1.4929 | 9.0 | 4500 | 1.4064 | 39.9249 | 21.0155 | 35.8247 | 35.7937 |
| 1.4791 | 10.0 | 5000 | 1.4037 | 39.8923 | 20.9831 | 35.8642 | 35.8511 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
BatuhanYilmaz/bert-finetuned-ner | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-base-fine-tuned-for-Punctuation-Restoration
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-fine-tuned-for-Punctuation-Restoration
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1796 | 1.0 | 1431 | 0.1097 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
Baybars/wav2vec2-xls-r-300m-cv8-turkish | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"tr",
"dataset:common_voice",
"transformers",
"common_voice",
"generated_from_trainer",
"hf-asr-leaderboard",
"robust-speech-event",
"license:apache-2.0"
] | automatic-speech-recognition | {
"architectures": [
"Wav2Vec2ForCTC"
],
"model_type": "wav2vec2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
tags:
- conversational
---
# Ash DialoGPT Model |
BigSalmon/FormalBerta2 | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 16 | null | ---
Language Pair Finetuned:
- en-mr
Metrics:
- sacrebleu
- WAT 2021: 16.11
# mbart-large-finetuned-en-mr
## Model Description
This is the mbart-large-50 model finetuned on En-Mr corpus.
## Intended uses and limitations
Mostly useful for English to Marathi translation but the mbart-large-50 model also supports other language pairs
### How to use
```python
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("shivam/mbart-large-50-finetuned-en-mr")
tokenizer = MBart50TokenizerFast.from_pretrained("shivam/mbart-large-50-finetuned-en-mr", src_lang="en_XX", tgt_lang="mr_IN")
english_input_sentence = "The Prime Minister said that cleanliness, or Swachhta, is one of the most important aspects of preventive healthcare."
model_inputs = tokenizer(english_input_sentence, return_tensors="pt")
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id["mr_IN"]
)
marathi_output_sentence = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(marathi_output_sentence)
#स्वच्छता हा प्रतिबंधात्मक आरोग्य सेवेतील सर्वात महत्त्वाचा पैलू आहे, असे पंतप्रधान म्हणाले.
```
#### Limitations
The model was trained on Google Colab and as the training takes a lot of time the model was trained for small time and small number of epochs.
## Eval results
WAT 2021: 16.11 |
BigSalmon/GPT2HardandEasy | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | 2022-01-28T17:28:25Z | ---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8111
- Wer: 0.5177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.9733 | 2.59 | 500 | 5.0697 | 1.0 |
| 3.3839 | 5.18 | 1000 | 3.3518 | 1.0 |
| 2.0596 | 7.77 | 1500 | 1.3992 | 0.7869 |
| 1.6102 | 10.36 | 2000 | 1.0712 | 0.6754 |
| 1.4587 | 12.95 | 2500 | 0.9280 | 0.6361 |
| 1.3667 | 15.54 | 3000 | 0.9281 | 0.6155 |
| 1.3042 | 18.13 | 3500 | 0.9037 | 0.5921 |
| 1.2544 | 20.73 | 4000 | 0.8996 | 0.5824 |
| 1.2274 | 23.32 | 4500 | 0.8934 | 0.5797 |
| 1.1763 | 25.91 | 5000 | 0.8643 | 0.5760 |
| 1.149 | 28.5 | 5500 | 0.8251 | 0.5544 |
| 1.1207 | 31.09 | 6000 | 0.8506 | 0.5527 |
| 1.091 | 33.68 | 6500 | 0.8370 | 0.5366 |
| 1.0613 | 36.27 | 7000 | 0.8345 | 0.5352 |
| 1.0495 | 38.86 | 7500 | 0.8380 | 0.5321 |
| 1.0345 | 41.45 | 8000 | 0.8285 | 0.5269 |
| 1.0297 | 44.04 | 8500 | 0.7836 | 0.5141 |
| 1.027 | 46.63 | 9000 | 0.8120 | 0.5180 |
| 0.9876 | 49.22 | 9500 | 0.8109 | 0.5188 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0
|
BigSalmon/GPTHeHe | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"has_space"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | 2022-01-27T13:04:19Z | ---
language:
- mr
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- mr
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: ''
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice Corpus 8.0
type: mozilla-foundation/common_voice_8_0
args: mr
metrics:
- name: Test WER
type: wer
value: 38.27
- name: Test CER
type: cer
value: 8.91
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset.
It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set:
- Without LM
+ WER: 48.53
+ CER: 10.63
- With LM
+ WER: 38.27
+ CER: 8.91
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 400.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.2706 | 22.73 | 500 | 4.0174 | 1.0 |
| 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 |
| 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 |
| 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 |
| 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 |
| 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 |
| 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 |
| 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 |
| 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 |
| 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 |
| 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 |
| 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 |
| 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 |
| 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 |
| 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 |
| 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 |
| 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0
|
BigSalmon/InformalToFormalLincoln20 | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: vision-transformer-fmri-classification-ft
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.7955589294433594
---
# vision-transformer-fmri-classification-ft
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images |
BigSalmon/MrLincoln6 | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-common_voice-tr-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-tr-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.7.1+cu110
- Datasets 1.12.1
- Tokenizers 0.10.3
|
BigSalmon/NEO125InformalToFormalLincoln | [
"pytorch",
"gpt_neo",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPTNeoForCausalLM"
],
"model_type": "gpt_neo",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | # ELECTRA-small-OWT
This is an unnoficial implementation of an
[ELECTRA](https://openreview.net/forum?id=r1xMH1BtvB) small model, trained on the
[OpenWebText corpus](https://skylion007.github.io/OpenWebTextCorpus/).
Differences from official ELECTRA models:
- we use a `BertForMaskedLM` as the generator and `BertForTokenClassification` as the discriminator
- they use an embedding projection layer, but Bert doesn't have one
## Pretraining ttask

(figure from [Clark et al. 2020](https://openreview.net/pdf?id=r1xMH1BtvB))
ELECTRA uses discriminative LM / replaced-token-detection for pretraining.
This involves a generator (a Masked LM model) creating examples for a discriminator
to classify as original or replaced for each token.
## Usage
```python
from transformers import BertForSequenceClassification, BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
electra = BertForSequenceClassification.from_pretrained('shoarora/electra-small-owt')
```
## Code
The pytorch module that implements this task is available [here](https://github.com/shoarora/lmtuners/blob/master/lmtuners/lightning_modules/discriminative_lm.py).
Further implementation information [here](https://github.com/shoarora/lmtuners/tree/master/experiments/disc_lm_small),
and [here](https://github.com/shoarora/lmtuners/blob/master/experiments/disc_lm_small/train_electra_small.py) is the script that created this model.
This specific model was trained with the following params:
- `batch_size: 512`
- `training_steps: 5e5`
- `warmup_steps: 4e4`
- `learning_rate: 2e-3`
## Downstream tasks
#### GLUE Dev results
| Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| ELECTRA-Small++ | 14M | 57.0 | 91. | 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7|
| ELECTRA-Small-OWT | 14M | 56.8 | 88.3| 87.4 | 86.8 | 88.3 | 78.9 | 87.9 | 68.5|
| ELECTRA-Small-OWT (ours) | 17M | 56.3 | 88.4| 75.0 | 86.1 | 89.1 | 77.9 | 83.0 | 67.1|
| ALECTRA-Small-OWT (ours) | 4M | 50.6 | 89.1| 86.3 | 87.2 | 89.1 | 78.2 | 85.9 | 69.6|
- Table initialized from [ELECTRA github repo](https://github.com/google-research/electra)
#### GLUE Test results
| Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| BERT-Base | 110M | 52.1 | 93.5| 84.8 | 85.9 | 89.2 | 84.6 | 90.5 | 66.4|
| GPT | 117M | 45.4 | 91.3| 75.7 | 80.0 | 88.5 | 82.1 | 88.1 | 56.0|
| ELECTRA-Small++ | 14M | 57.0 | 91.2| 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7|
| ELECTRA-Small-OWT (ours) | 17M | 57.4 | 89.3| 76.2 | 81.9 | 87.5 | 78.1 | 82.4 | 68.1|
| ALECTRA-Small-OWT (ours) | 4M | 43.9 | 87.9| 82.1 | 82.0 | 87.6 | 77.9 | 85.8 | 67.5|
|
BigSalmon/ParaphraseParentheses | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7328431372549019
- name: F1
type: f1
value: 0.8310077519379845
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-mrpc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5579
- Accuracy: 0.7328
- F1: 0.8310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 23 | 0.5797 | 0.7010 | 0.8195 |
| No log | 2.0 | 46 | 0.5647 | 0.7083 | 0.8242 |
| No log | 3.0 | 69 | 0.5677 | 0.7181 | 0.8276 |
| No log | 4.0 | 92 | 0.5495 | 0.7328 | 0.8300 |
| No log | 5.0 | 115 | 0.5579 | 0.7328 | 0.8310 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
|
BillelBenoudjit/jplu-wikiann | [
"fr",
"dataset:wikiann",
"model-index"
] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-02-02T05:34:19Z | ---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- et
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: xls-r-et-cv_8_0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: et
metrics:
- name: Test WER
type: wer
value: 0.34180826781638346
- name: Test CER
type: cer
value: 0.07356192733576256
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: et
metrics:
- name: Test WER
type: wer
value: 34.18
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: et
metrics:
- name: Test WER
type: wer
value: 45.53
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: et
metrics:
- name: Test WER
type: wer
value: 54.41
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4623
- Wer: 0.3420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3082 | 12.5 | 500 | 0.3871 | 0.4907 |
| 0.1497 | 25.0 | 1000 | 0.4168 | 0.4278 |
| 0.1243 | 37.5 | 1500 | 0.4446 | 0.4220 |
| 0.0954 | 50.0 | 2000 | 0.4426 | 0.3946 |
| 0.0741 | 62.5 | 2500 | 0.4502 | 0.3800 |
| 0.0533 | 75.0 | 3000 | 0.4618 | 0.3653 |
| 0.0447 | 87.5 | 3500 | 0.4518 | 0.3461 |
| 0.0396 | 100.0 | 4000 | 0.4623 | 0.3420 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|
Bilz/DialoGPT-small-harrypotter | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2022-01-27T23:14:34Z | ---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- robust-speech-event
- et
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: ''
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: et
metrics:
- name: Test WER
type: wer
value: 0.34753420299077314
- name: Test CER
type: cer
value: 0.07542956089330906
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: et
metrics:
- name: Test WER
type: wer
value: 47.17
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: et
metrics:
- name: Test WER
type: wer
value: 54.72
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ET dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4835
- Wer: 0.3475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3825 | 12.5 | 500 | 0.4022 | 0.5059 |
| 0.1592 | 25.0 | 1000 | 0.4585 | 0.4456 |
| 0.1215 | 37.5 | 1500 | 0.4550 | 0.4164 |
| 0.0972 | 50.0 | 2000 | 0.4725 | 0.4088 |
| 0.0731 | 62.5 | 2500 | 0.4568 | 0.3824 |
| 0.0527 | 75.0 | 3000 | 0.4712 | 0.3653 |
| 0.0428 | 87.5 | 3500 | 0.4813 | 0.3520 |
| 0.0383 | 100.0 | 4000 | 0.4835 | 0.3475 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|
Bimal/my_bot_model | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | 2022-02-06T04:21:10Z | ---
language:
- eu
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- et
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: xls-r-eus
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: eu
metrics:
- name: Test WER
type: wer
value: 0.17871523648578164
- name: Test CER
type: cer
value: 0.032624506085144
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2278
- Wer: 0.1787
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.2548 | 4.24 | 500 | 0.2470 | 0.3663 |
| 0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 |
| 0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 |
| 0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 |
| 0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 |
| 0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 |
| 0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 |
| 0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 |
| 0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 |
| 0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 |
| 0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 |
| 0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 |
| 0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 |
| 0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 |
| 0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 |
| 0.041 | 67.79 | 8000 | 0.2277 | 0.2013 |
| 0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 |
| 0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 |
| 0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 |
| 0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 |
| 0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 |
| 0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 |
| 0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
|
Binbin/test | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-07-07T11:52:20Z | ---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
# DialoGPT Trained on WhatsApp chats
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on WhatsApp chats or you can train this model on [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
feel free to ask me questions on discord server [discord server](https://discord.gg/Gqhje8Z7DX)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("harrydonni/DialoGPT-small-Michael-Scott")
model = AutoModelWithLMHead.from_pretrained("harrydonni/DialoGPT-small-Michael-Scott")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("Michael: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
this is done by shreesha thank you...... |
BinksSachary/DialoGPT-small-shaxx | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | null | ---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
# DialoGPT Trained on WhatsApp chats
This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on WhatsApp chats or you can train this model on [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script).
feel free to ask me questions on discord server [discord server](https://discord.gg/Gqhje8Z7DX)
Chat with the model:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("harrydonni/whatsapp-medium-bot-2")
model = AutoModelWithLMHead.from_pretrained("harrydonni/whatsapp-medium-bot-2")
# Let's chat for 4 lines
for step in range(4):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# print(new_user_input_ids)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("Messi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
this is done by shreesha thank you...... |
BinksSachary/ShaxxBot | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xls-r-300m-dementianet
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-dementianet
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3430
- Accuracy: 0.4062
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 22
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3845 | 3.33 | 40 | 1.3556 | 0.3125 |
| 1.3659 | 6.67 | 80 | 1.3602 | 0.3125 |
| 1.3619 | 10.0 | 120 | 1.3569 | 0.3125 |
| 1.3575 | 13.33 | 160 | 1.3509 | 0.3125 |
| 1.3356 | 16.67 | 200 | 1.3599 | 0.3125 |
| 1.3166 | 20.0 | 240 | 1.3430 | 0.4062 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
BitanBiswas/mbert-bengali-ner-finetuned-ner | [
"pytorch",
"tensorboard",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xls-r-300m-dm32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-dm32
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5688
- Accuracy: 0.7917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 22
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 2.41 | 34 | 0.6769 | 0.6458 |
| No log | 4.83 | 68 | 0.6864 | 0.5208 |
| No log | 7.28 | 102 | 0.6596 | 0.6042 |
| 0.7106 | 9.69 | 136 | 0.6208 | 0.6875 |
| 0.7106 | 12.14 | 170 | 0.6152 | 0.6875 |
| 0.7106 | 14.55 | 204 | 0.6167 | 0.6875 |
| 0.6464 | 16.97 | 238 | 0.5782 | 0.7708 |
| 0.6464 | 19.41 | 272 | 0.6011 | 0.7292 |
| 0.6464 | 21.83 | 306 | 0.5688 | 0.7917 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Blabla/Pipipopo | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xls-r-300m-sanitycheck
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-sanitycheck
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0092
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.14 | 8 | 0.8034 | 0.4737 |
| No log | 2.29 | 16 | 0.6803 | 0.5263 |
| No log | 3.43 | 24 | 0.4867 | 1.0 |
| 0.5907 | 4.57 | 32 | 0.1781 | 0.9474 |
| 0.5907 | 5.71 | 40 | 0.2168 | 0.9474 |
| 0.5907 | 6.86 | 48 | 0.2403 | 0.9474 |
| 0.5907 | 8.0 | 56 | 0.0143 | 1.0 |
| 0.0932 | 9.14 | 64 | 0.0124 | 1.0 |
| 0.0932 | 10.29 | 72 | 0.0089 | 1.0 |
| 0.0932 | 11.43 | 80 | 0.0092 | 1.0 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Blackmist786/DialoGPt-small-transformers4 | [
"pytorch"
] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | # shrugging-grace/tweetclassifier
## Model description
This model classifies tweets as either relating to the Covid-19 pandemic or not.
## Intended uses & limitations
It is intended to be used on tweets commenting on UK politics, in particular those trending with the #PMQs hashtag, as this refers to weekly Prime Ministers' Questions.
#### How to use
``LABEL_0`` means that the tweet relates to Covid-19
``LABEL_1`` means that the tweet does not relate to Covid-19
## Training data
The model was trained on 1000 tweets (with the "#PMQs'), which were manually labeled by the author. The tweets were collected between May-July 2020.
### BibTeX entry and citation info
This was based on a pretrained version of BERT.
@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
|
Blazeolmo/Scrabunzi | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | Longformer-large model finetuned for the coreference resolution task. The model is fine-tuned over a mixture of OntoNotes, LitBank, and PreCo. The model is released as part of [this paper](https://arxiv.org/pdf/2109.09667.pdf). Note that the document encoder is to be used with the rest of the model parameters to perform the coreference resolution task. For demo purposes, please check this [Colab notebook](https://colab.research.google.com/drive/11ejXc1wDqzUxpgRH1nLvqEifAX30Z71_?usp=sharing). |
Blerrrry/Kkk | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-11-07T16:12:06Z | Longformer-large model finetuned for the coreference resolution task. The model is fine-tuned over the OntoNotes data. The model is released as part of [this paper](https://arxiv.org/pdf/2109.09667.pdf). Note that the document encoder is to be used with the rest of the model parameters to perform the coreference resolution task. For demo purposes, please check this [Colab notebook](https://colab.research.google.com/drive/11ejXc1wDqzUxpgRH1nLvqEifAX30Z71_?usp=sharing). |
BlindMan820/Sarcastic-News-Headlines | [
"pytorch",
"distilbert",
"text-classification",
"English",
"dataset:Kaggle Dataset",
"transformers",
"Text",
"Sequence-Classification",
"Sarcasm",
"DistilBert"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 28 | 2022-02-19T04:31:10Z | ---
license: apache-2.0
---
AIShell transducer stateless CER is 5.04% |
Bloodwarrior/Chikfalay | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | # Steps to use this model
This model uses tokenizer 'rinna/japanese-roberta-base'. Therefore, below steps are critical to run the model correctly.
1. Create a local root directory on your system and new python environment.
2. Install below requirements
```
transformers==4.12.2
torch==1.10.0
numpy==1.21.3
pandas==1.3.4
sentencepiece==0.1.96
```
3. Go to link: "https://huggingface.co/spaces/shubh2014shiv/Japanese_NLP/tree/main" and download the fine tuned weights "reviewSentiments_jp.pt" in same local root directory.
4. Rename the downloaded weights as "reviewSentiments_jp.pt"
5. Use below code in the newly created environment.
```
from transformers import T5Tokenizer,BertForSequenceClassification
import torch
tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base')
japanese_review_text = "履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)"
encoded_data = tokenizer.batch_encode_plus([japanese_review_text ],
add_special_tokens=True,
return_attention_mask=True,
padding=True,
max_length=200,
return_tensors='pt',
truncation=True)
input_ids = encoded_data['input_ids']
attention_masks = encoded_data['attention_mask']
model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn",
num_labels=2,
output_attentions=False,
output_hidden_states=False)
model.load_state_dict(torch.load('reviewSentiments_jp.pt',map_location=torch.device('cpu')))
inputs = { 'input_ids': input_ids,
'attention_mask': attention_masks}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
logits = logits.detach().cpu().numpy()
scores = 1 / (1 + np.exp(-1 * logits))
result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]}
```
Output:
{'TEXT (文章)': '履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)', 'NEGATIVE (ネガティブ)': 0.023672901, 'POSITIVE (ポジティブ)': 0.96819043} |
BlueGamerBeast/DialoGPT-small-joshua | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | # BriVL
BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。
BriVL论文:[WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training](https://arxiv.org/abs/2103.06561)
# 适用场景
适用场景示例:图像检索文本、文本检索图像、图像标注、图像零样本分类、作为其他下游多模态任务的输入特征等。
# 技术特色
1. BriVL使用对比学习算法将图像和文本映射到了同一特征空间,可用于弥补图像特征和文本特征之间存在的隔阂。
2. 基于视觉-语言弱相关的假设,除了能理解对图像的描述性文本外,也可以捕捉图像和文本之间存在的抽象联系。
3. 图像编码器和文本编码器可分别独立运行,有利于实际生产环境中的部署。
# 下载专区
| 模型 | 语言 | 参数量(单位:亿) | 文件(file) |
| --------- | ---- | ------------------ | --------------------------- |
| BriVL-1.0 | 中文 | 10亿 | BriVL-1.0-5500w.tar|
# 使用BriVL
### 搭建环境
```
# 环境要求
lmdb==0.99
timm==0.4.12
easydict==1.9
pandas==1.2.4
jsonlines==2.0.0
tqdm==4.60.0
torchvision==0.9.1
numpy==1.20.2
torch==1.8.1
transformers==4.5.1
msgpack_numpy==0.4.7.1
msgpack_python==0.5.6
Pillow==8.3.1
PyYAML==5.4.1
```
配置要求在requirements.txt中,可使用下面的命令:
```
pip install -r requirements.txt
```
### 特征提取与计算检索结果
```
cd evaluation/
bash test_xyb.sh
```
### 数据解释
现已放入3个图文对示例:
```
./data/imgs # 放入图像
./data/jsonls # 放入图文对描述
```
# 引用BriVL
```
@article{DBLP:journals/corr/abs-2103-06561,
author = {Yuqi Huo and
Manli Zhang and
Guangzhen Liu and
Haoyu Lu and
Yizhao Gao and
Guoxing Yang and
Jingyuan Wen and
Heng Zhang and
Baogui Xu and
Weihao Zheng and
Zongzheng Xi and
Yueqian Yang and
Anwen Hu and
Jinming Zhao and
Ruichen Li and
Yida Zhao and
Liang Zhang and
Yuqing Song and
Xin Hong and
Wanqing Cui and
Dan Yang Hou and
Yingyan Li and
Junyi Li and
Peiyu Liu and
Zheng Gong and
Chuhao Jin and
Yuchong Sun and
Shizhe Chen and
Zhiwu Lu and
Zhicheng Dou and
Qin Jin and
Yanyan Lan and
Wayne Xin Zhao and
Ruihua Song and
Ji{-}Rong Wen},
title = {WenLan: Bridging Vision and Language by Large-Scale Multi-Modal Pre-Training},
journal = {CoRR},
volume = {abs/2103.06561},
year = {2021},
url = {https://arxiv.org/abs/2103.06561},
archivePrefix = {arXiv},
eprint = {2103.06561},
timestamp = {Tue, 03 Aug 2021 12:35:30 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2103-06561.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
BobBraico/distilbert-base-uncased-finetuned-imdb-accelerate | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-09-18T10:27:44Z | # Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder
Please check the [official repository](https://github.com/microsoft/SEED-Encoder) for more details and updates.
# Fine-tuning on Marco passage/doc ranking tasks and NQ tasks
| MSMARCO Dev Passage Retrieval | MRR@10 | Recall@1k |
|------------------------------|---------------|--------------------- |
| BM25 warmup checkpoint | 0.329 | 0.953 |
| ANCE Passage checkpoint | 0.334 | 0.961 |
| MSMARCO Document Retrieval | MRR@10 (Dev) | MRR@10 (Eval) |
|---------------- | -------------- | -------------- |
| ANCE Document (FirstP) checkpoint | 0.394 | 0.362 |
| NQ Task | Top-1 | Top-5 | Top-20 | Top-100 | MRR@20 | P@20 |
|---------------- | -------------- | -------------- |-------------- | -------------- | -------------- |-------------- |
| DPR checkpoint | 46.1 | 68.8 | 80.4 | 87.1 | 56.2 | 20.1 |
| ANCE NQ checkpoint | 52.5 | 73.1 | 83.1 | 88.7 | 61.5 | 22.5
# Citation
If you find SEED-Encoder useful for your work, please cite the following paper:
```
@article{lu2021less,
title={Less is More: Pre-training a Strong Siamese Encoder Using a Weak Decoder},
author={Lu, Shuqi and Xiong, Chenyan and He, Di and Ke, Guolin and Malik, Waleed and Dou, Zhicheng and Bennett, Paul and Liu, Tieyan and Overwijk, Arnold},
journal={arXiv preprint arXiv:2102.09206},
year={2021}
}
```
|
BrianTin/MTBERT | [
"pytorch",
"jax",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"BertForMaskedLM"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | 2020-12-16T19:00:12Z | ---
language:
- ur
tags:
- urdu
- language-model
license: mit
datasets:
- urdu-text-news
---
|
Brinah/1 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-08-09T21:33:49Z | ---
tags:
- generated_from_trainer
datasets:
- gem
model_index:
- name: BART-commongen
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: gem
type: gem
args: common_gen
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BART-commongen
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the gem dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1263
- Spice: 0.4178
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6317
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spice |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.0971 | 0.05 | 100 | 4.1336 | 0.3218 |
| 3.5348 | 0.09 | 200 | 1.5467 | 0.3678 |
| 1.5099 | 0.14 | 300 | 1.1280 | 0.3821 |
| 1.2395 | 0.19 | 400 | 1.1178 | 0.3917 |
| 1.1827 | 0.24 | 500 | 1.0919 | 0.4086 |
| 1.1545 | 0.28 | 600 | 1.1028 | 0.4035 |
| 1.1363 | 0.33 | 700 | 1.1021 | 0.4187 |
| 1.1156 | 0.38 | 800 | 1.1231 | 0.4103 |
| 1.1077 | 0.43 | 900 | 1.1221 | 0.4117 |
| 1.0964 | 0.47 | 1000 | 1.1169 | 0.4088 |
| 1.0704 | 0.52 | 1100 | 1.1143 | 0.4133 |
| 1.0483 | 0.57 | 1200 | 1.1085 | 0.4058 |
| 1.0556 | 0.62 | 1300 | 1.1059 | 0.4249 |
| 1.0343 | 0.66 | 1400 | 1.0992 | 0.4102 |
| 1.0123 | 0.71 | 1500 | 1.1126 | 0.4104 |
| 1.0108 | 0.76 | 1600 | 1.1140 | 0.4177 |
| 1.005 | 0.81 | 1700 | 1.1264 | 0.4078 |
| 0.9822 | 0.85 | 1800 | 1.1256 | 0.4158 |
| 0.9918 | 0.9 | 1900 | 1.1345 | 0.4118 |
| 0.9664 | 0.95 | 2000 | 1.1087 | 0.4073 |
| 0.9532 | 1.0 | 2100 | 1.1217 | 0.4063 |
| 0.8799 | 1.04 | 2200 | 1.1229 | 0.4115 |
| 0.8665 | 1.09 | 2300 | 1.1263 | 0.4178 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
|
BritishLibraryLabs/bl-books-genre | [
"pytorch",
"distilbert",
"text-classification",
"multilingual",
"dataset:blbooksgenre",
"transformers",
"genre",
"books",
"library",
"historic",
"glam ",
"lam",
"license:mit",
"has_space"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 76 | 2021-08-10T01:25:30Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- gem
model_index:
- name: BART-large-commongen
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: gem
type: gem
args: common_gen
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BART-large-commongen
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the gem dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1409
- Spice: 0.4009
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6317
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spice |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 10.1086 | 0.05 | 100 | 4.9804 | 0.3736 |
| 4.4168 | 0.09 | 200 | 2.4402 | 0.4079 |
| 1.8158 | 0.14 | 300 | 1.1096 | 0.4258 |
| 1.1723 | 0.19 | 400 | 1.0845 | 0.4086 |
| 1.0894 | 0.24 | 500 | 1.0727 | 0.423 |
| 1.0949 | 0.28 | 600 | 1.0889 | 0.4224 |
| 1.0773 | 0.33 | 700 | 1.0977 | 0.4201 |
| 1.0708 | 0.38 | 800 | 1.1157 | 0.4213 |
| 1.0663 | 0.43 | 900 | 1.1798 | 0.421 |
| 1.0985 | 0.47 | 1000 | 1.1611 | 0.4025 |
| 1.0561 | 0.52 | 1100 | 1.1048 | 0.421 |
| 1.0594 | 0.57 | 1200 | 1.2044 | 0.3626 |
| 1.0689 | 0.62 | 1300 | 1.1409 | 0.4009 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.1.dev0
- Tokenizers 0.10.3
|
Broadus20/DialoGPT-small-joshua | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 12 | null | ## Tokenizer for the python code trained on GPT-2 model |
BrunoNogueira/DialoGPT-kungfupanda | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
language: "en"
tags:
- sentiment
- twitter
- reviews
- siebert
---
## SiEBERT - English-Language Sentiment Classification
# Overview
This model ("SiEBERT", prefix for "Sentiment in English") is a fine-tuned checkpoint of [RoBERTa-large](https://huggingface.co/roberta-large) ([Liu et al. 2019](https://arxiv.org/pdf/1907.11692.pdf)). It enables reliable binary sentiment analysis for various types of English-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. The model was fine-tuned and evaluated on 15 data sets from diverse text sources to enhance generalization across different types of texts (reviews, tweets, etc.). Consequently, it outperforms models trained on only one type of text (e.g., movie reviews from the popular SST-2 benchmark) when used on new data as shown below.
# Predictions on a data set
If you want to predict sentiment for your own data, we provide an example script via [Google Colab](https://colab.research.google.com/notebooks/intro.ipynb). You can load your data to a Google Drive and run the script for free on a Colab GPU. Set-up only takes a few minutes. We suggest that you manually label a subset of your data to evaluate performance for your use case. For performance benchmark values across various sentiment analysis contexts, please refer to our paper ([Hartmann et al. 2022](https://www.sciencedirect.com/science/article/pii/S0167811622000477?via%3Dihub)).
[](https://colab.research.google.com/github/chrsiebert/sentiment-roberta-large-english/blob/main/sentiment_roberta_prediction_example.ipynb)
# Use in a Hugging Face pipeline
The easiest way to use the model for single predictions is Hugging Face's [sentiment analysis pipeline](https://huggingface.co/transformers/quicktour.html#getting-started-on-a-task-with-a-pipeline), which only needs a couple lines of code as shown in the following example:
```
from transformers import pipeline
sentiment_analysis = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
print(sentiment_analysis("I love this!"))
```
[](https://colab.research.google.com/github/chrsiebert/sentiment-roberta-large-english/blob/main/sentiment_roberta_pipeline.ipynb)
# Use for further fine-tuning
The model can also be used as a starting point for further fine-tuning of RoBERTa on your specific data. Please refer to Hugging Face's [documentation](https://huggingface.co/docs/transformers/training) for further details and example code.
# Performance
To evaluate the performance of our general-purpose sentiment analysis model, we set aside an evaluation set from each data set, which was not used for training. On average, our model outperforms a [DistilBERT-based model](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) (which is solely fine-tuned on the popular SST-2 data set) by more than 15 percentage points (78.1 vs. 93.2 percent, see table below). As a robustness check, we evaluate the model in a leave-one-out manner (training on 14 data sets, evaluating on the one left out), which decreases model performance by only about 3 percentage points on average and underscores its generalizability. Model performance is given as evaluation set accuracy in percent.
|Dataset|DistilBERT SST-2|This model|
|---|---|---|
|McAuley and Leskovec (2013) (Reviews)|84.7|98.0|
|McAuley and Leskovec (2013) (Review Titles)|65.5|87.0|
|Yelp Academic Dataset|84.8|96.5|
|Maas et al. (2011)|80.6|96.0|
|Kaggle|87.2|96.0|
|Pang and Lee (2005)|89.7|91.0|
|Nakov et al. (2013)|70.1|88.5|
|Shamma (2009)|76.0|87.0|
|Blitzer et al. (2007) (Books)|83.0|92.5|
|Blitzer et al. (2007) (DVDs)|84.5|92.5|
|Blitzer et al. (2007) (Electronics)|74.5|95.0|
|Blitzer et al. (2007) (Kitchen devices)|80.0|98.5|
|Pang et al. (2002)|73.5|95.5|
|Speriosu et al. (2011)|71.5|85.5|
|Hartmann et al. (2019)|65.5|98.0|
|**Average**|**78.1**|**93.2**|
# Fine-tuning hyperparameters
- learning_rate = 2e-5
- num_train_epochs = 3.0
- warmump_steps = 500
- weight_decay = 0.01
Other values were left at their defaults as listed [here](https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments).
# Citation and contact
Please cite [this paper](https://www.sciencedirect.com/science/article/pii/S0167811622000477) (Published in the [IJRM](https://www.journals.elsevier.com/international-journal-of-research-in-marketing)) when you use our model. Feel free to reach out to [[email protected]](mailto:[email protected]) with any questions or feedback you may have.
```
@article{hartmann2023,
title = {More than a Feeling: Accuracy and Application of Sentiment Analysis},
journal = {International Journal of Research in Marketing},
volume = {40},
number = {1},
pages = {75-87},
year = {2023},
doi = {https://doi.org/10.1016/j.ijresmar.2022.05.005},
url = {https://www.sciencedirect.com/science/article/pii/S0167811622000477},
author = {Jochen Hartmann and Mark Heitmann and Christian Siebert and Christina Schamp},
}
```
|
Bryan190/Aguy190 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- conversational
---
#Harry Potter DialoGPT Model |
BumBelDumBel/TRUMP | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | # deep-todo
Wondering what to do? Not anymore!
Generate arbitrary todo's.
Source: <https://colab.research.google.com/drive/1PlKLrGHaCuvWCKNC4fmQEMElF-iRec9f?usp=sharing>
The todo's come from a random selection of (public) repositories I had on my computer.
### Sample
A bunch of todo's:
```
----------------------------------------------------------------------------------------------------
0: TODO: should we check the other edges?/
1: TODO: add more information here.
2: TODO: We could also add more general functions in this case to avoid/
3: TODO: It seems strange to have the same constructor when the base set of/
4: TODO: This implementation should be simplified, as it's too complex to handle the/
5: TODO: we should be able to relax the intrinsic if not
6: TODO: Make sure this doesn't go through the next generation of plugins. It would be better if this was
7: TODO: There is always a small number of errors when we have this type/
8: TODO: Add support for 't' values (not 't') for all the constant types/
9: TODO: Check that we use loglef_cxx in the loop*
10: TODO: Support double or double values./
11: TODO: Add tests that verify that this function does not work for all targets/
12: TODO: we'd expect the result to be identical to the same value in terms of
13: TODO: We are not using a new type for 'w' as it does not denote 'y' yet, so we could/
14: TODO: if we had to find a way to extract the source file directly, we would/
15: TODO: this should fold into a flat array that would be/
16: TODO: Check if we can make it work with the correct address./
17: TODO: support v2i with V2R4+
18: TODO: Can a fast-math-flags check be generalized to all types of data? */
19: TODO: Add support for other type-specific VOPs.
```
Generated by:
```
tf.random.set_seed(0)
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=40,
top_k=50,
top_p=0.95,
num_return_sequences=20
)
print("Output:\\
" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
m = tokenizer.decode(sample_output, skip_special_tokens=True)
m = m.split("TODO")[1].strip()
print("{}: TODO{}".format(i, m))
```
## TODO
- [ ] Fixup the data; it seems to contain multiple todo's per line
- [ ] Preprocess the data in a better way
- [ ] Download github and train it on everything |
BumBelDumBel/ZORK_AI_FANTASY | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: model1_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model1_test
This model is a fine-tuned version of [DaNLP/da-bert-hatespeech-detection](https://huggingface.co/DaNLP/da-bert-hatespeech-detection) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1816
- Accuracy: 0.9667
- F1: 0.3548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 150 | 0.1128 | 0.9667 | 0.2 |
| No log | 2.0 | 300 | 0.1666 | 0.9684 | 0.2963 |
| No log | 3.0 | 450 | 0.1816 | 0.9667 | 0.3548 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Buntan/bert-finetuned-ner | [
"pytorch",
"tensorboard",
"bert",
"token-classification",
"dataset:conll2003",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 8 | null | - You'll need to instantiate a special RoBERTa class. Though technically a "Longformer", the elongated RoBERTa model will still need to be pulled in as such.
- To do so, use the following classes:
```python
class RobertaLongSelfAttention(LongformerSelfAttention):
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
return super().forward(hidden_states, attention_mask=attention_mask, output_attentions=output_attentions)
class RobertaLongForMaskedLM(RobertaForMaskedLM):
def __init__(self, config):
super().__init__(config)
for i, layer in enumerate(self.roberta.encoder.layer):
# replace the `modeling_bert.BertSelfAttention` object with `LongformerSelfAttention`
layer.attention.self = RobertaLongSelfAttention(config, layer_id=i)
```
- Then, pull the model as ```RobertaLongForMaskedLM.from_pretrained('simonlevine/bioclinical-roberta-long')```
- Now, it can be used as usual. Note you may get untrained weights warnings.
- Note that you can replace ```RobertaForMaskedLM``` with a different task-specific RoBERTa from Huggingface, such as RobertaForSequenceClassification.
|
CLTL/icf-levels-etn | [
"pytorch",
"roberta",
"text-classification",
"nl",
"transformers",
"license:mit"
] | text-classification | {
"architectures": [
"RobertaForSequenceClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 31 | null | ---
language:
- ru
tags:
- toxic comments classification
---
## RuBERT-Toxic
RuBERT-Toxic is a [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned on [Kaggle Russian Language Toxic Comments Dataset](https://www.kaggle.com/blackmoon/russian-language-toxic-comments). You can find a detailed description of the data used and the fine-tuning process in [this article](http://doi.org/10.28995/2075-7182-2020-19-1149-1159). You can also find this information at [GitHub](https://github.com/sismetanin/toxic-comments-detection-in-russian).
| System | P | R | F<sub>1</sub> |
| ------------- | ------------- | ------------- | ------------- |
| MNB-Toxic | 87.01% | 81.22% | 83.21% |
| M-BERT<sub>Base</sub>-Toxic | 91.19% | 91.10% | 91.15% |
| <b>RuBERT-Toxic</b> | <b>91.91%</b> | <b>92.51%</b> | <b>92.20%</b> |
| M-USE<sub>CNN</sub>-Toxic | 89.69% | 90.14% | 89.91% |
| M-USE<sub>Trans</sub>-Toxic | 90.85% | 91.92% | 91.35% |
We fine-tuned two versions of Multilingual Universal Sentence Encoder (M-USE), Multilingual Bidirectional Encoder Representations from Transformers (M-BERT) and RuBERT for toxic comments detection in Russian. Fine-tuned RuBERT-Toxic achieved F<sub>1</sub> = 92.20%, demonstrating the best classification score.
## Toxic Comments Dataset
[Kaggle Russian Language Toxic Comments Dataset](https://www.kaggle.com/blackmoon/russian-language-toxic-comments) is the collection of Russian-language annotated comments from [2ch](https://2ch.hk/) and [Pikabu](https://pikabu.ru/), which was published on Kaggle in 2019. It consists of 14412 comments, where 4826 texts were labelled as toxic, and 9586 were labelled as non-toxic. The average length of comments is ~175 characters; the minimum length is 21, and the maximum is 7403.
## Citation
If you find this repository helpful, feel free to cite our publication:
```
@INPROCEEDINGS{Smetanin2020Toxic,
author={Sergey Smetanin},
booktitle={Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialogue 2020”},
title={Toxic Comments Detection in Russian},
year={2020},
doi={10.28995/2075-7182-2020-19-1149-1159}
}
``` |
Callidior/bert2bert-base-arxiv-titlegen | [
"pytorch",
"safetensors",
"encoder-decoder",
"text2text-generation",
"en",
"dataset:arxiv_dataset",
"transformers",
"summarization",
"license:apache-2.0",
"autotrain_compatible",
"has_space"
] | summarization | {
"architectures": [
"EncoderDecoderModel"
],
"model_type": "encoder-decoder",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 145 | null | ---
language:
- ru
tags:
- sentiment analysis
- Russian
---
## XLM-RoBERTa-Base-ru-sentiment-RuReviews
XLM-RoBERTa-Base-ru-sentiment-RuReviews is a [XLM-RoBERTa-Base](https://huggingface.co/xlm-roberta-base) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia.
<table>
<thead>
<tr>
<th rowspan="4">Model</th>
<th rowspan="4">Score<br></th>
<th rowspan="4">Rank</th>
<th colspan="12">Dataset</th>
</tr>
<tr>
<td colspan="6">SentiRuEval-2016<br></td>
<td colspan="2" rowspan="2">RuSentiment</td>
<td rowspan="2">KRND</td>
<td rowspan="2">LINIS Crowd</td>
<td rowspan="2">RuTweetCorp</td>
<td rowspan="2">RuReviews</td>
</tr>
<tr>
<td colspan="3">TC</td>
<td colspan="3">Banks</td>
</tr>
<tr>
<td>micro F1</td>
<td>macro F1</td>
<td>F1</td>
<td>micro F1</td>
<td>macro F1</td>
<td>F1</td>
<td>wighted</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
</tr>
</thead>
<tbody>
<tr>
<td>SOTA</td>
<td>n/s</td>
<td></td>
<td>76.71</td>
<td>66.40</td>
<td>70.68</td>
<td>67.51</td>
<td>69.53</td>
<td>74.06</td>
<td>78.50</td>
<td>n/s</td>
<td>73.63</td>
<td>60.51</td>
<td>83.68</td>
<td>77.44</td>
</tr>
<tr>
<td>XLM-RoBERTa-Large</td>
<td>76.37</td>
<td>1</td>
<td>82.26</td>
<td>76.36</td>
<td>79.42</td>
<td>76.35</td>
<td>76.08</td>
<td>80.89</td>
<td>78.31</td>
<td>75.27</td>
<td>75.17</td>
<td>60.03</td>
<td>88.91</td>
<td>78.81</td>
</tr>
<tr>
<td>SBERT-Large</td>
<td>75.43</td>
<td>2</td>
<td>78.40</td>
<td>71.36</td>
<td>75.14</td>
<td>72.39</td>
<td>71.87</td>
<td>77.72</td>
<td>78.58</td>
<td>75.85</td>
<td>74.20</td>
<td>60.64</td>
<td>88.66</td>
<td>77.41</td>
</tr>
<tr>
<td>MBARTRuSumGazeta</td>
<td>74.70</td>
<td>3</td>
<td>76.06</td>
<td>68.95</td>
<td>73.04</td>
<td>72.34</td>
<td>71.93</td>
<td>77.83</td>
<td>76.71</td>
<td>73.56</td>
<td>74.18</td>
<td>60.54</td>
<td>87.22</td>
<td>77.51</td>
</tr>
<tr>
<td>Conversational RuBERT</td>
<td>74.44</td>
<td>4</td>
<td>76.69</td>
<td>69.09</td>
<td>73.11</td>
<td>69.44</td>
<td>68.68</td>
<td>75.56</td>
<td>77.31</td>
<td>74.40</td>
<td>73.10</td>
<td>59.95</td>
<td>87.86</td>
<td>77.78</td>
</tr>
<tr>
<td>LaBSE</td>
<td>74.11</td>
<td>5</td>
<td>77.00</td>
<td>69.19</td>
<td>73.55</td>
<td>70.34</td>
<td>69.83</td>
<td>76.38</td>
<td>74.94</td>
<td>70.84</td>
<td>73.20</td>
<td>59.52</td>
<td>87.89</td>
<td>78.47</td>
</tr>
<tr>
<td>XLM-RoBERTa-Base</td>
<td>73.60</td>
<td>6</td>
<td>76.35</td>
<td>69.37</td>
<td>73.42</td>
<td>68.45</td>
<td>67.45</td>
<td>74.05</td>
<td>74.26</td>
<td>70.44</td>
<td>71.40</td>
<td>60.19</td>
<td>87.90</td>
<td>78.28</td>
</tr>
<tr>
<td>RuBERT</td>
<td>73.45</td>
<td>7</td>
<td>74.03</td>
<td>66.14</td>
<td>70.75</td>
<td>66.46</td>
<td>66.40</td>
<td>73.37</td>
<td>75.49</td>
<td>71.86</td>
<td>72.15</td>
<td>60.55</td>
<td>86.99</td>
<td>77.41</td>
</tr>
<tr>
<td>MBART-50-Large-Many-to-Many</td>
<td>73.15</td>
<td>8</td>
<td>75.38</td>
<td>67.81</td>
<td>72.26</td>
<td>67.13</td>
<td>66.97</td>
<td>73.85</td>
<td>74.78</td>
<td>70.98</td>
<td>71.98</td>
<td>59.20</td>
<td>87.05</td>
<td>77.24</td>
</tr>
<tr>
<td>SlavicBERT</td>
<td>71.96</td>
<td>9</td>
<td>71.45</td>
<td>63.03</td>
<td>68.44</td>
<td>64.32</td>
<td>63.99</td>
<td>71.31</td>
<td>72.13</td>
<td>67.57</td>
<td>72.54</td>
<td>58.70</td>
<td>86.43</td>
<td>77.16</td>
</tr>
<tr>
<td>EnRuDR-BERT</td>
<td>71.51</td>
<td>10</td>
<td>72.56</td>
<td>64.74</td>
<td>69.07</td>
<td>61.44</td>
<td>60.21</td>
<td>68.34</td>
<td>74.19</td>
<td>69.94</td>
<td>69.33</td>
<td>56.55</td>
<td>87.12</td>
<td>77.95</td>
</tr>
<tr>
<td>RuDR-BERT</td>
<td>71.14</td>
<td>11</td>
<td>72.79</td>
<td>64.23</td>
<td>68.36</td>
<td>61.86</td>
<td>60.92</td>
<td>68.48</td>
<td>74.65</td>
<td>70.63</td>
<td>68.74</td>
<td>54.45</td>
<td>87.04</td>
<td>77.91</td>
</tr>
<tr>
<td>MBART-50-Large</td>
<td>69.46</td>
<td>12</td>
<td>70.91</td>
<td>62.67</td>
<td>67.24</td>
<td>61.12</td>
<td>60.25</td>
<td>68.41</td>
<td>72.88</td>
<td>68.63</td>
<td>70.52</td>
<td>46.39</td>
<td>86.48</td>
<td>77.52</td>
</tr>
</tbody>
</table>
The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark.
## Citation
If you find this repository helpful, feel free to cite our publication:
```
@article{Smetanin2021Deep,
author = {Sergey Smetanin and Mikhail Komarov},
title = {Deep transfer learning baselines for sentiment analysis in Russian},
journal = {Information Processing & Management},
volume = {58},
number = {3},
pages = {102484},
year = {2021},
issn = {0306-4573},
doi = {0.1016/j.ipm.2020.102484}
}
```
Dataset:
```
@INPROCEEDINGS{Smetanin2019Sentiment,
author={Sergey Smetanin and Michail Komarov},
booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)},
title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks},
year={2019},
volume={01},
pages={482-486},
doi={10.1109/CBI.2019.00062},
ISSN={2378-1963},
month={July}
}
``` |
CallumRai/HansardGPT2 | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 14 | null | ---
language:
- ru
tags:
- sentiment analysis
- Russian
---
## XML-RoBERTa-Base-ru-sentiment-RuSentiment
XML-RoBERTa-Base-ru-sentiment-RuSentiment is a [XML-RoBERTa-Base](https://huggingface.co/xlm-roberta-base) model fine-tuned on [RuSentiment dataset](https://github.com/text-machine-lab/rusentiment) of general-domain Russian-language posts from the largest Russian social network, VKontakte.
<table>
<thead>
<tr>
<th rowspan="4">Model</th>
<th rowspan="4">Score<br></th>
<th rowspan="4">Rank</th>
<th colspan="12">Dataset</th>
</tr>
<tr>
<td colspan="6">SentiRuEval-2016<br></td>
<td colspan="2" rowspan="2">RuSentiment</td>
<td rowspan="2">KRND</td>
<td rowspan="2">LINIS Crowd</td>
<td rowspan="2">RuTweetCorp</td>
<td rowspan="2">RuReviews</td>
</tr>
<tr>
<td colspan="3">TC</td>
<td colspan="3">Banks</td>
</tr>
<tr>
<td>micro F1</td>
<td>macro F1</td>
<td>F1</td>
<td>micro F1</td>
<td>macro F1</td>
<td>F1</td>
<td>wighted</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
<td>F1</td>
</tr>
</thead>
<tbody>
<tr>
<td>SOTA</td>
<td>n/s</td>
<td></td>
<td>76.71</td>
<td>66.40</td>
<td>70.68</td>
<td>67.51</td>
<td>69.53</td>
<td>74.06</td>
<td>78.50</td>
<td>n/s</td>
<td>73.63</td>
<td>60.51</td>
<td>83.68</td>
<td>77.44</td>
</tr>
<tr>
<td>XLM-RoBERTa-Large</td>
<td>76.37</td>
<td>1</td>
<td>82.26</td>
<td>76.36</td>
<td>79.42</td>
<td>76.35</td>
<td>76.08</td>
<td>80.89</td>
<td>78.31</td>
<td>75.27</td>
<td>75.17</td>
<td>60.03</td>
<td>88.91</td>
<td>78.81</td>
</tr>
<tr>
<td>SBERT-Large</td>
<td>75.43</td>
<td>2</td>
<td>78.40</td>
<td>71.36</td>
<td>75.14</td>
<td>72.39</td>
<td>71.87</td>
<td>77.72</td>
<td>78.58</td>
<td>75.85</td>
<td>74.20</td>
<td>60.64</td>
<td>88.66</td>
<td>77.41</td>
</tr>
<tr>
<td>MBARTRuSumGazeta</td>
<td>74.70</td>
<td>3</td>
<td>76.06</td>
<td>68.95</td>
<td>73.04</td>
<td>72.34</td>
<td>71.93</td>
<td>77.83</td>
<td>76.71</td>
<td>73.56</td>
<td>74.18</td>
<td>60.54</td>
<td>87.22</td>
<td>77.51</td>
</tr>
<tr>
<td>Conversational RuBERT</td>
<td>74.44</td>
<td>4</td>
<td>76.69</td>
<td>69.09</td>
<td>73.11</td>
<td>69.44</td>
<td>68.68</td>
<td>75.56</td>
<td>77.31</td>
<td>74.40</td>
<td>73.10</td>
<td>59.95</td>
<td>87.86</td>
<td>77.78</td>
</tr>
<tr>
<td>LaBSE</td>
<td>74.11</td>
<td>5</td>
<td>77.00</td>
<td>69.19</td>
<td>73.55</td>
<td>70.34</td>
<td>69.83</td>
<td>76.38</td>
<td>74.94</td>
<td>70.84</td>
<td>73.20</td>
<td>59.52</td>
<td>87.89</td>
<td>78.47</td>
</tr>
<tr>
<td>XLM-RoBERTa-Base</td>
<td>73.60</td>
<td>6</td>
<td>76.35</td>
<td>69.37</td>
<td>73.42</td>
<td>68.45</td>
<td>67.45</td>
<td>74.05</td>
<td>74.26</td>
<td>70.44</td>
<td>71.40</td>
<td>60.19</td>
<td>87.90</td>
<td>78.28</td>
</tr>
<tr>
<td>RuBERT</td>
<td>73.45</td>
<td>7</td>
<td>74.03</td>
<td>66.14</td>
<td>70.75</td>
<td>66.46</td>
<td>66.40</td>
<td>73.37</td>
<td>75.49</td>
<td>71.86</td>
<td>72.15</td>
<td>60.55</td>
<td>86.99</td>
<td>77.41</td>
</tr>
<tr>
<td>MBART-50-Large-Many-to-Many</td>
<td>73.15</td>
<td>8</td>
<td>75.38</td>
<td>67.81</td>
<td>72.26</td>
<td>67.13</td>
<td>66.97</td>
<td>73.85</td>
<td>74.78</td>
<td>70.98</td>
<td>71.98</td>
<td>59.20</td>
<td>87.05</td>
<td>77.24</td>
</tr>
<tr>
<td>SlavicBERT</td>
<td>71.96</td>
<td>9</td>
<td>71.45</td>
<td>63.03</td>
<td>68.44</td>
<td>64.32</td>
<td>63.99</td>
<td>71.31</td>
<td>72.13</td>
<td>67.57</td>
<td>72.54</td>
<td>58.70</td>
<td>86.43</td>
<td>77.16</td>
</tr>
<tr>
<td>EnRuDR-BERT</td>
<td>71.51</td>
<td>10</td>
<td>72.56</td>
<td>64.74</td>
<td>69.07</td>
<td>61.44</td>
<td>60.21</td>
<td>68.34</td>
<td>74.19</td>
<td>69.94</td>
<td>69.33</td>
<td>56.55</td>
<td>87.12</td>
<td>77.95</td>
</tr>
<tr>
<td>RuDR-BERT</td>
<td>71.14</td>
<td>11</td>
<td>72.79</td>
<td>64.23</td>
<td>68.36</td>
<td>61.86</td>
<td>60.92</td>
<td>68.48</td>
<td>74.65</td>
<td>70.63</td>
<td>68.74</td>
<td>54.45</td>
<td>87.04</td>
<td>77.91</td>
</tr>
<tr>
<td>MBART-50-Large</td>
<td>69.46</td>
<td>12</td>
<td>70.91</td>
<td>62.67</td>
<td>67.24</td>
<td>61.12</td>
<td>60.25</td>
<td>68.41</td>
<td>72.88</td>
<td>68.63</td>
<td>70.52</td>
<td>46.39</td>
<td>86.48</td>
<td>77.52</td>
</tr>
</tbody>
</table>
The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark.
## Citation
If you find this repository helpful, feel free to cite our publication:
```
@article{Smetanin2021Deep,
author = {Sergey Smetanin and Mikhail Komarov},
title = {Deep transfer learning baselines for sentiment analysis in Russian},
journal = {Information Processing & Management},
volume = {58},
number = {3},
pages = {102484},
year = {2021},
issn = {0306-4573},
doi = {0.1016/j.ipm.2020.102484}
}
```
Dataset:
```
@inproceedings{rogers2018rusentiment,
title={RuSentiment: An enriched sentiment analysis dataset for social media in Russian},
author={Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex},
booktitle={Proceedings of the 27th international conference on computational linguistics},
pages={755--763},
year={2018}
}
``` |
dccuchile/albert-tiny-spanish-finetuned-mldoc | [
"pytorch",
"albert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"AlbertForSequenceClassification"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 32 | null | ---
language: hi
datasets:
- common_voice
- indic tts
- iiith
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Hindi XLSR Wav2Vec2 Large 53
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
- name: Common Voice hi
type: common_voice
args: hi
- name: Indic IIT (IITM)
type: indic
args: hi
- name: IIITH Indic Dataset
type: iiith
args: hi
metrics:
- name: Custom Dataset Hindi WER
type: wer
value: 17.23
- name: CommonVoice Hindi (Test) WER
type: wer
value: 56.46
---
# Wav2Vec2-Large-XLSR-53-Hindi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hindi using the following datasets:
- [Common Voice](https://huggingface.co/datasets/common_voice),
- [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
- [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices
Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hi", split="test")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Predictions
*Some good ones ..... *
| Predictions | Reference |
|-------|-------|
|फिर वो सूरज तारे पहाड बारिश पदछड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है | फिर वो सूरज तारे पहाड़ बारिश पतझड़ दिन रात शाम नदी बर्फ़ समुद्र धुंध हवा कुछ भी हो सकती है |
| इस कारण जंगल में बडी दूर स्थित राघव के आश्रम में लोघ कम आने लगे और अधिकांश भक्त सुंदर के आश्रम में जाने लगे | इस कारण जंगल में बड़ी दूर स्थित राघव के आश्रम में लोग कम आने लगे और अधिकांश भक्त सुन्दर के आश्रम में जाने लगे |
| अपने बचन के अनुसार शुभमूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा | अपने बचन के अनुसार शुभमुहूर्त पर अनंत दक्षिणी पर्वत गया और मंत्रों का जप करके सरोवर में उतरा |
*Some crappy stuff .... *
| Predictions | Reference |
|-------|-------|
| वस गनिल साफ़ है। | उसका दिल साफ़ है। |
| चाय वा एक कुछ लैंगे हब | चायवाय कुछ लेंगे आप |
| टॉम आधे है स्कूल हें है | टॉम अभी भी स्कूल में है |
## Evaluation
The model can be evaluated as follows on the following two datasets:
1. Custom dataset created from 20% of Indic, IIITH and CV (test): WER 17.xx%
2. CommonVoice Hindi test dataset: WER 56.xx%
Links to the datasets are provided above (check the links at the start of the README)
train-test csv files are shared on the following gdrive links:
a. IIITH [train](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_train.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/iiit_hi_test.csv)
b. Indic TTS [train](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_train_full.csv) [test](https://storage.googleapis.com/indic-dataset/train_test_splits/indic_test_full.csv)
Update the audio_path as per your local file structure.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
## Load the datasets
test_dataset = load_dataset("common_voice", "hi", split="test")
indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv",
"test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload")
iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv",
"test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload")
## Pre-process datasets and concatenate to create test dataset
# Drop columns of common_voice
split = ['train', 'test', 'validation', 'other', 'invalidated']
for sp in split:
common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'])
common_voice = common_voice.rename_column('path', 'audio_path')
common_voice = common_voice.rename_column('sentence', 'target_text')
train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']])
test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']])
## Load model from HF hub
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"])
batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"])
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result on custom dataset**: 17.23 %
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).sub(unicode_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result on CommonVoice**: 56.46 %
## Training
The Common Voice `train`, `validation`, datasets were used for training as well as
The script used for training & wandb dashboard can be found [here](https://wandb.ai/thinkevolve/huggingface/reports/Project-Hindi-XLSR-Large--Vmlldzo2MTI2MTQ)
|
dccuchile/bert-base-spanish-wwm-uncased-finetuned-ner | [
"pytorch",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"BertForTokenClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
tags:
- conversational
---
# Rick DialoGPT Model |
Certified-Zoomer/DialoGPT-small-rick | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- "ko"
---
## KoRean based ELECTRA (KR-ELECTRA)
This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computational Linguistics Lab at Seoul National University. Our model shows remarkable performances on tasks related to informal texts such as review documents, while still showing comparable results on other kinds of tasks.
### Released Model
We pre-trained our KR-ELECTRA model following a base-scale model of [ELECTRA](https://github.com/google-research/electra). We trained the model based on Tensorflow-v1 using a v3-8 TPU of Google Cloud Platform.
#### Model Details
We followed the training parameters of the base-scale model of [ELECTRA](https://github.com/google-research/electra).
##### Hyperparameters
| model | # of layers | embedding size | hidden size | # of heads |
| ------: | ----------: | -------------: | ----------: | ---------: |
| Discriminator | 12 | 768 | 768 | 12 |
| Generator | 12 | 768 | 256 | 4 |
##### Pretraining
| batch size | train steps | learning rates | max sequence length | generator size |
| ---------: | ----------: | -------------: | ------------------: | -------------: |
| 256 | 700000 | 2e-4 | 128 | 0.33333 |
#### Training Dataset
34GB Korean texts including Wikipedia documents, news articles, legal texts, news comments, product reviews, and so on. These texts are balanced, consisting of the same ratios of written and spoken data.
#### Vocabulary
vocab size 30,000
We used morpheme-based unit tokens for our vocabulary based on the [Mecab-Ko](https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/) morpheme analyzer.
#### Download Link
* Tensorflow-v1 model ([download](https://drive.google.com/file/d/1L_yKEDaXM_yDLwHm5QrXAncQZiMN3BBU/view?usp=sharing))
* PyTorch models on HuggingFace
```python
from transformers import ElectraModel, ElectraTokenizer
model = ElectraModel.from_pretrained("snunlp/KR-ELECTRA-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("snunlp/KR-ELECTRA-discriminator")
```
### Finetuning
We used and slightly edited the finetuning codes from [KoELECTRA](https://github.com/monologg/KoELECTRA), with additionally adjusted hyperparameters. You can download the codes and config files that we used for our model from our [github](https://github.com/snunlp/KR-ELECTRA).
#### Experimental Results
| | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) |
| :-------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: |
| KoBERT | 89.59 | 87.92 | 81.25 | 79.62 | 81.59 | 94.85 | 51.75 / 79.15 | 66.21 |
| XLM-Roberta-Base | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 |
| HanBERT | 90.06 | 87.70 | 82.95 | 80.32 | 82.73 | 94.72 | 78.74 / 92.02 | 68.32 |
| KoELECTRA-Base | 90.33 | 87.18 | 81.70 | 80.64 | 82.00 | 93.54 | 60.86 / 89.28 | 66.09 |
| KoELECTRA-Base-v2 | 89.56 | 87.16 | 80.70 | 80.72 | 82.30 | 94.85 | 84.01 / 92.40 | 67.45 |
| KoELECTRA-Base-v3 | 90.63 | **88.11** | **84.45** | 82.24 | **85.53** | 95.25 | 84.83 / **93.45** | 67.61 |
| **KR-ELECTRA (ours)** | **91.168** | 87.90 | 82.05 | **82.51** | 85.41 | **95.51** | **84.93** / 93.04 | **74.50** |
The baseline results are brought from [KoELECTRA](https://github.com/monologg/KoELECTRA)'s.
### Citation
```bibtex
@misc{kr-electra,
author = {Lee, Sangah and Hyopil Shin},
title = {KR-ELECTRA: a KoRean-based ELECTRA model},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snunlp/KR-ELECTRA}}
}
``` |
Chaima/TunBerto | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | # Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying.
Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752#
We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice.
Our approach is described in our paper titled:
> Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020
NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
If you plan to use the dataset please cite the following resources:
* Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
* Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1.
```
@inproceedings{Mishra2020TRAC,
author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)},
title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
year = {2020}
}
@data{illinoisdatabankIDB-8882752,
author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
doi = {10.13012/B2IDB-8882752_V1},
publisher = {University of Illinois at Urbana-Champaign},
title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1},
year = {2020}
}
```
## Usage
The models can be used via the following code:
```python
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from pathlib import Path
from scipy.special import softmax
import numpy as np
import pandas as pd
TASK_LABEL_IDS = {
"Sub-task A": ["OAG", "NAG", "CAG"],
"Sub-task B": ["GEN", "NGEN"],
"Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"]
}
model_version="databank" # other option is hugging face library
if model_version == "databank":
# Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752
# Unzip the file at some model_path (we are using: "databank_model")
model_path = next(Path("databank_model").glob("./*/output/*/model"))
# Assuming you get the following type of structure inside "databank_model"
# 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model'
lang, task, _, base_model, _ = model_path.parts
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
else:
lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased"
base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model)
# For doing inference set model in eval mode
model.eval()
# If you want to further fine-tune the model you can reset the model to model.train()
task_labels = TASK_LABEL_IDS[task]
sentence = "This is a good cat and this is a bad dog."
processed_sentence = f"{tokenizer.cls_token} {sentence}"
tokens = tokenizer.tokenize(sentence)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
tokens_tensor = torch.tensor([indexed_tokens])
with torch.no_grad():
logits, = model(tokens_tensor, labels=None)
logits
preds = logits.detach().cpu().numpy()
preds_probs = softmax(preds, axis=1)
preds = np.argmax(preds_probs, axis=1)
preds_labels = np.array(task_labels)[preds]
print(dict(zip(task_labels, preds_probs[0])), preds_labels)
"""You should get an output as follows:
({'CAG-GEN': 0.06762535,
'CAG-NGEN': 0.03244293,
'NAG-GEN': 0.6897794,
'NAG-NGEN': 0.15498641,
'OAG-GEN': 0.034373745,
'OAG-NGEN': 0.020792078},
array(['NAG-GEN'], dtype='<U8'))
"""
``` |
Chakita/Kalbert | [
"pytorch",
"tensorboard",
"albert",
"fill-mask",
"transformers",
"generated_from_trainer",
"license:mit",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"AlbertForMaskedLM"
],
"model_type": "albert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | # Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying.
Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752#
We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice.
Our approach is described in our paper titled:
> Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020
NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
If you plan to use the dataset please cite the following resources:
* Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
* Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1.
```
@inproceedings{Mishra2020TRAC,
author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)},
title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
year = {2020}
}
@data{illinoisdatabankIDB-8882752,
author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
doi = {10.13012/B2IDB-8882752_V1},
publisher = {University of Illinois at Urbana-Champaign},
title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1},
year = {2020}
}
```
## Usage
The models can be used via the following code:
```python
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from pathlib import Path
from scipy.special import softmax
import numpy as np
import pandas as pd
TASK_LABEL_IDS = {
"Sub-task A": ["OAG", "NAG", "CAG"],
"Sub-task B": ["GEN", "NGEN"],
"Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"]
}
model_version="databank" # other option is hugging face library
if model_version == "databank":
# Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752
# Unzip the file at some model_path (we are using: "databank_model")
model_path = next(Path("databank_model").glob("./*/output/*/model"))
# Assuming you get the following type of structure inside "databank_model"
# 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model'
lang, task, _, base_model, _ = model_path.parts
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
else:
lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased"
base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model)
# For doing inference set model in eval mode
model.eval()
# If you want to further fine-tune the model you can reset the model to model.train()
task_labels = TASK_LABEL_IDS[task]
sentence = "This is a good cat and this is a bad dog."
processed_sentence = f"{tokenizer.cls_token} {sentence}"
tokens = tokenizer.tokenize(sentence)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
tokens_tensor = torch.tensor([indexed_tokens])
with torch.no_grad():
logits, = model(tokens_tensor, labels=None)
logits
preds = logits.detach().cpu().numpy()
preds_probs = softmax(preds, axis=1)
preds = np.argmax(preds_probs, axis=1)
preds_labels = np.array(task_labels)[preds]
print(dict(zip(task_labels, preds_probs[0])), preds_labels)
"""You should get an output as follows:
({'CAG-GEN': 0.06762535,
'CAG-NGEN': 0.03244293,
'NAG-GEN': 0.6897794,
'NAG-NGEN': 0.15498641,
'OAG-GEN': 0.034373745,
'OAG-NGEN': 0.020792078},
array(['NAG-GEN'], dtype='<U8'))
"""
``` |
Chakita/KannadaBERT | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"masked-lm",
"fill-in-the-blanks",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"RobertaForMaskedLM"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | # Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying.
Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752#
We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice.
Our approach is described in our paper titled:
> Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020
NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
If you plan to use the dataset please cite the following resources:
* Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
* Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1.
```
@inproceedings{Mishra2020TRAC,
author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)},
title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
year = {2020}
}
@data{illinoisdatabankIDB-8882752,
author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
doi = {10.13012/B2IDB-8882752_V1},
publisher = {University of Illinois at Urbana-Champaign},
title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1},
year = {2020}
}
```
## Usage
The models can be used via the following code:
```python
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from pathlib import Path
from scipy.special import softmax
import numpy as np
import pandas as pd
TASK_LABEL_IDS = {
"Sub-task A": ["OAG", "NAG", "CAG"],
"Sub-task B": ["GEN", "NGEN"],
"Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"]
}
model_version="databank" # other option is hugging face library
if model_version == "databank":
# Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752
# Unzip the file at some model_path (we are using: "databank_model")
model_path = next(Path("databank_model").glob("./*/output/*/model"))
# Assuming you get the following type of structure inside "databank_model"
# 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model'
lang, task, _, base_model, _ = model_path.parts
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
else:
lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased"
base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model)
# For doing inference set model in eval mode
model.eval()
# If you want to further fine-tune the model you can reset the model to model.train()
task_labels = TASK_LABEL_IDS[task]
sentence = "This is a good cat and this is a bad dog."
processed_sentence = f"{tokenizer.cls_token} {sentence}"
tokens = tokenizer.tokenize(sentence)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
tokens_tensor = torch.tensor([indexed_tokens])
with torch.no_grad():
logits, = model(tokens_tensor, labels=None)
logits
preds = logits.detach().cpu().numpy()
preds_probs = softmax(preds, axis=1)
preds = np.argmax(preds_probs, axis=1)
preds_labels = np.array(task_labels)[preds]
print(dict(zip(task_labels, preds_probs[0])), preds_labels)
"""You should get an output as follows:
({'CAG-GEN': 0.06762535,
'CAG-NGEN': 0.03244293,
'NAG-GEN': 0.6897794,
'NAG-NGEN': 0.15498641,
'OAG-GEN': 0.034373745,
'OAG-NGEN': 0.020792078},
array(['NAG-GEN'], dtype='<U8'))
"""
``` |
Chakita/gpt2_mwp | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | null | # Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying.
Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752#
We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice.
Our approach is described in our paper titled:
> Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020
NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
If you plan to use the dataset please cite the following resources:
* Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
* Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1.
```
@inproceedings{Mishra2020TRAC,
author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)},
title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
year = {2020}
}
@data{illinoisdatabankIDB-8882752,
author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
doi = {10.13012/B2IDB-8882752_V1},
publisher = {University of Illinois at Urbana-Champaign},
title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1},
year = {2020}
}
```
## Usage
The models can be used via the following code:
```python
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from pathlib import Path
from scipy.special import softmax
import numpy as np
import pandas as pd
TASK_LABEL_IDS = {
"Sub-task A": ["OAG", "NAG", "CAG"],
"Sub-task B": ["GEN", "NGEN"],
"Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"]
}
model_version="databank" # other option is hugging face library
if model_version == "databank":
# Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752
# Unzip the file at some model_path (we are using: "databank_model")
model_path = next(Path("databank_model").glob("./*/output/*/model"))
# Assuming you get the following type of structure inside "databank_model"
# 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model'
lang, task, _, base_model, _ = model_path.parts
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
else:
lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased"
base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model)
# For doing inference set model in eval mode
model.eval()
# If you want to further fine-tune the model you can reset the model to model.train()
task_labels = TASK_LABEL_IDS[task]
sentence = "This is a good cat and this is a bad dog."
processed_sentence = f"{tokenizer.cls_token} {sentence}"
tokens = tokenizer.tokenize(sentence)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
tokens_tensor = torch.tensor([indexed_tokens])
with torch.no_grad():
logits, = model(tokens_tensor, labels=None)
logits
preds = logits.detach().cpu().numpy()
preds_probs = softmax(preds, axis=1)
preds = np.argmax(preds_probs, axis=1)
preds_labels = np.array(task_labels)[preds]
print(dict(zip(task_labels, preds_probs[0])), preds_labels)
"""You should get an output as follows:
({'CAG-GEN': 0.06762535,
'CAG-NGEN': 0.03244293,
'NAG-GEN': 0.6897794,
'NAG-NGEN': 0.15498641,
'OAG-GEN': 0.034373745,
'OAG-NGEN': 0.020792078},
array(['NAG-GEN'], dtype='<U8'))
"""
``` |
Chalponkey/DialoGPT-small-Barry | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 11 | null | # Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020
Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying.
Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752#
We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice.
Our approach is described in our paper titled:
> Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020
NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper.
If you plan to use the dataset please cite the following resources:
* Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).
* Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1.
```
@inproceedings{Mishra2020TRAC,
author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)},
title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
year = {2020}
}
@data{illinoisdatabankIDB-8882752,
author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu},
doi = {10.13012/B2IDB-8882752_V1},
publisher = {University of Illinois at Urbana-Champaign},
title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}},
url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1},
year = {2020}
}
```
## Usage
The models can be used via the following code:
```python
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
import torch
from pathlib import Path
from scipy.special import softmax
import numpy as np
import pandas as pd
TASK_LABEL_IDS = {
"Sub-task A": ["OAG", "NAG", "CAG"],
"Sub-task B": ["GEN", "NGEN"],
"Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"]
}
model_version="databank" # other option is hugging face library
if model_version == "databank":
# Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752
# Unzip the file at some model_path (we are using: "databank_model")
model_path = next(Path("databank_model").glob("./*/output/*/model"))
# Assuming you get the following type of structure inside "databank_model"
# 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model'
lang, task, _, base_model, _ = model_path.parts
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
else:
lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased"
base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model)
# For doing inference set model in eval mode
model.eval()
# If you want to further fine-tune the model you can reset the model to model.train()
task_labels = TASK_LABEL_IDS[task]
sentence = "This is a good cat and this is a bad dog."
processed_sentence = f"{tokenizer.cls_token} {sentence}"
tokens = tokenizer.tokenize(sentence)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokens)
tokens_tensor = torch.tensor([indexed_tokens])
with torch.no_grad():
logits, = model(tokens_tensor, labels=None)
logits
preds = logits.detach().cpu().numpy()
preds_probs = softmax(preds, axis=1)
preds = np.argmax(preds_probs, axis=1)
preds_labels = np.array(task_labels)[preds]
print(dict(zip(task_labels, preds_probs[0])), preds_labels)
"""You should get an output as follows:
({'CAG-GEN': 0.06762535,
'CAG-NGEN': 0.03244293,
'NAG-GEN': 0.6897794,
'NAG-NGEN': 0.15498641,
'OAG-GEN': 0.034373745,
'OAG-NGEN': 0.020792078},
array(['NAG-GEN'], dtype='<U8'))
"""
``` |
Cheatham/xlm-roberta-large-finetuned3 | [
"pytorch",
"xlm-roberta",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"XLMRobertaForSequenceClassification"
],
"model_type": "xlm-roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 22 | null | # rdr-queston_encoder-single-nq-base
Reader-Distilled Retriever (`RDR`)
Sohee Yang and Minjoon Seo, [Is Retriever Merely an Approximator of Reader?](https://arxiv.org/abs/2010.10999), arXiv 2020
The paper proposes to distill the reader into the retriever so that the retriever absorbs the strength of the reader while keeping its own benefit. The model is a DPR retriever further finetuned using knowledge distillation from the DPR reader. Using this approach, the answer recall rate increases by a large margin, especially at small numbers of top-k.
This model is the question encoder of RDR trained solely on TriviaQA (single-trivia). This model is trained by the authors and is the official checkpoint of RDR.
## Performance
The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0.
For the values of DPR, those in parentheses are directly taken from the paper. The values without parentheses are reported using the reproduction of DPR that consists of [this question encoder](https://huggingface.co/soheeyang/dpr-question_encoder-single-trivia-base) and [this queston encoder](https://huggingface.co/soheeyang/dpr-question_encoder-single-trivia-base).
| | Top-K Passages | 1 | 5 | 20 | 50 | 100 |
|-------------|------------------|-----------|-----------|-----------|-----------|-----------|
|**TriviaQA Dev** | **DPR** | 54.27 | 71.11 | 79.53 | 82.72 | 85.07 |
| | **RDR (This Model)** | **61.84** | **75.93** | **82.56** | **85.35** | **87.00** |
|**TriviaQA Test**| **DPR** | 54.41 | 70.99 | 79.31 (79.4) | 82.90 | 84.99 (85.0) |
| | **RDR (This Model)** | **62.56** | **75.92** | **82.52** | **85.64** | **87.26** |
## How to Use
RDR shares the same architecture with DPR. Therefore, It uses `DPRQuestionEncoder` as the model class.
Using `AutoModel` does not properly detect whether the checkpoint is for `DPRContextEncoder` or `DPRQuestionEncoder`.
Therefore, please specify the exact class to use the model.
```python
from transformers import DPRQuestionEncoder, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("soheeyang/rdr-question_encoder-single-trivia-base")
question_encoder = DPRQuestionEncoder.from_pretrained("soheeyang/rdr-question_encoder-single-trivia-base")
data = tokenizer("question comes here", return_tensors="pt")
question_embedding = question_encoder(**data).pooler_output # embedding vector for question
```
|
Cheatham/xlm-roberta-large-finetuned4 | [
"pytorch",
"xlm-roberta",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"XLMRobertaForSequenceClassification"
],
"model_type": "xlm-roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 20 | null | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: chinese-bert-wwm-chinese_bert_wwm1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chinese-bert-wwm-chinese_bert_wwm1
This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0009
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 71 | 0.5750 |
| No log | 2.0 | 142 | 0.0617 |
| No log | 3.0 | 213 | 0.0109 |
| No log | 4.0 | 284 | 0.0042 |
| No log | 5.0 | 355 | 0.0024 |
| No log | 6.0 | 426 | 0.0017 |
| No log | 7.0 | 497 | 0.0012 |
| 0.5341 | 8.0 | 568 | 0.0009 |
| 0.5341 | 9.0 | 639 | 0.0009 |
| 0.5341 | 10.0 | 710 | 0.0011 |
| 0.5341 | 11.0 | 781 | 0.0013 |
| 0.5341 | 12.0 | 852 | 0.0012 |
| 0.5341 | 13.0 | 923 | 0.0010 |
| 0.5341 | 14.0 | 994 | 0.0010 |
| 0.0041 | 15.0 | 1065 | 0.0011 |
| 0.0041 | 16.0 | 1136 | 0.0009 |
| 0.0041 | 17.0 | 1207 | 0.0008 |
| 0.0041 | 18.0 | 1278 | 0.0009 |
| 0.0041 | 19.0 | 1349 | 0.0008 |
| 0.0041 | 20.0 | 1420 | 0.0008 |
| 0.0041 | 21.0 | 1491 | 0.0009 |
| 0.0019 | 22.0 | 1562 | 0.0009 |
| 0.0019 | 23.0 | 1633 | 0.0010 |
| 0.0019 | 24.0 | 1704 | 0.0009 |
| 0.0019 | 25.0 | 1775 | 0.0009 |
| 0.0019 | 26.0 | 1846 | 0.0008 |
| 0.0019 | 27.0 | 1917 | 0.0009 |
| 0.0019 | 28.0 | 1988 | 0.0009 |
| 0.0013 | 29.0 | 2059 | 0.0009 |
| 0.0013 | 30.0 | 2130 | 0.0009 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Chuah/DialoGPT-small-harrypotter | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 9 | null | ---
language: ja
tags:
- byt5
- t5
- text2text-generation
- seq2seq
license: cc-by-sa-4.0
datasets:
- wikipedia
- oscar
- cc100
---
# 日本語ByT5事前学習済みモデル
This is a [ByT5 (a tokenizer-free extension of the Text-to-Text Transfer Transformer)](https://github.com/google-research/byt5/) model pretrained on Japanese corpus.
次の日本語コーパス(約100GB)を用いて事前学習を行ったByT5 (a tokenizer-free extension of the Text-to-Text Transfer Transformer) モデルです。
* [Wikipedia](https://ja.wikipedia.org)の日本語ダンプデータ (2020年7月6日時点のもの)
* [OSCAR](https://oscar-corpus.com)の日本語コーパス
* [CC-100](http://data.statmt.org/cc-100/)の日本語コーパス
このモデルは事前学習のみを行なったものであり、特定のタスクに利用するにはファインチューニングする必要があります。
本モデルにも、大規模コーパスを用いた言語モデルにつきまとう、学習データの内容の偏りに由来する偏った(倫理的ではなかったり、有害だったり、バイアスがあったりする)出力結果になる問題が潜在的にあります。
この問題が発生しうることを想定した上で、被害が発生しない用途にのみ利用するよう気をつけてください。
# 転移学習のサンプルコード
準備中
# ベンチマーク
livedoorニュースコーパスを用いたニュース記事のジャンル予測タスクの精度は次の通りです。
日本語T5 ([byt5-small-japanese](https://huggingface.co/sonoisa/byt5-small-japanese), パラメータ数は299M)
| label | precision | recall | f1-score | support |
| ----------- | ----------- | ------- | -------- | ------- |
| 0 | 0.94 | 0.89 | 0.91 | 130 |
| 1 | 0.93 | 0.94 | 0.93 | 121 |
| 2 | 0.88 | 0.93 | 0.90 | 123 |
| 3 | 0.90 | 0.87 | 0.88 | 82 |
| 4 | 0.95 | 0.95 | 0.95 | 129 |
| 5 | 0.94 | 0.95 | 0.94 | 141 |
| 6 | 0.98 | 0.96 | 0.97 | 127 |
| 7 | 0.98 | 0.98 | 0.98 | 127 |
| 8 | 0.97 | 0.97 | 0.97 | 120 |
| accuracy | | | 0.94 | 1100 |
| macro avg | 0.94 | 0.94 | 0.94 | 1100 |
| weighted avg | 0.94 | 0.94 | 0.94 | 1100 |
比較対象: 多言語T5 ([google/byt5-small](https://huggingface.co/google/byt5-small), パラメータ数は299M)
| label | precision | recall | f1-score | support |
| ----------- | ----------- | ------- | -------- | ------- |
| 0 | 0.93 | 0.88 | 0.91 | 130 |
| 1 | 0.90 | 0.79 | 0.84 | 121 |
| 2 | 0.75 | 0.86 | 0.80 | 123 |
| 3 | 0.87 | 0.79 | 0.83 | 82 |
| 4 | 0.93 | 0.96 | 0.94 | 129 |
| 5 | 0.87 | 0.95 | 0.91 | 141 |
| 6 | 0.98 | 0.93 | 0.96 | 127 |
| 7 | 0.97 | 0.91 | 0.94 | 127 |
| 8 | 0.89 | 0.94 | 0.91 | 120 |
| accuracy | | | 0.90 | 1100 |
| macro avg | 0.90 | 0.89 | 0.89 | 1100 |
| weighted avg | 0.90 | 0.90 | 0.90 | 1100 |
## 免責事項
本モデルの作者は本モデルを作成するにあたって、その内容、機能等について細心の注意を払っておりますが、モデルの出力が正確であるかどうか、安全なものであるか等について保証をするものではなく、何らの責任を負うものではありません。本モデルの利用により、万一、利用者に何らかの不都合や損害が発生したとしても、モデルやデータセットの作者や作者の所属組織は何らの責任を負うものではありません。利用者には本モデルやデータセットの作者や所属組織が責任を負わないことを明確にする義務があります。
## ライセンス
[CC-BY SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.ja)
[Common Crawlの利用規約](http://commoncrawl.org/terms-of-use/)も守るようご注意ください。
|
Chun/DialoGPT-medium-dailydialog | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 15 | null | ---
language: ja
license: cc-by-sa-4.0
tags:
- sentence-transformers
- sentence-bert
- feature-extraction
- sentence-similarity
---
This is a Japanese sentence-BERT model.
日本語用Sentence-BERTモデル(バージョン1)です。
※: 精度が1.5ポイントほど向上した[バージョン2モデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)もあります。
# 解説
https://qiita.com/sonoisa/items/1df94d0a98cd4f209051
# 使い方
```python
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
# return torch.stack(all_embeddings).numpy()
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens"
model = SentenceBertJapanese(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
```
|
Chungu424/repodata | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-10-14T16:05:42Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: xlm-roberta-large-finetuned-squad-v2_15102021
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-finetuned-squad-v2_15102021
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 17.5548
- eval_runtime: 168.7788
- eval_samples_per_second: 23.368
- eval_steps_per_second: 5.842
- epoch: 8.0
- step: 7600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.1
- Tokenizers 0.10.3
|
Chuu/Chumar | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: xlm-roberta-large-finetuned-squad
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: squad
type: squad
args: default
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-finetuned-squad
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0350
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6093 | 1.0 | 620 | 1.0023 |
| 0.849 | 2.0 | 1240 | 0.9449 |
| 0.6693 | 3.0 | 1860 | 1.0350 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
CodeDanCode/SP-KyleBot | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 15 | null | ---
tags:
- spacy
- token-classification
language:
- ca
license: gpl-3.0
model-index:
- name: ca_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8433931485
- name: NER Recall
type: recall
value: 0.8362989324
- name: NER F Score
type: f_score
value: 0.8398310591
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9842009038
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9842009038
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9805010564
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9802491487
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.918825693
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.889176854
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9918080749
---
### Details: https://spacy.io/models/ca#ca_core_news_md
Catalan pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ca_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Catalan AnCora v2.8](https://github.com/UniversalDependencies/UD_Catalan-AnCora) (Martínez Alonso, Héctor; Pascual, Elena; Zeman, Daniel)<br />[UD Catalan AnCora v2.8 + NER v3.2.8](https://github.com/TeMU-BSC/spacy/releases/tag/3.2.8) (Carlos Rodríguez-Penagos and Carme Armentano-Oller)<br />[Catalan Lemmatizer](https://github.com/explosion/spacy-lookups-data) (Text Mining Unit, Barcelona Supercomputing Center)<br />[Catalan Word Embeddings in FastText (Version 1.0)](http://doi.org/10.5281/zenodo.4522041) (Gutiérrez-Fandiño, Asier, Armengol-Estapé, Jordi, Gonzalez-Agirre, Aitor, Carrino, Casimiro Pio, de Gibert, Ona, & Villegas, Marta) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (317 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumForm=Digit\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `POS=AUX\|VerbForm=Inf`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Peri`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `POS=SCONJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `POS=SYM`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|Polarity=Neg`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=PUNCT`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=VERB`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Semi`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Colo`, `Gender=Masc\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Quot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `POS=VERB`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `POS=X`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `NumForm=Digit\|NumType=Ord\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=PRON\|PronType=Int`, `Foreign=Yes\|Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Foreign=Yes\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Comm`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Comm`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `AdvType=Tim\|Degree=Cmp\|POS=ADV`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Pre\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `POS=INTJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=SCONJ`, `Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=SYM`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Foreign=Yes\|POS=ADV`, `POS=PUNCT\|PunctSide=Fin\|Punta d'aignctType=Brck`, `Degree=Cmp\|POS=ADJ`, `AdvType=Tim\|POS=SYM`, `Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TOKEN_P` | 99.78 |
| `TOKEN_R` | 99.79 |
| `TOKEN_F` | 99.79 |
| `POS_ACC` | 98.42 |
| `MORPH_ACC` | 98.05 |
| `MORPH_MICRO_P` | 99.45 |
| `MORPH_MICRO_R` | 98.93 |
| `MORPH_MICRO_F` | 99.19 |
| `SENTS_P` | 99.18 |
| `SENTS_R` | 99.18 |
| `SENTS_F` | 99.18 |
| `DEP_UAS` | 91.88 |
| `DEP_LAS` | 88.92 |
| `TAG_ACC` | 98.42 |
| `LEMMA_ACC` | 98.02 |
| `ENTS_P` | 84.34 |
| `ENTS_R` | 83.63 |
| `ENTS_F` | 83.98 | |
CodeNinja1126/koelectra-model | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- spacy
- token-classification
language:
- da
license: cc-by-sa-4.0
model-index:
- name: da_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8020833333
- name: NER Recall
type: recall
value: 0.8020833333
- name: NER F Score
type: f_score
value: 0.8020833333
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9634866828
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9634866828
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9515738499
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9476997579
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8226680825
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7821616184
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9056603774
---
### Details: https://spacy.io/models/da#da_core_news_md
Danish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `da_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Danish DDT v2.8](https://github.com/UniversalDependencies/UD_Danish-DDT) (Johannsen, Anders; Martínez Alonso, Héctor; Plank, Barbara)<br />[DaNE](https://github.com/alexandrainst/danlp/blob/master/docs/datasets.md#danish-dependency-treebank-dane) (Rasmus Hvingelby, Amalie B. Pauli, Maria Barrett, Christina Rosted, Lasse M. Lidegaard, Anders Søgaard)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (194 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `AdpType=Prep\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN`, `Definite=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Definite=Ind\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADJ`, `POS=PRON\|PartType=Inf`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=ADP\|PartType=Inf`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Inf`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|POS=PRON\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Imp\|POS=VERB`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=ADV\|PartType=Inf`, `Degree=Sup\|POS=ADV`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|POS=PROPN`, `POS=ADP`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Com\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `POS=SPACE`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=SYM`, `Case=Nom\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Degree=Sup\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind\|Style=Arch`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Foreign=Yes\|POS=X`, `POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Int,Rel`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Abbr=Yes\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Abs\|POS=ADJ`, `Definite=Ind\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=NOUN`, `Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Com\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Degree=Abs\|POS=ADV`, `POS=VERB\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|Tense=Pres`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|POS=AUX`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=NOUN`, `Number[psor]=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `advmod:lmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `expl`, `fixed`, `flat`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:lmod`, `obl:tmod`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.89 |
| `TOKEN_P` | 99.78 |
| `TOKEN_R` | 99.75 |
| `TOKEN_F` | 99.76 |
| `POS_ACC` | 96.35 |
| `MORPH_ACC` | 95.16 |
| `MORPH_MICRO_P` | 96.91 |
| `MORPH_MICRO_R` | 96.34 |
| `MORPH_MICRO_F` | 96.62 |
| `SENTS_P` | 91.80 |
| `SENTS_R` | 89.36 |
| `SENTS_F` | 90.57 |
| `DEP_UAS` | 82.27 |
| `DEP_LAS` | 78.22 |
| `LEMMA_ACC` | 94.77 |
| `TAG_ACC` | 96.35 |
| `ENTS_P` | 80.21 |
| `ENTS_R` | 80.21 |
| `ENTS_F` | 80.21 | |
Venkatakrishnan-Ramesh/Text_gen | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-07-07T10:27:30Z | ---
tags:
- spacy
- token-classification
language:
- de
license: mit
model-index:
- name: de_dep_news_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.990643584
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9915288956
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9699941191
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9873800777
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9593756103
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9480405339
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9827461515
---
### Details: https://spacy.io/models/de#de_dep_news_trf
German transformer pipeline (bert-base-german-cased). Components: transformer, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer).
| Feature | Description |
| --- | --- |
| **Name** | `de_dep_news_trf` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `transformer`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler` |
| **Components** | `transformer`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [TIGER Corpus](https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html) (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit)<br />[Tiger2Dep](https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/tiger2dep/) (Wolfgang Seeker)<br />[bert-base-german-cased](https://huggingface.co/bert-base-german-cased) (Branden Chan, Timo Möller, Malte Pietsch, Tanay Soni) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (766 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `NNE`, `PDAT`, `PDS`, `PIAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` |
| **`morphologizer`** | `POS=PUNCT`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Degree=Pos\|POS=ADV`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=SCONJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PART`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADP`, `Gender=Neut\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=SCONJ\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=X`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=AUX\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|POS=PROPN`, `Case=Gen\|Definite=Def\|POS=DET\|PronType=Art`, `Case=Gen\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|POS=PRON\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Neut\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `ac`, `adc`, `ag`, `ams`, `app`, `avc`, `cc`, `cd`, `cj`, `cm`, `cp`, `cvc`, `da`, `dep`, `dm`, `ep`, `ju`, `mnr`, `mo`, `ng`, `nk`, `nmc`, `oa`, `oc`, `og`, `op`, `par`, `pd`, `pg`, `ph`, `pm`, `pnc`, `punct`, `rc`, `re`, `rs`, `sb`, `sbp`, `svp`, `uc`, `vo` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.96 |
| `TOKEN_P` | 99.92 |
| `TOKEN_R` | 99.90 |
| `TOKEN_F` | 99.91 |
| `TAG_ACC` | 99.06 |
| `POS_ACC` | 99.15 |
| `MORPH_ACC` | 97.00 |
| `MORPH_MICRO_P` | 98.83 |
| `MORPH_MICRO_R` | 98.87 |
| `MORPH_MICRO_F` | 98.85 |
| `SENTS_P` | 98.26 |
| `SENTS_R` | 98.28 |
| `SENTS_F` | 98.27 |
| `DEP_UAS` | 95.94 |
| `DEP_LAS` | 94.80 |
| `LEMMA_ACC` | 98.74 | |
CoffeeAddict93/gpt2-call-of-the-wild | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 6 | 2021-07-07T12:39:26Z | ---
tags:
- spacy
- token-classification
language:
- el
license: cc-by-nc-sa-3.0
model-index:
- name: el_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.742081448
- name: NER Recall
type: recall
value: 0.6890756303
- name: NER F Score
type: f_score
value: 0.7145969499
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9127841049
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9427599468
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.8905980378
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8865552433
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8463356974
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8032327231
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9372693727
---
### Details: https://spacy.io/models/el#el_core_news_sm
Greek pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `el_core_news_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Greek GDT v2.8](https://github.com/UniversalDependencies/UD_Greek-GDT) (Prokopidis, Prokopis)<br />[Greek NER Corpus (Google Summer of Code 2018)](https://github.com/eellak/gsoc2018-spacy) (Giannis Daras) |
| **License** | `CC BY-NC-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (395 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=NOUN`, `POS=ADV`, `POS=PUNCT`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=AUX`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PART`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=SPACE`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `POS=SYM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `EVENT`, `GPE`, `LOC`, `ORG`, `PERSON`, `PRODUCT` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.90 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.93 |
| `POS_ACC` | 94.28 |
| `MORPH_ACC` | 89.06 |
| `MORPH_MICRO_P` | 94.85 |
| `MORPH_MICRO_R` | 94.52 |
| `MORPH_MICRO_F` | 94.69 |
| `SENTS_P` | 92.93 |
| `SENTS_R` | 94.54 |
| `SENTS_F` | 93.73 |
| `DEP_UAS` | 84.63 |
| `DEP_LAS` | 80.32 |
| `LEMMA_ACC` | 88.66 |
| `TAG_ACC` | 91.28 |
| `ENTS_P` | 74.21 |
| `ENTS_R` | 68.91 |
| `ENTS_F` | 71.46 | |
CoffeeAddict93/gpt2-medium-call-of-the-wild | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 14 | null | ---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_core_web_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8516398746
- name: NER Recall
type: recall
value: 0.8569711538
- name: NER F Score
type: f_score
value: 0.8542971968
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9734810915
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9208198801
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9027174273
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.907098331
---
### Details: https://spacy.io/models/en#en_core_web_lg
English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `en_core_web_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (113 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.86 |
| `TOKEN_P` | 99.57 |
| `TOKEN_R` | 99.58 |
| `TOKEN_F` | 99.57 |
| `TAG_ACC` | 97.35 |
| `SENTS_P` | 92.19 |
| `SENTS_R` | 89.27 |
| `SENTS_F` | 90.71 |
| `DEP_UAS` | 92.08 |
| `DEP_LAS` | 90.27 |
| `ENTS_P` | 85.16 |
| `ENTS_R` | 85.70 |
| `ENTS_F` | 85.43 | |
ComCom/gpt2-medium | [
"pytorch",
"gpt2",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"GPT2Model"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | null | ---
tags:
- spacy
- token-classification
language:
- fr
license: lgpl-lr
model-index:
- name: fr_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8317031703
- name: NER Recall
type: recall
value: 0.8322525119
- name: NER F Score
type: f_score
value: 0.8319777504
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9450741962
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9737221764
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9648987166
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9134812988
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8947398877
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8562998959
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8851269649
---
### Details: https://spacy.io/models/fr#fr_core_news_md
French pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `fr_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD French Sequoia v2.8](https://github.com/UniversalDependencies/UD_French-Sequoia) (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `LGPL-LR` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (237 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|Poss=Yes`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|PronType=Int`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=DET\|Poss=Yes`, `POS=AUX\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PRON\|Person=3\|Reflex=Yes`, `Gender=Masc\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=PRON\|Person=3`, `Number=Plur\|POS=NOUN`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=3`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes`, `Gender=Masc\|POS=PRON`, `POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PRON`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=PRON`, `POS=NUM`, `Gender=Fem\|POS=NOUN`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=PRON`, `Number=Plur\|POS=PRON\|Person=3`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Number=Plur\|POS=PRON\|Person=2`, `NumType=Card\|POS=PRON`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3`, `Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|POS=PRON`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `POS=SYM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `POS=DET`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|NumType=Card\|POS=NUM` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux:pass`, `aux:tense`, `case`, `cc`, `ccomp`, `conj`, `cop`, `dep`, `det`, `expl:comp`, `expl:pass`, `expl:subj`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl:agent`, `obl:arg`, `obl:mod`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 98.44 |
| `TOKEN_R` | 98.96 |
| `TOKEN_F` | 98.70 |
| `POS_ACC` | 97.37 |
| `MORPH_ACC` | 96.49 |
| `MORPH_MICRO_P` | 98.68 |
| `MORPH_MICRO_R` | 97.98 |
| `MORPH_MICRO_F` | 98.33 |
| `SENTS_P` | 88.19 |
| `SENTS_R` | 89.46 |
| `SENTS_F` | 88.51 |
| `DEP_UAS` | 89.47 |
| `DEP_LAS` | 85.63 |
| `TAG_ACC` | 94.51 |
| `LEMMA_ACC` | 91.35 |
| `ENTS_P` | 83.17 |
| `ENTS_R` | 83.23 |
| `ENTS_F` | 83.20 | |
ComCom/gpt2 | [
"pytorch",
"gpt2",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"GPT2Model"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | 2021-07-07T12:32:58Z | ---
tags:
- spacy
- token-classification
language:
- fr
license: lgpl-lr
model-index:
- name: fr_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8148438757
- name: NER Recall
type: recall
value: 0.8106360834
- name: NER F Score
type: f_score
value: 0.8127345333
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.933216531
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9617644028
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9529502705
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9084463625
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8781984485
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8347514036
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.861278649
---
### Details: https://spacy.io/models/fr#fr_core_news_sm
French pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `fr_core_news_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD French Sequoia v2.8](https://github.com/UniversalDependencies/UD_French-Sequoia) (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion) |
| **License** | `LGPL-LR` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (237 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|Poss=Yes`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|PronType=Int`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=DET\|Poss=Yes`, `POS=AUX\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PRON\|Person=3\|Reflex=Yes`, `Gender=Masc\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=PRON\|Person=3`, `Number=Plur\|POS=NOUN`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=3`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes`, `Gender=Masc\|POS=PRON`, `POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PRON`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=PRON`, `POS=NUM`, `Gender=Fem\|POS=NOUN`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=PRON`, `Number=Plur\|POS=PRON\|Person=3`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Number=Plur\|POS=PRON\|Person=2`, `NumType=Card\|POS=PRON`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3`, `Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|POS=PRON`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `POS=SYM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `POS=DET`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|NumType=Card\|POS=NUM` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux:pass`, `aux:tense`, `case`, `cc`, `ccomp`, `conj`, `cop`, `dep`, `det`, `expl:comp`, `expl:pass`, `expl:subj`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl:agent`, `obl:arg`, `obl:mod`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 98.44 |
| `TOKEN_R` | 98.96 |
| `TOKEN_F` | 98.70 |
| `POS_ACC` | 96.18 |
| `MORPH_ACC` | 95.30 |
| `MORPH_MICRO_P` | 97.96 |
| `MORPH_MICRO_R` | 96.64 |
| `MORPH_MICRO_F` | 97.29 |
| `SENTS_P` | 85.61 |
| `SENTS_R` | 86.65 |
| `SENTS_F` | 86.13 |
| `DEP_UAS` | 87.82 |
| `DEP_LAS` | 83.48 |
| `TAG_ACC` | 93.32 |
| `LEMMA_ACC` | 90.84 |
| `ENTS_P` | 81.48 |
| `ENTS_R` | 81.06 |
| `ENTS_F` | 81.27 | |
Connor-tech/bert_cn_finetuning | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 27 | 2021-07-07T12:08:11Z | ---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.754691689
- name: NER Recall
type: recall
value: 0.7081761006
- name: NER F Score
type: f_score
value: 0.7306943543
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9712488769
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9749672775
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9670526831
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9233540485
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9101052821
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9658536585
---
### Details: https://spacy.io/models/ja#ja_core_news_lg
Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 480443 keys, 480443 unique vectors (300 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo)<br />[chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k)](https://github.com/WorksApplications/chiVe) (Works Applications) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (65 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.65 |
| `TOKEN_R` | 97.90 |
| `TOKEN_F` | 97.77 |
| `POS_ACC` | 97.50 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 95.56 |
| `SENTS_R` | 97.63 |
| `SENTS_F` | 96.59 |
| `DEP_UAS` | 92.34 |
| `DEP_LAS` | 91.01 |
| `TAG_ACC` | 97.12 |
| `LEMMA_ACC` | 96.71 |
| `ENTS_P` | 75.47 |
| `ENTS_R` | 70.82 |
| `ENTS_F` | 73.07 | |
Connorvr/TeachingGen | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:mit"
] | text-generation | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": true,
"max_length": 50
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 4 | null | ---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.680620155
- name: NER Recall
type: recall
value: 0.5522012579
- name: NER F Score
type: f_score
value: 0.6097222222
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9712488769
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9608508898
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9670526831
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9191282421
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.903437725
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9891838741
---
### Details: https://spacy.io/models/ja#ja_core_news_sm
Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (65 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.65 |
| `TOKEN_R` | 97.90 |
| `TOKEN_F` | 97.77 |
| `POS_ACC` | 96.09 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 98.63 |
| `SENTS_R` | 99.21 |
| `SENTS_F` | 98.92 |
| `DEP_UAS` | 91.91 |
| `DEP_LAS` | 90.34 |
| `TAG_ACC` | 97.12 |
| `LEMMA_ACC` | 96.71 |
| `ENTS_P` | 68.06 |
| `ENTS_R` | 55.22 |
| `ENTS_F` | 60.97 | |
ConstellationBoi/Oop | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-11-09T16:58:01Z | ---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-3.0
model-index:
- name: ja_core_news_trf
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8298969072
- name: NER Recall
type: recall
value: 0.8100628931
- name: NER F Score
type: f_score
value: 0.8198599618
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9712488769
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9798207196
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9670526831
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9355666622
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9241776538
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9755142018
---
### Details: https://spacy.io/models/ja#ja_core_news_trf
Japanese transformer pipeline (cl-tohoku/bert-base-japanese-char-v2). Components: transformer, morphologizer, parser, ner.
| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_trf` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `transformer`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `transformer`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo)<br />[cl-tohoku/bert-base-japanese-char-v2](https://huggingface.co/cl-tohoku/bert-base-japanese-char-v2) (Inui Laboratory, Tohoku University) |
| **License** | `CC BY-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (64 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.65 |
| `TOKEN_R` | 97.90 |
| `TOKEN_F` | 97.77 |
| `POS_ACC` | 97.98 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 33.56 |
| `MORPH_MICRO_R` | 96.08 |
| `MORPH_MICRO_F` | 49.75 |
| `SENTS_P` | 96.89 |
| `SENTS_R` | 98.22 |
| `SENTS_F` | 97.55 |
| `DEP_UAS` | 93.56 |
| `DEP_LAS` | 92.42 |
| `TAG_ACC` | 97.12 |
| `LEMMA_ACC` | 96.71 |
| `ENTS_P` | 82.99 |
| `ENTS_R` | 81.01 |
| `ENTS_F` | 81.99 | |
Contrastive-Tension/BERT-Large-CT-STSb | [
"pytorch",
"tf",
"jax",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | {
"architectures": [
"BertModel"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | 2021-07-07T12:00:43Z | ---
tags:
- spacy
- token-classification
language:
- nb
license: mit
model-index:
- name: nb_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.811827957
- name: NER Recall
type: recall
value: 0.8050947867
- name: NER F Score
type: f_score
value: 0.8084473528
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9728910684
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9728910684
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9586576479
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.970965787
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8936788796
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8623767174
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9485952133
---
### Details: https://spacy.io/models/nb#nb_core_news_md
Norwegian (Bokmål) pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `nb_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Norwegian Bokmaal v2.8](https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal) (Øvrelid, Lilja; Jørgensen, Fredrik; Hohle, Petter)<br />[NorNE: Norwegian Named Entities (commit: bd311de5)](https://github.com/ltgoslo/norne) (Language Technology Group (University of Oslo))<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (249 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=PROPN`, `POS=X`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|POS=PROPN`, `POS=NOUN`, `Gender=Masc\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `POS=PART\|Polarity=Neg`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Abbr=Yes\|Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADP`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Pos\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Prs`, `POS=SYM`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Def\|NumType=Card\|POS=NUM`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=SPACE`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `POS=INTJ`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Animacy=Hum\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Sup\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `POS=DET\|PronType=Ind`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Number=Plur\|POS=NOUN`, `POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem,Ind`, `Animacy=Hum\|POS=PRON\|Poss=Yes\|PronType=Int`, `Abbr=Yes\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Plur,Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Gen,Nom\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DRV`, `EVT`, `GPE_LOC`, `GPE_ORG`, `LOC`, `MISC`, `ORG`, `PER`, `PROD` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.81 |
| `TOKEN_P` | 99.71 |
| `TOKEN_R` | 99.53 |
| `TOKEN_F` | 99.62 |
| `POS_ACC` | 97.29 |
| `MORPH_ACC` | 95.87 |
| `MORPH_MICRO_P` | 97.59 |
| `MORPH_MICRO_R` | 96.65 |
| `MORPH_MICRO_F` | 97.12 |
| `SENTS_P` | 95.12 |
| `SENTS_R` | 94.60 |
| `SENTS_F` | 94.86 |
| `DEP_UAS` | 89.37 |
| `DEP_LAS` | 86.24 |
| `LEMMA_ACC` | 97.10 |
| `TAG_ACC` | 97.29 |
| `ENTS_P` | 81.18 |
| `ENTS_R` | 80.51 |
| `ENTS_F` | 80.84 | |
CouchCat/ma_ner_v7_distil | [
"pytorch",
"distilbert",
"token-classification",
"en",
"transformers",
"ner",
"license:mit",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"DistilBertForTokenClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 13 | 2021-07-07T10:48:04Z | ---
tags:
- spacy
- token-classification
language:
- ro
license: cc-by-sa-4.0
model-index:
- name: ro_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7232530596
- name: NER Recall
type: recall
value: 0.7038033039
- name: NER F Score
type: f_score
value: 0.7133956386
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9557849059
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9282856599
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9405383217
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9504793737
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8715455315
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.812886226
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.960106383
---
### Details: https://spacy.io/models/ro#ro_core_news_sm
Romanian pipeline optimized for CPU. Components: tok2vec, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ro_core_news_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Romanian RRT v2.8](https://github.com/UniversalDependencies/UD_Romanian-RRT) (Barbu Mititelu, Verginica; Irimia, Elena; Perez, Cenel-Augusto; Ion, Radu; Simionescu, Radu; Popel, Martin)<br />[RONEC - the Romanian Named Entity Corpus (ca9ce460)](https://github.com/dumitrescustefan/ronec) (Dumitrescu, Stefan Daniel; Avram, Andrei-Marius; Morogan, Luciana; Toma; Stefan) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (540 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `ARROW`, `Af`, `Afcfp-n`, `Afcfson`, `Afcfsrn`, `Afcmpoy`, `Afcms-n`, `Afp`, `Afp-p-n`, `Afp-poy`, `Afp-srn`, `Afpf--n`, `Afpfp-n`, `Afpfp-ny`, `Afpfpoy`, `Afpfpry`, `Afpfson`, `Afpfsoy`, `Afpfsrn`, `Afpfsry`, `Afpm--n`, `Afpmp-n`, `Afpmpoy`, `Afpmpry`, `Afpms-n`, `Afpmsoy`, `Afpmsry`, `Afsfp-n`, `Afsfsrn`, `BULLET`, `COLON`, `COMMA`, `Ccssp`, `Ccsspy`, `Crssp`, `Csssp`, `Cssspy`, `DASH`, `DBLQ`, `Dd3-po---e`, `Dd3-po---o`, `Dd3fpo`, `Dd3fpr`, `Dd3fpr---e`, `Dd3fpr---o`, `Dd3fpr--y`, `Dd3fso`, `Dd3fso---e`, `Dd3fsr`, `Dd3fsr---e`, `Dd3fsr---o`, `Dd3fsr--yo`, `Dd3mpo`, `Dd3mpr`, `Dd3mpr---e`, `Dd3mpr---o`, `Dd3mso---e`, `Dd3msr`, `Dd3msr---e`, `Dd3msr---o`, `Dh1ms`, `Dh3fp`, `Dh3fso`, `Dh3fsr`, `Dh3mp`, `Dh3ms`, `Di3`, `Di3-----y`, `Di3--r---e`, `Di3-po`, `Di3-po---e`, `Di3-sr`, `Di3-sr---e`, `Di3-sr--y`, `Di3fp`, `Di3fpr`, `Di3fpr---e`, `Di3fso`, `Di3fso---e`, `Di3fsr`, `Di3fsr---e`, `Di3mp`, `Di3mpr`, `Di3mpr---e`, `Di3ms`, `Di3ms----e`, `Di3mso---e`, `Di3msr`, `Di3msr---e`, `Ds1fp-p`, `Ds1fp-s`, `Ds1fsop`, `Ds1fsos`, `Ds1fsrp`, `Ds1fsrs`, `Ds1fsrs-y`, `Ds1mp-p`, `Ds1mp-s`, `Ds1ms-p`, `Ds1ms-s`, `Ds1msrs-y`, `Ds2---s`, `Ds2fp-p`, `Ds2fp-s`, `Ds2fsrp`, `Ds2fsrs`, `Ds2mp-p`, `Ds2mp-s`, `Ds2ms-p`, `Ds2ms-s`, `Ds3---p`, `Ds3---s`, `Ds3---sy`, `Ds3fp-s`, `Ds3fsos`, `Ds3fsrs`, `Ds3mp-s`, `Ds3ms-s`, `Dw3--r---e`, `Dw3-po---e`, `Dw3fpr`, `Dw3fso---e`, `Dw3fsr`, `Dw3mpr`, `Dw3mso---e`, `Dw3msr`, `Dz3fsr---e`, `Dz3mso---e`, `Dz3msr---e`, `EQUAL`, `EXCL`, `EXCLHELLIP`, `GE`, `GT`, `HELLIP`, `I`, `LCURL`, `LPAR`, `LSQR`, `LT`, `M`, `Mc-p-d`, `Mc-p-l`, `Mc-s-b`, `Mc-s-d`, `Mc-s-l`, `Mcfp-l`, `Mcfp-ln`, `Mcfprln`, `Mcfprly`, `Mcfsoln`, `Mcfsrl`, `Mcfsrln`, `Mcfsrly`, `Mcmp-l`, `Mcms-ln`, `Mcmsrl`, `Mcmsrln`, `Mcmsrly`, `Mffprln`, `Mffsrln`, `Mlfpo`, `Mlfpr`, `Mlmpr`, `Mo---l`, `Mo---ln`, `Mo-s-r`, `Mofp-ln`, `Mofpoly`, `Mofprly`, `Mofs-l`, `Mofsoln`, `Mofsoly`, `Mofsrln`, `Mofsrly`, `Mompoly`, `Momprly`, `Moms-l`, `Moms-ln`, `Momsoly`, `Momsrly`, `Nc`, `Nc---n`, `Ncf--n`, `Ncfp-n`, `Ncfpoy`, `Ncfpry`, `Ncfs-n`, `Ncfson`, `Ncfsoy`, `Ncfsrn`, `Ncfsry`, `Ncfsryy`, `Ncfsvy`, `Ncm--n`, `Ncmp-n`, `Ncmpoy`, `Ncmpry`, `Ncms-n`, `Ncms-ny`, `Ncms-y`, `Ncmsoy`, `Ncmsrn`, `Ncmsry`, `Ncmsryy`, `Ncmsvn`, `Ncmsvy`, `Np`, `Npfson`, `Npfsoy`, `Npfsrn`, `Npfsry`, `Npmpoy`, `Npmpry`, `Npms-n`, `Npmsoy`, `Npmsry`, `PERCENT`, `PERIOD`, `PLUS`, `PLUSMINUS`, `Pd3-po`, `Pd3fpr`, `Pd3fso`, `Pd3fsr`, `Pd3mpo`, `Pd3mpr`, `Pd3mpr--y`, `Pd3mso`, `Pd3msr`, `Pi3--r`, `Pi3-po`, `Pi3-so`, `Pi3-sr`, `Pi3fpr`, `Pi3fso`, `Pi3fsr`, `Pi3mpr`, `Pi3mso`, `Pi3msr`, `Pi3msr--y`, `Pp1-pa--------w`, `Pp1-pa--y-----w`, `Pp1-pd--------s`, `Pp1-pd--------w`, `Pp1-pd--y-----w`, `Pp1-pr--------s`, `Pp1-sa--------s`, `Pp1-sa--------w`, `Pp1-sa--y-----w`, `Pp1-sd--------s`, `Pp1-sd--------w`, `Pp1-sd--y-----w`, `Pp1-sn--------s`, `Pp2-----------s`, `Pp2-pa--------w`, `Pp2-pa--y-----w`, `Pp2-pd--------w`, `Pp2-pd--y-----w`, `Pp2-pr--------s`, `Pp2-sa--------s`, `Pp2-sa--------w`, `Pp2-sa--y-----w`, `Pp2-sd--------s`, `Pp2-sd--------w`, `Pp2-sd--y-----w`, `Pp2-sn--------s`, `Pp2-so--------s`, `Pp2-sr--------s`, `Pp3-p---------s`, `Pp3-pd--------w`, `Pp3-pd--y-----w`, `Pp3-po--------s`, `Pp3-sd--------w`, `Pp3-sd--y-----w`, `Pp3-so--------s`, `Pp3fpa--------w`, `Pp3fpa--y-----w`, `Pp3fpr--------s`, `Pp3fs---------s`, `Pp3fsa--------w`, `Pp3fsa--y-----w`, `Pp3fso--------s`, `Pp3fsr--------s`, `Pp3fsr--y-----s`, `Pp3mpa--------w`, `Pp3mpa--y-----w`, `Pp3mpr--------s`, `Pp3ms---------s`, `Pp3msa--------w`, `Pp3msa--y-----w`, `Pp3mso--------s`, `Pp3msr--------s`, `Pp3msr--y-----s`, `Ps1fp-s`, `Ps1fsrp`, `Ps1fsrs`, `Ps1mp-p`, `Ps1ms-p`, `Ps2fp-s`, `Ps2fsrp`, `Ps2fsrs`, `Ps3---p`, `Ps3---s`, `Ps3fp-s`, `Ps3fsrs`, `Ps3mp-s`, `Ps3ms-s`, `Pw3--r`, `Pw3-po`, `Pw3-so`, `Pw3fpr`, `Pw3fso`, `Pw3mpr`, `Pw3mso`, `Px3--a--------s`, `Px3--a--------w`, `Px3--a--y-----w`, `Px3--d--------w`, `Px3--d--y-----w`, `Pz3-sr`, `Pz3fsr`, `QUEST`, `QUOT`, `Qf`, `Qn`, `Qs`, `Qs-y`, `Qz`, `Qz-y`, `RCURL`, `RPAR`, `RSQR`, `Rc`, `Rgp`, `Rgpy`, `Rgs`, `Rp`, `Rw`, `Rw-y`, `Rz`, `SCOLON`, `SLASH`, `STAR`, `Sp`, `Spsa`, `Spsay`, `Spsd`, `Spsg`, `Td-po`, `Tdfpr`, `Tdfso`, `Tdfsr`, `Tdmpr`, `Tdmso`, `Tdmsr`, `Tf-so`, `Tffpoy`, `Tffpry`, `Tffs-y`, `Tfmpoy`, `Tfms-y`, `Tfmsoy`, `Tfmsry`, `Ti-po`, `Tifp-y`, `Tifso`, `Tifsr`, `Timso`, `Timsr`, `Tsfp`, `Tsfs`, `Tsmp`, `Tsms`, `UNDERSC`, `Va--1`, `Va--1-----y`, `Va--1p`, `Va--1s`, `Va--1s----y`, `Va--2p`, `Va--2p----y`, `Va--2s`, `Va--2s----y`, `Va--3`, `Va--3-----y`, `Va--3p`, `Va--3p----y`, `Va--3s`, `Va--3s----y`, `Vag`, `Vag-------y`, `Vaii1`, `Vaii2s`, `Vaii3p`, `Vaii3s`, `Vail3p`, `Vail3s`, `Vaip1p`, `Vaip1s`, `Vaip2p`, `Vaip2s`, `Vaip3p`, `Vaip3p----y`, `Vaip3s`, `Vaip3s----y`, `Vais3p`, `Vais3s`, `Vam-2s`, `Vanp`, `Vap--sm`, `Vasp1p`, `Vasp1s`, `Vasp2p`, `Vasp2s`, `Vasp3`, `Vmg`, `Vmg-------y`, `Vmii1`, `Vmii1-----y`, `Vmii2p`, `Vmii2s`, `Vmii3p`, `Vmii3p----y`, `Vmii3s`, `Vmii3s----y`, `Vmil1`, `Vmil1p`, `Vmil2s`, `Vmil3p`, `Vmil3p----y`, `Vmil3s`, `Vmil3s----y`, `Vmip1p`, `Vmip1p----y`, `Vmip1s`, `Vmip1s----y`, `Vmip2p`, `Vmip2s`, `Vmip2s----y`, `Vmip3`, `Vmip3-----y`, `Vmip3p`, `Vmip3s`, `Vmip3s----y`, `Vmis1p`, `Vmis1s`, `Vmis3p`, `Vmis3p----y`, `Vmis3s`, `Vmis3s----y`, `Vmm-2p`, `Vmm-2s`, `Vmnp`, `Vmnp------y`, `Vmp--pf`, `Vmp--pm`, `Vmp--sf`, `Vmp--sm`, `Vmp--sm---y`, `Vmsp1p`, `Vmsp2p`, `Vmsp2s`, `Vmsp3`, `Vmsp3-----y`, `X`, `Y`, `Ya`, `Yn`, `Ynfsoy`, `Ynfsry`, `Ynmsoy`, `Ynmsry`, `Yp`, `Yp,Yn`, `Yp-sr`, `Yr`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advcl:tcl`, `advmod`, `advmod:tmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:pmod`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `expl`, `expl:impers`, `expl:pass`, `expl:poss`, `expl:pv`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `obl:pmod`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `DATETIME`, `EVENT`, `FACILITY`, `GPE`, `LANGUAGE`, `LOC`, `MONEY`, `NAT_REL_POL`, `NUMERIC_VALUE`, `ORDINAL`, `ORGANIZATION`, `PERIOD`, `PERSON`, `PRODUCT`, `QUANTITY`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 99.67 |
| `TOKEN_R` | 99.57 |
| `TOKEN_F` | 99.59 |
| `TAG_ACC` | 95.58 |
| `SENTS_P` | 96.01 |
| `SENTS_R` | 96.01 |
| `SENTS_F` | 96.01 |
| `DEP_UAS` | 87.15 |
| `DEP_LAS` | 81.29 |
| `LEMMA_ACC` | 95.05 |
| `POS_ACC` | 92.83 |
| `MORPH_ACC` | 94.05 |
| `MORPH_MICRO_P` | 98.20 |
| `MORPH_MICRO_R` | 95.20 |
| `MORPH_MICRO_F` | 96.43 |
| `ENTS_P` | 72.33 |
| `ENTS_R` | 70.38 |
| `ENTS_F` | 71.34 | |
CouchCat/ma_sa_v7_distil | [
"pytorch",
"distilbert",
"text-classification",
"en",
"transformers",
"sentiment-analysis",
"license:mit"
] | text-classification | {
"architectures": [
"DistilBertForSequenceClassification"
],
"model_type": "distilbert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 38 | null | ---
tags:
- spacy
- token-classification
language:
- ru
license: mit
model-index:
- name: ru_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9524209818
- name: NER Recall
type: recall
value: 0.9535431745
- name: NER F Score
type: f_score
value: 0.9529817478
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.989280677
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.989280677
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9749177029
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 2.15295e-05
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.962198055
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9511948091
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9985729236
---
### Details: https://spacy.io/models/ru#ru_core_news_lg
Russian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ru_core_news_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500002 keys, 500002 unique vectors (300 dimensions) |
| **Sources** | [Nerus](https://github.com/natasha/nerus) (Alexander Kukushkin)<br />[Navec](https://github.com/natasha/navec) (Alexander Kukushkin) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (900 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Degree=Pos\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=SCONJ`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|POS=NUM`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Number=Plur\|POS=ADJ\|StyleVariant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Cnd\|POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Third`, `POS=PART\|Polarity=Neg`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Case=Nom\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=INTJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=DET`, `Case=Nom\|POS=PRON`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=AUX`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=PART`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Perf\|Gender=Neut\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Degree=Cmp\|POS=ADV`, `Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Gender=Fem\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=Second`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=ADV`, `Case=Acc\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Ins\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Degree=Cmp\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Degree=Pos\|POS=ADJ`, `Case=Ins\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PUNCT\|StyleVariant=Short`, `Case=Ins\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=First`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=Third`, `Degree=Cmp\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Par\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=DET\|Person=Third`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=ADV\|Polarity=Neg`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|POS=NUM`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=First`, `Case=Nom\|Gender=Neut\|POS=NUM`, `Case=Gen\|POS=VERB\|Polarity=Neg`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Plur\|POS=PRON`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Gen\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Polarity=Neg`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=PRON\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Acc\|POS=NUM`, `Aspect=Imp\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=First`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=First`, `Foreign=Yes\|POS=PUNCT`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=Third`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=DET`, `Aspect=Imp\|POS=AUX\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|POS=PRON`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Second`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=Third`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=First`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Gen\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV`, `Foreign=Yes\|POS=PART`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Mid`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=First`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:entity`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.68 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.31 |
| `TOKEN_F` | 97.79 |
| `POS_ACC` | 98.93 |
| `MORPH_ACC` | 97.49 |
| `MORPH_MICRO_P` | 98.97 |
| `MORPH_MICRO_R` | 98.30 |
| `MORPH_MICRO_F` | 98.64 |
| `SENTS_P` | 99.87 |
| `SENTS_R` | 99.85 |
| `SENTS_F` | 99.86 |
| `DEP_UAS` | 96.22 |
| `DEP_LAS` | 95.12 |
| `TAG_ACC` | 98.93 |
| `LEMMA_ACC` | 0.00 |
| `ENTS_P` | 95.24 |
| `ENTS_R` | 95.35 |
| `ENTS_F` | 95.30 | |
CoveJH/ConBot | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-07-07T10:44:17Z | ---
tags:
- spacy
- token-classification
language:
- ru
license: mit
model-index:
- name: ru_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9438296445
- name: NER Recall
type: recall
value: 0.9474835886
- name: NER F Score
type: f_score
value: 0.9456530869
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9882061909
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9882061909
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.972948348
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 2.15295e-05
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9595456565
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9474984155
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9985729236
---
### Details: https://spacy.io/models/ru#ru_core_news_md
Russian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ru_core_news_md` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500002 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [Nerus](https://github.com/natasha/nerus) (Alexander Kukushkin)<br />[Navec](https://github.com/natasha/navec) (Alexander Kukushkin) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (900 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Degree=Pos\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=SCONJ`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|POS=NUM`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Number=Plur\|POS=ADJ\|StyleVariant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Cnd\|POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Third`, `POS=PART\|Polarity=Neg`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Case=Nom\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=INTJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=DET`, `Case=Nom\|POS=PRON`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=AUX`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=PART`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Perf\|Gender=Neut\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Degree=Cmp\|POS=ADV`, `Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Gender=Fem\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=Second`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=ADV`, `Case=Acc\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Ins\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Degree=Cmp\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Degree=Pos\|POS=ADJ`, `Case=Ins\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PUNCT\|StyleVariant=Short`, `Case=Ins\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=First`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=Third`, `Degree=Cmp\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Par\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=DET\|Person=Third`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=ADV\|Polarity=Neg`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|POS=NUM`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=First`, `Case=Nom\|Gender=Neut\|POS=NUM`, `Case=Gen\|POS=VERB\|Polarity=Neg`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Plur\|POS=PRON`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Gen\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Polarity=Neg`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=PRON\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Acc\|POS=NUM`, `Aspect=Imp\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=First`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=First`, `Foreign=Yes\|POS=PUNCT`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=Third`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=DET`, `Aspect=Imp\|POS=AUX\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|POS=PRON`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Second`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=Third`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=First`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Gen\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV`, `Foreign=Yes\|POS=PART`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Mid`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=First`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:entity`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.68 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.31 |
| `TOKEN_F` | 97.79 |
| `POS_ACC` | 98.82 |
| `MORPH_ACC` | 97.29 |
| `MORPH_MICRO_P` | 98.88 |
| `MORPH_MICRO_R` | 98.17 |
| `MORPH_MICRO_F` | 98.52 |
| `SENTS_P` | 99.87 |
| `SENTS_R` | 99.85 |
| `SENTS_F` | 99.86 |
| `DEP_UAS` | 95.95 |
| `DEP_LAS` | 94.75 |
| `TAG_ACC` | 98.82 |
| `LEMMA_ACC` | 0.00 |
| `ENTS_P` | 94.38 |
| `ENTS_R` | 94.75 |
| `ENTS_F` | 94.57 | |
Coverage/sakurajimamai | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- spacy
- token-classification
language:
- ru
license: mit
model-index:
- name: ru_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9487739335
- name: NER Recall
type: recall
value: 0.9508500252
- name: NER F Score
type: f_score
value: 0.9498108449
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.987696514
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.987696514
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9702812464
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 2.15295e-05
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9586955101
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.946180635
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9988584475
---
### Details: https://spacy.io/models/ru#ru_core_news_sm
Russian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ru_core_news_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Nerus](https://github.com/natasha/nerus) (Alexander Kukushkin) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (900 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Degree=Pos\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=SCONJ`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|POS=NUM`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Number=Plur\|POS=ADJ\|StyleVariant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Cnd\|POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Third`, `POS=PART\|Polarity=Neg`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Case=Nom\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=INTJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=DET`, `Case=Nom\|POS=PRON`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=AUX`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=PART`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Perf\|Gender=Neut\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Degree=Cmp\|POS=ADV`, `Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Gender=Fem\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=Second`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=ADV`, `Case=Acc\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Ins\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Degree=Cmp\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Degree=Pos\|POS=ADJ`, `Case=Ins\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PUNCT\|StyleVariant=Short`, `Case=Ins\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=First`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=Third`, `Degree=Cmp\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Par\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=DET\|Person=Third`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=ADV\|Polarity=Neg`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|POS=NUM`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=First`, `Case=Nom\|Gender=Neut\|POS=NUM`, `Case=Gen\|POS=VERB\|Polarity=Neg`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Plur\|POS=PRON`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Gen\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Polarity=Neg`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=PRON\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Acc\|POS=NUM`, `Aspect=Imp\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=First`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=First`, `Foreign=Yes\|POS=PUNCT`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=Third`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=DET`, `Aspect=Imp\|POS=AUX\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|POS=PRON`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Second`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=Third`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=First`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Gen\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV`, `Foreign=Yes\|POS=PART`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Mid`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=First`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:entity`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.68 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.31 |
| `TOKEN_F` | 97.79 |
| `POS_ACC` | 98.77 |
| `MORPH_ACC` | 97.03 |
| `MORPH_MICRO_P` | 98.68 |
| `MORPH_MICRO_R` | 97.98 |
| `MORPH_MICRO_F` | 98.33 |
| `SENTS_P` | 99.89 |
| `SENTS_R` | 99.89 |
| `SENTS_F` | 99.89 |
| `DEP_UAS` | 95.87 |
| `DEP_LAS` | 94.62 |
| `TAG_ACC` | 98.77 |
| `LEMMA_ACC` | 0.00 |
| `ENTS_P` | 94.88 |
| `ENTS_R` | 95.09 |
| `ENTS_F` | 94.98 | |
Coyotl/DialoGPT-test-last-arthurmorgan | [
"conversational"
] | conversational | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-07-07T10:35:50Z | ---
tags:
- spacy
- token-classification
language:
- multilingual
license: mit
model-index:
- name: xx_ent_wiki_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8352564288
- name: NER Recall
type: recall
value: 0.8264712666
- name: NER F Score
type: f_score
value: 0.8308406251
---
### Details: https://spacy.io/models/xx#xx_ent_wiki_sm
Multi-language pipeline optimized for CPU. Components: ner.
| Feature | Description |
| --- | --- |
| **Name** | `xx_ent_wiki_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `ner` |
| **Components** | `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_P` | 83.53 |
| `ENTS_R` | 82.65 |
| `ENTS_F` | 83.08 | |
Coyotl/DialoGPT-test3-arthurmorgan | [
"conversational"
] | conversational | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-07-07T10:31:39Z | ---
tags:
- spacy
- token-classification
language:
- zh
license: mit
model-index:
- name: zh_core_web_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7355275444
- name: NER Recall
type: recall
value: 0.6925274725
- name: NER F Score
type: f_score
value: 0.7133801223
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9033086963
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.7085620979
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.6571012366
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.7524359748
---
### Details: https://spacy.io/models/zh#zh_core_web_lg
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_lg` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (100 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 95.85 |
| `TOKEN_P` | 94.58 |
| `TOKEN_R` | 91.36 |
| `TOKEN_F` | 92.94 |
| `TAG_ACC` | 90.33 |
| `SENTS_P` | 78.05 |
| `SENTS_R` | 72.63 |
| `SENTS_F` | 75.24 |
| `DEP_UAS` | 70.86 |
| `DEP_LAS` | 65.71 |
| `ENTS_P` | 73.55 |
| `ENTS_R` | 69.25 |
| `ENTS_F` | 71.34 | |
CracklesCreeper/Piglin-Talks-Harry-Potter | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | {
"architectures": [
"GPT2LMHeadModel"
],
"model_type": "gpt2",
"task_specific_params": {
"conversational": {
"max_length": 1000
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 10 | null | ---
tags:
- spacy
- token-classification
language:
- zh
license: mit
model-index:
- name: zh_core_web_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7203462148
- name: NER Recall
type: recall
value: 0.6493406593
- name: NER F Score
type: f_score
value: 0.6830029475
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.8933253054
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6960047338
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.640776699
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.7514211886
---
### Details: https://spacy.io/models/zh#zh_core_web_sm
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_sm` |
| **Version** | `3.5.0` |
| **spaCy** | `>=3.5.0,<3.6.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (100 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 95.85 |
| `TOKEN_P` | 94.58 |
| `TOKEN_R` | 91.36 |
| `TOKEN_F` | 92.94 |
| `TAG_ACC` | 89.33 |
| `SENTS_P` | 77.85 |
| `SENTS_R` | 72.62 |
| `SENTS_F` | 75.14 |
| `DEP_UAS` | 69.60 |
| `DEP_LAS` | 64.08 |
| `ENTS_P` | 72.03 |
| `ENTS_R` | 64.93 |
| `ENTS_F` | 68.30 | |
CrayonShinchan/fine_tune_try_1 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-10-25T13:59:49Z | ---
language: en
license: mit
---
Import it using pipeline
from transformers import pipeline
text_generation = pipeline('text-generation' , model='sparki/kinkyfurs-gpt2')
Then use it
prefix_text = input()
text_generation(prefix_text, max_length=50, num_beams=5,no_repeat_ngram_size=2,early_stopping=True)
|
CrypticT1tan/DialoGPT-medium-harrypotter | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 18.7898
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.5396 | 0.28 | 500 | 9.0401 | 1.0120 |
| 5.898 | 0.56 | 1000 | 9.3199 | 1.0 |
| 4.9595 | 0.84 | 1500 | 8.4434 | 1.4563 |
| 5.7082 | 1.12 | 2000 | 15.1805 | 1.0000 |
| 5.4377 | 1.4 | 2500 | 15.7984 | 1.0021 |
| 5.5941 | 1.68 | 3000 | 18.4928 | 1.0 |
| 5.0662 | 1.96 | 3500 | 17.4886 | 1.0000 |
| 4.8363 | 2.24 | 4000 | 18.9458 | 1.0 |
| 4.7908 | 2.52 | 4500 | 18.2794 | 1.0006 |
| 4.679 | 2.8 | 5000 | 18.7898 | 1.0 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Crystal/distilbert-base-uncased-finetuned-squad | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9251
- Wer: 1.7858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.6487 | 0.28 | 500 | 6.8354 | 1.4719 |
| 6.5662 | 0.56 | 1000 | 6.7877 | 0.9371 |
| 6.4309 | 0.84 | 1500 | 6.7640 | 1.1317 |
| 6.7123 | 1.12 | 2000 | 6.7907 | 1.9354 |
| 6.7547 | 1.4 | 2500 | 6.7830 | 1.8854 |
| 6.6726 | 1.68 | 3000 | 6.8211 | 1.9203 |
| 6.6538 | 1.96 | 3500 | 6.8444 | 1.8235 |
| 6.5693 | 2.24 | 4000 | 6.8873 | 1.8606 |
| 6.7234 | 2.52 | 4500 | 6.8649 | 1.8126 |
| 6.5104 | 2.8 | 5000 | 6.9251 | 1.7858 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Culmenus/IceBERT-finetuned-ner | [
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"dataset:mim_gold_ner",
"transformers",
"generated_from_trainer",
"license:gpl-3.0",
"model-index",
"autotrain_compatible"
] | token-classification | {
"architectures": [
"RobertaForTokenClassification"
],
"model_type": "roberta",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 5 | 2022-02-14T15:05:22Z | ---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 6.5541
- Wer: 1.9877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.9364 | 0.28 | 500 | 6.3613 | 1.9833 |
| 1.941 | 0.56 | 1000 | 5.6974 | 1.9746 |
| 2.3312 | 0.84 | 1500 | 5.6979 | 1.7345 |
| 2.8004 | 1.12 | 2000 | 6.0436 | 1.6787 |
| 3.0003 | 1.4 | 2500 | 6.0955 | 1.7625 |
| 2.9677 | 1.68 | 3000 | 6.2841 | 1.6731 |
| 2.2759 | 1.96 | 3500 | 6.3094 | 1.7494 |
| 2.2989 | 2.24 | 4000 | 6.9891 | 1.9115 |
| 1.8814 | 2.52 | 4500 | 6.9818 | 1.9832 |
| 2.658 | 2.8 | 5000 | 6.5541 | 1.9877 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Culmenus/checkpoint-168500-finetuned-de-to-is_nr2 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
tags:
- generated_from_trainer
datasets:
- librispeech_asr
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model was trained from scratch on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1277
- Wer: 1.0334
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.7015 | 0.28 | 500 | 5.3313 | 1.9454 |
| 4.7239 | 0.56 | 1000 | 5.1316 | 1.9288 |
| 4.6686 | 0.84 | 1500 | 4.8812 | 1.9646 |
| 4.0138 | 1.12 | 2000 | 4.8274 | 1.8905 |
| 3.6314 | 1.4 | 2500 | 3.8913 | 1.7298 |
| 1.9511 | 1.68 | 3000 | 2.3486 | 1.3674 |
| 1.212 | 1.96 | 3500 | 1.6223 | 1.1877 |
| 0.8092 | 2.24 | 4000 | 1.3949 | 1.1049 |
| 0.497 | 2.52 | 4500 | 1.2544 | 1.0749 |
| 0.4401 | 2.8 | 5000 | 1.1277 | 1.0334 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|
Culmenus/opus-mt-de-is-finetuned-de-to-is_ancc | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "en"
thumbnail:
tags:
- Spoken language understanding
- speechbrain
- wav2vec2
- hubert
- pytorch
license: "apache-2.0"
datasets:
- SLURP
metrics:
- Accuracy
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# End-to-end SLU model for SLURP
This repository provides all the necessary tools to perform Speech to intent and slot label with a fine-tuned hubert encoder + decoder using SpeechBrain (in E2E trend).
It is trained on [SLUR](https://arxiv.org/abs/2011.13205) training data.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance on SLURP test set is:
| Release | SLU-F1(%) |
|:-------------:|:--------------:|
| 30-11-21 | 75.10 |
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform SLU E2E decoding
An external `py_module_file=custom_interface.py` is used as an external Predictor class into this HF repos. We use `foreign_class` function from `speechbrain.pretrained.interfaces` that allow you to load you custom model.
```python
from speechbrain.pretrained.interfaces import foreign_class
slu = foreign_class(source="speechbrain/SLU-direct-SLURP-hubert-enc", pymodule_file="custom_interface.py", classname="CustomSLUDecoder")
slu.decode_file("speechbrain/SLU-direct-SLURP-hubert-enc/audio-1490356700-headset.flac")
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *decode_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *decode_batch* and *decode_batch*.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/SLURP/direct
python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1LpcuFldRo_Va1OCGp1bLNdiaC7AQNJOb?usp=sharing)).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
|
Culmenus/opus-mt-de-is-finetuned-de-to-is_ekkicc | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-11-17T17:49:03Z | ---
language:
- ko
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- Conformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- ksponspeech
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Conformer for KsponSpeech (with Transformer LM)
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on KsponSpeech (Kr) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | eval clean CER | eval other CER | GPUs |
| :------: | :------------: | :------------: | :---------: |
| 09-05-21 | 7.48% | 8.38% | 6xA100 80GB |
## Pipeline description
This ASR system is composed of 3 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of KsponSpeech.
- Neural language model (Transformer LM) trained on the train transcriptions of KsponSpeech
- Acoustic model made of a conformer encoder and a joint decoder with CTC +
transformer. Hence, the decoding also incorporates the CTC probabilities.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain==0.5.10
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in Korean)
```
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="ddwkim/asr-conformer-transformerlm-ksponspeech", savedir="pretrained_models/asr-conformer-transformerlm-ksponspeech", run_opts={"device":"cuda"})
asr_model.transcribe_file("ddwkim/asr-conformer-transformerlm-ksponspeech/record_0_16k.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/10N98aGoeLGfh6Hu6xOCH5BbjVTVYgCyB?usp=sharing) on using the pretrained model
### Training
The model was trained with SpeechBrain (Commit hash: 'fd9826c').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install .
```
3. Run Training:
```bash
cd recipes/KsponSpeech/ASR/transformer
python train.py hparams/conformer_medium.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) at the subdirectories.
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
# Citing the model
```bibtex
@misc{returnzero,
title = {ReturnZero Conformer Korean ASR model},
author = {Dongwon Kim and Dongwoo Kim and Roh Jeongkyu},
year = {2021},
howpublished = {\url{https://huggingface.co/ddwkim/asr-conformer-transformerlm-ksponspeech}},
}
```
# Citing KsponSpeech dataset
```bibtex
@Article{app10196936,
AUTHOR = {Bang, Jeong-Uk and Yun, Seung and Kim, Seung-Hi and Choi, Mu-Yeol and Lee, Min-Kyu and Kim, Yeo-Jeong and Kim, Dong-Hyun and Park, Jun and Lee, Young-Jik and Kim, Sang-Hun},
TITLE = {KsponSpeech: Korean Spontaneous Speech Corpus for Automatic Speech Recognition},
JOURNAL = {Applied Sciences},
VOLUME = {10},
YEAR = {2020},
NUMBER = {19},
ARTICLE-NUMBER = {6936},
URL = {https://www.mdpi.com/2076-3417/10/19/6936},
ISSN = {2076-3417},
DOI = {10.3390/app10196936}
}
```
|
Culmenus/opus-mt-de-is-finetuned-de-to-is_nr2-finetuned-de-to-is_nr2 | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "de"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- common_voice
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# CRDNN with CTC/Attention trained on CommonVoice 7.0 German (No LM)
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on CommonVoice (German Language) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | Test CER | Test WER | GPUs |
|:-------------:|:--------------:|:--------------:| :--------:|
| 28.10.21 | 4.93 | 15.37 | 1xV100 16GB |
## Credits
The model is provided by [vitas.ai](https://www.vitas.ai/).
## Pipeline description
This ASR system is composed of 2 different but linked blocks:
- Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions (train.tsv) of CommonVoice (DE).
- Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalization and pooling on the
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
the final acoustic representation that is given to the CTC and attention decoders.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in German)
```python
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-de", savedir="pretrained_models/asr-crdnn-commonvoice-de")
asr_model.transcribe_file("speechbrain/asr-crdnn-commonvoice-de/example-de.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
### Training
The model was trained with SpeechBrain (986a2175).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/CommonVoice/ASR/seq2seq
python train.py hparams/train_de.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/13i7rdgVX7-qZ94Rtj6OdUgU-S6BbKKvw?usp=sharing)
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
``` |
CurtisBowser/DialoGPT-medium-sora-three | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "en"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- Tranformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- librispeech
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | Test clean WER | Test other WER | GPUs |
|:-------------:|:--------------:|:--------------:|:--------:|
| 05-03-21 | 2.90 | 8.51 | 1xV100 16GB |
## Pipeline description
This ASR system is composed of 3 different but linked blocks:
1. Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of LibriSpeech.
2. Neural language model (Transformer LM) trained on the full 10M words dataset.
3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalization and pooling on the
frequency domain. Then, a bidirectional LSTM with projection layers is connected
to a final DNN to obtain the final acoustic representation that is given to
the CTC and attention decoders.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in English)
```python
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-transformerlm-librispeech", savedir="pretrained_models/asr-crdnn-transformerlm-librispeech")
asr_model.transcribe_file("speechbrain/asr-crdnn-transformerlm-librispeech/example.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
### Training
The model was trained with SpeechBrain (Commit hash: 'eca313cc').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LibriSpeech/ASR/seq2seq
python train.py hparams/train_BPE_5000.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1kSwdBT8kDhnmTLzrOPDL77LX_Eq-3Tzl?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
D3xter1922/distilbert-base-uncased-finetuned-cola | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language:
- ar
- eu
- br
- ca
- cv
- cs
- dv
- nl
- en
- eo
- et
- fr
- fy
- ka
- de
- el
- cnh
- id
- ia
- it
- ja
- kab
- rw
- ky
- lv
- mt
- mn
- fa
- pl
- pt
- ro
- rm
- ru
- sah
- sl
- es
- sv
- ta
- tt
- tr
- uk
- cy
language_bcp47:
- zh-CH
- zh-HK
- zh-TW
thumbnail:
tags:
- audio-classification
- speechbrain
- embeddings
- Language
- Identification
- pytorch
- ECAPA-TDNN
- TDNN
- CommonLanguage
license: "apache-2.0"
datasets:
- Urbansound8k
metrics:
- Accuracy
widget:
- example_title: English Sample
src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Language Identification from Speech Recordings with ECAPA embeddings on CommonLanguage
This repository provides all the necessary tools to perform language identification from speech recordings with SpeechBrain.
The system uses a model pretrained on the CommonLanguage dataset (45 languages).
You can download the dataset [here](https://zenodo.org/record/5036977#.YNzDbXVKg5k)
The provided system can recognize the following 45 languages from short speech recordings:
```
Arabic, Basque, Breton, Catalan, Chinese_China, Chinese_Hongkong, Chinese_Taiwan, Chuvash, Czech, Dhivehi, Dutch, English, Esperanto, Estonian, French, Frisian, Georgian, German, Greek, Hakha_Chin, Indonesian, Interlingua, Italian, Japanese, Kabyle, Kinyarwanda, Kyrgyz, Latvian, Maltese, Mongolian, Persian, Polish, Portuguese, Romanian, Romansh_Sursilvan, Russian, Sakha, Slovenian, Spanish, Swedish, Tamil, Tatar, Turkish, Ukrainian, Welsh
```
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:
| Release | Accuracy (%)
|:-------------:|:--------------:|
| 30-06-21 | 85.0 |
## Pipeline description
This system is composed of an ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform Language Identification from Speech Recordings
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/lang-id-commonlanguage_ecapa", savedir="pretrained_models/lang-id-commonlanguage_ecapa")
# Italian Example
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/lang-id-commonlanguage_ecapa/example-it.wav')
print(text_lab)
# French Example
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/lang-id-commonlanguage_ecapa/example-fr.wav')
print(text_lab)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (a02f860e).
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/CommonLanguage/lang_id
python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sD2u0MhSmJlx_3RRgwsYzevX81RM8-WE?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA
```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
author = {Brecht Desplanques and
Jenthe Thienpondt and
Kris Demuynck},
editor = {Helen Meng and
Bo Xu and
Thomas Fang Zheng},
title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
in {TDNN} Based Speaker Verification},
booktitle = {Interspeech 2020},
pages = {3830--3834},
publisher = {{ISCA}},
year = {2020},
}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
D3xter1922/electra-base-discriminator-finetuned-mnli | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-04-27T17:07:22Z | ---
language: "en"
tags:
- audio-to-audio
- speech-enhancement
- PyTorch
- speechbrain
license: "apache-2.0"
datasets:
- Voicebank
- DEMAND
metrics:
- PESQ
- STOI
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# MetricGAN-trained model for Enhancement
This repository provides all the necessary tools to perform enhancement with
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance is:
| Release | Test PESQ | Test STOI |
|:-----------:|:-----:| :-----:|
| 21-04-27 | 3.15 | 93.0 |
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
## Pretrained Usage
To use the mimic-loss-trained model for enhancement, use the following simple code:
```python
import torch
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
)
# Load and add fake batch dimension
noisy = enhance_model.load_audio(
"speechbrain/metricgan-plus-voicebank/example.wav"
).unsqueeze(0)
# Add relative length tensor
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
# Saving enhanced signal on disk
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000)
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *enhance_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *enhance_batch* as in the example.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (d0accc8).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/Voicebank/enhance/MetricGAN
python train.py hparams/train.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1fcVP52gHgoMX9diNN1JxX_My5KaRNZWs?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
## Referencing MetricGAN+
If you find MetricGAN+ useful, please cite:
```
@article{fu2021metricgan+,
title={MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement},
author={Fu, Szu-Wei and Yu, Cheng and Hsieh, Tsun-An and Plantinga, Peter and Ravanelli, Mirco and Lu, Xugang and Tsao, Yu},
journal={arXiv preprint arXiv:2104.03538},
year={2021}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
``` |
DCU-NLP/electra-base-irish-cased-generator-v1 | [
"pytorch",
"electra",
"fill-mask",
"ga",
"transformers",
"irish",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | {
"architectures": [
"ElectraForMaskedLM"
],
"model_type": "electra",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 7 | null | ---
language: "en"
thumbnail:
tags:
- speechbrain
- Source Separation
- Speech Separation
- Audio Source Separation
- WHAM!
- SepFormer
- Transformer
- audio-to-audio
- audio-source-separation
license: "apache-2.0"
datasets:
- WHAMR!
metrics:
- SI-SNRi
- SDRi
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# SepFormer trained on WHAMR!
This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on [WHAMR!](http://wham.whisper.ai/) dataset, which is basically a version of WSJ0-Mix dataset with environmental noise and reverberation. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance is 13.7 dB SI-SNRi on the test set of WHAMR! dataset.
| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 30-03-21 | 13.7 dB | 12.7 dB |
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io).
### Perform source separation on your own audio file
```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr')
# for custom file, change path
est_sources = model.separate_file(path='speechbrain/sepformer-wsj02mix/test_mixture.wav')
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000)
```
The system expects input recordings sampled at 8kHz (single channel).
If your signal has a different sample rate, resample it (e.g, using torchaudio or sox) before using the interface.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (e375cd13).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/WHAMandWHAMR/separation
python train.py hparams/sepformer-whamr.yaml --data_folder=YOUR_DATA_FOLDER --rir_path=YOUR_ROOM_IMPULSE_SAVE_PATH
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1m1xfx2ojf7qgOyscJVVCQFRY0VRl0rdi?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
|
DJStomp/TestingSalvoNET | [
"transformers"
] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 1 | null | ---
language: en
thumbnail:
tags:
- Spoken language understanding
- speechbrain
license: cc0-1.0
datasets:
- Timers and Such
metrics:
- Accuracy
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# End-to-end SLU model for Timers and Such
Attention-based RNN sequence-to-sequence model for [Timers and Such](https://arxiv.org/abs/2104.01604) trained on the `train-real` subset. This model checkpoint achieves 86.7% accuracy on `test-real`.
The model uses an ASR model trained on LibriSpeech ([`speechbrain/asr-crdnn-rnnlm-librispeech`](https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech)) to extract features from the input audio, then maps these features to an intent and slot labels using a beam search.
The dataset has four intents: `SetTimer`, `SetAlarm`, `SimpleMath`, and `UnitConversion`. Try testing the model by saying something like "set a timer for 5 minutes" or "what's 32 degrees Celsius in Fahrenheit?"
You can try the model on the `math.wav` file included here as follows:
```python
from speechbrain.pretrained import EndToEndSLU
slu = EndToEndSLU.from_hparams("speechbrain/slu-timers-and-such-direct-librispeech-asr")
slu.decode_file("speechbrain/slu-timers-and-such-direct-librispeech-asr/math.wav")
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *decode_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *decode_batch* and *decode_batch*.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (d254489a).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/timers-and-such/direct
python train.py hparams/train.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/18c2anEv8hx-ZjmEN8AdUA8AZziYIidON?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
#### Referencing Timers and Such
```
@article{lugosch2021timers,
title={{Timers and Such: A Practical Benchmark for Spoken Language Understanding with Numbers}},
author={Lugosch, Loren and Papreja, Piyush and Ravanelli, Mirco and Heba, Abdelwahab and Parcollet, Titouan},
year={2021},
journal={NeurIPS Datasets and Benchmarks}
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/
GitHub: https://github.com/speechbrain/speechbrain |
DKpro000/DialoGPT-medium-harrypotter | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-03-07T16:15:18Z | ---
language: "en"
thumbnail:
tags:
- speechbrain
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- ECAPA
- TDNN
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Speaker Verification with ECAPA-TDNN embeddings on Voxceleb
This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain.
The system can be used to extract speaker embeddings as well.
It is trained on Voxceleb 1+ Voxceleb2 training data.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The model performance on Voxceleb1-test set(Cleaned) is:
| Release | EER(%)
|:-------------:|:--------------:|
| 05-03-21 | 0.80 |
## Pipeline description
This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Compute your speaker embeddings
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb")
signal, fs =torchaudio.load('tests/samples/ASR/spk1_snt1.wav')
embeddings = classifier.encode_batch(signal)
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
### Perform Speaker Verification
```python
from speechbrain.pretrained import SpeakerRecognition
verification = SpeakerRecognition.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb")
score, prediction = verification.verify_files("tests/samples/ASR/spk1_snt1.wav", "tests/samples/ASR/spk2_snt1.wav") # Different Speakers
score, prediction = verification.verify_files("tests/samples/ASR/spk1_snt1.wav", "tests/samples/ASR/spk1_snt2.wav") # Same Speaker
```
The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/VoxCeleb/SpeakerRec
python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA-TDNN
```
@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
author = {Brecht Desplanques and
Jenthe Thienpondt and
Kris Demuynck},
editor = {Helen Meng and
Bo Xu and
Thomas Fang Zheng},
title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
in {TDNN} Based Speaker Verification},
booktitle = {Interspeech 2020},
pages = {3830--3834},
publisher = {{ISCA}},
year = {2020},
}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
|
DKpro000/DialoGPT-small-harrypotter | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | null | ---
language: "en"
thumbnail:
tags:
- embeddings
- Speaker
- Verification
- Identification
- pytorch
- xvectors
- TDNN
- speechbrain
- audio-classification
license: "apache-2.0"
datasets:
- voxceleb
metrics:
- EER
- min_dct
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Speaker Verification with xvector embeddings on Voxceleb
This repository provides all the necessary tools to extract speaker embeddings with a pretrained TDNN model using SpeechBrain.
The system is trained on Voxceleb 1+ Voxceleb2 training data.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on Voxceleb1-test set (Cleaned) is:
| Release | EER(%)
|:-------------:|:--------------:|
| 05-03-21 | 3.2 |
## Pipeline description
This system is composed of a TDNN model coupled with statistical pooling. The system is trained with Categorical Cross-Entropy Loss.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Compute your speaker embeddings
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", savedir="pretrained_models/spkrec-xvect-voxceleb")
signal, fs =torchaudio.load('tests/samples/ASR/spk1_snt1.wav')
embeddings = classifier.encode_batch(signal)
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (aa018540).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/VoxCeleb/SpeakerRec/
python train_speaker_embeddings.py hparams/train_x_vectors.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1RtCBJ3O8iOCkFrJItCKT9oL-Q1MNCwMH?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing xvectors
```@inproceedings{DBLP:conf/odyssey/SnyderGMSPK18,
author = {David Snyder and
Daniel Garcia{-}Romero and
Alan McCree and
Gregory Sell and
Daniel Povey and
Sanjeev Khudanpur},
title = {Spoken Language Recognition using X-vectors},
booktitle = {Odyssey 2018},
pages = {105--111},
year = {2018},
}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
DLNLP/t5-small-finetuned-xsum | [] | null | {
"architectures": null,
"model_type": null,
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 0 | 2021-06-05T02:49:18Z | ---
language: "en"
thumbnail:
tags:
- speechbrain
- embeddings
- Sound
- Keywords
- Keyword Spotting
- pytorch
- ECAPA-TDNN
- TDNN
- Command Recognition
- audio-classification
license: "apache-2.0"
datasets:
- Urbansound8k
metrics:
- Accuracy
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Sound Recognition with ECAPA embeddings on UrbanSoudnd8k
This repository provides all the necessary tools to perform sound recognition with SpeechBrain using a model pretrained on UrbanSound8k.
You can download the dataset [here](https://urbansounddataset.weebly.com/urbansound8k.html)
The provided system can recognize the following 10 keywords:
```
dog_bark, children_playing, air_conditioner, street_music, gun_shot, siren, engine_idling, jackhammer, drilling, car_horn
```
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:
| Release | Accuracy 1-fold (%)
|:-------------:|:--------------:|
| 04-06-21 | 75.5 |
## Pipeline description
This system is composed of a ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform Sound Recognition
```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/urbansound8k_ecapa", savedir="pretrained_models/gurbansound8k_ecapa")
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/urbansound8k_ecapa/dog_bark.wav')
print(text_lab)
```
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (8cab8b0c).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/UrbanSound8k/SoundClassification
python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sItfg_WNuGX6h2dCs8JTGq2v2QoNTaUg?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing ECAPA
```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
author = {Brecht Desplanques and
Jenthe Thienpondt and
Kris Demuynck},
editor = {Helen Meng and
Bo Xu and
Thomas Fang Zheng},
title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
in {TDNN} Based Speaker Verification},
booktitle = {Interspeech 2020},
pages = {3830--3834},
publisher = {{ISCA}},
year = {2020},
}
```
#### Referencing UrbanSound
```@inproceedings{Salamon:UrbanSound:ACMMM:14,
Author = {Salamon, J. and Jacoby, C. and Bello, J. P.},
Booktitle = {22nd {ACM} International Conference on Multimedia (ACM-MM'14)},
Month = {Nov.},
Pages = {1041--1044},
Title = {A Dataset and Taxonomy for Urban Sound Research},
Year = {2014}}
```
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
DSI/TweetBasedSA | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 29 | null | ---
language: "en"
thumbnail:
tags:
- speechbrain
- VAD
- SAD
- Voice Activity Detection
- Speech Activity Detection
- Speaker Diarization
- pytorch
- CRDNN
- LibriSpeech
- LibryParty
datasets:
- Urbansound8k
metrics:
- Accuracy
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# Voice Activity Detection with a (small) CRDNN model trained on Libriparty
This repository provides all the necessary tools to perform voice activity detection with SpeechBrain using a model pretrained on Libriparty.
The pre-trained system can process short and long speech recordings and outputs the segments where speech activity is detected.
The output of the system looks like this:
```
segment_001 0.00 2.57 NON_SPEECH
segment_002 2.57 8.20 SPEECH
segment_003 8.20 9.10 NON_SPEECH
segment_004 9.10 10.93 SPEECH
segment_005 10.93 12.00 NON_SPEECH
segment_006 12.00 14.40 SPEECH
segment_007 14.40 15.00 NON_SPEECH
segment_008 15.00 17.70 SPEECH
```
The system expects input recordings sampled at 16kHz (single channel).
If your signal has a different sample rate, resample it (e.g., using torchaudio or sox) before using the interface.
For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
# Results
The model performance on the LibriParty test set is:
| Release | hyperparams file | Test Precision | Test Recall | Test F-Score | Model link | GPUs |
|:-------------:|:---------------------------:| -----:| -----:| --------:| :-----------:| :-----------:|
| 2021-09-09 | train.yaml | 0.9518 | 0.9437 | 0.9477 | [Model](https://drive.google.com/drive/folders/1YLYGuiyuTH0D7fXOOp6cMddfQoM74o-Y?usp=sharing) | 1xV100 16GB
## Pipeline description
This system is composed of a CRDNN that outputs posteriors probabilities with a value close to one for speech frames and close to zero for non-speech segments.
A threshold is applied on top of the posteriors to detect candidate speech boundaries.
Depending on the active options, these boundaries can be post-processed (e.g, merging close segments, removing short segments, etc) to further improve the performance. See more details below.
## Install SpeechBrain
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Perform Voice Activity Detection
```
from speechbrain.pretrained import VAD
VAD = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="pretrained_models/vad-crdnn-libriparty")
boundaries = VAD.get_speech_segments("speechbrain/vad-crdnn-libriparty/example_vad.wav")
# Print the output
VAD.save_boundaries(boundaries)
```
The output is a tensor that contains the beginning/end second of each
detected speech segment. You can save the boundaries on a file with:
```
VAD.save_boundaries(boundaries, save_path='VAD_file.txt')
```
Sometimes it is useful to jointly visualize the VAD output with the input signal itself. This is helpful to quickly figure out if the VAD is doing or not a good job.
To do it:
```
import torchaudio
upsampled_boundaries = VAD.upsample_boundaries(boundaries, 'pretrained_model_checkpoints/example_vad.wav')
torchaudio.save('vad_final.wav', upsampled_boundaries.cpu(), 16000)
```
This creates a "VAD signal" with the same dimensionality as the original signal.
You can now open *vad_final.wav* and *pretrained_model_checkpoints/example_vad.wav* with software like audacity to visualize them jointly.
### VAD pipeline details
The pipeline for detecting the speech segments is the following:
1. Compute posteriors probabilities at the frame level.
2. Apply a threshold on the posterior probability.
3. Derive candidate speech segments on top of that.
4. Apply energy VAD within each candidate segment (optional). This might break down long sentences into short one based on the energy content.
5. Merge segments that are too close.
6. Remove segments that are too short.
7. Double-check speech segments (optional). This could is a final check to make sure the detected segments are actually speech ones.
We designed the VAD such that you can have access to all of these steps (this might help to debug):
```python
from speechbrain.pretrained import VAD
VAD = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="pretrained_models/vad-crdnn-libriparty")
# 1- Let's compute frame-level posteriors first
audio_file = 'pretrained_model_checkpoints/example_vad.wav'
prob_chunks = VAD.get_speech_prob_file(audio_file)
# 2- Let's apply a threshold on top of the posteriors
prob_th = VAD.apply_threshold(prob_chunks).float()
# 3- Let's now derive the candidate speech segments
boundaries = VAD.get_boundaries(prob_th)
# 4- Apply energy VAD within each candidate speech segment (optional)
boundaries = VAD.energy_VAD(audio_file,boundaries)
# 5- Merge segments that are too close
boundaries = VAD.merge_close_segments(boundaries, close_th=0.250)
# 6- Remove segments that are too short
boundaries = VAD.remove_short_segments(boundaries, len_th=0.250)
# 7- Double-check speech segments (optional).
boundaries = VAD.double_check_speech_segments(boundaries, audio_file, speech_th=0.5)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (ea17d22).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
Training heavily relies on data augmentation. Make sure you have downloaded all the datasets needed:
- LibriParty: https://drive.google.com/file/d/1--cAS5ePojMwNY5fewioXAv9YlYAWzIJ/view?usp=sharing
- Musan: https://www.openslr.org/resources/17/musan.tar.gz
- CommonLanguage: https://zenodo.org/record/5036977/files/CommonLanguage.tar.gz?download=1
```
cd recipes/LibriParty/VAD
python train.py hparams/train.yaml --data_folder=/path/to/LibriParty --musan_folder=/path/to/musan/ --commonlanguage_folder=/path/to/common_voice_kpd
```
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support | [
"pytorch",
"jax",
"bert",
"text-classification",
"multilingual",
"nl",
"fr",
"en",
"arxiv:2104.09947",
"transformers",
"Tweets",
"Sentiment analysis"
] | text-classification | {
"architectures": [
"BertForSequenceClassification"
],
"model_type": "bert",
"task_specific_params": {
"conversational": {
"max_length": null
},
"summarization": {
"early_stopping": null,
"length_penalty": null,
"max_length": null,
"min_length": null,
"no_repeat_ngram_size": null,
"num_beams": null,
"prefix": null
},
"text-generation": {
"do_sample": null,
"max_length": null
},
"translation_en_to_de": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_fr": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
},
"translation_en_to_ro": {
"early_stopping": null,
"max_length": null,
"num_beams": null,
"prefix": null
}
}
} | 29 | null | # Text classifier using DistilBERT to determine Partisanship
## This is one of many single-class partisanship models
label_0 refers to "left" while label_1 refers to "other".
This model was trained on 40,000 articles.
### Best Practices
This model was optimized for 512 token-length text. Any text below 150 tokens will result in inaccurate results. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.