modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-31 12:28:44
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-31 12:23:33
card
stringlengths
11
1.01M
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qqp
gokuls
2023-01-30T00:44:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T23:03:33Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.663195646796933 - name: F1 type: f1 value: 0.16465247530826327 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qqp This model is a fine-tuned version of [gokuls/distilbert_sa_pre-training-complete](https://huggingface.co/gokuls/distilbert_sa_pre-training-complete) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.5449 - Accuracy: 0.6632 - F1: 0.1647 - Combined Score: 0.4139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.6004 | 1.0 | 1422 | 0.5643 | 0.6623 | 0.1630 | 0.4126 | | 0.5393 | 2.0 | 2844 | 0.5498 | 0.6538 | 0.1199 | 0.3869 | | 0.5157 | 3.0 | 4266 | 0.5449 | 0.6632 | 0.1647 | 0.4139 | | 0.5007 | 4.0 | 5688 | 0.5512 | 0.6848 | 0.2663 | 0.4755 | | 0.4914 | 5.0 | 7110 | 0.5501 | 0.6665 | 0.1817 | 0.4241 | | 0.4847 | 6.0 | 8532 | 0.5475 | 0.6816 | 0.2517 | 0.4667 | | 0.4803 | 7.0 | 9954 | 0.5478 | 0.6768 | 0.2301 | 0.4535 | | 0.4768 | 8.0 | 11376 | 0.5488 | 0.6839 | 0.2610 | 0.4724 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_qqp_384
gokuls
2023-01-30T00:41:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:33:09Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_qqp_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.6454365570121197 - name: F1 type: f1 value: 0.07878671036565774 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_qqp_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.6771 - Accuracy: 0.6454 - F1: 0.0788 - Combined Score: 0.3621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.7984 | 1.0 | 1422 | 0.7600 | 0.6318 | 0.0 | 0.3159 | | 0.7388 | 2.0 | 2844 | 0.7348 | 0.6318 | 0.0 | 0.3159 | | 0.7037 | 3.0 | 4266 | 0.7082 | 0.6329 | 0.0056 | 0.3192 | | 0.6717 | 4.0 | 5688 | 0.7014 | 0.6474 | 0.0908 | 0.3691 | | 0.6462 | 5.0 | 7110 | 0.6841 | 0.6377 | 0.0339 | 0.3358 | | 0.6259 | 6.0 | 8532 | 0.6795 | 0.6382 | 0.0364 | 0.3373 | | 0.6092 | 7.0 | 9954 | 0.6782 | 0.6408 | 0.0513 | 0.3461 | | 0.5941 | 8.0 | 11376 | 0.6771 | 0.6454 | 0.0788 | 0.3621 | | 0.5812 | 9.0 | 12798 | 0.6841 | 0.6492 | 0.0991 | 0.3741 | | 0.5703 | 10.0 | 14220 | 0.6774 | 0.6452 | 0.0776 | 0.3614 | | 0.5604 | 11.0 | 15642 | 0.6791 | 0.6464 | 0.0831 | 0.3647 | | 0.5523 | 12.0 | 17064 | 0.6817 | 0.6520 | 0.1143 | 0.3831 | | 0.5448 | 13.0 | 18486 | 0.6774 | 0.6477 | 0.0905 | 0.3691 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
lckidwell/embeddings
lckidwell
2023-01-30T00:08:14Z
0
0
null
[ "license:cc-by-3.0", "region:us" ]
null
2023-01-24T22:55:52Z
--- license: cc-by-3.0 --- # Embeddings A collection of embeddings I've created. ### Araknope A stable diffusion embedding trained on a collection of high resolution macro photos of spiders. **Trigger**: `araknope` ### Beez A stable diffusion embedding trained on a collection of high resolution macro photos of bees. **Trigger**: `beez` ### Pmantis A stable diffusion embedding trained on a collection of high resolution macro photos of praying mantises. **Trigger**: `pmantis`
gokuls/distilbert_add_GLUE_Experiment_logit_kd_pretrain_qnli
gokuls
2023-01-29T23:52:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T23:14:52Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_add_GLUE_Experiment_logit_kd_pretrain_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6522057477576423 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_pretrain_qnli This model is a fine-tuned version of [gokuls/distilbert_add_pre-training-complete](https://huggingface.co/gokuls/distilbert_add_pre-training-complete) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3579 - Accuracy: 0.6522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4059 | 1.0 | 410 | 0.4016 | 0.5585 | | 0.3907 | 2.0 | 820 | 0.3735 | 0.6094 | | 0.3715 | 3.0 | 1230 | 0.3602 | 0.6480 | | 0.352 | 4.0 | 1640 | 0.3579 | 0.6522 | | 0.3314 | 5.0 | 2050 | 0.3626 | 0.6670 | | 0.309 | 6.0 | 2460 | 0.3650 | 0.6776 | | 0.2865 | 7.0 | 2870 | 0.3799 | 0.6776 | | 0.2679 | 8.0 | 3280 | 0.3817 | 0.6903 | | 0.2525 | 9.0 | 3690 | 0.3942 | 0.6822 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_pretrain_qnli
gokuls
2023-01-29T23:45:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T23:00:02Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_pretrain_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.4946000366099213 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_pretrain_qnli This model is a fine-tuned version of [gokuls/mobilebert_add_pre-training-complete](https://huggingface.co/gokuls/mobilebert_add_pre-training-complete) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.4946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0 | 1.0 | 819 | nan | 0.4946 | | 0.0 | 2.0 | 1638 | nan | 0.4946 | | 0.0 | 3.0 | 2457 | nan | 0.4946 | | 0.0 | 4.0 | 3276 | nan | 0.4946 | | 0.0 | 5.0 | 4095 | nan | 0.4946 | | 0.0 | 6.0 | 4914 | nan | 0.4946 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_qnli
gokuls
2023-01-29T23:37:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:20:54Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.615595826468973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9573 - Accuracy: 0.6156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0984 | 1.0 | 819 | 0.9626 | 0.6220 | | 1.0171 | 2.0 | 1638 | 0.9573 | 0.6156 | | 0.9717 | 3.0 | 2457 | 0.9651 | 0.6105 | | 0.9377 | 4.0 | 3276 | 0.9713 | 0.6024 | | 0.9132 | 5.0 | 4095 | 0.9812 | 0.5988 | | 0.89 | 6.0 | 4914 | 1.0108 | 0.5982 | | 0.8683 | 7.0 | 5733 | 1.0290 | 0.5914 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_logit_kd_pretrain_mrpc
gokuls
2023-01-29T23:13:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T23:09:56Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_logit_kd_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.3161764705882353 - name: F1 type: f1 value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_pretrain_mrpc This model is a fine-tuned version of [gokuls/distilbert_add_pre-training-complete](https://huggingface.co/gokuls/distilbert_add_pre-training-complete) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Accuracy: 0.3162 - F1: 0.0 - Combined Score: 0.1581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.534 | 1.0 | 15 | 0.5287 | 0.3162 | 0.0 | 0.1581 | | 0.5294 | 2.0 | 30 | 0.5264 | 0.3162 | 0.0 | 0.1581 | | 0.5212 | 3.0 | 45 | 0.5237 | 0.3162 | 0.0 | 0.1581 | | 0.5174 | 4.0 | 60 | 0.5206 | 0.3162 | 0.0 | 0.1581 | | 0.5075 | 5.0 | 75 | 0.5294 | 0.3162 | 0.0 | 0.1581 | | 0.5017 | 6.0 | 90 | 0.5229 | 0.3162 | 0.0 | 0.1581 | | 0.4906 | 7.0 | 105 | 0.5413 | 0.3162 | 0.0 | 0.1581 | | 0.4756 | 8.0 | 120 | 0.5384 | 0.4828 | 0.4738 | 0.4783 | | 0.4605 | 9.0 | 135 | 0.5587 | 0.3480 | 0.1419 | 0.2450 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
BigSalmon/DefinitionsSynonyms3
BigSalmon
2023-01-29T23:08:48Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-24T17:52:00Z
given a definition, it will generate its corresponding word. there are several formats you can do it in: ``` part of speech- verb definition: grow less in intensity or degree ex. rather than leave immediately and be drenched, they waited for the storm to ________ synonyms: subside; moderate; decrease antonyms: increase word: abate ``` ``` [adjective] skeptical, disbelieving Her eyes widened _____ly at the shocking news. word: incredulous ``` ``` the money or other means needed for a particular purpose wordy: wherewithal ``` you can also fill in the blank: ``` due to the relentless pursuit of excellence, the [blank] of the firm is unquestioned [sep] preeminence [answer] the hotel chain has [blank] its logo in an effort to appeal to younger travelers [sep] redesigned [answer] ``` to generate definitions, too: ``` harass | (v.) to disturb, worry; to trouble by repeated attacks syn: annoy, pester, bedevil, beleaguer inhibit | (v.) to restrain or hold back; to hinder or arrest; to prohibit syn: repress, check, suppress ant: foster, promote, expedite, facilitate ``` informal definitions: ``` synonyms: digression, extraneous, tangential. description: when something is irrelevant but mentioned anyways. *** synonyms: botched, fumbled, was unequal to the task, did not rise to the occasion. description: did a really bad job at handling something. ``` ``` description: did a really bad job at handling something. synonyms: botched, fumbled, was unequal to the task, did not rise to the occasion. *** description: when something is irrelevant but mentioned anyways. synonyms: digression, extraneous, tangential. ``` ``` question: michael is an ardent supporter of his presidential candidate. what does "ardent" mean in the context of the selection? answer: enthusiastic ``` ``` dating back to the early twentieth century, the new york yankees have [blank] over american baseball. [sep] reigned [answer] ``` ``` ideas: in modern-day america, it is customary for the commander-in-chief to conduct regular press conferences related keywords: transparency, check and balance, sacrosanct, public accountability, adversarial, unscripted, direct access, open government, watchdog, healthy democracy, institutional integrity, right to know, direct line of communication, behind closed doors, updates, track progress, instill confidence, reassure, humanize, leadership style, day-to-day, forthcoming, demystify, ask hard questions ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_qnli_256
gokuls
2023-01-29T23:07:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:13:23Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6163280248947465 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_qnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9616 - Accuracy: 0.6163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1009 | 1.0 | 819 | 0.9865 | 0.5988 | | 1.019 | 2.0 | 1638 | 0.9616 | 0.6163 | | 0.9743 | 3.0 | 2457 | 0.9672 | 0.6134 | | 0.942 | 4.0 | 3276 | 0.9724 | 0.6070 | | 0.9189 | 5.0 | 4095 | 0.9827 | 0.6017 | | 0.898 | 6.0 | 4914 | 1.0090 | 0.5958 | | 0.8798 | 7.0 | 5733 | 1.0317 | 0.5967 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
odysseyofmayhem/coreml-stable-diffusion-2-1-base
odysseyofmayhem
2023-01-29T23:05:27Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-29T17:08:39Z
--- license: creativeml-openrail-m ---
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qnli
gokuls
2023-01-29T23:00:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:34:19Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8735127219476478 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qnli This model is a fine-tuned version of [gokuls/distilbert_sa_pre-training-complete](https://huggingface.co/gokuls/distilbert_sa_pre-training-complete) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2515 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.303 | 1.0 | 410 | 0.2569 | 0.8651 | | 0.2557 | 2.0 | 820 | 0.2515 | 0.8735 | | 0.2357 | 3.0 | 1230 | 0.2556 | 0.8828 | | 0.2222 | 4.0 | 1640 | 0.2562 | 0.8847 | | 0.2146 | 5.0 | 2050 | 0.2547 | 0.8869 | | 0.2098 | 6.0 | 2460 | 0.2585 | 0.8803 | | 0.2069 | 7.0 | 2870 | 0.2588 | 0.8849 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
amoselberg/q-FrozenLake-v1-4x4-noSlippery
amoselberg
2023-01-29T23:00:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T22:57:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="amoselberg/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
u-phoria/ppo-LunarLander-v2
u-phoria
2023-01-29T22:56:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T10:40:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.19 +/- 17.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
paicup09/a2c-AntBulletEnv-v0
paicup09
2023-01-29T22:56:00Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T22:54:53Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1874.81 +/- 215.83 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_pretrain_cola
gokuls
2023-01-29T22:55:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:50:38Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_pretrain_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_pretrain_cola This model is a fine-tuned version of [gokuls/mobilebert_add_pre-training-complete](https://huggingface.co/gokuls/mobilebert_add_pre-training-complete) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: nan - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.0 | 1.0 | 67 | nan | 0.0 | | 0.0 | 2.0 | 134 | nan | 0.0 | | 0.0 | 3.0 | 201 | nan | 0.0 | | 0.0 | 4.0 | 268 | nan | 0.0 | | 0.0 | 5.0 | 335 | nan | 0.0 | | 0.0 | 6.0 | 402 | nan | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mrpc
gokuls
2023-01-29T22:38:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:30:13Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8578431372549019 - name: F1 type: f1 value: 0.8993055555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_mrpc This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.2291 - Accuracy: 0.8578 - F1: 0.8993 - Combined Score: 0.8786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.536 | 1.0 | 29 | 0.4134 | 0.7279 | 0.8284 | 0.7782 | | 0.3419 | 2.0 | 58 | 0.3005 | 0.8284 | 0.8801 | 0.8543 | | 0.2413 | 3.0 | 87 | 0.2707 | 0.8235 | 0.8780 | 0.8507 | | 0.1852 | 4.0 | 116 | 0.3247 | 0.8284 | 0.8837 | 0.8561 | | 0.1524 | 5.0 | 145 | 0.2856 | 0.8431 | 0.8900 | 0.8666 | | 0.1297 | 6.0 | 174 | 0.2999 | 0.8456 | 0.8948 | 0.8702 | | 0.1219 | 7.0 | 203 | 0.2797 | 0.8529 | 0.8986 | 0.8758 | | 0.1141 | 8.0 | 232 | 0.2462 | 0.8603 | 0.9005 | 0.8804 | | 0.1127 | 9.0 | 261 | 0.2557 | 0.8578 | 0.8982 | 0.8780 | | 0.1091 | 10.0 | 290 | 0.2853 | 0.8480 | 0.8967 | 0.8724 | | 0.1007 | 11.0 | 319 | 0.2472 | 0.8554 | 0.8981 | 0.8767 | | 0.0979 | 12.0 | 348 | 0.2431 | 0.8505 | 0.8950 | 0.8727 | | 0.0954 | 13.0 | 377 | 0.2456 | 0.8578 | 0.9007 | 0.8793 | | 0.0946 | 14.0 | 406 | 0.2526 | 0.8578 | 0.9017 | 0.8798 | | 0.0946 | 15.0 | 435 | 0.2291 | 0.8578 | 0.8993 | 0.8786 | | 0.0938 | 16.0 | 464 | 0.2452 | 0.8603 | 0.9029 | 0.8816 | | 0.0919 | 17.0 | 493 | 0.2365 | 0.8652 | 0.9050 | 0.8851 | | 0.0916 | 18.0 | 522 | 0.2363 | 0.8652 | 0.9060 | 0.8856 | | 0.0915 | 19.0 | 551 | 0.2432 | 0.8652 | 0.9063 | 0.8857 | | 0.0905 | 20.0 | 580 | 0.2297 | 0.8652 | 0.9057 | 0.8854 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_qnli_192
gokuls
2023-01-29T22:35:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:12:08Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_qnli_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.5870400878638111 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_qnli_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3931 - Accuracy: 0.5870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4083 | 1.0 | 410 | 0.3946 | 0.5735 | | 0.3936 | 2.0 | 820 | 0.3931 | 0.5870 | | 0.3843 | 3.0 | 1230 | 0.3935 | 0.5863 | | 0.3766 | 4.0 | 1640 | 0.3980 | 0.5858 | | 0.3699 | 5.0 | 2050 | 0.3996 | 0.5781 | | 0.3636 | 6.0 | 2460 | 0.4112 | 0.5795 | | 0.3572 | 7.0 | 2870 | 0.4269 | 0.5667 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_cola_96
gokuls
2023-01-29T22:12:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:04:44Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_cola_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0437601222642778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_cola_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6770 - Matthews Correlation: 0.0438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.915 | 1.0 | 34 | 0.7697 | 0.0 | | 0.8596 | 2.0 | 68 | 0.7301 | 0.0 | | 0.826 | 3.0 | 102 | 0.7022 | 0.0 | | 0.8072 | 4.0 | 136 | 0.6883 | 0.0 | | 0.7996 | 5.0 | 170 | 0.6846 | 0.0 | | 0.7958 | 6.0 | 204 | 0.6840 | 0.0 | | 0.7977 | 7.0 | 238 | 0.6840 | 0.0 | | 0.7973 | 8.0 | 272 | 0.6840 | 0.0 | | 0.7954 | 9.0 | 306 | 0.6839 | 0.0 | | 0.7963 | 10.0 | 340 | 0.6837 | 0.0 | | 0.795 | 11.0 | 374 | 0.6817 | 0.0 | | 0.7664 | 12.0 | 408 | 0.6770 | 0.0438 | | 0.7144 | 13.0 | 442 | 0.6875 | 0.1060 | | 0.6788 | 14.0 | 476 | 0.6928 | 0.0970 | | 0.648 | 15.0 | 510 | 0.7124 | 0.1017 | | 0.6288 | 16.0 | 544 | 0.7151 | 0.1005 | | 0.613 | 17.0 | 578 | 0.7161 | 0.0812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_mrpc_192
gokuls
2023-01-29T22:10:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:07:20Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_mrpc_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.3382352941176471 - name: F1 type: f1 value: 0.08163265306122451 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_mrpc_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5189 - Accuracy: 0.3382 - F1: 0.0816 - Combined Score: 0.2099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5329 | 1.0 | 15 | 0.5292 | 0.3162 | 0.0 | 0.1581 | | 0.5309 | 2.0 | 30 | 0.5294 | 0.3162 | 0.0 | 0.1581 | | 0.5291 | 3.0 | 45 | 0.5292 | 0.3162 | 0.0 | 0.1581 | | 0.5286 | 4.0 | 60 | 0.5288 | 0.3162 | 0.0 | 0.1581 | | 0.5269 | 5.0 | 75 | 0.5277 | 0.3162 | 0.0 | 0.1581 | | 0.5255 | 6.0 | 90 | 0.5246 | 0.3162 | 0.0 | 0.1581 | | 0.5157 | 7.0 | 105 | 0.5189 | 0.3382 | 0.0816 | 0.2099 | | 0.5037 | 8.0 | 120 | 0.5221 | 0.3284 | 0.0486 | 0.1885 | | 0.4859 | 9.0 | 135 | 0.5277 | 0.4681 | 0.4151 | 0.4416 | | 0.4683 | 10.0 | 150 | 0.5407 | 0.5882 | 0.6364 | 0.6123 | | 0.4558 | 11.0 | 165 | 0.5487 | 0.4951 | 0.4772 | 0.4861 | | 0.4439 | 12.0 | 180 | 0.5611 | 0.5319 | 0.5527 | 0.5423 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_cola_256
gokuls
2023-01-29T22:10:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:05:45Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_cola_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.8053 | 1.0 | 34 | 0.6856 | 0.0 | | 0.7977 | 2.0 | 68 | 0.6837 | 0.0 | | 0.7952 | 3.0 | 102 | 0.6832 | 0.0 | | 0.7934 | 4.0 | 136 | 0.6852 | 0.0 | | 0.7703 | 5.0 | 170 | 0.6808 | 0.0 | | 0.7008 | 6.0 | 204 | 0.6885 | 0.0675 | | 0.6386 | 7.0 | 238 | 0.7263 | 0.1037 | | 0.6059 | 8.0 | 272 | 0.7450 | 0.0825 | | 0.577 | 9.0 | 306 | 0.7559 | 0.1071 | | 0.5531 | 10.0 | 340 | 0.7794 | 0.1048 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_cola
gokuls
2023-01-29T22:09:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T21:57:50Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_cola This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6788 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.8105 | 1.0 | 67 | 0.6861 | 0.0 | | 0.7967 | 2.0 | 134 | 0.6866 | 0.0 | | 0.7956 | 3.0 | 201 | 0.6836 | 0.0 | | 0.791 | 4.0 | 268 | 0.6788 | 0.0 | | 0.7253 | 5.0 | 335 | 0.7158 | 0.0821 | | 0.6322 | 6.0 | 402 | 0.6942 | 0.0650 | | 0.5874 | 7.0 | 469 | 0.7295 | 0.0803 | | 0.556 | 8.0 | 536 | 0.7735 | 0.0833 | | 0.5308 | 9.0 | 603 | 0.7791 | 0.0970 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_mrpc
gokuls
2023-01-29T22:08:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T22:03:43Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.33088235294117646 - name: F1 type: f1 value: 0.068259385665529 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5187 - Accuracy: 0.3309 - F1: 0.0683 - Combined Score: 0.1996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.58 | 1.0 | 15 | 0.5281 | 0.3162 | 0.0 | 0.1581 | | 0.5287 | 2.0 | 30 | 0.5289 | 0.3162 | 0.0 | 0.1581 | | 0.521 | 3.0 | 45 | 0.5320 | 0.4681 | 0.4274 | 0.4478 | | 0.5132 | 4.0 | 60 | 0.5187 | 0.3309 | 0.0683 | 0.1996 | | 0.4907 | 5.0 | 75 | 0.5305 | 0.3578 | 0.1603 | 0.2590 | | 0.463 | 6.0 | 90 | 0.5478 | 0.3456 | 0.1130 | 0.2293 | | 0.4338 | 7.0 | 105 | 0.5700 | 0.4877 | 0.4736 | 0.4806 | | 0.4246 | 8.0 | 120 | 0.6097 | 0.4902 | 0.4927 | 0.4914 | | 0.4162 | 9.0 | 135 | 0.5776 | 0.5515 | 0.6030 | 0.5773 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_cola_128
gokuls
2023-01-29T22:06:41Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T21:58:28Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_cola_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_cola_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6807 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.8228 | 1.0 | 67 | 0.6863 | 0.0 | | 0.7969 | 2.0 | 134 | 0.6870 | 0.0 | | 0.7965 | 3.0 | 201 | 0.6834 | 0.0 | | 0.795 | 4.0 | 268 | 0.6835 | 0.0 | | 0.7939 | 5.0 | 335 | 0.6807 | 0.0 | | 0.7451 | 6.0 | 402 | 0.6986 | 0.0672 | | 0.6395 | 7.0 | 469 | 0.7051 | 0.0875 | | 0.6042 | 8.0 | 536 | 0.7293 | 0.1094 | | 0.5756 | 9.0 | 603 | 0.7376 | 0.1173 | | 0.5558 | 10.0 | 670 | 0.7879 | 0.1123 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_cola
gokuls
2023-01-29T22:02:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T21:57:18Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: -0.020702674026557004 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6741 - Matthews Correlation: -0.0207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.814 | 1.0 | 34 | 0.6851 | 0.0 | | 0.7923 | 2.0 | 68 | 0.6741 | -0.0207 | | 0.7521 | 3.0 | 102 | 0.7281 | 0.0931 | | 0.6713 | 4.0 | 136 | 0.6815 | 0.0434 | | 0.6052 | 5.0 | 170 | 0.7829 | 0.1374 | | 0.5654 | 6.0 | 204 | 0.7213 | 0.1027 | | 0.5296 | 7.0 | 238 | 0.8135 | 0.0702 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_cola_384
gokuls
2023-01-29T22:02:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T21:59:12Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_cola_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_cola_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6825 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.8051 | 1.0 | 34 | 0.6842 | 0.0 | | 0.7956 | 2.0 | 68 | 0.6825 | 0.0 | | 0.7849 | 3.0 | 102 | 0.6839 | 0.0 | | 0.7297 | 4.0 | 136 | 0.6828 | 0.0729 | | 0.6561 | 5.0 | 170 | 0.7238 | 0.1064 | | 0.6039 | 6.0 | 204 | 0.7332 | 0.0768 | | 0.5683 | 7.0 | 238 | 0.7744 | 0.0881 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
lotek93/a2c-AntBulletEnv-v0
lotek93
2023-01-29T21:38:35Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T21:37:33Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1399.61 +/- 491.11 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/mobilebert_sa_pre-training-complete
gokuls
2023-01-29T21:20:14Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "fill-mask", "generated_from_trainer", "dataset:wikitext", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-21T12:23:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: mobilebert_sa_pre-training-complete results: - task: name: Masked Language Modeling type: fill-mask dataset: name: wikitext wikitext-103-raw-v1 type: wikitext config: wikitext-103-raw-v1 split: validation args: wikitext-103-raw-v1 metrics: - name: Accuracy type: accuracy value: 0.7161816392520737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_pre-training-complete This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the wikitext wikitext-103-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 1.3239 - Accuracy: 0.7162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.6028 | 1.0 | 7145 | 1.4525 | 0.6935 | | 1.5524 | 2.0 | 14290 | 1.4375 | 0.6993 | | 1.5323 | 3.0 | 21435 | 1.4194 | 0.6993 | | 1.5191 | 4.0 | 28580 | 1.4110 | 0.7027 | | 1.5025 | 5.0 | 35725 | 1.4168 | 0.7014 | | 1.4902 | 6.0 | 42870 | 1.3931 | 0.7012 | | 1.4813 | 7.0 | 50015 | 1.3738 | 0.7057 | | 1.4751 | 8.0 | 57160 | 1.4237 | 0.6996 | | 1.4689 | 9.0 | 64305 | 1.3969 | 0.7047 | | 1.4626 | 10.0 | 71450 | 1.3916 | 0.7068 | | 1.4566 | 11.0 | 78595 | 1.3686 | 0.7072 | | 1.451 | 12.0 | 85740 | 1.3811 | 0.7060 | | 1.4478 | 13.0 | 92885 | 1.3598 | 0.7092 | | 1.4441 | 14.0 | 100030 | 1.3790 | 0.7054 | | 1.4379 | 15.0 | 107175 | 1.3794 | 0.7066 | | 1.4353 | 16.0 | 114320 | 1.3609 | 0.7102 | | 1.43 | 17.0 | 121465 | 1.3685 | 0.7083 | | 1.4278 | 18.0 | 128610 | 1.3953 | 0.7036 | | 1.4219 | 19.0 | 135755 | 1.3756 | 0.7085 | | 1.4197 | 20.0 | 142900 | 1.3597 | 0.7090 | | 1.4169 | 21.0 | 150045 | 1.3673 | 0.7061 | | 1.4146 | 22.0 | 157190 | 1.3753 | 0.7073 | | 1.4109 | 23.0 | 164335 | 1.3696 | 0.7082 | | 1.4073 | 24.0 | 171480 | 1.3563 | 0.7092 | | 1.4054 | 25.0 | 178625 | 1.3712 | 0.7103 | | 1.402 | 26.0 | 185770 | 1.3528 | 0.7113 | | 1.4001 | 27.0 | 192915 | 1.3367 | 0.7123 | | 1.397 | 28.0 | 200060 | 1.3508 | 0.7118 | | 1.3955 | 29.0 | 207205 | 1.3572 | 0.7117 | | 1.3937 | 30.0 | 214350 | 1.3566 | 0.7095 | | 1.3901 | 31.0 | 221495 | 1.3515 | 0.7117 | | 1.3874 | 32.0 | 228640 | 1.3445 | 0.7118 | | 1.386 | 33.0 | 235785 | 1.3611 | 0.7097 | | 1.3833 | 34.0 | 242930 | 1.3502 | 0.7087 | | 1.3822 | 35.0 | 250075 | 1.3657 | 0.7108 | | 1.3797 | 36.0 | 257220 | 1.3576 | 0.7108 | | 1.3793 | 37.0 | 264365 | 1.3472 | 0.7106 | | 1.3763 | 38.0 | 271510 | 1.3323 | 0.7156 | | 1.3762 | 39.0 | 278655 | 1.3325 | 0.7145 | | 1.3748 | 40.0 | 285800 | 1.3243 | 0.7138 | | 1.3733 | 41.0 | 292945 | 1.3218 | 0.7170 | | 1.3722 | 41.99 | 300000 | 1.3074 | 0.7186 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
cfisicaro/ppo-LunarLander-v2
cfisicaro
2023-01-29T21:15:47Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T21:15:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.90 +/- 12.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
slomek/dqn-SpaceInvadersNoFrameskip-v4
slomek
2023-01-29T20:53:13Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T08:35:05Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 854.00 +/- 253.18 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga slomek -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga slomek -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga slomek ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jchhabra/distilbert-base-uncased-finetuned-imdb
jchhabra
2023-01-29T20:29:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-29T20:20:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
khaled5321/a2c-AntBulletEnv-v0
khaled5321
2023-01-29T20:27:15Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T20:26:08Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1222.82 +/- 161.79 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CLARA-MeD/mt5-simplification-spanish
CLARA-MeD
2023-01-29T19:26:16Z
12
2
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "simplification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-11T16:21:45Z
--- license: cc-by-nc-sa-4.0 tags: - simplification - generated_from_trainer metrics: - rouge model-index: - name: mt5-simplification-spanish-clara-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-simplification-spanish-clara-med This model is a fine-tuned version of [oskrmiguel/mt5-simplification-spanish](https://huggingface.co/oskrmiguel/mt5-simplification-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9610 - Rouge1: 33.7922 - Rouge2: 19.5758 - Rougel: 31.3737 - Rougelsum: 31.3428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 190 | 2.6876 | 32.236 | 18.2352 | 29.7852 | 29.7539 | | No log | 2.0 | 380 | 2.4617 | 32.8521 | 18.9712 | 30.4958 | 30.4635 | | 3.3018 | 3.0 | 570 | 2.3487 | 33.2554 | 19.3441 | 30.9036 | 30.8525 | | 3.3018 | 4.0 | 760 | 2.2711 | 33.0105 | 19.01 | 30.6851 | 30.5767 | | 2.7431 | 5.0 | 950 | 2.2254 | 33.1301 | 18.9618 | 30.6744 | 30.6284 | | 2.7431 | 6.0 | 1140 | 2.1847 | 33.3701 | 19.1884 | 30.9138 | 30.8611 | | 2.7431 | 7.0 | 1330 | 2.1443 | 33.3158 | 19.101 | 30.8317 | 30.7747 | | 2.5154 | 8.0 | 1520 | 2.1072 | 33.1638 | 19.0139 | 30.7295 | 30.7162 | | 2.5154 | 9.0 | 1710 | 2.0989 | 33.4925 | 19.2107 | 31.0253 | 30.9908 | | 2.3763 | 10.0 | 1900 | 2.0709 | 33.3007 | 18.9519 | 30.847 | 30.8018 | | 2.3763 | 11.0 | 2090 | 2.0631 | 33.4689 | 19.1995 | 31.0712 | 31.0327 | | 2.3763 | 12.0 | 2280 | 2.0418 | 33.2536 | 19.027 | 30.898 | 30.8695 | | 2.2811 | 13.0 | 2470 | 2.0345 | 33.5097 | 19.2219 | 31.1057 | 31.0683 | | 2.2811 | 14.0 | 2660 | 2.0185 | 33.3544 | 19.1241 | 30.913 | 30.8873 | | 2.2173 | 15.0 | 2850 | 2.0138 | 33.3856 | 19.2065 | 31.0173 | 30.9447 | | 2.2173 | 16.0 | 3040 | 2.0019 | 33.4035 | 19.1803 | 31.0154 | 30.981 | | 2.2173 | 17.0 | 3230 | 1.9977 | 33.4059 | 19.3078 | 31.1196 | 31.0692 | | 2.1612 | 18.0 | 3420 | 1.9883 | 33.5097 | 19.3637 | 31.0966 | 31.0554 | | 2.1612 | 19.0 | 3610 | 1.9828 | 33.4965 | 19.2754 | 31.1267 | 31.1021 | | 2.1115 | 20.0 | 3800 | 1.9834 | 33.7514 | 19.5325 | 31.2833 | 31.2418 | | 2.1115 | 21.0 | 3990 | 1.9754 | 33.6193 | 19.429 | 31.2721 | 31.2267 | | 2.1115 | 22.0 | 4180 | 1.9716 | 33.5212 | 19.3637 | 31.1326 | 31.1162 | | 2.0824 | 23.0 | 4370 | 1.9667 | 33.5156 | 19.3223 | 31.1023 | 31.0709 | | 2.0824 | 24.0 | 4560 | 1.9735 | 33.6089 | 19.3842 | 31.1539 | 31.1419 | | 2.0657 | 25.0 | 4750 | 1.9674 | 33.6317 | 19.4044 | 31.2361 | 31.2222 | | 2.0657 | 26.0 | 4940 | 1.9617 | 33.745 | 19.5099 | 31.3061 | 31.2643 | | 2.0657 | 27.0 | 5130 | 1.9613 | 33.7798 | 19.5496 | 31.3761 | 31.3356 | | 2.0511 | 28.0 | 5320 | 1.9635 | 33.8568 | 19.594 | 31.4454 | 31.4141 | | 2.0511 | 29.0 | 5510 | 1.9609 | 33.805 | 19.5962 | 31.393 | 31.3493 | | 2.0377 | 30.0 | 5700 | 1.9610 | 33.7922 | 19.5758 | 31.3737 | 31.3428 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
rvargas93/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es
rvargas93
2023-01-29T19:17:48Z
4
0
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "es", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T19:17:48Z
--- language: es thumbnail: https://i.imgur.com/jgBdimh.png license: apache-2.0 duplicated_from: mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es --- # BETO (Spanish BERT) + Spanish SQuAD2.0 + distillation using 'bert-base-multilingual-cased' as teacher This model is a fine-tuned on [SQuAD-es-v2.0](https://github.com/ccasimiro88/TranslateAlignRetrieve) and **distilled** version of [BETO](https://github.com/dccuchile/beto) for **Q&A**. Distillation makes the model **smaller, faster, cheaper and lighter** than [bert-base-spanish-wwm-cased-finetuned-spa-squad2-es](https://github.com/huggingface/transformers/blob/master/model_cards/mrm8488/bert-base-spanish-wwm-cased-finetuned-spa-squad2-es/README.md) This model was fine-tuned on the same dataset but using **distillation** during the process as mentioned above (and one more train epoch). The **teacher model** for the distillation was `bert-base-multilingual-cased`. It is the same teacher used for `distilbert-base-multilingual-cased` AKA [**DistilmBERT**](https://github.com/huggingface/transformers/tree/master/examples/distillation) (on average is twice as fast as **mBERT-base**). ## Details of the downstream task (Q&A) - Dataset <details> [SQuAD-es-v2.0](https://github.com/ccasimiro88/TranslateAlignRetrieve) | Dataset | # Q&A | | ----------------------- | ----- | | SQuAD2.0 Train | 130 K | | SQuAD2.0-es-v2.0 | 111 K | | SQuAD2.0 Dev | 12 K | | SQuAD-es-v2.0-small Dev | 69 K | </details> ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash !export SQUAD_DIR=/path/to/squad-v2_spanish \ && python transformers/examples/distillation/run_squad_w_distillation.py \ --model_type bert \ --model_name_or_path dccuchile/bert-base-spanish-wwm-cased \ --teacher_type bert \ --teacher_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.json \ --predict_file $SQUAD_DIR/dev-v2.json \ --per_gpu_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 5.0 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/model_output \ --save_steps 5000 \ --threads 4 \ --version_2_with_negative ``` ## Results: TBA ### Model in action Fast usage with **pipelines**: ```python from transformers import * # Important!: By now the QA pipeline is not compatible with fast tokenizer, but they are working on it. So that pass the object to the tokenizer {"use_fast": False} as in the following example: nlp = pipeline( 'question-answering', model='mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', tokenizer=( 'mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', {"use_fast": False} ) ) nlp( { 'question': '¿Para qué lenguaje está trabajando?', 'context': 'Manuel Romero está colaborando activamente con huggingface/transformers ' + 'para traer el poder de las últimas técnicas de procesamiento de lenguaje natural al idioma español' } ) # Output: {'answer': 'español', 'end': 169, 'score': 0.67530957344621, 'start': 163} ``` Play with this model and ```pipelines``` in a Colab: <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Using_Spanish_BERT_fine_tuned_for_Q%26A_pipelines.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> <details> 1. Set the context and ask some questions: ![Set context and questions](https://media.giphy.com/media/mCIaBpfN0LQcuzkA2F/giphy.gif) 2. Run predictions: ![Run the model](https://media.giphy.com/media/WT453aptcbCP7hxWTZ/giphy.gif) </details> More about ``` Huggingface pipelines```? check this Colab out: <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Huggingface_pipelines_demo.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
erkam/sd-clevr-scene-graph
erkam
2023-01-29T19:12:58Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-27T20:17:49Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/erkam/sd-clevr-scene-graph These are LoRA adaption weights for https://huggingface.co/erkam/sd-clevr-scene-graph. The weights were fine-tuned on the erkam/clevr-with-depth dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
huggingtweets/mobytism
huggingtweets
2023-01-29T19:03:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-01T11:30:24Z
--- language: en thumbnail: http://www.huggingtweets.com/mobytism/1675018962032/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1617195988317360129/c_KkReqH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lydia</div> <div style="text-align: center; font-size: 14px;">@mobytism</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lydia. | Data | lydia | | --- | --- | | Tweets downloaded | 3235 | | Retweets | 106 | | Short tweets | 619 | | Tweets kept | 2510 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hxkf62u5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mobytism's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8apnmb37) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8apnmb37/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mobytism') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
owaiskha9654/Yolov7_Custom_Object_Detection
owaiskha9654
2023-01-29T19:02:03Z
0
2
null
[ "V20", "region:us" ]
null
2022-08-13T23:50:29Z
--- tags: - V20 metrics: - mAP_0.5:0.95 - mAP_0.5 --- # Custom Training with YOLOv7 🔥 ## Some Important links - [Model Inference🤖](https://huggingface.co/spaces/owaiskha9654/Custom_Yolov7) - [**🚀Training Yolov7 on Kaggle**](https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset) - [Weight and Biases 🐝](https://wandb.ai/owaiskhan9515/YOLOR) - [HuggingFace 🤗 Model Repo](https://huggingface.co/owaiskha9654/Yolov7_Custom_Object_Detection) ## Contact Information - **Name** - Owais Ahmad - **Phone** - +91-9515884381 - **Email** - [email protected] - **Portfolio** - https://owaiskhan9654.github.io/ # Objective ## To Showcase custom Object Detection on the Given Dataset to train and Infer the Model using newly launched YoloV7. # Data Acquisition The goal of this task is to train a model that can localize and classify each instance of **Person** and **Car** as accurately as possible. - [Link to the Downloadable Dataset](https://www.kaggle.com/datasets/owaiskhan9654/car-person-v2-roboflow) ```python from IPython.display import Markdown, display display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt")) ``` # Custom Training with YOLOv7 🔥 In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps: * Export the dataset to YOLOv7 * Train YOLOv7 to recognize the objects in our dataset * Evaluate our YOLOv7 model's performance * Run test inference to view performance of YOLOv7 model at work # 📦 [YOLOv7](https://github.com/WongKinYiu/yolov7) <div align=left><img src="https://raw.githubusercontent.com/WongKinYiu/yolov7/main/figure/performance.png" width=800> **Image Credit** - [WongKinYiu](https://github.com/WongKinYiu/yolov7) </div> # Step 1: Install Requirements ```python !git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements %cd yolov7 !pip install -qr requirements.txt !pip install -q roboflow ``` # **Downloading YOLOV7 starting checkpoint** ```python !wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt" ``` ```python import os import glob import wandb import torch from roboflow import Roboflow from kaggle_secrets import UserSecretsClient from IPython.display import Image, clear_output, display # to display images print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})") ``` <img src="https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67"> > I will be integrating W&B for visualizations and logging artifacts and comparisons of different models! > > [YOLOv7-Car-Person-Custom](https://wandb.ai/owaiskhan9515/YOLOR) ```python try: user_secrets = UserSecretsClient() wandb_api_key = user_secrets.get_secret("wandb_api") wandb.login(key=wandb_api_key) anonymous = None except: wandb.login(anonymous='must') print('To use your W&B account,\nGo to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB. \nGet your W&B access token from here: https://wandb.ai/authorize') wandb.init(project="YOLOv7",name=f"7. YOLOv7-Car-Person-Custom-Run-7") ``` # Step 2: Assemble Our Dataset ![](https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png) In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format. In Roboflow, We can choose between two paths: * Convert an existing Coco dataset to YOLOv7 format. In Roboflow it supports over [30 formats object detection formats](https://roboflow.com/formats) for conversion. * Uploading only these raw images and annotate them in Roboflow with [Roboflow Annotate](https://docs.roboflow.com/annotate). # Version v7 Jan 30, 2023 Looks like this. ![](https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow_train1.JPG) ### Since paid credits are required to train the model on RoboFlow I have used Kaggle Free resources to train it here ### Note you can import any other data from other sources. Just remember to keep in the Yolov7 Pytorch form accept ![](https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Yolov7%20Pytorch%20format.JPG) ```python user_secrets = UserSecretsClient() roboflow_api_key = user_secrets.get_secret("roboflow_api") ``` ```python rf = Roboflow(api_key=roboflow_api_key) project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq") dataset = project.version(2).download("yolov7") ``` # Step 3: Training Custom pretrained YOLOv7 model Here, I am able to pass a number of arguments: - **img:** define input image size - **batch:** determine batch size - **epochs:** define the number of training epochs. (Note: often, 3000+ are common here nut since I am using free version of colab I will be only defining it to 20!) - **data:** Our dataset locaiton is saved in the `./yolov7/Custom-Yolov7-on-Kaggle-on-Custom-Dataset-2` folder. - **weights:** specifying a path to weights to start transfer learning from. Here I have choosen a generic COCO pretrained checkpoint. - **cache:** caching images for faster training ```python !python train.py --batch 16 --cfg cfg/training/yolov7.yaml --epochs 30 --data {dataset.location}/data.yaml --weights 'yolov7.pt' --device 0 ``` # Run Inference With Trained Weights Testing inference with a pretrained checkpoint on contents of `./Custom-Yolov7-on-Kaggle-on-Custom-Dataset-2/test/images` folder downloaded from Roboflow. ```python !python detect.py --weights runs/train/exp/weights/best.pt --img 416 --conf 0.75 --source ./Custom-Yolov7-on-Kaggle-on-Custom-Dataset-2/test/images ``` # Display inference on ALL test images ```python for images in glob.glob('runs/detect/exp/*.jpg')[0:10]: display(Image(filename=images)) ``` ```python model = torch.load('runs/train/exp/weights/best.pt') ``` # Conclusion and Next Steps Now this trained custom YOLOv7 model can be used to recognize **Person** and **Cars** form any given Images. To improve the model's performance, I might perform more interating on the datasets coverage,propper annotations and and Image quality. From orignal authors of **Yolov7** this guide has been given for [model performance improvement](https://github.com/WongKinYiu/yolov7). To deploy our model to an application by [exporting your model to deployment destinations](https://github.com/WongKinYiu/yolov7/issues). Once our model is in production, I will be willing to continually iterate and improve on your dataset and model via [active learning](https://blog.roboflow.com/what-is-active-learning/).
eldraco/q-FrozenLake-v1-8x8-NoSlippery
eldraco
2023-01-29T18:52:16Z
0
0
null
[ "FrozenLake8x8-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T18:52:12Z
--- tags: - FrozenLake8x8-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-NoSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake8x8-v1-8x8-no_slippery type: FrozenLake8x8-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake8x8-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake8x8-v1** . ## Usage ```python model = load_from_hub(repo_id="eldraco/q-FrozenLake-v1-8x8-NoSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LarryAIDraw/stuffycocoa7thheaven_10
LarryAIDraw
2023-01-29T18:25:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-28T16:58:13Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5474/stuffycocoa7thheavenmix
antoooooine/dqn-SpaceInvadersNoFrameskip-v4
antoooooine
2023-01-29T18:21:04Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T18:20:27Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 529.50 +/- 167.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga antoooooine -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga antoooooine -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga antoooooine ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BeardedJohn/bert-finetuned-ner-per-v3
BeardedJohn
2023-01-29T18:20:57Z
5
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-27T16:32:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-finetuned-ner-per-v3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-per-v3 This model is a fine-tuned version of [BeardedJohn/bert-finetuned-ner-per-v3](https://huggingface.co/BeardedJohn/bert-finetuned-ner-per-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1787 - Validation Loss: 0.3198 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1875, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3935 | 0.3222 | 0 | | 0.2585 | 0.3025 | 1 | | 0.1787 | 0.3198 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Short-Answer-Feedback/mbart-score-finetuned-saf-legal-domain
Short-Answer-Feedback
2023-01-29T18:02:32Z
9
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "de", "dataset:Short-Answer-Feedback/saf_legal_domain_german", "arxiv:2001.08210", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-29T14:32:10Z
--- language: de datasets: - Short-Answer-Feedback/saf_legal_domain_german tags: - generated_from_trainer widget: - text: "Antwort: Wird sich nicht an die Auflagen gehalten (unzureichende Eigenbemühung), droht eine Sperrzeit von 1-2 Wochen. Dadurch wird für die genannte zeit keine Leistung gezahlt, die Anspruchsdauer vermindert sich insgesamt. Bei wichtigen Gründen wird die Sperrzeit nicht verordnet. Lösung: Merkblatt 1 für Arbeitslose, S. 22: Erbringen Sie die Pflichten im Zusammenhang mit den Eigenbemühungen nicht, nicht rechtzeitig oder nicht vollständig, tritt eine Sperrzeit (0,75 p) ein. Merkblatt 1 für Arbeitslose, S. 55: Die Dauer einer Sperrzeit bei unzureichenden Eigenbemühungen beträgt zwei Wochen. (0,25 p). Frage: Mit welcher Folge und welcher Dauer müssen Sie rechnen, wenn Sie Ihre notwendigen Eigenbemühungen nicht rechtzeitig oder nicht vollständig erfüllen?" --- # mbart-score-finetuned-saf-legal-domain This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german) dataset for Short Answer Feedback (SAF). ## Model description This model was built on top of [mBART](https://arxiv.org/abs/2001.08210), which is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages. It expects inputs in the following format: ``` Antwort: [answer] Lösung: [reference_answer] Frage: [question] ``` In the example above, `[answer]`, `[reference_answer]` and `[question]` should be replaced by the provided answer, the reference answer and the question to which they refer, respectively. The outputs are formatted as follows: ``` [score] Feedback: [feedback] ``` Hence, `[score]` will be a numeric value between 0 and 1, while `[feedback]` will be the textual feedback generated by the model according to the given answer. ## Intended uses & limitations This model is intended to be used for Short Answer Feedback generation in the domain of the German social law. Thus, it is not expected to have particularly good performance on sets of questions and answers out of this scope. It is important to acknowledge that the model underperforms when a question that was not seen during training is given as input for inference. In particular, it tends to classify most answers as being correct and does not provide relevant feedback in such cases. Nevertheless, this limitation could be partially overcome by extending the dataset with the desired question (and associated answers) and fine-tuning it for a few epochs on the new data. ## Training and evaluation data As mentioned previously, the model was trained on the [saf_legal_domain_german](https://huggingface.co/datasets/Short-Answer-Feedback/saf_legal_domain_german) dataset, which is divided into the following splits. | Split | Number of examples | | --------------------- | ------------------ | | train | 1596 | | validation | 400 | | test_unseen_answers | 221 | | test_unseen_questions | 275 | Evaluation was performed on the `test_unseen_answers` and `test_unseen_questions` splits. ## Training procedure The [Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer) was used to fine-tune the model. The code utilized for pre-processing and training was mostly adapted from the [summarization script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) made available by HuggingFace. Training was completed in a little over 1 hour on a GPU on Google Colab. ### Training hyperparameters The following hyperparameters were used during training: - num_epochs: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - learning_rate: 6e-05 - lr_scheduler_type: linear - train_batch_size: 1 - gradient_accumulation_steps: 4 - eval_batch_size: 4 - mixed_precision_training: Native AMP - seed: 42 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2 ## Evaluation results The generated feedback was evaluated through means of the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu), [ROUGE-2](https://huggingface.co/spaces/evaluate-metric/rouge), [METEOR](https://huggingface.co/spaces/evaluate-metric/meteor), [BERTScore](https://huggingface.co/spaces/evaluate-metric/bertscore) metrics from HuggingFace, while the [Root Mean Squared Error](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error) loss from scikit-learn was used for evaluation of the predicted scores in relation to the golden label scores. The following results were achieved. | Split | SacreBLEU | ROUGE-2 | METEOR | BERTScore | RMSE | | --------------------- | :-------: | :-----: | :----: | :-------: | :---: | | test_unseen_answers | 39.4 | 42.3 | 54.3 | 52.6 | 0.190 | | test_unseen_questions | 2.8 | 5.0 | 17.9 | 10.7 | 0.317 | The script used to compute these metrics and perform evaluation can be found in the `evaluation.py` file in this repository. ## Usage The example below shows how the model can be applied to generate feedback to a given answer. ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained('Short-Answer-Feedback/mbart-score-finetuned-saf-legal-domain') tokenizer = AutoTokenizer.from_pretrained('Short-Answer-Feedback/mbart-score-finetuned-saf-legal-domain') example_input = 'Antwort: Wird sich nicht an die Auflagen gehalten (unzureichende Eigenbemühung), droht eine Sperrzeit von 1-2 Wochen. Dadurch wird für die genannte zeit keine Leistung gezahlt, die Anspruchsdauer vermindert sich insgesamt. Bei wichtigen Gründen wird die Sperrzeit nicht verordnet. Lösung: Merkblatt 1 für Arbeitslose, S. 22: Erbringen Sie die Pflichten im Zusammenhang mit den Eigenbemühungen nicht, nicht rechtzeitig oder nicht vollständig, tritt eine Sperrzeit (0,75 p) ein. Merkblatt 1 für Arbeitslose, S. 55: Die Dauer einer Sperrzeit bei unzureichenden Eigenbemühungen beträgt zwei Wochen. (0,25 p). Frage: Mit welcher Folge und welcher Dauer müssen Sie rechnen, wenn Sie Ihre notwendigen Eigenbemühungen nicht rechtzeitig oder nicht vollständig erfüllen?' inputs = tokenizer(example_input, max_length=256, padding='max_length', truncation=True, return_tensors='pt') generated_tokens = model.generate( inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=128 ) output = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] ``` The output produced by the model then looks as follows: ``` 0.75 Feedback: Es ist richtig, dass Sie mit einer Sperrzeit rechnen müssen, in der Sie keine Leistung bekommen. Die gesetzlich vorgesehene Sperrzeit bei unzureichenden Eigenbemühungen beträgt jedoch zwei Wochen. ```
eldraco/q-FrozenLake-v1-4x4-Slippery
eldraco
2023-01-29T17:57:26Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T17:53:24Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.73 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eldraco/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lora-library/tekakutli-dinosaurs
lora-library
2023-01-29T17:20:52Z
0
2
null
[ "stable-diffusion", "lora", "license:creativeml-openrail-m", "region:us" ]
null
2023-01-29T16:58:07Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-1-5 tags: - stable-diffusion - lora inference: true --- tested with: 1.5 and dreamlikeDiffusion share with me your best ones so I can train it further: twitter.com/tekakutli
heziyevv/aze-bert-tokenizer-middle
heziyevv
2023-01-29T17:06:39Z
0
0
null
[ "wikipedia", "books", "social-media", "az", "license:mit", "region:us" ]
null
2023-01-29T16:53:39Z
--- license: mit language: - az tags: - wikipedia - books - social-media vocab-size: 16378 --- # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Farid Haziyev - **Model type:** Tokenizer - **Language(s) (NLP):** Azerbaijani - **License:** MIT - **Finetuned from model [optional]:** bert-based-uncased # Uses Can be used in any project intended for the purpose of improving Azerbaijani language models ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("heziyevv/aze-bert-tokenizer-middle") ```
zendiode69/electra-base-squad2-finetuned-squad-12-trainedfor-3
zendiode69
2023-01-29T16:58:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-28T13:55:50Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: electra-base-squad2-finetuned-squad-12-trainedfor-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-squad2-finetuned-squad-12-trainedfor-3 This model is a fine-tuned version of [deepset/electra-base-squad2](https://huggingface.co/deepset/electra-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6128 | 1.0 | 578 | 0.3142 | | 0.4583 | 2.0 | 1156 | 0.3072 | | 0.415 | 3.0 | 1734 | 0.3064 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
eingrid/ppo-LunarLander-v22
eingrid
2023-01-29T16:57:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T16:56:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PRO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.46 +/- 19.81 name: mean_reward verified: false --- # **PRO** Agent playing **LunarLander-v2** This is a trained model of a **PRO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Malisha/layoutlm-funsd-tf
Malisha
2023-01-29T16:47:48Z
8
0
transformers
[ "transformers", "tf", "tensorboard", "layoutlm", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-29T14:51:31Z
--- tags: - generated_from_keras_callback model-index: - name: layoutlm-funsd-tf results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd-tf This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2451 - Validation Loss: 0.7339 - Train Overall Precision: 0.7247 - Train Overall Recall: 0.8058 - Train Overall F1: 0.7631 - Train Overall Accuracy: 0.7976 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| | 1.6758 | 1.4035 | 0.2734 | 0.3191 | 0.2945 | 0.5113 | 0 | | 1.1350 | 0.8802 | 0.5626 | 0.6538 | 0.6048 | 0.7313 | 1 | | 0.7417 | 0.6927 | 0.6604 | 0.7602 | 0.7068 | 0.7805 | 2 | | 0.5568 | 0.6715 | 0.7039 | 0.7501 | 0.7263 | 0.7823 | 3 | | 0.4493 | 0.6464 | 0.7073 | 0.7782 | 0.7410 | 0.7980 | 4 | | 0.3732 | 0.6112 | 0.7108 | 0.7858 | 0.7464 | 0.8182 | 5 | | 0.2949 | 0.6429 | 0.7123 | 0.7988 | 0.7531 | 0.8070 | 6 | | 0.2451 | 0.7339 | 0.7247 | 0.8058 | 0.7631 | 0.7976 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
eldraco/ppo-Huggy
eldraco
2023-01-29T16:37:57Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-29T16:37:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: eldraco/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bnowak1831/ppo-LunarLander-v2
bnowak1831
2023-01-29T16:19:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T15:53:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.21 +/- 23.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_mnli
gokuls
2023-01-29T16:13:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T09:53:46Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.3295362082994304 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_mnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.7834 - Accuracy: 0.3295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8866 | 1.0 | 3068 | 1.7941 | 0.3274 | | 1.8864 | 2.0 | 6136 | 1.7939 | 0.3274 | | 1.8864 | 3.0 | 9204 | 1.7944 | 0.3274 | | 1.8864 | 4.0 | 12272 | 1.7940 | 0.3274 | | 1.8864 | 5.0 | 15340 | 1.7938 | 0.3274 | | 1.8864 | 6.0 | 18408 | 1.7940 | 0.3274 | | 1.8864 | 7.0 | 21476 | 1.7944 | 0.3274 | | 1.8864 | 8.0 | 24544 | 1.7939 | 0.3274 | | 1.8864 | 9.0 | 27612 | 1.7939 | 0.3274 | | 1.8864 | 10.0 | 30680 | 1.7940 | 0.3274 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
jggrandio/ppo-LunarLander-v2
jggrandio
2023-01-29T15:56:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T15:56:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.72 +/- 21.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jondister/JD_Pyramids
jondister
2023-01-29T15:40:50Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-29T15:40:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jondister/JD_Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_mnli_256
gokuls
2023-01-29T15:06:09Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T08:46:21Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_mnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.3295362082994304 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_mnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.7834 - Accuracy: 0.3295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8865 | 1.0 | 3068 | 1.7940 | 0.3274 | | 1.8864 | 2.0 | 6136 | 1.7940 | 0.3274 | | 1.8864 | 3.0 | 9204 | 1.7944 | 0.3274 | | 1.8864 | 4.0 | 12272 | 1.7940 | 0.3274 | | 1.8864 | 5.0 | 15340 | 1.7938 | 0.3274 | | 1.8864 | 6.0 | 18408 | 1.7940 | 0.3274 | | 1.8864 | 7.0 | 21476 | 1.7944 | 0.3274 | | 1.8864 | 8.0 | 24544 | 1.7939 | 0.3274 | | 1.8864 | 9.0 | 27612 | 1.7939 | 0.3274 | | 1.8863 | 10.0 | 30680 | 1.7940 | 0.3274 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
BachNgoH/ppo-Huggy
BachNgoH
2023-01-29T15:00:24Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-29T15:00:16Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: BachNgoH/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vicfeuga/CartPole-v1
vicfeuga
2023-01-29T14:46:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T14:46:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jianleo/lora_ruhua_sd_1k
jianleo
2023-01-29T14:42:56Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-29T14:31:50Z
--- license: creativeml-openrail-m base_model: /root/autodl-tmp/sd_weights/models--runwayml--stable-diffusion-v1-5/snapshots/889b629140e71758e1e0006e355c331a5744b4bf tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - jianleo/lora_ruhua_sd_1k These are LoRA adaption weights for /root/autodl-tmp/sd_weights/models--runwayml--stable-diffusion-v1-5/snapshots/889b629140e71758e1e0006e355c331a5744b4bf. The weights were trained on a photo of rha woman using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Porridge9243/a2c-AntBulletEnv-v0
Porridge9243
2023-01-29T14:26:35Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T14:25:33Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1721.92 +/- 403.54 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
brouthen/q-Taxi-v3
brouthen
2023-01-29T14:18:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T14:18:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brouthen/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Musha-the-Yusha/a2c-AntBulletEnv-v0
Musha-the-Yusha
2023-01-29T14:12:35Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T13:42:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1107.79 +/- 78.27 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
santiviquez/noisy_human_cnn
santiviquez
2023-01-29T13:38:42Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-29T13:16:13Z
--- license: mit metrics: - accuracy --- # Model Card for noisy_human_cnn <!-- Provide a quick summary of what the model is/does. --> CNN with 2 input channels (Melspectrograms and deltas) of 5-second audio signals. # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Santiago Viquez, Ivan Padezhki - **Model type:** CNN for audio classification - **License:** MIT ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/santiviquez/noisy-human-recognition/ - **Demo [optional]:** [More Information Needed]
AlekseyCalvin/asoon-dreambooth-sd-model
AlekseyCalvin
2023-01-29T12:39:28Z
17
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "doi:10.57967/hf/0193", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-08T16:31:26Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: asoon --- ### Asoon Dreambooth SD Model Dreambooth model trained by AlekseyCalvin with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-768 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: To generate custom images of my primary public self – one known as A.C.T. SOON® – use "asoon" or "asoon person" in your Stable Diffusion prompt (implemented via this model only). Checkpoints herein trained based on SD 2.1. [asoon:](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2812%29.jpg)![asoon 12](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2813%29.jpg)![asoon 13](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2814%29.jpg)![asoon 14](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2815%29.jpg)![asoon 10](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2811%29.jpg)![asoon 15](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2816%29.jpg)![asoon 16](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2817%29.jpg)![asoon 17](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2818%29.jpg)![asoon 18](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2819%29.jpg)![asoon 19](https://huggingface.co/AlekseyCalvin/asoon-dreambooth-sd-model/resolve/main/concept_images/asoon_%2820%29.jpg)!
research-backup/mbart-large-cc25-koquad-qg-ae
research-backup
2023-01-29T12:38:47Z
3
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question generation", "answer extraction", "ko", "dataset:lmqg/qg_koquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-29T12:24:20Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ko datasets: - lmqg/qg_koquad pipeline_tag: text2text-generation tags: - question generation - answer extraction widget: - text: "generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다." example_title: "Question Generation Example 1" - text: "generate question: 백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진 타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다." example_title: "Question Generation Example 2" - text: "generate question: <hl> 원테이크 촬영 <hl> 이기 때문에 한 사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다." example_title: "Question Generation Example 3" - text: "extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다." example_title: "Answer Extraction Example 1" - text: "extract answers: 지난 22일 아프리카TV는 BJ 철구가 서비스 정지 처분을 받았음을 밝혔다. 서비스 정지 처분을 사유는 철구가 10대 청소년에게 유해한 장면을 방송으로 내보냈기 때문이었다. 문제가 된 장면은 BJ 철구가 미성년자는 시청할 수 없게 하는 19세 시청 가능 설정을 하지 않은 채 흡연하는 모습을 여과 없이 드러낸 장면이다. 아프리카TV는 청소년 보호 정책의 '청소년들이 해로운 환경으로부터 보호받을 수 있도록 조치한다'라고 조항을 근거로 철구에게 서비스 정지 처분을 내렸다. 흡연 이외에 음주 방송 등도 19세 시청 가능 설정을 해야만 방송할 수 있다. <hl> 게다가 철구의 방송 정지 처분은 이번에 처음이 아니라 16번 째기 때문에 더욱더 논란이 되고 있다. <hl>" example_title: "Answer Extraction Example 2" model-index: - name: lmqg/mbart-large-cc25-koquad-qg-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_koquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 10.7 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 27.02 - name: METEOR (Question Generation) type: meteor_question_generation value: 29.73 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 83.52 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 82.79 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer value: 80.81 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer value: 84.32 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer value: 77.64 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer value: 83.42 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer value: 88.44 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer value: 79.08 - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 24.34 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 82.78 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 59.82 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 95.53 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 94.69 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 88.2 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 82.17 --- # Model Card of `lmqg/mbart-large-cc25-koquad-qg-ae` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** ko - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ko", model="lmqg/mbart-large-cc25-koquad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-koquad-qg-ae") # answer extraction answer = pipe("generate question: 1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.") # question generation question = pipe("extract answers: 또한 스피어스는 많은 새로운 여성 아티스트들에게 영향을 끼쳤는데, 대표적으로 데미 로바토, 케이티 페리, 크리스티니아 드바지, 레이디 가가, 리틀 부츠, 셀레나 고메즈 & 더씬, 픽시 로트 이 있다. 2007년 비욘세 놀스는 Total Request Live와의 인터뷰에서 '나는 브리트니를 사랑하고 팬이에요. 특히 새 앨범 Blackout을 좋아해요'라고 말했다. 린제이 로한은 '언제나 브리트니 스피어스에게 영감을 받는다. 학창시절 그녀처럼 타블로이드에 오르기를 꿈꿔왔다'고 말하며 롤 모델로 꼽았다. 스피어스는 현대 음악가들에게 음악적 영감으로 언급되기도 했다. <hl> 마일리 사이러스는 자신의 히트곡 Party in the U.S.A. 가 브리트니에게 영감과 영향을 받은 곡이라고 밝혔다. <hl> 베리 매닐로우의 앨범 15 Minutes 역시 브리트니에게 영감을 얻었다고 언급되었다.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 83.52 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_1 | 26.03 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_2 | 18.93 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_3 | 14.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_4 | 10.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | METEOR | 29.73 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | MoverScore | 82.79 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | ROUGE_L | 27.02 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_koquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 80.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | QAAlignedF1Score (MoverScore) | 83.42 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | QAAlignedPrecision (BERTScore) | 77.64 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | QAAlignedPrecision (MoverScore) | 79.08 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | QAAlignedRecall (BERTScore) | 84.32 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | QAAlignedRecall (MoverScore) | 88.44 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_koquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 82.17 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | AnswerF1Score | 88.2 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | BERTScore | 95.53 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_1 | 68.81 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_2 | 56.84 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_3 | 40.49 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | Bleu_4 | 24.34 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | METEOR | 59.82 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | MoverScore | 94.69 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | | ROUGE_L | 82.78 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_koquad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 6 - batch: 2 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 32 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05-finetuned-SFEW-7e-05
lixiqi
2023-01-29T12:24:46Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-29T12:04:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05-finetuned-SFEW-7e-05 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.49596309111880044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05-finetuned-SFEW-7e-05 This model is a fine-tuned version of [Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05](https://huggingface.co/Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 1.5629 - Accuracy: 0.4960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1509 | 0.97 | 14 | 1.6920 | 0.3725 | | 1.6764 | 1.97 | 28 | 1.5035 | 0.4694 | | 1.2723 | 2.97 | 42 | 1.5061 | 0.4694 | | 1.1746 | 3.97 | 56 | 1.5421 | 0.4729 | | 0.9954 | 4.97 | 70 | 1.5657 | 0.4787 | | 1.0029 | 5.97 | 84 | 1.5867 | 0.4844 | | 0.9139 | 6.97 | 98 | 1.5943 | 0.4879 | | 0.8335 | 7.97 | 112 | 1.6003 | 0.4890 | | 0.8382 | 8.97 | 126 | 1.5629 | 0.4960 | | 0.7169 | 9.97 | 140 | 1.5772 | 0.4856 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nandysoham/19-clustered
nandysoham
2023-01-29T12:18:56Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T12:16:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/19-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/19-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7685 - Train End Logits Accuracy: 0.7826 - Train Start Logits Accuracy: 0.75 - Validation Loss: 0.9786 - Validation End Logits Accuracy: 0.6912 - Validation Start Logits Accuracy: 0.6838 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 134, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0803 | 0.6931 | 0.6922 | 0.9561 | 0.6838 | 0.6875 | 0 | | 0.7685 | 0.7826 | 0.75 | 0.9786 | 0.6912 | 0.6838 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
chang26/distilbert-base-uncased-finetuned-emotion
chang26
2023-01-29T12:18:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T12:01:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9256588984500898 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2036 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.788 | 1.0 | 250 | 0.2847 | 0.9135 | 0.9117 | | 0.2345 | 2.0 | 500 | 0.2036 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Porridge9243/PPO-Pyramids
Porridge9243
2023-01-29T12:16:40Z
18
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-29T12:16:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Porridge9243/PPO-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RajMoodley/a2c-PandaReachDense-v2z
RajMoodley
2023-01-29T12:13:54Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T12:11:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.19 +/- 0.19 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nandysoham/15-clustered
nandysoham
2023-01-29T11:52:46Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T11:44:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/15-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/15-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6484 - Train End Logits Accuracy: 0.8084 - Train Start Logits Accuracy: 0.7994 - Validation Loss: 0.9490 - Validation End Logits Accuracy: 0.7555 - Validation Start Logits Accuracy: 0.7246 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 612, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.9647 | 0.7261 | 0.7081 | 0.9607 | 0.7482 | 0.7165 | 0 | | 0.6484 | 0.8084 | 0.7994 | 0.9490 | 0.7555 | 0.7246 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham/14-clustered
nandysoham
2023-01-29T11:43:14Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T11:40:59Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/14-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/14-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6609 - Train End Logits Accuracy: 0.8090 - Train Start Logits Accuracy: 0.7691 - Validation Loss: 0.8873 - Validation End Logits Accuracy: 0.7612 - Validation Start Logits Accuracy: 0.6955 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 144, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0023 | 0.7214 | 0.6780 | 0.8817 | 0.7612 | 0.6817 | 0 | | 0.6609 | 0.8090 | 0.7691 | 0.8873 | 0.7612 | 0.6955 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham/12-clustered
nandysoham
2023-01-29T11:32:26Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T11:24:12Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/12-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/12-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6856 - Train End Logits Accuracy: 0.8145 - Train Start Logits Accuracy: 0.7542 - Validation Loss: 0.8791 - Validation End Logits Accuracy: 0.7585 - Validation Start Logits Accuracy: 0.7096 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 632, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.9975 | 0.7354 | 0.6632 | 0.8689 | 0.7719 | 0.7048 | 0 | | 0.6856 | 0.8145 | 0.7542 | 0.8791 | 0.7585 | 0.7096 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham/10-clustered
nandysoham
2023-01-29T11:13:03Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T11:08:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/10-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/10-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5872 - Train End Logits Accuracy: 0.8242 - Train Start Logits Accuracy: 0.7907 - Validation Loss: 0.7005 - Validation End Logits Accuracy: 0.8237 - Validation Start Logits Accuracy: 0.75 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 310, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.8666 | 0.7496 | 0.7282 | 0.7017 | 0.8173 | 0.7372 | 0 | | 0.5872 | 0.8242 | 0.7907 | 0.7005 | 0.8237 | 0.75 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
codeslord/LunarLander-v2-PPO
codeslord
2023-01-29T11:10:16Z
2
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T11:09:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.48 +/- 25.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nandysoham/9-clustered
nandysoham
2023-01-29T11:07:07Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T10:54:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/9-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/9-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6059 - Train End Logits Accuracy: 0.8198 - Train Start Logits Accuracy: 0.7982 - Validation Loss: 0.7823 - Validation End Logits Accuracy: 0.7846 - Validation Start Logits Accuracy: 0.7483 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1004, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.8783 | 0.7495 | 0.7205 | 0.7823 | 0.7806 | 0.7463 | 0 | | 0.6059 | 0.8198 | 0.7982 | 0.7823 | 0.7846 | 0.7483 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham/7-clustered
nandysoham
2023-01-29T10:48:32Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T10:44:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/7-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/7-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5661 - Train End Logits Accuracy: 0.8387 - Train Start Logits Accuracy: 0.8208 - Validation Loss: 0.8415 - Validation End Logits Accuracy: 0.7506 - Validation Start Logits Accuracy: 0.7506 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 210, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.8846 | 0.7393 | 0.7298 | 0.8233 | 0.7506 | 0.7458 | 0 | | 0.5661 | 0.8387 | 0.8208 | 0.8415 | 0.7506 | 0.7506 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
timtaotao/q-Taxi-v3
timtaotao
2023-01-29T10:43:29Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T10:43:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="timtaotao/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
timtaotao/q-FrozenLake-v1-4x4-noSlippery
timtaotao
2023-01-29T10:40:42Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-29T10:40:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="timtaotao/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ikuseiso/Personal_Lora_collections
ikuseiso
2023-01-29T10:32:37Z
0
50
null
[ "text-to-image", "region:us" ]
text-to-image
2023-01-17T13:15:19Z
--- pipeline_tag: text-to-image --- The new display image is generated using ACertainModel. # latest update - 1/29 (Optimized the dataset and caption, now using a single tag such as "vampy" will make it easier to restore characters and won't affect the replacement of character features and actions. The display model has been changed and other display images will be gradually replaced to reflect the characteristics of lora.) - [vampy V3](#vampy_V3) # latest update - 1/22 - [vergil_devil_may_cry](#vergil_devil_may_cry) - [dante_devil_may_cry1e-4](#dante_devil_may_cry1e-4) - [sky_striker_ace_-_raye](#sky_striker_ace_-_raye) - [sky_striker_ace_-_roze](#sky_striker_ace_-_roze) # NOTICE My LoRAs will be a slight overfitting,I suggest adjusting the weights to be in the range of 0.6-0.8, and adding some prompts such as hair color or eye color to make better adjustments to the character's actions. Use weights 1 u'll get more accurate. For example,left1 and right0.8,(may be disappointing,model is unable to recognize plastic chair.) <a href="https://imgloc.com/i/OMXfz"><img src="https://i.328888.xyz/2023/01/23/OMXfz.md.png" alt="OMXfz.png" border="0" /></a> all use danbooru tag like Miorine_Rembran.safetensors→https://danbooru.donmai.us/wiki_pages/miorine_rembran←miorine_rembran <s>To use them in your WebUI, please install the extension linked under, following the guide: https://github.com/kohya-ss/sd-webui-additional-networks</s> (This message is now out of date as WEBUI now supports Lora.) # Index - [Miorine_Rembran](#Miorine_Rembran) - [suletta_mercury](#suletta_mercury) - [chouzetsusaikawa_tenshi-chan](#chouzetsusaikawa_tenshi-chan) - [ame-chan_needy_girl_overdose](#ame-chan_needy_girl_overdose) - [grea_shingeki_no_bahamut](#grea_shingeki_no_bahamut) - [iono_pokemon](#iono_pokemon) - [kisara_engage_kiss](#kisara_engage_kiss) - [laundry_dragonmaid](#laundry_dragonmaid) - [sky_striker_ace_-_raye](#sky_striker_ace_-_raye) - [sky_striker_ace_-_roze](#sky_striker_ace_-_roze) - [lovely_labrynth_of_the_silver_castle](#lovely_labrynth_of_the_silver_castle) - [lishenna_omen_of_destruction](#lishenna_omen_of_destruction) - [ralmia_sonic_racer](#ralmia_sonic_racer) - [seulbi_lee](#seulbi_lee) - [vampy](#vampy) - [lucy_cyberpunk](#lucy_cyberpunk) - [dante_devil_may_cry1e-4](#dante_devil_may_cry1e-4) - [vergil_devil_may_cry](#vergil_devil_may_cry) # Concept - [inverted_nipple](#inverted_nipple) <summary>Sample Prompt Like</summary> <pre> masterpiece, best quality,1girl,solo,cowboy shot,arms behind back,indoors,(SFW),<lora:Miorine_Rembran:1>,Miorine_Rembran Negative prompt: lowres,text,error,extra digit,low quality,jpeg artifacts,signature,blurry,normal quality,cropped,worst quality,deformity,(bad_prompt_version2:0.8),disfigured,long neck,ugly,black and white,monochrome,greyscale, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 11, Seed: 3434176, Size: 512x768, Model hash: 8ec3e63ea8, Model: AbyssOrangeMix-fp32-no-ema, ENSD: 31337 </pre> # Miorine_Rembran <a href="https://imgloc.com/i/OPWdw"><img src="https://i.328888.xyz/2023/01/23/OPWdw.md.png" alt="OPWdw.md.png" border="0"></a> # suletta_mercury <a href="https://imgloc.com/i/OP74P"><img src="https://i.328888.xyz/2023/01/23/OP74P.md.png" alt="OP74P.md.png" border="0"></a> # chouzetsusaikawa_tenshi-chan <a href="https://imgloc.com/i/OPtIz"><img src="https://i.328888.xyz/2023/01/23/OPtIz.md.png" alt="OPtIz.md.png" border="0"></a> # ame-chan_needy_girl_overdose <a href="https://imgloc.com/i/OPENX"><img src="https://i.328888.xyz/2023/01/23/OPENX.md.png" alt="OPENX.md.png" border="0"></a> # grea_shingeki_no_bahamut <a href="https://imgloc.com/i/OPnyq"><img src="https://i.328888.xyz/2023/01/23/OPnyq.md.png" alt="OPnyq.md.png" border="0"></a> # iono_pokemon <a href="https://imgloc.com/i/OPDvb"><img src="https://i.328888.xyz/2023/01/23/OPDvb.md.png" alt="OPDvb.md.png" border="0"></a> # kisara_engage_kiss <a href="https://imgloc.com/i/OPeht"><img src="https://i.328888.xyz/2023/01/23/OPeht.md.png" alt="OPeht.md.png" border="0"></a> # laundry_dragonmaid <a href="https://imgloc.com/i/OPAmd"><img src="https://i.328888.xyz/2023/01/23/OPAmd.md.png" alt="OPAmd.md.png" border="0"></a> # sky_striker_ace_-_raye <a href="https://imgloc.com/i/OPmTH"><img src="https://i.328888.xyz/2023/01/23/OPmTH.md.png" alt="OPmTH.md.png" border="0"></a> # sky_striker_ace_-_roze <a href="https://imgloc.com/i/OPcEF"><img src="https://i.328888.xyz/2023/01/23/OPcEF.md.png" alt="OPcEF.md.png" border="0"></a> # lovely_labrynth_of_the_silver_castle <a href="https://imgloc.com/i/OPRHZ"><img src="https://i.328888.xyz/2023/01/23/OPRHZ.md.png" alt="OPRHZ.md.png" border="0"></a> # lishenna_omen_of_destruction <a href="https://imgloc.com/i/OPru8"><img src="https://i.328888.xyz/2023/01/23/OPru8.md.png" alt="OPru8.md.png" border="0"></a> # ralmia_sonic_racer(shadowverse) may need to update # seulbi_lee (Closers) may need to update # vampy_V3 <a href="https://imgloc.com/i/jPfWH"><img src="https://i.328888.xyz/2023/01/29/jPfWH.png" alt="jPfWH.png" border="0" /></a> <a href="https://imgloc.com/i/OPNd5"><img src="https://i.328888.xyz/2023/01/23/OPNd5.md.png" alt="OPNd5.md.png" border="0"></a> # lucy_cyberpunk <a href="https://imgloc.com/i/OPINy"><img src="https://i.328888.xyz/2023/01/23/OPINy.md.png" alt="OPINy.md.png" border="0"></a> # dante_devil_may_cry1e-4 (aslo u can use prompts like:stubble and 50years old to get DMC5's Dante) <a href="https://imgloc.com/i/OPJhz"><img src="https://i.328888.xyz/2023/01/23/OPJhz.md.png" alt="OPJhz.md.png" border="0"></a> # vergil_devil_may_cry <a href="https://imgloc.com/i/OPLZw"><img src="https://i.328888.xyz/2023/01/23/OPLZw.md.png" alt="OPLZw.md.png" border="0"></a> # inverted_nipple My suggestion is to use I2I,the preview image is NSFW so I cannot provide it.But it's really effective.
nandysoham/5-clustered
nandysoham
2023-01-29T10:30:42Z
5
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T10:28:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/5-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/5-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5941 - Train End Logits Accuracy: 0.8333 - Train Start Logits Accuracy: 0.7955 - Validation Loss: 0.8305 - Validation End Logits Accuracy: 0.7820 - Validation Start Logits Accuracy: 0.7556 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 132, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.9118 | 0.7405 | 0.7093 | 0.8196 | 0.7744 | 0.7556 | 0 | | 0.5941 | 0.8333 | 0.7955 | 0.8305 | 0.7820 | 0.7556 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ivensamdh/swinv2
ivensamdh
2023-01-29T10:10:52Z
37
0
transformers
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-29T13:31:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: swinv2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2 This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
nandysoham/1-clustered
nandysoham
2023-01-29T10:06:07Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T10:03:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/1-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/1-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7785 - Train End Logits Accuracy: 0.7917 - Train Start Logits Accuracy: 0.7264 - Validation Loss: 0.9514 - Validation End Logits Accuracy: 0.7734 - Validation Start Logits Accuracy: 0.7014 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 138, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.1245 | 0.6957 | 0.6322 | 0.9694 | 0.7590 | 0.6906 | 0 | | 0.7785 | 0.7917 | 0.7264 | 0.9514 | 0.7734 | 0.7014 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham/0-clustered
nandysoham
2023-01-29T10:02:36Z
3
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-29T09:57:55Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nandysoham/0-clustered results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham/0-clustered This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7128 - Train End Logits Accuracy: 0.8102 - Train Start Logits Accuracy: 0.7412 - Validation Loss: 0.9487 - Validation End Logits Accuracy: 0.7328 - Validation Start Logits Accuracy: 0.6397 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 326, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.0078 | 0.7312 | 0.6503 | 0.9262 | 0.7481 | 0.6382 | 0 | | 0.7128 | 0.8102 | 0.7412 | 0.9487 | 0.7328 | 0.6397 | 1 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
KoRiF/ppo-PyramidsTraining
KoRiF
2023-01-29T09:58:13Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-29T09:58:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: KoRiF/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_wnli
gokuls
2023-01-29T09:49:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T09:48:03Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_wnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3448 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3478 | 1.0 | 5 | 0.3460 | 0.5634 | | 0.3477 | 2.0 | 10 | 0.3480 | 0.4366 | | 0.3466 | 3.0 | 15 | 0.3459 | 0.5634 | | 0.3466 | 4.0 | 20 | 0.3448 | 0.5634 | | 0.3468 | 5.0 | 25 | 0.3451 | 0.5634 | | 0.3467 | 6.0 | 30 | 0.3461 | 0.5634 | | 0.3465 | 7.0 | 35 | 0.3465 | 0.5634 | | 0.3466 | 8.0 | 40 | 0.3466 | 0.5634 | | 0.3468 | 9.0 | 45 | 0.3457 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_stsb
gokuls
2023-01-29T09:47:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T09:39:00Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.04810618310275214 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_stsb This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.1407 - Pearson: 0.0533 - Spearmanr: 0.0481 - Combined Score: 0.0507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.7607 | 1.0 | 45 | 1.2881 | 0.0340 | 0.0258 | 0.0299 | | 1.0763 | 2.0 | 90 | 1.1761 | 0.0478 | 0.0438 | 0.0458 | | 1.0466 | 3.0 | 135 | 1.1550 | 0.0509 | 0.0390 | 0.0450 | | 1.0685 | 4.0 | 180 | 1.1407 | 0.0533 | 0.0481 | 0.0507 | | 1.0449 | 5.0 | 225 | 1.1527 | 0.0562 | 0.0478 | 0.0520 | | 1.0303 | 6.0 | 270 | 1.2257 | 0.0580 | 0.0606 | 0.0593 | | 1.0006 | 7.0 | 315 | 1.2018 | 0.0711 | 0.0736 | 0.0724 | | 0.9661 | 8.0 | 360 | 1.2391 | 0.0716 | 0.0848 | 0.0782 | | 0.9524 | 9.0 | 405 | 1.2005 | 0.0795 | 0.0749 | 0.0772 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
90DPyo/distilbert-base-uncased-finetuned-clinc
90DPyo
2023-01-29T09:38:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T09:32:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2890 | 0.7432 | | 2.6284 | 2.0 | 636 | 1.8756 | 0.8377 | | 1.5483 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.015 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7953 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_sst2
gokuls
2023-01-29T09:38:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T08:10:59Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.801605504587156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_sst2 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.7778 - Accuracy: 0.8016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5405 | 1.0 | 527 | 1.4225 | 0.5539 | | 1.3567 | 2.0 | 1054 | 1.4707 | 0.5482 | | 1.2859 | 3.0 | 1581 | 1.4661 | 0.5677 | | 1.2563 | 4.0 | 2108 | 1.4136 | 0.5665 | | 1.2414 | 5.0 | 2635 | 1.4239 | 0.5940 | | 1.2288 | 6.0 | 3162 | 1.4443 | 0.5745 | | 0.7679 | 7.0 | 3689 | 0.7870 | 0.7878 | | 0.4135 | 8.0 | 4216 | 0.7778 | 0.8016 | | 0.3376 | 9.0 | 4743 | 0.8673 | 0.7993 | | 0.2972 | 10.0 | 5270 | 0.8790 | 0.7901 | | 0.2734 | 11.0 | 5797 | 0.9525 | 0.7913 | | 0.2569 | 12.0 | 6324 | 0.9557 | 0.7936 | | 0.2431 | 13.0 | 6851 | 0.9595 | 0.7878 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
almuallim/gpt2-turkish-poem-generation
almuallim
2023-01-29T09:34:40Z
58
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-29T08:20:24Z
--- license: openrail --- Fine-Tuned GPT-2 Model with Turkish Poems Dataset on [Kaggle](https://www.kaggle.com/datasets/bilalelebi/turkish-poems). Big thanks for [gorkemgoknar](https://huggingface.co/gorkemgoknar) for GPT-2 Turkish [Version](https://huggingface.co/gorkemgoknar/gpt2-small-turkish).
KoRiF/ppo-SnowballTarget
KoRiF
2023-01-29T09:08:38Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-29T09:08:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: KoRiF/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
philosucker/xlm-roberta-base-finetuned-panx-en
philosucker
2023-01-29T08:55:01Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-29T08:50:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7092760180995475 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4990 - F1: 0.7093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8727 | 1.0 | 295 | 0.5063 | 0.6186 | | 0.4633 | 2.0 | 590 | 0.5089 | 0.6561 | | 0.3075 | 3.0 | 885 | 0.4990 | 0.7093 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1 - Datasets 1.18.4 - Tokenizers 0.13.2
philosucker/xlm-roberta-base-finetuned-panx-it
philosucker
2023-01-29T08:50:25Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-29T08:45:15Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.846884028064383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3252 - F1: 0.8469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6217 | 1.0 | 420 | 0.3396 | 0.7677 | | 0.3206 | 2.0 | 840 | 0.3433 | 0.8114 | | 0.1871 | 3.0 | 1260 | 0.3252 | 0.8469 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1 - Datasets 1.18.4 - Tokenizers 0.13.2
philosucker/xlm-roberta-base-finetuned-panx-fr
philosucker
2023-01-29T08:44:56Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-29T08:34:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.9410517733387689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1258 - F1: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5718 | 1.0 | 1145 | 0.2821 | 0.8392 | | 0.3285 | 2.0 | 2290 | 0.2115 | 0.8946 | | 0.2087 | 3.0 | 3435 | 0.1258 | 0.9411 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1 - Datasets 1.18.4 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_sst2_256
gokuls
2023-01-29T08:33:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T07:20:51Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7075688073394495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_sst2_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2641 - Accuracy: 0.7076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5438 | 1.0 | 527 | 1.4012 | 0.5814 | | 1.364 | 2.0 | 1054 | 1.5474 | 0.5413 | | 1.2907 | 3.0 | 1581 | 1.5138 | 0.5642 | | 1.257 | 4.0 | 2108 | 1.4409 | 0.5665 | | 1.2417 | 5.0 | 2635 | 1.4473 | 0.5929 | | 1.2056 | 6.0 | 3162 | 1.2641 | 0.7076 | | 0.6274 | 7.0 | 3689 | nan | 0.4908 | | 0.0 | 8.0 | 4216 | nan | 0.4908 | | 0.0 | 9.0 | 4743 | nan | 0.4908 | | 0.0 | 10.0 | 5270 | nan | 0.4908 | | 0.0 | 11.0 | 5797 | nan | 0.4908 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
kjmann/WormPPO1
kjmann
2023-01-29T07:54:35Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2023-01-29T07:54:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: kjmann/WormPPO1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingtweets/sama
huggingtweets
2023-01-29T07:33:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-06T00:07:39Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/804990434455887872/BG0Xh7Oa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sam Altman</div> <div style="text-align: center; font-size: 14px;">@sama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sam Altman. | Data | Sam Altman | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 388 | | Short tweets | 153 | | Tweets kept | 2705 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6cl7ldqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hi9mhdy4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hi9mhdy4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gokuls/distilbert_add_pre-training-complete
gokuls
2023-01-29T07:22:55Z
38
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:wikitext", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-28T15:57:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: distilbert_add_pre-training-complete results: - task: name: Masked Language Modeling type: fill-mask dataset: name: wikitext wikitext-103-raw-v1 type: wikitext config: wikitext-103-raw-v1 split: validation args: wikitext-103-raw-v1 metrics: - name: Accuracy type: accuracy value: 0.23073914743840437 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_pre-training-complete This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wikitext wikitext-103-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 5.0239 - Accuracy: 0.2307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 6.295 | 1.0 | 3573 | 6.0701 | 0.1522 | | 6.0482 | 2.0 | 7146 | 5.9533 | 0.1565 | | 5.9799 | 3.0 | 10719 | 5.9008 | 0.1584 | | 5.9378 | 4.0 | 14292 | 5.8997 | 0.1545 | | 5.9057 | 5.0 | 17865 | 5.8905 | 0.1536 | | 5.8811 | 6.0 | 21438 | 5.8646 | 0.1550 | | 5.8617 | 7.0 | 25011 | 5.8322 | 0.1534 | | 5.844 | 8.0 | 28584 | 5.8563 | 0.1523 | | 5.8297 | 9.0 | 32157 | 5.8352 | 0.1548 | | 5.8175 | 10.0 | 35730 | 5.8136 | 0.1558 | | 5.8056 | 11.0 | 39303 | 5.8147 | 0.1526 | | 5.7921 | 12.0 | 42876 | 5.8020 | 0.1548 | | 5.7777 | 13.0 | 46449 | 5.7891 | 0.1545 | | 5.7596 | 14.0 | 50022 | 5.7370 | 0.1587 | | 5.7414 | 15.0 | 53595 | 5.7396 | 0.1604 | | 5.7243 | 16.0 | 57168 | 5.7490 | 0.1564 | | 5.6997 | 17.0 | 60741 | 5.7135 | 0.1561 | | 5.6698 | 18.0 | 64314 | 5.6858 | 0.1620 | | 5.6398 | 19.0 | 67887 | 5.6735 | 0.1644 | | 5.6135 | 20.0 | 71460 | 5.6174 | 0.1681 | | 5.5899 | 21.0 | 75033 | 5.6191 | 0.1684 | | 5.5699 | 22.0 | 78606 | 5.5977 | 0.1669 | | 5.5487 | 23.0 | 82179 | 5.6139 | 0.1669 | | 5.529 | 24.0 | 85752 | 5.5272 | 0.1741 | | 5.512 | 25.0 | 89325 | 5.5271 | 0.1727 | | 5.4939 | 26.0 | 92898 | 5.5190 | 0.1721 | | 5.4765 | 27.0 | 96471 | 5.4824 | 0.1770 | | 5.4604 | 28.0 | 100044 | 5.5159 | 0.1747 | | 5.4422 | 29.0 | 103617 | 5.4577 | 0.1807 | | 5.4243 | 30.0 | 107190 | 5.4546 | 0.1772 | | 5.408 | 31.0 | 110763 | 5.4297 | 0.1837 | | 5.3915 | 32.0 | 114336 | 5.4089 | 0.1866 | | 5.3766 | 33.0 | 117909 | 5.3996 | 0.1848 | | 5.3594 | 34.0 | 121482 | 5.3974 | 0.1841 | | 5.3451 | 35.0 | 125055 | 5.3718 | 0.1908 | | 5.3294 | 36.0 | 128628 | 5.3706 | 0.1878 | | 5.3155 | 37.0 | 132201 | 5.3677 | 0.1903 | | 5.2996 | 38.0 | 135774 | 5.2970 | 0.1994 | | 5.287 | 39.0 | 139347 | 5.3127 | 0.1977 | | 5.2735 | 40.0 | 142920 | 5.3145 | 0.1955 | | 5.26 | 41.0 | 146493 | 5.2985 | 0.2017 | | 5.2487 | 42.0 | 150066 | 5.2661 | 0.2025 | | 5.2362 | 43.0 | 153639 | 5.2712 | 0.2031 | | 5.2248 | 44.0 | 157212 | 5.2452 | 0.2049 | | 5.2115 | 45.0 | 160785 | 5.2325 | 0.2054 | | 5.1998 | 46.0 | 164358 | 5.2233 | 0.2075 | | 5.188 | 47.0 | 167931 | 5.1994 | 0.2118 | | 5.1779 | 48.0 | 171504 | 5.2436 | 0.2069 | | 5.1664 | 49.0 | 175077 | 5.2203 | 0.2129 | | 5.1546 | 50.0 | 178650 | 5.1820 | 0.2134 | | 5.1431 | 51.0 | 182223 | 5.2029 | 0.2122 | | 5.133 | 52.0 | 185796 | 5.1458 | 0.2140 | | 5.1226 | 53.0 | 189369 | 5.1757 | 0.2163 | | 5.1138 | 54.0 | 192942 | 5.1380 | 0.2193 | | 5.1046 | 55.0 | 196515 | 5.1498 | 0.2178 | | 5.0984 | 56.0 | 200088 | 5.1094 | 0.2194 | | 5.0907 | 57.0 | 203661 | 5.1354 | 0.2202 | | 5.0812 | 58.0 | 207234 | 5.0662 | 0.2256 | | 5.0748 | 59.0 | 210807 | 5.1163 | 0.2181 | | 5.067 | 60.0 | 214380 | 5.1193 | 0.2199 | | 5.0609 | 61.0 | 217953 | 5.0919 | 0.2224 | | 5.0536 | 62.0 | 221526 | 5.0899 | 0.2239 | | 5.0491 | 63.0 | 225099 | 5.1125 | 0.2224 | | 5.0433 | 64.0 | 228672 | 5.0892 | 0.2226 | | 5.0373 | 65.0 | 232245 | 5.0644 | 0.2260 | | 5.032 | 66.0 | 235818 | 5.0623 | 0.2253 | | 5.0283 | 67.0 | 239391 | 5.1004 | 0.2213 | | 5.0223 | 68.0 | 242964 | 5.0573 | 0.2279 | | 5.0184 | 69.0 | 246537 | 5.0488 | 0.2271 | | 5.014 | 70.0 | 250110 | 5.0482 | 0.2280 | | 5.0102 | 71.0 | 253683 | 5.0600 | 0.2269 | | 5.0079 | 72.0 | 257256 | 5.0271 | 0.2279 | | 5.0029 | 73.0 | 260829 | 5.0629 | 0.2267 | | 4.9994 | 74.0 | 264402 | 5.0304 | 0.2297 | | 4.9978 | 75.0 | 267975 | 5.0485 | 0.2269 | | 4.9945 | 76.0 | 271548 | 5.0380 | 0.2306 | | 4.9917 | 77.0 | 275121 | 5.0590 | 0.2265 | | 4.9913 | 78.0 | 278694 | 5.0585 | 0.2262 | | 4.987 | 79.0 | 282267 | 5.0339 | 0.2278 | | 4.9862 | 80.0 | 285840 | 5.0214 | 0.2305 | | 4.9841 | 81.0 | 289413 | 5.0393 | 0.2271 | | 4.983 | 82.0 | 292986 | 5.0200 | 0.2298 | | 4.9816 | 83.0 | 296559 | 5.0289 | 0.2300 | | 4.9801 | 83.96 | 300000 | 4.9972 | 0.2332 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
syjung/whisper-small-tuning
syjung
2023-01-29T07:11:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "en", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-29T06:01:35Z
--- language: - en license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 7.5773 - eval_wer: 99.3995 - eval_runtime: 561.7733 - eval_samples_per_second: 1.107 - eval_steps_per_second: 1.107 - epoch: 0.01 - step: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_logit_kd_stsb_128
gokuls
2023-01-29T07:02:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T06:57:18Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_stsb_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.041438738522880283 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_logit_kd_stsb_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.1505 - Pearson: 0.0470 - Spearmanr: 0.0414 - Combined Score: 0.0442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.524 | 1.0 | 45 | 1.3607 | -0.0066 | -0.0281 | -0.0174 | | 1.0877 | 2.0 | 90 | 1.1729 | 0.0446 | 0.0497 | 0.0472 | | 1.0648 | 3.0 | 135 | 1.1505 | 0.0470 | 0.0414 | 0.0442 | | 1.0737 | 4.0 | 180 | 1.1564 | 0.0472 | 0.0464 | 0.0468 | | 1.0445 | 5.0 | 225 | 1.1971 | 0.0529 | 0.0575 | 0.0552 | | 1.0296 | 6.0 | 270 | 1.1723 | 0.0578 | 0.0727 | 0.0652 | | 1.026 | 7.0 | 315 | 1.2735 | 0.0621 | 0.0606 | 0.0614 | | 1.0216 | 8.0 | 360 | 1.2214 | 0.0666 | 0.0700 | 0.0683 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
nanashisan/LoRa_pirotess
nanashisan
2023-01-29T07:00:12Z
0
6
null
[ "ja", "region:us" ]
null
2023-01-28T09:45:11Z
--- language: - ja --- プロンプト用KeyWord:pirotess - pirotess, 1girl, solo, pointy ears, dark skin, dark-skinned female, elf, sword, weapon, breasts, long hair, dark elf, circlet, center opening, white hair ![Sample_image](https://huggingface.co/nanashisan/LoRa_pirotess/resolve/main/A1_sample.png)
weikunt/finetuned-ner
weikunt
2023-01-29T06:47:10Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-28T07:54:47Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ner This model is a fine-tuned version of [deepset/deberta-v3-base-squad2](https://huggingface.co/deepset/deberta-v3-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4783 - Precision: 0.3264 - Recall: 0.3591 - F1: 0.3420 - Accuracy: 0.8925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 39.8167 | 1.0 | 760 | 0.3957 | 0.1844 | 0.2909 | 0.2257 | 0.8499 | | 21.7333 | 2.0 | 1520 | 0.3853 | 0.2118 | 0.3273 | 0.2571 | 0.8546 | | 13.8859 | 3.0 | 2280 | 0.3631 | 0.2443 | 0.2909 | 0.2656 | 0.8789 | | 20.6586 | 4.0 | 3040 | 0.3961 | 0.2946 | 0.3455 | 0.3180 | 0.8753 | | 13.8654 | 5.0 | 3800 | 0.3821 | 0.2791 | 0.3273 | 0.3013 | 0.8877 | | 12.6942 | 6.0 | 4560 | 0.4393 | 0.3122 | 0.3364 | 0.3239 | 0.8909 | | 25.0549 | 7.0 | 5320 | 0.4542 | 0.3106 | 0.3727 | 0.3388 | 0.8824 | | 5.6816 | 8.0 | 6080 | 0.4432 | 0.2820 | 0.3409 | 0.3086 | 0.8774 | | 13.1296 | 9.0 | 6840 | 0.4509 | 0.2884 | 0.35 | 0.3162 | 0.8824 | | 7.7173 | 10.0 | 7600 | 0.4265 | 0.3170 | 0.3818 | 0.3464 | 0.8919 | | 6.7922 | 11.0 | 8360 | 0.4749 | 0.3320 | 0.3818 | 0.3552 | 0.8892 | | 5.4287 | 12.0 | 9120 | 0.4564 | 0.2917 | 0.3818 | 0.3307 | 0.8805 | | 7.4153 | 13.0 | 9880 | 0.4735 | 0.2963 | 0.3273 | 0.3110 | 0.8871 | | 9.1154 | 14.0 | 10640 | 0.4553 | 0.3416 | 0.3773 | 0.3585 | 0.8894 | | 5.999 | 15.0 | 11400 | 0.4489 | 0.3203 | 0.4091 | 0.3593 | 0.8880 | | 9.5128 | 16.0 | 12160 | 0.4947 | 0.3164 | 0.3682 | 0.3403 | 0.8883 | | 5.6713 | 17.0 | 12920 | 0.4705 | 0.3527 | 0.3864 | 0.3688 | 0.8919 | | 12.2119 | 18.0 | 13680 | 0.4617 | 0.3123 | 0.3591 | 0.3340 | 0.8857 | | 8.5658 | 19.0 | 14440 | 0.4764 | 0.3092 | 0.35 | 0.3284 | 0.8944 | | 11.0664 | 20.0 | 15200 | 0.4557 | 0.3187 | 0.3636 | 0.3397 | 0.8905 | | 6.7161 | 21.0 | 15960 | 0.4468 | 0.3210 | 0.3955 | 0.3544 | 0.8956 | | 9.0448 | 22.0 | 16720 | 0.5120 | 0.2872 | 0.3682 | 0.3227 | 0.8792 | | 6.573 | 23.0 | 17480 | 0.4990 | 0.3307 | 0.3773 | 0.3524 | 0.8869 | | 5.0543 | 24.0 | 18240 | 0.4763 | 0.3028 | 0.3455 | 0.3227 | 0.8899 | | 6.8797 | 25.0 | 19000 | 0.4814 | 0.2780 | 0.3273 | 0.3006 | 0.8913 | | 7.7544 | 26.0 | 19760 | 0.4695 | 0.3024 | 0.3409 | 0.3205 | 0.8946 | | 4.8346 | 27.0 | 20520 | 0.4849 | 0.3154 | 0.3455 | 0.3297 | 0.8931 | | 4.4766 | 28.0 | 21280 | 0.4809 | 0.2925 | 0.3364 | 0.3129 | 0.8913 | | 7.9149 | 29.0 | 22040 | 0.4756 | 0.3238 | 0.3591 | 0.3405 | 0.8930 | | 7.3033 | 30.0 | 22800 | 0.4783 | 0.3264 | 0.3591 | 0.3420 | 0.8925 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_logit_kd_mnli_96
gokuls
2023-01-29T06:20:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-29T03:08:37Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_add_GLUE_Experiment_logit_kd_mnli_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.5239015459723352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_logit_kd_mnli_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5576 - Accuracy: 0.5239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.624 | 1.0 | 1534 | 0.6178 | 0.3605 | | 0.6176 | 2.0 | 3068 | 0.6138 | 0.3767 | | 0.6139 | 3.0 | 4602 | 0.6112 | 0.3822 | | 0.6104 | 4.0 | 6136 | 0.6071 | 0.3977 | | 0.6027 | 5.0 | 7670 | 0.5978 | 0.4091 | | 0.5958 | 6.0 | 9204 | 0.6104 | 0.4151 | | 0.5877 | 7.0 | 10738 | 0.5963 | 0.4517 | | 0.5787 | 8.0 | 12272 | 0.6054 | 0.4627 | | 0.5711 | 9.0 | 13806 | 0.5753 | 0.4905 | | 0.5641 | 10.0 | 15340 | 0.5713 | 0.4987 | | 0.5583 | 11.0 | 16874 | 0.5645 | 0.5115 | | 0.5535 | 12.0 | 18408 | 0.5646 | 0.5117 | | 0.549 | 13.0 | 19942 | 0.5692 | 0.5176 | | 0.5456 | 14.0 | 21476 | 0.5613 | 0.5220 | | 0.5425 | 15.0 | 23010 | 0.5584 | 0.5302 | | 0.5399 | 16.0 | 24544 | 0.5641 | 0.5252 | | 0.5375 | 17.0 | 26078 | 0.5628 | 0.5260 | | 0.5353 | 18.0 | 27612 | 0.5659 | 0.5200 | | 0.533 | 19.0 | 29146 | 0.5676 | 0.5310 | | 0.5311 | 20.0 | 30680 | 0.5563 | 0.5323 | | 0.5291 | 21.0 | 32214 | 0.5682 | 0.5250 | | 0.5274 | 22.0 | 33748 | 0.5661 | 0.5282 | | 0.5255 | 23.0 | 35282 | 0.5673 | 0.5325 | | 0.5236 | 24.0 | 36816 | 0.5563 | 0.5416 | | 0.5219 | 25.0 | 38350 | 0.5703 | 0.5290 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2