modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-31 00:44:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
538 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-31 00:42:51
card
stringlengths
11
1.01M
fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5
fathyshalab
2023-02-12T11:00:36Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-12T11:00:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_social-roberta-large-v1-2-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5
fathyshalab
2023-02-12T10:39:41Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-12T10:39:16Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_clinic_credit_cards-massive_transport-roberta-large-v1-1-5") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
gbarcik/ppo-LundarLander-v2
gbarcik
2023-02-12T10:23:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T10:23:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.42 +/- 17.52 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vumichien/AnimeGANv3_JP_face
vumichien
2023-02-12T10:16:18Z
0
2
null
[ "onnx", "AnimeGanv3", "license:apache-2.0", "region:us" ]
null
2023-02-12T10:14:50Z
--- license: apache-2.0 tags: - AnimeGanv3 --- ## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv3_JP_face Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv2_Shinkai
vumichien
2023-02-12T10:14:06Z
0
4
null
[ "onnx", "AnimeGanv2", "license:apache-2.0", "region:us" ]
null
2023-02-12T10:12:57Z
--- license: apache-2.0 tags: - AnimeGanv2 --- ## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Shinkai Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv3_PortraitSketch
vumichien
2023-02-12T10:12:15Z
0
2
null
[ "onnx", "AnimeGanv3", "license:apache-2.0", "region:us" ]
null
2023-02-12T09:55:23Z
--- license: apache-2.0 tags: - AnimeGanv3 --- ## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv3_PortraitSketch Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
vumichien/AnimeGANv2_Paprika
vumichien
2023-02-12T10:11:28Z
0
0
null
[ "onnx", "AnimeGanv2", "license:apache-2.0", "region:us" ]
null
2023-02-12T09:56:55Z
--- license: apache-2.0 tags: - AnimeGanv2 --- ## Model Description Transforming photos of real-world scenes into anime style images is a meaningful and challenging task in terms of computer vision and artistic style transfer. AnimeGANv2_Paprika Made by Asher Chan. The official code in [here](https://github.com/TachibanaYoshino/AnimeGANv2) ## License This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGAN given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.
ahng79/ppo-Huggy
ahng79
2023-02-12T10:02:41Z
26
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-12T10:02:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ahng79/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
darkvibes/lizzyflex
darkvibes
2023-02-12T09:47:51Z
14
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-12T09:43:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### lizzyflex Dreambooth model trained by darkvibes with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
erniechiew/a2c-AntBulletEnv-v0
erniechiew
2023-02-12T09:43:54Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T16:51:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1783.03 +/- 457.34 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harshadbhatia/LunarLander-v2-ppo
harshadbhatia
2023-02-12T09:36:38Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T09:19:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.84 +/- 15.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tomaccer/flan-t5-base-juraqanda
tomaccer
2023-02-12T09:01:44Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-12T08:17:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-juraqanda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-juraqanda This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0784 - Rouge1: 9.5491 - Rouge2: 1.4927 - Rougel: 8.828 - Rougelsum: 9.2708 - Gen Len: 18.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 4.0303 | 1.0 | 712 | 3.3466 | 9.4455 | 1.2684 | 8.8558 | 9.1832 | 18.7577 | | 3.6049 | 2.0 | 1424 | 3.1931 | 10.0714 | 1.4116 | 9.4163 | 9.8024 | 18.6461 | | 3.3464 | 3.0 | 2136 | 3.1246 | 9.6542 | 1.4317 | 8.9441 | 9.36 | 18.5485 | | 3.2831 | 4.0 | 2848 | 3.0910 | 9.6676 | 1.4584 | 8.9533 | 9.3876 | 18.6706 | | 3.2176 | 5.0 | 3560 | 3.0784 | 9.5491 | 1.4927 | 8.828 | 9.2708 | 18.5260 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mili7522/ppo-PyramidsRND
mili7522
2023-02-12T08:47:48Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-12T08:47:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mili7522/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
antonellaavad/https-huggingface-co-mistermango24-margret-stalizburg-zp92-dreambooth-v1-0
antonellaavad
2023-02-12T08:44:20Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-12T08:44:12Z
--- license: creativeml-openrail-m base_model: andite/anything-v4.0 instance_prompt: margret stalizburg tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - margret-stalizburg-v1-lora These are LoRA adaption weights for [andite/anything-v4.0](https://huggingface.co/andite/anything-v4.0). The weights were trained on the instance prompt "margret stalizburg" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: margret stalizburg ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
sd-dreambooth-library/avator-generator-2
sd-dreambooth-library
2023-02-12T08:39:42Z
3
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-12T08:33:24Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### avator-generator-2 Dreambooth model trained by nholden10 with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
mili7522/ppo-Pyramids
mili7522
2023-02-12T08:23:39Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-12T08:23:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: mili7522/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
quackquack22/webby_vanderquack_LoRa
quackquack22
2023-02-12T08:04:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T11:19:15Z
--- license: creativeml-openrail-m --- 'webby vanderquack' should be in the prompt on webUI
quackquack22/BMO_AdventureTime_LoRa
quackquack22
2023-02-12T08:04:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-11T11:02:29Z
--- license: creativeml-openrail-m --- 'bmo adventure time' should be in the prompt on webUI
goyruh/newStyles
goyruh
2023-02-12T07:50:48Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-11T16:03:49Z
--- license: creativeml-openrail-m ---
pittawat/poca-SoccerTwos
pittawat
2023-02-12T07:47:10Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-12T07:45:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: pittawat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
pfunk/Pong-v4-DQPN_p500-seed1
pfunk
2023-02-12T07:44:16Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T07:43:50Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 2.60 +/- 7.68 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 500000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p500', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
EnD-Diffusers/isometric-dreams-sd-1-5
EnD-Diffusers
2023-02-12T07:27:44Z
31
9
diffusers
[ "diffusers", "tensorboard", "text-to-image", "isometric", "art", "stable diffusion", "stable diffusion 1.5", "duskfallcrew", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-11T21:28:39Z
--- license: creativeml-openrail-m tags: - text-to-image - isometric - art - stable diffusion - stable diffusion 1.5 - duskfallcrew widget: - text: duskametrick15 language: - en --- [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Duskfallcrew/isometric-dreams-sd-1-5) ### Isometric Dreams SD 1.5 trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! # All samples and info are here: https://civitai.com/user/duskfallcrew # If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew # If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk duskametrick15 (use that on your prompt)
mili7522/ppo-SnowballTarget
mili7522
2023-02-12T07:18:58Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-12T07:18:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: mili7522/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
dotunadegbite/Reinforce-CartPole-v1
dotunadegbite
2023-02-12T06:56:17Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T06:56:03Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Zekunli/flan-t5-large-extraction-cnndm_8000-all
Zekunli
2023-02-12T06:23:08Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-12T05:16:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-large-extraction-cnndm_8000-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-cnndm_8000-all This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6960 - Rouge1: 35.1425 - Rouge2: 15.3877 - Rougel: 30.0992 - Rougelsum: 30.1879 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1837 | 0.2 | 200 | 1.8342 | 33.7673 | 14.4744 | 28.8398 | 28.8415 | 19.0 | | 1.9557 | 0.4 | 400 | 1.7798 | 34.3577 | 14.8613 | 29.769 | 29.766 | 18.986 | | 1.9219 | 0.6 | 600 | 1.7428 | 34.8589 | 15.4488 | 30.1084 | 30.1336 | 18.99 | | 1.871 | 0.8 | 800 | 1.7408 | 35.001 | 15.597 | 30.3374 | 30.37 | 18.99 | | 1.8729 | 1.0 | 1000 | 1.7502 | 34.9305 | 15.5718 | 30.1495 | 30.1513 | 19.0 | | 1.7803 | 1.2 | 1200 | 1.7261 | 35.7504 | 15.4172 | 30.6898 | 30.7362 | 19.0 | | 1.7674 | 1.4 | 1400 | 1.7214 | 35.9564 | 15.6508 | 30.3541 | 30.4292 | 19.0 | | 1.7704 | 1.6 | 1600 | 1.7253 | 35.2706 | 15.7274 | 30.118 | 30.1324 | 19.0 | | 1.7656 | 1.8 | 1800 | 1.6960 | 35.1425 | 15.3877 | 30.0992 | 30.1879 | 19.0 | | 1.7545 | 2.0 | 2000 | 1.7186 | 34.6436 | 15.2712 | 29.9781 | 29.9698 | 19.0 | | 1.6739 | 2.2 | 2200 | 1.7245 | 35.4083 | 15.8808 | 30.6222 | 30.6752 | 19.0 | | 1.6836 | 2.4 | 2400 | 1.7212 | 35.1829 | 15.5181 | 30.2438 | 30.262 | 19.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
amoselberg/pyramidsRND
amoselberg
2023-02-12T06:18:40Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-12T06:18:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: amoselberg/pyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
UchihaMadara/model1-thesis-4
UchihaMadara
2023-02-12T06:06:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-12T04:45:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model1-thesis-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model1-thesis-4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1362 - Precision: 0.4257 - Recall: 0.4678 - F1: 0.4458 - Accuracy: 0.6453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 45 | 1.1491 | 0.2860 | 0.4992 | 0.3637 | 0.5491 | | No log | 2.0 | 90 | 1.0264 | 0.3661 | 0.4334 | 0.3969 | 0.6192 | | No log | 3.0 | 135 | 1.0848 | 0.3885 | 0.4455 | 0.4150 | 0.6284 | | No log | 4.0 | 180 | 1.1257 | 0.4100 | 0.4896 | 0.4462 | 0.6408 | | No log | 5.0 | 225 | 1.1362 | 0.4257 | 0.4678 | 0.4458 | 0.6453 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
nolanaatama/ye18
nolanaatama
2023-02-12T05:54:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-12T05:50:16Z
--- license: creativeml-openrail-m ---
css919/poca-SoccerTwos
css919
2023-02-12T05:38:40Z
37
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-12T05:38:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: css919/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
nolanaatama/dhaia
nolanaatama
2023-02-12T05:35:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-12T05:27:22Z
--- license: creativeml-openrail-m ---
mingdinghan/ppo-Huggy
mingdinghan
2023-02-12T05:16:48Z
25
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-12T05:16:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mingdinghan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
SebastianS/dqn-SpaceInvadersNoFrameskip-v4
SebastianS
2023-02-12T05:02:06Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T05:01:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 622.50 +/- 213.93 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SebastianS -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SebastianS -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SebastianS ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
nolanaatama/ssaislora
nolanaatama
2023-02-12T05:00:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-12T04:54:32Z
--- license: creativeml-openrail-m ---
EnD-Diffusers/finalfantasiespt1
EnD-Diffusers
2023-02-12T04:55:20Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T03:44:31Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: fntsy1 --- ### Final Fantasy XIV Part One Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk fntsy1 (use that on your prompt)
nolanaatama/arcnslora
nolanaatama
2023-02-12T04:47:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-12T04:45:26Z
--- license: creativeml-openrail-m ---
EnD-Diffusers/marvellous-comic-mix
EnD-Diffusers
2023-02-12T04:40:02Z
8
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T18:42:06Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: xdusky1 --- ### Duskfall Marvellous Comic Mix Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Trigger/Keyword: xdusky1 If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk Discord https://discord.gg/Da7s8d3KJ7 Do not sell merges, or this model. Do share, and credit if you use this model. DO PLS REVIEW AND YELL AT ME IF IT SUCKS! Rules We never update the images on here anymore see civit https://civitai.com/user/duskfallcrew
amoselberg/Reinforce-copter
amoselberg
2023-02-12T04:40:00Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T04:30:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.90 +/- 8.54 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
grullborg/kamiya_yuuStyle
grullborg
2023-02-12T04:28:47Z
0
1
null
[ "stable-diffusion", "text-to-image", "lora", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-12T04:14:08Z
--- language: - en tags: - stable-diffusion - text-to-image - lora license: creativeml-openrail-m inference: false --- # Kamiya Yuu Style LoRA ## Usage To use this LoRA you have to download the file, as well as drop it into the "\stable-diffusion-webui\models\Lora" folder To use it in a prompt, please refer to the extra networks panel in your Automatic1111 webui. I highly recommend using it at around 0.8 strength for the best results. If you'd like to support the amazing artist on whose work this LoRA was trained, I'd highly recommend you check out [Kamiya Yuu](https://twitter.com/yuukamiya68?lang=en). Have fun :) ## Example Pictures <table> <tr> <td><img src=https://i.imgur.com/96fultD.png width=50% height=100%/></td> </tr> <tr> <td><img src=https://i.imgur.com/y66xA99.png width=50% height=100%/></td> </tr> <tr> <td><img src=https://i.imgur.com/btwOjyJ.png width=50% height=100%/></td> </tr> </table> ## License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
mili7522/Pixelcopter-PLE-v0
mili7522
2023-02-12T04:24:41Z
0
1
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T04:24:31Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 51.50 +/- 32.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gatardochi/a2c-PandaReachDense-v2
gatardochi
2023-02-12T04:13:20Z
0
1
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T04:10:44Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.04 +/- 1.38 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
amoselberg/Reinforce-cartpole
amoselberg
2023-02-12T04:02:12Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T04:01:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_192
gokuls
2023-02-12T03:48:56Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-12T03:01:42Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.51985559566787 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.5485 - Accuracy: 0.5199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.348 | 1.0 | 568 | 0.5499 | 0.4874 | | 0.2888 | 2.0 | 1136 | 0.5640 | 0.4982 | | 0.2849 | 3.0 | 1704 | 0.5618 | 0.5199 | | 0.2833 | 4.0 | 2272 | 0.5618 | 0.5018 | | 0.2823 | 5.0 | 2840 | 0.5610 | 0.5090 | | 0.2816 | 6.0 | 3408 | 0.5485 | 0.5199 | | 0.281 | 7.0 | 3976 | 0.5527 | 0.5126 | | 0.2805 | 8.0 | 4544 | 0.5578 | 0.5054 | | 0.2798 | 9.0 | 5112 | 0.5575 | 0.5343 | | 0.2796 | 10.0 | 5680 | 0.5533 | 0.5199 | | 0.2793 | 11.0 | 6248 | 0.5534 | 0.5090 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
lmqg/flan-t5-base-squad-ae
lmqg
2023-02-12T03:17:32Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "answer extraction", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-12T03:17:13Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - answer extraction widget: - text: "extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress." example_title: "Answering Extraction Example 1" - text: "extract answers: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>" example_title: "Answering Extraction Example 2" model-index: - name: lmqg/flan-t5-base-squad-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 44.15 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 68.88 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 43.3 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 91.56 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 81.79 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 69.41 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 58.16 --- # Model Card of `lmqg/flan-t5-base-squad-ae` This model is fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) for answer extraction on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-base-squad-ae") # model prediction answers = model.generate_a("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/flan-t5-base-squad-ae") output = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.") ``` ## Evaluation - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-base-squad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 58.16 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 69.41 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 91.56 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 56.8 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 52.39 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 48.02 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 44.15 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 43.3 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 81.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 68.88 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_sentence'] - output_types: ['answer'] - prefix_types: ['ae'] - model: google/flan-t5-base - max_length: 512 - max_length_output: 32 - epoch: 8 - batch: 16 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-base-squad-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
SebastianS/dqn-SpaceInvadersNoFrameskip-v4-100000_n_steps
SebastianS
2023-02-12T03:17:06Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T03:16:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 107.50 +/- 4.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SebastianS -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SebastianS -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SebastianS ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_192
gokuls
2023-02-12T03:00:01Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-06T22:45:26Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.6539698243878308 - name: F1 type: f1 value: 0.12540635158789698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.7029 - Accuracy: 0.6540 - F1: 0.1254 - Combined Score: 0.3897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.8495 | 1.0 | 29671 | 0.7150 | 0.6333 | 0.0086 | 0.3210 | | 0.7654 | 2.0 | 59342 | 0.7273 | 0.6339 | 0.0121 | 0.3230 | | 0.7305 | 3.0 | 89013 | 0.7241 | 0.6400 | 0.0479 | 0.3440 | | 0.7108 | 4.0 | 118684 | 0.7147 | 0.6381 | 0.0380 | 0.3381 | | 0.698 | 5.0 | 148355 | 0.7192 | 0.6414 | 0.0564 | 0.3489 | | 0.6891 | 6.0 | 178026 | 0.7239 | 0.6357 | 0.0232 | 0.3295 | | 0.6823 | 7.0 | 207697 | 0.7141 | 0.6442 | 0.0723 | 0.3583 | | 0.6771 | 8.0 | 237368 | 0.7112 | 0.6491 | 0.1004 | 0.3748 | | 0.6729 | 9.0 | 267039 | 0.7156 | 0.6494 | 0.1022 | 0.3758 | | 0.6694 | 10.0 | 296710 | 0.7185 | 0.6502 | 0.1053 | 0.3777 | | 0.6664 | 11.0 | 326381 | 0.7129 | 0.6508 | 0.1085 | 0.3796 | | 0.6639 | 12.0 | 356052 | 0.7112 | 0.6508 | 0.1080 | 0.3794 | | 0.6617 | 13.0 | 385723 | 0.7105 | 0.6542 | 0.1260 | 0.3901 | | 0.6597 | 14.0 | 415394 | 0.7029 | 0.6540 | 0.1254 | 0.3897 | | 0.658 | 15.0 | 445065 | 0.7094 | 0.6486 | 0.0964 | 0.3725 | | 0.6564 | 16.0 | 474736 | 0.7072 | 0.6510 | 0.1084 | 0.3797 | | 0.655 | 17.0 | 504407 | 0.7049 | 0.6557 | 0.1333 | 0.3945 | | 0.6537 | 18.0 | 534078 | 0.7051 | 0.6542 | 0.1269 | 0.3905 | | 0.6526 | 19.0 | 563749 | 0.7096 | 0.6601 | 0.1573 | 0.4087 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Deysi/mt5-small-sumarizacion-es
Deysi
2023-02-12T02:18:32Z
5
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-11T23:34:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Deysi/mt5-small-sumarizacion-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deysi/mt5-small-sumarizacion-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0076 - Validation Loss: 1.8152 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 76288, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0639 | 2.3192 | 0 | | 2.6021 | 2.0832 | 1 | | 2.3235 | 1.9546 | 2 | | 2.1939 | 1.8930 | 3 | | 2.1122 | 1.8559 | 4 | | 2.0598 | 1.8318 | 5 | | 2.0272 | 1.8236 | 6 | | 2.0076 | 1.8152 | 7 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
mitra-mir/setfit-model-Feb11-Misinformation-on-Convoy
mitra-mir
2023-02-12T02:13:36Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-11T23:35:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 201 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 201, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Lorius2/rl-unit2-taxiv3
Lorius2
2023-02-12T00:36:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T23:07:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: rl-unit2-taxiv3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Lorius2/rl-unit2-taxiv3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pittawat/a2c-PandaReachDense-v2-v3
pittawat
2023-02-12T00:19:39Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-12T00:16:56Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.12 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NaLto/ObraMaximaTests
NaLto
2023-02-11T23:52:37Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-02-11T23:47:12Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
sohm/a2c-PandaReachDense-v2-v2
sohm
2023-02-11T23:51:31Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T23:49:03Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -6.65 +/- 4.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harryhoch/ppo-LunarLander-v2-20230211
harryhoch
2023-02-11T23:45:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T23:44:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 237.34 +/- 23.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mitra-mir/setfit-model-Feb11-Miscellaneous-Misinformation
mitra-mir
2023-02-11T23:36:44Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-11T23:35:36Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 201 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 201, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mitra-mir/setfit-model-Feb11-Misinformation-on-Mandates-Public-Health
mitra-mir
2023-02-11T23:35:17Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-11T23:35:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 201 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 201, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
torchgeo/resnet18_sentinel2_all_moco
torchgeo
2023-02-11T23:33:51Z
0
0
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:31:01Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
mitra-mir/setfit-model-Feb11-Misinformation-on-Organizations-GoFundMe-WEF
mitra-mir
2023-02-11T23:33:19Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-11T23:33:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 201 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 201, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
torchgeo/resnet50_sentinel1_all_moco
torchgeo
2023-02-11T23:32:22Z
0
1
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:44:26Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
torchgeo/resnet50_sentinel2_all_dino
torchgeo
2023-02-11T23:31:47Z
0
0
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:46:22Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
torchgeo/resnet50_sentinel2_rgb_moco
torchgeo
2023-02-11T23:30:24Z
0
1
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:51:51Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
torchgeo/vit_small_patch16_224_sentinel2_all_dino
torchgeo
2023-02-11T23:28:39Z
0
0
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:53:21Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
torchgeo/vit_small_patch16_224_sentinel2_all_moco
torchgeo
2023-02-11T23:27:49Z
0
0
timm
[ "timm", "climate", "image-classification", "en", "license:cc-by-4.0", "region:us" ]
image-classification
2023-01-18T22:54:41Z
--- license: cc-by-4.0 language: - en library_name: timm pipeline_tag: image-classification tags: - climate --- Weights from https://github.com/zhu-xlab/SSL4EO-S12, modified to load with timm.
calvincbzhang/ppo-LunarLander-v2
calvincbzhang
2023-02-11T23:21:07Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T23:20:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.64 +/- 13.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Lorius2/q-FrozenLake-v1-4x4-noSlippery
Lorius2
2023-02-11T22:59:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T22:59:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Lorius2/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Deysi/clasificador-resenas-amazon2
Deysi
2023-02-11T22:46:46Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-11T22:45:27Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-resenas-amazon2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-resenas-amazon2 This model is a fine-tuned version of [mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243](https://huggingface.co/mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1794 - Accuracy: 0.562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0154 | 1.0 | 2500 | 1.0807 | 0.566 | | 0.8723 | 2.0 | 5000 | 1.0567 | 0.568 | | 0.6942 | 3.0 | 7500 | 1.1794 | 0.562 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mitra-mir/setfit-model-Feb11-Misinformation-on-Govt
mitra-mir
2023-02-11T22:44:30Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-11T22:44:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 201 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 201, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ryosei0304/ppo-Huggy
Ryosei0304
2023-02-11T21:28:32Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-11T21:28:20Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Ryosei0304/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
facebook/nllb-200-distilled-1.3B
facebook
2023-02-11T20:19:10Z
36,913
109
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "nllb", "translation", "ace", "acm", "acq", "aeb", "af", "ajp", "ak", "als", "am", "apc", "ar", "ars", "ary", "arz", "as", "ast", "awa", "ayr", "azb", "azj", "ba", "bm", "ban", "be", "bem", "bn", "bho", "bjn", "bo", "bs", "bug", "bg", "ca", "ceb", "cs", "cjk", "ckb", "crh", "cy", "da", "de", "dik", "dyu", "dz", "el", "en", "eo", "et", "eu", "ee", "fo", "fj", "fi", "fon", "fr", "fur", "fuv", "gaz", "gd", "ga", "gl", "gn", "gu", "ht", "ha", "he", "hi", "hne", "hr", "hu", "hy", "ig", "ilo", "id", "is", "it", "jv", "ja", "kab", "kac", "kam", "kn", "ks", "ka", "kk", "kbp", "kea", "khk", "km", "ki", "rw", "ky", "kmb", "kmr", "knc", "kg", "ko", "lo", "lij", "li", "ln", "lt", "lmo", "ltg", "lb", "lua", "lg", "luo", "lus", "lvs", "mag", "mai", "ml", "mar", "min", "mk", "mt", "mni", "mos", "mi", "my", "nl", "nn", "nb", "npi", "nso", "nus", "ny", "oc", "ory", "pag", "pa", "pap", "pbt", "pes", "plt", "pl", "pt", "prs", "quy", "ro", "rn", "ru", "sg", "sa", "sat", "scn", "shn", "si", "sk", "sl", "sm", "sn", "sd", "so", "st", "es", "sc", "sr", "ss", "su", "sv", "swh", "szl", "ta", "taq", "tt", "te", "tg", "tl", "th", "ti", "tpi", "tn", "ts", "tk", "tum", "tr", "tw", "tzm", "ug", "uk", "umb", "ur", "uzn", "vec", "vi", "war", "wo", "xh", "ydd", "yo", "yue", "zh", "zsm", "zu", "dataset:flores-200", "license:cc-by-nc-4.0", "autotrain_compatible", "region:us" ]
translation
2022-07-08T10:57:38Z
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn" tags: - nllb - translation license: "cc-by-nc-4.0" datasets: - flores-200 metrics: - bleu - spbleu - chrf++ inference: false --- # NLLB-200 This is the model card of NLLB-200's distilled 1.3B variant. Here are the [metrics](https://tinyurl.com/nllb200densedst1bmetrics) for that particular checkpoint. - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper. - Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022 - License: CC-BY-NC - Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues ## Intended Use - Primary intended uses: NLLB-200 is a machine translation model primarily intended for research in machine translation, - especially for low-resource languages. It allows for single sentence translation among 200 languages. Information on how to - use the model can be found in Fairseq code repository along with the training code and references to evaluation and training data. - Primary intended users: Primary users are researchers and machine translation research community. - Out-of-scope use cases: NLLB-200 is a research model and is not released for production deployment. NLLB-200 is trained on general domain text data and is not intended to be used with domain specific texts, such as medical domain or legal domain. The model is not intended to be used for document translation. The model was trained with input lengths not exceeding 512 tokens, therefore translating longer sequences might result in quality degradation. NLLB-200 translations can not be used as certified translations. ## Metrics โ€ข Model performance measures: NLLB-200 model was evaluated using BLEU, spBLEU, and chrF++ metrics widely adopted by machine translation community. Additionally, we performed human evaluation with the XSTS protocol and measured the toxicity of the generated translations. ## Evaluation Data - Datasets: Flores-200 dataset is described in Section 4 - Motivation: We used Flores-200 as it provides full evaluation coverage of the languages in NLLB-200 - Preprocessing: Sentence-split raw text data was preprocessed using SentencePiece. The SentencePiece model is released along with NLLB-200. ## Training Data โ€ข We used parallel multilingual data from a variety of sources to train the model. We provide detailed report on data selection and construction process in Section 5 in the paper. We also used monolingual data constructed from Common Crawl. We provide more details in Section 5.2. ## Ethical Considerations โ€ข In this work, we took a reflexive approach in technological development to ensure that we prioritize human users and minimize risks that could be transferred to them. While we reflect on our ethical considerations throughout the article, here are some additional points to highlight. For one, many languages chosen for this study are low-resource languages, with a heavy emphasis on African languages. While quality translation could improve education and information access in many in these communities, such an access could also make groups with lower levels of digital literacy more vulnerable to misinformation or online scams. The latter scenarios could arise if bad actors misappropriate our work for nefarious activities, which we conceive as an example of unintended use. Regarding data acquisition, the training data used for model development were mined from various publicly available sources on the web. Although we invested heavily in data cleaning, personally identifiable information may not be entirely eliminated. Finally, although we did our best to optimize for translation quality, mistranslations produced by the model could remain. Although the odds are low, this could have adverse impact on those who rely on these translations to make important decisions (particularly when related to health and safety). ## Caveats and Recommendations โ€ข Our model has been tested on the Wikimedia domain with limited investigation on other domains supported in NLLB-MD. In addition, the supported languages may have variations that our model is not capturing. Users should make appropriate assessments. ## Carbon Footprint Details โ€ข The carbon dioxide (CO2e) estimate is reported in Section 8.8.
figfig/restaurant_HSR_test
figfig
2023-02-11T20:07:48Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-11T19:18:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: restaurant_HSR_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # restaurant_HSR_test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3461 - Wer: 50.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 10.0 | 10 | 7.3374 | 133.3333 | | No log | 20.0 | 20 | 2.1528 | 33.3333 | | 6.4843 | 30.0 | 30 | 1.4666 | 16.6667 | | 6.4843 | 40.0 | 40 | 1.3461 | 50.0 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.11.0+cu115 - Datasets 2.9.0 - Tokenizers 0.13.2
mrm8488/santacoder-finetuned-the-stack-rust
mrm8488
2023-02-11T19:45:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "custom_code", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-09T18:52:17Z
--- license: openrail tags: - generated_from_trainer model-index: - name: santacoder-finetuned-the-stack-rust results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-the-stack-rust This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2075 | 0.05 | 500 | 1.0610 | | 1.79 | 0.1 | 1000 | 1.0754 | | 1.2441 | 0.15 | 1500 | 1.0339 | | 1.1709 | 0.2 | 2000 | 0.9829 | | 0.7645 | 0.25 | 2500 | 0.9738 | | 1.0381 | 0.3 | 3000 | 0.9536 | | 1.0625 | 0.35 | 3500 | 0.9268 | | 0.78 | 0.4 | 4000 | 0.9130 | | 0.9294 | 0.45 | 4500 | 0.9001 | | 0.9767 | 0.5 | 5000 | 0.8857 | | 5.7027 | 0.55 | 5500 | 0.8728 | | 0.9476 | 0.6 | 6000 | 0.8556 | | 0.6185 | 0.65 | 6500 | 0.8404 | | 0.5057 | 0.7 | 7000 | 0.8328 | | 0.6451 | 0.75 | 7500 | 0.8199 | | 0.8298 | 0.8 | 8000 | 0.8111 | | 0.2447 | 0.85 | 8500 | 0.8069 | | 0.8177 | 0.9 | 9000 | 0.8020 | | 0.7184 | 0.95 | 9500 | 0.8003 | | 0.9166 | 1.0 | 10000 | 0.7999 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Xian-Xiang/my_awesome_wnut_model
Xian-Xiang
2023-02-11T19:33:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-11T18:45:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.488013698630137 - name: Recall type: recall value: 0.26413345690454126 - name: F1 type: f1 value: 0.3427540589296452 - name: Accuracy type: accuracy value: 0.9395493993416271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2777 - Precision: 0.4880 - Recall: 0.2641 - F1: 0.3428 - Accuracy: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2870 | 0.3758 | 0.2132 | 0.2720 | 0.9360 | | No log | 2.0 | 426 | 0.2777 | 0.4880 | 0.2641 | 0.3428 | 0.9395 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune
sd-dreambooth-library
2023-02-11T19:25:16Z
9
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-11T19:15:05Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### MareลŸal Fevzi ร‡akmak DreamShaper fine-tune Test the model via TheLastBen's A1111 Colab: [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this model: (I should note that these images were upscaled using the 'Ultimate SD Upscale' extension. I strongly suggest its use as the source images utilized in the training process were low quality, thus limiting the model's capability to accurately represent the marshal's likeness.) ![5](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa4.jpeg) ![4](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa3.jpeg) ![3](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa2.jpeg) ![2](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa1.jpeg) ![1](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa5.jpeg) ![0](https://huggingface.co/sd-dreambooth-library/maresal-fevzi-cakmak-dreamshaper-fine-tune/resolve/main/sample_images/fevzipasa6.jpeg)
oscarb92/a2c-AntBulletEnv-v0
oscarb92
2023-02-11T19:00:01Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T18:58:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1874.44 +/- 81.26 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mexa-team/stt_fr_conformer_transducer_large
mexa-team
2023-02-11T18:56:42Z
2
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "audio", "Transducer", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "fr", "dataset:multilingual_librispeech", "dataset:mozilla-foundation/common_voice_7_0", "dataset:VoxPopuli", "arxiv:2005.08100", "license:cc-by-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2023-02-11T18:23:05Z
--- language: - fr library_name: nemo datasets: - multilingual_librispeech - mozilla-foundation/common_voice_7_0 - VoxPopuli thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 model-index: - name: stt_fr_conformer_transducer_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MCV 7.0 type: mozilla-foundation/common_voice_7_0 config: fr split: dev args: language: fr metrics: - name: Dev WER type: wer value: 6.85 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MCV 7.0 type: mozilla-foundation/common_voice_7_0 config: fr split: test args: language: fr metrics: - name: Test WER type: wer value: 7.95 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual Librispeech type: multilingual_librispeech config: fr split: dev args: language: fr metrics: - name: Dev WER type: wer value: 5.05 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual Librispeech type: multilingual_librispeech config: fr split: test args: language: fr metrics: - name: Test WER type: wer value: 4.1 --- # NVIDIA Conformer-Transducer Large (fr) (FORK) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-fr-lightgrey#model-badge)](#datasets) This model was trained on a composite dataset comprising of over 1500 hours of French speech. It is a large size version of Conformer-Transducer (around 120M parameters). See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_fr_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_fr_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 kHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml). The sentence-piece tokenizers [2] for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ## Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of over a thousand hours of French speech: - MozillaCommonVoice 7.0 - 356 hours - Multilingual LibriSpeech - 1036 hours - VoxPopuli - 182 hours Both models use same dataset, excluding a preprocessing step to strip hyphen from data for secondary model's training. ## Performance The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general. The latest model obtains the following greedy scores on the following evaluation datasets - 6.85 % on MCV7.0 dev - 7.95 % on MCV7.0 test - 5.05 % on MLS dev - 4.10 % on MLS test Note that these evaluation datasets have been filtered and preprocessed to only contain French alphabet characters and are removed of punctuation outside of hyphenation and apostrophe. ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. Further, since portions of the training set contain text from both pre- and post- 1990 orthographic reform, regularity of punctuation may vary between the two styles. For downstream tasks requiring more consistency, finetuning or downstream processing may be required. If exact orthography is not necessary, then using secondary model is advised. ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
khatkeashish/a2c-PandaReachDense-v2
khatkeashish
2023-02-11T18:49:28Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T17:46:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.81 +/- 0.27 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
quaizarv/Reinforce-CartPole
quaizarv
2023-02-11T18:43:26Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T18:43:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jsacex/vit-base-patch16-224-in21k-finetuned-lora-food101
jsacex
2023-02-11T18:38:02Z
19
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-11T18:16:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.964 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.1408 - Accuracy: 0.964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5739 | 0.874 | | 2.1968 | 2.0 | 18 | 0.2064 | 0.944 | | 0.3323 | 3.0 | 27 | 0.1521 | 0.96 | | 0.2087 | 4.0 | 36 | 0.1408 | 0.964 | | 0.1678 | 5.0 | 45 | 0.1352 | 0.962 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.12.1
xiazeng/ppo-SnowballTarget
xiazeng
2023-02-11T18:05:56Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-11T18:05:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: xiazeng/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
khatkeashish/a2c-AntBulletEnv-v0
khatkeashish
2023-02-11T16:58:35Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T16:57:26Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1842.77 +/- 46.41 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nanashisan/DGB
nanashisan
2023-02-11T16:27:47Z
0
37
null
[ "ja", "region:us" ]
null
2023-01-30T12:17:43Z
--- language: - ja --- Keyword:dgb-illya - LoRa_SD1_dgb-illya_epoch06 - CFGไธŠ้™10~11ใ€€้Žๅญฆ็ฟ’ๆ‰‹ๅ‰ใง่กจ็พใฎใƒใƒฉใƒณใ‚นใŒ่‰ฏใ„ - LoRa_SD1_dgb-illya_epoch08 - CFGไธŠ้™8ใใ‚‰ใ„ใ€€06ใ‚ˆใ‚Š้Žๅญฆ็ฟ’ๆฐ—ๅ‘ณใ ใŒใ‚ญใƒฃใƒฉๅ†็พๆ€ง้ซ˜ใ‚ใ€€NSFWๅ…ฅใ‚Œใชใใฆใ‚‚ๅ‹ๆ‰‹ใซไนณ้ฆ–ใƒใƒญใƒชใ™ใ‚‹ๅฏ่ƒฝๆ€งใ‚ใ‚Š Keyword:dgb-miu - LoRa-dgb-miu-cycle05-Epoch10.safetensors - CFGไธŠ้™9ใใ‚‰ใ„ - LoRa_SD1_dgb-miu-Epoch08.safetensors - CFGไธŠ้™9ใใ‚‰ใ„ ่‹ฅๅนฒ่กฃ่ฃ…ๅ†็พ็އๅข—ใ—ใŸ Keyword:dgb-clo - LoRa-dgb-clo-cycle10-Epoch10.safetensors - CFGไธŠ้™10ใใ‚‰ใ„ Keyword:dgb-mash - LoRa_SD1_dgb-mash-Epoch10.safetensors - CFGไธŠ้™9ใใ‚‰ใ„ ใŠใฃใฑใ„ dgb-3girl - dgb-3girl-epoch10.safetensors - Keyword:dgb-illya,dgb-miu,dgb-clo - 3ไบบๅŒๆ™‚ๅญฆ็ฟ’็‰ˆ
sam93/AnythingEcchi-v3
sam93
2023-02-11T16:23:58Z
0
2
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-17T20:24:57Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - stable-diffusion - text-to-image --- **AnythingEcchi is a fine-tuned version of Anything-v3.0 for anything ecchi, based on ~3000 images!**
hchiro/PPO-LunarLander-v2
hchiro
2023-02-11T16:10:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T16:10:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 226.93 +/- 22.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Deysi/clasificador-muchocine
Deysi
2023-02-11T16:03:01Z
105
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-11T13:53:16Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3029 - Accuracy: 0.4645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.5140 | 0.3161 | | 1.496 | 2.0 | 776 | 1.2868 | 0.4194 | | 1.1622 | 3.0 | 1164 | 1.3029 | 0.4645 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Amiko/Reinforce-Cartpole-v1
Amiko
2023-02-11T16:03:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T16:02:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
LuisaRomana/clasif-muchocine-roberta
LuisaRomana
2023-02-11T15:52:15Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-11T15:45:29Z
--- license: mit tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasif-muchocine-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasif-muchocine-roberta This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5146 - Accuracy: 0.3394 ## Model description This model has been made by someone who does NOT understand coding. ## Intended uses & limitations It was made during training, it should not be used. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.5140 | 0.3394 | | 1.5524 | 2.0 | 776 | 1.5132 | 0.3394 | | 1.5336 | 3.0 | 1164 | 1.5146 | 0.3394 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LarryAIDraw/lenaeightysix-000030
LarryAIDraw
2023-02-11T15:50:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-11T14:10:50Z
--- license: creativeml-openrail-m --- my trained lora use masterpiece,best quality,art by lenaeightysix,1girl,ahoge,very long hair,silver hair, long sleeves,hair between eyes, bangs,medium breasts, buttons,belt,thighhighs,military uniform,pantyhose,looking at viewer more steps lora see my dataset. suggest 10
anas-awadalla/opt-125-laion-text
anas-awadalla
2023-02-11T15:49:19Z
7
3
transformers
[ "transformers", "pytorch", "opt", "text-generation", "dataset:laion/laion2B-en", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-11T15:40:27Z
--- datasets: - laion/laion2B-en --- # Model Card for Model ID An OPT 125m trained on alt-text from LAION 2B. This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
luhui/marian-finetuned-kde4-en-to-fr
luhui
2023-02-11T15:41:24Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-02-08T04:48:44Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 41.582239085724574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.1453 - Bleu: 41.5822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Haruzo/heroes-iii-towns-model
Haruzo
2023-02-11T15:33:23Z
7
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-11T15:29:17Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Heroes-III-towns-model Dreambooth model trained by Haruzo with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(36).jpg) ![1](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(37).jpg) ![2](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(25).jpg) ![3](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(26).jpg) ![4](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(24).jpg) ![5](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(3).jpg) ![6](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(29).jpg) ![7](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(39).jpg) ![8](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(34).jpg) ![9](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(45).jpg) ![10](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(19).jpg) ![11](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(22).jpg) ![12](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(18).jpg) ![13](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(31).jpg) ![14](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(12).jpg) ![15](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(44).jpg) ![16](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(41).jpg) ![17](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(15).jpg) ![18](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(13).jpg) ![19](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(4).jpg) ![20](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(10).jpg) ![21](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(6).jpg) ![22](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(32).jpg) ![23](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(14).jpg) ![24](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(16).jpg) ![25](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(2).jpg) ![26](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(27).jpg) ![27](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(7).jpg) ![28](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(20).jpg) ![29](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(11).jpg) ![30](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(35).jpg) ![31](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(30).jpg) ![32](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(42).jpg) ![33](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(33).jpg) ![34](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(46).jpg) ![35](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(23).jpg) ![36](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(43).jpg) ![37](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(5).jpg) ![38](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(38).jpg) ![39](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(28).jpg) ![40](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(9).jpg) ![41](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(47).jpg) ![42](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(8).jpg) ![43](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(40).jpg) ![44](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(17).jpg) ![45](https://huggingface.co/Haruzo/heroes-iii-towns-model/resolve/main/sample_images/a_(21).jpg)
b1skOwO/near
b1skOwO
2023-02-11T15:24:46Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-02-11T14:33:08Z
--- license: openrail --- test marged model. --- ใชใ‚“ใ‹ใฎ๏ผ“ใคใฎใƒขใƒ‡ใƒซใ‚’AUTOMATIC 1111ใงๆททใœใพใ—ใŸใ€‚ๅˆๅฟƒ่€…ใชใฎใง็–‘ใ„ใ‚’ๆŒใกใชใŒใ‚‰ไฝฟใฃใฆใฟใฆใใ ใ•ใ„ใ€‚
shields/whisper-medium-catalan
shields
2023-02-11T15:17:05Z
24
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-11T05:38:56Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Medium Catalan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Catalan This model is a fine-tuned version of [openai/whisper-Medium](https://huggingface.co/openai/whisper-Medium) on the 10 hrs of Catalan Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 4.9217 - eval_wer: 132.1947 - eval_runtime: 3848.0596 - eval_samples_per_second: 0.78 - eval_steps_per_second: 0.78 - epoch: 1.14 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
spatial/PyramidsTraining
spatial
2023-02-11T15:12:37Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-11T15:12:04Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: spatial/PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
pfunk/Pong-v4-DQPN_p100-seed1
pfunk
2023-02-11T14:47:02Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T14:46:38Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 4.80 +/- 6.24 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p100]" python -m cleanrl_utils.enjoy --exp-name DQPN_p100 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p100 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 100000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p100', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 100000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
akgeni/poca-SoccerTwos5
akgeni
2023-02-11T14:09:24Z
4
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-11T14:04:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akgeni/poca-SoccerTwos5 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
samkenxstream/HierarchyMartialsAI
samkenxstream
2023-02-11T14:03:13Z
0
1
adapter-transformers
[ "adapter-transformers", "code", "chemistry", "art", "biology", "feature-extraction", "ae", "an", "av", "dataset:allenai/objaverse", "dataset:Gustavosta/Stable-Diffusion-Prompts", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
feature-extraction
2023-02-11T13:58:13Z
--- license: apache-2.0 datasets: - allenai/objaverse - Gustavosta/Stable-Diffusion-Prompts - fka/awesome-chatgpt-prompts language: - ae - an - av metrics: - accuracy - bleu library_name: adapter-transformers pipeline_tag: feature-extraction tags: - code - chemistry - art - biology ---
seven-dev/q-FrozenLake-v1-4x4-noSlippery
seven-dev
2023-02-11T13:38:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T13:37:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jmcneves/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GesturingMan/Reinforce-CartPole-v1
GesturingMan
2023-02-11T13:25:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T13:25:32Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
iammartian0/a2c-AntBulletEnv-v0
iammartian0
2023-02-11T13:11:29Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-11T13:10:16Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 740.58 +/- 153.97 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ammr/ppo-Huggy
ammr
2023-02-11T12:59:31Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-11T12:59:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ammr/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Celal11/resnet-50-4-32
Celal11
2023-02-11T12:54:21Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-11T12:30:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-4-32 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.6409863471719142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-4-32 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9705 - Accuracy: 0.6410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3833 | 1.0 | 224 | 1.2683 | 0.5134 | | 1.2404 | 2.0 | 448 | 1.1342 | 0.5659 | | 1.1492 | 3.0 | 672 | 1.0359 | 0.6087 | | 1.1433 | 4.0 | 896 | 0.9705 | 0.6410 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
akghxhs55/poca-SoccerTwos
akghxhs55
2023-02-11T12:46:38Z
32
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-11T12:46:25Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akghxhs55/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€