modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 18:27:57
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 18:26:50
card
stringlengths
11
1.01M
nbogdan/flant5-large-0ex-paraphrasing-1epochs
nbogdan
2023-09-05T02:59:05Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-05T02:58:14Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-large-0ex-paraphrasing-1epochs` for google/flan-t5-large An [adapter](https://adapterhub.ml) for the `google/flan-t5-large` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-large") adapter_name = model.load_adapter("nbogdan/flant5-large-0ex-paraphrasing-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
team-lucid/hubert-base-korean
team-lucid
2023-09-05T02:55:16Z
441
25
transformers
[ "transformers", "pytorch", "jax", "safetensors", "hubert", "feature-extraction", "speech", "audio", "automatic-speech-recognition", "custom_code", "ko", "arxiv:2106.07447", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-29T12:00:30Z
--- license: apache-2.0 language: - ko library_name: transformers pipeline_tag: automatic-speech-recognition tags: - speech - audio --- # hubert-base-korean ## Model Details Hubert(Hidden-Unit BERT)๋Š” Facebook์—์„œ ์ œ์•ˆํ•œ Speech Representation Learning ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. Hubert๋Š” ๊ธฐ์กด์˜ ์Œ์„ฑ ์ธ์‹ ๋ชจ๋ธ๊ณผ ๋‹ฌ๋ฆฌ, ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ raw waveform์—์„œ ๋ฐ”๋กœ ํ•™์Šตํ•˜๋Š” self-supervised learning ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ตฌ๊ธ€์˜ TPU Research Cloud(TRC)๋ฅผ ํ†ตํ•ด ์ง€์›๋ฐ›์€ Cloud TPU๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ### Model Description <table> <tr> <td colspan="2"></td> <td>Base</td> <td>Large</td> </tr> <tr> <td rowspan="3">CNN Encoder</td> <td>strides</td> <td colspan="2">5, 2, 2, 2, 2, 2, 2</td> </tr> <tr> <td>kernel width</td> <td colspan="2">10, 3, 3, 3, 3, 2, 2</td> </tr> <tr> <td>channel</td> <td colspan="2">512</td> </tr> <tr> <td rowspan="4">Transformer Encoder</td> <td>Layer</td> <td>12</td> <td>24</td> </tr> <tr> <td>embedding dim</td> <td>768</td> <td>1024</td> </tr> <tr> <td>inner FFN dim</td> <td>3072</td> <td>4096</td> </tr> <tr> <td>attention heads</td> <td>8</td> <td>16</td> </tr> <tr> <td>Projection</td> <td>dim</td> <td>256</td> <td>768</td> </tr> <tr> <td colspan="2">Params</td> <td>95M</td> <td>317M </td> </tr> </table> ## How to Get Started with the Model ### Pytorch ```py import torch from transformers import HubertModel model = HubertModel.from_pretrained("team-lucid/hubert-base-korean") wav = torch.ones(1, 16000) outputs = model(wav) print(f"Input: {wav.shape}") # [1, 16000] print(f"Output: {outputs.last_hidden_state.shape}") # [1, 49, 768] ``` ### JAX/Flax ```py import jax.numpy as jnp from transformers import FlaxAutoModel model = FlaxAutoModel.from_pretrained("team-lucid/hubert-base-korean", trust_remote_code=True) wav = jnp.ones((1, 16000)) outputs = model(wav) print(f"Input: {wav.shape}") # [1, 16000] print(f"Output: {outputs.last_hidden_state.shape}") # [1, 49, 768] ``` ## Training Details ### Training Data ํ•ด๋‹น ๋ชจ๋ธ์€ ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ•œ๊ตญ์ง€๋Šฅ์ •๋ณด์‚ฌํšŒ์ง„ํฅ์›์˜ ์ง€์›์„ ๋ฐ›์•„ ๊ตฌ์ถ•๋œ [์ž์œ ๋Œ€ํ™” ์Œ์„ฑ(์ผ๋ฐ˜๋‚จ์—ฌ)](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=109), [๋‹คํ™”์ž ์Œ์„ฑํ•ฉ์„ฑ ๋ฐ์ดํ„ฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=542), [๋ฐฉ์†ก ์ฝ˜ํ…์ธ  ๋Œ€ํ™”์ฒด ์Œ์„ฑ์ธ์‹ ๋ฐ์ดํ„ฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=463) ์—์„œ ์•ฝ 4,000์‹œ๊ฐ„์„ ์ถ”์ถœํ•ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ### Training Procedure [์› ๋…ผ๋ฌธ](https://arxiv.org/pdf/2106.07447.pdf)๊ณผ ๋™์ผํ•˜๊ฒŒ MFCC ๊ธฐ๋ฐ˜์œผ๋กœ Base ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ๋‹ค์Œ, 500 cluster๋กœ k-means๋ฅผ ์ˆ˜ํ–‰ํ•ด ๋‹ค์‹œ Base์™€ Large ๋ชจ๋ธ์„ ํ•™์Šตํ–ˆ์Šต๋‹ˆ๋‹ค. #### Training Hyperparameters | Hyperparameter | Base | Large | |:--------------------|---------|--------:| | Warmup Steps | 32,000 | 32,000 | | Learning Rates | 5e-4 | 1.5e-3 | | Batch Size | 128 | 128 | | Weight Decay | 0.01 | 0.01 | | Max Steps | 400,000 | 400,000 | | Learning Rate Decay | 0.1 | 0.1 | | \\(Adam\beta_1\\) | 0.9 | 0.9 | | \\(Adam\beta_2\\) | 0.99 | 0.99 |
Lilth05/ppo-LunarLander-v2
Lilth05
2023-09-05T02:44:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-05T02:44:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.09 +/- 20.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dmatekenya/wav2vec2-large-xls-r-1b-chichewa
dmatekenya
2023-09-05T02:41:10Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-1b", "base_model:finetune:facebook/wav2vec2-xls-r-1b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:01:56Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-chichewa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-chichewa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.8481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2567 | 3.51 | 400 | inf | 0.9449 | | 1.476 | 7.02 | 800 | inf | 0.8481 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
alex1qaz/bert-finetuned-goodsmemo-ner
alex1qaz
2023-09-05T02:30:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:goodsmemo", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-05T02:16:14Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - goodsmemo metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-goodsmemo-ner results: - task: name: Token Classification type: token-classification dataset: name: goodsmemo type: goodsmemo config: googdsmemo split: validation args: googdsmemo metrics: - name: Precision type: precision value: 0.14545454545454545 - name: Recall type: recall value: 0.14953271028037382 - name: F1 type: f1 value: 0.14746543778801846 - name: Accuracy type: accuracy value: 0.9293815536058206 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-goodsmemo-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the goodsmemo dataset. It achieves the following results on the evaluation set: - Loss: 0.1899 - Precision: 0.1455 - Recall: 0.1495 - F1: 0.1475 - Accuracy: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 46 | 0.3317 | 0.0 | 0.0 | 0.0 | 0.9018 | | No log | 2.0 | 92 | 0.3051 | 0.0090 | 0.0280 | 0.0137 | 0.8640 | | No log | 3.0 | 138 | 0.2561 | 0.0207 | 0.0467 | 0.0287 | 0.8966 | | No log | 4.0 | 184 | 0.2345 | 0.0383 | 0.0748 | 0.0506 | 0.9118 | | No log | 5.0 | 230 | 0.2319 | 0.0491 | 0.1028 | 0.0665 | 0.9018 | | No log | 6.0 | 276 | 0.2108 | 0.1085 | 0.1308 | 0.1186 | 0.9245 | | No log | 7.0 | 322 | 0.2042 | 0.1181 | 0.1402 | 0.1282 | 0.9268 | | No log | 8.0 | 368 | 0.2077 | 0.1262 | 0.1215 | 0.1238 | 0.9263 | | No log | 9.0 | 414 | 0.1951 | 0.1524 | 0.1495 | 0.1509 | 0.9297 | | No log | 10.0 | 460 | 0.1899 | 0.1455 | 0.1495 | 0.1475 | 0.9294 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
FriedGil/distillBERT-misinformation-classifier
FriedGil
2023-09-05T02:25:43Z
144
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T01:33:54Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distillBERT-misinformation-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillBERT-misinformation-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the Kaggle Fake News dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - Accuracy: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1411 | 1.0 | 800 | 0.0104 | 0.9974 | | 0.0101 | 2.0 | 1600 | 0.0094 | 0.9978 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_backtranslation-2
ThuyNT03
2023-09-05T02:23:18Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:35:42Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_backtranslation-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_backtranslation-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3357 - Accuracy: 0.66 - F1: 0.6673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0185 | 1.0 | 86 | 0.8134 | 0.65 | 0.5550 | | 0.6948 | 2.0 | 172 | 0.9228 | 0.65 | 0.6376 | | 0.5272 | 3.0 | 258 | 0.9715 | 0.69 | 0.6920 | | 0.3985 | 4.0 | 344 | 1.0097 | 0.7 | 0.7042 | | 0.3273 | 5.0 | 430 | 1.0340 | 0.7 | 0.7067 | | 0.2035 | 6.0 | 516 | 1.1582 | 0.68 | 0.6870 | | 0.1705 | 7.0 | 602 | 1.2932 | 0.66 | 0.6673 | | 0.1303 | 8.0 | 688 | 1.3357 | 0.66 | 0.6673 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
kuokxuen/marketmail
kuokxuen
2023-09-05T02:20:51Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-05T02:20:49Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Guanglong/mojing-llm-7b
Guanglong
2023-09-05T02:05:44Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T01:20:00Z
--- license: apache-2.0 --- We have used mojing-llm dataset(https://huggingface.co/datasets/Guanglong/mojing-llm) to sft finetune this model on llama-2-7b.<br />
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2
ThuyNT03
2023-09-05T02:04:06Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:19:26Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_replace_tfidf-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8468 - Accuracy: 0.69 - F1: 0.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0982 | 1.0 | 87 | 0.9995 | 0.47 | 0.4137 | | 0.8884 | 2.0 | 174 | 0.7521 | 0.65 | 0.6032 | | 0.7533 | 3.0 | 261 | 0.7130 | 0.64 | 0.6364 | | 0.6259 | 4.0 | 348 | 0.7598 | 0.68 | 0.6865 | | 0.5278 | 5.0 | 435 | 0.7066 | 0.7 | 0.7053 | | 0.4336 | 6.0 | 522 | 0.7901 | 0.7 | 0.7060 | | 0.3516 | 7.0 | 609 | 0.8106 | 0.69 | 0.6976 | | 0.2859 | 8.0 | 696 | 0.8468 | 0.69 | 0.6959 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Amber9722/sd-class-butterflies-32
Amber9722
2023-09-05T01:56:18Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-09-05T01:56:09Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Amber9722/sd-class-butterflies-32') image = pipeline().images[0] image ```
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_replace_w2v-2
ThuyNT03
2023-09-05T01:54:32Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:09:25Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_replace_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_replace_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9125 - Accuracy: 0.71 - F1: 0.7091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.101 | 1.0 | 84 | 1.0494 | 0.46 | 0.3728 | | 0.9323 | 2.0 | 168 | 0.7962 | 0.59 | 0.5689 | | 0.7109 | 3.0 | 252 | 0.7447 | 0.71 | 0.7004 | | 0.587 | 4.0 | 336 | 0.7251 | 0.71 | 0.7104 | | 0.4611 | 5.0 | 420 | 0.8001 | 0.68 | 0.6770 | | 0.3668 | 6.0 | 504 | 0.8589 | 0.72 | 0.7229 | | 0.291 | 7.0 | 588 | 0.8900 | 0.69 | 0.6894 | | 0.2505 | 8.0 | 672 | 0.9125 | 0.71 | 0.7091 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nbogdan/flant5-base-2ex-bridging-1epochs
nbogdan
2023-09-05T01:49:59Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-05T01:44:00Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-bridging-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-bridging-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
thissayantan/dreambooth-sayantan
thissayantan
2023-09-05T01:48:42Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-05T01:48:40Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of sayantan person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_BERT-2
ThuyNT03
2023-09-05T01:32:37Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:51:06Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_BERT-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_BERT-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1237 - Accuracy: 0.71 - F1: 0.7165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0509 | 1.0 | 87 | 0.8383 | 0.59 | 0.5441 | | 0.7214 | 2.0 | 174 | 0.7218 | 0.72 | 0.72 | | 0.5758 | 3.0 | 261 | 0.7535 | 0.69 | 0.6956 | | 0.4321 | 4.0 | 348 | 0.7413 | 0.73 | 0.7360 | | 0.3364 | 5.0 | 435 | 0.8328 | 0.72 | 0.7269 | | 0.2712 | 6.0 | 522 | 0.9267 | 0.72 | 0.7255 | | 0.1902 | 7.0 | 609 | 1.0811 | 0.7 | 0.7074 | | 0.1351 | 8.0 | 696 | 1.1237 | 0.71 | 0.7165 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
honglinggoh/product_desc_marketing_email
honglinggoh
2023-09-05T01:28:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:28:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
duwuonline/my-translation-helsinki2
duwuonline
2023-09-05T01:27:43Z
104
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "base_model:duwuonline/my-translation-helsinki", "base_model:finetune:duwuonline/my-translation-helsinki", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-05T01:00:23Z
--- license: apache-2.0 base_model: duwuonline/my-translation-helsinki tags: - generated_from_trainer model-index: - name: my-translation-helsinki2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-translation-helsinki2 This model is a fine-tuned version of [duwuonline/my-translation-helsinki](https://huggingface.co/duwuonline/my-translation-helsinki) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ckandemir/bert-base-uncased-issues-128
ckandemir
2023-09-05T01:26:28Z
115
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-04T19:45:22Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0966 | 1.0 | 291 | 1.6190 | | 1.6197 | 2.0 | 582 | 1.5317 | | 1.485 | 3.0 | 873 | 1.4164 | | 1.3992 | 4.0 | 1164 | 1.4064 | | 1.3219 | 5.0 | 1455 | 1.3900 | | 1.2851 | 6.0 | 1746 | 1.2096 | | 1.2328 | 7.0 | 2037 | 1.3019 | | 1.2113 | 8.0 | 2328 | 1.2779 | | 1.1674 | 9.0 | 2619 | 1.2312 | | 1.1443 | 10.0 | 2910 | 1.1830 | | 1.1171 | 11.0 | 3201 | 1.1692 | | 1.1067 | 12.0 | 3492 | 1.2364 | | 1.0846 | 13.0 | 3783 | 1.1871 | | 1.0815 | 14.0 | 4074 | 1.1354 | | 1.054 | 15.0 | 4365 | 1.1771 | | 1.0565 | 16.0 | 4656 | 1.2137 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
JasonTheDeveloper/squad-bloom-3b
JasonTheDeveloper
2023-09-05T01:21:55Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:21:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_w2v-2
ThuyNT03
2023-09-05T01:13:16Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:32:59Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1138 - Accuracy: 0.75 - F1: 0.7539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0576 | 1.0 | 85 | 0.8693 | 0.6 | 0.5283 | | 0.7822 | 2.0 | 170 | 0.8331 | 0.69 | 0.6665 | | 0.6156 | 3.0 | 255 | 0.7210 | 0.72 | 0.7194 | | 0.4447 | 4.0 | 340 | 0.8139 | 0.66 | 0.6645 | | 0.3252 | 5.0 | 425 | 0.9348 | 0.67 | 0.6776 | | 0.2105 | 6.0 | 510 | 0.9185 | 0.77 | 0.7718 | | 0.1437 | 7.0 | 595 | 1.0530 | 0.75 | 0.7539 | | 0.1479 | 8.0 | 680 | 1.1138 | 0.75 | 0.7539 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Murphy08/marketmail
Murphy08
2023-09-05T01:12:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:12:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
schrilax/marketing_email
schrilax
2023-09-05T01:10:46Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-05T00:43:50Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MichelNivard/codellama_Rbase_instr
MichelNivard
2023-09-05T01:08:30Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-01T10:24:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
jschew39/marketmail
jschew39
2023-09-05T01:07:57Z
3
0
peft
[ "peft", "region:us" ]
null
2023-09-05T01:07:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
RafaelMayer/roberta-copec-2
RafaelMayer
2023-09-05T01:06:47Z
62
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:PlanTL-GOB-ES/roberta-base-bne", "base_model:finetune:PlanTL-GOB-ES/roberta-base-bne", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T01:05:40Z
--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-bne tags: - generated_from_keras_callback model-index: - name: RafaelMayer/roberta-copec-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/roberta-copec-2 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6476 - Validation Loss: 0.6356 - Train Accuracy: 0.7647 - Train Precision: [0. 0.76470588] - Train Precision W: 0.5848 - Train Recall: [0. 1.] - Train Recall W: 0.7647 - Train F1: [0. 0.86666667] - Train F1 W: 0.6627 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.6476 | 0.6356 | 0.7647 | [0. 0.76470588] | 0.5848 | [0. 1.] | 0.7647 | [0. 0.86666667] | 0.6627 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
TonySky/results
TonySky
2023-09-05T01:04:37Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-05T01:04:19Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 5000 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_VietNam-aug_insert_synonym-2
ThuyNT03
2023-09-05T01:02:18Z
124
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T22:22:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_VietNam-aug_insert_synonym-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_VietNam-aug_insert_synonym-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3966 - Accuracy: 0.67 - F1: 0.6754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0222 | 1.0 | 87 | 0.8095 | 0.65 | 0.6380 | | 0.6487 | 2.0 | 174 | 0.7375 | 0.67 | 0.6640 | | 0.4554 | 3.0 | 261 | 0.7962 | 0.71 | 0.7084 | | 0.3194 | 4.0 | 348 | 0.8102 | 0.71 | 0.7161 | | 0.2303 | 5.0 | 435 | 1.1793 | 0.65 | 0.6607 | | 0.1728 | 6.0 | 522 | 1.1697 | 0.72 | 0.7245 | | 0.127 | 7.0 | 609 | 1.3509 | 0.69 | 0.6943 | | 0.0927 | 8.0 | 696 | 1.3966 | 0.67 | 0.6754 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_backtranslation-2
ThuyNT03
2023-09-05T00:58:55Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:51:23Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_backtranslation-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_backtranslation-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1103 - Accuracy: 0.74 - F1: 0.7315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0442 | 1.0 | 87 | 0.7191 | 0.69 | 0.6652 | | 0.7545 | 2.0 | 174 | 0.6726 | 0.73 | 0.7264 | | 0.5743 | 3.0 | 261 | 0.6634 | 0.72 | 0.7157 | | 0.4342 | 4.0 | 348 | 0.7801 | 0.73 | 0.7270 | | 0.3244 | 5.0 | 435 | 0.8782 | 0.75 | 0.7438 | | 0.2421 | 6.0 | 522 | 1.0173 | 0.73 | 0.7235 | | 0.167 | 7.0 | 609 | 1.0822 | 0.75 | 0.7431 | | 0.1546 | 8.0 | 696 | 1.1103 | 0.74 | 0.7315 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_replace_BERT-2
ThuyNT03
2023-09-05T00:51:16Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:43:25Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_BERT-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_replace_BERT-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7628 - Accuracy: 0.74 - F1: 0.7395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0907 | 1.0 | 88 | 0.9363 | 0.6 | 0.4898 | | 0.8904 | 2.0 | 176 | 0.7224 | 0.67 | 0.6422 | | 0.7711 | 3.0 | 264 | 0.6336 | 0.75 | 0.7461 | | 0.6682 | 4.0 | 352 | 0.6622 | 0.75 | 0.7403 | | 0.5583 | 5.0 | 440 | 0.6570 | 0.77 | 0.7647 | | 0.4586 | 6.0 | 528 | 0.7534 | 0.77 | 0.7689 | | 0.4152 | 7.0 | 616 | 0.7863 | 0.73 | 0.7279 | | 0.3482 | 8.0 | 704 | 0.7628 | 0.74 | 0.7395 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nbogdan/flant5-base-2ex-elaboration-1epochs
nbogdan
2023-09-05T00:45:42Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-05T00:40:36Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-elaboration-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2
ThuyNT03
2023-09-05T00:43:19Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:35:33Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_replace_tfidf-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7407 - Accuracy: 0.78 - F1: 0.7740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.085 | 1.0 | 88 | 0.9923 | 0.66 | 0.6391 | | 0.9033 | 2.0 | 176 | 0.6803 | 0.74 | 0.7342 | | 0.7906 | 3.0 | 264 | 0.7208 | 0.71 | 0.6992 | | 0.6859 | 4.0 | 352 | 0.6374 | 0.75 | 0.7483 | | 0.5591 | 5.0 | 440 | 0.7554 | 0.76 | 0.7539 | | 0.4588 | 6.0 | 528 | 0.8309 | 0.74 | 0.7337 | | 0.3967 | 7.0 | 616 | 0.6894 | 0.81 | 0.8063 | | 0.3339 | 8.0 | 704 | 0.7407 | 0.78 | 0.7740 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/llama-2-13b-chat-limarp-v2-merged
actionpace
2023-09-05T00:43:09Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T17:29:04Z
--- license: other language: - en --- **Some of my own quants:** * llama-2-13b-chat-limarp-v2-merged_Q5_1_4K.gguf * llama-2-13b-chat-limarp-v2-merged_Q5_1_8K.gguf **Source:** [Doctor-Shotgun](https://huggingface.co/Doctor-Shotgun) **Source Model:** [llama-2-13b-chat-limarp-v2-merged](https://huggingface.co/Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged) **Source models for Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged (Merge)** - [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) - [lemonilia/limarp-llama2-v2](https://huggingface.co/lemonilia/limarp-llama2-v2) (Lora) **Models utilizing Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged** - [Undi95/UndiMix-v1-13b](https://huggingface.co/Undi95/UndiMix-v1-13b) ([Ref](https://huggingface.co/actionpace/UndiMix-v1-13b)) (Merge)
actionpace/Hermes-Kimiko-13B-f16
actionpace
2023-09-05T00:38:56Z
11
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-05T00:15:11Z
--- license: other language: - en --- **Some of my own quants:** * Hermes-Kimiko-13B-f16_Q5_1_4K.gguf * Hermes-Kimiko-13B-f16_Q5_1_8K.gguf **Source:** [Blackroot](https://huggingface.co/Blackroot) **Source Model:** [Hermes-Kimiko-13B-f16](https://huggingface.co/Blackroot/Hermes-Kimiko-13B-f16) **Source models for Blackroot/Hermes-Kimiko-13B-f16 (Merge)** - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [nRuaif/Kimiko_13B](https://huggingface.co/nRuaif/Kimiko_13B) (Lora)
actionpace/FrankensteinsMonster-13B
actionpace
2023-09-05T00:35:39Z
5
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-05T00:12:20Z
--- license: other language: - en --- **Some of my own quants:** * FrankensteinsMonster-13B_Q5_1_4K.gguf * FrankensteinsMonster-13B_Q5_1_8K.gguf **Source:** [Blackroot](https://huggingface.co/Blackroot) **Source Model:** [FrankensteinsMonster-13B](https://huggingface.co/Blackroot/FrankensteinsMonster-13B) **Source models for Blackroot/FrankensteinsMonster-13B (Merge)** - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [Blackroot/Llama-2-13B-Storywriter-LORA](https://huggingface.co/Blackroot/Llama-2-13B-Storywriter-LORA) (Lora) - [lemonilia/limarp-llama2](https://huggingface.co/lemonilia/limarp-llama2) (Lora)
RafaelMayer/roberta-copec-1
RafaelMayer
2023-09-05T00:34:46Z
62
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:PlanTL-GOB-ES/roberta-base-bne", "base_model:finetune:PlanTL-GOB-ES/roberta-base-bne", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:26:18Z
--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-bne tags: - generated_from_keras_callback model-index: - name: RafaelMayer/roberta-copec-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/roberta-copec-1 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6572 - Validation Loss: 0.6316 - Train Accuracy: 0.8235 - Train Precision: [0. 0.82352941] - Train Precision W: 0.6782 - Train Recall: [0. 1.] - Train Recall W: 0.8235 - Train F1: [0. 0.90322581] - Train F1 W: 0.7438 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.6572 | 0.6316 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
dimitarrskv/rl_course_vizdoom_health_gathering_supreme
dimitarrskv
2023-09-05T00:23:13Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T11:17:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.96 +/- 5.26 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dimitarrskv/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
RafaelMayer/bert-copec-1
RafaelMayer
2023-09-05T00:22:58Z
65
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:dccuchile/bert-base-spanish-wwm-uncased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:55:23Z
--- base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_keras_callback model-index: - name: RafaelMayer/bert-copec-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RafaelMayer/bert-copec-1 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1258 - Validation Loss: 0.4666 - Train Accuracy: 0.7647 - Train Precision: [0. 0.8125] - Train Precision W: 0.6691 - Train Recall: [0. 0.92857143] - Train Recall W: 0.7647 - Train F1: [0. 0.86666667] - Train F1 W: 0.7137 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.5926 | 0.4830 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 1 | | 0.3224 | 0.5166 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 2 | | 0.2419 | 0.6137 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 3 | | 0.2583 | 0.5984 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 4 | | 0.2308 | 0.5345 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 5 | | 0.2178 | 0.4710 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 6 | | 0.1861 | 0.4562 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 7 | | 0.1456 | 0.4568 | 0.7647 | [0. 0.8125] | 0.6691 | [0. 0.92857143] | 0.7647 | [0. 0.86666667] | 0.7137 | 8 | | 0.1258 | 0.4666 | 0.7647 | [0. 0.8125] | 0.6691 | [0. 0.92857143] | 0.7647 | [0. 0.86666667] | 0.7137 | 9 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
adyprat/Reinforce-pcopv0
adyprat
2023-09-05T00:22:32Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T21:23:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pcopv0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.60 +/- 21.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_BERT-2
ThuyNT03
2023-09-05T00:17:38Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-05T00:09:29Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_BERT-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_BERT-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9737 - Accuracy: 0.72 - F1: 0.7141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0807 | 1.0 | 88 | 0.9024 | 0.64 | 0.6254 | | 0.8512 | 2.0 | 176 | 0.6824 | 0.75 | 0.7396 | | 0.7009 | 3.0 | 264 | 0.6368 | 0.74 | 0.7363 | | 0.5649 | 4.0 | 352 | 0.6994 | 0.76 | 0.7494 | | 0.458 | 5.0 | 440 | 0.8683 | 0.74 | 0.7300 | | 0.3409 | 6.0 | 528 | 1.0337 | 0.7 | 0.6787 | | 0.2964 | 7.0 | 616 | 0.9357 | 0.75 | 0.7459 | | 0.2305 | 8.0 | 704 | 0.9737 | 0.72 | 0.7141 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
VegaKH/VenusXL
VegaKH
2023-09-05T00:12:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-11T14:05:29Z
--- license: creativeml-openrail-m ---
YiYiXu/yiyi_kandinsky_decoder
YiYiXu
2023-09-05T00:09:15Z
4
1
diffusers
[ "diffusers", "safetensors", "kandinsky", "text-to-image", "dataset:lambdalabs/pokemon-blip-captions", "base_model:kandinsky-community/kandinsky-2-2-decoder", "base_model:finetune:kandinsky-community/kandinsky-2-2-decoder", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:KandinskyV22Pipeline", "region:us" ]
text-to-image
2023-09-04T23:38:45Z
--- license: creativeml-openrail-m base_model: kandinsky-community/kandinsky-2-2-decoder datasets: - lambdalabs/pokemon-blip-captions prior: - kandinsky-community/kandinsky-2-2-prior tags: - kandinsky - text-to-image - diffusers inference: true --- # Finetuning - YiYiXu/yiyi_kandinsky_decoder This pipeline was finetuned from **kandinsky-community/kandinsky-2-2-decoder** on the **lambdalabs/pokemon-blip-captions** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A robot pokemon, 4k photo']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = AutoPipelineForText2Image.from_pretrained("YiYiXu/yiyi_kandinsky_decoder", torch_dtype=torch.float16) prompt = "A robot pokemon, 4k photo" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 2 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 1 * Image resolution: 768 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/yiyixu/text2image-fine-tune/runs/znfqqva8).
ThuyNT03/xlm-roberta-base-Final_Mixed-aug_insert_w2v-2
ThuyNT03
2023-09-05T00:01:14Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T23:53:17Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-Final_Mixed-aug_insert_w2v-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-Final_Mixed-aug_insert_w2v-2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2389 - Accuracy: 0.77 - F1: 0.7662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.054 | 1.0 | 86 | 0.8403 | 0.68 | 0.6696 | | 0.7333 | 2.0 | 172 | 0.5967 | 0.76 | 0.7598 | | 0.5218 | 3.0 | 258 | 0.6397 | 0.77 | 0.7688 | | 0.3402 | 4.0 | 344 | 0.7154 | 0.79 | 0.7825 | | 0.232 | 5.0 | 430 | 0.8591 | 0.76 | 0.7586 | | 0.1443 | 6.0 | 516 | 1.0384 | 0.78 | 0.7774 | | 0.1122 | 7.0 | 602 | 1.1989 | 0.76 | 0.7566 | | 0.0917 | 8.0 | 688 | 1.2389 | 0.77 | 0.7662 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
johaanm/test-planner-alpha-V7.0
johaanm
2023-09-04T23:57:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-04T23:57:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
MattBatchelor/ppo-LunarLander-v2
MattBatchelor
2023-09-04T23:56:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T23:55:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.31 +/- 20.24 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AndrewMarcHarris/ppo-LunarLander-v2
AndrewMarcHarris
2023-09-04T23:55:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T23:55:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.76 +/- 12.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
StudentLLM/Alpagasus-2-13B-QLoRA
StudentLLM
2023-09-04T23:34:51Z
3
0
peft
[ "peft", "en", "region:us" ]
null
2023-08-09T13:08:03Z
--- library_name: peft language: - en --- # Model Details Please check our [Github Repository](https://github.com/gauss5930/AlpaGasus2-QLoRA/tree/main) ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0080
bigmorning
2023-09-04T23:32:37Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T23:32:28Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0080 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0080 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 0.0340 - Train Wermet: 4.3375 - Validation Loss: 0.7900 - Validation Accuracy: 0.0211 - Validation Wermet: 4.0113 - Epoch: 79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | | 0.0042 | 0.0340 | 5.5984 | 0.7914 | 0.0209 | 8.3869 | 65 | | 0.0205 | 0.0339 | 9.9212 | 0.7811 | 0.0209 | 21.1156 | 66 | | 0.0184 | 0.0339 | 8.3175 | 0.7619 | 0.0210 | 0.5360 | 67 | | 0.0080 | 0.0340 | 0.6373 | 0.7554 | 0.0211 | 0.4090 | 68 | | 0.0052 | 0.0340 | 0.5550 | 0.7528 | 0.0211 | 0.3938 | 69 | | 0.0038 | 0.0340 | 0.4678 | 0.7551 | 0.0211 | 0.7911 | 70 | | 0.0032 | 0.0340 | 1.1632 | 0.7617 | 0.0211 | 0.5495 | 71 | | 0.0028 | 0.0340 | 0.7869 | 0.7643 | 0.0211 | 1.4089 | 72 | | 0.0025 | 0.0340 | 1.5997 | 0.7681 | 0.0211 | 1.1413 | 73 | | 0.0023 | 0.0340 | 1.7042 | 0.7719 | 0.0211 | 1.7576 | 74 | | 0.0021 | 0.0340 | 2.3363 | 0.7750 | 0.0211 | 2.2434 | 75 | | 0.0019 | 0.0340 | 2.9550 | 0.7777 | 0.0211 | 2.3071 | 76 | | 0.0017 | 0.0340 | 3.1713 | 0.7831 | 0.0211 | 3.3338 | 77 | | 0.0015 | 0.0340 | 3.9077 | 0.7852 | 0.0211 | 3.6442 | 78 | | 0.0014 | 0.0340 | 4.3375 | 0.7900 | 0.0211 | 4.0113 | 79 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
actionpace/robin-13b-v2-delta
actionpace
2023-09-04T23:26:03Z
24
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-03T16:42:06Z
--- license: other language: - en --- **Some of my own quants:** * robin-13b-v2-delta_Q5_1_4K.gguf * robin-13b-v2-delta_Q5_1_8K.gguf **Source:** [OptimalScale](https://huggingface.co/OptimalScale) **Source Model:** [robin-13b-v2-delta](https://huggingface.co/OptimalScale/robin-13b-v2-delta) **Source models for OptimalScale/robin-13b-v2-delta (Finetune)** - [meta-llama/Llama-2-13b](https://huggingface.co/meta-llama/Llama-2-13b)
elami/vit-base-patch16-224-finetuned-flower
elami
2023-09-04T23:24:28Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-04T23:13:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
substratusai/Llama-2-13B-chat-GGUF
substratusai
2023-09-04T23:19:18Z
0
5
null
[ "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "en", "arxiv:2307.09288", "region:us" ]
text-generation
2023-08-28T04:29:56Z
--- language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 --- # Llama 2 13B Chat GGUF model Original model: https://huggingface.co/meta-llama/Llama-2-13b-chat This is Q4_K_S version Original model readme: # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 13B fine-tuned model, optimized for dialogue use cases. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes โ€” 7B, 13B, and 70B โ€” as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Metaโ€™s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2โ€™s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software โ€œbug,โ€ or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
matsuo-lab/weblab-10b
matsuo-lab
2023-09-04T23:17:28Z
1,883
63
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-04T04:55:47Z
--- license: cc-by-nc-4.0 --- # weblab-10b # Overview This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters. * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 36-layer, 4864-hidden-size transformer-based language model. * **Pre-training** The model was trained on around **600B** tokens from a mixture of the following corpora. - [Japanese C4](https://huggingface.co/datasets/mc4) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) * **Model Series** | Variant | Link | | :-- | :--| | weblab-10b-instruction-sft | https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft | | weblab-10b | https://huggingface.co/matsuo-lab/weblab-10b | * **Authors** Takeshi Kojima --- # Benchmarking * **Japanese benchmark : JGLUE 8-task (2023-08-27)** - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.* - *The 8-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, JSQuAD-1.1, jaqket_v2-0.2, xlsum_ja-1.0, xwinograd_ja, and mgsm-1.0.* - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* - *The number of few-shots is 3,3,3,2,1,1,0,5.* - *special_tokens_map.json is modified to avoid errors during the evaluation of the second half benchmarks. As a result, the results of the first half benchmarks became slightly different.* model | average | jcommonsenseqa | jnli | marc_ja | jsquad | jaqket_v2 | xlsum_ja | xwinograd_ja | mgsm | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | :-- | weblab-10b-instruction-sft | 59.11 | 74.62 | 66.56 | 95.49 | 78.34 | 63.32 | 20.57 | 71.95 | 2 weblab-10b | 50.74 | 66.58 | 53.74 | 82.07 | 62.94 | 56.19 | 10.03 | 71.95 | 2.4 * **Japanese benchmark : JGLUE 4-task (2023-08-18)** - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/2f1583c0735eacdfdfa5b7d656074b69577b6774) library for evaluation.* - *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.* - *model loading is performed with float16, and evaluation is performed with template version 0.3 using the few-shot in-context learning.* - *The number of few-shots is 3,3,3,2.* | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | | :-- | :-- | :-- | :-- | :-- | :-- | | weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 | | weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 | --- # How to use the model ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("matsuo-lab/weblab-10b") model = AutoModelForCausalLM.from_pretrained("matsuo-lab/weblab-10b", torch_dtype=torch.float16) if torch.cuda.is_available(): model = model.to("cuda") text = "ๅพ่ผฉใฏ็Œซใงใ‚ใ‚‹ใ€‚" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=100, do_sample=True, temperature=0.7, top_p=0.95 ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) ~~~~ --- # Licenese [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)
CzarnyRycerz/Reinforce-cartpole-1
CzarnyRycerz
2023-09-04T23:13:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T22:31:26Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zzzotop/cross-lingual-transfer-ner-demo-1
zzzotop
2023-09-04T23:10:03Z
108
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-24T19:45:16Z
Cross-lingual transfer demo with Faroese named entity recognition. Model is trained on Icelandic, the closest living relative. Based on 'Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese', Snรฆbjarnarson et al. (2023). vesteinn/IceBERT finetuned on vesteinn/sosialurin-faroese-ner. Trained for 5 epochs, 22385 steps, lr 2e-5. <b>Training loop written in native pytorch.</b> Evaluation over all batches, methodology inspired by seqeval: <br> Accuracy: 0.54808 <br> Precision: 0.54808 (micro) 0.50460 (macro) 0.31040 (weighted) <br> Recall: 0.54808 (micro) 0.75972 (macro) 0.54808 (weighted) <br> F1: 0.54808 (micro) 0.56363 (macro) 0.39525 (weighted)
FourthBrainGenAI/marketmail
FourthBrainGenAI
2023-09-04T23:07:40Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-04T23:07:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
nbogdan/flant5-base-2ex-overall-1epochs
nbogdan
2023-09-04T22:53:58Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T22:53:49Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-2ex-overall-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-overall-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0065
bigmorning
2023-09-04T22:52:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T22:52:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0065 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0065 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0048 - Train Accuracy: 0.0340 - Train Wermet: 4.9652 - Validation Loss: 0.7821 - Validation Accuracy: 0.0210 - Validation Wermet: 4.9937 - Epoch: 64 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | | 0.0082 | 0.0340 | 2.5718 | 0.7693 | 0.0209 | 3.3565 | 60 | | 0.0073 | 0.0340 | 3.5489 | 0.7747 | 0.0209 | 3.7191 | 61 | | 0.0063 | 0.0340 | 3.7801 | 0.7756 | 0.0209 | 4.4728 | 62 | | 0.0054 | 0.0340 | 4.0145 | 0.7795 | 0.0209 | 5.0058 | 63 | | 0.0048 | 0.0340 | 4.9652 | 0.7821 | 0.0210 | 4.9937 | 64 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Kapiche/twitter-roberta-base-sentiment-latest
Kapiche
2023-09-04T22:49:50Z
286
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "roberta", "text-classification", "en", "dataset:tweet_eval", "arxiv:2202.03829", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-07T13:23:27Z
--- language: en widget: - text: Covid cases are increasing fast! datasets: - tweet_eval --- # Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022) This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. - Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). <b>Labels</b>: 0 -> Negative; 1 -> Neutral; 2 -> Positive This sentiment analysis model has been integrated into [TweetNLP](https://github.com/cardiffnlp/tweetnlp). You can access the demo [here](https://tweetnlp.org). ## Example Pipeline ```python from transformers import pipeline sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("Covid cases are increasing fast!") ``` ``` [{'label': 'Negative', 'score': 0.7236}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) #model.save_pretrained(MODEL) text = "Covid cases are increasing fast!" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Covid cases are increasing fast!" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) Negative 0.7236 2) Neutral 0.2287 3) Positive 0.0477 ``` ### References ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title = "{T}weet{NLP}: Cutting-Edge Natural Language Processing for Social Media", author = "Camacho-collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa Anke, Luis and Liu, Fangyu and Mart{\'\i}nez C{\'a}mara, Eugenio" and others, booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = dec, year = "2022", address = "Abu Dhabi, UAE", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-demos.5", pages = "38--49" } ``` ``` @inproceedings{loureiro-etal-2022-timelms, title = "{T}ime{LM}s: Diachronic Language Models from {T}witter", author = "Loureiro, Daniel and Barbieri, Francesco and Neves, Leonardo and Espinosa Anke, Luis and Camacho-collados, Jose", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-demo.25", doi = "10.18653/v1/2022.acl-demo.25", pages = "251--260" } ```
daochf/Lora-MetaLlamaChat7b-PuceDS-v03
daochf
2023-09-04T22:49:13Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-02T23:39:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
gustavodemoura/q-FrozenLake-v1-4x4-noSlippery
gustavodemoura
2023-09-04T22:48:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T22:48:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gustavodemoura/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
rshei/layoutlmv3-finetuned-cord_100
rshei
2023-09-04T22:47:01Z
82
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-29T05:48:50Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9243884358784284 - name: Recall type: recall value: 0.9333832335329342 - name: F1 type: f1 value: 0.9288640595903166 - name: Accuracy type: accuracy value: 0.9363327674023769 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3467 - Precision: 0.9244 - Recall: 0.9334 - F1: 0.9289 - Accuracy: 0.9363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 0.5174 | 0.8469 | 0.8735 | 0.8600 | 0.8790 | | 0.5511 | 8.33 | 500 | 0.3975 | 0.8999 | 0.9147 | 0.9072 | 0.9194 | | 0.5511 | 12.5 | 750 | 0.3872 | 0.9015 | 0.9184 | 0.9099 | 0.9189 | | 0.1802 | 16.67 | 1000 | 0.3416 | 0.9180 | 0.9296 | 0.9238 | 0.9338 | | 0.1802 | 20.83 | 1250 | 0.3311 | 0.9159 | 0.9289 | 0.9223 | 0.9359 | | 0.0836 | 25.0 | 1500 | 0.3457 | 0.9192 | 0.9281 | 0.9236 | 0.9334 | | 0.0836 | 29.17 | 1750 | 0.3347 | 0.9202 | 0.9319 | 0.9260 | 0.9291 | | 0.0473 | 33.33 | 2000 | 0.3677 | 0.9194 | 0.9304 | 0.9249 | 0.9253 | | 0.0473 | 37.5 | 2250 | 0.3433 | 0.9279 | 0.9341 | 0.9310 | 0.9376 | | 0.0342 | 41.67 | 2500 | 0.3467 | 0.9244 | 0.9334 | 0.9289 | 0.9363 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jrazi/persian-poem-classifier
jrazi
2023-09-04T22:42:30Z
107
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "fa", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T17:11:22Z
--- license: mit language: - fa metrics: - f1 - precision - accuracy library_name: transformers pipeline_tag: text-classification --- --- # Persian Poem Classifier Based on ParsBERT ## Model Description This model, named "Persian Poem Classifier," is based on the ParsBERT architecture and has been fine-tuned to classify Persian poems. Specifically, the model can evaluate whether a given piece of text is poetic, whether it adheres to a valid poetic structure, and whether it captures the style of a specific poet. ### Features - **Multi-task Classification**: Determines if the text is poetic, if it's a valid poem, and if it conforms to a certain poet's style. - **Language Support**: Specialized for Persian language text. - **High Accuracy**: Fine-tuned using a diverse dataset of Persian poems. ## Intended Use This model is intended to be used by researchers, poets, and NLP enthusiasts who are interested in the automated analysis of Persian poetry. It can be utilized in applications ranging from educational platforms to advanced poetry-generating algorithms. ## Limitations - The model has been trained on a specific set of poets and may not generalize well to other styles. - It assumes that the input text is in Persian and adheres to the specific poetic structures it has been trained on. ## Installation & Usage You can easily install the model using the Hugging Face `transformers` library as follows: ```bash pip install transformers ``` To classify a poem, you can use the following code snippet: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("jrazi/persian-poem-classifier") model = AutoModelForSequenceClassification.from_pretrained("jrazi/persian-poem-classifier") text = "Your Persian poem here" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ``` ## Data Source The model is fine-tuned on a curated dataset of Persian poems featuring various poets. The dataset contains multi-label annotations to evaluate the poetic nature, structure, and style conformity of the text. For creating negative labels, the model uses some of the publicly available persian text corporas. In addition to that, we used data augmentation techniques to further diversify our model, in order to make it generalize better. ## Evaluation Metrics The model has been evaluated using standard classification metrics like accuracy, F1-score, and ROC AUC for each of the multi-task objectives. | Metric | Is Poetic | Is Valid Poem | Has Poet Style | | ------ | --------- | ------------- | -------------- | | F1 | 0.66 | 0.66 | 0.59 | | Prec | 0.81 | 0.77 | 0.71 | | Acc | 0.85 | 0.84 | 0.64 | ---
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0060
bigmorning
2023-09-04T22:39:37Z
62
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T22:39:28Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0060 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0096 - Train Accuracy: 0.0340 - Train Wermet: 1.9230 - Validation Loss: 0.7664 - Validation Accuracy: 0.0209 - Validation Wermet: 2.4432 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | | 0.0409 | 0.0339 | 0.0615 | 0.7577 | 0.0208 | 0.2810 | 50 | | 0.0347 | 0.0340 | 0.0859 | 0.7603 | 0.0208 | 0.3534 | 51 | | 0.0286 | 0.0340 | 0.1928 | 0.7554 | 0.0209 | 0.5822 | 52 | | 0.0267 | 0.0340 | 0.3131 | 0.7664 | 0.0208 | 1.7372 | 53 | | 0.0243 | 0.0340 | 1.3154 | 0.7525 | 0.0209 | 0.7770 | 54 | | 0.0206 | 0.0340 | 0.8121 | 0.7532 | 0.0209 | 0.9253 | 55 | | 0.0174 | 0.0340 | 0.9253 | 0.7574 | 0.0209 | 1.4865 | 56 | | 0.0135 | 0.0340 | 1.1761 | 0.7592 | 0.0209 | 1.5813 | 57 | | 0.0111 | 0.0340 | 1.7125 | 0.7631 | 0.0209 | 1.8950 | 58 | | 0.0096 | 0.0340 | 1.9230 | 0.7664 | 0.0209 | 2.4432 | 59 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
kikinamatata/model_2
kikinamatata
2023-09-04T22:37:23Z
0
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-04T19:56:25Z
--- license: creativeml-openrail-m base_model: models/model_1 dataset: None tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - kikinamatata/model_2 This pipeline was finetuned from **models/model_1** on the **None** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: None: Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0050
bigmorning
2023-09-04T22:13:05Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T22:12:56Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0499 - Train Accuracy: 0.0339 - Train Wermet: 0.0487 - Validation Loss: 0.7587 - Validation Accuracy: 0.0208 - Validation Wermet: 0.3030 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | | 0.0956 | 0.0336 | 0.0253 | 0.7579 | 0.0208 | 0.2642 | 45 | | 0.0812 | 0.0337 | 0.0254 | 0.7584 | 0.0208 | 0.2625 | 46 | | 0.0694 | 0.0338 | 0.0332 | 0.7555 | 0.0208 | 0.2693 | 47 | | 0.0592 | 0.0339 | 0.0319 | 0.7534 | 0.0208 | 0.2629 | 48 | | 0.0499 | 0.0339 | 0.0487 | 0.7587 | 0.0208 | 0.3030 | 49 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
acdg1214/a2c-PandaReachDense-v3
acdg1214
2023-09-04T22:01:09Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-04T21:55:50Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.15 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0045
bigmorning
2023-09-04T21:59:45Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:59:38Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0045 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1121 - Train Accuracy: 0.0335 - Train Wermet: 0.0292 - Validation Loss: 0.7589 - Validation Accuracy: 0.0207 - Validation Wermet: 0.2647 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | | 0.2009 | 0.0327 | 0.0596 | 0.7723 | 0.0207 | 0.2712 | 40 | | 0.1750 | 0.0329 | 0.0504 | 0.7629 | 0.0207 | 0.2692 | 41 | | 0.1510 | 0.0331 | 0.0410 | 0.7650 | 0.0207 | 0.2684 | 42 | | 0.1319 | 0.0333 | 0.0367 | 0.7533 | 0.0207 | 0.2655 | 43 | | 0.1121 | 0.0335 | 0.0292 | 0.7589 | 0.0207 | 0.2647 | 44 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
rohanbalkondekar/rohan_dreambooth
rohanbalkondekar
2023-09-04T21:52:29Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-04T21:52:28Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of rohan balkondekar tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
nbogdan/flant5-base-1ex-bridging-1epochs
nbogdan
2023-09-04T21:50:03Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:49:53Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-bridging-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-bridging-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0040
bigmorning
2023-09-04T21:46:29Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:46:21Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0040 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2291 - Train Accuracy: 0.0324 - Train Wermet: 0.0706 - Validation Loss: 0.7876 - Validation Accuracy: 0.0206 - Validation Wermet: 0.2755 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | | 0.3747 | 0.0312 | 0.1293 | 0.8408 | 0.0203 | 0.2931 | 35 | | 0.3331 | 0.0316 | 0.1111 | 0.8253 | 0.0204 | 0.2891 | 36 | | 0.2947 | 0.0319 | 0.0962 | 0.8084 | 0.0205 | 0.2849 | 37 | | 0.2601 | 0.0322 | 0.0817 | 0.7906 | 0.0205 | 0.2783 | 38 | | 0.2291 | 0.0324 | 0.0706 | 0.7876 | 0.0206 | 0.2755 | 39 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
nbogdan/flant5-base-1ex-elaboration-1epochs
nbogdan
2023-09-04T21:34:54Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:34:46Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-elaboration-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
Sbsbvdvd/Shshs
Sbsbvdvd
2023-09-04T21:34:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-04T21:33:59Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0035
bigmorning
2023-09-04T21:33:13Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T21:33:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4228 - Train Accuracy: 0.0308 - Train Wermet: 0.1466 - Validation Loss: 0.8735 - Validation Accuracy: 0.0202 - Validation Wermet: 0.3026 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | | 3.2229 | 0.0152 | 0.6781 | 3.0542 | 0.0125 | 0.7532 | 15 | | 3.1334 | 0.0156 | 0.6614 | 2.9840 | 0.0127 | 0.7448 | 16 | | 3.0313 | 0.0160 | 0.6425 | 2.9032 | 0.0130 | 0.7123 | 17 | | 2.9122 | 0.0166 | 0.6202 | 2.7986 | 0.0134 | 0.6930 | 18 | | 2.7559 | 0.0173 | 0.5940 | 2.6337 | 0.0139 | 0.6673 | 19 | | 2.5649 | 0.0182 | 0.5674 | 2.4490 | 0.0145 | 0.6383 | 20 | | 2.3414 | 0.0193 | 0.5299 | 2.2785 | 0.0150 | 0.6183 | 21 | | 2.0966 | 0.0206 | 0.4903 | 2.0460 | 0.0158 | 0.5649 | 22 | | 1.8283 | 0.0220 | 0.4459 | 1.8369 | 0.0165 | 0.5306 | 23 | | 1.5547 | 0.0235 | 0.3996 | 1.6356 | 0.0172 | 0.4848 | 24 | | 1.3218 | 0.0249 | 0.3581 | 1.4682 | 0.0179 | 0.4510 | 25 | | 1.1383 | 0.0260 | 0.3211 | 1.3465 | 0.0183 | 0.4226 | 26 | | 0.9876 | 0.0270 | 0.2920 | 1.2323 | 0.0188 | 0.3966 | 27 | | 0.8635 | 0.0278 | 0.2651 | 1.1482 | 0.0191 | 0.3749 | 28 | | 0.7620 | 0.0284 | 0.2435 | 1.0816 | 0.0194 | 0.3565 | 29 | | 0.6749 | 0.0290 | 0.2234 | 1.0187 | 0.0196 | 0.3433 | 30 | | 0.5998 | 0.0295 | 0.2025 | 0.9761 | 0.0198 | 0.3319 | 31 | | 0.5325 | 0.0300 | 0.1827 | 0.9326 | 0.0200 | 0.3213 | 32 | | 0.4735 | 0.0305 | 0.1665 | 0.8942 | 0.0201 | 0.3110 | 33 | | 0.4228 | 0.0308 | 0.1466 | 0.8735 | 0.0202 | 0.3026 | 34 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
JanSt/gbert-base-finetuned-twitter_
JanSt
2023-09-04T21:31:46Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-04T08:13:18Z
--- license: mit base_model: deepset/gbert-base tags: - generated_from_trainer model-index: - name: gbert-base-finetuned-twitter_ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base-finetuned-twitter_ This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1933 | 1.0 | 4180 | 1.9612 | | 2.0051 | 2.0 | 8360 | 1.8795 | | 1.939 | 3.0 | 12540 | 1.8310 | | 1.8928 | 4.0 | 16720 | 1.8013 | | 1.8594 | 5.0 | 20900 | 1.7730 | | 1.8336 | 6.0 | 25080 | 1.7702 | | 1.8145 | 7.0 | 29260 | 1.7449 | | 1.7963 | 8.0 | 33440 | 1.7277 | | 1.7806 | 9.0 | 37620 | 1.7105 | | 1.7682 | 10.0 | 41800 | 1.7061 | | 1.7584 | 11.0 | 45980 | 1.7041 | | 1.7454 | 12.0 | 50160 | 1.6899 | | 1.7374 | 13.0 | 54340 | 1.6850 | | 1.7295 | 14.0 | 58520 | 1.6856 | | 1.7232 | 15.0 | 62700 | 1.6819 | | 1.715 | 16.0 | 66880 | 1.6730 | | 1.7101 | 17.0 | 71060 | 1.6723 | | 1.7057 | 18.0 | 75240 | 1.6655 | | 1.7038 | 19.0 | 79420 | 1.6617 | | 1.702 | 20.0 | 83600 | 1.6625 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
facebook/regnet-x-160
facebook
2023-09-04T21:27:33Z
402
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:27:57Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-320
facebook
2023-09-04T21:23:50Z
232
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:43:36Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-x-320
facebook
2023-09-04T21:23:40Z
227
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:29:28Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/convnext-large-384
facebook
2023-09-04T21:22:21Z
243
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "convnext", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2201.03545", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (large-sized model) ConvNeXT model trained on ImageNet-1k at resolution 384x384. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-large-384") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-large-384") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
volvoDon/petro-daemon
volvoDon
2023-09-04T21:21:25Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-04T20:11:04Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: volvoDon/petro-daemon results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # volvoDon/petro-daemon This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a [DataSet of petrologic cross sections](https://huggingface.co/datasets/volvoDon/petrology-sections). It achieves the following results on the evaluation set: - Train Loss: 0.8890 - Validation Loss: 1.1803 - Train Accuracy: 0.6 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations Currently it is just a proof of concept and does a great job identifiying Olivine It currently is not ready for a production enviroment but the results are promising, with an improved dataset I'm confident better results could be acheived. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.6519 | 1.7095 | 0.2 | 0 | | 1.5905 | 1.6747 | 0.2 | 1 | | 1.5690 | 1.6342 | 0.2 | 2 | | 1.5170 | 1.5931 | 0.2 | 3 | | 1.4764 | 1.5528 | 0.6 | 4 | | 1.3835 | 1.5079 | 0.6 | 5 | | 1.3420 | 1.4717 | 0.6 | 6 | | 1.3171 | 1.4232 | 0.6 | 7 | | 1.2897 | 1.3905 | 0.6 | 8 | | 1.2702 | 1.3794 | 0.6 | 9 | | 1.2023 | 1.3351 | 0.6 | 10 | | 1.1480 | 1.3384 | 0.6 | 11 | | 1.1434 | 1.3419 | 0.6 | 12 | | 1.0499 | 1.3226 | 0.6 | 13 | | 1.0672 | 1.2647 | 0.6 | 14 | | 1.0526 | 1.1533 | 0.6 | 15 | | 1.0184 | 1.1546 | 0.6 | 16 | | 0.9505 | 1.2491 | 0.6 | 17 | | 0.9578 | 1.2809 | 0.4 | 18 | | 0.8890 | 1.1803 | 0.6 | 19 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/LLAMA2-13B-Holodeck-1
actionpace
2023-09-04T21:21:09Z
7
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-04T20:46:13Z
--- license: other language: - en --- **Some of my own quants:** * LLAMA2-13B-Holodeck-1_Q5_1_4K.gguf * LLAMA2-13B-Holodeck-1_Q5_1_8K.gguf **Source:** [KoboldAI](https://huggingface.co/KoboldAI) **Source Model:** [LLAMA2-13B-Holodeck-1](https://huggingface.co/KoboldAI/LLAMA2-13B-Holodeck-1) **Models utilizing KoboldAI/LLAMA2-13B-Holodeck-1** - [The-Face-Of-Goonery/Huginn-v3-13b](https://huggingface.co/The-Face-Of-Goonery/Huginn-v3-13b) ([Ref](https://huggingface.co/actionpace/Huginn-v3-13b)) (Finetune, kaiokendev/SuperCOT-dataset)
facebook/convnext-base-224-22k-1k
facebook
2023-09-04T21:09:35Z
653
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "convnext", "image-classification", "vision", "dataset:imagenet-21k", "dataset:imagenet-1k", "arxiv:2201.03545", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (base-sized model) ConvNeXT model pre-trained on ImageNet-22k and fine-tuned on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-base-224-22k-1k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-384-224-1k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nbogdan/flant5-base-1ex-overall-1epochs
nbogdan
2023-09-04T21:04:30Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T21:04:21Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-1ex-overall-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-1ex-overall-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
darthlordvictor/generative-bloom-marketing-002
darthlordvictor
2023-09-04T20:56:22Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-29T02:38:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
rombodawg/LosslessMegaCoder-Falcon-40b-mini
rombodawg
2023-09-04T20:51:15Z
1,426
2
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "dataset:rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-17T02:18:51Z
--- license: apache-2.0 datasets: - rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored --- ___________________________ - Please note this model was not trained on the rombodawg/LosslessMegaCodeTrainingV3_MINI dataset, despite the name similarity. You can find the training data at the bottom of the model card labeled (megacode2-min100) ___________________________ This is one of the first models trained on the LosslessMegaCodeTrainingV2_1m_Evol_Uncensored dataset. The version of the dataset used for this model was filtered by removed any data with less than 100 tokens but plans for much more refined filtering are in the works - This model was made as a colaboration between me and andreaskoepf who is an affiliate of Open Assistant. Prompt template: - chatml format is used: "<|im_start|>system\n{system message}<|im_end|>\n<|im_start|>user\n{user prompt}<|im_end|>\n<|im_start|>assistant\n{Assistant answer}<|im_end|>\n" multi-line: ``` <|im_start|>system {system message}<|im_end|> <|im_start|>user {user prompt}<|im_end|> <|im_start|>assistant {Assistant answer}<|im_end|> ``` Gpt4all template: - System prompt ``` <|im_start|>system "Below is an instruction that describes a task. Write a response that appropriately completes the request." ``` - Prompt template ``` <|im_end|> <|im_start|>user "%1"<|im_end|> <|im_start|>assistant ``` Oobagooba Text-Generation-Webui Template - user: ``` <|im_start|>user {User string}<|im_end|> ``` - bot: ``` <|im_start|>assistant {Bot string}<|im_end|> ``` - turn_template: ``` <|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n ``` - context: ``` <|im_start|>system Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|> ``` Current quantizations available: - (COMING SOON) The link for the full dataset is bellow: - https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored Link for the filtered dataset used to make this model are bellow: - https://huggingface.co/datasets/andreaskoepf/megacode2-min100 The original posting for this model was uploaded at the link bellow. - https://huggingface.co/andreaskoepf/falcon-40b-megacode2
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0015
bigmorning
2023-09-04T20:40:15Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:40:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.3069 - Train Accuracy: 0.0148 - Train Wermet: 0.6961 - Validation Loss: 3.1102 - Validation Accuracy: 0.0124 - Validation Wermet: 0.7609 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | | 3.6023 | 0.0138 | 0.7454 | 3.2711 | 0.0117 | 0.8006 | 10 | | 3.5261 | 0.0140 | 0.7348 | 3.2391 | 0.0119 | 0.8101 | 11 | | 3.4534 | 0.0143 | 0.7212 | 3.2070 | 0.0120 | 0.7870 | 12 | | 3.3814 | 0.0146 | 0.7080 | 3.1505 | 0.0122 | 0.7826 | 13 | | 3.3069 | 0.0148 | 0.6961 | 3.1102 | 0.0124 | 0.7609 | 14 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
nbogdan/flant5-base-0ex-elaboration-1epochs
nbogdan
2023-09-04T20:35:49Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T20:35:39Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-base-0ex-elaboration-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-0ex-elaboration-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated
reginaboateng
2023-09-04T20:31:22Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:pubmedqa", "dataset:pubmedqa", "region:us" ]
null
2023-09-04T20:31:19Z
--- tags: - bert - adapter-transformers - adapterhub:pubmedqa datasets: - pubmedqa --- # Adapter `reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pubmedqa](https://adapterhub.ml/explore/pubmedqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_yes_updated", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_nos_updated
reginaboateng
2023-09-04T20:30:47Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:pubmedqa", "bert", "dataset:pubmedqa", "region:us" ]
null
2023-09-04T20:30:42Z
--- tags: - adapter-transformers - adapterhub:pubmedqa - bert datasets: - pubmedqa --- # Adapter `reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_nos_updated` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pubmedqa](https://adapterhub.ml/explore/pubmedqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("reginaboateng/BERT_pubmedqa_adapter_with_maybes_to_nos_updated", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0010
bigmorning
2023-09-04T20:27:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:26:52Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.6757 - Train Accuracy: 0.0136 - Train Wermet: 0.7548 - Validation Loss: 3.3141 - Validation Accuracy: 0.0116 - Validation Wermet: 0.8400 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | | 4.0911 | 0.0124 | 0.8103 | 3.5364 | 0.0110 | 0.8946 | 5 | | 3.9590 | 0.0127 | 0.7913 | 3.4556 | 0.0113 | 0.8388 | 6 | | 3.8513 | 0.0130 | 0.7794 | 3.4106 | 0.0114 | 0.8515 | 7 | | 3.7607 | 0.0133 | 0.7657 | 3.3507 | 0.0115 | 0.8261 | 8 | | 3.6757 | 0.0136 | 0.7548 | 3.3141 | 0.0116 | 0.8400 | 9 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
96abhishekarora/lt-kn-en_familyname-linkage
96abhishekarora
2023-09-04T20:22:33Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "linktransformer", "sentence-similarity", "tabular-classification", "kn", "en", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-01T02:58:31Z
--- pipeline_tag: sentence-similarity language: - kn - en tags: - linktransformer - sentence-transformers - sentence-similarity - tabular-classification --- # 96abhishekarora/lt-kn-en_familyname-linkage This is a [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) model. At its core this model this is a sentence transformer model [sentence-transformers](https://www.SBERT.net) model- it just wraps around the class. It is designed for quick and easy record linkage (entity-matching) through the LinkTransformer package. The tasks include clustering, deduplication, linking, aggregation and more. Notwithstanding that, it can be used for any sentence similarity task within the sentence-transformers framework as well. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Take a look at the documentation of [sentence-transformers](https://www.sbert.net/index.html) if you want to use this model for more than what we support in our applications. This model has been fine-tuned on the model : bert-base-multilingual-cased. It is pretrained for the language : - kn - en. This model was trained on a dataset consisting of 12105132 people and their family id. 50% of the names are alo transliterated. It was trained for 6 epochs using other defaults that can be found in the repo's LinkTransformer config file - LT_training_config.json ## Usage (LinkTransformer) Using this model becomes easy when you have [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) installed: ``` pip install -U linktransformer ``` Then you can use the model like this: ```python import linktransformer as lt import pandas as pd ##Load the two dataframes that you want to link. For example, 2 dataframes with company names that are written differently df1=pd.read_csv("data/df1.csv") ###This is the left dataframe with key CompanyName for instance df2=pd.read_csv("data/df2.csv") ###This is the right dataframe with key CompanyName for instance ###Merge the two dataframes on the key column! df_merged = lt.merge(df1, df2, on="CompanyName", how="inner") ##Done! The merged dataframe has a column called "score" that contains the similarity score between the two company names ``` ## Training your own LinkTransformer model Any Sentence Transformers can be used as a backbone by simply adding a pooling layer. Any other transformer on HuggingFace can also be used by specifying the option add_pooling_layer==True The model was trained using SupCon loss. Usage can be found in the package docs. The training config can be found in the repo with the name LT_training_config.json To replicate the training, you can download the file and specify the path in the config_path argument of the training function. You can also override the config by specifying the training_args argument. Here is an example. ```python ##Consider the example in the paper that has a dataset of Mexican products and their tariff codes from 1947 and 1948 and we want train a model to link the two tariff codes. saved_model_path = train_model( model_path="hiiamsid/sentence_similarity_spanish_es", dataset_path=dataset_path, left_col_names=["description47"], right_col_names=['description48'], left_id_name=['tariffcode47'], right_id_name=['tariffcode48'], log_wandb=False, config_path=LINKAGE_CONFIG_PATH, training_args={"num_epochs": 1} ) ``` You can also use this package for deduplication (clusters a df on the supplied key column). Merging a fine class (like product) to a coarse class (like HS code) is also possible. Read our paper and the documentation for more! ## Evaluation Results <!--- Describe how your model was evaluated --> You can evaluate the model using the [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) package's inference functions. We have provided a few datasets in the package for you to try out. We plan to host more datasets on Huggingface and our website (Coming soon) that you can take a look at. ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 186000 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `linktransformer.modified_sbert.losses.SupConLoss_wandb` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 18600, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1116000, "weight_decay": 0.01 } ``` LinkTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bigmorning/whisper_input_decoder_shift_r_labels_no_force__0005
bigmorning
2023-09-04T20:13:43Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T20:13:37Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_input_decoder_shift_r_labels_no_force__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_input_decoder_shift_r_labels_no_force__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.2479 - Train Accuracy: 0.0119 - Train Wermet: 0.8226 - Validation Loss: 3.6101 - Validation Accuracy: 0.0109 - Validation Wermet: 0.8696 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.6348 | 0.0091 | 1.5865 | 4.2935 | 0.0093 | 0.9579 | 0 | | 4.9212 | 0.0099 | 0.9054 | 4.1262 | 0.0097 | 0.9390 | 1 | | 4.6819 | 0.0107 | 0.8319 | 3.9071 | 0.0103 | 0.8966 | 2 | | 4.4443 | 0.0114 | 0.8310 | 3.7367 | 0.0106 | 0.8939 | 3 | | 4.2479 | 0.0119 | 0.8226 | 3.6101 | 0.0109 | 0.8696 | 4 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
nrshoudi/wav2vec2-large-xls-r-300m-Arabic-phoneme-Experiment3
nrshoudi
2023-09-04T20:12:10Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T18:59:49Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-Arabic-phoneme-Experiment3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Arabic-phoneme-Experiment3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0054 - Per: 0.0179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Per | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0415 | 1.0 | 102 | 3.1505 | 1.0 | | 3.1122 | 2.0 | 204 | 3.0968 | 1.0 | | 3.0896 | 3.0 | 306 | 3.0042 | 1.0 | | 2.953 | 4.0 | 408 | 2.8056 | 1.0 | | 2.444 | 5.0 | 510 | 1.7510 | 0.6859 | | 1.1295 | 6.0 | 612 | 0.3595 | 0.1672 | | 0.3895 | 7.0 | 714 | 0.1119 | 0.0782 | | 0.2175 | 8.0 | 816 | 0.0607 | 0.0477 | | 0.1353 | 9.0 | 918 | 0.0317 | 0.0247 | | 0.0946 | 10.0 | 1020 | 0.0288 | 0.0286 | | 0.0835 | 11.0 | 1122 | 0.0291 | 0.0370 | | 0.0673 | 12.0 | 1224 | 0.0231 | 0.0261 | | 0.0583 | 13.0 | 1326 | 0.0181 | 0.0199 | | 0.0444 | 14.0 | 1428 | 0.0190 | 0.0266 | | 0.041 | 15.0 | 1530 | 0.0134 | 0.0254 | | 0.0357 | 16.0 | 1632 | 0.0122 | 0.0233 | | 0.0301 | 17.0 | 1734 | 0.0098 | 0.0338 | | 0.0265 | 18.0 | 1836 | 0.0099 | 0.0241 | | 0.0241 | 19.0 | 1938 | 0.0098 | 0.0207 | | 0.0258 | 20.0 | 2040 | 0.0089 | 0.0203 | | 0.0234 | 21.0 | 2142 | 0.0104 | 0.0242 | | 0.0193 | 22.0 | 2244 | 0.0126 | 0.0301 | | 0.0186 | 23.0 | 2346 | 0.0073 | 0.0274 | | 0.0155 | 24.0 | 2448 | 0.0073 | 0.0238 | | 0.0143 | 25.0 | 2550 | 0.0056 | 0.0164 | | 0.0134 | 26.0 | 2652 | 0.0060 | 0.0199 | | 0.012 | 27.0 | 2754 | 0.0052 | 0.0206 | | 0.0122 | 28.0 | 2856 | 0.0054 | 0.0179 | | 0.0105 | 29.0 | 2958 | 0.0055 | 0.0188 | | 0.0098 | 30.0 | 3060 | 0.0054 | 0.0179 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
actionpace/Huginn-13b-V4
actionpace
2023-09-04T20:09:48Z
0
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-04T19:31:44Z
--- license: other language: - en --- **Some of my own quants:** * Huginn-13b-V4_Q5_1_4K.gguf * Huginn-13b-V4_Q5_1_8K.gguf **Source:** [The-Face-Of-Goonery](https://huggingface.co/The-Face-Of-Goonery) **Source Model:** [Huginn-13b-V4](https://huggingface.co/The-Face-Of-Goonery/Huginn-13b-V4) **Source models for The-Face-Of-Goonery/Huginn-13b-V4 (Merge)** - [The-Face-Of-Goonery/Huginn-v3-13b](https://huggingface.co/The-Face-Of-Goonery/Huginn-v3-13b) ([Ref](https://huggingface.co/actionpace/Huginn-v3-13b)) - [Sao10K/Mythical-Destroyer-L2-13B](https://huggingface.co/Sao10K/Mythical-Destroyer-L2-13B) ([Ref](https://huggingface.co/actionpace/Mythical-Destroyer-L2-13B))
ushnahabbasi99/whisper-small-dv
ushnahabbasi99
2023-09-04T19:57:31Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-28T13:11:03Z
--- language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Ushnah Abbasi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 12.72733595298536 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Ushnah Abbasi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1677 - Wer Ortho: 62.0238 - Wer: 12.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1225 | 1.63 | 500 | 0.1677 | 62.0238 | 12.7273 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
venetis/distilbert-base-uncased-finetuned-3d-sentiment
venetis
2023-09-04T19:52:13Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T16:12:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-3d-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-3d-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6641 - Accuracy: 0.7366 - Precision: 0.7377 - Recall: 0.7366 - F1: 0.7364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 12762 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8078 | 1.0 | 3190 | 0.8133 | 0.6628 | 0.6885 | 0.6628 | 0.6607 | | 0.6227 | 2.0 | 6380 | 0.7637 | 0.6855 | 0.7103 | 0.6855 | 0.6849 | | 0.5431 | 3.0 | 9570 | 0.6889 | 0.7047 | 0.7201 | 0.7047 | 0.7017 | | 0.4585 | 4.0 | 12760 | 0.6641 | 0.7366 | 0.7377 | 0.7366 | 0.7364 | | 0.3455 | 5.0 | 15950 | 0.8322 | 0.7203 | 0.7323 | 0.7203 | 0.7187 | | 0.223 | 6.0 | 19140 | 0.9541 | 0.7205 | 0.7316 | 0.7205 | 0.7204 | | 0.145 | 7.0 | 22330 | 1.1726 | 0.7196 | 0.7305 | 0.7196 | 0.7200 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
Jana1994/wav2vec2-large-xls-r-300m-jana-colab
Jana1994
2023-09-04T19:51:58Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-31T08:26:49Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-jana-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: cy split: test args: cy metrics: - name: Wer type: wer value: 0.6497412901000345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-jana-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8913 - Wer: 0.6497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6444 | 1.67 | 200 | 2.9379 | 1.0 | | 2.7964 | 3.33 | 400 | 1.9912 | 0.9927 | | 1.1945 | 5.0 | 600 | 0.9492 | 0.7889 | | 0.6065 | 6.67 | 800 | 0.8534 | 0.7137 | | 0.3859 | 8.33 | 1000 | 0.8933 | 0.6689 | | 0.2724 | 10.0 | 1200 | 0.8913 | 0.6497 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
actionpace/Huginn-13b-v1.2
actionpace
2023-09-04T19:51:30Z
23
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-04T19:18:10Z
--- license: other language: - en --- **Some of my own quants:** * Huginn-13b-v1.2_Q5_1_4K.gguf * Huginn-13b-v1.2_Q5_1_8K.gguf **Source:** [The-Face-Of-Goonery](https://huggingface.co/The-Face-Of-Goonery) **Source Model:** [Huginn-13b-v1.2](https://huggingface.co/The-Face-Of-Goonery/Huginn-13b-v1.2) **Source models for The-Face-Of-Goonery/Huginn-13b-v1.2 (Merge)** - [elinas/chronos-13b](https://huggingface.co/elinas/chronos-13b) ([Ref](https://huggingface.co/actionpace/chronos-13b)) - [jondurbin/airoboros-l2-13b-gpt4-1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1) - [NousResearch/Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) ([Ref](https://huggingface.co/actionpace/Nous-Hermes-Llama2-13b)) - [stabilityai/StableBeluga-13B](https://huggingface.co/stabilityai/StableBeluga-13B) - [Gryphe/MythoLogic-L2-13b](https://huggingface.co/Gryphe/MythoLogic-L2-13b) - [The-Face-Of-Goonery/LegerDemain-FP16](https://huggingface.co/The-Face-Of-Goonery/LegerDemain-FP16) - [lemonilia/limarp-llama2](https://huggingface.co/lemonilia/limarp-llama2) (Lora) **Models utilizing The-Face-Of-Goonery/Huginn-13b-v1.2** - [Undi95/UndiMix-v1-13b](https://huggingface.co/Undi95/UndiMix-v1-13b) ([Ref](https://huggingface.co/actionpace/UndiMix-v1-13b)) (Merge) - [Undi95/ReMM-L2-13B](https://huggingface.co/Undi95/ReMM-L2-13B) ([Ref](https://huggingface.co/actionpace/ReMM-L2-13B)) (Merge)
nbogdan/flant5-small-2ex-bridging-1epochs
nbogdan
2023-09-04T19:49:58Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
null
2023-09-04T19:49:49Z
--- tags: - adapterhub:self-explanations - t5 - adapter-transformers datasets: - self-explanations --- # Adapter `nbogdan/flant5-small-2ex-bridging-1epochs` for google/flan-t5-small An [adapter](https://adapterhub.ml) for the `google/flan-t5-small` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-small") adapter_name = model.load_adapter("nbogdan/flant5-small-2ex-bridging-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
dmatekenya/wav2vec2-large-xls-r-300m-chichewa
dmatekenya
2023-09-04T19:47:30Z
107
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-04T17:49:52Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-chichewa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-chichewa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.9669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2028 | 3.51 | 400 | inf | 0.9999 | | 2.5353 | 7.02 | 800 | inf | 0.9743 | | 1.8464 | 10.53 | 1200 | inf | 0.9777 | | 1.6672 | 14.04 | 1600 | inf | 0.9669 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
nbogdan/flant5-xxl-0ex-overall-1epochs
nbogdan
2023-09-04T19:45:05Z
0
0
adapter-transformers
[ "adapter-transformers", "t5", "adapterhub:self-explanations", "dataset:self-explanations", "region:us" ]
null
2023-09-04T19:44:19Z
--- tags: - adapter-transformers - t5 - adapterhub:self-explanations datasets: - self-explanations --- # Adapter `nbogdan/flant5-xxl-0ex-overall-1epochs` for google/flan-t5-xxl An [adapter](https://adapterhub.ml) for the `google/flan-t5-xxl` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-xxl") adapter_name = model.load_adapter("nbogdan/flant5-xxl-0ex-overall-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
jorgeortizfuentes/chilean-spanish-hate-speech
jorgeortizfuentes
2023-09-04T19:42:36Z
110
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "es", "dataset:jorgeortizfuentes/toxicity_spanish_hate_speech_v2", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-04T19:35:56Z
--- language: - es license: cc-by-4.0 tags: - generated_from_trainer datasets: - jorgeortizfuentes/toxicity_spanish_hate_speech_v2 metrics: - f1 model-index: - name: hate_speech-dv2-patana-chilean-spanish-bert-8k0iqdv2 results: - task: name: Text Classification type: text-classification dataset: name: jorgeortizfuentes/toxicity_spanish_hate_speech_v2 type: jorgeortizfuentes/toxicity_spanish_hate_speech_v2 split: validation metrics: - name: F1 type: f1 value: 0.8160919540229885 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_speech-dv2-patana-chilean-spanish-bert-8k0iqdv2 This model is a fine-tuned version of [dccuchile/patana-chilean-spanish-bert](https://huggingface.co/dccuchile/patana-chilean-spanish-bert) on the jorgeortizfuentes/toxicity_spanish_hate_speech_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1628 - F1: 0.8161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0528 | 5.0 | 430 | 0.1698 | 0.7376 | | 0.003 | 10.0 | 860 | 0.1628 | 0.8161 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3