modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-31 12:28:44
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
540 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-31 12:23:33
card
stringlengths
11
1.01M
CCMat/fgreeneruins-ruins
CCMat
2023-01-27T12:46:53Z
6
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "landscape", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-20T16:37:03Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape widget: - text: high quality photo of Venice in fgreeneruins ruins --- # DreamBooth model for the fgreeneruins concept trained on the CCMat/db-forest-ruins dataset. This is a Stable Diffusion model fine-tuned on the fgreeneruins concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of fgreeneruins ruins** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `ruins` images for the landscape theme.<br> Concept: **fgreeneruins** : forest ruins, greenery ruins<br> Pretrained Model: [nitrosocke/elden-ring-diffusion](https://huggingface.co/nitrosocke/elden-ring-diffusion)<br> Learning rate: 2e-6<br> ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CCMat/fgreeneruins-ruins') image = pipeline().images[0] image ``` ## Samples Prompt: "high quality photo of Venice in fruins ruins" ![example images](images/9f06e8395facb2d518579af064601bd4.png) <br> Prompt: "high quality photo of Rome in fgreeneruins ruins with the Colosseum in the background" ![example images](images/2dc4a78a70200e3e2665a6908271322c.png) <br> Prompt: "fgreeneruins ruins in London near the Tower Bridge, professional photograph" ![example images](images/d53c0d463653d97f4927cdbf7a49df0e.png) <br> Prompt: "photo of Paris in fgreeneruins ruins, elden ring style" ![example images](images/68bb7c41163f286930f32df8c95a4a5a.png) Prompt: "fgreeneruins ruins in Saint Petersburg, Sovietwave" ![example images](images/12125fc604869ef9e0166f3a8ecc130e.png)
CCMat/fforiver-river-mdj
CCMat
2023-01-27T12:46:36Z
6
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "landscape", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-17T18:12:52Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape widget: - text: Fallout concept of fforiver river in front of the Great Pyramid of Giza --- # DreamBooth model for the fforiver concept trained on the CCMat/forest-river dataset. This is a Stable Diffusion model fine-tuned on the fforiver concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of fforiver river** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `river` images for the landscape theme. Pretrained Model: prompthero/openjourney ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CCMat/fforiver-river-mdj') image = pipeline().images[0] image ``` ## Samples Prompt: "high quality photo of fforiver river along the Colosseum in Rome" ![example images](images/0f47ccb9e7fb4e8c9fff7733351fc79c.png) <br> Prompt: "Fallout concept of fforiver river in front of Chichén Itzá in Mexico, sun rays, unreal engine 5" ![example images](images/07d8d8f43d1d184b5e3fc62bb3efddd6.png) <br>
Rajan/donut-base-sroie_300
Rajan
2023-01-27T12:37:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-01-27T12:20:38Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie_300 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie_300 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
jirkoru/TemporalRegressionV2
jirkoru
2023-01-27T12:37:46Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2023-01-27T12:37:05Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: model.pkl widget: structuredData: angel_n_rounds: - 0.0 - 0.0 - 0.0 pre_seed_n_rounds: - 0.0 - 0.0 - 0.0 seed_funding: - 1250000.0 - 800000.0 - 8000000.0 seed_n_rounds: - 1.0 - 3.0 - 1.0 time_first_funding: - 1270.0 - 1856.0 - 689.0 time_till_series_a: - 1455.0 - 1667.0 - 1559.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------|----------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br /> ['time_first_funding', 'seed_funding',<br /> 'time_till_series_a'])])), ('model', LogisticRegression(penalty='none', random_state=0))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br /> ['time_first_funding', 'seed_funding',<br /> 'time_till_series_a'])]) | | model | LogisticRegression(penalty='none', random_state=0) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('min_max_scaler', MinMaxScaler(), ['time_first_funding', 'seed_funding', 'time_till_series_a'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__min_max_scaler | MinMaxScaler() | | transformation__min_max_scaler__clip | False | | transformation__min_max_scaler__copy | True | | transformation__min_max_scaler__feature_range | (0, 1) | | model__C | 1.0 | | model__class_weight | | | model__dual | False | | model__fit_intercept | True | | model__intercept_scaling | 1 | | model__l1_ratio | | | model__max_iter | 100 | | model__multi_class | auto | | model__n_jobs | | | model__penalty | none | | model__random_state | 0 | | model__solver | lbfgs | | model__tol | 0.0001 | | model__verbose | 0 | | model__warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;, MinMaxScaler(),[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">min_max_scaler</label><div class="sk-toggleable__content"><pre>[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;, &#x27;time_till_series_a&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">MinMaxScaler</label><div class="sk-toggleable__content"><pre>MinMaxScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(penalty=&#x27;none&#x27;, random_state=0)</pre></div></div></div></div></div></div></div> ## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # model_card_authors jirko # model_description just the temporal regression with reduced input features
Antiraedus/LeDude-dog
Antiraedus
2023-01-27T12:36:51Z
3
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-31T02:55:08Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of LeDude dog in the Acropolis --- # DreamBooth model for the LeDude concept trained by Antiraedus on the Antiraedus/Dude dataset. This is a Stable Diffusion model fine-tuned on the LeDude concept with DreamBooth, which is my 10 year old Australian Silky terrier. It can be used by modifying the `instance_prompt`: **a photo of LeDude dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme. ## Original ![](example_og.jpg) ## Example ![](example.png) ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Antiraedus/LeDude-dog') image = pipeline().images[0] image ```
sd-dreambooth-library/retro3d
sd-dreambooth-library
2023-01-27T12:35:55Z
13
31
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-13T11:49:23Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image widget: - text: trsldamrl Donald Trump example_title: Retro3d donald Trump - text: trsldamrl keanu reeves example_title: Retro3d Keanu Reeves - text: trsldamrl wizard castle example_title: Retro3d wizard castle --- ### retro3d Dreambooth model trained by abesmon with [Hugging Face Dreambooth Training Space](https://colab.research.google.com/drive/15cxJE2SBYJ0bZwoGzkdOSvqGtgz_Rvhk?usp=sharing) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/drive/1FQkg1LBk99Ujpwn4fBZzGgEcuXz6-52-?usp=sharing). Don't forget to use the concept prompts! concept named **trsldamrl** (use that on your prompt) ### Trained with: ![trsldamrl 0](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2867%29.jpg)![trsldamrl 1](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2838%29.jpg)![trsldamrl 2](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2831%29.jpg)![trsldamrl 3](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2861%29.jpg)![trsldamrl 4](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2821%29.jpg)![trsldamrl 5](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2816%29.jpg)![trsldamrl 6](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2818%29.jpg)![trsldamrl 7](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2873%29.jpg)![trsldamrl 8](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2853%29.jpg)![trsldamrl 9](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2825%29.jpg)![trsldamrl 10](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%285%29.jpg)![trsldamrl 11](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%289%29.jpg)![trsldamrl 12](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2876%29.jpg)![trsldamrl 13](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2870%29.jpg)![trsldamrl 14](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2849%29.jpg)![trsldamrl 15](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2832%29.jpg)![trsldamrl 16](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2852%29.jpg)![trsldamrl 17](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2844%29.jpg)![trsldamrl 18](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2813%29.jpg)![trsldamrl 19](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%282%29.jpg)![trsldamrl 20](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2865%29.jpg)![trsldamrl 21](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2875%29.jpg)![trsldamrl 22](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2827%29.jpg)![trsldamrl 23](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2822%29.jpg)![trsldamrl 24](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2834%29.jpg)![trsldamrl 25](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2869%29.jpg)![trsldamrl 26](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2842%29.jpg)![trsldamrl 27](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2839%29.jpg)![trsldamrl 28](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2862%29.jpg)![trsldamrl 29](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2874%29.jpg)![trsldamrl 30](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2857%29.jpg)![trsldamrl 31](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%284%29.jpg)![trsldamrl 32](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2863%29.jpg)![trsldamrl 33](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2866%29.jpg)![trsldamrl 34](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2856%29.jpg)![trsldamrl 35](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2854%29.jpg)![trsldamrl 36](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%286%29.jpg)![trsldamrl 37](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2837%29.jpg)![trsldamrl 38](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2848%29.jpg)![trsldamrl 39](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2855%29.jpg)![trsldamrl 40](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2841%29.jpg)![trsldamrl 41](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2840%29.jpg)![trsldamrl 42](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2812%29.jpg)![trsldamrl 43](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2868%29.jpg)![trsldamrl 44](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2843%29.jpg)![trsldamrl 45](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2845%29.jpg)![trsldamrl 46](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2859%29.jpg)![trsldamrl 47](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2833%29.jpg)![trsldamrl 48](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2860%29.jpg)![trsldamrl 49](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2826%29.jpg)![trsldamrl 50](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2829%29.jpg)![trsldamrl 51](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2814%29.jpg)![trsldamrl 52](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2817%29.jpg)![trsldamrl 53](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2823%29.jpg)![trsldamrl 54](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2836%29.jpg)![trsldamrl 55](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2871%29.jpg)![trsldamrl 56](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2850%29.jpg)![trsldamrl 57](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2872%29.jpg)![trsldamrl 58](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%287%29.jpg)![trsldamrl 59](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%283%29.jpg)![trsldamrl 60](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2858%29.jpg)![trsldamrl 61](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2846%29.jpg)![trsldamrl 62](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2811%29.jpg)![trsldamrl 63](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2820%29.jpg)![trsldamrl 64](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2835%29.jpg)![trsldamrl 65](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2828%29.jpg)![trsldamrl 66](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2851%29.jpg)![trsldamrl 67](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%281%29.jpg)![trsldamrl 68](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2810%29.jpg)![trsldamrl 69](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2824%29.jpg)![trsldamrl 70](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%288%29.jpg)![trsldamrl 71](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2819%29.jpg)![trsldamrl 72](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2830%29.jpg)![trsldamrl 73](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2864%29.jpg)![trsldamrl 74](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2847%29.jpg)![trsldamrl 75](https://huggingface.co/sd-dreambooth-library/retro3d/resolve/main/concept_images/trsldamrl_%2815%29.jpg)
plasmo/naturitize-sd2-1-768px
plasmo
2023-01-27T12:34:10Z
5
10
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-23T20:31:30Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: "naturitize " --- ### Jak's **Naturitize** Image Pack (SD2.1) for Stable Diffusion **naturitize-sd2.1-768px v.1.0** *THIS IS FOR Stable Diffusion VERSION 2.1* You MUST also include the **naturitize-SD2.1-768px.yaml** file in the same directory as your model file (will be uploaded here for your convenience) With this model, other than being trained from SD2.1, you can also mix and match embeddings to your images! -------------------- Another Jak Texture Pack Release is here to help create your earthy, creations! Trained using 112 (768px) training images, 8000 training steps, 500 Text_Encoder_steps. Use Prompt: "**naturitize**" in the beginning of your prompt followed by a word. *No major prompt-crafting needed*. Thanks to /u/Jak_TheAI_Artist and /u/okamiueru for creating training images! Sample pictures of this concept: ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00199.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00200.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00201.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00202.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00203.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00204.jpg) ![0](https://huggingface.co/plasmo/naturitize-sd2-1-768px/resolve/main/sample_images/00205.jpg)
plasmo/wooditize-sd2-1-768px
plasmo
2023-01-27T12:33:44Z
9
8
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-20T21:22:01Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: "wooditize " --- ### Jak's **WOODitize** Image Pack (SD2.1) for Stable Diffusion **wooditize-sd2.1-768px v.1.0** *THIS IS FOR Stable Diffusion VERSION 2.1* You MUST also include the **wooditize-SD2.1-768px.yaml** file in the same directory as your model file (will be uploaded here for your convenience) With this model, other than being trained from SD2.1, you can also mix and match embeddings to your images! -------------------- Another Jak Texture Pack Release is here to help create WOOD cutouts and dioramas! Trained using 111 (768px) training images, 8000 training steps, 500 Text_Encoder_steps. Use Prompt: "**wooditize**" in the beginning of your prompt followed by a word. *No major prompt-crafting needed*. Thanks to /u/Jak_TheAI_Artist for creating training images! Sample pictures of this concept: ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(3).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(4).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(5).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(6).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(8).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(9).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/wood%20(12).png) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00140.jpg) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00141.jpg) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00142.jpg) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00143.jpg) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00145.jpg) ![0](https://huggingface.co/plasmo/colorjizz-512px/resolve/main/sample_images/00144.jpg)
plasmo/clayitization-sd2-1-768px
plasmo
2023-01-27T12:33:33Z
8
18
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-19T10:54:13Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: "clayitization " --- ### Jak's **Clayitization** Image Pack (SD2.1) for Stable Diffusion **clayitization-sd2.1-768px v.1.0** *THIS IS FOR Stable Diffusion VERSION 2.1* You MUST also include the **clayitization-SD2.1-768px.yaml** file in the same directory as your model file (will be uploaded here for your convenience) With this model, other than being trained from SD2.1, you can also mix and match embeddings to your images! -------------------- From the makers of [Woolitize](https://huggingface.co/plasmo/woolitize-768sd1-5), another versatile Jak Texture Pack is available to help unleash your Clay-itivity! Trained using 100 (768px) training images, 8000 training steps, 500 Text_Encoder_steps. Use Prompt: "**clayitization**" in the beginning of your prompt followed by a word. *No major prompt-crafting needed*. Thanks to /u/Jak_TheAI_Artist for creating training images! Tips: - use fewer prompts to make a more raw clay look (eg. "clayitization, brad pitt" made the image below) - change to square for portraits, and rectangle for dioramas - add "3d, octane render, intricate details" for more realistic details in the clay - use 768 resolution or larger images for best results Sample pictures of this concept: prompt: Clayitization, cat, mdjrny-ppc (embedding) *this is adding the Midjourney-papercut embedding* ![0](https://huggingface.co/plasmo/woolitize-768sd1-5/resolve/main/sample_images/00105.jpg) prompt: Clayitization, brad pitt, inkpunk768 (embedding) *this is adding the Inkpunk768 embedding* ![0](https://huggingface.co/plasmo/woolitize-768sd1-5/resolve/main/sample_images/00108.jpg)
ManglerFTW/CharHelper
ManglerFTW
2023-01-27T12:04:11Z
152
38
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "doi:10.57967/hf/0217", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-17T20:44:25Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- <b>Introduction:</b> This model was trained on a digital painting style mainly with characters and portraits. The main objective is to train a model to be a tool to help with character design ideas. It's base is Stable Diffusion V2.1 and is trained with 768X768 images. You will need to add the .yaml file into the same directory as your model to use. <b>V4:</b> <br /><br /> File Name is CharHelperV4.safetensors<br /> CharHelper V4 is a merge of CharHelper V3 and a newly trained model. This update is to provide a base for future updates. <b>All older keywords from CharHelper V3 will still work.</b> Training subjects on this model are Aliens, Zombies, Birds, Cute styling, Lighthouses, and Macro Photography. Mix and match the styles and keywords to push the model further. ## Usage <b>Use Auto for the vae in settings. If you are using a vae based on a SDv1.5 model, you may not get the best results.</b> <br /> This model has multiple keywords that can be mixed and matched together in order to acheive a multitude of different styles. However, keywords aren't necessarily needed but can help with styling. <b>Keywords:</b> <b>Character Styles:</b> CHV3CZombie, CHV3CAlien, CHV3CBird <b>Scenery/Styles:</b> CHV3SLighthouse, CHV3SCute, CHV3SMacro <b>V3 Keywords:</b> <b>Character Styles:</b> CHV3CKnight, CHV3CWizard, CHV3CBarb, CHV3MTroll, CHV3MDeath, CHV3CRogue, CHV3CCyberpunk, CHV3CSamurai, CHV3CRobot <b>Scenery/Landscapes:</b> CHV3SWorld, CHV3SSciFi <b>WIPs (needs fine-tuning, but try it out):</b> CHV3MDragon, CHV3CVehicle ## Examples ![Collage](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Collage.jpg) ![Alien](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10416-1751637417-CHV3CAlien%2C%20a%20portrait%20of%20a%20man%20in%20a%20cute%20alien%20creature%20costume%20inside%20a%20spaceship%2C%20a%20digital%20rendering%2C%20by%20Arthur%20Pan%2C%20predato.png) <b>Aliens!</b> CHV3CAlien, a portrait of a man in a cute alien creature costume inside a spaceship, a digital rendering, by Arthur Pan, predator, ultra detailed content, face, cockroach, avp, face shown, close-up shot, hastur, very detailed<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 8, Seed: 1751637417, Size: 768x768, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Psychadelic Falcon](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10762-2894490509-A-portrait-of-an-anthropomorphic-falcon-in-knight's-armor-made-of-(crystal-stars)-with-big-eyes-surrounded-by-glowing-aura%2C-colo.jpg) <b>Psychadelic Falcons!</b> A portrait of an anthropomorphic falcon in knight's armor made of (crystal stars) with big eyes surrounded by glowing aura, colorful sparkle feathers, highly detailed intricated concept art, trending on artstation, 8k, anime style eyes, concept art, cinematic, art award, flat shading, inked lines, artwork by wlop and loish<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 11, Seed: 2894490509, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Macro Mushroom](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10650-3958069384-CHV3SMacro%2C%20a%20nighttime%20macro%20photograph%20of%20a%20glowing%20mushroom%20with%20vibrant%20bioluminescent%20caps%20growing%20on%20tree%20bark%2C%20flat%20light.png) <b>Macro Mushrooms!</b> CHV3SMacro, a nighttime macro photograph of a glowing mushroom with vibrant bioluminescent caps growing on tree bark, flat lighting, under saturated, by Anna Haifisch, pexels, fine art, steampunk forest background, mobile wallpaper, roofed forest, trio, 4k vertical wallpaper, mid fall, high detail, cinematic, focus stacking, smooth, sharp focus, soft pastel colors, Professional, masterpiece, commissioned<br /><br /> Negative prompt: amateur, ((b&w)), ((close-up)), (((duplicate))), (((deformed))), blurry, (((bad proportions))), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 7.5, Seed: 3958069384, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Zombie](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10382-28710867-(CHV3CZombie_1.5)%2C%20(a%20medium%20range%20portrait%20of%20elon%20musk%20dressed%20as%20a%20(rotting%20zombie_1.2))%2C%20Professional%2C%20masterpiece%2C%20commissi.png) <b>Zombies!</b> (CHV3CZombie:1.5), (a medium range portrait of elon musk dressed as a (rotting zombie:1.2)), Professional, masterpiece, commissioned, Artwork by Shigeru Miyamoto, attractive face, facial expression, professional hands, professional anatomy, 2 arms and 2 legs<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 9, Seed: 28710867, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Lighthouse](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10365-1984075962-CHV3SLighthouse%2C%20a%20painting%20of%20a%20lighthouse%20on%20a%20small%20island%2C%20polycount%20contest%20winner%2C%20cliffside%20town%2C%20gold%2C%20house%20background%2C.png) <b>Lighthouses!</b> CHV3SLighthouse, a painting of a lighthouse on a small island, polycount contest winner, cliffside town, gold, house background, highlands, tileable, artbook artwork, paid art assets, farm, crisp clean shapes, featured art, mountains, captain, dominant pose, serene landscape, warm color scheme art rendition, low detail, bay, painting, lowres, birds, cgsociety<br /><br /> Negative prompt: 3d, 3d render, b&w, bad anatomy, bad anatomy, bad anatomy, bad art, bad art, bad proportions, blurry, blurry, blurry, body out of frame, canvas frame, cartoon, cloned face, close up, cross-eye, deformed, deformed, deformed, disfigured, disfigured, disfigured, duplicate, extra arms, extra arms, extra fingers, extra legs, extra legs, extra limbs, extra limbs, extra limbs, extra limbs, fused fingers, gross proportions, long neck, malformed limbs, missing arms, missing legs, morbid, mutated, mutated hands, mutated hands, mutation, mutation, mutilated, out of frame, out of frame, out of frame, Photoshop, poorly drawn face, poorly drawn face, poorly drawn feet, poorly drawn hands, poorly drawn hands, tiling, too many fingers<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 7, Seed: 1984075962, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Cute Creature](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10441-3708829983-CHV3SCute%2C%20CHV3CRogue%2C%20a%20cute%20cartoon%20fox%20in%20a%20rogue%20costume%20in%20a%20nordic%20marketplace%20in%20valhalla%2C%20concept%20art%2C%20deviantart%20contes.png) <b>Cute Creatures!</b> CHV3SCute, CHV3CRogue, a cute cartoon fox in a rogue costume in a nordic marketplace in valhalla, concept art, deviantart contest winner, glowing flowers, dofus, epic fantasty card game art, digital art render, dmt art, cute pictoplasma, atom, award winning concept art, at sunrise, engineered, gardening, glowing and epic, awesome, neuroscience<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 9, Seed: 3708829983, Size: 768x768, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Landscape](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10736-2325208488-Studio%20ghibli's%2C%20castle%20in%20the%20sky%2C%20Professional%2C%20masterpiece%2C%20commissioned%2C%20CHV3SWorld%2C%20CHV3SLighthouse%2C%20CHV3SSciFi%2C%20pastel%20col.png) <b>Cool Landscapes!</b> Studio ghibli's, castle in the sky, Professional, masterpiece, commissioned, CHV3SWorld, CHV3SLighthouse, CHV3SSciFi, pastel color palette<br /><br /> Negative prompt: 3d, 3d render, b&w, bad anatomy, bad anatomy, bad anatomy, bad art, bad art, bad proportions, blurry, blurry, blurry, body out of frame, canvas frame, cartoon, cloned face, close up, cross-eye, deformed, deformed, deformed, disfigured, disfigured, disfigured, duplicate, extra arms, extra arms, extra fingers, extra legs, extra legs, extra limbs, extra limbs, extra limbs, extra limbs, fused fingers, gross proportions, long neck, malformed limbs, missing arms, missing legs, morbid, mutated, mutated hands, mutated hands, mutation, mutation, mutilated, out of frame, out of frame, out of frame, Photoshop, poorly drawn face, poorly drawn face, poorly drawn feet, poorly drawn hands, poorly drawn hands, tiling, too many fingers, over-saturated<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 8, Seed: 2325208488, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![Pretty Bird](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10513-1247149957-10mm%20focal%20length%2C%20a%20portrait%20of%20a%20cute%20style%20cat-bird%20that%20is%20standing%20in%20the%20snow%2C%20made%20of%20(crystal%20stars)%20with%20big%20eyes%20surro.png) <b>Even more Psychadelic birds!</b> 10mm focal length, a portrait of a cute style cat-bird that is standing in the snow, made of (crystal stars) with big eyes surrounded by glowing aura, colorful sparkle feathers, highly detailed intricated concept art, trending on artstation, 8k, anime style eyes, concept art, cinematic, art award, flat shading, inked lines, artwork by wlop and loish, by Hans Werner Schmidt, flickr, arabesque, chile, green and orange theme, tim hildebrant, jasmine, h1024, gray, hummingbirds, loosely cropped, hd—h1024, green and gold, at home, diana levin, a beautiful mine, 2019<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 8, Seed: 1247149957, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> ![SpaceMan](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/10726-2298273614-(waste%20up)_1.3%20portrait%20of%20an%20attractive%20person%20dressed%20in%20a%20CHV3CCyberpunk.astronaut%20costume%2C%20forest%20in%20the%20background%2C%20smooth%2C.png) <b>All the V3 Keywords still work nicely!</b> (waste up):1.3 portrait of an attractive person dressed in a CHV3CCyberpunk.astronaut costume, forest in the background, smooth, sharp focus, Professional, masterpiece, commissioned, professionally drawn face, flat shading, trending on artstation, professional hands, professional anatomy, 2 arms and 2 legs, Artwork by Leonardo Davinci, and Frank Frazetta<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, amateur, ((b&w)), ((close-up)), (((duplicate))), (((deformed))), blurry, (((bad proportions))), gross proportions, ugly, tiling, poorly drawn, mutation, mutated, disfigured, deformed, out of frame, blurry, bad art, text, logo, signature, watermark, (fire)<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 7, Seed: 2298273614, Size: 768x896, Model hash: 0eb3318b, ENSD: 3<br /><br /> <b>V3:</b> <br /><br /> File Name is CharHelperV3.ckpt -or- CharHelperV3.safetensors<br /> Completely retrained from the begining in a fundamentally different process from CharHelper V1 and 2. This new model is much more diverse in range and can output some amazing results. It was trained on multiple subjects and styles including buildings, vehicles, and landscapes as well. ## Usage <b>Use Auto for the vae in settings. If you are using a vae based on a SDv1.5 model, you may not get the best results.</b> <br /> This model has multiple keywords that can be mixed and matched together in order to acheive a multitude of different styles. However, keywords aren't necessarily needed but can help with styling. Keywords: Character Styles: CHV3CKnight, CHV3CWizard, CHV3CBarb, CHV3MTroll, CHV3MDeath, CHV3CRogue, CHV3CCyberpunk, CHV3CSamurai, CHV3CRobot Scenery/Landscapes: CHV3SWorld, CHV3SSciFi WIPs (needs fine-tuning, but try it out): CHV3MDragon, CHV3CVehicle **Mix & Match Styles:** ![X/Y Grid](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/xy_grid-0179-1840075390-A%20realistic%20detail%20of%20a%20mid-range%2C%20full-torso%2C%20waist-up%20character%20portrait%20of%20a%20(CHV3CCyberpunk.grim%20reaper)%20costume%20with%20beauti.jpg) <b>Mix & Match "CHV3CCyberpunk.grim reaper"</b> A realistic detail of a mid-range, full-torso, waist-up character portrait of a (CHV3CCyberpunk.grim reaper) costume with beautiful artistic scenery in the background, trending on artstation, 8k, hyper detailed, artstation, concept art, hyper realism, ultra-real, digital painting, cinematic, art award, highly detailed, attractive face, professional hands, professional anatomy, (2 arms, 2 hands)<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 1840075390, Size: 768x896, Model hash: cba4df56, ENSD: 3 **Works with embeddings:** ![X/Y Grid E](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/xy_grid-0193-3079985019-.%2C%20CHV3CWizard%2C%20modelshoot%20style%20mid-range%20character%20detail%20of%20a%20beautiful%20young%20adult%20woman%20wearing%20an%20intricate%20sorceress%20gown.jpg) <b>Mix & Match "."in the beginning with embedding keywords</b> ., CHV3CWizard, modelshoot style mid-range character detail of a beautiful young adult woman wearing an intricate sorceress gown (casting magical spells under the starry night sky), 23 years old, magical energy, trending on artstation, 8k, hyper detailed, artstation, hyper realism, ultra-real, commissioned professional digital painting, cinematic, art award, highly detailed, attractive face, professional anatomy, (2 professional arms, 2 professional hands), artwork by Leonardo Davinci<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 40, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 2891848182, Size: 768x896, Model hash: cba4df56, ENSD: 3 ## Character Examples ![Magical Sorceress](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06502-3460729168-.%2C%20CHV3CWizard%2C%20CHV3CBarb%2C%20modelshoot%20style%20mid-range%20close-up%20of%20a%20beautiful%20young%20adult%20woman%20wearing%20an%20intricate%20sorceress%20g.png) <b>Magical Sorceress</b> ., CHV3CWizard, CHV3CBarb, modelshoot style mid-range close-up of a beautiful young adult woman wearing an intricate sorceress gown casting magical spells under the starry night sky, magical energy, trending on artstation, 8k, hyper detailed, artstation, hyper realism, ultra-real, commissioned professional digital painting, cinematic, art award, highly detailed, attractive face, professional anatomy, (2 professional arms, 2 professional hands), artwork by Leonardo Davinci<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 3460729168, Size: 768x896, Model hash: cba4df56, ENSD: 3 ![Female Death Troll](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/05936-1999542482-a%20(mid-range)%20portrait%20of%20an%20ugly%20green-skinned%20female%20Death%20Troll%20in%20a%20Samurai%20outfit%20in%20a%20dark%20spooky%20forest%2C%20cinematic%2C%20high.png) <b>Female Death Troll</b> a (mid-range) portrait of an ugly green-skinned female Death Troll in a Samurai outfit in a dark spooky forest, cinematic, high detail, artwork by wlop, and loish, Professional, masterpiece, commissioned, (attractive face), facial expression, 4k, polycount contest winner, trending on artstation, professional hands, professional anatomy, 2 arms and 2 legs, CHV3CSamurai, CHV3MTroll, CHV3MDeath, Artwork by Leonardo Davinci, Frank Frazetta, Loish and Wlop<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, ((disfigured)), ((bad art)), ((deformed)),((extra limbs)), ((extra barrel)),((close up)),((b&w)), weird colors, blurry, (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (((tripod))), (((tube))), Photoshop, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (((umbrella)))<br /><br /> Steps: 10, Sampler: DPM++ SDE, CFG scale: 9, Seed: 1999542482, Size: 768x896, Model hash: cba4df56, ENSD: 3 ![Astronaut](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06265-1369534527-A%20realistic%20detail%20of%20a%20character%20portrait%20of%20a%20person%20in%20a(n)%20(CHV3CCyberpunk.astronaut)%20costume%20with%20beautiful%20scenery%20in%20the.png) <b>Astronaut</b> A realistic detail of a character portrait of a person in a(n) (CHV3CCyberpunk.astronaut) costume with beautiful scenery in the background, trending on artstation, 8k, hyper detailed, artstation, full body frame, complete body, concept art, hyper realism, ultra real, watercolor, cinematic, art award, highly detailed, attractive face, facial expression, professional hands, professional anatomy, 2 arms and 2 legs<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, ((disfigured)), ((bad art)), ((deformed)),((extra limbs)), ((extra barrel)),((close up)),((b&w)), weird colors, blurry, (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (((tripod))), (((tube))), Photoshop, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (((umbrella)))<br /><br /> Steps: 40, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 1369534527, Size: 768x896, Model hash: cba4df56, ENSD: 3 ![Cyberpunk Grim Reaper](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06377-1823979933-A%20realistic%20detail%20of%20a%20(mid-range)%20full%20torso%20character%20portrait%20of%20a(n)%20(CHV3CCyberpunk.grim%20reaper)%20costume%20with%20artistic%20sce.png) <b>Cyberpunk Grim Reaper</b> A realistic detail of a (mid-range) full torso character portrait of a(n) (CHV3CCyberpunk.grim reaper) costume with artistic scenery in the background, trending on artstation, 8k, hyper detailed, artstation, concept art, hyper realism, ultra-real, digital oil painting, cinematic, art award, highly detailed, attractive face, facial expression, professional hands, professional anatomy, 2 arms<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, amateur, ((extra limbs)), ((extra barrel)), ((b&w)), close-up, (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon<br /><br /> Steps: 10, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 1823979933, Size: 768x896, Model hash: cba4df56, ENSD: 3 ![>Beautiful Sorceress](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06487-785469078-.%2C%20CHV3CWizard%2C%20a%20close-up_.4%20of%20a%20beautiful%20woman%20wearing%20an%20intricate%20sorceress%20gown%20casting%20magical%20spells%20under%20the%20starry%20n.png) <b>Beautiful Sorceress</b> ., CHV3CWizard, a close-up:.4 of a beautiful woman wearing an intricate sorceress gown casting magical spells under the starry night sky, magical energy, trending on artstation, 8k, hyper detailed, artstation, concept art, hyper realism, ultra-real, digital painting, cinematic, art award, highly detailed, attractive face, professional hands, professional anatomy, (2 arms, 2 hands)<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 10, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 785469078, Size: 768x896, Model hash: cba4df56, ENSD: 3 ![>Tiger](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06588-1989203255-mid-range%20modelshoot%20style%20detail%2C%20(extremely%20detailed%208k%20wallpaper)%2C%20A%20detailed%20portrait%20of%20an%20anthropomorphic%20furry%20tiger%20in%20a.png) <b>It does well with some animals</b> mid-range modelshoot style detail, (extremely detailed 8k wallpaper), A detailed portrait of an anthropomorphic furry tiger in a suit and tie, by justin gerard and greg rutkowski, digital art, realistic painting, dnd, character design, trending on artstation, Smoose2, CHV3CBarb<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, 3d, 3d render, b&w, bad anatomy, bad anatomy, bad anatomy, bad art, bad art, bad proportions, blurry, blurry, blurry, body out of frame, canvas frame, cartoon, cloned face, close up, cross-eye, deformed, deformed, deformed, disfigured, disfigured, disfigured, duplicate, extra arms, extra arms, extra fingers, extra legs, extra legs, extra limbs, extra limbs, extra limbs, extra limbs, fused fingers, gross proportions, long neck, malformed limbs, missing arms, missing legs, morbid, mutated, mutated hands, mutated hands, mutation, mutation, mutilated, out of frame, out of frame, out of frame, Photoshop, poorly drawn face, poorly drawn face, poorly drawn feet, poorly drawn hands, poorly drawn hands, tiling, too many fingers<br /><br /> Steps: 30, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 1989203255, Size: 768x896, Model hash: cba4df56, ENSD: 3 <br /><br /> ## Other Examples Check out CHV3SSciFi, CHV3SWorld, and CHV3CVehicle for non character images<br /> ![>Church in CHV3MDeath Styling](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06200-631476138-a%20((((toon))))%20style%20detail%20of%20a%20((fantasy%2C%20((((cartoon))))%20gothic%20church%20with%20beautiful%20landscaping%20in%20a%20dense%20forest%2C%20in%20the%20s.png) <b>Church in CHV3MDeath Styling</b> a ((((toon)))) style detail of a ((fantasy, ((((cartoon)))) gothic church with beautiful landscaping in a dense forest, in the style of CHV3SWorld and CHV3MDeath)) [ :, ((thick black ink outlines)), ((((penned lines, flat shading, doodled lines)))), anime style illustration, dofus style, stylized, digital painting, high detail, professional, masterpiece, Artwork by studio ghibli and Shigeru Miyamoto:.15]<br /><br /> Negative prompt: NegLowRes-2400, NegMutation-500, disfigured, distorted face, mutated, malformed, poorly drawn, ((odd proportions)), noise, blur, missing limbs, ((ugly)), text, logo, over-exposed, over-saturated, over-exposed, ((over-saturated))<br /><br /> Steps: 35, Sampler: Euler a, CFG scale: 13.5, Seed: 631476138, Size: 1024x768, Model hash: cba4df56, Denoising strength: 0.7, ENSD: 3, First pass size: 768x768 ![>A group of people looking as a space ship](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/06559-2722466703-CHV3CVehicle%2C%20an%20artistic%20detail%20of%20a%20man%20standing%20on%20top%20of%20a%20lush%20green%20field%20with%20a%20giant%20spaceship%20in%20the%20sky%2C%20by%20Christophe.png) <b>A group of people looking as a space ship</b> CHV3CVehicle, an artistic detail of a man standing on top of a lush green field with a giant spaceship in the sky, by Christopher Balaskas, retrofuturism, retro spaceships parked outside, beeple and jeremiah ketner, shipfleet on the horizon, palace floating in the sky, lucasfilm jesper ejsing, of a family leaving a spaceship, highly detailed fantasy art, bonestell, stålenhag, trending on artstation, 8k, hyper detailed, artstation, hyper realism, ultra-real, commissioned professional digital painting, cinematic, art award, highly detailed, attractive face, professional anatomy, (2 professional arms, 2 professional hands), artwork by Leonardo Davinci<br /><br /> Negative prompt: amateur, ((extra limbs)), ((extra barrel)), ((b&w)), ((close-up)), (((duplicate))), ((mutilated)), extra fingers, mutated hands, (((deformed))), blurry, (((bad proportions))), ((extra limbs)), cloned face, out of frame, extra limbs, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck))), (tripod), (tube), ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, crossed eyes, dead eyes, body out of frame, blurry, bad art, bad anatomy, (umbrella), weapon, sword, dagger, katana, cropped head<br /><br /> Steps: 40, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 2722466703, Size: 768x896, Model hash: cba4df56, ENSD: 3 <br /><br /><br /> <b>V2:</b> Trained for an additional 5000 steps. Results will be much more stable and major improvement over V1. Don't forget to add the yaml file into your models directory. V2 checkpoint filename is CharHelper_v2_ SDv2_1_768_step_8500.ckpt ## Usage This model tends to like the higher CFG scale range. 7-15 will bring good results. Images come out well if they are 756X756 resolution size and up. A good prompt to start with is: (a cyberpunk rogue), charhelper, ((close up)) portrait, digital painting, artwork by leonardo davinci, high detail, professional, masterpiece, anime, stylized, face, facial expression, inkpunk, professional anatomy, professional hands, anatomically correct, colorful Negative: ((bad hands)), disfigured, distorted face, mutated, malformed, bad anatomy, mutated feet, bad feet, poorly drawn, ((odd proportions)), noise, blur, missing fingers, missing limbs, long torso, ((ugly)), text, logo, over-exposed, over-saturated, ((bad anatomy)), over-exposed, ((over-saturated)), (((weapon))), long neck, black & white, ((glowing eyes)) Just substitute what's in the beginning parenthesis with your subject. You can also substitute "((close up))" with "((mid range))" as well. These worked best for me, but I'm excited to see what everyone else can do with it. ## Examples Below are some examples of images generated using this model: **A Woman with Los Muertos Skull Facepaint:** ![Woman with Los Muertos Skull Facepaint](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Skullgirl3.png) **Rugged Samurai Man:** ![Rugged Samurai Man](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Chuck_Norris_Samurai.png) **Space Girl:** ![Space Girl](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Space_Girl.png) **Raver Girl with HeadPhones:** ![Raver Girl](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Cyberpunk_Woman_W_Headphones.png) **CyberPunk Rogue:** ![CyberPunk Rogue](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/cyberpunk_rogue_in_a_thief_costume.png) **Toon Animal:** ![Toon Animal](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Cartoon_Animal.png) **Female Astronaut:** ![Female Astronaut](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Female_Astronaut.png) **Japanese Samurai:** ![Japanese Samurai](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Japanese_Samurai.png) **Bell Head:** ![Bell Head](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Bell_Head.png) **Native American Chief:** ![Native American Chief](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/NativeAmerican_Chief.png) **CyberPunk Buddha:** ![CyberPunk Buddha](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Cyberpunk_Buddha.png) **Alien Boy:** ![Alien Boy](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Baby_Yoda.png) **Los Muertos Facepaint 2:** ![Los Muertos Facepaint 2](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Skullgirl2.png) **Robot Fighter:** ![Robot Fighter](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Robot_Fighter.png) **Video Game Elf Character:** ![Video Game Elf Character](https://huggingface.co/ManglerFTW/CharHelper/resolve/main/Image_Samples/Videogame_Character.png) <b>V1:</b> Trained for 3500 steps on SD v2.1 using TheLastBen's Fast Dreambooth. Usage: Use CharHelper in prompt to bring out the style. Other prompts that work well are 'Character Art', 'Close-up/Mid-range Character portrait', 'Digital Painting', Digital Illustration', 'Stylized', and 'anime'. Still needs work with anatomy and full body images may need inpainting to fix faces but there are plans to fine-tune the model further in hopes to improve functionality.
neurator/mnunit1
neurator
2023-01-27T12:01:34Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T12:01:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.77 +/- 15.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Uswa04/q-FrozenLake-v1-4x4-noSlippery
Uswa04
2023-01-27T11:57:49Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T11:57:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Uswa04/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
danishfayaznajar09/firstRL_PPO
danishfayaznajar09
2023-01-27T11:56:45Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T11:56:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.95 +/- 16.20 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vumichien/StarTrek-starship
vumichien
2023-01-27T11:53:28Z
7
8
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "science", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-15T10:21:00Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - science widget: - text: A painting of StarTrek starship, Michelangelo style --- # DreamBooth model for the StarTrek concept trained by vumichien on the vumichien/spaceship_star_trek dataset. <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/1_dlgd3k5ZecT17cJOrg2NdA.jpeg" alt="StarTrek starship"> This is a Stable Diffusion model fine-tuned on the StarTrek concept with DreamBooth. It can be used by modifying the `instance_prompt`: **StarTrek starship** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `starship` images for the science theme. ## Examples <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Leonardo%20Da%20Vinci%20style.png" alt="StarTrek starship - Leonardo Da Vinci style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Leonardo Da Vinci style </figcaption> </figure> <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Michelangelo%20style.png" alt="StarTrek starship - Michelangelo style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Michelangelo style </figcaption> </figure> <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Botero%20style.png" alt="StarTrek starship - Botero style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Botero style </figcaption> </figure> <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Pierre-Auguste%20Renoir%20style.png" alt="StarTrek starship - Pierre-Auguste Renoir style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Pierre-Auguste Renoir style </figcaption> </figure> <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Vincent%20Van%20Gogh%20style.png" alt="StarTrek starship - Vincent Van Gogh style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Vincent Van Gogh style </figcaption> </figure> <figure> <img src="https://huggingface.co/vumichien/StarTrek-starship/resolve/main/Rembrandt%20style.png" alt="StarTrek starship - Rembrandt style"> <figcaption>Text prompts for generated: A painting of StarTrek starship, Rembrandt style </figcaption> </figure> ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('vumichien/StarTrek-starship') image = pipeline().images[0] image ```
Thabet/sssimba-cat
Thabet
2023-01-27T11:51:16Z
3
0
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-06T11:51:26Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: a photo of sssimba cat in the Acropolis --- # DreamBooth model for the sssimba concept trained by Thabet on the Thabet/Simba_dataset dataset. This is a Stable Diffusion model fine-tuned on the sssimba concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of sssimba cat** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `cat` images for the animal theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('Thabet/sssimba-cat') image = pipeline().images[0] image ```
chenglu/xiaocaicai-dog-heywhale
chenglu
2023-01-27T11:50:19Z
10
1
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-14T07:35:34Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: illustration of a xiaocaicai dog sitting on top of the deck of a battle ship traveling through the open sea with a lot of ships surrounding it --- # DreamBooth model for the xiaocaicai concept trained by chenglu. This is a Stable Diffusion model fine-tuned on the xiaocaicai concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of xiaocaicai dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('chenglu/xiaocaicai-dog-heywhale') image = pipeline().images[0] image ``` ## Some examples Prompt: oil painting of a xiaocaicai dog wearing sunglasses by van gogh and by andy warhol ![](https://s3.amazonaws.com/moonup/production/uploads/1673711394333-63765e6b2361581ceb232cc8.jpeg) ![](https://s3.amazonaws.com/moonup/production/uploads/1673711484399-63765e6b2361581ceb232cc8.png) Prompt: a black and white photograph of xiaocaicai dog wearing sunglasses by annie lebovitz, highly-detailed ![](https://s3.amazonaws.com/moonup/production/uploads/1673711740929-63765e6b2361581ceb232cc8.png)
chenglu/caicai-dog-heywhale
chenglu
2023-01-27T11:50:04Z
5
2
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "animal", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-13T05:39:28Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - animal widget: - text: caicai dog sitting on top of the deck of a battle ship traveling through the open sea with a lot of ships surrounding it --- # DreamBooth model for the caicai concept trained by chenglu. This is a Stable Diffusion model fine-tuned on the caicai concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of caicai dog** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `dog` images for the animal theme, for the Hugging Face DreamBooth Hackathon, from the HF CN Community, corporated with the HeyWhale. Thanks to @hhhxynh in the HF China community. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('chenglu/caicai-dog-heywhale') image = pipeline().images[0] image ```
chenglu/taolu-road-heywhale
chenglu
2023-01-27T11:49:32Z
4
2
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "landscape", "heywhale", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-11T01:28:51Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - landscape - heywhale widget: - text: A Godzilla sleep on the taolu road, with a ps5 in it's hand --- # DreamBooth model for the taolu concept trained by chenglu. This is a Stable Diffusion model fine-tuned on the taolu concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of taolu road** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `road` images for the landscape theme. For the HF Dreambooth hackathon, from Hugging Face China Commuinity, Collabration with the HeyWhale platform. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('chenglu/taolu-road-heywhale') image = pipeline().images[0] image ```
GeorgeBredis/space-nebulas
GeorgeBredis
2023-01-27T11:48:31Z
3
3
diffusers
[ "diffusers", "pytorch", "stable-diffusion", "text-to-image", "diffusion-models-class", "dreambooth-hackathon", "science", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-11T14:32:49Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth-hackathon - science widget: - text: a photo of corgi in space nebulas --- # DreamBooth model for the space concept trained by GeorgeBredis on the GeorgeBredis/dreambooth-hackathon-images dataset. This is a Stable Diffusion model fine-tuned on the space concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of space nebulas** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Description This is a Stable Diffusion model fine-tuned on `nebulas` images for the science theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('GeorgeBredis/space-nebulas') image = pipeline().images[0] image ```
nlp04/kobart_4_5.6e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T11:47:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T09:56:12Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_4_5.6e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_4_5.6e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9891 - Rouge1: 35.4597 - Rouge2: 12.0824 - Rougel: 23.0161 - Bleu1: 29.793 - Bleu2: 16.882 - Bleu3: 9.6468 - Bleu4: 5.3654 - Gen Len: 50.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 2.3968 | 0.47 | 5000 | 2.9096 | 32.7469 | 10.9679 | 21.4954 | 27.0594 | 15.1133 | 8.4503 | 4.564 | 48.5501 | | 2.2338 | 0.94 | 10000 | 2.8002 | 33.2148 | 11.5121 | 22.7066 | 26.4886 | 15.0125 | 8.5792 | 4.8523 | 41.1049 | | 1.9652 | 1.42 | 15000 | 2.7699 | 34.4269 | 11.8551 | 22.8478 | 28.2628 | 16.0909 | 9.0427 | 4.9254 | 46.9744 | | 2.001 | 1.89 | 20000 | 2.7201 | 34.157 | 11.8683 | 22.6775 | 28.3593 | 16.1361 | 9.221 | 4.8616 | 46.979 | | 1.6433 | 2.36 | 25000 | 2.7901 | 33.6354 | 11.5761 | 22.6878 | 27.6475 | 15.6571 | 8.8372 | 4.8672 | 43.9953 | | 1.6204 | 2.83 | 30000 | 2.7724 | 34.9611 | 12.1606 | 23.0246 | 29.1014 | 16.6689 | 9.3661 | 5.1916 | 48.8811 | | 1.2955 | 3.3 | 35000 | 2.8970 | 35.896 | 12.7037 | 23.3781 | 29.9701 | 17.3963 | 10.2978 | 5.9339 | 49.5921 | | 1.3501 | 3.78 | 40000 | 2.8854 | 35.2981 | 12.1133 | 23.1845 | 29.483 | 16.7795 | 9.4124 | 5.2042 | 48.5897 | | 1.0865 | 4.25 | 45000 | 2.9912 | 35.581 | 12.5145 | 23.2262 | 29.9364 | 17.2064 | 10.0427 | 5.62 | 48.31 | | 1.052 | 4.72 | 50000 | 2.9891 | 35.4597 | 12.0824 | 23.0161 | 29.793 | 16.882 | 9.6468 | 5.3654 | 50.6014 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
emre/mybankconcept
emre
2023-01-27T11:45:23Z
27
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "Bank", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-28T22:18:40Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - Bank --- ### MyBankConcept Dreambooth model trained by emre I have fine tuned the model with 30 GarantiBBVA photos obtained from google. If you would like your design to look similar like GarantiBBVA office style this is the model you're looking for Try: https://huggingface.co/spaces/emre/garanti-mybankconcept-img-gen --- e-mail: [email protected] ---
alexrods/course-distilroberta-base-mrpc-glue
alexrods
2023-01-27T11:44:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T11:13:20Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: course-distilroberta-base-mrpc-glue results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8235294117647058 - name: F1 type: f1 value: 0.8779661016949152 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # course-distilroberta-base-mrpc-glue This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 1.0204 - Accuracy: 0.8235 - F1: 0.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1616 | 1.09 | 500 | 1.1943 | 0.8162 | 0.8718 | | 0.2134 | 2.18 | 1000 | 1.0204 | 0.8235 | 0.8780 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
cat666/VToooo
cat666
2023-01-27T11:37:02Z
77
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T20:37:57Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- learning_rate 2.5e-6, training with a6000x1, because I am too busy recently, I should not be able to actively do it, and the funds are slightly insufficient ,Forget it, I'm overtraining, take it as an interesting model,(Warning: above 768x832 is recommended, I found that the results below seem to be less than ideal) Will be uploading actively in the near future If you need my help or have better suggestions, come to [Discord server](https://discord.gg/BHb4HvTc6t) [![Discord Server](https://media.discordapp.net/attachments/738013665286160445/1059013462925254676/image.png)](https://discord.gg/BHb4HvTc6t) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
kohbanye/pixel-art-style
kohbanye
2023-01-27T11:30:59Z
96
56
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "stable-diffusion-diffusers", "en", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-18T07:27:52Z
--- language: - en thumbnail: "https://huggingface.co/kohbanye/pixel-art-style/resolve/main/sample.png" tags: - stable-diffusion - text-to-image - stable-diffusion-diffusers --- # Pixel Art Style This is a fine-tuned model of Stable Diffusion. <br> Add token **pixelartstyle** to your prompt. ![pixelart](./sample.png) _an astronaut riding a horse, pixelartstyle_
stevaras2/a2c-AntBulletEnv-v0
stevaras2
2023-01-27T11:27:45Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T11:26:41Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1090.27 +/- 333.43 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
OlafII/papercutcraft-v1
OlafII
2023-01-27T11:12:16Z
43
40
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "paper-cut-craft", "dreambooth", "en", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-05T09:06:03Z
--- inference: true language: - en tags: - stable-diffusion - text-to-image - paper-cut-craft - dreambooth --- # Paper Cut Craft is a fine tuned Stable Diffusion model trained on Midjourney images Use in prompt: "papercutcraft style" Trained on Stable Diffusion v1.5 using Dreambooth # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run papercutcraft-v1: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/papercutcraft-v1) ### Paper Cut Craft Rendered: Steps: 50, Default Automatic1111 settings, Prompt: "papercutcraft style" <img src="https://huggingface.co/OlafII/papercutcraft-v1/resolve/main/images/image_2022-12-06_180651730.png" width="100%"/> ### Training Info Trained on 20 images with 3600 Steps <iframe src="https://akhaliq-papercutcraft-v1.hf.space" frameborder="0" width="850" height="450" ></iframe>
NUTELEX/ppo-LunarLander-v2-Test
NUTELEX
2023-01-27T11:05:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T11:05:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.78 +/- 22.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
roscazo/WL_DISEASE_NER_v1
roscazo
2023-01-27T10:38:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wl-disease", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-27T09:59:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wl-disease model-index: - name: WL_DISEASE_NER_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # WL_DISEASE_NER_v1 This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the wl-disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1489 - Diso Precision: 0.7908 - Diso Recall: 0.8397 - Diso F1: 0.8145 - Diso Number: 1765 - Overall Precision: 0.7908 - Overall Recall: 0.8397 - Overall F1: 0.8145 - Overall Accuracy: 0.9631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Diso Precision | Diso Recall | Diso F1 | Diso Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1199 | 1.0 | 1714 | 0.1187 | 0.7739 | 0.7972 | 0.7854 | 1765 | 0.7739 | 0.7972 | 0.7854 | 0.9610 | | 0.0916 | 2.0 | 3428 | 0.1237 | 0.7748 | 0.8266 | 0.7999 | 1765 | 0.7748 | 0.8266 | 0.7999 | 0.9620 | | 0.0625 | 3.0 | 5142 | 0.1343 | 0.7900 | 0.8289 | 0.8090 | 1765 | 0.7900 | 0.8289 | 0.8090 | 0.9630 | | 0.0485 | 4.0 | 6856 | 0.1489 | 0.7908 | 0.8397 | 0.8145 | 1765 | 0.7908 | 0.8397 | 0.8145 | 0.9631 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
terzimert/bert-finetuned-ner-v2.4
terzimert
2023-01-27T10:28:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:caner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-27T10:04:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - caner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-v2.4 results: - task: name: Token Classification type: token-classification dataset: name: caner type: caner config: default split: train[67%:68%] args: default metrics: - name: Precision type: precision value: 0.7851099830795262 - name: Recall type: recall value: 0.8226950354609929 - name: F1 type: f1 value: 0.8034632034632034 - name: Accuracy type: accuracy value: 0.9542217700915565 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-v2.4 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset. It achieves the following results on the evaluation set: - Loss: 0.2474 - Precision: 0.7851 - Recall: 0.8227 - F1: 0.8035 - Accuracy: 0.9542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2792 | 1.0 | 3228 | 0.3349 | 0.7862 | 0.7695 | 0.7778 | 0.9436 | | 0.1694 | 2.0 | 6456 | 0.2701 | 0.7996 | 0.7996 | 0.7996 | 0.9491 | | 0.1244 | 3.0 | 9684 | 0.2474 | 0.7851 | 0.8227 | 0.8035 | 0.9542 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
terzimert/bert-finetuned-ner-v2.3
terzimert
2023-01-27T10:00:28Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:caner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-27T09:37:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - caner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-v2.3 results: - task: name: Token Classification type: token-classification dataset: name: caner type: caner config: default split: train[85%:86%] args: default metrics: - name: Precision type: precision value: 0.8456375838926175 - name: Recall type: recall value: 0.8456375838926175 - name: F1 type: f1 value: 0.8456375838926175 - name: Accuracy type: accuracy value: 0.9584533113944879 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-v2.3 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset. It achieves the following results on the evaluation set: - Loss: 0.2296 - Precision: 0.8456 - Recall: 0.8456 - F1: 0.8456 - Accuracy: 0.9585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3219 | 1.0 | 3228 | 0.2632 | 0.7960 | 0.8054 | 0.8007 | 0.9383 | | 0.2259 | 2.0 | 6456 | 0.2634 | 0.8189 | 0.8272 | 0.8230 | 0.9486 | | 0.142 | 3.0 | 9684 | 0.2296 | 0.8456 | 0.8456 | 0.8456 | 0.9585 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
nlp04/kobart_64_3e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T09:34:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T08:13:29Z
--- license: mit tags: - generated_from_trainer model-index: - name: kobart_64_3e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_64_3e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
nlp04/kobart_64x2_5e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T09:32:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T08:58:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: kobart_64x2_5e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_64x2_5e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
terzimert/bert-finetuned-ner-v2.2
terzimert
2023-01-27T09:27:12Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:caner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-27T09:04:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - caner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-v2.2 results: - task: name: Token Classification type: token-classification dataset: name: caner type: caner config: default split: train[90%:91%] args: default metrics: - name: Precision type: precision value: 0.8822751322751323 - name: Recall type: recall value: 0.8496815286624204 - name: F1 type: f1 value: 0.8656716417910448 - name: Accuracy type: accuracy value: 0.942741116751269 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-v2.2 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Precision: 0.8823 - Recall: 0.8497 - F1: 0.8657 - Accuracy: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2726 | 1.0 | 3228 | 0.4504 | 0.7390 | 0.7287 | 0.7338 | 0.9107 | | 0.2057 | 2.0 | 6456 | 0.3679 | 0.8633 | 0.8446 | 0.8538 | 0.9385 | | 0.1481 | 3.0 | 9684 | 0.3595 | 0.8823 | 0.8497 | 0.8657 | 0.9427 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ykleeee/wav2vec2-finetune-60percent
ykleeee
2023-01-27T09:21:51Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-01-20T07:10:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-finetune-60percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetune-60percent This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3087 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.4153 | 50.0 | 100 | 3.3087 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 2.8.0 - Tokenizers 0.10.3
mkato/distilbert-base-uncased-finetuned-emotion
mkato
2023-01-27T09:20:22Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T08:06:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.939 - name: F1 type: f1 value: 0.9391263036329083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1340 - Accuracy: 0.939 - F1: 0.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5187 | 1.0 | 250 | 0.1878 | 0.9245 | 0.9240 | | 0.141 | 2.0 | 500 | 0.1340 | 0.939 | 0.9391 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2
kjmann/PyramidsPPO
kjmann
2023-01-27T09:14:43Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-27T09:14:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: kjmann/PyramidsPPO 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gmojko/a2c-PandaReachDense-v2_v6
gmojko
2023-01-27T09:02:53Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T09:00:41Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.59 +/- 0.19 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nlp04/kobart_64x2_3e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T08:47:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T08:18:43Z
--- license: mit tags: - generated_from_trainer model-index: - name: kobart_64x2_3e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_64x2_3e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
FnSK4R17s/q-FrozenLake-v1-4x4-noSlippery
FnSK4R17s
2023-01-27T08:42:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T08:42:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="FnSK4R17s/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ThomasSimonini/ML-Agents-SoccerTwos-SuperBad
ThomasSimonini
2023-01-27T08:37:53Z
5
0
ml-agents
[ "ml-agents", "onnx", "ML-Agents-SoccerTwos", "reinforcement-learning", "region:us" ]
reinforcement-learning
2023-01-27T08:36:15Z
--- task: reinforcement-learning library_name: ml-agents tags: - ML-Agents-SoccerTwos - reinforcement-learning ---
maximerosano/q-FrozenLake-v1-8x8-noSlippery
maximerosano
2023-01-27T08:21:58Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T08:21:54Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="maximerosano/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gmojko/a2c-PandaReachDense-v2_v5
gmojko
2023-01-27T08:13:59Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T08:11:41Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.88 +/- 0.86 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
maximerosano/q-FrozenLake-v1-4x4-noSlippery
maximerosano
2023-01-27T08:13:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T08:13:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="maximerosano/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nlp04/kobart_8_1e-4_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T07:53:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T06:32:59Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_8_1e-4_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_8_1e-4_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0961 - Rouge1: 35.8883 - Rouge2: 12.7003 - Rougel: 23.3874 - Bleu1: 30.2528 - Bleu2: 17.5183 - Bleu3: 10.2094 - Bleu4: 5.6021 - Gen Len: 50.1562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 2.4648 | 0.19 | 1000 | 2.9491 | 32.241 | 10.5261 | 21.21 | 26.5995 | 14.7371 | 7.8411 | 4.1361 | 48.303 | | 2.4028 | 0.38 | 2000 | 2.9226 | 33.8957 | 11.6309 | 22.4654 | 28.1592 | 15.9817 | 9.163 | 5.0564 | 49.5175 | | 2.4109 | 0.57 | 3000 | 2.9092 | 33.9997 | 11.4619 | 22.2822 | 28.0021 | 15.7774 | 8.7258 | 4.5887 | 44.6807 | | 2.3846 | 0.76 | 4000 | 2.8763 | 31.8881 | 10.1122 | 21.1754 | 25.4518 | 13.7126 | 7.4549 | 3.9979 | 40.9161 | | 2.2972 | 0.94 | 5000 | 2.8441 | 33.4146 | 11.8371 | 22.7219 | 27.1678 | 15.4977 | 9.1783 | 5.3303 | 43.8765 | | 2.0162 | 1.13 | 6000 | 2.8372 | 34.9461 | 11.8978 | 22.7877 | 28.9743 | 16.3778 | 9.2932 | 5.0534 | 47.1585 | | 1.9816 | 1.32 | 7000 | 2.8630 | 33.1249 | 10.8834 | 22.0846 | 27.0042 | 14.9508 | 8.3482 | 4.5422 | 44.676 | | 2.0172 | 1.51 | 8000 | 2.7998 | 34.1663 | 11.5471 | 22.8156 | 28.0367 | 15.7969 | 8.6235 | 4.5914 | 44.9254 | | 2.017 | 1.7 | 9000 | 2.7865 | 33.3775 | 11.194 | 22.6083 | 26.7485 | 14.9797 | 8.2559 | 4.279 | 41.5828 | | 1.9734 | 1.89 | 10000 | 2.7532 | 34.7147 | 12.353 | 23.0917 | 28.8012 | 16.7472 | 9.7079 | 5.5416 | 47.9883 | | 1.5937 | 2.08 | 11000 | 2.8433 | 34.9402 | 12.2318 | 23.2483 | 28.8006 | 16.5212 | 9.6008 | 5.3947 | 45.2401 | | 1.6112 | 2.27 | 12000 | 2.8377 | 34.9291 | 12.2349 | 23.278 | 28.8423 | 16.539 | 9.7674 | 5.4267 | 44.7599 | | 1.603 | 2.45 | 13000 | 2.8223 | 35.3837 | 12.5491 | 23.5272 | 29.3683 | 16.9828 | 9.6955 | 5.3166 | 47.6037 | | 1.6274 | 2.64 | 14000 | 2.8220 | 34.0515 | 11.7884 | 22.829 | 27.6635 | 15.8021 | 8.9724 | 4.9314 | 44.1235 | | 1.6435 | 2.83 | 15000 | 2.8139 | 34.9239 | 12.2122 | 22.9939 | 29.1796 | 16.763 | 9.5513 | 5.174 | 46.7832 | | 1.238 | 3.02 | 16000 | 2.9615 | 35.456 | 12.3012 | 23.3111 | 29.8676 | 17.0768 | 9.8694 | 5.4376 | 51.1935 | | 1.2767 | 3.21 | 17000 | 2.9781 | 35.2632 | 12.1441 | 23.2537 | 29.1438 | 16.6216 | 9.353 | 5.1593 | 46.0793 | | 1.2868 | 3.4 | 18000 | 2.9723 | 34.6808 | 11.9638 | 22.9058 | 28.9988 | 16.4994 | 9.3619 | 5.1178 | 47.4732 | | 1.2842 | 3.59 | 19000 | 2.9688 | 35.3792 | 12.5174 | 23.2012 | 29.6403 | 17.1517 | 9.9507 | 5.5561 | 49.1515 | | 1.2931 | 3.78 | 20000 | 2.9694 | 35.7525 | 12.8025 | 23.5228 | 29.8102 | 17.3544 | 10.239 | 5.6637 | 49.1189 | | 1.2733 | 3.97 | 21000 | 2.9618 | 35.8931 | 12.627 | 23.5571 | 30.0482 | 17.2582 | 9.8412 | 5.4747 | 48.5082 | | 0.963 | 4.15 | 22000 | 3.1113 | 35.7523 | 12.7633 | 23.3127 | 30.0193 | 17.4211 | 10.2596 | 5.853 | 51.6993 | | 0.9563 | 4.34 | 23000 | 3.1031 | 35.8437 | 12.6323 | 23.6011 | 30.0923 | 17.4089 | 9.9831 | 5.5993 | 48.7646 | | 0.992 | 4.53 | 24000 | 3.1016 | 36.1067 | 13.3428 | 24.0267 | 30.0275 | 17.8733 | 10.6929 | 6.2491 | 52.0373 | | 0.9722 | 4.72 | 25000 | 3.0956 | 35.4406 | 12.4799 | 23.3418 | 29.5123 | 17.0292 | 9.7401 | 5.3586 | 48.8974 | | 0.9519 | 4.91 | 26000 | 3.0961 | 35.8883 | 12.7003 | 23.3874 | 30.2528 | 17.5183 | 10.2094 | 5.6021 | 50.1562 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
bigscience/tokenizer
bigscience
2023-01-27T07:47:08Z
0
10
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-03-22T10:31:14Z
--- license: bigscience-bloom-rail-1.0 --- # Tokenizer used for all BLOOM models Tokenizer information are provided at [https://huggingface.co/bigscience/bloom#preprocessing](https://huggingface.co/bigscience/bloom#preprocessing) TODO: point to paper once it comes out with extra details on the tokenizer
jamesup/q-FrozenLake-v1-4x4-noSlippery
jamesup
2023-01-27T07:25:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T07:11:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jamesup/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gmojko/a2c-PandaReachDense-v2_v4
gmojko
2023-01-27T07:25:14Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T07:22:51Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -5.78 +/- 1.18 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nlp04/kobart_32_5e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T07:01:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T06:01:46Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_32_5e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_32_5e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6396 - Rouge1: 35.8418 - Rouge2: 12.983 - Rougel: 23.6913 - Bleu1: 29.8408 - Bleu2: 17.5438 - Bleu3: 10.2815 - Bleu4: 5.6838 - Gen Len: 50.2214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 1.6643 | 3.78 | 5000 | 2.6396 | 35.8418 | 12.983 | 23.6913 | 29.8408 | 17.5438 | 10.2815 | 5.6838 | 50.2214 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
pkshatech/simcse-ja-bert-base-clcmlp
pkshatech
2023-01-27T06:44:23Z
2,497
15
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "transformers", "sentence-similarity", "ja", "arxiv:2104.08821", "license:cc-by-sa-4.0", "autotrain_compatible", "region:us" ]
sentence-similarity
2022-12-26T02:52:03Z
--- pipeline_tag: sentence-similarity language: ja license: cc-by-sa-4.0 tags: - transformers - sentence-similarity - feature-extraction - sentence-transformers inference: false widget: - source_sentence: "This widget can't work correctly now." sentences: - "Sorry :(" - "Try this model in your local environment!" example_title: "notification" --- # Japanese SimCSE (BERT-base) [日本語のREADME/Japanese README](https://huggingface.co/pkshatech/simcse-ja-bert-base-clcmlp/blob/main/README_JA.md) ## summary model name: `pkshatech/simcse-ja-bert-base-clcmlp` This is a Japanese [SimCSE](https://arxiv.org/abs/2104.08821) model. You can easily extract sentence embedding representations from Japanese sentences. This model is based on [`cl-tohoku/bert-base-japanese-v2`](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) and trained on [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) dataset, which is a Japanese natural language inference dataset. ## Usage (Sentence-Transformers) You can use this model easily with [sentence-transformers](https://www.SBERT.net). You need [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite/) for tokenization. Please install sentence-transformers, fugashi, and unidic-lite with pip as follows: ``` pip install -U fugashi[unidic-lite] sentence-transformers ``` You can load the model and convert sentences to dense vectors as follows: ```python from sentence_transformers import SentenceTransformer sentences = [ "PKSHA Technologyは機械学習/深層学習技術に関わるアルゴリズムソリューションを展開している。", "この深層学習モデルはPKSHA Technologyによって学習され、公開された。", "広目天は、仏教における四天王の一尊であり、サンスクリット語の「種々の眼をした者」を名前の由来とする。", ] model = SentenceTransformer('pkshatech/simcse-ja-bert-base-clcmlp') embeddings = model.encode(sentences) print(embeddings) ``` Since the loss function used during training is cosine similarity, we recommend using cosine similarity for downstream tasks. ## Model Detail ### Tokenization We use the same tokenizer as `tohoku/bert-base-japanese-v2`. Please see the [README of `tohoku/bert-base-japanese-v2`](https://huggingface.co/cl-tohoku/bert-base-japanese-v2) for details. ### Training We set `tohoku/bert-base-japanese-v2` as the initial value and trained it on the train set of [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88). We trained 20 epochs and published the checkpoint of the model with the highest Spearman's correlation coefficient on the validation set [^1] of the train set of [JSTS](https://github.com/yahoojapan/JGLUE) ### Training Parameters | Parameter | Value | | --- | --- | |pooling_strategy | [CLS] -> single fully-connected layer | | max_seq_length | 128 | | with hard negative | true | | temperature of contrastive loss | 0.05 | | Batch size | 200 | | Learning rate | 1e-5 | | Weight decay | 0.01 | | Max gradient norm | 1.0 | | Warmup steps | 2012 | | Scheduler | WarmupLinear | | Epochs | 20 | | Evaluation steps | 250 | # Licenses This models are distributed under the terms of the Creative [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). [^1]: When we trained this model, the test data of JGLUE was not released, so we used the dev set of JGLUE as a private evaluation data. Therefore, we selected the checkpoint on the train set of JGLUE insted of its dev set.
nlp04/kobart_8_6e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T06:30:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T05:08:03Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_8_6e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_8_6e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8935 - Rouge1: 35.9396 - Rouge2: 12.7251 - Rougel: 23.4072 - Bleu1: 29.8836 - Bleu2: 17.3868 - Bleu3: 10.1034 - Bleu4: 5.6852 - Gen Len: 50.5012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 2.5006 | 0.19 | 1000 | 2.9748 | 31.9305 | 10.219 | 20.9486 | 25.9772 | 14.0989 | 7.5807 | 3.9049 | 46.8951 | | 2.3738 | 0.38 | 2000 | 2.8691 | 34.1196 | 11.4746 | 22.0999 | 28.4466 | 16.0082 | 8.9955 | 4.6276 | 52.7669 | | 2.3468 | 0.57 | 3000 | 2.8207 | 34.1168 | 11.3998 | 22.5175 | 28.3223 | 15.791 | 8.5992 | 4.6269 | 43.3869 | | 2.3217 | 0.76 | 4000 | 2.7748 | 33.0369 | 11.0712 | 22.1962 | 27.127 | 15.1147 | 8.3628 | 4.6229 | 43.7366 | | 2.2252 | 0.94 | 5000 | 2.7395 | 34.4044 | 12.5602 | 23.0083 | 28.3603 | 16.6789 | 9.7892 | 5.6717 | 47.5828 | | 1.9933 | 1.13 | 6000 | 2.7503 | 34.5083 | 11.7179 | 22.196 | 28.8115 | 16.4201 | 9.3595 | 4.9562 | 52.1865 | | 1.963 | 1.32 | 7000 | 2.7527 | 33.7739 | 11.3831 | 22.3692 | 27.633 | 15.5257 | 8.7664 | 4.8824 | 45.3497 | | 1.997 | 1.51 | 8000 | 2.7051 | 35.9943 | 12.9136 | 23.8678 | 30.0639 | 17.6209 | 10.5702 | 6.1691 | 46.5128 | | 1.9855 | 1.7 | 9000 | 2.6832 | 34.1919 | 11.6503 | 22.7604 | 27.9586 | 15.8212 | 8.7798 | 4.906 | 45.3566 | | 1.9522 | 1.89 | 10000 | 2.6502 | 35.5575 | 12.6492 | 23.1904 | 29.4797 | 17.1112 | 9.9781 | 5.7052 | 50.0559 | | 1.6341 | 2.08 | 11000 | 2.7328 | 34.6455 | 11.8656 | 22.9323 | 28.484 | 16.09 | 9.0409 | 5.0875 | 44.0932 | | 1.645 | 2.27 | 12000 | 2.7198 | 35.0304 | 12.3304 | 23.4026 | 28.7978 | 16.6707 | 9.6501 | 5.4396 | 45.3427 | | 1.6333 | 2.45 | 13000 | 2.7258 | 35.6562 | 12.7612 | 23.3402 | 29.9319 | 17.4185 | 10.2105 | 5.6995 | 51.2727 | | 1.6663 | 2.64 | 14000 | 2.7008 | 34.2188 | 11.7236 | 22.6835 | 28.2471 | 15.9416 | 9.0996 | 4.8797 | 45.1818 | | 1.6786 | 2.83 | 15000 | 2.7106 | 35.3961 | 12.1801 | 23.1129 | 29.6386 | 17.0003 | 9.7356 | 5.3716 | 49.1958 | | 1.3555 | 3.02 | 16000 | 2.8057 | 35.4698 | 12.4315 | 23.2317 | 29.5758 | 16.9988 | 9.8794 | 5.5261 | 49.8089 | | 1.3975 | 3.21 | 17000 | 2.8155 | 35.7874 | 13.1167 | 24.1395 | 29.7118 | 17.4772 | 10.4028 | 5.8877 | 47.1608 | | 1.3958 | 3.4 | 18000 | 2.8128 | 35.7796 | 12.7994 | 23.701 | 29.8194 | 17.3474 | 10.0427 | 5.3794 | 51.2005 | | 1.3929 | 3.59 | 19000 | 2.8084 | 35.7019 | 12.8359 | 23.4838 | 29.8411 | 17.506 | 10.2791 | 5.6268 | 50.5897 | | 1.4165 | 3.78 | 20000 | 2.8067 | 35.4685 | 12.3161 | 23.4552 | 29.8108 | 17.0718 | 9.636 | 5.4738 | 49.0769 | | 1.399 | 3.97 | 21000 | 2.8022 | 36.0382 | 13.0705 | 23.8823 | 30.0459 | 17.5222 | 10.2384 | 5.7993 | 50.0979 | | 1.1604 | 4.15 | 22000 | 2.9069 | 35.9586 | 12.9506 | 23.5262 | 30.2279 | 17.6621 | 10.4464 | 6.0544 | 53.4755 | | 1.14 | 4.34 | 23000 | 2.9020 | 35.6245 | 12.2182 | 23.4536 | 29.8692 | 17.0002 | 9.7911 | 5.5078 | 49.5944 | | 1.1943 | 4.53 | 24000 | 2.8960 | 35.9293 | 12.6219 | 23.4135 | 30.077 | 17.4198 | 10.1376 | 5.6971 | 53.9091 | | 1.1582 | 4.72 | 25000 | 2.8975 | 35.7625 | 12.7562 | 23.3171 | 29.7443 | 17.4017 | 10.1272 | 5.5476 | 51.5618 | | 1.1561 | 4.91 | 26000 | 2.8935 | 35.9396 | 12.7251 | 23.4072 | 29.8836 | 17.3868 | 10.1034 | 5.6852 | 50.5012 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
imflash217/PPO_mlagent_SnowballTarget
imflash217
2023-01-27T05:30:38Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-27T05:30:33Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: imflash217/PPO_mlagent_SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rahulpointer/en_pipeline
rahulpointer
2023-01-27T05:24:28Z
3
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2023-01-27T05:24:24Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.984375 - name: NER Recall type: recall value: 0.9921259843 - name: NER F Score type: f_score value: 0.9882352941 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.4,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (3 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `MEDICALCONDITION`, `MEDICINE`, `PATHOGEN` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 98.82 | | `ENTS_P` | 98.44 | | `ENTS_R` | 99.21 | | `TOK2VEC_LOSS` | 12068.08 | | `NER_LOSS` | 27961.10 |
Genrator/1st
Genrator
2023-01-27T05:14:47Z
6
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-27T05:12:04Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### 1st- Dreambooth model trained by Genrator with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
nlp04/kobart_8_5e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T05:06:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T03:42:20Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_8_5e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_8_5e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8332 - Rouge1: 36.0185 - Rouge2: 12.6783 - Rougel: 23.3148 - Bleu1: 30.2418 - Bleu2: 17.381 - Bleu3: 10.3059 - Bleu4: 5.9599 - Gen Len: 50.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 2.5229 | 0.19 | 1000 | 2.9931 | 31.4246 | 10.0302 | 20.7531 | 25.3618 | 13.7797 | 7.3585 | 3.689 | 46.8019 | | 2.3763 | 0.38 | 2000 | 2.8644 | 33.6125 | 11.6317 | 21.9202 | 27.7709 | 15.9381 | 8.996 | 4.8041 | 50.1562 | | 2.3371 | 0.57 | 3000 | 2.7958 | 34.253 | 11.8488 | 22.4988 | 28.501 | 16.2829 | 9.1703 | 4.9873 | 48.2751 | | 2.3018 | 0.76 | 4000 | 2.7559 | 34.3508 | 11.7971 | 22.5994 | 28.1757 | 15.9896 | 9.12 | 5.0712 | 42.9767 | | 2.214 | 0.94 | 5000 | 2.7131 | 34.5451 | 12.4437 | 22.9456 | 28.3871 | 16.5087 | 9.9256 | 5.5757 | 46.0653 | | 2.0007 | 1.13 | 6000 | 2.7207 | 35.0462 | 12.0128 | 22.3508 | 29.3657 | 16.7098 | 9.4792 | 5.0235 | 49.5152 | | 1.9633 | 1.32 | 7000 | 2.7195 | 34.3249 | 11.9224 | 22.9618 | 28.2812 | 16.0876 | 9.3298 | 5.3695 | 46.7879 | | 2.0002 | 1.51 | 8000 | 2.6799 | 35.783 | 12.7607 | 23.8872 | 29.6408 | 17.2382 | 10.1776 | 5.9003 | 46.5967 | | 1.9783 | 1.7 | 9000 | 2.6615 | 34.7877 | 12.2492 | 23.0451 | 28.8199 | 16.6404 | 9.6347 | 5.2901 | 47.2681 | | 1.955 | 1.89 | 10000 | 2.6337 | 35.3022 | 12.7166 | 23.4134 | 29.218 | 17.0785 | 9.925 | 5.6807 | 50.0559 | | 1.671 | 2.08 | 11000 | 2.6997 | 35.3595 | 12.305 | 23.3744 | 29.525 | 16.937 | 9.6249 | 5.2743 | 48.4219 | | 1.6756 | 2.27 | 12000 | 2.6986 | 34.8911 | 12.2688 | 23.1722 | 29.1454 | 16.7564 | 9.7788 | 5.5929 | 46.8648 | | 1.663 | 2.45 | 13000 | 2.6974 | 35.4625 | 12.5317 | 23.3959 | 29.3184 | 17.0218 | 9.7629 | 5.4506 | 48.662 | | 1.6896 | 2.64 | 14000 | 2.6792 | 34.6078 | 12.3596 | 23.1353 | 28.6652 | 16.697 | 9.9738 | 5.6329 | 45.1608 | | 1.7114 | 2.83 | 15000 | 2.6765 | 35.3731 | 12.669 | 23.4203 | 29.6602 | 17.1914 | 10.0183 | 5.745 | 47.9557 | | 1.4059 | 3.02 | 16000 | 2.7574 | 35.249 | 12.3037 | 23.0811 | 29.4765 | 16.9417 | 9.563 | 5.4593 | 50.3939 | | 1.4559 | 3.21 | 17000 | 2.7695 | 35.3686 | 12.2559 | 23.1602 | 29.3155 | 16.7156 | 9.6546 | 5.4363 | 47.7226 | | 1.4475 | 3.4 | 18000 | 2.7638 | 35.3241 | 12.5225 | 23.3305 | 29.5401 | 17.0816 | 9.7474 | 5.4129 | 48.6993 | | 1.4459 | 3.59 | 19000 | 2.7679 | 35.64 | 12.6542 | 23.1888 | 30.0146 | 17.4051 | 10.2219 | 5.7042 | 51.8438 | | 1.4678 | 3.78 | 20000 | 2.7604 | 35.1451 | 12.2282 | 23.1746 | 29.4539 | 16.8357 | 9.7948 | 5.321 | 49.1935 | | 1.4478 | 3.97 | 21000 | 2.7555 | 36.2922 | 13.2416 | 24.0108 | 30.5121 | 17.9087 | 10.6678 | 6.2204 | 49.9417 | | 1.2405 | 4.15 | 22000 | 2.8381 | 36.0049 | 12.868 | 23.5304 | 30.1701 | 17.6082 | 10.4209 | 5.7566 | 53.3916 | | 1.2203 | 4.34 | 23000 | 2.8370 | 35.6913 | 12.5497 | 23.6024 | 29.8742 | 17.1319 | 9.9978 | 5.6913 | 49.7646 | | 1.2756 | 4.53 | 24000 | 2.8360 | 35.3826 | 12.3329 | 22.8257 | 29.5363 | 16.8789 | 9.7444 | 5.4338 | 51.972 | | 1.2452 | 4.72 | 25000 | 2.8362 | 35.7976 | 12.5759 | 23.2084 | 30.1391 | 17.3059 | 10.1375 | 5.6696 | 50.1888 | | 1.241 | 4.91 | 26000 | 2.8332 | 36.0185 | 12.6783 | 23.3148 | 30.2418 | 17.381 | 10.3059 | 5.9599 | 50.9767 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
nlp04/kobart_8_4e-5_datav2_min30_lp5.0_temperature1.0
nlp04
2023-01-27T03:40:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-27T02:18:00Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: kobart_8_4e-5_datav2_min30_lp5.0_temperature1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart_8_4e-5_datav2_min30_lp5.0_temperature1.0 This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7690 - Rouge1: 35.7198 - Rouge2: 12.6777 - Rougel: 23.5157 - Bleu1: 29.7798 - Bleu2: 17.2442 - Bleu3: 10.1198 - Bleu4: 5.5845 - Gen Len: 50.2914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:-------:| | 2.5571 | 0.19 | 1000 | 3.0256 | 30.6752 | 9.655 | 20.3793 | 24.9545 | 13.4562 | 7.0852 | 3.6167 | 47.2378 | | 2.3748 | 0.38 | 2000 | 2.8633 | 33.6862 | 11.3467 | 21.6442 | 27.6602 | 15.5034 | 8.564 | 4.7708 | 52.5921 | | 2.3327 | 0.57 | 3000 | 2.7965 | 34.1286 | 11.5936 | 22.3078 | 28.2895 | 15.9539 | 9.0344 | 5.0261 | 46.4336 | | 2.2987 | 0.76 | 4000 | 2.7423 | 33.7844 | 11.4184 | 22.2715 | 27.9016 | 15.7678 | 8.887 | 4.9817 | 44.1305 | | 2.2137 | 0.94 | 5000 | 2.6925 | 34.4899 | 12.4798 | 23.0933 | 28.5676 | 16.7234 | 9.854 | 5.4929 | 46.5431 | | 2.0205 | 1.13 | 6000 | 2.6899 | 35.1651 | 12.2364 | 22.6918 | 29.561 | 16.9967 | 9.5871 | 5.4011 | 51.4126 | | 1.9818 | 1.32 | 7000 | 2.7037 | 34.1708 | 12.01 | 22.3273 | 28.597 | 16.3676 | 9.6473 | 5.2881 | 48.0979 | | 2.0085 | 1.51 | 8000 | 2.6568 | 35.1423 | 12.6615 | 23.3564 | 29.0896 | 16.9543 | 10.0793 | 5.8229 | 47.014 | | 1.9972 | 1.7 | 9000 | 2.6399 | 35.3604 | 12.6992 | 23.3829 | 29.2344 | 17.0287 | 9.9469 | 5.5226 | 46.4336 | | 1.963 | 1.89 | 10000 | 2.6225 | 34.992 | 12.3573 | 23.0134 | 29.0142 | 16.8063 | 9.6906 | 5.5045 | 51.4452 | | 1.718 | 2.08 | 11000 | 2.6629 | 34.8932 | 12.2868 | 23.2794 | 28.7742 | 16.5584 | 9.6199 | 5.4499 | 47.5804 | | 1.7171 | 2.27 | 12000 | 2.6648 | 35.4343 | 12.7376 | 23.4355 | 29.4051 | 17.1878 | 10.2903 | 5.824 | 46.4359 | | 1.695 | 2.45 | 13000 | 2.6578 | 35.0225 | 12.1733 | 22.9686 | 28.8901 | 16.5961 | 9.3781 | 5.2049 | 49.0443 | | 1.7282 | 2.64 | 14000 | 2.6435 | 33.9569 | 11.9783 | 22.9137 | 27.9425 | 16.0888 | 9.3867 | 5.3915 | 46.0886 | | 1.7541 | 2.83 | 15000 | 2.6469 | 34.6347 | 12.1309 | 22.7496 | 28.9934 | 16.6886 | 9.7165 | 5.2098 | 49.62 | | 1.4855 | 3.02 | 16000 | 2.7137 | 35.3936 | 12.7873 | 23.3762 | 29.4388 | 17.1262 | 10.0549 | 5.9223 | 50.0256 | | 1.5382 | 3.21 | 17000 | 2.7161 | 35.211 | 12.7758 | 23.8604 | 29.1727 | 17.007 | 10.1639 | 6.0141 | 46.8159 | | 1.5243 | 3.4 | 18000 | 2.7222 | 35.6339 | 12.683 | 23.5104 | 29.8071 | 17.3418 | 10.178 | 5.5185 | 49.5944 | | 1.5265 | 3.59 | 19000 | 2.7210 | 35.4469 | 12.5754 | 23.3784 | 29.5035 | 17.1414 | 9.8427 | 5.5385 | 50.7762 | | 1.5394 | 3.78 | 20000 | 2.7193 | 35.9595 | 12.9418 | 23.5227 | 30.0655 | 17.5487 | 10.115 | 5.6725 | 50.3357 | | 1.5364 | 3.97 | 21000 | 2.7000 | 35.6398 | 12.9591 | 23.8267 | 29.9125 | 17.587 | 10.4197 | 5.985 | 48.4476 | | 1.343 | 4.15 | 22000 | 2.7756 | 35.8172 | 12.7519 | 23.5584 | 29.7877 | 17.2715 | 10.219 | 5.9187 | 49.2984 | | 1.3182 | 4.34 | 23000 | 2.7813 | 35.2382 | 12.7271 | 23.3914 | 29.5501 | 17.3306 | 10.3873 | 6.1428 | 50.8228 | | 1.3771 | 4.53 | 24000 | 2.7716 | 35.4267 | 12.6279 | 23.3564 | 29.6336 | 17.245 | 10.2511 | 5.9128 | 51.8695 | | 1.3522 | 4.72 | 25000 | 2.7700 | 35.8057 | 12.9656 | 23.6143 | 29.8501 | 17.475 | 10.2721 | 5.7671 | 50.6946 | | 1.3508 | 4.91 | 26000 | 2.7690 | 35.7198 | 12.6777 | 23.5157 | 29.7798 | 17.2442 | 10.1198 | 5.5845 | 50.2914 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
sohm/Reinforce-v5
sohm
2023-01-27T03:39:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T03:39:18Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -2.50 +/- 0.67 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
t3resa/swin-tiny-patch4-window7-224-finetuned-eurosat
t3resa
2023-01-27T03:17:11Z
36
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-27T02:33:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9792592592592593 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Accuracy: 0.9793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2282 | 1.0 | 190 | 0.1057 | 0.9656 | | 0.1751 | 2.0 | 380 | 0.0798 | 0.9730 | | 0.1449 | 3.0 | 570 | 0.0599 | 0.9793 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
firqaaa/indo-dpr-question_encoder-single-squad-base
firqaaa
2023-01-27T03:10:14Z
4
0
transformers
[ "transformers", "pytorch", "dpr", "feature-extraction", "id", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-12-03T01:24:12Z
--- pipeline_tag: feature-extraction tags: - feature-extraction - transformers license: apache-2.0 language: - id metrics: - accuracy - f1 - precision - recall datasets: - squad_v2 --- ### indo-dpr-question_encoder-single-squad-base <p style="font-size:16px">Indonesian Dense Passage Retrieval trained on translated SQuADv2.0 dataset in DPR format.</p> ### Evaluation | Class | Precision | Recall | F1-Score | Support | |-------|-----------|--------|----------|---------| | hard_negative | 0.9963 | 0.9963 | 0.9963 | 183090 | | positive | 0.8849 | 0.8849 | 0.8849 | 5910 | | Metric | Value | |--------|-------| | Accuracy | 0.9928 | | Macro Average | 0.9406 | | Weighted Average | 0.9928 | <p style="font-size:16px">Note: This report is for evaluation on the dev set, after 12000 batches.</p> ### Usage ```python from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('firqaaa/indo-dpr-question_encoder-single-squad-base') model = DPRQuestionEncoder.from_pretrained('firqaaa/indo-dpr-question_encoder-single-squad-base') input_ids = tokenizer("Ibukota Indonesia terletak dimana?", return_tensors='pt')["input_ids"] embeddings = model(input_ids).pooler_output ``` We can use it using `haystack` as follows: ``` from haystack.nodes import DensePassageRetriever from haystack.document_stores import InMemoryDocumentStore retriever = DensePassageRetriever(document_store=InMemoryDocumentStore(), query_embedding_model="firqaaa/indo-dpr-question_encoder-single-squad-base", passage_embedding_model="firqaaa/indo-dpr-question_encoder-single-squad-base", max_seq_len_query=64, max_seq_len_passage=256, batch_size=16, use_gpu=True, embed_title=True, use_fast_tokenizers=True) ```
alexdavey/dqn-SpaceInvadersNoFrameskip-v4
alexdavey
2023-01-27T02:24:24Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-27T02:18:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 653.50 +/- 369.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexdavey -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexdavey -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alexdavey ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
hakurei/lit-6B-8bit
hakurei
2023-01-27T02:23:05Z
69
18
transformers
[ "transformers", "pytorch", "causal-lm", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - causal-lm license: mit --- # Lit-6B - A Large Fine-tuned Model For Fictional Storytelling Lit-6B is a GPT-J 6B model fine-tuned on 2GB of a diverse range of light novels, erotica, and annotated literature for the purpose of generating novel-like fictional text. ## Model Description The model used for fine-tuning is [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax), which is a 6 billion parameter auto-regressive language model trained on [The Pile](https://pile.eleuther.ai/). ## Training Data & Annotative Prompting The data used in fine-tuning has been gathered from various sources such as the [Gutenberg Project](https://www.gutenberg.org/). The annotated fiction dataset has prepended tags to assist in generating towards a particular style. Here is an example prompt that shows how to use the annotations. ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror; Tags: 3rdperson, scary; Style: Dark ] *** When a traveler in north central Massachusetts takes the wrong fork... ``` The annotations can be mixed and matched to help generate towards a specific style. ## Downstream Uses This model can be used for entertainment purposes and as a creative writing assistant for fiction writers. ## Example Code ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained('hakurei/lit-6B') tokenizer = AutoTokenizer.from_pretrained('hakurei/lit-6B') prompt = '''[ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler''' input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(output[0]) print(generated_text) ``` An example output from this code produces a result that will look similar to: ``` [ Title: The Dunwich Horror; Author: H. P. Lovecraft; Genre: Horror ] *** When a traveler comes to an unknown region, his thoughts turn inevitably towards the old gods and legends which cluster around its appearance. It is not that he believes in them or suspects their reality—but merely because they are present somewhere else in creation just as truly as himself, and so belong of necessity in any landscape whose features cannot be altogether strange to him. Moreover, man has been prone from ancient times to brood over those things most connected with the places where he dwells. Thus the Olympian deities who ruled Hyper ``` ## Team members and Acknowledgements This project would not have been possible without the computational resources graciously provided by the [TPU Research Cloud](https://sites.research.google/trc/) - [Anthony Mercurio](https://github.com/harubaru) - Imperishable_NEET
BridgeTower/bridgetower-large-itm-mlm
BridgeTower
2023-01-27T02:13:28Z
126
1
transformers
[ "transformers", "pytorch", "bridgetower", "en", "dataset:conceptual_captions", "dataset:sbu_captions", "dataset:visual_genome", "dataset:mscoco_captions", "arxiv:2206.08657", "arxiv:1504.00325", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-12-08T00:31:23Z
--- language: en tags: - bridgetower license: mit datasets: - conceptual_captions - sbu_captions - visual_genome - mscoco_captions --- # BridgeTower large-itm-mlm model The BridgeTower model was proposed in "BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning" by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The model was pretrained on English language using masked language modeling (MLM) and image text matching (ITM)objectives. It was introduced in [this paper](https://arxiv.org/pdf/2206.08657.pdf) and first released in [this repository](https://github.com/microsoft/BridgeTower). BridgeTower got accepted to [AAAI'23](https://aaai.org/Conferences/AAAI-23/). ## Model description The abstract from the paper is the following: Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. ## Intended uses & limitations(TODO) ### How to use Here is how to use this model to perform image and text matching: ```python from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm") model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-large-itm-mlm") # forward pass scores = dict() for text in texts: # prepare inputs encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0,1].item() ``` Here is how to use this model to perform masked language modeling: ```python from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000360943.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") text = "a <mask> looking out of the window" processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm") model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-large-itm-mlm") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) print(results) #.a cat looking out of the window. ``` ### Limitations and bias TODO ## Training data The BridgeTower model was pretrained on four public image-caption datasets: - [Conceptual Captions(CC)](https://ai.google.com/research/ConceptualCaptions/), - [SBU Captions](https://www.cs.rice.edu/~vo9/sbucaptions/), - [MSCOCO Captions](https://arxiv.org/pdf/1504.00325.pdf), - [Visual Genome](https://visualgenome.org/) The total number of unique images in the combined data is 4M. ## Training procedure ### Preprocessing TODO ### Pretraining The model was pre-trained for 100k steps on 8 NVIDIA A100 GPUs with a batch size of 4096. The optimizer used was AdamW with a learning rate of 1e-5. No data augmentation was used except for center-crop. The image resolution in pre-training is set to 288 x 288. ## Evaluation results Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other downstream tasks. ### BibTeX entry and citation info ```bibtex @article{xu2022bridge, title={BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning}, author={Xu, Xiao and Wu, Chenfei and Rosenman, Shachar and Lal, Vasudev and Che, Wanxiang and Duan, Nan}, journal={arXiv preprint arXiv:2206.08657}, year={2022} } ```
BridgeTower/bridgetower-base-itm-mlm
BridgeTower
2023-01-27T02:12:53Z
1,047
3
transformers
[ "transformers", "pytorch", "bridgetower", "en", "dataset:conceptual_captions", "dataset:sbu_captions", "dataset:visual_genome", "dataset:mscoco_captions", "arxiv:2206.08657", "arxiv:1504.00325", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-12-08T00:36:43Z
--- language: en tags: - bridgetower license: mit datasets: - conceptual_captions - sbu_captions - visual_genome - mscoco_captions --- # BridgeTower base-itm-mlm model The BridgeTower model was proposed in "BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning" by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The model was pretrained on English language using masked language modeling (MLM) and image text matching (ITM)objectives. It was introduced in [this paper](https://arxiv.org/pdf/2206.08657.pdf) and first released in [this repository](https://github.com/microsoft/BridgeTower). BridgeTower got accepted to [AAAI'23](https://aaai.org/Conferences/AAAI-23/). ## Model description The abstract from the paper is the following: Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. ## Intended uses & limitations(TODO) ### How to use Here is how to use this model to perform image and text matching: ```python from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") # forward pass scores = dict() for text in texts: # prepare inputs encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0,1].item() ``` Here is how to use this model to perform masked language modeling: ```python from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000360943.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") text = "a <mask> looking out of the window" processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) print(results) #.a cat looking out of the window. ``` ### Limitations and bias TODO ## Training data The BridgeTower model was pretrained on four public image-caption datasets: - [Conceptual Captions(CC)](https://ai.google.com/research/ConceptualCaptions/), - [SBU Captions](https://www.cs.rice.edu/~vo9/sbucaptions/), - [MSCOCO Captions](https://arxiv.org/pdf/1504.00325.pdf), - [Visual Genome](https://visualgenome.org/) The total number of unique images in the combined data is 4M. ## Training procedure ### Preprocessing TODO ### Pretraining The model was pre-trained for 100k steps on 8 NVIDIA A100 GPUs with a batch size of 4096. The optimizer used was AdamW with a learning rate of 1e-5. No data augmentation was used except for center-crop. The image resolution in pre-training is set to 288 x 288. ## Evaluation results Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other downstream tasks. ### BibTeX entry and citation info ```bibtex @article{xu2022bridge, title={BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning}, author={Xu, Xiao and Wu, Chenfei and Rosenman, Shachar and Lal, Vasudev and Che, Wanxiang and Duan, Nan}, journal={arXiv preprint arXiv:2206.08657}, year={2022} } ```
gokuls/mobilebert_add_GLUE_Experiment_mnli_128
gokuls
2023-01-27T01:50:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T20:16:00Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_mnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.3522172497965826 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_mnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0985 - Accuracy: 0.3522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0987 | 1.0 | 3068 | 1.0987 | 0.3182 | | 1.0986 | 2.0 | 6136 | 1.0986 | 0.3182 | | 1.0986 | 3.0 | 9204 | 1.0988 | 0.3274 | | 1.0986 | 4.0 | 12272 | 1.0986 | 0.3182 | | 1.0986 | 5.0 | 15340 | 1.0985 | 0.3545 | | 1.0986 | 6.0 | 18408 | 1.0987 | 0.3274 | | 1.0986 | 7.0 | 21476 | 1.0988 | 0.3274 | | 1.0986 | 8.0 | 24544 | 1.0986 | 0.3545 | | 1.0986 | 9.0 | 27612 | 1.0986 | 0.3545 | | 1.0986 | 10.0 | 30680 | 1.0987 | 0.3182 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
firqaaa/indo-dpr-ctx_encoder-single-squad-base
firqaaa
2023-01-27T01:39:52Z
4
0
transformers
[ "transformers", "pytorch", "dpr", "feature-extraction", "id", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-12-02T20:35:29Z
--- pipeline_tag: feature-extraction tags: - feature-extraction - transformers license: apache-2.0 language: - id metrics: - accuracy - f1 - precision - recall datasets: - squad_v2 --- ### indo-dpr-question_encoder-single-squad-base <p style="font-size:16px">Indonesian Dense Passage Retrieval trained on translated SQuADv2.0 dataset in DPR format.</p> ### Evaluation | Class | Precision | Recall | F1-Score | Support | |-------|-----------|--------|----------|---------| | hard_negative | 0.9963 | 0.9963 | 0.9963 | 183090 | | positive | 0.8849 | 0.8849 | 0.8849 | 5910 | | Metric | Value | |--------|-------| | Accuracy | 0.9928 | | Macro Average | 0.9406 | | Weighted Average | 0.9928 | <p style="font-size:16px">Note: This report is for evaluation on the dev set, after 12000 batches.</p> ### Usage ```python from transformers import DPRContextEncoder, DPRContextEncoderTokenizer tokenizer = DPRContextEncoderTokenizer.from_pretrained('firqaaa/indo-dpr-ctx_encoder-single-squad-base') model = DPRContextEncoder.from_pretrained('firqaaa/indo-dpr-ctx_encoder-single-squad-base') input_ids = tokenizer("Ibukota Indonesia terletak dimana?", return_tensors='pt')["input_ids"] embeddings = model(input_ids).pooler_output ``` You can use it using `haystack` as follows: ``` from haystack.nodes import DensePassageRetriever from haystack.document_stores import InMemoryDocumentStore retriever = DensePassageRetriever(document_store=InMemoryDocumentStore(), query_embedding_model="firqaaa/indo-dpr-ctx_encoder-single-squad-base", passage_embedding_model="firqaaa/indo-dpr-ctx_encoder-single-squad-base", max_seq_len_query=64, max_seq_len_passage=256, batch_size=16, use_gpu=True, embed_title=True, use_fast_tokenizers=True) ```
alikanakar/bert-base-multilingual-cased-updated-finetuned-squad
alikanakar
2023-01-27T01:32:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-26T20:47:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-updated-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-updated-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4212 | 1.0 | 4217 | 1.2701 | | 1.0642 | 2.0 | 8434 | 1.2573 | | 0.8381 | 3.0 | 12651 | 1.3044 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/bert-base-uncased-wnli
gokuls
2023-01-27T01:11:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T01:09:09Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.4788732394366197 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6968 - Accuracy: 0.4789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7192 | 1.0 | 5 | 0.6968 | 0.4789 | | 0.6928 | 2.0 | 10 | 0.7003 | 0.2676 | | 0.6921 | 3.0 | 15 | 0.7057 | 0.5211 | | 0.6931 | 4.0 | 20 | 0.7282 | 0.3944 | | 0.6922 | 5.0 | 25 | 0.7579 | 0.2535 | | 0.68 | 6.0 | 30 | 0.8314 | 0.2254 | | 0.6652 | 7.0 | 35 | 0.8990 | 0.1831 | | 0.627 | 8.0 | 40 | 1.0187 | 0.2254 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/bert-base-uncased-sst2
gokuls
2023-01-27T01:00:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T00:24:10Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9128440366972477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2333 - Accuracy: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2103 | 1.0 | 527 | 0.2507 | 0.9048 | | 0.1082 | 2.0 | 1054 | 0.2333 | 0.9128 | | 0.0724 | 3.0 | 1581 | 0.2371 | 0.9186 | | 0.0521 | 4.0 | 2108 | 0.2582 | 0.9186 | | 0.0393 | 5.0 | 2635 | 0.3094 | 0.9220 | | 0.0302 | 6.0 | 3162 | 0.3506 | 0.9197 | | 0.0258 | 7.0 | 3689 | 0.4149 | 0.9071 | | 0.0209 | 8.0 | 4216 | 0.3121 | 0.9174 | | 0.018 | 9.0 | 4743 | 0.4919 | 0.9060 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
Ashraf-kasem/custom_gpt2_frames_text_original_tokenizer
Ashraf-kasem
2023-01-27T00:28:39Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-01-25T23:13:44Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Ashraf-kasem/custom_gpt2_frames_text_original_tokenizer results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ashraf-kasem/custom_gpt2_frames_text_original_tokenizer This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1074 - Validation Loss: 1.6432 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 240780, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.3075 | 3.4095 | 0 | | 3.1973 | 2.8234 | 1 | | 2.7420 | 2.5057 | 2 | | 2.4541 | 2.3022 | 3 | | 2.2507 | 2.1648 | 4 | | 2.0962 | 2.0612 | 5 | | 1.9736 | 1.9885 | 6 | | 1.8729 | 1.9286 | 7 | | 1.7883 | 1.8823 | 8 | | 1.7153 | 1.8448 | 9 | | 1.6517 | 1.8113 | 10 | | 1.5953 | 1.7864 | 11 | | 1.5446 | 1.7624 | 12 | | 1.4994 | 1.7459 | 13 | | 1.4578 | 1.7294 | 14 | | 1.4200 | 1.7171 | 15 | | 1.3851 | 1.7026 | 16 | | 1.3528 | 1.6958 | 17 | | 1.3229 | 1.6846 | 18 | | 1.2950 | 1.6760 | 19 | | 1.2690 | 1.6704 | 20 | | 1.2448 | 1.6650 | 21 | | 1.2223 | 1.6599 | 22 | | 1.2012 | 1.6539 | 23 | | 1.1815 | 1.6534 | 24 | | 1.1635 | 1.6486 | 25 | | 1.1470 | 1.6457 | 26 | | 1.1318 | 1.6443 | 27 | | 1.1185 | 1.6434 | 28 | | 1.1074 | 1.6432 | 29 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.0 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/bert-base-uncased-rte
gokuls
2023-01-27T00:23:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-27T00:19:35Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.6064981949458483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-rte This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6540 - Accuracy: 0.6065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7009 | 1.0 | 20 | 0.6781 | 0.5560 | | 0.6393 | 2.0 | 40 | 0.6540 | 0.6065 | | 0.4606 | 3.0 | 60 | 0.7134 | 0.6498 | | 0.2597 | 4.0 | 80 | 0.8379 | 0.6751 | | 0.1492 | 5.0 | 100 | 1.3531 | 0.6282 | | 0.0954 | 6.0 | 120 | 1.2220 | 0.6354 | | 0.0561 | 7.0 | 140 | 1.2282 | 0.6715 | | 0.0379 | 8.0 | 160 | 1.4368 | 0.6679 | | 0.0368 | 9.0 | 180 | 1.8559 | 0.6498 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
lora-library/kdekuni
lora-library
2023-01-26T23:59:25Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-26T23:59:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a kdekuni golden funkopop tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - kdekuni These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "a kdekuni golden funkopop" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
JYC333/ppo-PyramidsTraining
JYC333
2023-01-26T23:55:50Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-26T23:55:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: JYC333/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sohm/Reinforce-v3
sohm
2023-01-26T23:44:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T23:44:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 451.70 +/- 144.90 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
soypablo/emoji-model-finetuned-lora-3000
soypablo
2023-01-26T23:36:11Z
3
3
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:finetune:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-26T04:43:00Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/soypablo/emoji-model-finetuned-lora-3000 These are LoRA adaption weights for https://huggingface.co/soypablo/emoji-model-finetuned-lora-3000. The weights were fine-tuned on the soypablo/Emoji_Dataset-Openmoji dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Galiess/q-FrozenLake-v1-4x4-noSlippery
Galiess
2023-01-26T23:34:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T23:34:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Galiess/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lilouuch/Goodreads_Books_Reviews_BERT_4
lilouuch
2023-01-26T23:17:29Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T20:36:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Goodreads_Books_Reviews_BERT_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Goodreads_Books_Reviews_BERT_4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1102 | 1.0 | 1350 | 1.0206 | | 0.8507 | 2.0 | 2700 | 0.9454 | | 0.579 | 3.0 | 4050 | 1.0759 | | 0.3518 | 4.0 | 5400 | 1.2687 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
alexdavey/q-FrozenLake-v1-4x4-noSlippery
alexdavey
2023-01-26T23:08:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T23:08:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="alexdavey/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YSU/aspram
YSU
2023-01-26T23:07:54Z
130
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hy", "mozilla-foundation/common_voice_9_0", "google/fleurs", "hye", "multilingual", "dataset:mozilla-foundation/common_voice_9_0", "dataset:google/fleurs", "dataset:mc4", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-17T16:12:02Z
--- language: - hy - hye - multilingual license: apache-2.0 tags: - automatic-speech-recognition - hy - mozilla-foundation/common_voice_9_0 - google/fleurs datasets: - mozilla-foundation/common_voice_9_0 - google/fleurs - mc4 models: - facebook/wav2vec2-xls-r-2b task_categories: - automatic-speech-recognition - speech-processing task_ids: - speech-recognition --- # Automatic SPeech Recognition for ArMenian TODO Model details
gokuls/mobilebert_add_GLUE_Experiment_rte
gokuls
2023-01-26T22:43:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T22:39:08Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_rte This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6943 | 1.0 | 20 | 0.6933 | 0.4765 | | 0.6944 | 2.0 | 40 | 0.6927 | 0.5271 | | 0.6932 | 3.0 | 60 | 0.6929 | 0.5271 | | 0.6931 | 4.0 | 80 | 0.6951 | 0.4729 | | 0.6932 | 5.0 | 100 | 0.6950 | 0.4729 | | 0.6918 | 6.0 | 120 | 0.6945 | 0.4440 | | 0.6889 | 7.0 | 140 | 0.7189 | 0.4621 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_qqp
gokuls
2023-01-26T22:38:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T14:26:12Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_add_GLUE_Experiment_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7599802127133317 - name: F1 type: f1 value: 0.6401928068223952 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Accuracy: 0.7600 - F1: 0.6402 - Combined Score: 0.7001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.6505 | 1.0 | 2843 | 0.6498 | 0.6321 | 0.0012 | 0.3166 | | 0.6474 | 2.0 | 5686 | 0.6484 | 0.6321 | 0.0012 | 0.3166 | | 0.646 | 3.0 | 8529 | 0.6479 | 0.6322 | 0.0024 | 0.3173 | | 0.5481 | 4.0 | 11372 | 0.5140 | 0.7486 | 0.6247 | 0.6867 | | 0.4934 | 5.0 | 14215 | 0.5086 | 0.7529 | 0.6548 | 0.7039 | | 0.4794 | 6.0 | 17058 | 0.5044 | 0.7575 | 0.6527 | 0.7051 | | 0.4708 | 7.0 | 19901 | 0.5008 | 0.7600 | 0.6402 | 0.7001 | | 0.4652 | 8.0 | 22744 | 0.5010 | 0.7619 | 0.6384 | 0.7001 | | 0.4604 | 9.0 | 25587 | 0.5014 | 0.7614 | 0.6489 | 0.7052 | | 0.4562 | 10.0 | 28430 | 0.5057 | 0.7600 | 0.6617 | 0.7108 | | 0.452 | 11.0 | 31273 | 0.5102 | 0.7620 | 0.6364 | 0.6992 | | 0.4476 | 12.0 | 34116 | 0.5302 | 0.7622 | 0.6619 | 0.7121 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
alphahg/kobart-base-v2-finetuned-paper
alphahg
2023-01-26T22:30:47Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:aihub_paper_summarization", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-25T11:42:24Z
--- license: mit tags: - generated_from_trainer datasets: - aihub_paper_summarization metrics: - rouge model-index: - name: kobart-base-v2-finetuned-paper results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: aihub_paper_summarization type: aihub_paper_summarization config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 6.2883 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobart-base-v2-finetuned-paper This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the aihub_paper_summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.2966 - Rouge1: 6.2883 - Rouge2: 1.7038 - Rougel: 6.2556 - Rougelsum: 6.2618 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.2215 | 1.0 | 8831 | 1.3293 | 6.2425 | 1.7317 | 6.2246 | 6.2247 | 20.0 | | 1.122 | 2.0 | 17662 | 1.3056 | 6.2298 | 1.7005 | 6.2042 | 6.2109 | 20.0 | | 1.0914 | 3.0 | 26493 | 1.2966 | 6.2883 | 1.7038 | 6.2556 | 6.2618 | 20.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
lilouuch/Goodreads_Books_Reviews_BERT_3
lilouuch
2023-01-26T21:57:20Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T20:35:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Goodreads_Books_Reviews_BERT_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Goodreads_Books_Reviews_BERT_3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4298 | 1.0 | 675 | 1.0408 | | 1.0215 | 2.0 | 1350 | 0.9826 | | 0.6131 | 3.0 | 2025 | 1.0458 | | 0.3825 | 4.0 | 2700 | 1.2441 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
mroopesh/my_billsum_model
mroopesh
2023-01-26T21:42:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-26T21:38:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1425 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5391 - Rouge1: 0.1425 - Rouge2: 0.0499 - Rougel: 0.1149 - Rougelsum: 0.1148 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8276 | 0.1256 | 0.0355 | 0.1038 | 0.104 | 19.0 | | No log | 2.0 | 124 | 2.6220 | 0.1356 | 0.0456 | 0.1106 | 0.1104 | 19.0 | | No log | 3.0 | 186 | 2.5555 | 0.1423 | 0.0501 | 0.1145 | 0.1143 | 19.0 | | No log | 4.0 | 248 | 2.5391 | 0.1425 | 0.0499 | 0.1149 | 0.1148 | 19.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
DarkSolus/LoRA_RWBY
DarkSolus
2023-01-26T21:14:44Z
0
4
null
[ "license:openrail", "region:us" ]
null
2023-01-26T18:28:20Z
--- license: openrail --- # Model Card for LoRA Based on a 48 image dataset scraped from Danbooru and tagged with WD1.4 Tagger. Trained for 30 epochs (7200 steps), best with models and merges based on Anything v3. Not particularly prone to NSFW, as the training dataset was somewhat balanced, but is capable of it. Outfits tend to Ruby's default colors of red and black unless specified otherwise, especially all kinds of dresses. I also recommend using Latent upscaler with medium (0.4-0.5) denoise, as it can fix some small inconsistencies like wrong eye color. ## Model Description Version 1.0 is currently the only one available and is the least prone to straying from the prompt (white dress stays white), however, may be slightly inaccurate when depicting Ruby. Best weights seem to be in the area of 0.6 to 0.7, and for best results I recommend adding in tags like "grey eyes, red hair, multicolored hair". Higher weights can sometimes lead to facial artifacts and/or weird anatomy. - **Developed by:** DarkSolus - **Model type:** LoRA - **Finetuned from model [optional]:** Anything v3 ## How to Get Started with the Model Download the preferred version of the LoRA from the repo. Install Additional Networks extension: 1) via Auto1111's extension manager 2) via GitHub: https://github.com/kohya-ss/sd-webui-additional-networks Reload the UI, and place your downloaded LoRA into: .\stable-diffusion-webui\extensions\sd-webui-additional-networks\models\lora
Richard0113/bert-base-uncased-finetuned-mrpc
Richard0113
2023-01-26T21:14:36Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T19:23:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8676470588235294 - name: F1 type: f1 value: 0.9045936395759717 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5500 - Accuracy: 0.8676 - F1: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3669 | 0.8309 | 0.8796 | | No log | 2.0 | 460 | 0.3704 | 0.8652 | 0.9076 | | 0.3951 | 3.0 | 690 | 0.4974 | 0.8627 | 0.9041 | | 0.3951 | 4.0 | 920 | 0.5454 | 0.8652 | 0.9053 | | 0.0994 | 5.0 | 1150 | 0.5500 | 0.8676 | 0.9046 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-16
Celal11
2023-01-26T21:00:06Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-26T20:33:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-16 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.7153803287823907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-16 This model is a fine-tuned version of [Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05](https://huggingface.co/Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.8185 - Accuracy: 0.7154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7923 | 1.0 | 224 | 0.8570 | 0.7009 | | 0.6737 | 2.0 | 448 | 0.8185 | 0.7154 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Tristan/gpt2-xl-summarization_reward_model
Tristan
2023-01-26T20:50:39Z
0
1
null
[ "pytorch", "generated_from_trainer", "license:mit", "region:us" ]
null
2023-01-26T04:01:09Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2-xl-summarization_reward_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-summarization_reward_model This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2875 - Accuracy: 0.6157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5856 | 1.0 | 1451 | 0.6854 | 0.6218 | | 0.4314 | 2.0 | 2902 | 0.8053 | 0.6133 | | 0.3166 | 3.0 | 4353 | 0.8060 | 0.6146 | | 0.2625 | 4.0 | 5804 | 0.9857 | 0.6162 | | 0.2279 | 5.0 | 7255 | 1.2875 | 0.6157 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
rl-knight/lunar_ppo_100
rl-knight
2023-01-26T20:43:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T20:42:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -1958.42 +/- 1146.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Segamboam/a2c-PandaReachDense-v2
Segamboam
2023-01-26T20:26:44Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T20:24:27Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.55 +/- 0.82 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sxandie/nexon_jan_2023
sxandie
2023-01-26T20:18:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:sroie", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-26T19:58:45Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - sroie metrics: - precision - recall - f1 - accuracy model-index: - name: nexon_jan_2023 results: - task: name: Token Classification type: token-classification dataset: name: sroie type: sroie config: discharge split: test args: discharge metrics: - name: Precision type: precision value: 0.975609756097561 - name: Recall type: recall value: 0.9302325581395349 - name: F1 type: f1 value: 0.9523809523809524 - name: Accuracy type: accuracy value: 0.9971428571428571 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nexon_jan_2023 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0380 - Precision: 0.9756 - Recall: 0.9302 - F1: 0.9524 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 16.67 | 100 | 0.1998 | 0.6286 | 0.5116 | 0.5641 | 0.9571 | | No log | 33.33 | 200 | 0.0616 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | No log | 50.0 | 300 | 0.0439 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | No log | 66.67 | 400 | 0.0404 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.1151 | 83.33 | 500 | 0.0389 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.1151 | 100.0 | 600 | 0.0380 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.1151 | 116.67 | 700 | 0.0378 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.1151 | 133.33 | 800 | 0.0379 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.1151 | 150.0 | 900 | 0.0378 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.009 | 166.67 | 1000 | 0.0378 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.009 | 183.33 | 1100 | 0.0378 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.009 | 200.0 | 1200 | 0.0379 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.009 | 216.67 | 1300 | 0.0379 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.009 | 233.33 | 1400 | 0.0379 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | | 0.0064 | 250.0 | 1500 | 0.0380 | 0.9756 | 0.9302 | 0.9524 | 0.9971 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.2.2 - Tokenizers 0.13.2
PoseyATX/Moist-Pony
PoseyATX
2023-01-26T20:14:29Z
10
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:PoseyATX/autotrain-data-dbarttrain2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-01-26T18:57:13Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - PoseyATX/autotrain-data-dbarttrain2 co2_eq_emissions: emissions: 140.6871460520222 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 3083787793 - CO2 Emissions (in grams): 140.6871 ## Validation Metrics - Loss: 1.413 - Rouge1: 57.925 - Rouge2: 36.683 - RougeL: 44.952 - RougeLsum: 50.807 - Gen Len: 120.034 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/PoseyATX/autotrain-dbarttrain2-3083787793 ```
gokuls/mobilebert_add_GLUE_Experiment_stsb_128
gokuls
2023-01-26T20:10:58Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T20:03:07Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_add_GLUE_Experiment_stsb_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue config: stsb split: validation args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.03419936685461868 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_stsb_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.2820 - Pearson: 0.0445 - Spearmanr: 0.0342 - Combined Score: 0.0393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 5.0491 | 1.0 | 45 | 2.6735 | -0.0094 | -0.0099 | -0.0097 | | 2.2021 | 2.0 | 90 | 3.1489 | 0.0389 | 0.0330 | 0.0359 | | 2.1522 | 3.0 | 135 | 2.2943 | 0.0413 | 0.0270 | 0.0341 | | 2.125 | 4.0 | 180 | 2.5078 | 0.0421 | 0.0274 | 0.0348 | | 2.1328 | 5.0 | 225 | 2.2820 | 0.0445 | 0.0342 | 0.0393 | | 2.0676 | 6.0 | 270 | 2.3672 | 0.0464 | 0.0393 | 0.0428 | | 2.0545 | 7.0 | 315 | 2.6386 | 0.0506 | 0.0463 | 0.0485 | | 2.0677 | 8.0 | 360 | 2.4397 | 0.0556 | 0.0574 | 0.0565 | | 1.9988 | 9.0 | 405 | 2.4024 | 0.0601 | 0.0630 | 0.0615 | | 1.9683 | 10.0 | 450 | 2.7224 | 0.0576 | 0.0646 | 0.0611 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
alikanakar/bert-base-multilingual-cased-finetuned-squad
alikanakar
2023-01-26T20:02:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-01-05T20:44:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.303 | 1.0 | 1997 | 1.2828 | | 0.8647 | 2.0 | 3994 | 1.2168 | | 0.6267 | 3.0 | 5991 | 1.3348 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_sst2_128
gokuls
2023-01-26T20:02:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T18:51:54Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_sst2_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.7981651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_sst2_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4543 - Accuracy: 0.7982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6677 | 1.0 | 527 | 0.6771 | 0.5757 | | 0.5966 | 2.0 | 1054 | 0.7135 | 0.5424 | | 0.5714 | 3.0 | 1581 | 0.7271 | 0.5550 | | 0.5573 | 4.0 | 2108 | 0.6892 | 0.5619 | | 0.501 | 5.0 | 2635 | 0.4546 | 0.7798 | | 0.2856 | 6.0 | 3162 | 0.4613 | 0.8050 | | 0.2288 | 7.0 | 3689 | 0.4543 | 0.7982 | | 0.2027 | 8.0 | 4216 | 0.4662 | 0.7993 | | 0.1883 | 9.0 | 4743 | 0.5168 | 0.8039 | | 0.1779 | 10.0 | 5270 | 0.5748 | 0.7856 | | 0.1691 | 11.0 | 5797 | 0.5196 | 0.8028 | | 0.1596 | 12.0 | 6324 | 0.5943 | 0.7947 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
LarryAIDraw/AnyAsiaGirl
LarryAIDraw
2023-01-26T19:57:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-26T18:11:19Z
--- license: creativeml-openrail-m ---
gokuls/mobilebert_add_GLUE_Experiment_wnli_256
gokuls
2023-01-26T19:54:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T19:53:20Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_wnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6900 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6944 | 1.0 | 5 | 0.6900 | 0.5634 | | 0.6936 | 2.0 | 10 | 0.6921 | 0.5634 | | 0.6933 | 3.0 | 15 | 0.6930 | 0.5634 | | 0.693 | 4.0 | 20 | 0.6920 | 0.5634 | | 0.693 | 5.0 | 25 | 0.6910 | 0.5634 | | 0.6931 | 6.0 | 30 | 0.6908 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_sst2_256
gokuls
2023-01-26T19:45:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T19:08:46Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.5561926605504587 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_sst2_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6814 - Accuracy: 0.5562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6662 | 1.0 | 527 | 0.6814 | 0.5562 | | 0.5954 | 2.0 | 1054 | 0.7090 | 0.5493 | | 0.5689 | 3.0 | 1581 | 0.7150 | 0.5596 | | 0.5546 | 4.0 | 2108 | 0.6893 | 0.5539 | | 0.5473 | 5.0 | 2635 | 0.7051 | 0.5872 | | 0.5421 | 6.0 | 3162 | 0.6983 | 0.5872 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
javiervela/ppo-PyramidsRND
javiervela
2023-01-26T19:40:49Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-26T19:40:42Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: javiervela/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
scronberg/a2c-AntBulletEnv-v0
scronberg
2023-01-26T19:36:34Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T18:59:58Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1703.12 +/- 532.84 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
asubiabre/dqn-SpaceInvadersNoFrameskip-v4
asubiabre
2023-01-26T19:13:29Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T17:31:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 605.00 +/- 178.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga asubiabre -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga asubiabre -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga asubiabre ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gokuls/mobilebert_add_GLUE_Experiment_rte_256
gokuls
2023-01-26T19:08:08Z
204
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T19:05:39Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_add_GLUE_Experiment_rte_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_rte_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6929 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6937 | 1.0 | 20 | 0.6929 | 0.5271 | | 0.6938 | 2.0 | 40 | 0.6929 | 0.5271 | | 0.6931 | 3.0 | 60 | 0.6931 | 0.5126 | | 0.6932 | 4.0 | 80 | 0.6938 | 0.4693 | | 0.693 | 5.0 | 100 | 0.6950 | 0.4729 | | 0.6921 | 6.0 | 120 | 0.6933 | 0.5199 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2