modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-31 00:44:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 538
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-31 00:42:51
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
mili7522/Reinforce-CartPole-v1
|
mili7522
| 2023-02-11T12:46:23Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T12:46:09Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jojoUla/bert-large-cased-sigir-support-refute-no-label-40
|
jojoUla
| 2023-02-11T11:59:56Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-11T10:31:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-cased-sigir-support-refute-no-label-40
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-refute-no-label-40
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.4511 | 1.0 | 252 | 2.0790 |
| 2.0373 | 2.0 | 504 | 1.8538 |
| 1.8052 | 3.0 | 756 | 1.6633 |
| 1.6663 | 4.0 | 1008 | 1.5591 |
| 1.5556 | 5.0 | 1260 | 1.4441 |
| 1.4505 | 6.0 | 1512 | 1.3836 |
| 1.3619 | 7.0 | 1764 | 1.3255 |
| 1.2968 | 8.0 | 2016 | 1.2505 |
| 1.2332 | 9.0 | 2268 | 1.2165 |
| 1.1788 | 10.0 | 2520 | 1.1517 |
| 1.1408 | 11.0 | 2772 | 1.1446 |
| 1.0992 | 12.0 | 3024 | 1.1512 |
| 1.0578 | 13.0 | 3276 | 1.1058 |
| 1.0277 | 14.0 | 3528 | 1.0662 |
| 1.0036 | 15.0 | 3780 | 1.0270 |
| 0.9655 | 16.0 | 4032 | 1.0207 |
| 0.9364 | 17.0 | 4284 | 1.0220 |
| 0.9085 | 18.0 | 4536 | 0.9874 |
| 0.8897 | 19.0 | 4788 | 0.9658 |
| 0.8661 | 20.0 | 5040 | 0.9603 |
| 0.8434 | 21.0 | 5292 | 0.9754 |
| 0.8248 | 22.0 | 5544 | 0.9406 |
| 0.8052 | 23.0 | 5796 | 0.9154 |
| 0.7975 | 24.0 | 6048 | 0.8760 |
| 0.7854 | 25.0 | 6300 | 0.8688 |
| 0.7673 | 26.0 | 6552 | 0.8536 |
| 0.7463 | 27.0 | 6804 | 0.8544 |
| 0.7412 | 28.0 | 7056 | 0.8514 |
| 0.7319 | 29.0 | 7308 | 0.8356 |
| 0.7143 | 30.0 | 7560 | 0.8832 |
| 0.7081 | 31.0 | 7812 | 0.8421 |
| 0.7026 | 32.0 | 8064 | 0.8295 |
| 0.687 | 33.0 | 8316 | 0.8401 |
| 0.6882 | 34.0 | 8568 | 0.8053 |
| 0.679 | 35.0 | 8820 | 0.8438 |
| 0.6672 | 36.0 | 9072 | 0.8450 |
| 0.6669 | 37.0 | 9324 | 0.8231 |
| 0.6665 | 38.0 | 9576 | 0.8410 |
| 0.6596 | 39.0 | 9828 | 0.7909 |
| 0.6556 | 40.0 | 10080 | 0.8019 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
OliP/a2c-AntBulletEnv-v0
|
OliP
| 2023-02-11T11:49:12Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T11:47:54Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1731.38 +/- 167.58
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Maghrebi/abkhaz
|
Maghrebi
| 2023-02-11T11:21:45Z | 7 | 0 |
transformers
|
[
"transformers",
"t5",
"text2text-generation",
"art",
"ab",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-16T12:53:19Z |
---
license: apache-2.0
language:
- ab
pipeline_tag: text2text-generation
tags:
- art
metrics:
- charcut_mt
library_name: transformers
---
|
kubasvehla/distilbert-base-uncased-finetuned-emotion
|
kubasvehla
| 2023-02-11T11:18:51Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-11T08:57:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9225
- name: F1
type: f1
value: 0.9226248366273136
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2288
- Accuracy: 0.9225
- F1: 0.9226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8577 | 1.0 | 250 | 0.3264 | 0.903 | 0.8992 |
| 0.2559 | 2.0 | 500 | 0.2288 | 0.9225 | 0.9226 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
gokuls/mobilebert_sa_GLUE_Experiment_data_aug_mnli
|
gokuls
| 2023-02-11T11:09:27Z | 123 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-03T14:40:39Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_data_aug_mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.609947111472742
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_data_aug_mnli
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9046
- Accuracy: 0.6099
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.8429 | 1.0 | 62880 | 0.8755 | 0.6185 |
| 0.6713 | 2.0 | 125760 | 0.9512 | 0.6039 |
| 0.5387 | 3.0 | 188640 | 1.0796 | 0.5978 |
| 0.4297 | 4.0 | 251520 | 1.1877 | 0.5961 |
| 0.3405 | 5.0 | 314400 | 1.3154 | 0.5895 |
| 0.2693 | 6.0 | 377280 | 1.4320 | 0.5798 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
MerlinTK/ppo-Huggy
|
MerlinTK
| 2023-02-11T11:04:49Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-02-11T11:04:39Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: MerlinTK/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ritesh27gole/ppo-LunarLander-v2
|
ritesh27gole
| 2023-02-11T10:58:09Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T10:57:43Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 275.92 +/- 18.09
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
taron88/CCCmix
|
taron88
| 2023-02-11T10:51:37Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-02-11T09:55:49Z |
公開されているモデルを単純マージしたモデルです。
7th v3.0 CをベースにCinnamonmixとCounterfeit-V2.5をマージしました。
7th v3.0 CをAに配置してB,CにCinnamonとcounterfeitを配置。
設定はWeighted sumの0.5だったと思います。
7thCのアニメ寄りのイラストはそのままにCinnamonの塗りと雰囲気、counterfeitの背景の精度を目指しました。
https://s3.amazonaws.com/moonup/production/uploads/1676112658952-6315eee0e06cb6c5c424344d.jpeg
---
license: other
---
|
atorre/poca-SoccerTwos-50M
|
atorre
| 2023-02-11T10:49:42Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-11T10:49:28Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: atorre/poca-SoccerTwos-50M
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Sjdan/finetuning12
|
Sjdan
| 2023-02-11T10:10:52Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-02-11T09:01:16Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: finetuning12
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning12
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 0.0 | 0.31 | 500 | nan | 1.0 |
| 0.0 | 0.61 | 1000 | nan | 1.0 |
| 0.0 | 0.92 | 1500 | nan | 1.0 |
| 0.0 | 1.23 | 2000 | nan | 1.0 |
| 0.0 | 1.54 | 2500 | nan | 1.0 |
| 0.0 | 1.84 | 3000 | nan | 1.0 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pittawat/a2c-AntBulletEnv-v0
|
pittawat
| 2023-02-11T09:47:21Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T09:46:03Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1229.25 +/- 82.35
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Seungjun/t5-small-failed
|
Seungjun
| 2023-02-11T09:42:57Z | 106 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-11T04:22:55Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-t5-Thor4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-t5-Thor4
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5607
- Rouge1: 30.1917
- Rouge2: 17.6334
- Rougel: 26.8513
- Rougelsum: 28.7606
- Gen Len: 18.9881
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.9251 | 1.0 | 675 | 1.6082 | 29.3372 | 16.9607 | 26.1096 | 27.9357 | 18.9874 |
| 1.763 | 2.0 | 1350 | 1.5696 | 30.1869 | 17.5627 | 26.8425 | 28.7413 | 18.9881 |
| 1.7139 | 3.0 | 2025 | 1.5607 | 30.1917 | 17.6334 | 26.8513 | 28.7606 | 18.9881 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Rubywong123/q-Taxi-v3
|
Rubywong123
| 2023-02-11T08:57:06Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T08:56:54Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Rubywong123/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Sjdan/finetuning11
|
Sjdan
| 2023-02-11T08:47:00Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-02-11T08:09:10Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: finetuning11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning11
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 0.0 | 0.31 | 500 | nan | 1.0 |
| 0.0 | 0.61 | 1000 | nan | 1.0 |
| 0.0 | 0.92 | 1500 | nan | 1.0 |
| 0.0 | 1.23 | 2000 | nan | 1.0 |
| 0.0 | 1.54 | 2500 | nan | 1.0 |
| 0.0 | 1.84 | 3000 | nan | 1.0 |
| 0.0 | 2.15 | 3500 | nan | 1.0 |
| 0.0 | 2.46 | 4000 | nan | 1.0 |
| 0.0 | 2.77 | 4500 | nan | 1.0 |
| 0.0 | 3.07 | 5000 | nan | 1.0 |
| 0.0 | 3.38 | 5500 | nan | 1.0 |
| 0.0 | 3.69 | 6000 | nan | 1.0 |
| 0.0 | 4.0 | 6500 | nan | 1.0 |
| 0.0 | 4.3 | 7000 | nan | 1.0 |
| 0.0 | 4.61 | 7500 | nan | 1.0 |
| 0.0 | 4.92 | 8000 | nan | 1.0 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
jackshoemaker/bert-finetuned-squad
|
jackshoemaker
| 2023-02-11T07:55:29Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-10T23:45:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Patrickrpds/ktspagui
|
Patrickrpds
| 2023-02-11T07:09:15Z | 10 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-11T06:58:10Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### ktspagui Dreambooth model trained by Patrickrpds with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
kaliputra/q-FrozenLake-v1-4x4-noSlippery
|
kaliputra
| 2023-02-11T06:44:48Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T06:44:41Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kaliputra/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
figfig/local_test_model_with_local_dataset
|
figfig
| 2023-02-11T06:01:50Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-02-11T04:34:13Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: local_test_model_with_local_dataset
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# local_test_model_with_local_dataset
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5566
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 10.0 | 10 | 3.4660 | 85.7143 |
| No log | 20.0 | 20 | 0.7373 | 10.7143 |
| 3.3998 | 30.0 | 30 | 0.5920 | 0.0 |
| 3.3998 | 40.0 | 40 | 0.5566 | 0.0 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
yizhangliu/poca-SoccerTwos-v9
|
yizhangliu
| 2023-02-11T05:32:12Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-11T05:32:05Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v9
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
paulkm/autotrain-lottery_prod_v3-3409393337
|
paulkm
| 2023-02-11T05:23:31Z | 96 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"zh",
"dataset:paulkm/autotrain-data-lottery_prod_v3",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-11T05:21:07Z |
---
tags:
- autotrain
- text-classification
language:
- zh
widget:
- text: "I love AutoTrain 🤗"
datasets:
- paulkm/autotrain-data-lottery_prod_v3
co2_eq_emissions:
emissions: 3.67386840637788
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3409393337
- CO2 Emissions (in grams): 3.6739
## Validation Metrics
- Loss: 0.244
- Accuracy: 0.909
- Precision: 0.922
- Recall: 0.875
- AUC: 0.953
- F1: 0.898
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/paulkm/autotrain-lottery_prod_v3-3409393337
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("paulkm/autotrain-lottery_prod_v3-3409393337", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("paulkm/autotrain-lottery_prod_v3-3409393337", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
lancechen/ppo-LunarLander-v2
|
lancechen
| 2023-02-11T04:56:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-11T01:27:39Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.71 +/- 15.93
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AngelUrq/ppo-Huggy
|
AngelUrq
| 2023-02-11T04:11:09Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-02-11T04:10:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: AngelUrq/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
5aket/foodia
|
5aket
| 2023-02-11T04:02:04Z | 11 | 0 |
keras
|
[
"keras",
"tf-keras",
"image-classification",
"en",
"dataset:food101",
"license:openrail",
"region:us"
] |
image-classification
| 2023-02-10T16:52:32Z |
---
license: openrail
datasets:
- food101
language:
- en
metrics:
- accuracy
library_name: keras
pipeline_tag: image-classification
---
|
smilingface88/xlm-roberta-base-finetuned-panx-it
|
smilingface88
| 2023-02-11T02:32:37Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-11T02:16:12Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- name: F1
type: f1
value: 0.8205546492659054
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2467
- F1: 0.8206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7897 | 1.0 | 70 | 0.3096 | 0.7519 |
| 0.2819 | 2.0 | 140 | 0.2603 | 0.8093 |
| 0.1818 | 3.0 | 210 | 0.2467 | 0.8206 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
joe138138/bert-finetuned-squad
|
joe138138
| 2023-02-11T02:30:37Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-08T04:58:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
marcowong02/bert-finetuned-squad
|
marcowong02
| 2023-02-11T01:42:38Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-11T00:07:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
smilingface88/xlm-roberta-base-finetuned-panx-de-fr
|
smilingface88
| 2023-02-11T01:40:20Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-10T23:57:15Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1629
- F1: 0.8584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2904 | 1.0 | 715 | 0.1823 | 0.8286 |
| 0.1446 | 2.0 | 1430 | 0.1626 | 0.8488 |
| 0.0941 | 3.0 | 2145 | 0.1629 | 0.8584 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
bmiles/chem-clin-2
|
bmiles
| 2023-02-11T00:52:15Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"biology",
"chemistry",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-11T00:39:51Z |
---
tags:
- biology
- chemistry
---
|
gatardochi/ppo-SnowballTarget
|
gatardochi
| 2023-02-10T23:46:14Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-10T23:46:04Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: gatardochi/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
kmposkid1/dqn-SpaceInvadersNoFrameskip-v4
|
kmposkid1
| 2023-02-10T23:30:47Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T21:46:12Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 407.00 +/- 152.71
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kmposkid1 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kmposkid1 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kmposkid1
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 25000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 10000),
('n_timesteps', 500000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ahng79/ppo-LunarLander-v2
|
ahng79
| 2023-02-10T23:13:30Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T23:12:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 267.90 +/- 16.32
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
asuzuki/ppo-Pyramids
|
asuzuki
| 2023-02-10T23:06:15Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-02-10T23:02:51Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://singularite.itch.io/pyramids
2. Step 1: Write your model_id: asuzuki/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
smilingface88/xlm-roberta-base-finetuned-panx-de
|
smilingface88
| 2023-02-10T23:03:51Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-02-10T21:34:53Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8645329998294582
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1355
- F1: 0.8645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2582 | 1.0 | 525 | 0.1612 | 0.8199 |
| 0.128 | 2.0 | 1050 | 0.1334 | 0.8484 |
| 0.081 | 3.0 | 1575 | 0.1355 | 0.8645 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
petergoldstein/Reinforce-CartPole-v1
|
petergoldstein
| 2023-02-10T22:54:18Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T22:54:01Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Nalenczewski/keyword_category_classifier
|
Nalenczewski
| 2023-02-10T22:45:28Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-02T19:01:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: keyword_category_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# keyword_category_classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2184
- Accuracy: 0.9333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5646 | 1.0 | 917 | 0.2161 | 0.9298 |
| 0.2032 | 2.0 | 1834 | 0.2184 | 0.9333 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Euchale/EuchalesTerribleMergesDump
|
Euchale
| 2023-02-10T22:44:29Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-01-15T09:51:00Z |
People always ask me:"Hey can you upload that merge?" to me, so figured I give one central place to upload my merges. Warning these can be both SFW and NSFW, the names should hopefully be straightforward enough, but I will try to remember to put down the source models in the description of the .ckpt files.
|
pyf98/tedlium2_transducer_conformer_e12_linear2048
|
pyf98
| 2023-02-10T22:29:05Z | 1 | 0 |
espnet
|
[
"espnet",
"audio",
"automatic-speech-recognition",
"en",
"dataset:tedlium2",
"arxiv:1804.00015",
"license:cc-by-4.0",
"region:us"
] |
automatic-speech-recognition
| 2023-02-10T22:27:05Z |
---
tags:
- espnet
- audio
- automatic-speech-recognition
language: en
datasets:
- tedlium2
license: cc-by-4.0
---
## ESPnet2 ASR model
### `pyf98/tedlium2_transducer_conformer_e12_linear2048`
This model was trained by Yifan Peng using tedlium2 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html)
if you haven't done that already.
```bash
cd espnet
git checkout e06c0a97425c4d5deb4d3d14922da1f91504052e
pip install -e .
cd egs2/tedlium2/asr1
./run.sh --skip_data_prep false --skip_train true --download_model pyf98/tedlium2_transducer_conformer_e12_linear2048
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Wed Feb 8 22:07:40 CST 2023`
- python version: `3.9.15 (main, Nov 24 2022, 14:31:59) [GCC 11.2.0]`
- espnet version: `espnet 202301`
- pytorch version: `pytorch 1.13.1`
- Git hash: `478ba004e114e7862b05fb01112de7f7e1da3996`
- Commit date: `Tue Feb 7 00:50:49 2023 +0000`
## asr_train_asr_transducer_conformer_e12_linear2048_raw_en_bpe500_sp
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_transducer_asr_model_valid.loss.ave/dev|466|14671|93.3|4.5|2.3|1.1|7.8|71.2|
|decode_asr_transducer_asr_model_valid.loss.ave/test|1155|27500|93.2|4.2|2.6|1.0|7.8|65.6|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_transducer_asr_model_valid.loss.ave/dev|466|78259|97.0|0.9|2.1|1.0|3.9|71.2|
|decode_asr_transducer_asr_model_valid.loss.ave/test|1155|145066|96.9|0.9|2.2|0.9|4.0|65.6|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_transducer_asr_model_valid.loss.ave/dev|466|28296|94.6|3.0|2.4|0.9|6.3|71.2|
|decode_asr_transducer_asr_model_valid.loss.ave/test|1155|52113|94.8|2.7|2.5|0.9|6.0|65.6|
## ASR config
<details><summary>expand</summary>
```
config: conf/tuning/train_asr_transducer_conformer_e12_linear2048.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_asr_transducer_conformer_e12_linear2048_raw_en_bpe500_sp
ngpu: 1
seed: 2022
num_workers: 6
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 2
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 37613
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 5
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 10000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/train/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe500_sp/valid/speech_shape
- exp/asr_stats_raw_en_bpe500_sp/valid/text_shape.bpe
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_sp/wav.scp
- speech
- kaldi_ark
- - dump/raw/train_sp/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/dev/wav.scp
- speech
- kaldi_ark
- - dump/raw/dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.002
weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
warmup_steps: 15000
token_list:
- <blank>
- <unk>
- s
- ▁the
- t
- ▁a
- ▁and
- ▁to
- d
- e
- ▁of
- ''''
- n
- ing
- ▁in
- ▁i
- ▁that
- i
- a
- l
- p
- m
- y
- o
- ▁it
- ▁we
- c
- u
- ▁you
- ed
- ▁
- r
- ▁is
- re
- ▁this
- ar
- g
- ▁so
- al
- b
- ▁s
- or
- ▁f
- ▁c
- in
- k
- f
- ▁for
- ic
- er
- le
- ▁be
- ▁do
- ▁re
- ve
- ▁e
- ▁w
- ▁was
- es
- ▁they
- ly
- h
- ▁on
- v
- ▁are
- ri
- ▁have
- an
- ▁what
- ▁with
- ▁t
- w
- ur
- it
- ent
- ▁can
- ▁he
- ▁but
- ra
- ce
- ▁me
- ▁b
- ▁ma
- ▁p
- ll
- ▁st
- ▁one
- 'on'
- ▁about
- th
- ▁de
- en
- ▁all
- ▁not
- il
- ▁g
- ch
- at
- ▁there
- ▁mo
- ter
- ation
- tion
- ▁at
- ▁my
- ro
- ▁as
- te
- ▁le
- ▁con
- ▁like
- ▁people
- ▁or
- ▁an
- el
- ▁if
- ▁from
- ver
- ▁su
- ▁co
- ate
- ▁these
- ol
- ci
- ▁now
- ▁see
- ▁out
- ▁our
- ion
- ▁know
- ect
- ▁just
- as
- ▁ex
- ▁ch
- ▁d
- ▁when
- ▁very
- ▁think
- ▁who
- ▁because
- ▁go
- ▁up
- ▁us
- ▁pa
- ▁no
- ies
- ▁di
- ▁ho
- om
- ive
- ▁get
- id
- ▁o
- ▁hi
- un
- ▁how
- ▁by
- ir
- et
- ck
- ity
- ▁po
- ul
- ▁which
- ▁mi
- ▁some
- z
- ▁sp
- ▁un
- ▁going
- ▁pro
- ist
- ▁se
- ▁look
- ▁time
- ment
- de
- ▁more
- ▁had
- ng
- ▁would
- ge
- la
- ▁here
- ▁really
- x
- ▁your
- ▁them
- us
- me
- ▁en
- ▁two
- ▁k
- ▁li
- ▁world
- ne
- ow
- ▁way
- ▁want
- ▁work
- ▁don
- ▁lo
- ▁fa
- ▁were
- ▁their
- age
- vi
- ▁ha
- ac
- der
- est
- ▁bo
- am
- ▁other
- able
- ▁actually
- ▁sh
- ▁make
- ▁ba
- ▁la
- ine
- ▁into
- ▁where
- ▁could
- ▁comp
- ting
- ▁has
- ▁will
- ▁ne
- j
- ical
- ally
- ▁vi
- ▁things
- ▁te
- igh
- ▁say
- ▁years
- ers
- ▁ra
- ther
- ▁than
- ru
- ▁ro
- op
- ▁did
- ▁any
- ▁new
- ound
- ig
- ▁well
- mo
- ▁she
- ▁na
- ▁been
- he
- ▁thousand
- ▁car
- ▁take
- ▁right
- ▁then
- ▁need
- ▁start
- ▁hundred
- ▁something
- ▁over
- ▁com
- ia
- ▁kind
- um
- if
- ▁those
- ▁first
- ▁pre
- ta
- ▁said
- ize
- end
- ▁even
- ▁thing
- one
- ▁back
- ite
- ▁every
- ▁little
- ry
- ▁life
- ▁much
- ke
- ▁also
- ▁most
- ant
- per
- ▁three
- ▁come
- ▁lot
- ance
- ▁got
- ▁talk
- ▁per
- ▁inter
- ▁sa
- ▁use
- ▁mu
- ▁part
- ish
- ence
- ▁happen
- ▁bi
- ▁mean
- ough
- ▁qu
- ▁bu
- ▁day
- ▁ga
- ▁only
- ▁many
- ▁different
- ▁dr
- ▁th
- ▁show
- ful
- ▁down
- ated
- ▁good
- ▁tra
- ▁around
- ▁idea
- ▁human
- ous
- ▁put
- ▁through
- ▁five
- ▁why
- ▁change
- ▁real
- ff
- ible
- ▁fact
- ▁same
- ▁jo
- ▁live
- ▁year
- ▁problem
- ▁ph
- ▁four
- ▁give
- ▁big
- ▁tell
- ▁great
- ▁try
- ▁va
- ▁ru
- ▁system
- ▁six
- ▁plan
- ▁place
- ▁build
- ▁called
- ▁again
- ▁point
- ▁twenty
- ▁percent
- ▁nine
- ▁find
- ▁app
- ▁after
- ▁long
- ▁eight
- ▁imp
- ▁gene
- ▁design
- ▁today
- ▁should
- ▁made
- ious
- ▁came
- ▁learn
- ▁last
- ▁own
- way
- ▁turn
- ▁seven
- ▁high
- ▁question
- ▁person
- ▁brain
- ▁important
- ▁another
- ▁thought
- ▁trans
- ▁create
- ness
- ▁hu
- ▁power
- ▁act
- land
- ▁play
- ▁sort
- ▁old
- ▁before
- ▁course
- ▁understand
- ▁feel
- ▁might
- ▁each
- ▁million
- ▁better
- ▁together
- ▁ago
- ▁example
- ▁help
- ▁story
- ▁next
- ▁hand
- ▁school
- ▁water
- ▁develop
- ▁technology
- que
- ▁second
- ▁grow
- ▁still
- ▁cell
- ▁believe
- ▁number
- ▁small
- ▁between
- qui
- ▁data
- ▁become
- ▁america
- ▁maybe
- ▁space
- ▁project
- ▁organ
- ▁vo
- ▁children
- ▁book
- graph
- ▁open
- ▁fifty
- ▁picture
- ▁health
- ▁thirty
- ▁africa
- ▁reason
- ▁large
- ▁hard
- ▁computer
- ▁always
- ▁sense
- ▁money
- ▁women
- ▁everything
- ▁information
- ▁country
- ▁teach
- ▁energy
- ▁experience
- ▁food
- ▁process
- qua
- ▁interesting
- ▁future
- ▁science
- q
- '0'
- '5'
- '6'
- '9'
- '3'
- '8'
- '4'
- N
- A
- '7'
- S
- G
- F
- R
- L
- U
- E
- T
- H
- _
- B
- D
- J
- M
- ă
- ō
- ť
- '2'
- '-'
- '1'
- C
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: null
zero_infinity: true
joint_net_conf:
joint_space_size: 320
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram500/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: default
frontend_conf:
n_fft: 512
win_length: 400
hop_length: 160
fs: 16k
specaug: specaug
specaug_conf:
apply_time_warp: true
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 27
num_freq_mask: 2
apply_time_mask: true
time_mask_width_ratio_range:
- 0.0
- 0.05
num_time_mask: 5
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_raw_en_bpe500_sp/train/feats_stats.npz
model: espnet
model_conf:
ctc_weight: 0.3
report_cer: false
report_wer: false
preencoder: null
preencoder_conf: {}
encoder: conformer
encoder_conf:
output_size: 256
attention_heads: 4
linear_units: 2048
num_blocks: 12
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: conv2d
normalize_before: true
macaron_style: true
rel_pos_type: latest
pos_enc_layer_type: rel_pos
selfattention_layer_type: rel_selfattn
activation_type: swish
use_cnn_module: true
cnn_module_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transducer
decoder_conf:
rnn_type: lstm
num_layers: 1
hidden_size: 256
dropout: 0.1
dropout_embed: 0.2
preprocessor: default
preprocessor_conf: {}
required:
- output_dir
- token_list
version: '202301'
distributed: true
```
</details>
### Citing ESPnet
```BibTex
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
```
or arXiv:
```bibtex
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Triangles/gpt-Neo_Russell
|
Triangles
| 2023-02-10T22:02:47Z | 27 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"en",
"arxiv:1910.09700",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-12-28T02:40:59Z |
---
license: cc-by-nc-sa-4.0
language:
- en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This is a gpt_neo (125M) text generation model fine-tuned on a single book: Bertant Russell's The Problems of Philosophy, from 1912.
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
[More Information Needed]
</details>
|
pfunk/Pong-v4-DQPN_p50-seed1
|
pfunk
| 2023-02-10T21:50:13Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T21:49:50Z |
---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 0.90 +/- 4.37
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50 --start-policy-f 50000 --end-policy-f 50000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 50000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p50',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
StraightFusion/rimuru-tempest
|
StraightFusion
| 2023-02-10T21:47:32Z | 0 | 0 | null |
[
"Rimuru",
"Rimuru Tempest",
"license:unknown",
"region:us"
] | null | 2023-02-10T21:45:14Z |
---
license: unknown
tags:
- Rimuru
- Rimuru Tempest
---
|
bonadio/poca-SoccerTwos-v2
|
bonadio
| 2023-02-10T21:41:08Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-10T21:40:59Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: bonadio/poca-SoccerTwos-v2
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
yizhangliu/poca-SoccerTwos-v8
|
yizhangliu
| 2023-02-10T21:40:57Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-02-10T21:40:49Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v8
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
rishabhjain16/whisper_large_to_pf10h
|
rishabhjain16
| 2023-02-10T21:38:59Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-02-08T15:19:58Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-large
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1412
- Wer: 6.7893
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0475 | 2.03 | 500 | 0.1095 | 62.6591 |
| 0.0201 | 5.01 | 1000 | 0.1225 | 16.9285 |
| 0.0044 | 7.03 | 1500 | 0.1312 | 3.6701 |
| 0.0026 | 10.01 | 2000 | 0.1278 | 7.9506 |
| 0.0001 | 12.04 | 2500 | 0.1323 | 17.9186 |
| 0.0001 | 15.02 | 3000 | 0.1386 | 16.3031 |
| 0.0001 | 17.05 | 3500 | 0.1403 | 6.7074 |
| 0.0 | 20.02 | 4000 | 0.1412 | 6.7893 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
Rotyh/platform_tile
|
Rotyh
| 2023-02-10T21:16:24Z | 11 | 7 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-22T12:28:35Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
inference: true
---
### assplatform Dreambooth model
**___**


```
(((assplatform))), style Gardenscapes, tile
```
```
((set)),(assplatform), hyper realistic, one style, cinematic, tile, game
```
|
mchalek/distilbert-base-uncased-finetuned-ccnews
|
mchalek
| 2023-02-10T21:03:19Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:cc_news",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-10T19:38:07Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cc_news
model-index:
- name: distilbert-base-uncased-finetuned-ccnews
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ccnews
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the cc_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7553 | 1.0 | 157 | 2.5523 |
| 2.6507 | 2.0 | 314 | 2.5219 |
| 2.606 | 3.0 | 471 | 2.5416 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.12.1+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2
|
robinsk8a/a2c-PandaReachDense-v2
|
robinsk8a
| 2023-02-10T20:48:12Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T20:45:42Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.92 +/- 0.32
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dhairyakapadia/swin-tiny-patch4-window7-224-finetuned-skin-cancer
|
dhairyakapadia
| 2023-02-10T20:38:26Z | 36 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-02-10T20:37:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-skin-cancer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-skin-cancer
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pfunk/Pong-v4-DQPN_p500_e0.50-seed1
|
pfunk
| 2023-02-10T20:29:03Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T20:28:36Z |
---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: -1.70 +/- 5.92
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_e0.50.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p500_e0.50]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p500_e0.50 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.50-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p500_e0.50 --start-policy-f 500000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.5,
'exp_name': 'DQPN_p500_e0.50',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 500000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
ihfaudsip/bert-finetuned-squad
|
ihfaudsip
| 2023-02-10T20:22:11Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-02-10T03:53:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.0+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
lmqg/flan-t5-small-squad-qag
|
lmqg
| 2023-02-10T20:02:23Z | 46 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"questions and answers generation",
"en",
"dataset:lmqg/qag_squad",
"arxiv:2210.03992",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-10T20:02:05Z |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qag_squad
pipeline_tag: text2text-generation
tags:
- questions and answers generation
widget:
- text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
example_title: "Questions & Answers Generation Example 1"
model-index:
- name: lmqg/flan-t5-small-squad-qag
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qag_squad
type: default
args: default
metrics:
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
type: qa_aligned_f1_score_bertscore_question_answer_generation
value: 92.3
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
type: qa_aligned_recall_bertscore_question_answer_generation
value: 91.71
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
type: qa_aligned_precision_bertscore_question_answer_generation
value: 92.92
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
type: qa_aligned_f1_score_moverscore_question_answer_generation
value: 63.74
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
type: qa_aligned_recall_moverscore_question_answer_generation
value: 62.2
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
type: qa_aligned_precision_moverscore_question_answer_generation
value: 65.5
---
# Model Card of `lmqg/flan-t5-small-squad-qag`
This model is fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) for question & answer pair generation task on the [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
- **Language:** en
- **Training data:** [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/flan-t5-small-squad-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/flan-t5-small-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
```
## Evaluation
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-small-squad-qag/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_squad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 92.3 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedF1Score (MoverScore) | 63.74 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (BERTScore) | 92.92 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedPrecision (MoverScore) | 65.5 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (BERTScore) | 91.71 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
| QAAlignedRecall (MoverScore) | 62.2 | default | [lmqg/qag_squad](https://huggingface.co/datasets/lmqg/qag_squad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_squad
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: ['qag']
- model: google/flan-t5-small
- max_length: 512
- max_length_output: 256
- epoch: 14
- batch: 16
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.0
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-small-squad-qag/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|
cupertinosam/ppo-LunarLander-v2
|
cupertinosam
| 2023-02-10T19:47:35Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T19:47:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 269.71 +/- 20.23
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
MarioLomby/Taxi-v3
|
MarioLomby
| 2023-02-10T19:22:47Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T19:22:40Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.74
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="MarioLomby/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kedudzic/roberta-base-cookdial
|
kedudzic
| 2023-02-10T19:07:15Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"en",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-22T13:59:45Z |
---
language:
- en
library_name: transformers
tags:
- text-classification
widget:
- text: "What ingredients do I need?"
---
- Baseline NLU model for the "AMUseBot" cooking taskbot prototype.
- ``roberta-base`` model finetuned with default hyperparameters for 10 epochs on intents from the CookDial (https://github.com/YiweiJiang2015/CookDial) dataset with an extra choose_recipe intent added. The ``simpletransformers`` library was used for fine-tuning.
- Intent mapping: {"0": "affirm", "1": "choose_recipe", "2": "confirm", "3": "goodbye", "4": "greeting", "5": "negate", "6": "other", "7": "req_amount", "8": "req_duration", "9": "req_ingredient", "10": "req_ingredient_list", "11": "req_ingredient_list_ends", "12": "req_ingredient_list_length", "13": "req_instruction", "14": "req_is_recipe_finished", "15": "req_is_recipe_ongoing", "16": "req_parallel_action", "17": "req_repeat", "18": "req_start", "19": "req_substitute", "20": "req_temperature", "21": "req_title", "22": "req_tool", "23": "req_use_all", "24": "thank"}.
|
fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7
|
fathyshalab
| 2023-02-10T19:02:04Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T19:01:37Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_music-roberta-large-v1-5-7")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
z4x/ppo-Pyramids
|
z4x
| 2023-02-10T18:56:20Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-02-10T18:56:09Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: z4x/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90
|
fathyshalab
| 2023-02-10T18:53:31Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T18:53:03Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_takeaway-roberta-large-v1-5-90")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
MarioLomby/q-FrozenLake-v1-4x4-noSlippery
|
MarioLomby
| 2023-02-10T18:51:12Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T18:51:04Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="MarioLomby/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
z4x/ppo-SnowballTarget
|
z4x
| 2023-02-10T18:37:55Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-02-10T18:37:43Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: z4x/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73
|
fathyshalab
| 2023-02-10T18:36:59Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T18:36:32Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_qa-roberta-large-v1-5-73")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
deprem-ml/Binafarktespit-yolo5x-v1-xview
|
deprem-ml
| 2023-02-10T18:23:55Z | 0 | 0 | null |
[
"object-detection",
"computer-vision",
"vision",
"yolo",
"yolov5",
"license:gpl-3.0",
"region:us"
] |
object-detection
| 2023-02-10T12:38:23Z |
---
license: gpl-3.0
inference: false
tags:
- object-detection
- computer-vision
- vision
- yolo
- yolov5
---
### How to use
- Install yolov5:
```bash
pip install -U yolov5
```
- Load model and perform prediction:
```python
import yolov5
# load model
model = yolov5.load('deprem-ml/Binafarktespit-yolo5x-v1-xview')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model(img)
# inference with larger input size
results = model(img, size=640)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
```
- Finetune the model on your custom dataset:
```bash
yolov5 train --img 640 --batch 16 --weights kadirnar/deprem_model_v1 --epochs 10 --device cuda:0
```
|
henryscheible/roberta-large_stereoset_finetuned
|
henryscheible
| 2023-02-10T18:22:32Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:stereoset",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-10T16:42:19Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- stereoset
metrics:
- accuracy
model-index:
- name: roberta-large_stereoset_finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: stereoset
type: stereoset
config: intersentence
split: validation
args: intersentence
metrics:
- name: Accuracy
type: accuracy
value: 0.8335949764521193
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large_stereoset_finetuned
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the stereoset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7989
- Accuracy: 0.8336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.21 | 5 | 0.6920 | 0.5196 |
| No log | 0.42 | 10 | 0.6909 | 0.5290 |
| No log | 0.62 | 15 | 0.6899 | 0.5220 |
| No log | 0.83 | 20 | 0.6883 | 0.5408 |
| No log | 1.04 | 25 | 0.6573 | 0.6609 |
| No log | 1.25 | 30 | 0.5892 | 0.7088 |
| No log | 1.46 | 35 | 0.6633 | 0.5408 |
| No log | 1.67 | 40 | 0.6322 | 0.6852 |
| No log | 1.88 | 45 | 0.6393 | 0.7159 |
| No log | 2.08 | 50 | 0.5494 | 0.7410 |
| No log | 2.29 | 55 | 0.5498 | 0.7386 |
| No log | 2.5 | 60 | 0.5069 | 0.7692 |
| No log | 2.71 | 65 | 0.4930 | 0.7630 |
| No log | 2.92 | 70 | 0.4939 | 0.7614 |
| No log | 3.12 | 75 | 0.5379 | 0.7724 |
| No log | 3.33 | 80 | 0.5981 | 0.7732 |
| No log | 3.54 | 85 | 0.5842 | 0.7716 |
| No log | 3.75 | 90 | 0.4405 | 0.8030 |
| No log | 3.96 | 95 | 0.4970 | 0.7951 |
| No log | 4.17 | 100 | 0.5172 | 0.8093 |
| No log | 4.38 | 105 | 0.5052 | 0.8108 |
| No log | 4.58 | 110 | 0.4685 | 0.8085 |
| No log | 4.79 | 115 | 0.4663 | 0.8218 |
| No log | 5.0 | 120 | 0.5086 | 0.8218 |
| No log | 5.21 | 125 | 0.5096 | 0.8179 |
| No log | 5.42 | 130 | 0.5705 | 0.8203 |
| No log | 5.62 | 135 | 0.5294 | 0.8312 |
| No log | 5.83 | 140 | 0.4377 | 0.8375 |
| No log | 6.04 | 145 | 0.5699 | 0.8100 |
| No log | 6.25 | 150 | 0.6062 | 0.8265 |
| No log | 6.46 | 155 | 0.7237 | 0.8218 |
| No log | 6.67 | 160 | 0.6816 | 0.8210 |
| No log | 6.88 | 165 | 0.6413 | 0.8124 |
| No log | 7.08 | 170 | 0.5931 | 0.8359 |
| No log | 7.29 | 175 | 0.6149 | 0.8399 |
| No log | 7.5 | 180 | 0.7190 | 0.8195 |
| No log | 7.71 | 185 | 0.7339 | 0.8352 |
| No log | 7.92 | 190 | 0.7244 | 0.8352 |
| No log | 8.12 | 195 | 0.7722 | 0.8203 |
| No log | 8.33 | 200 | 0.6890 | 0.8344 |
| No log | 8.54 | 205 | 0.6938 | 0.8336 |
| No log | 8.75 | 210 | 0.7234 | 0.8320 |
| No log | 8.96 | 215 | 0.7517 | 0.8391 |
| No log | 9.17 | 220 | 0.7713 | 0.8383 |
| No log | 9.38 | 225 | 0.7745 | 0.8375 |
| No log | 9.58 | 230 | 0.8006 | 0.8375 |
| No log | 9.79 | 235 | 0.8003 | 0.8367 |
| No log | 10.0 | 240 | 0.7989 | 0.8336 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0
|
fathyshalab
| 2023-02-10T18:19:32Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T18:19:05Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_audio-roberta-large-v1-5-0")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
ilahazs/rokashibasakiv1
|
ilahazs
| 2023-02-10T18:14:15Z | 0 | 0 | null |
[
"art",
"code",
"en",
"id",
"region:us"
] | null | 2023-02-10T18:11:00Z |
---
language:
- en
- id
tags:
- art
- code
---
Hi. This is a model for shibasaki roka from D-Frag.
I am still trying to make her looks better, stay tune.
Update :
1. 11 February 2023
2. ....
3. ....
4. ....
|
fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95
|
fathyshalab
| 2023-02-10T18:11:02Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T18:10:35Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_general-roberta-large-v1-5-95")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
|
cleanrl
| 2023-02-10T17:59:27Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"UpNDown-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T17:59:21Z |
---
tags:
- UpNDown-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: UpNDown-v5
type: UpNDown-v5
metrics:
- type: mean_reward
value: 364740.00 +/- 7456.33
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **UpNDown-v5**
This is a trained model of a PPO agent playing UpNDown-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'UpNDown-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38
|
fathyshalab
| 2023-02-10T17:52:55Z | 4 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T17:52:30Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_email-roberta-large-v1-5-38")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17
|
fathyshalab
| 2023-02-10T17:44:13Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T17:43:46Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_recommendation-roberta-large-v1-5-17")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
zuxi/Anterkiar
|
zuxi
| 2023-02-10T17:44:08Z | 13 | 4 |
diffusers
|
[
"diffusers",
"arxiv:1910.09700",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-06T13:21:38Z |
---
license: openrail
---
# Model Card for Model ID
这个模型是用来跑图的
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
# Model Details
## Model Description
这是一个一个一个融合模型
- ** Developedby:** yushui
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
放到webui里就能用
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
|
arshandalili/autotrain-news-summarization-3366493102
|
arshandalili
| 2023-02-10T17:42:27Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain",
"summarization",
"unk",
"dataset:arshandalili/autotrain-data-news-summarization",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-02-10T16:59:12Z |
---
tags:
- autotrain
- summarization
language:
- unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- arshandalili/autotrain-data-news-summarization
co2_eq_emissions:
emissions: 74.35447565387557
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 3366493102
- CO2 Emissions (in grams): 74.3545
## Validation Metrics
- Loss: 1.405
- Rouge1: 0.800
- Rouge2: 0.200
- RougeL: 0.800
- RougeLsum: 0.800
- Gen Len: 47.134
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/arshandalili/autotrain-news-summarization-3366493102
```
|
henryscheible/roberta-base_stereoset_finetuned
|
henryscheible
| 2023-02-10T17:41:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:stereoset",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-10T16:32:27Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- stereoset
metrics:
- accuracy
model-index:
- name: roberta-base_stereoset_finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: stereoset
type: stereoset
config: intersentence
split: validation
args: intersentence
metrics:
- name: Accuracy
type: accuracy
value: 0.7904238618524333
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base_stereoset_finetuned
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the stereoset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8461
- Accuracy: 0.7904
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.21 | 5 | 0.6915 | 0.5149 |
| No log | 0.42 | 10 | 0.6945 | 0.4914 |
| No log | 0.62 | 15 | 0.6931 | 0.4945 |
| No log | 0.83 | 20 | 0.6814 | 0.5086 |
| No log | 1.04 | 25 | 0.6454 | 0.6978 |
| No log | 1.25 | 30 | 0.5807 | 0.7088 |
| No log | 1.46 | 35 | 0.5620 | 0.7284 |
| No log | 1.67 | 40 | 0.5410 | 0.7331 |
| No log | 1.88 | 45 | 0.4965 | 0.7630 |
| No log | 2.08 | 50 | 0.4924 | 0.7614 |
| No log | 2.29 | 55 | 0.4906 | 0.7661 |
| No log | 2.5 | 60 | 0.5141 | 0.7661 |
| No log | 2.71 | 65 | 0.4826 | 0.7700 |
| No log | 2.92 | 70 | 0.4977 | 0.7630 |
| No log | 3.12 | 75 | 0.4890 | 0.7802 |
| No log | 3.33 | 80 | 0.4819 | 0.7857 |
| No log | 3.54 | 85 | 0.4840 | 0.7834 |
| No log | 3.75 | 90 | 0.5189 | 0.7794 |
| No log | 3.96 | 95 | 0.5000 | 0.7912 |
| No log | 4.17 | 100 | 0.4958 | 0.7865 |
| No log | 4.38 | 105 | 0.5149 | 0.7896 |
| No log | 4.58 | 110 | 0.5515 | 0.7975 |
| No log | 4.79 | 115 | 0.5766 | 0.7873 |
| No log | 5.0 | 120 | 0.5867 | 0.7873 |
| No log | 5.21 | 125 | 0.6143 | 0.7936 |
| No log | 5.42 | 130 | 0.6226 | 0.7881 |
| No log | 5.62 | 135 | 0.6374 | 0.7865 |
| No log | 5.83 | 140 | 0.6405 | 0.7983 |
| No log | 6.04 | 145 | 0.6116 | 0.8006 |
| No log | 6.25 | 150 | 0.6372 | 0.7983 |
| No log | 6.46 | 155 | 0.6804 | 0.7881 |
| No log | 6.67 | 160 | 0.7237 | 0.7857 |
| No log | 6.88 | 165 | 0.7038 | 0.7904 |
| No log | 7.08 | 170 | 0.7100 | 0.7991 |
| No log | 7.29 | 175 | 0.6837 | 0.7920 |
| No log | 7.5 | 180 | 0.7203 | 0.8046 |
| No log | 7.71 | 185 | 0.7478 | 0.7959 |
| No log | 7.92 | 190 | 0.7667 | 0.7920 |
| No log | 8.12 | 195 | 0.7792 | 0.7959 |
| No log | 8.33 | 200 | 0.8014 | 0.7943 |
| No log | 8.54 | 205 | 0.8193 | 0.7959 |
| No log | 8.75 | 210 | 0.8316 | 0.7967 |
| No log | 8.96 | 215 | 0.8411 | 0.7896 |
| No log | 9.17 | 220 | 0.8652 | 0.7936 |
| No log | 9.38 | 225 | 0.8553 | 0.7841 |
| No log | 9.58 | 230 | 0.8458 | 0.7881 |
| No log | 9.79 | 235 | 0.8456 | 0.7912 |
| No log | 10.0 | 240 | 0.8461 | 0.7904 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94
|
fathyshalab
| 2023-02-10T17:35:25Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T17:34:57Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_datetime-roberta-large-v1-5-94")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
akhooli/xlm-r-large-arabic-sent
|
akhooli
| 2023-02-10T17:24:49Z | 101 | 8 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"ar",
"en",
"multilingual",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language:
- ar
- en
- multilingual
license: mit
---
### xlm-r-large-arabic-sent
Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large.
Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other
classes (was based on a rate of 3 out of 5 in reviews).
Usage: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
|
lolo503/elireyes
|
lolo503
| 2023-02-10T17:18:04Z | 32 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-10T17:07:31Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### elireyes Dreambooth model trained by lolo503 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
fpuentes/bert-galician
|
fpuentes
| 2023-02-10T17:17:44Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"fill-mask",
"gl",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-01-10T13:37:41Z |
---
license: apache-2.0
language:
- gl
library_name: transformers
pipeline_tag: fill-mask
---
POR COMPLETAR!
Modelo de 110M de parámetros, adestrado e afinado desde un modelo preentrenado (GPT2-Spanish), usando un dataset en galego de 525 MB obtido da wikipedia en galego.
No contexto da Resolución do 22 de decembro de 2021 da Secretaría Xeral de Educación e Formación Profesional pola que se convocan premios para o desenvolvemento de proxectos de innovación tecnolóxica ou científica e proxectos de innovación didáctica no ámbito da formación profesional en centros públicos dependentes da Consellería de Cultura, Educación e Universidade, baixo o nome de "Creación dun modelo de linguaxe adestrado previamente mediante técnicas de autoatención para explorar arquitecturas que permitan o seu uso en solucións de procesamento da linguaxe natural en galego tanto na docencia como na contorna empresarial"
|
cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| 2023-02-10T17:15:01Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Enduro-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-05T22:59:02Z |
---
tags:
- Enduro-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Enduro-v5
type: Enduro-v5
metrics:
- type: mean_reward
value: 2299.60 +/- 114.86
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Enduro-v5**
This is a trained model of a PPO agent playing Enduro-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Enduro-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Enduro-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
fpuentes/bert-fromscratch-galician-large
|
fpuentes
| 2023-02-10T17:11:32Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-01-17T09:25:41Z |
---
tags:
- generated_from_trainer
model-index:
- name: bert-fromscratch-galician-large
results: []
---
## Descripción do modelo
Modelo de (~) 125M de parámetros, adestrado e afinado desde cero, usando un dataset en galego de 305MB obtido da wikipedia en galego.
No contexto da Resolución do 22 de decembro de 2021 da Secretaría Xeral de Educación e Formación Profesional pola que se convocan premios para o desenvolvemento de proxectos de innovación tecnolóxica ou científica e proxectos de innovación didáctica no ámbito da formación profesional en centros públicos dependentes da Consellería de Cultura, Educación e Universidade, baixo o nome de "Creación dun modelo de linguaxe adestrado previamente mediante técnicas de autoatención para explorar arquitecturas que permitan o seu uso en solucións de procesamento da linguaxe natural en galego tanto na docencia como na contorna empresarial"
## Usos e limitacións
Este modelo foi creado con fins pedagóxicos e de investigación.
### Hiperparámetros de entrenamiento
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.1,0.9) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 3.6976 | 0.22 | 1500 | 2.2866 |
| 2.3057 | 0.43 | 3000 | 1.9276 |
... ... ... ...
| 1.1982 | 14.25 | 99000 | 1.0601 |
| 1.196 | 14.47 | 100500 | 1.0554 |
| 1.1971 | 14.69 | 102000 | 1.0538 |
| 1.1954 | 14.9 | 103500 | 1.0613 |
### Versiones de los frameworks
- Transformers 4.24.0
- Pytorch 1.13.1
- Datasets 2.6.1
- Tokenizers 0.11.0
|
thanat/codeparrot-ds
|
thanat
| 2023-02-10T17:07:45Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-02-09T23:37:23Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: thanat/codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# thanat/codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [codeparrot](https://huggingface.co/datasets/huggingface-course/codeparrot-ds-train) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5316
- Validation Loss: 1.1714
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 520939, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5316 | 1.1714 | 0 |
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
|
sh0xb0x/ff21images
|
sh0xb0x
| 2023-02-10T17:02:48Z | 7 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-10T17:01:28Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: ff21images
---
### ff21images Dreambooth model trained by sh0xb0x with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
ff21images (use that on your prompt)

|
fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7
|
fathyshalab
| 2023-02-10T17:00:37Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-02-10T17:00:17Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/domain_transfer_general-massive_social-roberta-large-v1-5-7")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
abigailp/vaccinated
|
abigailp
| 2023-02-10T16:59:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-02-10T16:44:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vaccinated
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vaccinated
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6907
- Accuracy: 0.9036
- F1: 0.9048
- Recall: 0.8636
- Precision: 0.95
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
varevshatyan/ppo-LunarLander-v2
|
varevshatyan
| 2023-02-10T16:52:37Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:52:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.73 +/- 13.15
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:50:01Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"ChopperCommand-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:49:54Z |
---
tags:
- ChopperCommand-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ChopperCommand-v5
type: ChopperCommand-v5
metrics:
- type: mean_reward
value: 38660.00 +/- 32345.67
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5**
This is a trained model of a PPO agent playing ChopperCommand-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id ChopperCommand-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'ChopperCommand-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
pomp/ppo-LunarLander-v2
|
pomp
| 2023-02-10T16:48:17Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:47:50Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 254.50 +/- 13.34
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
bigscience/bloomz-petals
|
bigscience
| 2023-02-10T16:34:22Z | 21 | 12 |
transformers
|
[
"transformers",
"pytorch",
"bloom",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-01-16T06:49:10Z |
# BLOOMZ, a version for Petals
This model is a version of [bigscience/bloomz](https://huggingface.co/bigscience/bloomz)
post-processed to be run at home using the [Petals](https://github.com/bigscience-workshop/petals#readme) swarm.
Please check out:
- The [original model card](https://huggingface.co/bigscience/bloomz)
to learn about the model's capabilities, specifications, and terms of use.
- The [Petals repository](https://github.com/bigscience-workshop/petals#readme)
to learn how to install Petals and run this model over the Petals swarm.
We provide minimal code examples below.
## Using the model
```python
from petals import DistributedBloomForCausalLM
model = DistributedBloomForCausalLM.from_pretrained("bigscience/bloomz-petals")
# Embeddings & prompts are on your device, BLOOM blocks are distributed across the Internet
inputs = tokenizer("A cat sat", return_tensors="pt")["input_ids"]
outputs = model.generate(inputs, max_new_tokens=5)
print(tokenizer.decode(outputs[0])) # A cat sat on a mat...
```
## Serving the model blocks
```bash
python -m petals.cli.run_server bigscience/bloomz-petals
```
|
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
|
cleanrl
| 2023-02-10T16:31:16Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Zaxxon-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:31:12Z |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 31160.00 +/- 4376.12
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| 2023-02-10T16:22:16Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Zaxxon-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-05T23:00:51Z |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 30280.00 +/- 3305.69
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:21:49Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Zaxxon-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:21:43Z |
---
tags:
- Zaxxon-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Zaxxon-v5
type: Zaxxon-v5
metrics:
- type: mean_reward
value: 41460.00 +/- 7284.26
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
|
cleanrl
| 2023-02-10T16:17:01Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"VideoPinball-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:16:55Z |
---
tags:
- VideoPinball-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: VideoPinball-v5
type: VideoPinball-v5
metrics:
- type: mean_reward
value: 488010.20 +/- 14386.77
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:16:18Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"VideoPinball-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:16:12Z |
---
tags:
- VideoPinball-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: VideoPinball-v5
type: VideoPinball-v5
metrics:
- type: mean_reward
value: 632621.70 +/- 124746.78
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
mchalek/distilbert-base-uncased-finetuned-imdb
|
mchalek
| 2023-02-10T16:12:26Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-10T14:14:59Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4642
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6835 | 1.0 | 157 | 2.5426 |
| 2.5874 | 2.0 | 314 | 2.4668 |
| 2.5288 | 3.0 | 471 | 2.4689 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:11:50Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"YarsRevenge-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:11:46Z |
---
tags:
- YarsRevenge-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: YarsRevenge-v5
type: YarsRevenge-v5
metrics:
- type: mean_reward
value: 127249.00 +/- 16395.25
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5**
This is a trained model of a PPO agent playing YarsRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id YarsRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'YarsRevenge-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
SeNSiTivE/RL-Course-Unit_2-q-FrozenLake-v1-4x4-Slippery
|
SeNSiTivE
| 2023-02-10T16:10:18Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:10:09Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: RL-Course-Unit_2-q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.73 +/- 0.44
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="SeNSiTivE/RL-Course-Unit_2-q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:04:57Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"UpNDown-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-09T04:07:31Z |
---
tags:
- UpNDown-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: UpNDown-v5
type: UpNDown-v5
metrics:
- type: mean_reward
value: 370396.00 +/- 3505.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **UpNDown-v5**
This is a trained model of a PPO agent playing UpNDown-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'UpNDown-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
|
cleanrl
| 2023-02-10T16:04:44Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"WizardOfWor-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:04:38Z |
---
tags:
- WizardOfWor-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: WizardOfWor-v5
type: WizardOfWor-v5
metrics:
- type: mean_reward
value: 21120.00 +/- 9534.65
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5**
This is a trained model of a PPO agent playing WizardOfWor-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 2
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 2,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| 2023-02-10T16:04:28Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"UpNDown-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:04:21Z |
---
tags:
- UpNDown-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: UpNDown-v5
type: UpNDown-v5
metrics:
- type: mean_reward
value: 363445.00 +/- 9342.48
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **UpNDown-v5**
This is a trained model of a PPO agent playing UpNDown-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id UpNDown-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/UpNDown-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id UpNDown-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'UpNDown-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
|
cleanrl
| 2023-02-10T16:01:08Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Venture-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-10T16:01:02Z |
---
tags:
- Venture-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Venture-v5
type: Venture-v5
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Venture-v5**
This is a trained model of a PPO agent playing Venture-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 3
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Venture-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 3,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
joelniklaus/legal-irish-roberta-base
|
joelniklaus
| 2023-02-10T15:53:23Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-02-06T02:37:27Z |
---
tags:
- generated_from_trainer
model-index:
- name: legal-irish-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-irish-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.5892 | 228.0 | 50000 | 0.7659 |
| 0.4497 | 456.0 | 100000 | 0.7421 |
| 0.3906 | 684.0 | 150000 | 0.7443 |
| 0.3906 | 913.0 | 200000 | 0.7328 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| 2023-02-10T15:53:07Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"Venture-v5",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-02-05T22:58:00Z |
---
tags:
- Venture-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Venture-v5
type: Venture-v5
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **PPO** Agent Playing **Venture-v5**
This is a trained model of a PPO agent playing Venture-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Venture-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
LarryAIDraw/aliceNikke_v10
|
LarryAIDraw
| 2023-02-10T15:41:35Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-02-10T15:39:41Z |
---
license: creativeml-openrail-m
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.