modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-01 12:29:10
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
547 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-01 12:28:04
card
stringlengths
11
1.01M
lewispons/Email-classifier-v1
lewispons
2022-11-24T00:56:06Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-23T22:32:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 188 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 8, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1504, "warmup_steps": 151, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alexziweiwang/exp18-M03-both
alexziweiwang
2022-11-24T00:17:09Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-23T19:54:40Z
--- tags: - generated_from_trainer model-index: - name: exp18-M03-both results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exp18-M03-both This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4134 - Wer: 0.8533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 44.7613 | 0.35 | 500 | 3.3891 | 1.0525 | | 3.1954 | 0.7 | 1000 | 2.8766 | 1.0 | | 2.9522 | 1.05 | 1500 | 2.7578 | 1.0 | | 2.843 | 1.4 | 2000 | 2.5628 | 1.1318 | | 2.6645 | 1.75 | 2500 | 2.1406 | 1.2864 | | 2.3587 | 2.1 | 3000 | 1.8164 | 1.2934 | | 2.1731 | 2.45 | 3500 | 1.5732 | 1.2775 | | 2.0242 | 2.8 | 4000 | 1.4249 | 1.2666 | | 1.9453 | 3.15 | 4500 | 1.3079 | 1.2220 | | 1.7871 | 3.5 | 5000 | 1.2389 | 1.2081 | | 1.7147 | 3.85 | 5500 | 1.1724 | 1.2101 | | 1.5729 | 4.2 | 6000 | 1.1638 | 1.1982 | | 1.4966 | 4.55 | 6500 | 1.0529 | 1.1497 | | 1.3898 | 4.9 | 7000 | 1.0808 | 1.1506 | | 1.3447 | 5.25 | 7500 | 0.9702 | 1.1229 | | 1.2342 | 5.6 | 8000 | 0.8994 | 1.1219 | | 1.1918 | 5.95 | 8500 | 0.9212 | 1.1169 | | 1.1037 | 6.3 | 9000 | 0.9057 | 1.1080 | | 1.0661 | 6.65 | 9500 | 0.8231 | 1.1110 | | 1.0501 | 7.0 | 10000 | 0.8291 | 1.0912 | | 0.9069 | 7.35 | 10500 | 0.8360 | 1.0902 | | 0.8959 | 7.7 | 11000 | 0.7961 | 1.0684 | | 0.9256 | 8.05 | 11500 | 0.7459 | 1.0684 | | 0.8686 | 8.4 | 12000 | 0.7276 | 1.0456 | | 0.7998 | 8.75 | 12500 | 0.7195 | 1.0525 | | 0.7406 | 9.1 | 13000 | 0.7471 | 1.0515 | | 0.7646 | 9.45 | 13500 | 0.7716 | 1.0624 | | 0.7018 | 9.8 | 14000 | 0.7262 | 1.0446 | | 0.7114 | 10.15 | 14500 | 0.6795 | 1.0327 | | 0.6498 | 10.5 | 15000 | 0.6724 | 1.0347 | | 0.6652 | 10.85 | 15500 | 0.6994 | 1.0347 | | 0.638 | 11.2 | 16000 | 0.6565 | 1.0159 | | 0.6078 | 11.55 | 16500 | 0.6695 | 1.0575 | | 0.588 | 11.9 | 17000 | 0.6391 | 1.0149 | | 0.5722 | 12.25 | 17500 | 0.6321 | 1.0188 | | 0.5505 | 12.6 | 18000 | 0.6306 | 1.0089 | | 0.5297 | 12.95 | 18500 | 0.6100 | 1.0139 | | 0.5188 | 13.3 | 19000 | 0.5426 | 0.9931 | | 0.4865 | 13.65 | 19500 | 0.5410 | 0.9881 | | 0.5132 | 14.0 | 20000 | 0.5095 | 0.9792 | | 0.4782 | 14.35 | 20500 | 0.4962 | 0.9901 | | 0.4627 | 14.7 | 21000 | 0.5277 | 0.9871 | | 0.4568 | 15.05 | 21500 | 0.4958 | 0.9683 | | 0.4312 | 15.4 | 22000 | 0.5146 | 0.9752 | | 0.4286 | 15.75 | 22500 | 0.4682 | 0.9693 | | 0.428 | 16.1 | 23000 | 0.5121 | 0.9851 | | 0.3656 | 16.45 | 23500 | 0.4894 | 0.9485 | | 0.3884 | 16.79 | 24000 | 0.4832 | 0.9465 | | 0.3835 | 17.14 | 24500 | 0.4925 | 0.9841 | | 0.3584 | 17.49 | 25000 | 0.5503 | 0.9782 | | 0.3719 | 17.84 | 25500 | 0.4960 | 0.9415 | | 0.3555 | 18.19 | 26000 | 0.4238 | 0.9594 | | 0.3196 | 18.54 | 26500 | 0.4501 | 0.9495 | | 0.3288 | 18.89 | 27000 | 0.5292 | 0.9564 | | 0.3402 | 19.24 | 27500 | 0.4156 | 0.9475 | | 0.2889 | 19.59 | 28000 | 0.4056 | 0.9633 | | 0.3562 | 19.94 | 28500 | 0.3972 | 0.9504 | | 0.336 | 20.29 | 29000 | 0.4021 | 0.9257 | | 0.2952 | 20.64 | 29500 | 0.3920 | 0.9167 | | 0.2678 | 20.99 | 30000 | 0.3610 | 0.9049 | | 0.2816 | 21.34 | 30500 | 0.3782 | 0.9267 | | 0.2718 | 21.69 | 31000 | 0.3502 | 0.9068 | | 0.2948 | 22.04 | 31500 | 0.3412 | 0.9078 | | 0.2782 | 22.39 | 32000 | 0.3799 | 0.9039 | | 0.2668 | 22.74 | 32500 | 0.3725 | 0.9058 | | 0.2685 | 23.09 | 33000 | 0.3825 | 0.8880 | | 0.2514 | 23.44 | 33500 | 0.3618 | 0.8791 | | 0.2305 | 23.79 | 34000 | 0.4211 | 0.8870 | | 0.2671 | 24.14 | 34500 | 0.4126 | 0.8900 | | 0.2153 | 24.49 | 35000 | 0.4106 | 0.8801 | | 0.2323 | 24.84 | 35500 | 0.3845 | 0.8751 | | 0.2208 | 25.19 | 36000 | 0.4017 | 0.8741 | | 0.2023 | 25.54 | 36500 | 0.4451 | 0.8662 | | 0.232 | 25.89 | 37000 | 0.4133 | 0.8583 | | 0.2101 | 26.24 | 37500 | 0.4118 | 0.8662 | | 0.2139 | 26.59 | 38000 | 0.3937 | 0.8682 | | 0.1917 | 26.94 | 38500 | 0.4015 | 0.8603 | | 0.1904 | 27.29 | 39000 | 0.4018 | 0.8622 | | 0.2265 | 27.64 | 39500 | 0.3983 | 0.8573 | | 0.2081 | 27.99 | 40000 | 0.4027 | 0.8563 | | 0.2124 | 28.34 | 40500 | 0.4172 | 0.8523 | | 0.191 | 28.69 | 41000 | 0.4018 | 0.8444 | | 0.1906 | 29.04 | 41500 | 0.4148 | 0.8494 | | 0.1613 | 29.39 | 42000 | 0.4195 | 0.8543 | | 0.1864 | 29.74 | 42500 | 0.4134 | 0.8533 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
EP9/bert2bert_shared-spanish-finetuned-summarization-intento2
EP9
2022-11-23T23:51:55Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T21:42:22Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: bert2bert_shared-spanish-finetuned-summarization-intento2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert2bert_shared-spanish-finetuned-summarization-intento2 This model is a fine-tuned version of [mrm8488/bert2bert_shared-spanish-finetuned-summarization](https://huggingface.co/mrm8488/bert2bert_shared-spanish-finetuned-summarization) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.9693 - Rouge1: 1.8257 - Rouge2: 0.0 - Rougel: 1.6832 - Rougelsum: 1.6866 - Gen Len: 10.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 7.9999 | 1.0 | 6180 | 7.9915 | 1.5443 | 0.0 | 1.4357 | 1.4377 | 10.0 | | 7.9469 | 2.0 | 12360 | 7.9693 | 1.8257 | 0.0 | 1.6832 | 1.6866 | 10.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
jjjunyeong/bart-qg-finetuned-hotpotqa
jjjunyeong
2022-11-23T23:47:59Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:hotpot_qa", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T16:47:38Z
--- tags: - generated_from_trainer datasets: - hotpot_qa metrics: - rouge model-index: - name: bart-qg-finetuned-hotpotqa results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hotpot_qa type: hotpot_qa config: distractor split: train args: distractor metrics: - name: Rouge1 type: rouge value: 46.2814 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-qg-finetuned-hotpotqa This model is a fine-tuned version of [p208p2002/bart-squad-qg-hl](https://huggingface.co/p208p2002/bart-squad-qg-hl) on the hotpot_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.0817 - Rouge1: 46.2814 - Rouge2: 30.4609 - Rougel: 42.3385 - Rougelsum: 42.3741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.3949 | 1.0 | 2500 | 1.1812 | 44.0967 | 28.022 | 40.0397 | 40.0403 | | 1.0883 | 2.0 | 5000 | 1.1141 | 44.9629 | 29.1863 | 41.1078 | 41.1684 | | 0.8677 | 3.0 | 7500 | 1.0817 | 46.2814 | 30.4609 | 42.3385 | 42.3741 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
tomekkorbak/serene_yonath
tomekkorbak
2022-11-23T23:25:35Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:25:27Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: serene_yonath results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # serene_yonath This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3147 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 1024, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'serene_yonath', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/vmjbnu1o
tomekkorbak/hungry_rosalind
tomekkorbak
2022-11-23T23:23:37Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:23:29Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: hungry_rosalind results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hungry_rosalind This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3147 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 0.5, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 1024, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'hungry_rosalind', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.001, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2csvdc1h
tomekkorbak/stupefied_janusz
tomekkorbak
2022-11-23T23:21:37Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:21:29Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: stupefied_janusz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stupefied_janusz This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 1, 'name': 'Unlikelihood', 'score_threshold': 0.00078}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'stupefied_janusz', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1wpulou4
tomekkorbak/hopeful_yalow
tomekkorbak
2022-11-23T23:20:22Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:20:14Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: hopeful_yalow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hopeful_yalow This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'hopeful_yalow', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2ion1jvx
tomekkorbak/inspiring_easley
tomekkorbak
2022-11-23T23:20:19Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:20:12Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: inspiring_easley results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # inspiring_easley This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'inspiring_easley', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/2mtfj210
tomekkorbak/nifty_thompson
tomekkorbak
2022-11-23T23:15:19Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:15:12Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: nifty_thompson results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nifty_thompson This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'nifty_thompson', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/26ju1hp2
tomekkorbak/cocky_archimedes
tomekkorbak
2022-11-23T23:14:13Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:14:06Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: cocky_archimedes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cocky_archimedes This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'filter_threshold': 0.00078, 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'cocky_archimedes', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/289sk0vj
tomekkorbak/vibrant_borg
tomekkorbak
2022-11-23T23:13:51Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T23:13:44Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: vibrant_borg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vibrant_borg This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'vibrant_borg', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/17ff9n93
rach405/test_trainer6
rach405
2022-11-23T22:42:58Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-23T18:19:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer6 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0525 - Accuracy: 0.3229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0672 | 1.0 | 88 | 2.0811 | 0.3229 | | 1.9813 | 2.0 | 176 | 2.0715 | 0.3229 | | 2.1212 | 3.0 | 264 | 2.0525 | 0.3229 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Tokenizers 0.11.6
AlekseyKorshuk/6.7b-dalio-book-handwritten-io-constant-3e-7
AlekseyKorshuk
2022-11-23T22:19:07Z
8
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "dataset:AlekseyKorshuk/dalio-book-handwritten-io-sorted", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-23T18:37:25Z
--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-book-handwritten-io-sorted metrics: - accuracy model-index: - name: 6.7b-dalio-book-handwritten-io-constant-3e-7 results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-book-handwritten-io-sorted type: AlekseyKorshuk/dalio-book-handwritten-io-sorted metrics: - name: Accuracy type: accuracy value: 0.30175150519978106 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-dalio-book-handwritten-io-constant-3e-7 This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the AlekseyKorshuk/dalio-book-handwritten-io-sorted dataset. It achieves the following results on the evaluation set: - Loss: 2.4629 - Accuracy: 0.3018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6398 | 0.11 | 6 | 2.5059 | 0.2987 | | 2.5823 | 0.21 | 12 | 2.5039 | 0.2988 | | 2.6128 | 0.32 | 18 | 2.4980 | 0.2991 | | 2.5775 | 0.43 | 24 | 2.4922 | 0.2995 | | 2.527 | 0.54 | 30 | 2.4863 | 0.2999 | | 2.5752 | 0.64 | 36 | 2.4805 | 0.3003 | | 2.5131 | 0.75 | 42 | 2.4746 | 0.3008 | | 2.4436 | 0.86 | 48 | 2.4688 | 0.3014 | | 2.5114 | 0.96 | 54 | 2.4629 | 0.3018 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
yip-i/wav2vec2-demo-M04-2
yip-i
2022-11-23T22:13:37Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-23T15:14:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-demo-M04-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-M04-2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0168 - Wer: 1.2882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 21.8298 | 0.88 | 500 | 3.2643 | 1.0 | | 3.2319 | 1.75 | 1000 | 2.8027 | 1.0 | | 2.769 | 2.63 | 1500 | 2.4684 | 1.0 | | 2.0823 | 3.5 | 2000 | 1.9137 | 1.6482 | | 1.3094 | 4.38 | 2500 | 1.7267 | 1.6094 | | 0.9654 | 5.25 | 3000 | 1.7523 | 1.4882 | | 0.7505 | 6.13 | 3500 | 1.5588 | 1.5353 | | 0.6364 | 7.01 | 4000 | 1.5428 | 1.4706 | | 0.5307 | 7.88 | 4500 | 1.6277 | 1.4765 | | 0.4664 | 8.76 | 5000 | 1.6817 | 1.3718 | | 0.4243 | 9.63 | 5500 | 1.7682 | 1.4541 | | 0.3911 | 10.51 | 6000 | 1.8567 | 1.4094 | | 0.3555 | 11.38 | 6500 | 1.7248 | 1.3694 | | 0.3252 | 12.26 | 7000 | 1.8712 | 1.4012 | | 0.3072 | 13.13 | 7500 | 2.0088 | 1.4424 | | 0.2956 | 14.01 | 8000 | 1.8649 | 1.3576 | | 0.283 | 14.89 | 8500 | 1.8951 | 1.4035 | | 0.2682 | 15.76 | 9000 | 1.8762 | 1.3976 | | 0.2465 | 16.64 | 9500 | 1.8406 | 1.34 | | 0.2344 | 17.51 | 10000 | 1.9975 | 1.3294 | | 0.2269 | 18.39 | 10500 | 1.9207 | 1.3176 | | 0.2053 | 19.26 | 11000 | 2.0406 | 1.3412 | | 0.1934 | 20.14 | 11500 | 1.9039 | 1.2859 | | 0.2018 | 21.02 | 12000 | 1.8337 | 1.3212 | | 0.169 | 21.89 | 12500 | 1.9120 | 1.3071 | | 0.1742 | 22.77 | 13000 | 2.0650 | 1.3153 | | 0.1571 | 23.64 | 13500 | 2.0369 | 1.3165 | | 0.1403 | 24.52 | 14000 | 2.0420 | 1.2894 | | 0.1474 | 25.39 | 14500 | 1.9529 | 1.2847 | | 0.1373 | 26.27 | 15000 | 2.0818 | 1.3129 | | 0.1222 | 27.15 | 15500 | 1.9551 | 1.2753 | | 0.1182 | 28.02 | 16000 | 2.0138 | 1.2659 | | 0.1357 | 28.9 | 16500 | 1.9976 | 1.2859 | | 0.1158 | 29.77 | 17000 | 2.0168 | 1.2882 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
xaeroq/MLAgents-Pyramids
xaeroq
2022-11-23T22:03:30Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-23T22:03:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: xaeroq/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AlekseyKorshuk/6.7b-dalio-book-handwritten-io-cosine-6e-6
AlekseyKorshuk
2022-11-23T20:07:13Z
3
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-23T16:54:46Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6.7b-dalio-book-handwritten-io-cosine-6e-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-dalio-book-handwritten-io-cosine-6e-6 This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0586 - Accuracy: 0.3412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6377 | 0.11 | 6 | 2.4688 | 0.3016 | | 2.5046 | 0.21 | 12 | 2.3848 | 0.3096 | | 2.4755 | 0.32 | 18 | 2.3223 | 0.3156 | | 2.459 | 0.43 | 24 | 2.2715 | 0.3201 | | 2.3602 | 0.54 | 30 | 2.2246 | 0.3243 | | 2.3829 | 0.64 | 36 | 2.1895 | 0.3275 | | 2.3188 | 0.75 | 42 | 2.1465 | 0.3315 | | 2.2895 | 0.86 | 48 | 2.1035 | 0.3365 | | 2.3062 | 0.96 | 54 | 2.0586 | 0.3412 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.12.1
StanfordAIMI/stanford-deidentifier-with-radiology-reports-and-i2b2
StanfordAIMI
2022-11-23T19:46:01Z
119
6
transformers
[ "transformers", "pytorch", "bert", "token-classification", "sequence-tagger-model", "pubmedbert", "uncased", "radiology", "biomedical", "en", "dataset:radreports", "license:mit", "endpoints_compatible", "region:us" ]
token-classification
2022-06-09T08:12:13Z
--- widget: - text: "PROCEDURE: Chest xray. COMPARISON: last seen on 1/1/2020 and also record dated of March 1st, 2019. FINDINGS: patchy airspace opacities. IMPRESSION: The results of the chest xray of January 1 2020 are the most concerning ones. The patient was transmitted to another service of UH Medical Center under the responsability of Dr. Perez. We used the system MedClinical data transmitter and sent the data on 2/1/2020, under the ID 5874233. We received the confirmation of Dr Perez. He is reachable at 567-493-1234." - text: "Dr. Curt Langlotz chose to schedule a meeting on 06/23." tags: - token-classification - sequence-tagger-model - pytorch - transformers - pubmedbert - uncased - radiology - biomedical datasets: - radreports language: - en license: mit --- Stanford de-identifier was trained on a variety of radiology and biomedical documents with the goal of automatising the de-identification process while reaching satisfactory accuracy for use in production. Manuscript in-proceedings. Associated github repo: https://github.com/MIDRC/Stanford_Penn_Deidentifier ## Citation ```bibtex @article{10.1093/jamia/ocac219, author = {Chambon, Pierre J and Wu, Christopher and Steinkamp, Jackson M and Adleberg, Jason and Cook, Tessa S and Langlotz, Curtis P}, title = "{Automated deidentification of radiology reports combining transformer and “hide in plain sight” rule-based methods}", journal = {Journal of the American Medical Informatics Association}, year = {2022}, month = {11}, abstract = "{To develop an automated deidentification pipeline for radiology reports that detect protected health information (PHI) entities and replaces them with realistic surrogates “hiding in plain sight.”In this retrospective study, 999 chest X-ray and CT reports collected between November 2019 and November 2020 were annotated for PHI at the token level and combined with 3001 X-rays and 2193 medical notes previously labeled, forming a large multi-institutional and cross-domain dataset of 6193 documents. Two radiology test sets, from a known and a new institution, as well as i2b2 2006 and 2014 test sets, served as an evaluation set to estimate model performance and to compare it with previously released deidentification tools. Several PHI detection models were developed based on different training datasets, fine-tuning approaches and data augmentation techniques, and a synthetic PHI generation algorithm. These models were compared using metrics such as precision, recall and F1 score, as well as paired samples Wilcoxon tests.Our best PHI detection model achieves 97.9 F1 score on radiology reports from a known institution, 99.6 from a new institution, 99.5 on i2b2 2006, and 98.9 on i2b2 2014. On reports from a known institution, it achieves 99.1 recall of detecting the core of each PHI span.Our model outperforms all deidentifiers it was compared to on all test sets as well as human labelers on i2b2 2014 data. It enables accurate and automatic deidentification of radiology reports.A transformer-based deidentification pipeline can achieve state-of-the-art performance for deidentifying radiology reports and other medical documents.}", issn = {1527-974X}, doi = {10.1093/jamia/ocac219}, url = {https://doi.org/10.1093/jamia/ocac219}, note = {ocac219}, eprint = {https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocac219/47220191/ocac219.pdf}, } ```
tomekkorbak/agitated_jones
tomekkorbak
2022-11-23T19:45:02Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T19:37:18Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: agitated_jones results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # agitated_jones This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 3147 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'value_head_config': {'is_detached': False}}, 'path_or_name': 'gpt2'}, 'objective': {'alpha': 1, 'beta': 10, 'name': 'AWR'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 1024, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'agitated_jones', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/3t7xpujc
kontogiorgos/q-Taxi-v3
kontogiorgos
2022-11-23T18:18:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-23T18:18:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kontogiorgos/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
NehalJani/fin_sentiment
NehalJani
2022-11-23T18:11:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-23T18:04:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: fin_sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fin_sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.4801 | 0.8006 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
whatlurks/test
whatlurks
2022-11-23T17:24:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-23T17:24:28Z
--- license: creativeml-openrail-m ---
monakth/bert-base-multilingual-uncased-sv2
monakth
2022-11-23T17:03:27Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-23T17:01:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-multilingual-uncased-svv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-svv This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
flamesbob/Ink_style_embedding
flamesbob
2022-11-23T16:48:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-23T16:47:51Z
--- license: creativeml-openrail-m ---
dung1308/RM_system_NLP_model
dung1308
2022-11-23T16:43:54Z
70
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-23T06:49:11Z
--- tags: - generated_from_keras_callback model-index: - name: dung1308/RM_system_NLP_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dung1308/RM_system_NLP_model This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8134 - Validation Loss: 1.8072 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.4371 | 2.4851 | 0 | | 4.0108 | 2.1003 | 1 | | 3.8134 | 1.8072 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.7.0 - Tokenizers 0.11.0
tomekkorbak/ecstatic_hoover
tomekkorbak
2022-11-23T16:14:21Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T16:13:50Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: ecstatic_hoover results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ecstatic_hoover This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.00056}, 'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048, 'prefix': '<|aligned|>'}, {'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prefix': '<|aligned|>', 'prompt_before_control': True, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'num_additional_tokens': 2, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'ecstatic_hoover', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1p7d3shx
tomekkorbak/vigorous_thompson
tomekkorbak
2022-11-23T16:07:17Z
0
0
null
[ "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-0-50000", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000", "dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000", "license:mit", "region:us" ]
null
2022-11-23T16:07:08Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-0-50000 - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 - tomekkorbak/detoxify-pile-chunk3-1850000-1900000 - tomekkorbak/detoxify-pile-chunk3-1900000-1950000 model-index: - name: vigorous_thompson results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vigorous_thompson This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 50354 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000', 'tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000', 'tomekkorbak/detoxify-pile-chunk3-1850000-1900000', 'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [25354], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [25354], 'max_tokens': 64, 'num_samples': 4096}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'vigorous_thompson', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output104340', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 25354, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/1kpqechr
daniel-tomiwa/finetuned-pegasus-model
daniel-tomiwa
2022-11-23T15:11:24Z
96
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T14:27:25Z
--- tags: - generated_from_trainer model-index: - name: finetuned-pegasus-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-pegasus-model This model is a fine-tuned version of [human-centered-summarization/financial-summarization-pegasus](https://huggingface.co/human-centered-summarization/financial-summarization-pegasus) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 240 | 0.6898 | 40.3397 | 29.9123 | 33.8417 | 37.7847 | 61.5333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
jamiehudson/579-STmodel-v3
jamiehudson
2022-11-23T14:29:06Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-23T14:28:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1800 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1800, "warmup_steps": 180, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mshuggingface/swin-tiny-patch4-window7-224-ms-test1
mshuggingface
2022-11-23T13:54:56Z
205
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-23T13:51:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-ms-test1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-ms-test1 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6036 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.7667 | 0.5 | | No log | 2.0 | 2 | 0.6644 | 0.5 | | No log | 3.0 | 3 | 0.6036 | 0.5 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
archipela/ell-syntax
archipela
2022-11-23T13:37:04Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-regression", "unk", "dataset:huynhdoo/autotrain-data-ell-syntax", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-11-23T13:33:51Z
--- tags: - autotrain - text-regression language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - huynhdoo/autotrain-data-ell-syntax co2_eq_emissions: emissions: 6.2662711223675815 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2218471162 - CO2 Emissions (in grams): 6.2663 ## Validation Metrics - Loss: 0.237 - MSE: 0.237 - MAE: 0.393 - R2: 0.438 - RMSE: 0.487 - Explained Variance: 0.477 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huynhdoo/autotrain-ell-syntax-2218471162 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huynhdoo/autotrain-ell-syntax-2218471162", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huynhdoo/autotrain-ell-syntax-2218471162", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
archipela/ell-conventions
archipela
2022-11-23T13:34:18Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-regression", "unk", "dataset:huynhdoo/autotrain-data-ell-conventions", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-11-23T13:32:43Z
--- tags: - autotrain - text-regression language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - huynhdoo/autotrain-data-ell-conventions co2_eq_emissions: emissions: 2.6341173422087247 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2218371153 - CO2 Emissions (in grams): 2.6341 ## Validation Metrics - Loss: 0.259 - MSE: 0.259 - MAE: 0.402 - R2: 0.426 - RMSE: 0.509 - Explained Variance: 0.439 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huynhdoo/autotrain-ell-conventions-2218371153 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huynhdoo/autotrain-ell-conventions-2218371153", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huynhdoo/autotrain-ell-conventions-2218371153", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
archipela/ell-grammar
archipela
2022-11-23T13:31:50Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-regression", "unk", "dataset:huynhdoo/autotrain-data-ell-grammar", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-11-23T13:29:53Z
--- tags: - autotrain - text-regression language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - huynhdoo/autotrain-data-ell-grammar co2_eq_emissions: emissions: 2.4374734387953882 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 2218171131 - CO2 Emissions (in grams): 2.4375 ## Validation Metrics - Loss: 0.325 - MSE: 0.325 - MAE: 0.449 - R2: 0.342 - RMSE: 0.570 - Explained Variance: 0.425 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/huynhdoo/autotrain-ell-grammar-2218171131 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("huynhdoo/autotrain-ell-grammar-2218171131", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("huynhdoo/autotrain-ell-grammar-2218171131", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sd-concepts-library/yellow-cockatiel-parrot
sd-concepts-library
2022-11-23T12:50:05Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-11-23T12:49:55Z
--- license: mit --- ### Yellow Cockatiel Parrot on Stable Diffusion This is the `<rosa-popugai>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<rosa-popugai> 0](https://huggingface.co/sd-concepts-library/yellow-cockatiel-parrot/resolve/main/concept_images/3.jpeg) ![<rosa-popugai> 1](https://huggingface.co/sd-concepts-library/yellow-cockatiel-parrot/resolve/main/concept_images/0.jpeg) ![<rosa-popugai> 2](https://huggingface.co/sd-concepts-library/yellow-cockatiel-parrot/resolve/main/concept_images/2.jpeg) ![<rosa-popugai> 3](https://huggingface.co/sd-concepts-library/yellow-cockatiel-parrot/resolve/main/concept_images/1.jpeg)
jamiehudson/579-STmodel-v2
jamiehudson
2022-11-23T12:41:08Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-23T12:40:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 300 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 300, "warmup_steps": 30, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
akmmsr/bert-finetuned-ner
akmmsr
2022-11-23T12:31:34Z
69
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T12:54:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: akmmsr/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # akmmsr/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0266 - Validation Loss: 0.0519 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1758 | 0.0625 | 0 | | 0.0457 | 0.0537 | 1 | | 0.0266 | 0.0519 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
skolesnikov/ddpm-butterflies-128
skolesnikov
2022-11-23T12:22:41Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-23T11:09:36Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mskolesnikov/ddpm-butterflies-128/tensorboard?#scalars)
cafeai/cafe_aesthetic
cafeai
2022-11-23T12:08:27Z
3,264
50
transformers
[ "transformers", "pytorch", "beit", "image-classification", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-14T09:56:39Z
--- license: agpl-3.0 --- # Info Since people are downloading this and I don't know why, I'll add some information. This model is an image classifier fine-tuned on `microsoft/beit-base-patch16-384`. Its purpose is to be used in the dataset conditioning step for the [Waifu Diffusion project](https://huggingface.co/hakurei/waifu-diffusion), a fine-tune effort for Stable Diffusion. As WD1.4 is planned to have a *significantly large dataset* (~15m images), it is infeasible to analyze every image manually to determine whether or not it should be included in the final training dataset. This image classifier is trained on approximately 3.5k real-life and anime/manga images. Its purpose is to remove aesthetically worthless images from our dataset by classifying them as "`not_aesthetic`". The image classifier was trained to **err on the side of caution** and will generally tend to include images unless they are in a "manga-like" format, have messy lines and/or are sketches, or include an unacceptable amount of text (namely text that covers the primary subject of the image). The idea is that certain images will hurt a SD fine-tune. Note: This classifier is not perfect, just like every other classifier out there. However, with a sufficiently large dataset, any imperfections or misclassifications should average themselves out due to the Law of Large Numbers. You can test out the classifier [here](https://huggingface.co/spaces/cafeai/cafe_aesthetic_demo), along with some other classifiers for the project. # License Released under the aGPLv3. Use the model as you wish for any purpose. If you make changes, share the changes.
christofid/dabert-multi
christofid
2022-11-23T12:05:14Z
121
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-23T11:43:17Z
--- license: mit --- ### dapBERT DapBERT-multi is a BERT-like model trained based on the domain adaptive pretraining method ([Gururangan et al.](https://aclanthology.org/2020.acl-main.740/)) for the patent domain. Bert-base-multilingual-cased is used as base for the training. The training dataset used consists of a corpus of 10,000,000 patent abstracts that have been filed between 1998-2020 in US and European patent offices as well as the World Intellectual Property Organization.
dscoursetechnion/t5-small-finetuned-xsum
dscoursetechnion
2022-11-23T12:03:09Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T08:03:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 26.7823 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5658 - Rouge1: 26.7823 - Rouge2: 6.7168 - Rougel: 20.9066 - Rougelsum: 20.9054 - Gen Len: 18.8193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.8016 | 1.0 | 4251 | 2.5658 | 26.7823 | 6.7168 | 20.9066 | 20.9054 | 18.8193 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
PlanTL-GOB-ES/es_pharmaconer_ner_trf
PlanTL-GOB-ES
2022-11-23T11:47:57Z
5
0
spacy
[ "spacy", "token-classification", "es", "license:mit", "model-index", "region:us" ]
token-classification
2022-11-13T08:54:09Z
--- tags: - spacy - token-classification language: - es license: mit model-index: - name: es_pharmaconer_ner_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9066736184 - name: NER Recall type: recall value: 0.9152631579 - name: NER F Score type: f_score value: 0.9109481404 widget: - text: "Se realizó estudio analítico destacando incremento de niveles de PTH y vitamina D (103,7 pg/ml y 272 ng/ml, respectivamente), atribuidos al exceso de suplementación de vitamina D." - text: "Por el hallazgo de múltiples fracturas por estrés, se procedió a estudio en nuestras consultas, realizándose análisis con función renal, calcio sérico y urinario, calcio iónico, magnesio y PTH, que fueron normales." - text: "Se solicitó una analítica que incluía hemograma, bioquímica, anticuerpos antinucleares (ANA) y serologías, examen de orina, así como biopsia de la lesión. Los resultados fueron normales, con ANA, anti-Sm, anti-RNP, anti-SSA, anti-SSB, anti-Jo1 y anti-Scl70 negativos." --- Basic Spacy BioNER pipeline, with a RoBERTa-based model [bsc-bio-ehr-es] (https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) and a dataset, Pharmaconer, a NER dataset annotated with substances, compounds and proteins entities. For further information, check the [official website](https://temu.bsc.es/pharmaconer/). Visit our [GitHub repository](https://github.com/PlanTL-GOB-ES/lm-biomedical-clinical-es). This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL | Feature | Description | | --- | --- | | **Name** | `es_pharmaconer_ner_trf` | | **Version** | `3.4.1` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `mit` | | **Author** | [The Text Mining Unit from Barcelona Supercomputing Center.](https://huggingface.co/PlanTL-GOB-ES/) | | **Copyright** | Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022) | | **Funding** | This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `NORMALIZABLES`, `NO_NORMALIZABLES`, `PROTEINAS`, `UNCLEAR` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 91.09 | | `ENTS_P` | 90.67 | | `ENTS_R` | 91.53 | | `TRANSFORMER_LOSS` | 15719.51 | | `NER_LOSS` | 22469.88 |
Watwat100/gpu2
Watwat100
2022-11-23T11:06:00Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-23T11:05:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2347 with parameters: ``` {'batch_size': 12, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 4694, "warmup_steps": 470, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
selmey/behaviour-change-valence-german
selmey
2022-11-23T10:02:13Z
103
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-23T09:17:40Z
Bert-base-german-cased finetuned on the Valence level of the GLoHBCD Dataset (https://github.com/SelinaMeyer/GLoHBCD). The dataset leverages Motivational Interviewing client behaviour codes to evaluate user utterances across different dimensions and gauge user's stance and thoughts about behaviour change in the context of weight loss. This model classifies German text around behaviour change as either "Change Talk" (utterances in favour of change, 1) or "Sustain Talk" (utterances in favour of the status quo, 0). When using the model, please cite: @InProceedings{meyer-elsweiler:2022:LREC, author = {Meyer, Selina and Elsweiler, David}, title = {GLoHBCD: A Naturalistic German Dataset for Language of Health Behaviour Change on Online Support Forums}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {2226--2235}, url = {https://aclanthology.org/2022.lrec-1.239}}
cgt/pert-qa
cgt
2022-11-23T09:46:49Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:cmrc2018", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-03T06:29:16Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cmrc2018 model-index: - name: pert-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pert-qa This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on the cmrc2018 dataset. It achieves the following results on the evaluation set: - Loss: 0.6942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1273 | 1.0 | 1200 | 0.7088 | | 0.6132 | 2.0 | 2400 | 0.6942 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Roy029/mpyt5_e5
Roy029
2022-11-23T08:59:18Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T10:04:27Z
--- license: openrail --- # Model Card for mpyt5_e5 <!-- Provide a quick summary of what the model is/does. [Optional] --> 事前に自然言語だけでなくPythonを学習したモデル # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Python Code (1.05GB) ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - MLM - python vocab (https://huggingface.co/kkuramitsu/mt5-pytoken) ### Preprocessing mT5 + Python ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> - mT5-small(300M Paramators) - max_length = 128 # Model Version - *epoch5: This Model - *epoch10: https://huggingface.co/Roy029/mpyt5_e10 - *epoch15: https://huggingface.co/Roy029/mpyt5_e15 - *epoch20: https://huggingface.co/Roy029/mpyt5_e20
Roy029/mpyt5_e20
Roy029
2022-11-23T08:58:44Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T09:15:04Z
--- license: openrail --- # Model Card for mpyt5_e15 <!-- Provide a quick summary of what the model is/does. [Optional] --> 事前に自然言語だけでなくPythonを学習したモデル # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Python Code (1.05GB) ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - MLM - python vocab (https://huggingface.co/kkuramitsu/mt5-pytoken) ### Preprocessing mT5 + Python ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> - mT5-small(300M Paramators) - max_length = 128 # Model Version - *epoch5: https://huggingface.co/Roy029/mpyt5_e5 - *epoch10: https://huggingface.co/Roy029/mpyt5_e10 - *epoch15: https://huggingface.co/Roy029/mpyt5_e15 - *epoch20: This Model
Roy029/mpyt5_e15
Roy029
2022-11-23T08:57:10Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T11:18:09Z
--- license: openrail --- # Model Card for mpyt5_e15 <!-- Provide a quick summary of what the model is/does. [Optional] --> 事前に自然言語だけでなくPythonを学習したモデル # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Python Code (1.05GB) ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - MLM - python vocab (https://huggingface.co/kkuramitsu/mt5-pytoken) ### Preprocessing mT5 + Python ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> - mT5-small(300M Paramators) - max_length = 128 # Model Version - *epoch5: https://huggingface.co/Roy029/mpyt5_e5 - *epoch10: https://huggingface.co/Roy029/mpyt5_e10 - *epoch15: This Model - *epoch20: https://huggingface.co/Roy029/mpyt5_e20
eikoenchine/xlm-roberta-base-finetuned-panx-all
eikoenchine
2022-11-23T08:42:37Z
137
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-23T08:29:14Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1713 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3076 | 1.0 | 835 | 0.2008 | 0.7923 | | 0.1565 | 2.0 | 1670 | 0.1809 | 0.8437 | | 0.1027 | 3.0 | 2505 | 0.1713 | 0.8544 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.7.0 - Tokenizers 0.12.1
crodri/autotrain-wikicat_es-2213570987
crodri
2022-11-23T08:18:56Z
101
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "es", "dataset:crodri/autotrain-data-wikicat_es", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-23T08:07:19Z
--- tags: - autotrain - text-classification language: - es widget: - text: "El Fútbol Club Barcelona, conocido popularmente como Barça, es una entidad polideportiva con sede en Barcelona, España." datasets: - crodri/autotrain-data-wikicat_es co2_eq_emissions: emissions: 10.4216765068249 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2213570987 - CO2 Emissions (in grams): 10.4217 ## Validation Metrics - Loss: 0.713 - Accuracy: 0.786 - Macro F1: 0.758 - Micro F1: 0.786 - Weighted F1: 0.785 - Macro Precision: 0.762 - Micro Precision: 0.786 - Weighted Precision: 0.787 - Macro Recall: 0.757 - Micro Recall: 0.786 - Weighted Recall: 0.786 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crodri/autotrain-wikicat_es-2213570987 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crodri/autotrain-wikicat_es-2213570987", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crodri/autotrain-wikicat_es-2213570987", use_auth_token=True) inputs = tokenizer("El Fútbol Club Barcelona, conocido popularmente como Barça, es una entidad polideportiva con sede en Barcelona, España.", return_tensors="pt") outputs = model(**inputs) ```
mayank-soni/mt5-small-finetuned-amazon-en-es
mayank-soni
2022-11-23T08:16:42Z
64
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T07:23:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mayank-soni/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mayank-soni/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0475 - Validation Loss: 3.3455 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.8713 | 4.1729 | 0 | | 5.8463 | 3.7092 | 1 | | 5.1036 | 3.5528 | 2 | | 4.7009 | 3.4817 | 3 | | 4.4143 | 3.4132 | 4 | | 4.2395 | 3.3689 | 5 | | 4.1259 | 3.3469 | 6 | | 4.0475 | 3.3455 | 7 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
xaeroq/dqn-Qbert-v5
xaeroq
2022-11-23T07:49:54Z
0
0
stable-baselines3
[ "stable-baselines3", "ALE/Qbert-v5", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-23T07:49:30Z
--- library_name: stable-baselines3 tags: - ALE/Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ALE/Qbert-v5 type: ALE/Qbert-v5 metrics: - type: mean_reward value: 6665.00 +/- 1973.49 name: mean_reward verified: false --- # **DQN** Agent playing **ALE/Qbert-v5** This is a trained model of a **DQN** agent playing **ALE/Qbert-v5** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env ALE/Qbert-v5 -orga xaeroq -f logs/ python enjoy.py --algo dqn --env ALE/Qbert-v5 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env ALE/Qbert-v5 -orga xaeroq -f logs/ rl_zoo3 enjoy --algo dqn --env ALE/Qbert-v5 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env ALE/Qbert-v5 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env ALE/Qbert-v5 -f logs/ -orga xaeroq ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
utkarshbelkhede/distilbart-sec-10K
utkarshbelkhede
2022-11-23T07:02:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-23T06:54:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-sec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-sec This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1379 - Rouge1: 72.2845 - Rouge2: 61.1501 - Rougel: 67.6999 - Rougelsum: 70.9968 - Gen Len: 113.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 99 | 0.4429 | 56.0806 | 40.5969 | 47.5271 | 53.7227 | 115.44 | | No log | 2.0 | 198 | 0.2279 | 56.6042 | 42.1781 | 48.9542 | 54.951 | 116.84 | | No log | 3.0 | 297 | 0.1845 | 65.9646 | 51.8575 | 59.8647 | 64.103 | 113.8 | | No log | 4.0 | 396 | 0.1532 | 71.6132 | 61.1434 | 67.4165 | 70.4093 | 110.46 | | No log | 5.0 | 495 | 0.1379 | 72.2845 | 61.1501 | 67.6999 | 70.9968 | 113.8 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
tomXBE/bert-finetuned-squad_2
tomXBE
2022-11-23T06:56:53Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-23T06:31:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad_2 This model is a fine-tuned version of [tomXBE/distilbert-base-uncased-finetuned-squad](https://huggingface.co/tomXBE/distilbert-base-uncased-finetuned-squad) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
popolin52/q-FrozenLake-v1-4x4-noSlippery
popolin52
2022-11-23T05:39:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-11-23T05:39:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="popolin52/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
wyu1/GenRead-3B-NQ
wyu1
2022-11-23T05:11:28Z
3
0
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-11-23T04:56:22Z
--- license: cc-by-4.0 --- # GenRead: FiD model trained on NQ -- This is the model checkpoint of GenRead [2], based on the T5-3B and trained on the NQ dataset [1]. -- Hyperparameters: 8 x 80GB A100 GPUs; batch size 16; AdamW; LR 5e-5; best dev at 14000 steps. References: [1] Natural Questions: A Benchmark for Question Answering Research. TACL 2019. [2] Generate rather than Retrieve: Large Language Models are Strong Context Generators. arXiv 2022 ## Model performance We evaluate it on the TriviaQA dataset, the EM score is 45.55. <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> --- license: cc-by-4.0 --- --- license: cc-by-4.0 ---
Chayo/ppo-LunarLander-v2
Chayo
2022-11-23T04:43:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-23T04:43:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 173.24 +/- 14.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Egrt/Luuuu
Egrt
2022-11-23T02:54:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-20T12:11:42Z
--- license: apache-2.0 ---
nhanv/ner_cv
nhanv
2022-11-23T01:27:32Z
112
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-23T01:25:59Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: reco-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reco-ner This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0668 - Precision: 0.8125 - Recall: 0.8790 - F1: 0.8444 - Accuracy: 0.9819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4516 | 1.0 | 626 | 0.4047 | 0.4332 | 0.4564 | 0.4445 | 0.8980 | | 0.3677 | 2.0 | 1252 | 0.2774 | 0.4918 | 0.5731 | 0.5293 | 0.9193 | | 0.2892 | 3.0 | 1878 | 0.2133 | 0.6139 | 0.6581 | 0.6353 | 0.9384 | | 0.2736 | 4.0 | 2504 | 0.1772 | 0.6248 | 0.6854 | 0.6537 | 0.9488 | | 0.221 | 5.0 | 3130 | 0.1503 | 0.6295 | 0.7328 | 0.6772 | 0.9560 | | 0.1569 | 6.0 | 3756 | 0.1283 | 0.6821 | 0.8108 | 0.7409 | 0.9623 | | 0.1534 | 7.0 | 4382 | 0.0995 | 0.7412 | 0.8119 | 0.7749 | 0.9708 | | 0.089 | 8.0 | 5008 | 0.0846 | 0.7695 | 0.8353 | 0.8010 | 0.9760 | | 0.0923 | 9.0 | 5634 | 0.0743 | 0.7881 | 0.8740 | 0.8289 | 0.9789 | | 0.0711 | 10.0 | 6260 | 0.0668 | 0.8125 | 0.8790 | 0.8444 | 0.9819 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AlekseyKorshuk/6.7b-dalio-principles-book-1-epoch-1-gas-6e-6-lr
AlekseyKorshuk
2022-11-23T00:59:42Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T12:39:25Z
--- license: other tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6.7b-dalio-principles-book-1-epoch-1-gas-6e-6-lr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6.7b-dalio-principles-book-1-epoch-1-gas-6e-6-lr This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4121 - Accuracy: 0.3487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4875 | 0.11 | 1 | 2.5059 | 0.3397 | | 2.5339 | 0.22 | 2 | 2.5059 | 0.3397 | | 2.5161 | 0.33 | 3 | 2.5059 | 0.3397 | | 2.4524 | 0.44 | 4 | 2.5059 | 0.3397 | | 2.554 | 0.56 | 5 | 2.4785 | 0.3416 | | 2.4678 | 0.67 | 6 | 2.4785 | 0.3416 | | 2.4836 | 0.78 | 7 | 2.4473 | 0.3458 | | 2.4138 | 0.89 | 8 | 2.4297 | 0.3473 | | 2.4551 | 1.0 | 9 | 2.4121 | 0.3487 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
manirai91/xlm-roberta-conll2003
manirai91
2022-11-23T00:48:19Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-22T22:35:19Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 model-index: - name: xlm-roberta-conll2003 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-conll2003 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
Gobee/Wav2vec2-Large-XLSR-Tamil
Gobee
2022-11-23T00:41:22Z
133
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "tamil language", "ta", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-18T16:07:57Z
--- license: apache-2.0 language: ta tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard - tamil language model-index: - name: XLSR Wav2Vec2 Tamil by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 57.004356 --- # Wav2Vec2-Large-XLSR-Tamil When using this model, make sure that your speech input is sampled at 16kHz. ## Inference The model can be used directly as follows: ```python !pip install datasets !pip install transformers from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch import librosa from datasets import load_dataset test_dataset = load_dataset("common_voice", "ta", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil") model = Wav2Vec2ForCTC.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python !pip install datasets !pip install transformers !pip install jiwer from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch import librosa from datasets import load_dataset, load_metric import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil") model = Wav2Vec2ForCTC.from_pretrained("Gobee/Wav2vec2-Large-XLSR-Tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\ \’\–\(\)]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.004356 % ## Usage and Evaluation script The script used for usage and evaluation can be found [here](https://colab.research.google.com/drive/1dyDe14iOmoNoVHDJTkg-hAgLnrGdI-Dk?usp=share_link) ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
mwmathis/DeepLabCutModelZoo-full_cheetah
mwmathis
2022-11-23T00:39:10Z
0
0
null
[ "computer_vision", "pose_estimation", "arxiv:2103.13282", "license:lgpl-3.0", "region:us" ]
null
2022-11-23T00:38:27Z
--- license: lgpl-3.0 tags: - computer_vision - pose_estimation --- Model from Joska et al. 2021 ICRA please cite: https://arxiv.org/abs/2103.13282
jeapaul/wav2vec2-base-torgo-demo-m04-nolm
jeapaul
2022-11-23T00:14:40Z
106
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-16T20:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-torgo-demo-m04-nolm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-torgo-demo-m04-nolm This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5735 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.431 | 0.88 | 500 | 4.5567 | 1.0 | | 3.4727 | 1.75 | 1000 | 3.5626 | 1.0 | | 3.3879 | 2.63 | 1500 | 3.9274 | 1.0 | | 3.3513 | 3.5 | 2000 | 3.4813 | 1.0 | | 3.3538 | 4.38 | 2500 | 3.7300 | 1.0 | | 3.3539 | 5.25 | 3000 | 3.5714 | 1.0 | | 3.339 | 6.13 | 3500 | 3.6732 | 1.0 | | 3.3038 | 7.01 | 4000 | 3.6788 | 1.0 | | 3.35 | 7.88 | 4500 | 3.6715 | 1.0 | | 3.338 | 8.76 | 5000 | 3.5161 | 1.0 | | 3.3306 | 9.63 | 5500 | 3.7386 | 1.0 | | 3.3266 | 10.51 | 6000 | 3.4908 | 1.0 | | 3.3184 | 11.38 | 6500 | 3.7669 | 1.0 | | 3.3189 | 12.26 | 7000 | 3.6142 | 1.0 | | 3.331 | 13.13 | 7500 | 3.5619 | 1.0 | | 3.3139 | 14.01 | 8000 | 3.6632 | 1.0 | | 3.3069 | 14.89 | 8500 | 3.6127 | 1.0 | | 3.315 | 15.76 | 9000 | 3.5562 | 1.0 | | 3.3079 | 16.64 | 9500 | 3.7094 | 1.0 | | 3.3077 | 17.51 | 10000 | 3.5412 | 1.0 | | 3.3188 | 18.39 | 10500 | 3.6303 | 1.0 | | 3.3133 | 19.26 | 11000 | 3.5704 | 1.0 | | 3.3428 | 20.14 | 11500 | 3.5662 | 1.0 | | 3.3082 | 21.02 | 12000 | 3.6084 | 1.0 | | 3.3238 | 21.89 | 12500 | 3.6164 | 1.0 | | 3.3119 | 22.77 | 13000 | 3.5787 | 1.0 | | 3.2981 | 23.64 | 13500 | 3.6356 | 1.0 | | 3.3153 | 24.52 | 14000 | 3.5726 | 1.0 | | 3.3065 | 25.39 | 14500 | 3.5908 | 1.0 | | 3.3199 | 26.27 | 15000 | 3.5823 | 1.0 | | 3.306 | 27.15 | 15500 | 3.5658 | 1.0 | | 3.3153 | 28.02 | 16000 | 3.5818 | 1.0 | | 3.2762 | 28.9 | 16500 | 3.5810 | 1.0 | | 3.3196 | 29.77 | 17000 | 3.5735 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.13.2
sacculifer/dimbat_disaster_distilbert
sacculifer
2022-11-22T22:05:36Z
62
1
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T19:26:40Z
--- tags: - generated_from_keras_callback model-index: - name: tmp_isorz6_ results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tweets disaster detection model This model was trained from part of Disaster Tweet Corpus 2020 (Analysis of Filtering Models for Disaster-Related Tweets, Wiegmann,M. et al, 2020) dataset It achieves the following results on the evaluation set: - Train Loss: 0.1400 - Train Accuracy: 0.9516 - Validation Loss: 0.1995 - Validation Accuracy: 0.9324 - Epoch: 2 ## Model description Labels <br> not disaster --- 0 <br> disaster --- 1 ### Training hyperparameters The following hyperparameters were used during training: - optimizer: <br> batch_size = 16 <br> num_epochs = 5 <br> batches_per_epoch = len(tokenized_tweet["train"])//batch_size <br> total_train_steps = int(batches_per_epoch * num_epochs) <br> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps) - training_precision: float32 ### Framework versions - Transformers 4.16.2 - TensorFlow 2.9.2 - Datasets 2.4.0 - Tokenizers 0.12.1 ### How to use it from transformers import AutoTokenizer, TFAutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("sacculifer/dimbat_disaster_distilbert") model = TFAutoModelForSequenceClassification.from_pretrained("sacculifer/dimbat_disaster_distilbert")
utkarshbelkhede/t5-small-sec-10K
utkarshbelkhede
2022-11-22T21:26:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T15:40:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-sec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-sec This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0856 - Rouge1: 32.2284 - Rouge2: 28.534 - Rougel: 31.5055 - Rougelsum: 31.5557 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 7 | 4.6983 | 11.362 | 2.7982 | 8.7377 | 9.7976 | 18.98 | | No log | 2.0 | 14 | 4.2258 | 12.0011 | 3.5612 | 9.3131 | 10.4507 | 18.98 | | No log | 3.0 | 21 | 3.8453 | 11.8522 | 3.4893 | 9.1555 | 10.2755 | 18.98 | | No log | 4.0 | 28 | 3.5885 | 12.3065 | 4.0008 | 9.7828 | 10.8749 | 18.98 | | No log | 5.0 | 35 | 3.4236 | 12.7682 | 4.2469 | 10.3591 | 11.4642 | 18.98 | | No log | 6.0 | 42 | 3.2760 | 13.6201 | 4.9127 | 11.564 | 12.2789 | 18.98 | | No log | 7.0 | 49 | 3.1441 | 12.8404 | 4.2904 | 11.0183 | 11.5934 | 18.98 | | No log | 8.0 | 56 | 3.0378 | 12.9692 | 4.8361 | 11.1002 | 11.793 | 18.98 | | No log | 9.0 | 63 | 2.9405 | 13.7953 | 5.4215 | 11.7945 | 12.5504 | 18.98 | | No log | 10.0 | 70 | 2.8531 | 13.7016 | 5.3292 | 11.4372 | 12.4143 | 18.98 | | No log | 11.0 | 77 | 2.7763 | 14.1725 | 5.8704 | 12.0214 | 13.062 | 18.98 | | No log | 12.0 | 84 | 2.7021 | 14.8748 | 6.2724 | 12.7188 | 13.9306 | 18.98 | | No log | 13.0 | 91 | 2.6352 | 15.153 | 6.7464 | 13.1611 | 14.2163 | 18.98 | | No log | 14.0 | 98 | 2.5728 | 15.7556 | 7.3286 | 13.7175 | 14.7632 | 18.98 | | No log | 15.0 | 105 | 2.5157 | 15.934 | 7.3678 | 13.8633 | 14.9156 | 18.98 | | No log | 16.0 | 112 | 2.4617 | 15.8061 | 7.3323 | 13.7464 | 14.7774 | 18.98 | | No log | 17.0 | 119 | 2.4082 | 16.0665 | 7.5165 | 13.9392 | 14.9721 | 18.86 | | No log | 18.0 | 126 | 2.3633 | 16.0633 | 7.4792 | 13.9652 | 14.9779 | 18.86 | | No log | 19.0 | 133 | 2.3129 | 15.5809 | 6.8635 | 13.4883 | 14.4031 | 18.86 | | No log | 20.0 | 140 | 2.2642 | 15.0965 | 6.6965 | 12.9499 | 13.9616 | 18.86 | | No log | 21.0 | 147 | 2.2172 | 15.9807 | 7.581 | 13.7652 | 14.7561 | 18.86 | | No log | 22.0 | 154 | 2.1728 | 16.0223 | 7.3494 | 13.6557 | 14.8175 | 18.98 | | No log | 23.0 | 161 | 2.1288 | 15.8624 | 7.3123 | 13.5385 | 14.7155 | 18.98 | | No log | 24.0 | 168 | 2.0880 | 15.6815 | 7.2739 | 13.4081 | 14.5708 | 18.98 | | No log | 25.0 | 175 | 2.0464 | 15.7728 | 7.2739 | 13.4408 | 14.6141 | 18.98 | | No log | 26.0 | 182 | 2.0058 | 16.0941 | 7.7024 | 13.9582 | 15.0287 | 19.0 | | No log | 27.0 | 189 | 1.9649 | 16.2728 | 7.7024 | 14.016 | 15.1315 | 19.0 | | No log | 28.0 | 196 | 1.9242 | 16.3716 | 7.5627 | 14.0692 | 14.9967 | 19.0 | | No log | 29.0 | 203 | 1.8868 | 16.7062 | 8.0777 | 14.4908 | 15.3399 | 19.0 | | No log | 30.0 | 210 | 1.8492 | 17.0537 | 8.5578 | 14.9207 | 15.733 | 19.0 | | No log | 31.0 | 217 | 1.8141 | 17.4443 | 8.73 | 15.0351 | 16.0924 | 19.0 | | No log | 32.0 | 224 | 1.7791 | 17.4203 | 8.7258 | 15.0247 | 16.0522 | 19.0 | | No log | 33.0 | 231 | 1.7435 | 17.5906 | 8.8872 | 15.425 | 16.3617 | 19.0 | | No log | 34.0 | 238 | 1.7118 | 17.5006 | 8.8774 | 15.3052 | 16.2158 | 19.0 | | No log | 35.0 | 245 | 1.6789 | 17.8356 | 9.3694 | 15.6864 | 16.5223 | 19.0 | | No log | 36.0 | 252 | 1.6519 | 18.167 | 9.8435 | 16.1156 | 17.0117 | 19.0 | | No log | 37.0 | 259 | 1.6209 | 18.4921 | 10.1301 | 16.3481 | 17.2986 | 19.0 | | No log | 38.0 | 266 | 1.5897 | 18.1784 | 9.9809 | 16.2313 | 17.2703 | 19.0 | | No log | 39.0 | 273 | 1.5591 | 18.3933 | 10.1286 | 16.3521 | 17.3927 | 19.0 | | No log | 40.0 | 280 | 1.5272 | 18.6151 | 10.3291 | 16.6078 | 17.7778 | 19.0 | | No log | 41.0 | 287 | 1.4980 | 19.3033 | 11.0918 | 17.3141 | 18.4394 | 19.0 | | No log | 42.0 | 294 | 1.4677 | 19.4567 | 11.1469 | 17.3278 | 18.6073 | 19.0 | | No log | 43.0 | 301 | 1.4390 | 19.4743 | 11.2466 | 17.4536 | 18.6962 | 19.0 | | No log | 44.0 | 308 | 1.4102 | 19.6048 | 11.2731 | 17.3539 | 18.6521 | 19.0 | | No log | 45.0 | 315 | 1.3801 | 19.6608 | 11.4561 | 17.4567 | 18.8374 | 19.0 | | No log | 46.0 | 322 | 1.3495 | 20.1292 | 12.002 | 17.7646 | 19.1702 | 19.0 | | No log | 47.0 | 329 | 1.3201 | 20.4712 | 12.4172 | 18.1381 | 19.4745 | 19.0 | | No log | 48.0 | 336 | 1.2926 | 20.8209 | 12.5027 | 18.4521 | 19.8635 | 19.0 | | No log | 49.0 | 343 | 1.2651 | 21.1144 | 12.8328 | 18.7545 | 20.1599 | 19.0 | | No log | 50.0 | 350 | 1.2386 | 20.986 | 12.5814 | 18.6581 | 20.0825 | 19.0 | | No log | 51.0 | 357 | 1.2141 | 21.1851 | 12.6943 | 18.7884 | 20.1736 | 19.0 | | No log | 52.0 | 364 | 1.1894 | 21.2413 | 12.8142 | 18.8696 | 20.2067 | 19.0 | | No log | 53.0 | 371 | 1.1649 | 21.7568 | 13.5278 | 19.6002 | 20.8412 | 19.0 | | No log | 54.0 | 378 | 1.1384 | 22.4831 | 14.5218 | 20.1422 | 21.5559 | 19.0 | | No log | 55.0 | 385 | 1.1157 | 22.6313 | 14.8353 | 20.3762 | 21.7705 | 19.0 | | No log | 56.0 | 392 | 1.0953 | 22.5042 | 14.6022 | 20.2466 | 21.582 | 19.0 | | No log | 57.0 | 399 | 1.0747 | 22.5145 | 14.7475 | 20.2386 | 21.6141 | 19.0 | | No log | 58.0 | 406 | 1.0559 | 22.7369 | 14.8047 | 20.2974 | 21.7249 | 19.0 | | No log | 59.0 | 413 | 1.0372 | 22.9126 | 14.9207 | 20.457 | 21.8601 | 19.0 | | No log | 60.0 | 420 | 1.0195 | 22.8047 | 15.1019 | 20.4638 | 21.7913 | 19.0 | | No log | 61.0 | 427 | 1.0015 | 22.7677 | 15.1019 | 20.4523 | 21.6938 | 19.0 | | No log | 62.0 | 434 | 0.9835 | 22.8638 | 15.2116 | 20.5492 | 21.8304 | 19.0 | | No log | 63.0 | 441 | 0.9655 | 23.2814 | 15.6409 | 20.8081 | 22.264 | 19.0 | | No log | 64.0 | 448 | 0.9482 | 23.4252 | 15.8487 | 20.9933 | 22.4011 | 19.0 | | No log | 65.0 | 455 | 0.9297 | 23.1092 | 15.6467 | 20.9232 | 22.1535 | 19.0 | | No log | 66.0 | 462 | 0.9111 | 23.1047 | 15.6467 | 20.8809 | 22.148 | 19.0 | | No log | 67.0 | 469 | 0.8930 | 23.6157 | 15.7791 | 21.0336 | 22.4882 | 19.0 | | No log | 68.0 | 476 | 0.8758 | 23.7294 | 15.8868 | 21.0767 | 22.5998 | 19.0 | | No log | 69.0 | 483 | 0.8600 | 23.6303 | 15.9537 | 21.3186 | 22.5258 | 19.0 | | No log | 70.0 | 490 | 0.8457 | 24.0211 | 16.3344 | 21.6141 | 22.8646 | 19.0 | | No log | 71.0 | 497 | 0.8306 | 24.4543 | 16.7445 | 22.22 | 23.35 | 19.0 | | 2.234 | 72.0 | 504 | 0.8169 | 24.3446 | 16.5757 | 22.0443 | 23.1601 | 18.94 | | 2.234 | 73.0 | 511 | 0.8028 | 24.6037 | 16.8537 | 22.254 | 23.4177 | 19.0 | | 2.234 | 74.0 | 518 | 0.7893 | 24.5006 | 16.93 | 22.3802 | 23.3089 | 19.0 | | 2.234 | 75.0 | 525 | 0.7767 | 24.5641 | 17.1414 | 22.439 | 23.3614 | 19.0 | | 2.234 | 76.0 | 532 | 0.7628 | 24.4938 | 17.1622 | 22.4595 | 23.4953 | 19.0 | | 2.234 | 77.0 | 539 | 0.7491 | 24.4955 | 17.1139 | 22.5084 | 23.4422 | 19.0 | | 2.234 | 78.0 | 546 | 0.7370 | 25.2992 | 17.7973 | 23.4208 | 24.0642 | 19.0 | | 2.234 | 79.0 | 553 | 0.7264 | 25.3397 | 17.6927 | 23.4483 | 24.1897 | 18.94 | | 2.234 | 80.0 | 560 | 0.7171 | 25.2813 | 17.5431 | 23.371 | 24.0918 | 18.94 | | 2.234 | 81.0 | 567 | 0.7065 | 24.8028 | 17.3248 | 23.0219 | 23.6579 | 19.0 | | 2.234 | 82.0 | 574 | 0.6955 | 25.2603 | 17.6915 | 23.322 | 24.0599 | 18.94 | | 2.234 | 83.0 | 581 | 0.6850 | 25.5258 | 17.8746 | 23.6253 | 24.4615 | 18.94 | | 2.234 | 84.0 | 588 | 0.6753 | 25.5363 | 17.9781 | 23.7546 | 24.4257 | 18.94 | | 2.234 | 85.0 | 595 | 0.6658 | 25.3495 | 18.1089 | 23.703 | 24.282 | 19.0 | | 2.234 | 86.0 | 602 | 0.6569 | 25.0708 | 17.8801 | 23.4282 | 23.9078 | 18.94 | | 2.234 | 87.0 | 609 | 0.6489 | 25.0266 | 17.9922 | 23.422 | 23.9164 | 18.94 | | 2.234 | 88.0 | 616 | 0.6407 | 25.0172 | 18.0199 | 23.4155 | 23.9337 | 19.0 | | 2.234 | 89.0 | 623 | 0.6317 | 24.922 | 17.9857 | 23.3527 | 23.8011 | 19.0 | | 2.234 | 90.0 | 630 | 0.6234 | 24.9009 | 17.9847 | 23.2866 | 23.8712 | 19.0 | | 2.234 | 91.0 | 637 | 0.6154 | 24.8534 | 18.0524 | 23.2679 | 23.8242 | 19.0 | | 2.234 | 92.0 | 644 | 0.6082 | 24.9376 | 18.0509 | 23.3574 | 23.8951 | 19.0 | | 2.234 | 93.0 | 651 | 0.6004 | 25.0 | 18.1129 | 23.4513 | 23.9827 | 19.0 | | 2.234 | 94.0 | 658 | 0.5934 | 24.8637 | 17.7982 | 23.115 | 23.7761 | 19.0 | | 2.234 | 95.0 | 665 | 0.5865 | 24.5734 | 17.5708 | 22.8594 | 23.5395 | 19.0 | | 2.234 | 96.0 | 672 | 0.5793 | 24.6743 | 17.8841 | 23.0139 | 23.5864 | 19.0 | | 2.234 | 97.0 | 679 | 0.5722 | 25.1153 | 18.5566 | 23.5382 | 24.0676 | 19.0 | | 2.234 | 98.0 | 686 | 0.5664 | 25.2336 | 18.6306 | 23.5665 | 24.2091 | 19.0 | | 2.234 | 99.0 | 693 | 0.5606 | 25.8403 | 19.2544 | 24.1043 | 24.827 | 19.0 | | 2.234 | 100.0 | 700 | 0.5547 | 25.8401 | 19.3103 | 24.1723 | 24.8189 | 19.0 | | 2.234 | 101.0 | 707 | 0.5489 | 25.9165 | 19.7932 | 24.4001 | 25.0214 | 19.0 | | 2.234 | 102.0 | 714 | 0.5427 | 26.1503 | 20.1415 | 24.672 | 25.2171 | 19.0 | | 2.234 | 103.0 | 721 | 0.5372 | 26.2728 | 20.1751 | 24.7661 | 25.3402 | 19.0 | | 2.234 | 104.0 | 728 | 0.5321 | 26.3086 | 20.2377 | 24.7661 | 25.3768 | 19.0 | | 2.234 | 105.0 | 735 | 0.5272 | 26.3324 | 20.1971 | 24.741 | 25.4227 | 19.0 | | 2.234 | 106.0 | 742 | 0.5221 | 26.6528 | 20.8582 | 25.1293 | 25.8014 | 19.0 | | 2.234 | 107.0 | 749 | 0.5161 | 26.6946 | 20.8596 | 25.0726 | 25.8291 | 19.0 | | 2.234 | 108.0 | 756 | 0.5114 | 26.59 | 20.8571 | 25.1594 | 25.7803 | 19.0 | | 2.234 | 109.0 | 763 | 0.5070 | 26.5239 | 20.6469 | 25.049 | 25.6539 | 19.0 | | 2.234 | 110.0 | 770 | 0.5027 | 26.5239 | 20.6263 | 25.049 | 25.6257 | 19.0 | | 2.234 | 111.0 | 777 | 0.4977 | 26.6538 | 20.909 | 25.1895 | 25.8624 | 19.0 | | 2.234 | 112.0 | 784 | 0.4927 | 26.6828 | 20.7963 | 25.172 | 25.8074 | 19.0 | | 2.234 | 113.0 | 791 | 0.4872 | 26.6042 | 20.7493 | 25.0792 | 25.7606 | 19.0 | | 2.234 | 114.0 | 798 | 0.4820 | 26.3124 | 20.2776 | 24.7171 | 25.3684 | 19.0 | | 2.234 | 115.0 | 805 | 0.4779 | 26.5558 | 20.4997 | 24.8879 | 25.5925 | 19.0 | | 2.234 | 116.0 | 812 | 0.4736 | 26.2154 | 20.2546 | 24.6121 | 25.3458 | 19.0 | | 2.234 | 117.0 | 819 | 0.4691 | 26.2652 | 20.2177 | 24.7039 | 25.3086 | 19.0 | | 2.234 | 118.0 | 826 | 0.4658 | 26.2129 | 20.154 | 24.6656 | 25.2793 | 19.0 | | 2.234 | 119.0 | 833 | 0.4623 | 26.4794 | 20.4029 | 24.8631 | 25.5696 | 19.0 | | 2.234 | 120.0 | 840 | 0.4582 | 26.3077 | 20.2257 | 24.7431 | 25.3879 | 19.0 | | 2.234 | 121.0 | 847 | 0.4545 | 26.0652 | 19.935 | 24.5384 | 25.097 | 19.0 | | 2.234 | 122.0 | 854 | 0.4501 | 26.361 | 20.292 | 24.7871 | 25.452 | 19.0 | | 2.234 | 123.0 | 861 | 0.4463 | 26.361 | 20.292 | 24.7871 | 25.452 | 19.0 | | 2.234 | 124.0 | 868 | 0.4433 | 26.3758 | 20.351 | 24.7589 | 25.4636 | 19.0 | | 2.234 | 125.0 | 875 | 0.4399 | 26.3758 | 20.351 | 24.7589 | 25.4636 | 19.0 | | 2.234 | 126.0 | 882 | 0.4365 | 26.3459 | 20.292 | 24.7834 | 25.4484 | 19.0 | | 2.234 | 127.0 | 889 | 0.4337 | 26.3229 | 20.2924 | 24.7529 | 25.445 | 19.0 | | 2.234 | 128.0 | 896 | 0.4310 | 26.3229 | 20.2924 | 24.7529 | 25.445 | 19.0 | | 2.234 | 129.0 | 903 | 0.4280 | 26.361 | 20.292 | 24.759 | 25.452 | 19.0 | | 2.234 | 130.0 | 910 | 0.4251 | 26.361 | 20.292 | 24.759 | 25.452 | 19.0 | | 2.234 | 131.0 | 917 | 0.4219 | 26.2313 | 20.0755 | 24.5457 | 25.2876 | 19.0 | | 2.234 | 132.0 | 924 | 0.4190 | 26.3448 | 20.2413 | 24.5632 | 25.3904 | 19.0 | | 2.234 | 133.0 | 931 | 0.4161 | 26.2977 | 20.2013 | 24.6035 | 25.3575 | 19.0 | | 2.234 | 134.0 | 938 | 0.4125 | 26.9053 | 20.8956 | 25.1115 | 25.8695 | 19.0 | | 2.234 | 135.0 | 945 | 0.4094 | 27.0423 | 20.9187 | 25.2399 | 25.977 | 19.0 | | 2.234 | 136.0 | 952 | 0.4061 | 26.941 | 20.9813 | 25.0791 | 25.8246 | 19.0 | | 2.234 | 137.0 | 959 | 0.4032 | 26.941 | 20.9813 | 25.0791 | 25.8246 | 19.0 | | 2.234 | 138.0 | 966 | 0.4005 | 26.7839 | 20.9539 | 24.9493 | 25.735 | 19.0 | | 2.234 | 139.0 | 973 | 0.3981 | 26.8264 | 20.9522 | 24.9475 | 25.7656 | 19.0 | | 2.234 | 140.0 | 980 | 0.3950 | 27.1217 | 21.3657 | 25.2847 | 26.0664 | 19.0 | | 2.234 | 141.0 | 987 | 0.3917 | 26.8529 | 21.3392 | 25.2223 | 25.8628 | 19.0 | | 2.234 | 142.0 | 994 | 0.3891 | 26.9542 | 21.3392 | 25.3029 | 25.9634 | 19.0 | | 0.8247 | 143.0 | 1001 | 0.3872 | 26.9542 | 21.3392 | 25.3029 | 25.9634 | 19.0 | | 0.8247 | 144.0 | 1008 | 0.3851 | 26.954 | 21.339 | 25.1999 | 25.9115 | 19.0 | | 0.8247 | 145.0 | 1015 | 0.3828 | 26.954 | 21.339 | 25.1999 | 25.9115 | 19.0 | | 0.8247 | 146.0 | 1022 | 0.3795 | 27.211 | 21.7609 | 25.5337 | 26.2491 | 19.0 | | 0.8247 | 147.0 | 1029 | 0.3765 | 27.5119 | 21.8162 | 25.773 | 26.4442 | 19.0 | | 0.8247 | 148.0 | 1036 | 0.3747 | 27.5147 | 21.8166 | 25.816 | 26.4261 | 19.0 | | 0.8247 | 149.0 | 1043 | 0.3721 | 27.11 | 21.2671 | 25.3668 | 25.9832 | 19.0 | | 0.8247 | 150.0 | 1050 | 0.3695 | 27.011 | 21.3523 | 25.275 | 25.9849 | 19.0 | | 0.8247 | 151.0 | 1057 | 0.3667 | 27.011 | 21.3523 | 25.275 | 25.9849 | 19.0 | | 0.8247 | 152.0 | 1064 | 0.3643 | 26.8762 | 21.3229 | 25.2291 | 25.8448 | 19.0 | | 0.8247 | 153.0 | 1071 | 0.3619 | 26.7423 | 21.3148 | 25.1436 | 25.7247 | 19.0 | | 0.8247 | 154.0 | 1078 | 0.3597 | 27.2285 | 21.7893 | 25.5016 | 26.1363 | 19.0 | | 0.8247 | 155.0 | 1085 | 0.3569 | 26.9347 | 21.4481 | 25.202 | 25.9288 | 19.0 | | 0.8247 | 156.0 | 1092 | 0.3542 | 26.8073 | 21.4074 | 25.164 | 25.8427 | 19.0 | | 0.8247 | 157.0 | 1099 | 0.3523 | 26.8585 | 21.4484 | 25.3552 | 26.1027 | 19.0 | | 0.8247 | 158.0 | 1106 | 0.3501 | 26.8874 | 21.4484 | 25.4233 | 26.1418 | 19.0 | | 0.8247 | 159.0 | 1113 | 0.3481 | 26.3889 | 20.7315 | 24.9697 | 25.5298 | 19.0 | | 0.8247 | 160.0 | 1120 | 0.3462 | 26.4141 | 20.7382 | 24.9742 | 25.5443 | 19.0 | | 0.8247 | 161.0 | 1127 | 0.3444 | 26.4434 | 20.7724 | 24.94 | 25.4982 | 19.0 | | 0.8247 | 162.0 | 1134 | 0.3421 | 26.44 | 20.7714 | 24.9389 | 25.4971 | 19.0 | | 0.8247 | 163.0 | 1141 | 0.3400 | 26.4885 | 20.8024 | 24.954 | 25.5336 | 19.0 | | 0.8247 | 164.0 | 1148 | 0.3371 | 26.8424 | 21.4757 | 25.3475 | 26.025 | 19.0 | | 0.8247 | 165.0 | 1155 | 0.3348 | 26.6869 | 21.3582 | 25.1949 | 25.8305 | 19.0 | | 0.8247 | 166.0 | 1162 | 0.3328 | 26.7864 | 21.3582 | 25.3004 | 25.9217 | 19.0 | | 0.8247 | 167.0 | 1169 | 0.3307 | 26.4961 | 21.3053 | 25.0805 | 25.6481 | 19.0 | | 0.8247 | 168.0 | 1176 | 0.3290 | 26.1855 | 20.7598 | 24.7578 | 25.3158 | 19.0 | | 0.8247 | 169.0 | 1183 | 0.3276 | 26.1855 | 20.7598 | 24.7578 | 25.3158 | 19.0 | | 0.8247 | 170.0 | 1190 | 0.3255 | 26.3362 | 20.7593 | 24.7501 | 25.3055 | 19.0 | | 0.8247 | 171.0 | 1197 | 0.3236 | 26.5342 | 21.3055 | 25.0784 | 25.7001 | 19.0 | | 0.8247 | 172.0 | 1204 | 0.3219 | 26.1834 | 20.7593 | 24.7567 | 25.3127 | 19.0 | | 0.8247 | 173.0 | 1211 | 0.3199 | 26.5384 | 21.3057 | 25.0795 | 25.7032 | 19.0 | | 0.8247 | 174.0 | 1218 | 0.3181 | 26.5384 | 21.3057 | 25.0795 | 25.7032 | 19.0 | | 0.8247 | 175.0 | 1225 | 0.3163 | 26.4 | 21.2578 | 24.9477 | 25.5661 | 19.0 | | 0.8247 | 176.0 | 1232 | 0.3144 | 26.5428 | 21.3112 | 24.9866 | 25.6532 | 19.0 | | 0.8247 | 177.0 | 1239 | 0.3123 | 26.4446 | 21.2931 | 24.9477 | 25.6048 | 19.0 | | 0.8247 | 178.0 | 1246 | 0.3103 | 26.4446 | 21.2931 | 24.9477 | 25.6048 | 19.0 | | 0.8247 | 179.0 | 1253 | 0.3086 | 26.4446 | 21.2931 | 24.9477 | 25.6048 | 19.0 | | 0.8247 | 180.0 | 1260 | 0.3067 | 26.5699 | 21.3383 | 25.0784 | 25.7432 | 19.0 | | 0.8247 | 181.0 | 1267 | 0.3051 | 26.5342 | 21.3055 | 25.0784 | 25.7001 | 19.0 | | 0.8247 | 182.0 | 1274 | 0.3033 | 26.5342 | 21.3055 | 25.0784 | 25.7001 | 19.0 | | 0.8247 | 183.0 | 1281 | 0.3022 | 26.6363 | 21.3383 | 25.0784 | 25.7852 | 19.0 | | 0.8247 | 184.0 | 1288 | 0.3009 | 26.5699 | 21.3383 | 25.0784 | 25.7432 | 19.0 | | 0.8247 | 185.0 | 1295 | 0.2994 | 26.4861 | 21.3383 | 25.0215 | 25.6423 | 19.0 | | 0.8247 | 186.0 | 1302 | 0.2972 | 26.5699 | 21.3383 | 25.0784 | 25.7432 | 19.0 | | 0.8247 | 187.0 | 1309 | 0.2953 | 26.5364 | 21.3383 | 25.0287 | 25.7335 | 19.0 | | 0.8247 | 188.0 | 1316 | 0.2933 | 26.4919 | 21.2931 | 24.978 | 25.6755 | 19.0 | | 0.8247 | 189.0 | 1323 | 0.2917 | 26.4919 | 21.2931 | 24.978 | 25.6755 | 19.0 | | 0.8247 | 190.0 | 1330 | 0.2903 | 26.4965 | 21.2937 | 24.9822 | 25.6765 | 19.0 | | 0.8247 | 191.0 | 1337 | 0.2886 | 26.4965 | 21.2937 | 24.9822 | 25.6765 | 19.0 | | 0.8247 | 192.0 | 1344 | 0.2871 | 26.4965 | 21.2937 | 24.9822 | 25.6765 | 19.0 | | 0.8247 | 193.0 | 1351 | 0.2857 | 26.4965 | 21.2937 | 24.9822 | 25.6765 | 19.0 | | 0.8247 | 194.0 | 1358 | 0.2845 | 27.6214 | 22.7746 | 26.212 | 26.7893 | 19.0 | | 0.8247 | 195.0 | 1365 | 0.2833 | 27.6766 | 22.8377 | 26.2459 | 26.8427 | 19.0 | | 0.8247 | 196.0 | 1372 | 0.2821 | 26.6668 | 21.412 | 25.0675 | 25.7861 | 19.0 | | 0.8247 | 197.0 | 1379 | 0.2808 | 26.5377 | 21.3511 | 25.0292 | 25.7345 | 19.0 | | 0.8247 | 198.0 | 1386 | 0.2794 | 26.5377 | 21.3511 | 25.0292 | 25.7345 | 19.0 | | 0.8247 | 199.0 | 1393 | 0.2782 | 26.5377 | 21.3511 | 25.0292 | 25.7345 | 19.0 | | 0.8247 | 200.0 | 1400 | 0.2763 | 27.6214 | 22.8029 | 26.2108 | 26.7873 | 19.0 | | 0.8247 | 201.0 | 1407 | 0.2745 | 27.6214 | 22.8029 | 26.2108 | 26.7873 | 19.0 | | 0.8247 | 202.0 | 1414 | 0.2732 | 27.6214 | 22.8029 | 26.2108 | 26.7873 | 19.0 | | 0.8247 | 203.0 | 1421 | 0.2719 | 27.6141 | 22.7604 | 26.1742 | 26.7845 | 19.0 | | 0.8247 | 204.0 | 1428 | 0.2708 | 27.6141 | 22.7094 | 26.1748 | 26.7863 | 19.0 | | 0.8247 | 205.0 | 1435 | 0.2697 | 27.6037 | 22.7094 | 26.1748 | 26.7482 | 19.0 | | 0.8247 | 206.0 | 1442 | 0.2689 | 27.5437 | 22.7107 | 26.1754 | 26.7281 | 19.0 | | 0.8247 | 207.0 | 1449 | 0.2683 | 27.685 | 22.7621 | 26.2104 | 26.7859 | 19.0 | | 0.8247 | 208.0 | 1456 | 0.2671 | 27.7224 | 22.7621 | 26.2104 | 26.823 | 19.0 | | 0.8247 | 209.0 | 1463 | 0.2657 | 27.6141 | 22.7604 | 26.1742 | 26.7845 | 19.0 | | 0.8247 | 210.0 | 1470 | 0.2647 | 27.6745 | 22.837 | 26.2428 | 26.8417 | 19.0 | | 0.8247 | 211.0 | 1477 | 0.2636 | 27.6745 | 22.837 | 26.2428 | 26.8417 | 19.0 | | 0.8247 | 212.0 | 1484 | 0.2622 | 27.6214 | 22.8027 | 26.2066 | 26.7852 | 19.0 | | 0.8247 | 213.0 | 1491 | 0.2605 | 27.6214 | 22.8027 | 26.2066 | 26.7852 | 19.0 | | 0.8247 | 214.0 | 1498 | 0.2590 | 27.6214 | 22.8027 | 26.2066 | 26.7852 | 19.0 | | 0.4848 | 215.0 | 1505 | 0.2577 | 27.6214 | 22.8027 | 26.2066 | 26.7852 | 19.0 | | 0.4848 | 216.0 | 1512 | 0.2561 | 27.6141 | 22.7099 | 26.1772 | 26.7876 | 19.0 | | 0.4848 | 217.0 | 1519 | 0.2545 | 27.6141 | 22.7099 | 26.1772 | 26.7876 | 19.0 | | 0.4848 | 218.0 | 1526 | 0.2530 | 28.2128 | 23.39 | 26.725 | 27.4618 | 19.0 | | 0.4848 | 219.0 | 1533 | 0.2516 | 28.2113 | 23.4341 | 26.725 | 27.4547 | 19.0 | | 0.4848 | 220.0 | 1540 | 0.2508 | 28.2113 | 23.4341 | 26.725 | 27.4547 | 19.0 | | 0.4848 | 221.0 | 1547 | 0.2497 | 28.2113 | 23.4341 | 26.725 | 27.4547 | 19.0 | | 0.4848 | 222.0 | 1554 | 0.2487 | 28.2113 | 23.4341 | 26.725 | 27.4547 | 19.0 | | 0.4848 | 223.0 | 1561 | 0.2473 | 28.4621 | 23.6287 | 27.0471 | 27.6486 | 19.0 | | 0.4848 | 224.0 | 1568 | 0.2457 | 28.4621 | 23.6287 | 27.0471 | 27.6486 | 19.0 | | 0.4848 | 225.0 | 1575 | 0.2444 | 28.8101 | 24.2509 | 27.5583 | 28.09 | 19.0 | | 0.4848 | 226.0 | 1582 | 0.2435 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 227.0 | 1589 | 0.2425 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 228.0 | 1596 | 0.2417 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 229.0 | 1603 | 0.2410 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 230.0 | 1610 | 0.2397 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 231.0 | 1617 | 0.2380 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 232.0 | 1624 | 0.2368 | 28.8526 | 24.2514 | 27.5604 | 28.1516 | 19.0 | | 0.4848 | 233.0 | 1631 | 0.2356 | 28.8526 | 24.2514 | 27.5604 | 28.1516 | 19.0 | | 0.4848 | 234.0 | 1638 | 0.2344 | 28.8526 | 24.2514 | 27.5604 | 28.1516 | 19.0 | | 0.4848 | 235.0 | 1645 | 0.2335 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 236.0 | 1652 | 0.2329 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 237.0 | 1659 | 0.2323 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 238.0 | 1666 | 0.2316 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 239.0 | 1673 | 0.2306 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 240.0 | 1680 | 0.2296 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 241.0 | 1687 | 0.2286 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 242.0 | 1694 | 0.2275 | 28.8101 | 24.2509 | 27.5583 | 28.09 | 19.0 | | 0.4848 | 243.0 | 1701 | 0.2264 | 28.8101 | 24.2509 | 27.5583 | 28.09 | 19.0 | | 0.4848 | 244.0 | 1708 | 0.2256 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 245.0 | 1715 | 0.2248 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 246.0 | 1722 | 0.2240 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 247.0 | 1729 | 0.2226 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 248.0 | 1736 | 0.2213 | 28.7896 | 24.2509 | 27.5183 | 28.0556 | 19.0 | | 0.4848 | 249.0 | 1743 | 0.2207 | 28.8101 | 24.2509 | 27.5583 | 28.09 | 19.0 | | 0.4848 | 250.0 | 1750 | 0.2201 | 28.8515 | 24.2509 | 27.5583 | 28.1505 | 19.0 | | 0.4848 | 251.0 | 1757 | 0.2189 | 30.1056 | 25.7653 | 28.9152 | 29.4717 | 19.0 | | 0.4848 | 252.0 | 1764 | 0.2178 | 30.1056 | 25.7653 | 28.9152 | 29.4717 | 19.0 | | 0.4848 | 253.0 | 1771 | 0.2170 | 30.0731 | 25.7653 | 28.9152 | 29.4304 | 19.0 | | 0.4848 | 254.0 | 1778 | 0.2162 | 30.0731 | 25.7653 | 28.9152 | 29.4304 | 19.0 | | 0.4848 | 255.0 | 1785 | 0.2154 | 30.1091 | 25.8369 | 28.9446 | 29.4812 | 19.0 | | 0.4848 | 256.0 | 1792 | 0.2145 | 30.1091 | 25.8369 | 28.9446 | 29.4812 | 19.0 | | 0.4848 | 257.0 | 1799 | 0.2135 | 30.1328 | 26.0146 | 29.0423 | 29.5189 | 19.0 | | 0.4848 | 258.0 | 1806 | 0.2127 | 30.1328 | 26.0146 | 29.0423 | 29.5189 | 19.0 | | 0.4848 | 259.0 | 1813 | 0.2118 | 30.1496 | 25.901 | 28.9818 | 29.4954 | 19.0 | | 0.4848 | 260.0 | 1820 | 0.2109 | 30.5807 | 26.586 | 29.5567 | 30.027 | 19.0 | | 0.4848 | 261.0 | 1827 | 0.2099 | 30.1328 | 26.0146 | 29.0423 | 29.5189 | 19.0 | | 0.4848 | 262.0 | 1834 | 0.2092 | 29.975 | 25.7233 | 28.8868 | 29.3017 | 19.0 | | 0.4848 | 263.0 | 1841 | 0.2085 | 30.0805 | 25.7221 | 28.8845 | 29.3801 | 19.0 | | 0.4848 | 264.0 | 1848 | 0.2076 | 30.0805 | 25.7221 | 28.8845 | 29.3801 | 19.0 | | 0.4848 | 265.0 | 1855 | 0.2067 | 30.5283 | 26.4358 | 29.4239 | 29.9175 | 19.0 | | 0.4848 | 266.0 | 1862 | 0.2059 | 30.0805 | 25.7221 | 28.8845 | 29.3801 | 19.0 | | 0.4848 | 267.0 | 1869 | 0.2052 | 30.1084 | 25.7212 | 28.8823 | 29.4363 | 19.0 | | 0.4848 | 268.0 | 1876 | 0.2042 | 30.082 | 25.7164 | 28.886 | 29.4007 | 19.0 | | 0.4848 | 269.0 | 1883 | 0.2034 | 30.082 | 25.7164 | 28.886 | 29.4007 | 19.0 | | 0.4848 | 270.0 | 1890 | 0.2023 | 30.082 | 25.7164 | 28.886 | 29.4007 | 19.0 | | 0.4848 | 271.0 | 1897 | 0.2015 | 29.9475 | 25.7199 | 28.8905 | 29.2879 | 19.0 | | 0.4848 | 272.0 | 1904 | 0.2007 | 29.9475 | 25.7199 | 28.8905 | 29.2879 | 19.0 | | 0.4848 | 273.0 | 1911 | 0.2001 | 29.9475 | 25.7199 | 28.8905 | 29.2879 | 19.0 | | 0.4848 | 274.0 | 1918 | 0.1996 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 275.0 | 1925 | 0.1988 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 276.0 | 1932 | 0.1978 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 277.0 | 1939 | 0.1972 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 278.0 | 1946 | 0.1968 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 279.0 | 1953 | 0.1965 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 280.0 | 1960 | 0.1959 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 281.0 | 1967 | 0.1954 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 282.0 | 1974 | 0.1949 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 283.0 | 1981 | 0.1945 | 30.4196 | 26.3965 | 29.4251 | 29.7909 | 19.0 | | 0.4848 | 284.0 | 1988 | 0.1939 | 30.4196 | 26.3377 | 29.3825 | 29.7858 | 19.0 | | 0.4848 | 285.0 | 1995 | 0.1934 | 30.9381 | 26.9857 | 29.8217 | 30.3088 | 19.0 | | 0.347 | 286.0 | 2002 | 0.1928 | 31.0936 | 27.0091 | 29.8492 | 30.3918 | 19.0 | | 0.347 | 287.0 | 2009 | 0.1916 | 30.9887 | 26.9857 | 29.8217 | 30.3483 | 19.0 | | 0.347 | 288.0 | 2016 | 0.1904 | 30.9096 | 26.8073 | 29.7311 | 30.2601 | 19.0 | | 0.347 | 289.0 | 2023 | 0.1894 | 30.8466 | 26.8073 | 29.7332 | 30.2227 | 19.0 | | 0.347 | 290.0 | 2030 | 0.1884 | 30.9396 | 26.9869 | 29.8238 | 30.3109 | 19.0 | | 0.347 | 291.0 | 2037 | 0.1876 | 30.9898 | 26.9869 | 29.8238 | 30.3493 | 19.0 | | 0.347 | 292.0 | 2044 | 0.1870 | 30.9898 | 26.9869 | 29.8238 | 30.3493 | 19.0 | | 0.347 | 293.0 | 2051 | 0.1866 | 30.9315 | 26.945 | 29.7765 | 30.3159 | 19.0 | | 0.347 | 294.0 | 2058 | 0.1860 | 30.9902 | 27.0338 | 29.8665 | 30.3511 | 19.0 | | 0.347 | 295.0 | 2065 | 0.1855 | 30.9902 | 27.0338 | 29.8665 | 30.3511 | 19.0 | | 0.347 | 296.0 | 2072 | 0.1850 | 30.9898 | 26.9869 | 29.8238 | 30.3493 | 19.0 | | 0.347 | 297.0 | 2079 | 0.1842 | 30.9381 | 26.9857 | 29.8217 | 30.3088 | 19.0 | | 0.347 | 298.0 | 2086 | 0.1836 | 30.9381 | 26.9857 | 29.8217 | 30.3088 | 19.0 | | 0.347 | 299.0 | 2093 | 0.1828 | 30.8217 | 26.9232 | 29.7543 | 30.2418 | 19.0 | | 0.347 | 300.0 | 2100 | 0.1823 | 30.8743 | 26.9232 | 29.7543 | 30.2961 | 19.0 | | 0.347 | 301.0 | 2107 | 0.1818 | 30.8743 | 26.9232 | 29.7543 | 30.2961 | 19.0 | | 0.347 | 302.0 | 2114 | 0.1815 | 30.8743 | 26.9232 | 29.7543 | 30.2961 | 19.0 | | 0.347 | 303.0 | 2121 | 0.1810 | 30.8217 | 26.9232 | 29.7543 | 30.2418 | 19.0 | | 0.347 | 304.0 | 2128 | 0.1805 | 30.8743 | 26.9232 | 29.7543 | 30.2961 | 19.0 | | 0.347 | 305.0 | 2135 | 0.1800 | 30.8824 | 26.9766 | 29.7982 | 30.298 | 19.0 | | 0.347 | 306.0 | 2142 | 0.1794 | 30.8824 | 26.9766 | 29.7982 | 30.298 | 19.0 | | 0.347 | 307.0 | 2149 | 0.1789 | 30.8824 | 26.9766 | 29.7982 | 30.298 | 19.0 | | 0.347 | 308.0 | 2156 | 0.1784 | 30.8743 | 26.9232 | 29.7543 | 30.2961 | 19.0 | | 0.347 | 309.0 | 2163 | 0.1777 | 31.2848 | 27.323 | 30.116 | 30.5512 | 19.0 | | 0.347 | 310.0 | 2170 | 0.1770 | 31.2848 | 27.323 | 30.116 | 30.5512 | 19.0 | | 0.347 | 311.0 | 2177 | 0.1767 | 30.9902 | 27.0332 | 29.8646 | 30.3501 | 19.0 | | 0.347 | 312.0 | 2184 | 0.1762 | 30.9902 | 27.0332 | 29.8646 | 30.3501 | 19.0 | | 0.347 | 313.0 | 2191 | 0.1758 | 30.9902 | 27.0332 | 29.8646 | 30.3501 | 19.0 | | 0.347 | 314.0 | 2198 | 0.1754 | 30.9902 | 27.0332 | 29.8646 | 30.3501 | 19.0 | | 0.347 | 315.0 | 2205 | 0.1749 | 31.2848 | 27.323 | 30.116 | 30.5512 | 19.0 | | 0.347 | 316.0 | 2212 | 0.1741 | 31.2811 | 27.2769 | 30.0679 | 30.5502 | 19.0 | | 0.347 | 317.0 | 2219 | 0.1735 | 31.123 | 27.0091 | 29.8492 | 30.4411 | 19.0 | | 0.347 | 318.0 | 2226 | 0.1729 | 31.123 | 27.0091 | 29.8492 | 30.4411 | 19.0 | | 0.347 | 319.0 | 2233 | 0.1722 | 31.123 | 27.0091 | 29.8492 | 30.4411 | 19.0 | | 0.347 | 320.0 | 2240 | 0.1717 | 31.123 | 27.0091 | 29.8492 | 30.4411 | 19.0 | | 0.347 | 321.0 | 2247 | 0.1711 | 31.4166 | 27.3285 | 30.1176 | 30.6199 | 19.0 | | 0.347 | 322.0 | 2254 | 0.1706 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 323.0 | 2261 | 0.1704 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 324.0 | 2268 | 0.1700 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 325.0 | 2275 | 0.1697 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 326.0 | 2282 | 0.1694 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 327.0 | 2289 | 0.1690 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 328.0 | 2296 | 0.1687 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 329.0 | 2303 | 0.1682 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 330.0 | 2310 | 0.1677 | 31.3003 | 27.2493 | 30.0134 | 30.4873 | 19.0 | | 0.347 | 331.0 | 2317 | 0.1671 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 332.0 | 2324 | 0.1666 | 31.2811 | 27.2769 | 30.0679 | 30.5502 | 19.0 | | 0.347 | 333.0 | 2331 | 0.1663 | 31.2848 | 27.323 | 30.116 | 30.5512 | 19.0 | | 0.347 | 334.0 | 2338 | 0.1656 | 31.2317 | 27.2791 | 30.0667 | 30.525 | 19.0 | | 0.347 | 335.0 | 2345 | 0.1649 | 31.1232 | 27.2403 | 30.0005 | 30.4292 | 19.0 | | 0.347 | 336.0 | 2352 | 0.1645 | 31.1232 | 27.2403 | 30.0005 | 30.4292 | 19.0 | | 0.347 | 337.0 | 2359 | 0.1642 | 31.1232 | 27.2403 | 30.0005 | 30.4292 | 19.0 | | 0.347 | 338.0 | 2366 | 0.1639 | 31.1823 | 27.2791 | 30.0519 | 30.4612 | 19.0 | | 0.347 | 339.0 | 2373 | 0.1632 | 31.1731 | 27.2299 | 30.0025 | 30.458 | 19.0 | | 0.347 | 340.0 | 2380 | 0.1627 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 341.0 | 2387 | 0.1624 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 342.0 | 2394 | 0.1623 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 343.0 | 2401 | 0.1619 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 344.0 | 2408 | 0.1613 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 345.0 | 2415 | 0.1608 | 31.0547 | 27.1163 | 30.0154 | 30.4102 | 19.0 | | 0.347 | 346.0 | 2422 | 0.1607 | 31.0547 | 27.1163 | 30.0154 | 30.4102 | 19.0 | | 0.347 | 347.0 | 2429 | 0.1603 | 31.0547 | 27.1163 | 30.0154 | 30.4102 | 19.0 | | 0.347 | 348.0 | 2436 | 0.1600 | 31.0547 | 27.1163 | 30.0154 | 30.4102 | 19.0 | | 0.347 | 349.0 | 2443 | 0.1594 | 31.1731 | 27.2299 | 30.0025 | 30.458 | 19.0 | | 0.347 | 350.0 | 2450 | 0.1590 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 351.0 | 2457 | 0.1586 | 31.3571 | 27.2889 | 30.0694 | 30.5056 | 19.0 | | 0.347 | 352.0 | 2464 | 0.1583 | 31.3499 | 27.4223 | 30.2332 | 30.6358 | 19.0 | | 0.347 | 353.0 | 2471 | 0.1579 | 31.3499 | 27.4223 | 30.2332 | 30.6358 | 19.0 | | 0.347 | 354.0 | 2478 | 0.1575 | 31.3888 | 27.4223 | 30.2332 | 30.6358 | 19.0 | | 0.347 | 355.0 | 2485 | 0.1571 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.347 | 356.0 | 2492 | 0.1566 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.347 | 357.0 | 2499 | 0.1561 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 358.0 | 2506 | 0.1556 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 359.0 | 2513 | 0.1549 | 31.2625 | 27.3405 | 30.2832 | 30.6299 | 19.0 | | 0.2715 | 360.0 | 2520 | 0.1546 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 361.0 | 2527 | 0.1545 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 362.0 | 2534 | 0.1543 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 363.0 | 2541 | 0.1541 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 364.0 | 2548 | 0.1542 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 365.0 | 2555 | 0.1540 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 366.0 | 2562 | 0.1536 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 367.0 | 2569 | 0.1532 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 368.0 | 2576 | 0.1530 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 369.0 | 2583 | 0.1526 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 370.0 | 2590 | 0.1521 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 371.0 | 2597 | 0.1515 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 372.0 | 2604 | 0.1510 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 373.0 | 2611 | 0.1507 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 374.0 | 2618 | 0.1504 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 375.0 | 2625 | 0.1500 | 31.4959 | 27.4871 | 30.3516 | 30.7743 | 19.0 | | 0.2715 | 376.0 | 2632 | 0.1495 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 377.0 | 2639 | 0.1491 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 378.0 | 2646 | 0.1489 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 379.0 | 2653 | 0.1486 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 380.0 | 2660 | 0.1483 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 381.0 | 2667 | 0.1482 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 382.0 | 2674 | 0.1480 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 383.0 | 2681 | 0.1479 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 384.0 | 2688 | 0.1480 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 385.0 | 2695 | 0.1477 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 386.0 | 2702 | 0.1476 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 387.0 | 2709 | 0.1471 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 388.0 | 2716 | 0.1468 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 389.0 | 2723 | 0.1467 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 390.0 | 2730 | 0.1463 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 391.0 | 2737 | 0.1460 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 392.0 | 2744 | 0.1457 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 393.0 | 2751 | 0.1453 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 394.0 | 2758 | 0.1448 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 395.0 | 2765 | 0.1446 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 396.0 | 2772 | 0.1443 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 397.0 | 2779 | 0.1436 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 398.0 | 2786 | 0.1433 | 31.4259 | 27.452 | 30.2729 | 30.6697 | 19.0 | | 0.2715 | 399.0 | 2793 | 0.1430 | 31.4399 | 27.476 | 30.2554 | 30.6717 | 19.0 | | 0.2715 | 400.0 | 2800 | 0.1429 | 31.4872 | 27.5228 | 30.2981 | 30.7255 | 19.0 | | 0.2715 | 401.0 | 2807 | 0.1427 | 31.4872 | 27.5228 | 30.2981 | 30.7255 | 19.0 | | 0.2715 | 402.0 | 2814 | 0.1424 | 31.5099 | 27.5424 | 30.3241 | 30.744 | 19.0 | | 0.2715 | 403.0 | 2821 | 0.1422 | 31.5099 | 27.5424 | 30.3241 | 30.744 | 19.0 | | 0.2715 | 404.0 | 2828 | 0.1420 | 31.5099 | 27.5424 | 30.3241 | 30.744 | 19.0 | | 0.2715 | 405.0 | 2835 | 0.1419 | 31.6471 | 27.5429 | 30.3257 | 30.77 | 19.0 | | 0.2715 | 406.0 | 2842 | 0.1417 | 31.6471 | 27.5429 | 30.3257 | 30.77 | 19.0 | | 0.2715 | 407.0 | 2849 | 0.1414 | 31.6471 | 27.5429 | 30.3257 | 30.77 | 19.0 | | 0.2715 | 408.0 | 2856 | 0.1410 | 31.5919 | 27.514 | 30.295 | 30.7228 | 19.0 | | 0.2715 | 409.0 | 2863 | 0.1408 | 31.4463 | 27.3594 | 30.3027 | 30.6642 | 19.0 | | 0.2715 | 410.0 | 2870 | 0.1406 | 31.4463 | 27.3594 | 30.3027 | 30.6642 | 19.0 | | 0.2715 | 411.0 | 2877 | 0.1403 | 31.5068 | 27.4117 | 30.3334 | 30.6937 | 19.0 | | 0.2715 | 412.0 | 2884 | 0.1400 | 31.5468 | 27.456 | 30.3719 | 30.7612 | 19.0 | | 0.2715 | 413.0 | 2891 | 0.1395 | 31.5014 | 27.4196 | 30.3412 | 30.7303 | 19.0 | | 0.2715 | 414.0 | 2898 | 0.1393 | 31.5014 | 27.4196 | 30.3412 | 30.7303 | 19.0 | | 0.2715 | 415.0 | 2905 | 0.1393 | 31.5014 | 27.4196 | 30.3412 | 30.7303 | 19.0 | | 0.2715 | 416.0 | 2912 | 0.1392 | 31.2855 | 27.3007 | 30.275 | 30.6413 | 19.0 | | 0.2715 | 417.0 | 2919 | 0.1390 | 31.2232 | 27.2724 | 30.2434 | 30.599 | 19.0 | | 0.2715 | 418.0 | 2926 | 0.1388 | 31.2232 | 27.2724 | 30.2434 | 30.599 | 19.0 | | 0.2715 | 419.0 | 2933 | 0.1384 | 31.2232 | 27.2724 | 30.2434 | 30.599 | 19.0 | | 0.2715 | 420.0 | 2940 | 0.1379 | 31.5156 | 27.5155 | 30.4983 | 30.7383 | 19.0 | | 0.2715 | 421.0 | 2947 | 0.1374 | 31.5753 | 27.5683 | 30.5421 | 30.7782 | 19.0 | | 0.2715 | 422.0 | 2954 | 0.1371 | 31.6484 | 27.5932 | 30.5844 | 30.8486 | 19.0 | | 0.2715 | 423.0 | 2961 | 0.1368 | 31.7452 | 27.6767 | 30.6858 | 30.9443 | 19.0 | | 0.2715 | 424.0 | 2968 | 0.1365 | 31.7452 | 27.6767 | 30.6858 | 30.9443 | 19.0 | | 0.2715 | 425.0 | 2975 | 0.1366 | 31.6852 | 27.6514 | 30.6511 | 30.8842 | 19.0 | | 0.2715 | 426.0 | 2982 | 0.1366 | 31.6194 | 27.6082 | 30.6236 | 30.8361 | 19.0 | | 0.2715 | 427.0 | 2989 | 0.1365 | 31.5753 | 27.5683 | 30.5421 | 30.7782 | 19.0 | | 0.2715 | 428.0 | 2996 | 0.1363 | 31.5753 | 27.5683 | 30.5421 | 30.7782 | 19.0 | | 0.2217 | 429.0 | 3003 | 0.1359 | 31.5156 | 27.5155 | 30.4983 | 30.7383 | 19.0 | | 0.2217 | 430.0 | 3010 | 0.1357 | 31.5156 | 27.5155 | 30.4983 | 30.7383 | 19.0 | | 0.2217 | 431.0 | 3017 | 0.1353 | 31.5156 | 27.5155 | 30.4983 | 30.7383 | 19.0 | | 0.2217 | 432.0 | 3024 | 0.1346 | 31.5932 | 27.513 | 30.4589 | 30.786 | 19.0 | | 0.2217 | 433.0 | 3031 | 0.1340 | 31.5932 | 27.513 | 30.4589 | 30.786 | 19.0 | | 0.2217 | 434.0 | 3038 | 0.1336 | 32.0771 | 27.895 | 30.9182 | 31.3334 | 19.0 | | 0.2217 | 435.0 | 3045 | 0.1332 | 32.1306 | 27.9949 | 30.991 | 31.3535 | 19.0 | | 0.2217 | 436.0 | 3052 | 0.1330 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 437.0 | 3059 | 0.1326 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 438.0 | 3066 | 0.1322 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 439.0 | 3073 | 0.1318 | 32.0213 | 27.8584 | 30.868 | 31.2781 | 19.0 | | 0.2217 | 440.0 | 3080 | 0.1314 | 32.0843 | 27.9836 | 30.9569 | 31.333 | 19.0 | | 0.2217 | 441.0 | 3087 | 0.1312 | 31.8913 | 27.8318 | 30.9259 | 31.216 | 19.0 | | 0.2217 | 442.0 | 3094 | 0.1312 | 31.8913 | 27.8318 | 30.9259 | 31.216 | 19.0 | | 0.2217 | 443.0 | 3101 | 0.1311 | 31.8913 | 27.8318 | 30.9259 | 31.216 | 19.0 | | 0.2217 | 444.0 | 3108 | 0.1310 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 445.0 | 3115 | 0.1308 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 446.0 | 3122 | 0.1309 | 32.0795 | 27.9442 | 30.9518 | 31.3388 | 19.0 | | 0.2217 | 447.0 | 3129 | 0.1308 | 32.0771 | 27.895 | 30.9182 | 31.3334 | 19.0 | | 0.2217 | 448.0 | 3136 | 0.1306 | 32.0771 | 27.895 | 30.9182 | 31.3334 | 19.0 | | 0.2217 | 449.0 | 3143 | 0.1303 | 32.0771 | 27.895 | 30.9182 | 31.3334 | 19.0 | | 0.2217 | 450.0 | 3150 | 0.1300 | 32.0771 | 27.895 | 30.9182 | 31.3334 | 19.0 | | 0.2217 | 451.0 | 3157 | 0.1297 | 32.0213 | 27.8584 | 30.868 | 31.2781 | 19.0 | | 0.2217 | 452.0 | 3164 | 0.1296 | 32.0213 | 27.8584 | 30.868 | 31.2781 | 19.0 | | 0.2217 | 453.0 | 3171 | 0.1294 | 32.0213 | 27.8584 | 30.868 | 31.2781 | 19.0 | | 0.2217 | 454.0 | 3178 | 0.1291 | 31.8895 | 27.7951 | 30.8705 | 31.2123 | 19.0 | | 0.2217 | 455.0 | 3185 | 0.1288 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 456.0 | 3192 | 0.1285 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 457.0 | 3199 | 0.1280 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 458.0 | 3206 | 0.1277 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 459.0 | 3213 | 0.1273 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 460.0 | 3220 | 0.1272 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 461.0 | 3227 | 0.1272 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 462.0 | 3234 | 0.1271 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 463.0 | 3241 | 0.1271 | 31.4638 | 27.4416 | 30.3997 | 30.6841 | 19.0 | | 0.2217 | 464.0 | 3248 | 0.1270 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 465.0 | 3255 | 0.1269 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 466.0 | 3262 | 0.1266 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 467.0 | 3269 | 0.1264 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 468.0 | 3276 | 0.1263 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 469.0 | 3283 | 0.1261 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 470.0 | 3290 | 0.1257 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 471.0 | 3297 | 0.1255 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 472.0 | 3304 | 0.1252 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 473.0 | 3311 | 0.1249 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 474.0 | 3318 | 0.1246 | 31.8895 | 27.7951 | 30.8705 | 31.2123 | 19.0 | | 0.2217 | 475.0 | 3325 | 0.1243 | 31.8895 | 27.7951 | 30.8705 | 31.2123 | 19.0 | | 0.2217 | 476.0 | 3332 | 0.1240 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 477.0 | 3339 | 0.1237 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 478.0 | 3346 | 0.1235 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 479.0 | 3353 | 0.1233 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 480.0 | 3360 | 0.1233 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 481.0 | 3367 | 0.1231 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 482.0 | 3374 | 0.1230 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 483.0 | 3381 | 0.1231 | 31.8403 | 27.7801 | 30.8793 | 31.1503 | 19.0 | | 0.2217 | 484.0 | 3388 | 0.1231 | 31.8288 | 27.7843 | 30.9031 | 31.1868 | 19.0 | | 0.2217 | 485.0 | 3395 | 0.1230 | 31.8288 | 27.7843 | 30.9031 | 31.1868 | 19.0 | | 0.2217 | 486.0 | 3402 | 0.1228 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 487.0 | 3409 | 0.1226 | 31.8288 | 27.7843 | 30.9031 | 31.1868 | 19.0 | | 0.2217 | 488.0 | 3416 | 0.1223 | 31.8288 | 27.7843 | 30.9031 | 31.1868 | 19.0 | | 0.2217 | 489.0 | 3423 | 0.1219 | 31.5136 | 27.4987 | 30.422 | 30.7353 | 19.0 | | 0.2217 | 490.0 | 3430 | 0.1213 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.2217 | 491.0 | 3437 | 0.1209 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 492.0 | 3444 | 0.1207 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 493.0 | 3451 | 0.1204 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 494.0 | 3458 | 0.1203 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 495.0 | 3465 | 0.1202 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 496.0 | 3472 | 0.1201 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 497.0 | 3479 | 0.1201 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 498.0 | 3486 | 0.1201 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.2217 | 499.0 | 3493 | 0.1202 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.1919 | 500.0 | 3500 | 0.1203 | 31.7997 | 27.7363 | 30.8529 | 31.1419 | 19.0 | | 0.1919 | 501.0 | 3507 | 0.1201 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 502.0 | 3514 | 0.1199 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 503.0 | 3521 | 0.1196 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 504.0 | 3528 | 0.1194 | 31.8944 | 27.8477 | 31.0667 | 31.2807 | 19.0 | | 0.1919 | 505.0 | 3535 | 0.1192 | 31.5791 | 27.543 | 30.6956 | 30.8772 | 19.0 | | 0.1919 | 506.0 | 3542 | 0.1190 | 31.9364 | 27.878 | 31.107 | 31.2827 | 19.0 | | 0.1919 | 507.0 | 3549 | 0.1189 | 31.9364 | 27.878 | 31.107 | 31.2827 | 19.0 | | 0.1919 | 508.0 | 3556 | 0.1187 | 31.9364 | 27.878 | 31.107 | 31.2827 | 19.0 | | 0.1919 | 509.0 | 3563 | 0.1184 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 510.0 | 3570 | 0.1182 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 511.0 | 3577 | 0.1180 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 512.0 | 3584 | 0.1178 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 513.0 | 3591 | 0.1177 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 514.0 | 3598 | 0.1177 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 515.0 | 3605 | 0.1175 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 516.0 | 3612 | 0.1172 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 517.0 | 3619 | 0.1170 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 518.0 | 3626 | 0.1167 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 519.0 | 3633 | 0.1164 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 520.0 | 3640 | 0.1163 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 521.0 | 3647 | 0.1161 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 522.0 | 3654 | 0.1159 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 523.0 | 3661 | 0.1160 | 31.7023 | 27.6923 | 30.8243 | 31.0915 | 19.0 | | 0.1919 | 524.0 | 3668 | 0.1160 | 31.7467 | 27.8062 | 30.8612 | 31.1419 | 19.0 | | 0.1919 | 525.0 | 3675 | 0.1158 | 31.7467 | 27.8062 | 30.8612 | 31.1419 | 19.0 | | 0.1919 | 526.0 | 3682 | 0.1157 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 527.0 | 3689 | 0.1156 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 528.0 | 3696 | 0.1155 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 529.0 | 3703 | 0.1153 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 530.0 | 3710 | 0.1152 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 531.0 | 3717 | 0.1151 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 532.0 | 3724 | 0.1149 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 533.0 | 3731 | 0.1147 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 534.0 | 3738 | 0.1146 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 535.0 | 3745 | 0.1145 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 536.0 | 3752 | 0.1144 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 537.0 | 3759 | 0.1143 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 538.0 | 3766 | 0.1141 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 539.0 | 3773 | 0.1140 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 540.0 | 3780 | 0.1140 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 541.0 | 3787 | 0.1140 | 31.9543 | 27.8444 | 31.0871 | 31.2788 | 19.0 | | 0.1919 | 542.0 | 3794 | 0.1139 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 543.0 | 3801 | 0.1138 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 544.0 | 3808 | 0.1137 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 545.0 | 3815 | 0.1136 | 31.8554 | 27.7844 | 31.0721 | 31.2268 | 19.0 | | 0.1919 | 546.0 | 3822 | 0.1134 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 547.0 | 3829 | 0.1132 | 31.9747 | 27.8786 | 31.1492 | 31.3314 | 19.0 | | 0.1919 | 548.0 | 3836 | 0.1131 | 31.9747 | 27.8786 | 31.1492 | 31.3314 | 19.0 | | 0.1919 | 549.0 | 3843 | 0.1129 | 31.9747 | 27.8786 | 31.1492 | 31.3314 | 19.0 | | 0.1919 | 550.0 | 3850 | 0.1127 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 551.0 | 3857 | 0.1124 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 552.0 | 3864 | 0.1122 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 553.0 | 3871 | 0.1122 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 554.0 | 3878 | 0.1122 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 555.0 | 3885 | 0.1120 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 556.0 | 3892 | 0.1119 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 557.0 | 3899 | 0.1118 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 558.0 | 3906 | 0.1117 | 31.912 | 27.8318 | 31.1148 | 31.2817 | 19.0 | | 0.1919 | 559.0 | 3913 | 0.1115 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 560.0 | 3920 | 0.1114 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 561.0 | 3927 | 0.1114 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 562.0 | 3934 | 0.1114 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 563.0 | 3941 | 0.1112 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 564.0 | 3948 | 0.1109 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 565.0 | 3955 | 0.1107 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 566.0 | 3962 | 0.1105 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 567.0 | 3969 | 0.1102 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 568.0 | 3976 | 0.1099 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1919 | 569.0 | 3983 | 0.1098 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1919 | 570.0 | 3990 | 0.1096 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1919 | 571.0 | 3997 | 0.1095 | 31.9849 | 27.874 | 31.1422 | 31.3089 | 19.0 | | 0.1677 | 572.0 | 4004 | 0.1093 | 31.9849 | 27.874 | 31.1422 | 31.3089 | 19.0 | | 0.1677 | 573.0 | 4011 | 0.1093 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 574.0 | 4018 | 0.1094 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 575.0 | 4025 | 0.1095 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 576.0 | 4032 | 0.1095 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 577.0 | 4039 | 0.1094 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 578.0 | 4046 | 0.1092 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 579.0 | 4053 | 0.1090 | 31.9982 | 27.874 | 31.1397 | 31.3293 | 19.0 | | 0.1677 | 580.0 | 4060 | 0.1088 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1677 | 581.0 | 4067 | 0.1086 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 582.0 | 4074 | 0.1085 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 583.0 | 4081 | 0.1084 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 584.0 | 4088 | 0.1081 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 585.0 | 4095 | 0.1079 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 586.0 | 4102 | 0.1077 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 587.0 | 4109 | 0.1077 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 588.0 | 4116 | 0.1075 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 589.0 | 4123 | 0.1075 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 590.0 | 4130 | 0.1076 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 591.0 | 4137 | 0.1074 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 592.0 | 4144 | 0.1072 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 593.0 | 4151 | 0.1068 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 594.0 | 4158 | 0.1065 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 595.0 | 4165 | 0.1063 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 596.0 | 4172 | 0.1063 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1677 | 597.0 | 4179 | 0.1062 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1677 | 598.0 | 4186 | 0.1060 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 599.0 | 4193 | 0.1059 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 600.0 | 4200 | 0.1058 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 601.0 | 4207 | 0.1055 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 602.0 | 4214 | 0.1055 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 603.0 | 4221 | 0.1054 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 604.0 | 4228 | 0.1053 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 605.0 | 4235 | 0.1050 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 606.0 | 4242 | 0.1049 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 607.0 | 4249 | 0.1045 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 608.0 | 4256 | 0.1042 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 609.0 | 4263 | 0.1040 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 610.0 | 4270 | 0.1039 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 611.0 | 4277 | 0.1037 | 32.1776 | 27.9835 | 31.2174 | 31.4851 | 19.0 | | 0.1677 | 612.0 | 4284 | 0.1035 | 32.1776 | 27.9835 | 31.2174 | 31.4851 | 19.0 | | 0.1677 | 613.0 | 4291 | 0.1034 | 32.085 | 27.9511 | 31.1967 | 31.3998 | 19.0 | | 0.1677 | 614.0 | 4298 | 0.1033 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 615.0 | 4305 | 0.1032 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 616.0 | 4312 | 0.1031 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 617.0 | 4319 | 0.1031 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 618.0 | 4326 | 0.1030 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1677 | 619.0 | 4333 | 0.1029 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 620.0 | 4340 | 0.1028 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 621.0 | 4347 | 0.1026 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 622.0 | 4354 | 0.1025 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 623.0 | 4361 | 0.1024 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 624.0 | 4368 | 0.1022 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 625.0 | 4375 | 0.1022 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 626.0 | 4382 | 0.1021 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 627.0 | 4389 | 0.1020 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1677 | 628.0 | 4396 | 0.1019 | 31.6985 | 27.6005 | 30.7596 | 31.0373 | 19.0 | | 0.1677 | 629.0 | 4403 | 0.1018 | 31.6985 | 27.6005 | 30.7596 | 31.0373 | 19.0 | | 0.1677 | 630.0 | 4410 | 0.1017 | 31.6985 | 27.6005 | 30.7596 | 31.0373 | 19.0 | | 0.1677 | 631.0 | 4417 | 0.1016 | 31.6985 | 27.6005 | 30.7596 | 31.0373 | 19.0 | | 0.1677 | 632.0 | 4424 | 0.1014 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 633.0 | 4431 | 0.1012 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 634.0 | 4438 | 0.1011 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 635.0 | 4445 | 0.1010 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 636.0 | 4452 | 0.1008 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 637.0 | 4459 | 0.1007 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 638.0 | 4466 | 0.1006 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 639.0 | 4473 | 0.1005 | 31.6786 | 27.5742 | 30.7404 | 30.9724 | 19.0 | | 0.1677 | 640.0 | 4480 | 0.1004 | 32.0412 | 27.913 | 31.1743 | 31.3412 | 19.0 | | 0.1677 | 641.0 | 4487 | 0.1002 | 32.0582 | 27.9063 | 31.1665 | 31.3564 | 19.0 | | 0.1677 | 642.0 | 4494 | 0.1002 | 32.0582 | 27.9063 | 31.1665 | 31.3564 | 19.0 | | 0.1526 | 643.0 | 4501 | 0.1002 | 32.0582 | 27.9063 | 31.1665 | 31.3564 | 19.0 | | 0.1526 | 644.0 | 4508 | 0.1001 | 32.0412 | 27.9593 | 31.2074 | 31.3412 | 19.0 | | 0.1526 | 645.0 | 4515 | 0.1001 | 32.0412 | 27.9593 | 31.2074 | 31.3412 | 19.0 | | 0.1526 | 646.0 | 4522 | 0.1000 | 32.0412 | 27.9593 | 31.2074 | 31.3412 | 19.0 | | 0.1526 | 647.0 | 4529 | 0.1000 | 31.6616 | 27.6142 | 30.7807 | 30.9488 | 19.0 | | 0.1526 | 648.0 | 4536 | 0.0999 | 31.6848 | 27.6394 | 30.7922 | 31.0144 | 19.0 | | 0.1526 | 649.0 | 4543 | 0.0997 | 31.6848 | 27.6394 | 30.7922 | 31.0144 | 19.0 | | 0.1526 | 650.0 | 4550 | 0.0996 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 651.0 | 4557 | 0.0995 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 652.0 | 4564 | 0.0995 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 653.0 | 4571 | 0.0994 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 654.0 | 4578 | 0.0993 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 655.0 | 4585 | 0.0991 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 656.0 | 4592 | 0.0990 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 657.0 | 4599 | 0.0988 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 658.0 | 4606 | 0.0988 | 32.0327 | 27.9633 | 31.2014 | 31.3696 | 19.0 | | 0.1526 | 659.0 | 4613 | 0.0987 | 32.0327 | 27.9633 | 31.2014 | 31.3696 | 19.0 | | 0.1526 | 660.0 | 4620 | 0.0987 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 661.0 | 4627 | 0.0986 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 662.0 | 4634 | 0.0985 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 663.0 | 4641 | 0.0984 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 664.0 | 4648 | 0.0984 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 665.0 | 4655 | 0.0984 | 32.0506 | 27.932 | 31.1746 | 31.3906 | 19.0 | | 0.1526 | 666.0 | 4662 | 0.0986 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 667.0 | 4669 | 0.0987 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 668.0 | 4676 | 0.0988 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 669.0 | 4683 | 0.0987 | 32.0327 | 27.9365 | 31.1785 | 31.3696 | 19.0 | | 0.1526 | 670.0 | 4690 | 0.0985 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1526 | 671.0 | 4697 | 0.0984 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 672.0 | 4704 | 0.0983 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 673.0 | 4711 | 0.0983 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 674.0 | 4718 | 0.0984 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 675.0 | 4725 | 0.0984 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 676.0 | 4732 | 0.0984 | 31.6757 | 27.5737 | 30.7293 | 30.9968 | 19.0 | | 0.1526 | 677.0 | 4739 | 0.0983 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1526 | 678.0 | 4746 | 0.0981 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1526 | 679.0 | 4753 | 0.0981 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1526 | 680.0 | 4760 | 0.0980 | 31.6882 | 27.5693 | 30.7136 | 31.0183 | 19.0 | | 0.1526 | 681.0 | 4767 | 0.0980 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 682.0 | 4774 | 0.0977 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 683.0 | 4781 | 0.0975 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 684.0 | 4788 | 0.0972 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 685.0 | 4795 | 0.0972 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 686.0 | 4802 | 0.0970 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 687.0 | 4809 | 0.0969 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 688.0 | 4816 | 0.0967 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 689.0 | 4823 | 0.0966 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 690.0 | 4830 | 0.0965 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 691.0 | 4837 | 0.0964 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 692.0 | 4844 | 0.0964 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 693.0 | 4851 | 0.0962 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 694.0 | 4858 | 0.0960 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 695.0 | 4865 | 0.0960 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 696.0 | 4872 | 0.0959 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 697.0 | 4879 | 0.0959 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 698.0 | 4886 | 0.0958 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 699.0 | 4893 | 0.0957 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 700.0 | 4900 | 0.0957 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 701.0 | 4907 | 0.0956 | 32.3596 | 28.3361 | 31.4021 | 31.5663 | 19.0 | | 0.1526 | 702.0 | 4914 | 0.0956 | 32.3596 | 28.3361 | 31.4021 | 31.5663 | 19.0 | | 0.1526 | 703.0 | 4921 | 0.0956 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 704.0 | 4928 | 0.0956 | 31.9544 | 27.9434 | 30.9621 | 31.2208 | 19.0 | | 0.1526 | 705.0 | 4935 | 0.0955 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 706.0 | 4942 | 0.0954 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 707.0 | 4949 | 0.0953 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 708.0 | 4956 | 0.0952 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 709.0 | 4963 | 0.0950 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 710.0 | 4970 | 0.0948 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1526 | 711.0 | 4977 | 0.0949 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 712.0 | 4984 | 0.0948 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 713.0 | 4991 | 0.0948 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1526 | 714.0 | 4998 | 0.0947 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 715.0 | 5005 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 716.0 | 5012 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 717.0 | 5019 | 0.0947 | 32.3596 | 28.3361 | 31.4021 | 31.5663 | 19.0 | | 0.1404 | 718.0 | 5026 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 719.0 | 5033 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 720.0 | 5040 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 721.0 | 5047 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 722.0 | 5054 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 723.0 | 5061 | 0.0946 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 724.0 | 5068 | 0.0945 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 725.0 | 5075 | 0.0944 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 726.0 | 5082 | 0.0943 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 727.0 | 5089 | 0.0941 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 728.0 | 5096 | 0.0940 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 729.0 | 5103 | 0.0940 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 730.0 | 5110 | 0.0940 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 731.0 | 5117 | 0.0939 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 732.0 | 5124 | 0.0938 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 733.0 | 5131 | 0.0938 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 734.0 | 5138 | 0.0937 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 735.0 | 5145 | 0.0936 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 736.0 | 5152 | 0.0936 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 737.0 | 5159 | 0.0935 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 738.0 | 5166 | 0.0934 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 739.0 | 5173 | 0.0934 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 740.0 | 5180 | 0.0934 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 741.0 | 5187 | 0.0934 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 742.0 | 5194 | 0.0934 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 743.0 | 5201 | 0.0933 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 744.0 | 5208 | 0.0933 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 745.0 | 5215 | 0.0932 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 746.0 | 5222 | 0.0931 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 747.0 | 5229 | 0.0930 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 748.0 | 5236 | 0.0929 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 749.0 | 5243 | 0.0928 | 32.3934 | 28.3265 | 31.3864 | 31.594 | 19.0 | | 0.1404 | 750.0 | 5250 | 0.0927 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 751.0 | 5257 | 0.0926 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 752.0 | 5264 | 0.0925 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 753.0 | 5271 | 0.0925 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 754.0 | 5278 | 0.0924 | 31.9801 | 27.9368 | 30.9543 | 31.2445 | 19.0 | | 0.1404 | 755.0 | 5285 | 0.0923 | 32.0859 | 28.1042 | 31.089 | 31.3416 | 19.0 | | 0.1404 | 756.0 | 5292 | 0.0923 | 32.0535 | 28.1711 | 31.143 | 31.3184 | 19.0 | | 0.1404 | 757.0 | 5299 | 0.0922 | 32.0535 | 28.1711 | 31.143 | 31.3184 | 19.0 | | 0.1404 | 758.0 | 5306 | 0.0922 | 32.4741 | 28.5522 | 31.5417 | 31.6689 | 19.0 | | 0.1404 | 759.0 | 5313 | 0.0921 | 32.4741 | 28.5522 | 31.5417 | 31.6689 | 19.0 | | 0.1404 | 760.0 | 5320 | 0.0921 | 32.4141 | 28.4885 | 31.4995 | 31.6445 | 19.0 | | 0.1404 | 761.0 | 5327 | 0.0920 | 32.4141 | 28.4885 | 31.4995 | 31.6445 | 19.0 | | 0.1404 | 762.0 | 5334 | 0.0919 | 32.4141 | 28.4885 | 31.4995 | 31.6445 | 19.0 | | 0.1404 | 763.0 | 5341 | 0.0918 | 32.4141 | 28.4707 | 31.476 | 31.6445 | 19.0 | | 0.1404 | 764.0 | 5348 | 0.0918 | 32.4141 | 28.4707 | 31.476 | 31.6445 | 19.0 | | 0.1404 | 765.0 | 5355 | 0.0917 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 766.0 | 5362 | 0.0917 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 767.0 | 5369 | 0.0916 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 768.0 | 5376 | 0.0916 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 769.0 | 5383 | 0.0916 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 770.0 | 5390 | 0.0916 | 32.4741 | 28.5078 | 31.5177 | 31.6689 | 19.0 | | 0.1404 | 771.0 | 5397 | 0.0914 | 32.0535 | 28.1042 | 31.1008 | 31.3184 | 19.0 | | 0.1404 | 772.0 | 5404 | 0.0914 | 32.0535 | 28.1042 | 31.1008 | 31.3184 | 19.0 | | 0.1404 | 773.0 | 5411 | 0.0913 | 32.0535 | 28.1711 | 31.143 | 31.3184 | 19.0 | | 0.1404 | 774.0 | 5418 | 0.0911 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 775.0 | 5425 | 0.0909 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 776.0 | 5432 | 0.0908 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 777.0 | 5439 | 0.0907 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 778.0 | 5446 | 0.0908 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 779.0 | 5453 | 0.0908 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 780.0 | 5460 | 0.0907 | 32.0185 | 28.0995 | 31.1163 | 31.2507 | 19.0 | | 0.1404 | 781.0 | 5467 | 0.0906 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1404 | 782.0 | 5474 | 0.0906 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1404 | 783.0 | 5481 | 0.0906 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1404 | 784.0 | 5488 | 0.0905 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1404 | 785.0 | 5495 | 0.0904 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 786.0 | 5502 | 0.0904 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 787.0 | 5509 | 0.0904 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 788.0 | 5516 | 0.0904 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 789.0 | 5523 | 0.0904 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 790.0 | 5530 | 0.0904 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 791.0 | 5537 | 0.0903 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 792.0 | 5544 | 0.0903 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 793.0 | 5551 | 0.0902 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 794.0 | 5558 | 0.0902 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 795.0 | 5565 | 0.0903 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 796.0 | 5572 | 0.0903 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 797.0 | 5579 | 0.0903 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 798.0 | 5586 | 0.0902 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 799.0 | 5593 | 0.0901 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 800.0 | 5600 | 0.0900 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 801.0 | 5607 | 0.0900 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 802.0 | 5614 | 0.0899 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 803.0 | 5621 | 0.0898 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 804.0 | 5628 | 0.0899 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 805.0 | 5635 | 0.0899 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 806.0 | 5642 | 0.0897 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 807.0 | 5649 | 0.0897 | 32.2284 | 28.5058 | 31.4656 | 31.5557 | 19.0 | | 0.1324 | 808.0 | 5656 | 0.0897 | 32.2284 | 28.5058 | 31.4656 | 31.5557 | 19.0 | | 0.1324 | 809.0 | 5663 | 0.0897 | 32.2284 | 28.5058 | 31.4656 | 31.5557 | 19.0 | | 0.1324 | 810.0 | 5670 | 0.0897 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 811.0 | 5677 | 0.0897 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 812.0 | 5684 | 0.0897 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 813.0 | 5691 | 0.0897 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 814.0 | 5698 | 0.0897 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 815.0 | 5705 | 0.0897 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 816.0 | 5712 | 0.0897 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 817.0 | 5719 | 0.0897 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 818.0 | 5726 | 0.0897 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 819.0 | 5733 | 0.0897 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 820.0 | 5740 | 0.0897 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 821.0 | 5747 | 0.0897 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 822.0 | 5754 | 0.0896 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 823.0 | 5761 | 0.0895 | 32.1928 | 28.436 | 31.3924 | 31.4973 | 19.0 | | 0.1324 | 824.0 | 5768 | 0.0895 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 825.0 | 5775 | 0.0894 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 826.0 | 5782 | 0.0893 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 827.0 | 5789 | 0.0892 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 828.0 | 5796 | 0.0890 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 829.0 | 5803 | 0.0889 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 830.0 | 5810 | 0.0888 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 831.0 | 5817 | 0.0887 | 32.2825 | 28.5853 | 31.5326 | 31.5924 | 19.0 | | 0.1324 | 832.0 | 5824 | 0.0887 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 833.0 | 5831 | 0.0886 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1324 | 834.0 | 5838 | 0.0886 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 835.0 | 5845 | 0.0886 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 836.0 | 5852 | 0.0885 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 837.0 | 5859 | 0.0885 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 838.0 | 5866 | 0.0885 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 839.0 | 5873 | 0.0884 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 840.0 | 5880 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 841.0 | 5887 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 842.0 | 5894 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 843.0 | 5901 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 844.0 | 5908 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 845.0 | 5915 | 0.0883 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 846.0 | 5922 | 0.0882 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 847.0 | 5929 | 0.0881 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 848.0 | 5936 | 0.0881 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 849.0 | 5943 | 0.0880 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 850.0 | 5950 | 0.0880 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 851.0 | 5957 | 0.0880 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 852.0 | 5964 | 0.0880 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 853.0 | 5971 | 0.0879 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 854.0 | 5978 | 0.0879 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 855.0 | 5985 | 0.0878 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 856.0 | 5992 | 0.0878 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.1324 | 857.0 | 5999 | 0.0877 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.126 | 858.0 | 6006 | 0.0877 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.126 | 859.0 | 6013 | 0.0877 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.126 | 860.0 | 6020 | 0.0877 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.126 | 861.0 | 6027 | 0.0876 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 862.0 | 6034 | 0.0876 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 863.0 | 6041 | 0.0875 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 864.0 | 6048 | 0.0875 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 865.0 | 6055 | 0.0874 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 866.0 | 6062 | 0.0874 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 867.0 | 6069 | 0.0873 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 868.0 | 6076 | 0.0872 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 869.0 | 6083 | 0.0871 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 870.0 | 6090 | 0.0871 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 871.0 | 6097 | 0.0870 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 872.0 | 6104 | 0.0869 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 873.0 | 6111 | 0.0869 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 874.0 | 6118 | 0.0869 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 875.0 | 6125 | 0.0868 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 876.0 | 6132 | 0.0868 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 877.0 | 6139 | 0.0868 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 878.0 | 6146 | 0.0868 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 879.0 | 6153 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 880.0 | 6160 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 881.0 | 6167 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 882.0 | 6174 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 883.0 | 6181 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 884.0 | 6188 | 0.0867 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 885.0 | 6195 | 0.0866 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 886.0 | 6202 | 0.0866 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 887.0 | 6209 | 0.0866 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 888.0 | 6216 | 0.0865 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 889.0 | 6223 | 0.0866 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 890.0 | 6230 | 0.0866 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 891.0 | 6237 | 0.0865 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 892.0 | 6244 | 0.0866 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 893.0 | 6251 | 0.0866 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 894.0 | 6258 | 0.0866 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 895.0 | 6265 | 0.0866 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 896.0 | 6272 | 0.0865 | 32.5814 | 28.9613 | 31.8465 | 31.9321 | 19.0 | | 0.126 | 897.0 | 6279 | 0.0865 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 898.0 | 6286 | 0.0865 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 899.0 | 6293 | 0.0865 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 900.0 | 6300 | 0.0865 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 901.0 | 6307 | 0.0865 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 902.0 | 6314 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 903.0 | 6321 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 904.0 | 6328 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 905.0 | 6335 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 906.0 | 6342 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 907.0 | 6349 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 908.0 | 6356 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 909.0 | 6363 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 910.0 | 6370 | 0.0864 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 911.0 | 6377 | 0.0863 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 912.0 | 6384 | 0.0863 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 913.0 | 6391 | 0.0862 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 914.0 | 6398 | 0.0862 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 915.0 | 6405 | 0.0862 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 916.0 | 6412 | 0.0862 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 917.0 | 6419 | 0.0861 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 918.0 | 6426 | 0.0861 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 919.0 | 6433 | 0.0861 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 920.0 | 6440 | 0.0861 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 921.0 | 6447 | 0.0861 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 922.0 | 6454 | 0.0860 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 923.0 | 6461 | 0.0860 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 924.0 | 6468 | 0.0860 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 925.0 | 6475 | 0.0860 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 926.0 | 6482 | 0.0860 | 32.4879 | 28.7819 | 31.7054 | 31.836 | 19.0 | | 0.126 | 927.0 | 6489 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.126 | 928.0 | 6496 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 929.0 | 6503 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 930.0 | 6510 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 931.0 | 6517 | 0.0861 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 932.0 | 6524 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 933.0 | 6531 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 934.0 | 6538 | 0.0861 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 935.0 | 6545 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 936.0 | 6552 | 0.0861 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 937.0 | 6559 | 0.0861 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 938.0 | 6566 | 0.0861 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 939.0 | 6573 | 0.0860 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 940.0 | 6580 | 0.0860 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 941.0 | 6587 | 0.0860 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 942.0 | 6594 | 0.0860 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 943.0 | 6601 | 0.0860 | 32.1384 | 28.4015 | 31.3493 | 31.4457 | 19.0 | | 0.123 | 944.0 | 6608 | 0.0860 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 945.0 | 6615 | 0.0860 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 946.0 | 6622 | 0.0859 | 32.5232 | 28.7806 | 31.7308 | 31.7834 | 19.0 | | 0.123 | 947.0 | 6629 | 0.0859 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 948.0 | 6636 | 0.0859 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 949.0 | 6643 | 0.0859 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 950.0 | 6650 | 0.0859 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 951.0 | 6657 | 0.0859 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 952.0 | 6664 | 0.0859 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 953.0 | 6671 | 0.0859 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 954.0 | 6678 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 955.0 | 6685 | 0.0858 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 956.0 | 6692 | 0.0858 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 957.0 | 6699 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 958.0 | 6706 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 959.0 | 6713 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 960.0 | 6720 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 961.0 | 6727 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 962.0 | 6734 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 963.0 | 6741 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 964.0 | 6748 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 965.0 | 6755 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 966.0 | 6762 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 967.0 | 6769 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 968.0 | 6776 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 969.0 | 6783 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 970.0 | 6790 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 971.0 | 6797 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 972.0 | 6804 | 0.0858 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 973.0 | 6811 | 0.0858 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 974.0 | 6818 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 975.0 | 6825 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 976.0 | 6832 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 977.0 | 6839 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 978.0 | 6846 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 979.0 | 6853 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 980.0 | 6860 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 981.0 | 6867 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 982.0 | 6874 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 983.0 | 6881 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 984.0 | 6888 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 985.0 | 6895 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 986.0 | 6902 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 987.0 | 6909 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 988.0 | 6916 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 989.0 | 6923 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 990.0 | 6930 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 991.0 | 6937 | 0.0857 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 992.0 | 6944 | 0.0857 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 993.0 | 6951 | 0.0856 | 32.6133 | 28.96 | 31.8684 | 31.8875 | 19.0 | | 0.123 | 994.0 | 6958 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 995.0 | 6965 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 996.0 | 6972 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 997.0 | 6979 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 998.0 | 6986 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.123 | 999.0 | 6993 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | | 0.1213 | 1000.0 | 7000 | 0.0856 | 32.2284 | 28.534 | 31.5055 | 31.5557 | 19.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
manirai91/enlm-roberta-imdb
manirai91
2022-11-22T20:43:14Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T16:57:28Z
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: enlmr-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # enlmr-imdb This model is a fine-tuned version of [manirai91/enlm-r-final](https://huggingface.co/manirai91/enlm-r-final) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
manirai91/xlm-roberta-imdb
manirai91
2022-11-22T20:36:34Z
126
1
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T16:42:44Z
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: xlm-roberta-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-imdb This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0 - Datasets 2.7.0 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2
research-backup
2022-11-22T20:25:41Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:40:00Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.790515873015873 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37967914438502676 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3857566765578635 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5063924402445803 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.646 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4517543859649123 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42824074074074076 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8080458038270304 - name: F1 (macro) type: f1_macro value: 0.7357565896819839 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7894366197183098 - name: F1 (macro) type: f1_macro value: 0.4680529848631216 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5520043336944745 - name: F1 (macro) type: f1_macro value: 0.5647005456999193 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9177157960631565 - name: F1 (macro) type: f1_macro value: 0.7991809595622609 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.770918207458477 - name: F1 (macro) type: f1_macro value: 0.701131895018139 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.37967914438502676 - Accuracy on SAT: 0.3857566765578635 - Accuracy on BATS: 0.5063924402445803 - Accuracy on U2: 0.4517543859649123 - Accuracy on U4: 0.42824074074074076 - Accuracy on Google: 0.646 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8080458038270304 - Micro F1 score on CogALexV: 0.7894366197183098 - Micro F1 score on EVALution: 0.5520043336944745 - Micro F1 score on K&H+N: 0.9177157960631565 - Micro F1 score on ROOT09: 0.770918207458477 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.790515873015873 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
monakth/bert-base-multilingual-cased-sv2
monakth
2022-11-22T19:51:49Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-22T19:49:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-multilingual-cased-ssv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-ssv This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2
research-backup
2022-11-22T19:43:03Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:34:42Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7143253968253969 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.30213903743315507 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.29673590504451036 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.41078376876042244 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.444 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3508771929824561 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35185185185185186 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8389332529757421 - name: F1 (macro) type: f1_macro value: 0.8320870274406121 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8110328638497653 - name: F1 (macro) type: f1_macro value: 0.558175722976752 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6397616468039004 - name: F1 (macro) type: f1_macro value: 0.6018197960350038 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.936495791889824 - name: F1 (macro) type: f1_macro value: 0.8329891004271437 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8574114697586963 - name: F1 (macro) type: f1_macro value: 0.859031346414651 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.30213903743315507 - Accuracy on SAT: 0.29673590504451036 - Accuracy on BATS: 0.41078376876042244 - Accuracy on U2: 0.3508771929824561 - Accuracy on U4: 0.35185185185185186 - Accuracy on Google: 0.444 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8389332529757421 - Micro F1 score on CogALexV: 0.8110328638497653 - Micro F1 score on EVALution: 0.6397616468039004 - Micro F1 score on K&H+N: 0.936495791889824 - Micro F1 score on ROOT09: 0.8574114697586963 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7143253968253969 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 10 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-b-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
alryan1478/gpt2-wikitext2
alryan1478
2022-11-22T19:15:47Z
175
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T16:54:38Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.561 | 1.0 | 2249 | 6.4685 | | 6.1921 | 2.0 | 4498 | 6.1978 | | 6.017 | 3.0 | 6747 | 6.1085 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
masapasa/meddner
masapasa
2022-11-22T19:13:06Z
3
0
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-11-22T19:05:40Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8649613325 - name: NER Recall type: recall value: 0.8892966361 - name: NER F Score type: f_score value: 0.876960193 duplicated_from: kormilitzin/en_core_med7_lg --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_lg` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 87.70 | | `ENTS_P` | 86.50 | | `ENTS_R` | 88.93 | | `TOK2VEC_LOSS` | 226109.53 | | `NER_LOSS` | 302222.55 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
HarshitaDiddee/AmericasNLP_Bribri
HarshitaDiddee
2022-11-22T18:35:11Z
91
0
transformers
[ "transformers", "wav2vec2", "automatic-speech-recognition", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T18:24:40Z
--- license: cc-by-4.0 --- ASR Model for Bribri ( Source: AmericasNLP Shared Task 2022 )
umairalipathan/finetuning-sentiment-model-surrender-final
umairalipathan
2022-11-22T18:17:49Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T18:08:12Z
--- tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-surrender-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-surrender-final This model is a fine-tuned version of [umairalipathan/autotrain-sisu_surrender-2206370778](https://huggingface.co/umairalipathan/autotrain-sisu_surrender-2206370778) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2072 - eval_accuracy: 0.9556 - eval_f1: 0.9714 - eval_runtime: 8.4 - eval_samples_per_second: 5.357 - eval_steps_per_second: 0.357 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2
research-backup
2022-11-22T17:54:16Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:24:50Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7584126984126984 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.32887700534759357 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3353115727002967 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39466370205669815 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.504 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39035087719298245 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.38425925925925924 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8323037516950429 - name: F1 (macro) type: f1_macro value: 0.8135716497645339 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7492957746478873 - name: F1 (macro) type: f1_macro value: 0.28766475530328117 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5861321776814734 - name: F1 (macro) type: f1_macro value: 0.545958272767557 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.903109132642415 - name: F1 (macro) type: f1_macro value: 0.7624740127692404 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8429959260419931 - name: F1 (macro) type: f1_macro value: 0.8383818257665551 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.32887700534759357 - Accuracy on SAT: 0.3353115727002967 - Accuracy on BATS: 0.39466370205669815 - Accuracy on U2: 0.39035087719298245 - Accuracy on U4: 0.38425925925925924 - Accuracy on Google: 0.504 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8323037516950429 - Micro F1 score on CogALexV: 0.7492957746478873 - Micro F1 score on EVALution: 0.5861321776814734 - Micro F1 score on K&H+N: 0.903109132642415 - Micro F1 score on ROOT09: 0.8429959260419931 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7584126984126984 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-b-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
gd1m3y/test_trainer_1
gd1m3y
2022-11-22T17:38:49Z
178
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T17:04:11Z
<<<<<<< HEAD --- tags: - generated_from_trainer datasets: - financial_phrasebank model-index: - name: test_trainer_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer_1 This model is a fine-tuned version of [SALT-NLP/FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5963 - eval_accuracy: 0.9242 - eval_runtime: 4.3354 - eval_samples_per_second: 97.337 - eval_steps_per_second: 12.225 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2 ======= This is a demo model for our reference >>>>>>> 24191373ff05e3799b9c6f359e51b37b642f4865
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1
research-backup
2022-11-22T17:34:18Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:40:04Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8018650793650793 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3502673796791444 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35014836795252224 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5202890494719289 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.644 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39035087719298245 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.43287037037037035 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8461654361910502 - name: F1 (macro) type: f1_macro value: 0.8411664963735426 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8145539906103286 - name: F1 (macro) type: f1_macro value: 0.5873414064116238 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6505958829902492 - name: F1 (macro) type: f1_macro value: 0.6269958308732405 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9319051262433052 - name: F1 (macro) type: f1_macro value: 0.8393686548194149 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7511751801942964 - name: F1 (macro) type: f1_macro value: 0.6464435364634403 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3502673796791444 - Accuracy on SAT: 0.35014836795252224 - Accuracy on BATS: 0.5202890494719289 - Accuracy on U2: 0.39035087719298245 - Accuracy on U4: 0.43287037037037035 - Accuracy on Google: 0.644 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8461654361910502 - Micro F1 score on CogALexV: 0.8145539906103286 - Micro F1 score on EVALution: 0.6505958829902492 - Micro F1 score on K&H+N: 0.9319051262433052 - Micro F1 score on ROOT09: 0.7511751801942964 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8018650793650793 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2
research-backup
2022-11-22T17:33:29Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:22:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7463293650793651 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34759358288770054 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3590504451038576 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.481378543635353 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.494 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3991228070175439 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35648148148148145 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8610818140726232 - name: F1 (macro) type: f1_macro value: 0.8525458448699613 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8171361502347417 - name: F1 (macro) type: f1_macro value: 0.5610856949320919 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6229685807150596 - name: F1 (macro) type: f1_macro value: 0.6126645128177534 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9215413507685887 - name: F1 (macro) type: f1_macro value: 0.8042276096823726 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.857724851143842 - name: F1 (macro) type: f1_macro value: 0.8472661094927697 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.34759358288770054 - Accuracy on SAT: 0.3590504451038576 - Accuracy on BATS: 0.481378543635353 - Accuracy on U2: 0.3991228070175439 - Accuracy on U4: 0.35648148148148145 - Accuracy on Google: 0.494 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8610818140726232 - Micro F1 score on CogALexV: 0.8171361502347417 - Micro F1 score on EVALution: 0.6229685807150596 - Micro F1 score on K&H+N: 0.9215413507685887 - Micro F1 score on ROOT09: 0.857724851143842 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7463293650793651 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1
research-backup
2022-11-22T17:26:35Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:36:45Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7624206349206349 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3770053475935829 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3768545994065282 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44580322401334077 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.57 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39473684210526316 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37962962962962965 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8797649540455025 - name: F1 (macro) type: f1_macro value: 0.8747086885506318 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7992957746478874 - name: F1 (macro) type: f1_macro value: 0.5104712427778083 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6397616468039004 - name: F1 (macro) type: f1_macro value: 0.6084431389476428 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9367044585101204 - name: F1 (macro) type: f1_macro value: 0.8301423655430062 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8677530554685051 - name: F1 (macro) type: f1_macro value: 0.8691031015559968 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3770053475935829 - Accuracy on SAT: 0.3768545994065282 - Accuracy on BATS: 0.44580322401334077 - Accuracy on U2: 0.39473684210526316 - Accuracy on U4: 0.37962962962962965 - Accuracy on Google: 0.57 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8797649540455025 - Micro F1 score on CogALexV: 0.7992957746478874 - Micro F1 score on EVALution: 0.6397616468039004 - Micro F1 score on K&H+N: 0.9367044585101204 - Micro F1 score on ROOT09: 0.8677530554685051 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7624206349206349 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
dung1308/dung_NT_model_save
dung1308
2022-11-22T17:22:09Z
65
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-22T01:33:27Z
--- tags: - generated_from_keras_callback model-index: - name: dung1308/dung_NT_model_save results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dung1308/dung_NT_model_save This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8144 - Validation Loss: 3.6030 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.4431 | 3.9985 | 0 | | 3.9986 | 3.8016 | 1 | | 3.8144 | 3.6030 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.7.0 - Tokenizers 0.11.0
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1
research-backup
2022-11-22T17:19:46Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:32:32Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.775079365079365 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3716577540106952 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3768545994065282 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34185658699277377 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.428 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37719298245614036 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3541666666666667 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.899201446436643 - name: F1 (macro) type: f1_macro value: 0.888889751667277 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7814553990610328 - name: F1 (macro) type: f1_macro value: 0.5516320672010655 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6408450704225352 - name: F1 (macro) type: f1_macro value: 0.6082440999373899 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9525631216526397 - name: F1 (macro) type: f1_macro value: 0.862670256588896 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.840802256345973 - name: F1 (macro) type: f1_macro value: 0.8106179148472547 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3716577540106952 - Accuracy on SAT: 0.3768545994065282 - Accuracy on BATS: 0.34185658699277377 - Accuracy on U2: 0.37719298245614036 - Accuracy on U4: 0.3541666666666667 - Accuracy on Google: 0.428 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.899201446436643 - Micro F1 score on CogALexV: 0.7814553990610328 - Micro F1 score on EVALution: 0.6408450704225352 - Micro F1 score on K&H+N: 0.9525631216526397 - Micro F1 score on ROOT09: 0.840802256345973 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.775079365079365 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1
research-backup
2022-11-22T17:13:57Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:30:48Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7387698412698412 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3342245989304813 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34718100890207715 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5441912173429683 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.644 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35526315789473684 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37962962962962965 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8145246346240772 - name: F1 (macro) type: f1_macro value: 0.801802054210856 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7774647887323943 - name: F1 (macro) type: f1_macro value: 0.5026184700694826 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5980498374864572 - name: F1 (macro) type: f1_macro value: 0.5765100456864519 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8878069138206858 - name: F1 (macro) type: f1_macro value: 0.7711282513838499 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.827326856784707 - name: F1 (macro) type: f1_macro value: 0.824410778730745 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3342245989304813 - Accuracy on SAT: 0.34718100890207715 - Accuracy on BATS: 0.5441912173429683 - Accuracy on U2: 0.35526315789473684 - Accuracy on U4: 0.37962962962962965 - Accuracy on Google: 0.644 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8145246346240772 - Micro F1 score on CogALexV: 0.7774647887323943 - Micro F1 score on EVALution: 0.5980498374864572 - Micro F1 score on K&H+N: 0.8878069138206858 - Micro F1 score on ROOT09: 0.827326856784707 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7387698412698412 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1
research-backup
2022-11-22T17:06:31Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:26:58Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.35561497326203206 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34718100890207715 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.48526959421901056 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.618 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.39473684210526316 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3541666666666667 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8442067199035708 - name: F1 (macro) type: f1_macro value: 0.823901479879959 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8110328638497653 - name: F1 (macro) type: f1_macro value: 0.5472550813103398 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5769230769230769 - name: F1 (macro) type: f1_macro value: 0.5466975926628965 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9118035751547611 - name: F1 (macro) type: f1_macro value: 0.7693980437177949 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8564713256032591 - name: F1 (macro) type: f1_macro value: 0.851273747817193 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.35561497326203206 - Accuracy on SAT: 0.34718100890207715 - Accuracy on BATS: 0.48526959421901056 - Accuracy on U2: 0.39473684210526316 - Accuracy on U4: 0.3541666666666667 - Accuracy on Google: 0.618 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8442067199035708 - Micro F1 score on CogALexV: 0.8110328638497653 - Micro F1 score on EVALution: 0.5769230769230769 - Micro F1 score on K&H+N: 0.9118035751547611 - Micro F1 score on ROOT09: 0.8564713256032591 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-c-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1
research-backup
2022-11-22T17:00:21Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:22:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8430952380952381 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3582887700534759 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3649851632047478 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4280155642023346 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.532 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3101851851851852 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8460147657073979 - name: F1 (macro) type: f1_macro value: 0.8315897128108677 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8084507042253521 - name: F1 (macro) type: f1_macro value: 0.5269777075808457 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6424702058504875 - name: F1 (macro) type: f1_macro value: 0.6178608994596904 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.913612019197329 - name: F1 (macro) type: f1_macro value: 0.7738790468743169 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8693199623942337 - name: F1 (macro) type: f1_macro value: 0.864532922094076 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3582887700534759 - Accuracy on SAT: 0.3649851632047478 - Accuracy on BATS: 0.4280155642023346 - Accuracy on U2: 0.3333333333333333 - Accuracy on U4: 0.3101851851851852 - Accuracy on Google: 0.532 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8460147657073979 - Micro F1 score on CogALexV: 0.8084507042253521 - Micro F1 score on EVALution: 0.6424702058504875 - Micro F1 score on K&H+N: 0.913612019197329 - Micro F1 score on ROOT09: 0.8693199623942337 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8430952380952381 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: triplet - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-a-triplet-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
jpcompartir/579-private-v3
jpcompartir
2022-11-22T16:58:43Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-22T16:58:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3000 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2.9621969030370343e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 3000, "warmup_steps": 300, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
SweepCake/LunarLander-v2-PPO-HFcourse
SweepCake
2022-11-22T15:44:29Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-22T15:44:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.22 +/- 13.04 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dumeng/distilbert-base-uncased-finetuned-emotion
Dumeng
2022-11-22T15:11:40Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T19:49:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/oryxspioenkop
huggingtweets
2022-11-22T15:10:21Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-22T15:09:05Z
--- language: en thumbnail: http://www.huggingtweets.com/oryxspioenkop/1669129816805/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/929707102083395584/tCWiYbO1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Oryx</div> <div style="text-align: center; font-size: 14px;">@oryxspioenkop</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Oryx. | Data | Oryx | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 2219 | | Short tweets | 266 | | Tweets kept | 761 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qbqfz863/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @oryxspioenkop's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2es3q78b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2es3q78b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/oryxspioenkop') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Dundalia/lfqa_covid
Dundalia
2022-11-22T15:07:37Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-22T14:39:45Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: lfqa_covid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lfqa_covid This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1028 - Bleu: 0.0 - Gen Len: 19.8564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | 1.5923 | 1.0 | 808 | 0.1028 | 0.0 | 19.8564 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
bitsanlp/deberta-v3-base_base
bitsanlp
2022-11-22T14:37:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-22T13:49:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-v3-base_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base_base This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v3
gary109
2022-11-22T14:06:09Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "dataset:ai_light_dance", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-22T08:33:10Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer datasets: - ai_light_dance metrics: - wer model-index: - name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v3 This model is a fine-tuned version of [gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v3](https://huggingface.co/gary109/ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-IDMT-SMT-DRUMS-V2+MDBDRUMS dataset. It achieves the following results on the evaluation set: - Loss: 0.5550 - Wer: 0.3147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1747 | 1.0 | 45 | 0.5638 | 0.3337 | | 0.2339 | 2.0 | 90 | 0.5785 | 0.3254 | | 0.2849 | 3.0 | 135 | 0.5586 | 0.3397 | | 0.2396 | 4.0 | 180 | 0.5868 | 0.3266 | | 0.2272 | 5.0 | 225 | 0.6052 | 0.3230 | | 0.2497 | 6.0 | 270 | 0.5913 | 0.3278 | | 0.2218 | 7.0 | 315 | 0.5926 | 0.3349 | | 0.2584 | 8.0 | 360 | 0.5617 | 0.3218 | | 0.2741 | 9.0 | 405 | 0.5901 | 0.3230 | | 0.2481 | 10.0 | 450 | 0.5860 | 0.3278 | | 0.2504 | 11.0 | 495 | 0.5991 | 0.3123 | | 0.2125 | 12.0 | 540 | 0.5992 | 0.3218 | | 0.2482 | 13.0 | 585 | 0.5756 | 0.3194 | | 0.2135 | 14.0 | 630 | 0.5836 | 0.3302 | | 0.2345 | 15.0 | 675 | 0.6347 | 0.3254 | | 0.1912 | 16.0 | 720 | 0.6160 | 0.3206 | | 0.2117 | 17.0 | 765 | 0.6268 | 0.3099 | | 0.2217 | 18.0 | 810 | 0.6873 | 0.3182 | | 0.2165 | 19.0 | 855 | 0.6721 | 0.3159 | | 0.207 | 20.0 | 900 | 0.6312 | 0.3206 | | 0.2263 | 21.0 | 945 | 0.6223 | 0.3290 | | 0.2015 | 22.0 | 990 | 0.6319 | 0.3182 | | 0.1997 | 23.0 | 1035 | 0.6527 | 0.3135 | | 0.2318 | 24.0 | 1080 | 0.5987 | 0.3278 | | 0.2196 | 25.0 | 1125 | 0.6269 | 0.3242 | | 0.2298 | 26.0 | 1170 | 0.5774 | 0.3254 | | 0.2117 | 27.0 | 1215 | 0.5938 | 0.3027 | | 0.2553 | 28.0 | 1260 | 0.5831 | 0.3123 | | 0.226 | 29.0 | 1305 | 0.6151 | 0.3099 | | 0.1635 | 30.0 | 1350 | 0.5622 | 0.3230 | | 0.5734 | 31.0 | 1395 | 0.6198 | 0.2920 | | 0.2196 | 32.0 | 1440 | 0.5779 | 0.3039 | | 0.2019 | 33.0 | 1485 | 0.5866 | 0.3111 | | 0.2222 | 34.0 | 1530 | 0.5557 | 0.3063 | | 0.2167 | 35.0 | 1575 | 0.5740 | 0.3206 | | 0.2011 | 36.0 | 1620 | 0.5598 | 0.3004 | | 0.2032 | 37.0 | 1665 | 0.5550 | 0.3147 | | 0.225 | 38.0 | 1710 | 0.5794 | 0.3099 | | 0.2068 | 39.0 | 1755 | 0.6223 | 0.3063 | | 0.2105 | 40.0 | 1800 | 0.5797 | 0.3039 | | 0.1968 | 41.0 | 1845 | 0.5681 | 0.2968 | | 0.224 | 42.0 | 1890 | 0.5742 | 0.3170 | | 0.2351 | 43.0 | 1935 | 0.5567 | 0.3111 | | 0.2121 | 44.0 | 1980 | 0.5893 | 0.3039 | | 0.1913 | 45.0 | 2025 | 0.6030 | 0.3027 | | 0.1636 | 46.0 | 2070 | 0.5812 | 0.3004 | | 0.2062 | 47.0 | 2115 | 0.6081 | 0.3004 | | 0.2031 | 48.0 | 2160 | 0.5610 | 0.3159 | | 0.1892 | 49.0 | 2205 | 0.5863 | 0.3147 | | 0.1712 | 50.0 | 2250 | 0.5943 | 0.3159 | | 0.1886 | 51.0 | 2295 | 0.5953 | 0.3051 | | 0.1748 | 52.0 | 2340 | 0.5761 | 0.3087 | | 0.1705 | 53.0 | 2385 | 0.6045 | 0.2872 | | 0.1794 | 54.0 | 2430 | 0.5731 | 0.3075 | | 0.1815 | 55.0 | 2475 | 0.5949 | 0.2849 | | 0.1571 | 56.0 | 2520 | 0.5663 | 0.2884 | | 0.1902 | 57.0 | 2565 | 0.5903 | 0.2956 | | 0.2057 | 58.0 | 2610 | 0.5820 | 0.2872 | | 0.1904 | 59.0 | 2655 | 0.5923 | 0.2896 | | 0.1677 | 60.0 | 2700 | 0.5769 | 0.3075 | | 0.1859 | 61.0 | 2745 | 0.5566 | 0.3147 | | 0.2382 | 62.0 | 2790 | 0.5849 | 0.3051 | | 0.1753 | 63.0 | 2835 | 0.5773 | 0.3075 | | 0.1651 | 64.0 | 2880 | 0.5877 | 0.3039 | | 0.1781 | 65.0 | 2925 | 0.5905 | 0.3027 | | 0.1582 | 66.0 | 2970 | 0.5800 | 0.3015 | | 0.1538 | 67.0 | 3015 | 0.6025 | 0.3075 | | 0.1606 | 68.0 | 3060 | 0.5758 | 0.3039 | | 0.1522 | 69.0 | 3105 | 0.5860 | 0.2932 | | 0.1521 | 70.0 | 3150 | 0.5896 | 0.2956 | | 0.1592 | 71.0 | 3195 | 0.5738 | 0.3027 | | 0.2245 | 72.0 | 3240 | 0.5782 | 0.3039 | | 0.2185 | 73.0 | 3285 | 0.5722 | 0.3027 | | 0.1597 | 74.0 | 3330 | 0.5891 | 0.3004 | | 0.1713 | 75.0 | 3375 | 0.5650 | 0.3027 | | 0.1464 | 76.0 | 3420 | 0.5860 | 0.3063 | | 0.1551 | 77.0 | 3465 | 0.5755 | 0.3027 | | 0.1509 | 78.0 | 3510 | 0.5895 | 0.2944 | | 0.176 | 79.0 | 3555 | 0.5750 | 0.2992 | | 0.1695 | 80.0 | 3600 | 0.5759 | 0.3004 | | 0.1797 | 81.0 | 3645 | 0.5904 | 0.2992 | | 0.1371 | 82.0 | 3690 | 0.5923 | 0.3015 | | 0.1798 | 83.0 | 3735 | 0.5864 | 0.2992 | | 0.1386 | 84.0 | 3780 | 0.5733 | 0.3004 | | 0.2173 | 85.0 | 3825 | 0.5751 | 0.3004 | | 0.151 | 86.0 | 3870 | 0.5711 | 0.2968 | | 0.1579 | 87.0 | 3915 | 0.5750 | 0.2992 | | 0.1328 | 88.0 | 3960 | 0.5764 | 0.2944 | | 0.1657 | 89.0 | 4005 | 0.5769 | 0.3004 | | 0.1353 | 90.0 | 4050 | 0.5715 | 0.2956 | | 0.1982 | 91.0 | 4095 | 0.5754 | 0.2968 | | 0.1687 | 92.0 | 4140 | 0.5725 | 0.2980 | | 0.1842 | 93.0 | 4185 | 0.5750 | 0.2980 | | 0.1893 | 94.0 | 4230 | 0.5789 | 0.2944 | | 0.1744 | 95.0 | 4275 | 0.5750 | 0.3004 | | 0.1745 | 96.0 | 4320 | 0.5794 | 0.2980 | | 0.1665 | 97.0 | 4365 | 0.5755 | 0.3004 | | 0.1569 | 98.0 | 4410 | 0.5763 | 0.2968 | | 0.1449 | 99.0 | 4455 | 0.5779 | 0.2968 | | 0.1469 | 100.0 | 4500 | 0.5774 | 0.2968 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
adrianccy/donut-base-sroie-fine-tuned
adrianccy
2022-11-22T13:41:56Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-22T10:33:43Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie-fine-tuned This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.10.0 - Datasets 2.7.0 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2
research-backup
2022-11-22T12:57:06Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:39:41Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.6670436507936508 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3770053475935829 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.37388724035608306 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4802668148971651 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.558 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.33771929824561403 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.34953703703703703 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.893174627090553 - name: F1 (macro) type: f1_macro value: 0.8866591988732194 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.7863849765258216 - name: F1 (macro) type: f1_macro value: 0.5308624907920565 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.5704225352112676 - name: F1 (macro) type: f1_macro value: 0.5510856788391408 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9581275648605412 - name: F1 (macro) type: f1_macro value: 0.8644516035001516 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8523973675963648 - name: F1 (macro) type: f1_macro value: 0.8523947470987124 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.3770053475935829 - Accuracy on SAT: 0.37388724035608306 - Accuracy on BATS: 0.4802668148971651 - Accuracy on U2: 0.33771929824561403 - Accuracy on U4: 0.34953703703703703 - Accuracy on Google: 0.558 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.893174627090553 - Micro F1 score on CogALexV: 0.7863849765258216 - Micro F1 score on EVALution: 0.5704225352112676 - Micro F1 score on K&H+N: 0.9581275648605412 - Micro F1 score on ROOT09: 0.8523973675963648 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.6670436507936508 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-e-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1
research-backup
2022-11-22T12:14:16Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:38:20Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.743095238095238 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4839572192513369 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4896142433234421 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6375764313507504 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.862 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4868421052631579 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5046296296296297 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8862437848425494 - name: F1 (macro) type: f1_macro value: 0.8821974165746824 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8199530516431925 - name: F1 (macro) type: f1_macro value: 0.6171125235158227 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6153846153846154 - name: F1 (macro) type: f1_macro value: 0.6078721080640733 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9533977881338248 - name: F1 (macro) type: f1_macro value: 0.8639519260786466 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8752742087120025 - name: F1 (macro) type: f1_macro value: 0.8711564298029004 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4839572192513369 - Accuracy on SAT: 0.4896142433234421 - Accuracy on BATS: 0.6375764313507504 - Accuracy on U2: 0.4868421052631579 - Accuracy on U4: 0.5046296296296297 - Accuracy on Google: 0.862 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8862437848425494 - Micro F1 score on CogALexV: 0.8199530516431925 - Micro F1 score on EVALution: 0.6153846153846154 - Micro F1 score on K&H+N: 0.9533977881338248 - Micro F1 score on ROOT09: 0.8752742087120025 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.743095238095238 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-d-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
echarlaix/vit-food101-int8
echarlaix
2022-11-22T10:48:21Z
24
0
transformers
[ "transformers", "openvino", "vit", "image-classification", "int8", "dataset:food101", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-27T16:58:41Z
--- license: apache-2.0 datasets: - food101 tags: - openvino - int8 --- ## [Vision Transformer (ViT)](https://huggingface.co/juliensimon/autotrain-food101-1471154050) quantized and exported to the OpenVINO IR. ## Model Details **Model Description:** This ViT model fine-tuned on Food-101 was statically quantized and exported to the OpenVINO IR using [optimum](https://huggingface.co/docs/optimum/intel/optimization_ov). ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import pipeline, AutoFeatureExtractor from optimum.intel.openvino import OVModelForImageClassification ​ model_id = "echarlaix/vit-food101-int8" model = OVModelForImageClassification.from_pretrained(model_id) feature_extractor = AutoFeatureExtractor.from_pretrained(model_id) pipe = pipeline("image-classification", model=model, feature_extractor=feature_extractor) outputs = pipe("http://farm2.staticflickr.com/1375/1394861946_171ea43524_z.jpg") ```
research-backup/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2
research-backup
2022-11-22T10:47:13Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:32:09Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8508333333333333 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4304812834224599 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42729970326409494 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.44580322401334077 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.63 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3684210526315789 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4375 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8832303751695043 - name: F1 (macro) type: f1_macro value: 0.8741977324174292 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8166666666666667 - name: F1 (macro) type: f1_macro value: 0.591110337920912 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6240520043336945 - name: F1 (macro) type: f1_macro value: 0.6033252228331162 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9563886763580719 - name: F1 (macro) type: f1_macro value: 0.8721700434002555 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8602319022250078 - name: F1 (macro) type: f1_macro value: 0.8623792536691078 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4304812834224599 - Accuracy on SAT: 0.42729970326409494 - Accuracy on BATS: 0.44580322401334077 - Accuracy on U2: 0.3684210526315789 - Accuracy on U4: 0.4375 - Accuracy on Google: 0.63 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.8832303751695043 - Micro F1 score on CogALexV: 0.8166666666666667 - Micro F1 score on EVALution: 0.6240520043336945 - Micro F1 score on K&H+N: 0.9563886763580719 - Micro F1 score on ROOT09: 0.8602319022250078 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8508333333333333 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 5 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-a-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2
research-backup
2022-11-22T10:11:20Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:30:34Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8311904761904761 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.47058823529411764 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.47774480712166173 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5630906058921623 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.746 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.48148148148148145 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9136658128672593 - name: F1 (macro) type: f1_macro value: 0.9119300574747814 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8356807511737089 - name: F1 (macro) type: f1_macro value: 0.6445552217787743 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6598049837486457 - name: F1 (macro) type: f1_macro value: 0.6390833044290024 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9680740070946651 - name: F1 (macro) type: f1_macro value: 0.9022447613880005 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.880288310874334 - name: F1 (macro) type: f1_macro value: 0.8774948713508829 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2/raw/main/analogy.json)): - Accuracy on SAT (full): 0.47058823529411764 - Accuracy on SAT: 0.47774480712166173 - Accuracy on BATS: 0.5630906058921623 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.48148148148148145 - Accuracy on Google: 0.746 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9136658128672593 - Micro F1 score on CogALexV: 0.8356807511737089 - Micro F1 score on EVALution: 0.6598049837486457 - Micro F1 score on K&H+N: 0.9680740070946651 - Micro F1 score on ROOT09: 0.880288310874334 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8311904761904761 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 2 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-e-nce-2/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
DigitalUmuganda/lingala_vits_tts
DigitalUmuganda
2022-11-22T10:08:11Z
0
1
null
[ "region:us" ]
null
2022-11-21T22:12:13Z
# Lingala Text-to-Speech This model was trained on the OpenSLR's 71.6 hours aligned lingala bible dataset. ## Model description A Conditional Variational Autoencoder with Adversarial Learning(VITS), which is an end-to-end approach to the text-to-speech task. To train the model, we used the espnet2 toolkit. ## Usage First install espnet2 ``` sh pip install espnet ``` Download the model and the config files from this repo. To generate a wav file using this model, run the following: ``` sh from espnet2.bin.tts_inference import Text2Speech import soundfile as sf text2speech = Text2Speech(train_config="config.yaml",model_file="train.total_count.best.pth") wav = text2speech("oyo kati na Ye ozwi lisiko mpe bolimbisi ya masumu")["wav"] sf.write("outfile.wav", wav.numpy(), text2speech.fs, "PCM_16") ```
Vandita/distilroberta-base-finetuned-SarcojiComplEmojisDistilRoberta-baseMLM1
Vandita
2022-11-22T10:00:23Z
210
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-22T09:46:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-SarcojiComplEmojisDistilRoberta-baseMLM1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-SarcojiComplEmojisDistilRoberta-baseMLM1 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2176 | 1.0 | 768 | 2.9178 | | 2.9632 | 2.0 | 1536 | 2.8355 | | 2.9201 | 3.0 | 2304 | 2.8462 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
research-backup/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1
research-backup
2022-11-22T09:36:49Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity_v6", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-22T07:29:06Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8196825396825397 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.56951871657754 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5667655786350149 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7048360200111173 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.928 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5219298245614035 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5254629629629629 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9171312339912611 - name: F1 (macro) type: f1_macro value: 0.9144097053161149 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8591549295774648 - name: F1 (macro) type: f1_macro value: 0.6897906667708522 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6598049837486457 - name: F1 (macro) type: f1_macro value: 0.6435072053448491 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9591708979620227 - name: F1 (macro) type: f1_macro value: 0.8844226567513357 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8990911939830774 - name: F1 (macro) type: f1_macro value: 0.8971436130443764 --- # relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1/raw/main/analogy.json)): - Accuracy on SAT (full): 0.56951871657754 - Accuracy on SAT: 0.5667655786350149 - Accuracy on BATS: 0.7048360200111173 - Accuracy on U2: 0.5219298245614035 - Accuracy on U4: 0.5254629629629629 - Accuracy on Google: 0.928 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9171312339912611 - Micro F1 score on CogALexV: 0.8591549295774648 - Micro F1 score on EVALution: 0.6598049837486457 - Micro F1 score on K&H+N: 0.9591708979620227 - Micro F1 score on ROOT09: 0.8990911939830774 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8196825396825397 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: mask - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 9 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 1 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-mask-prompt-d-nce-1/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```