modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-01 12:29:10
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
547 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-01 12:28:04
card
stringlengths
11
1.01M
Elitay/Reptilian
Elitay
2022-11-20T15:12:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-20T02:22:58Z
--- license: creativeml-openrail-m --- Trained on "kobold", "lizardfolk", and "dragonborn". Using Dreambooth, trained for 6000, 10000, or 14000 steps. I recommend using the 14000 step model with a CFG 4-8. You may need to use the models that were trained for fewer steps if you're having difficulty getting certain elements in the image (e.g. hats). ![example images](https://i.imgur.com/YGgdHE2.jpg) You can also use a higher CFG if attempting to generate inked images. E.g: CFG 9 and "photo octane 3d render" in the negative prompt: ![example of high CFG image](https://i.imgur.com/2bI6yX3.png)
dpkmnit/bert-finetuned-squad
dpkmnit
2022-11-20T14:58:13Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-18T06:19:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dpkmnit/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpkmnit/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7048 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 66549, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2092 | 0 | | 0.7048 | 1 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.1 - Datasets 2.7.0 - Tokenizers 0.13.2
blkpst/ddpm-butterflies-128
blkpst
2022-11-20T14:36:54Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-20T13:20:58Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/blackpansuto/ddpm-butterflies-128/tensorboard?#scalars)
Bauyrjan/wav2vec2-kazakh
Bauyrjan
2022-11-20T14:31:30Z
192
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-11T05:35:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-kazakh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-kazakh This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu117 - Datasets 1.13.3 - Tokenizers 0.10.3
akreal/mbart-large-50-finetuned-media
akreal
2022-11-20T13:32:58Z
101
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "mbart-50", "fr", "dataset:MEDIA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-20T13:14:49Z
--- language: - fr tags: - mbart-50 license: apache-2.0 datasets: - MEDIA metrics: - cer - cver --- This model is `mbart-large-50-many-to-many-mmt` model fine-tuned on the text part of [MEDIA](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/) spoken language understanding dataset. The scores on the test set are 16.50% and 19.09% for CER and CVER respectively.
Western1234/Modelop
Western1234
2022-11-20T12:55:18Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-20T12:53:42Z
--- license: openrail --- git lfs install git clone https://huggingface.co/Western1234/Modelop
hungngocphat01/Checkpoint_zaloAI_11_19_2022
hungngocphat01
2022-11-20T11:59:05Z
161
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-20T11:53:29Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: Checkpoint_zaloAI_11_19_2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Checkpoint_zaloAI_11_19_2022 This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.3926 - eval_wer: 0.6743 - eval_runtime: 23.1283 - eval_samples_per_second: 39.865 - eval_steps_per_second: 5.016 - epoch: 25.07 - step: 26000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
youa/CreatTitle
youa
2022-11-20T11:54:27Z
1
0
null
[ "pytorch", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-11-07T13:56:12Z
--- license: bigscience-bloom-rail-1.0 ---
zhiguoxu/bert-base-chinese-finetuned-ner-split_food
zhiguoxu
2022-11-20T09:32:56Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-20T08:25:39Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-chinese-finetuned-ner-split_food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-ner-split_food This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0077 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6798 | 1.0 | 1 | 1.6743 | 0.0 | | 1.8172 | 2.0 | 2 | 0.6580 | 0.0 | | 0.746 | 3.0 | 3 | 0.4864 | 0.0 | | 0.4899 | 4.0 | 4 | 0.3927 | 0.0 | | 0.401 | 5.0 | 5 | 0.2753 | 0.0 | | 0.2963 | 6.0 | 6 | 0.2160 | 0.0 | | 0.2452 | 7.0 | 7 | 0.1848 | 0.5455 | | 0.2188 | 8.0 | 8 | 0.1471 | 0.7692 | | 0.1775 | 9.0 | 9 | 0.1131 | 0.7692 | | 0.1469 | 10.0 | 10 | 0.0864 | 0.8293 | | 0.1145 | 11.0 | 11 | 0.0621 | 0.9333 | | 0.0881 | 12.0 | 12 | 0.0432 | 1.0 | | 0.0702 | 13.0 | 13 | 0.0329 | 1.0 | | 0.0531 | 14.0 | 14 | 0.0268 | 1.0 | | 0.044 | 15.0 | 15 | 0.0184 | 1.0 | | 0.0321 | 16.0 | 16 | 0.0129 | 1.0 | | 0.0255 | 17.0 | 17 | 0.0101 | 1.0 | | 0.0236 | 18.0 | 18 | 0.0087 | 1.0 | | 0.0254 | 19.0 | 19 | 0.0080 | 1.0 | | 0.0185 | 20.0 | 20 | 0.0077 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 1.18.4 - Tokenizers 0.12.1
OpenMatch/cocodr-base-msmarco-warmup
OpenMatch
2022-11-20T08:26:41Z
105
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-20T08:20:01Z
--- license: mit --- --- license: mit --- This model has been pretrained on BEIR corpus then finetuned on MS MARCO with BM25 warmup only, following the approach described in the paper **COCO-DR: Combating Distribution Shifts in Zero-Shot Dense Retrieval with Contrastive and Distributionally Robust Learning**. The associated GitHub repository is available here https://github.com/OpenMatch/COCO-DR. This model is trained with BERT-base as the backbone with 110M hyperparameters.
zhiguoxu/bert-base-chinese-finetuned-ner-food
zhiguoxu
2022-11-20T08:20:01Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T05:47:41Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-chinese-finetuned-ner-food results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-ner-food This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0039 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0829 | 1.0 | 3 | 1.6749 | 0.0 | | 1.5535 | 2.0 | 6 | 1.0327 | 0.6354 | | 1.0573 | 3.0 | 9 | 0.6295 | 0.7097 | | 0.5854 | 4.0 | 12 | 0.3763 | 0.8271 | | 0.4292 | 5.0 | 15 | 0.2165 | 0.9059 | | 0.2235 | 6.0 | 18 | 0.1121 | 0.9836 | | 0.1535 | 7.0 | 21 | 0.0597 | 0.9975 | | 0.0846 | 8.0 | 24 | 0.0337 | 0.9975 | | 0.0613 | 9.0 | 27 | 0.0214 | 1.0 | | 0.0365 | 10.0 | 30 | 0.0144 | 1.0 | | 0.0302 | 11.0 | 33 | 0.0103 | 1.0 | | 0.0182 | 12.0 | 36 | 0.0078 | 1.0 | | 0.0175 | 13.0 | 39 | 0.0064 | 1.0 | | 0.0115 | 14.0 | 42 | 0.0055 | 1.0 | | 0.0124 | 15.0 | 45 | 0.0049 | 1.0 | | 0.0117 | 16.0 | 48 | 0.0045 | 1.0 | | 0.0111 | 17.0 | 51 | 0.0042 | 1.0 | | 0.0102 | 18.0 | 54 | 0.0041 | 1.0 | | 0.0096 | 19.0 | 57 | 0.0040 | 1.0 | | 0.0095 | 20.0 | 60 | 0.0039 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 1.18.4 - Tokenizers 0.12.1
huggingtweets/iwriteok
huggingtweets
2022-11-20T06:14:50Z
109
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/iwriteok/1668924855688/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/598663964340301824/im3Wzn-o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Robert Evans (The Only Robert Evans)</div> <div style="text-align: center; font-size: 14px;">@iwriteok</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Robert Evans (The Only Robert Evans). | Data | Robert Evans (The Only Robert Evans) | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1269 | | Short tweets | 142 | | Tweets kept | 1807 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hjcp2ib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iwriteok's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wq4n95ia) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wq4n95ia/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iwriteok') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
amitjohn007/mpnet-finetuned
amitjohn007
2022-11-20T05:51:01Z
61
0
transformers
[ "transformers", "tf", "mpnet", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-11-20T04:59:44Z
--- tags: - generated_from_keras_callback model-index: - name: amitjohn007/mpnet-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/mpnet-finetuned This model is a fine-tuned version of [shaina/covid_qa_mpnet](https://huggingface.co/shaina/covid_qa_mpnet) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5882 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.0499 | 0 | | 0.7289 | 1 | | 0.5882 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
andreaschandra/unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad
andreaschandra
2022-11-20T05:42:57Z
115
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-16T13:33:49Z
--- tags: - generated_from_trainer model-index: - name: unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unifiedqa-v2-t5-base-1363200-finetuned-causalqa-squad This model is a fine-tuned version of [allenai/unifiedqa-v2-t5-base-1363200](https://huggingface.co/allenai/unifiedqa-v2-t5-base-1363200) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7378 | 0.05 | 73 | 1.1837 | | 0.6984 | 0.1 | 146 | 0.8918 | | 0.4511 | 0.15 | 219 | 0.8342 | | 0.4696 | 0.2 | 292 | 0.7642 | | 0.295 | 0.25 | 365 | 0.7996 | | 0.266 | 0.3 | 438 | 0.7773 | | 0.2372 | 0.35 | 511 | 0.8592 | | 0.2881 | 0.39 | 584 | 0.8440 | | 0.2578 | 0.44 | 657 | 0.8306 | | 0.2733 | 0.49 | 730 | 0.8228 | | 0.2073 | 0.54 | 803 | 0.8419 | | 0.2683 | 0.59 | 876 | 0.8241 | | 0.2693 | 0.64 | 949 | 0.8573 | | 0.355 | 0.69 | 1022 | 0.8204 | | 0.2246 | 0.74 | 1095 | 0.8530 | | 0.2468 | 0.79 | 1168 | 0.8410 | | 0.3102 | 0.84 | 1241 | 0.8035 | | 0.2115 | 0.89 | 1314 | 0.8262 | | 0.1855 | 0.94 | 1387 | 0.8560 | | 0.1772 | 0.99 | 1460 | 0.8747 | | 0.1509 | 1.04 | 1533 | 0.9132 | | 0.1871 | 1.09 | 1606 | 0.8920 | | 0.1624 | 1.14 | 1679 | 0.9085 | | 0.1404 | 1.18 | 1752 | 0.9460 | | 0.1639 | 1.23 | 1825 | 0.9812 | | 0.0983 | 1.28 | 1898 | 0.9790 | | 0.1395 | 1.33 | 1971 | 0.9843 | | 0.1439 | 1.38 | 2044 | 0.9877 | | 0.1397 | 1.43 | 2117 | 1.0338 | | 0.1095 | 1.48 | 2190 | 1.0589 | | 0.1228 | 1.53 | 2263 | 1.0498 | | 0.1246 | 1.58 | 2336 | 1.0923 | | 0.1438 | 1.63 | 2409 | 1.0995 | | 0.1305 | 1.68 | 2482 | 1.0867 | | 0.1077 | 1.73 | 2555 | 1.1013 | | 0.2104 | 1.78 | 2628 | 1.0765 | | 0.1633 | 1.83 | 2701 | 1.0796 | | 0.1658 | 1.88 | 2774 | 1.0314 | | 0.1358 | 1.92 | 2847 | 0.9823 | | 0.1571 | 1.97 | 2920 | 0.9826 | | 0.1127 | 2.02 | 2993 | 1.0324 | | 0.0927 | 2.07 | 3066 | 1.0679 | | 0.0549 | 2.12 | 3139 | 1.1069 | | 0.0683 | 2.17 | 3212 | 1.1624 | | 0.0677 | 2.22 | 3285 | 1.1174 | | 0.0615 | 2.27 | 3358 | 1.1431 | | 0.0881 | 2.32 | 3431 | 1.1721 | | 0.0807 | 2.37 | 3504 | 1.1885 | | 0.0955 | 2.42 | 3577 | 1.1991 | | 0.0779 | 2.47 | 3650 | 1.1999 | | 0.11 | 2.52 | 3723 | 1.1774 | | 0.0852 | 2.57 | 3796 | 1.2095 | | 0.0616 | 2.62 | 3869 | 1.1824 | | 0.072 | 2.67 | 3942 | 1.2397 | | 0.1055 | 2.71 | 4015 | 1.2181 | | 0.0806 | 2.76 | 4088 | 1.2159 | | 0.0684 | 2.81 | 4161 | 1.1864 | | 0.0869 | 2.86 | 4234 | 1.1816 | | 0.1023 | 2.91 | 4307 | 1.1717 | | 0.0583 | 2.96 | 4380 | 1.1477 | | 0.0684 | 3.01 | 4453 | 1.1662 | | 0.0319 | 3.06 | 4526 | 1.2174 | | 0.0609 | 3.11 | 4599 | 1.1947 | | 0.0435 | 3.16 | 4672 | 1.1821 | | 0.0417 | 3.21 | 4745 | 1.1964 | | 0.0502 | 3.26 | 4818 | 1.2140 | | 0.0844 | 3.31 | 4891 | 1.2028 | | 0.0692 | 3.36 | 4964 | 1.2215 | | 0.0366 | 3.41 | 5037 | 1.2136 | | 0.0615 | 3.46 | 5110 | 1.2224 | | 0.0656 | 3.5 | 5183 | 1.2468 | | 0.0469 | 3.55 | 5256 | 1.2554 | | 0.0475 | 3.6 | 5329 | 1.2804 | | 0.0998 | 3.65 | 5402 | 1.2035 | | 0.0505 | 3.7 | 5475 | 1.2095 | | 0.0459 | 3.75 | 5548 | 1.2064 | | 0.0256 | 3.8 | 5621 | 1.2164 | | 0.0831 | 3.85 | 5694 | 1.2154 | | 0.0397 | 3.9 | 5767 | 1.2126 | | 0.0449 | 3.95 | 5840 | 1.2174 | | 0.0322 | 4.0 | 5913 | 1.2288 | | 0.059 | 4.05 | 5986 | 1.2274 | | 0.0382 | 4.1 | 6059 | 1.2228 | | 0.0202 | 4.15 | 6132 | 1.2177 | | 0.0328 | 4.2 | 6205 | 1.2305 | | 0.0407 | 4.24 | 6278 | 1.2342 | | 0.0356 | 4.29 | 6351 | 1.2448 | | 0.0414 | 4.34 | 6424 | 1.2537 | | 0.0448 | 4.39 | 6497 | 1.2540 | | 0.0545 | 4.44 | 6570 | 1.2552 | | 0.0492 | 4.49 | 6643 | 1.2570 | | 0.0293 | 4.54 | 6716 | 1.2594 | | 0.0498 | 4.59 | 6789 | 1.2562 | | 0.0349 | 4.64 | 6862 | 1.2567 | | 0.0497 | 4.69 | 6935 | 1.2550 | | 0.0194 | 4.74 | 7008 | 1.2605 | | 0.0255 | 4.79 | 7081 | 1.2590 | | 0.0212 | 4.84 | 7154 | 1.2571 | | 0.0231 | 4.89 | 7227 | 1.2583 | | 0.0399 | 4.94 | 7300 | 1.2580 | | 0.0719 | 4.99 | 7373 | 1.2574 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
yip-i/wav2vec2-demo-F03
yip-i
2022-11-20T04:56:47Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-15T03:43:04Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-demo-F03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-demo-F03 This model is a fine-tuned version of [yip-i/uaspeech-pretrained](https://huggingface.co/yip-i/uaspeech-pretrained) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8742 - Wer: 1.2914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.4808 | 0.97 | 500 | 3.0628 | 1.1656 | | 2.9947 | 1.94 | 1000 | 3.0334 | 1.1523 | | 2.934 | 2.91 | 1500 | 3.0520 | 1.1648 | | 2.9317 | 3.88 | 2000 | 3.3808 | 1.0 | | 3.0008 | 4.85 | 2500 | 3.0342 | 1.2559 | | 3.112 | 5.83 | 3000 | 3.1228 | 1.1258 | | 2.8972 | 6.8 | 3500 | 2.9885 | 1.2914 | | 2.8911 | 7.77 | 4000 | 3.2586 | 1.2754 | | 2.9884 | 8.74 | 4500 | 3.0487 | 1.2090 | | 2.873 | 9.71 | 5000 | 2.9382 | 1.2914 | | 3.3551 | 10.68 | 5500 | 3.2607 | 1.2844 | | 3.6426 | 11.65 | 6000 | 3.0053 | 1.0242 | | 2.9184 | 12.62 | 6500 | 2.9219 | 1.2828 | | 2.8384 | 13.59 | 7000 | 2.9530 | 1.2816 | | 2.8855 | 14.56 | 7500 | 2.9978 | 1.0121 | | 2.8479 | 15.53 | 8000 | 2.9722 | 1.0977 | | 2.8241 | 16.5 | 8500 | 2.9670 | 1.3082 | | 2.807 | 17.48 | 9000 | 2.9841 | 1.2914 | | 2.8115 | 18.45 | 9500 | 2.9484 | 1.2977 | | 2.8123 | 19.42 | 10000 | 2.9310 | 1.2914 | | 3.0291 | 20.39 | 10500 | 2.9665 | 1.2902 | | 2.8735 | 21.36 | 11000 | 2.9245 | 1.1160 | | 2.8164 | 22.33 | 11500 | 2.9137 | 1.2914 | | 2.8084 | 23.3 | 12000 | 2.9543 | 1.1891 | | 2.8079 | 24.27 | 12500 | 2.9179 | 1.4516 | | 2.7916 | 25.24 | 13000 | 2.8971 | 1.2926 | | 2.7824 | 26.21 | 13500 | 2.8990 | 1.2914 | | 2.7555 | 27.18 | 14000 | 2.9004 | 1.2914 | | 2.7803 | 28.16 | 14500 | 2.8747 | 1.2910 | | 2.753 | 29.13 | 15000 | 2.8742 | 1.2914 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
Alred/t5-small-finetuned-summarization-cnn-ver3
Alred
2022-11-20T03:41:44Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-20T02:50:30Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-summarization-cnn-ver3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-summarization-cnn-ver3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.1072 - Bertscore-mean-precision: 0.8861 - Bertscore-mean-recall: 0.8592 - Bertscore-mean-f1: 0.8723 - Bertscore-median-precision: 0.8851 - Bertscore-median-recall: 0.8582 - Bertscore-median-f1: 0.8719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 2.0168 | 1.0 | 718 | 2.0528 | 0.8870 | 0.8591 | 0.8727 | 0.8864 | 0.8578 | 0.8724 | | 1.8387 | 2.0 | 1436 | 2.0610 | 0.8863 | 0.8591 | 0.8723 | 0.8848 | 0.8575 | 0.8712 | | 1.7302 | 3.0 | 2154 | 2.0659 | 0.8856 | 0.8588 | 0.8719 | 0.8847 | 0.8569 | 0.8717 | | 1.6459 | 4.0 | 2872 | 2.0931 | 0.8860 | 0.8592 | 0.8722 | 0.8850 | 0.8570 | 0.8718 | | 1.5907 | 5.0 | 3590 | 2.1072 | 0.8861 | 0.8592 | 0.8723 | 0.8851 | 0.8582 | 0.8719 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Jellywibble/dalio-convo-finetune-restruct
Jellywibble
2022-11-20T02:39:45Z
6
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T19:41:56Z
--- tags: - text-generation library_name: transformers --- ## Model description Based on Jellywibble/dalio-pretrained-book-bs4-seed1 which was pre-trained on the Dalio Principles Book Finetuned on handwritten conversations Jellywibble/dalio_handwritten-conversations ## Dataset Used Jellywibble/dalio_handwritten-conversations ## Training Parameters - Deepspeed on 4xA40 GPUs - Ensuring EOS token `<s>` appears only at the beginning of each 'This is a conversation where Ray ...' - Gradient Accumulation steps = 1 (Effective batch size of 4) - 2e-6 Learning Rate, AdamW optimizer - Block size of 1000 - Trained for 1 Epoch (additional epochs yielded worse Hellaswag result) ## Metrics - Hellaswag Perplexity: 29.83 - Eval accuracy: 58.1% - Eval loss: 1.883 - Checkpoint 9 uploaded - Wandb run: https://wandb.ai/jellywibble/huggingface/runs/157eehn9?workspace=user-jellywibble
Jellywibble/dalio-principles-pretrain-v2
Jellywibble
2022-11-20T01:55:33Z
6
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T19:42:56Z
--- tags: - text-generation library_name: transformers --- ## Model description Based off facebook/opt-30b model, finetuned on chucked Dalio responses ## Dataset Used Jellywibble/dalio-pretrain-book-dataset-v2 ## Training Parameters - Deepspeed on 4xA40 GPUs - Ensuring EOS token `<s>` appears only at the beginning of each chunk - Gradient Accumulation steps = 1 (Effective batch size of 4) - 3e-6 Learning Rate, AdamW optimizer - Block size of 800 - Trained for 1 Epoch (additional epochs yielded worse Hellaswag result) ## Metrics - Hellaswag Perplexity: 30.2 - Eval accuracy: 49.8% - Eval loss: 2.283 - Checkpoint 16 uploaded - wandb run: https://wandb.ai/jellywibble/huggingface/runs/2vtr39rk?workspace=user-jellywibble
Deepthoughtworks/gpt-neo-2.7B__low-cpu
Deepthoughtworks
2022-11-19T23:20:13Z
44
1
transformers
[ "transformers", "pytorch", "jax", "rust", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "arxiv:2101.00027", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-11-11T11:35:56Z
--- language: - en tags: - text generation - pytorch - causal-lm license: apache-2.0 --- # GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
cahya/t5-base-indonesian-summarization-cased
cahya
2022-11-19T20:41:24Z
497
5
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "pipeline:summarization", "summarization", "id", "dataset:id_liputan6", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: id tags: - pipeline:summarization - summarization - t5 datasets: - id_liputan6 --- # Indonesian T5 Summarization Base Model Finetuned T5 base summarization model for Indonesian. ## Finetuning Corpus `t5-base-indonesian-summarization-cased` model is based on `t5-base-bahasa-summarization-cased` by [huseinzol05](https://huggingface.co/huseinzol05), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") ``` ## Code Sample ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("cahya/t5-base-indonesian-summarization-cased") model = T5ForConditionalGeneration.from_pretrained("cahya/t5-base-indonesian-summarization-cased") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
ocm/xlm-roberta-base-finetuned-panx-de
ocm
2022-11-19T20:26:55Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T20:02:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
fernanda-dionello/good-reads-string
fernanda-dionello
2022-11-19T20:16:34Z
99
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:fernanda-dionello/autotrain-data-autotrain_goodreads_string", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T20:11:24Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - fernanda-dionello/autotrain-data-autotrain_goodreads_string co2_eq_emissions: emissions: 0.04700680417595474 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2164069744 - CO2 Emissions (in grams): 0.0470 ## Validation Metrics - Loss: 0.806 - Accuracy: 0.686 - Macro F1: 0.534 - Micro F1: 0.686 - Weighted F1: 0.678 - Macro Precision: 0.524 - Micro Precision: 0.686 - Weighted Precision: 0.673 - Macro Recall: 0.551 - Micro Recall: 0.686 - Weighted Recall: 0.686 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("fernanda-dionello/autotrain-autotrain_goodreads_string-2164069744", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
chieunq/XLM-R-base-finetuned-uit-vquad-1
chieunq
2022-11-19T20:02:14Z
108
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "vi", "dataset:uit-vquad", "arxiv:2009.14725", "endpoints_compatible", "region:us" ]
question-answering
2022-11-19T19:00:55Z
--- language: vi tags: - vi - xlm-roberta widget: - text: 3 thành viên trong nhóm gồm những ai ? context: "Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên: Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm ." datasets: - uit-vquad metrics: - EM (exact match) : 60.63 - F1 : 79.63 --- We fined-tune model XLM-Roberta-base in UIT-vquad dataset (https://arxiv.org/pdf/2009.14725.pdf) ### Performance - EM (exact match) : 60.63 - F1 : 79.63 ### How to run ``` from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "chieunq/XLM-R-base-finetuned-uit-vquad-1" question_answerer = pipeline("question-answering", model=model_checkpoint) context = """ Nhóm của chúng tôi là sinh viên năm 4 trường ĐH Công Nghệ - ĐHQG Hà Nội. Nhóm gồm 3 thành viên : Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức . Đây là pha Reader trong dự án cuồi kì môn Các vấn đề hiện đại trong CNTT của nhóm . """ question = "3 thành viên trong nhóm gồm những ai ?" question_answerer(question=question, context=context) ``` ### Output ``` {'score': 0.9928902387619019, 'start': 98, 'end': 158, 'answer': 'Nguyễn Quang Chiều, Nguyễn Quang Huy và Nguyễn Trần Anh Đức.'} ``` ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Froddan/furiostyle
Froddan
2022-11-19T19:28:35Z
0
3
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T19:10:50Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Furio Tedeshi](https://www.furiotedeschi.com/) ### Usage Use by adding the keyword "furiostyle" to the prompt. The model was trained with the "demon" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "furiostyle demon x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 4 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. I think the x2 model got better results this time around, if you would compare the dog and the mushroom. <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/1000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_1000_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/2000_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/mushroom_cave_ornate.png" width="256px"/> <img src="https://huggingface.co/Froddan/furiostyle/resolve/main/dog_2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Froddan/bulgarov
Froddan
2022-11-19T19:23:36Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T16:11:02Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Vitaly Bulgarov](https://www.artstation.com/vbulgarov) ### Usage Use by adding the keyword "bulgarovstyle" to the prompt. The model was trained with the "knight" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "bulgarovstyle knight x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 3 images are from the regular version, the rest are from the x2 version (I think). I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/dog_v1_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/greg_v1.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/greg3.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index4.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index_1600_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/index_1600_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmp1zir5pbb.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmp6lk0vp7p.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmpgabti6yx.png" width="256px"/> <img src="https://huggingface.co/Froddan/bulgarov/resolve/main/tmpgvytng2n.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
stephenhbarlow/biobert-base-cased-v1.2-multiclass-finetuned-PET2
stephenhbarlow
2022-11-19T18:53:28Z
119
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T16:45:29Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-base-cased-v1.2-multiclass-finetuned-PET2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-multiclass-finetuned-PET2 This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8075 - Accuracy: 0.5673 - F1: 0.4253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0175 | 1.0 | 14 | 0.8446 | 0.5625 | 0.4149 | | 0.8634 | 2.0 | 28 | 0.8075 | 0.5673 | 0.4253 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.7.0 - Tokenizers 0.13.2
kormilitzin/en_core_med7_trf
kormilitzin
2022-11-19T18:51:54Z
375
12
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8822157434 - name: NER Recall type: recall value: 0.925382263 - name: NER F Score type: f_score value: 0.9032835821 --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_trf` | | **Version** | `3.4.2.1` | | **spaCy** | `>=3.4.2,<3.5.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](https://www.kormilitzin.com/) | ### Label Scheme <details> <summary>View label scheme (7 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 90.33 | | `ENTS_P` | 88.22 | | `ENTS_R` | 92.54 | | `TRANSFORMER_LOSS` | 2502627.06 | | `NER_LOSS` | 114576.77 | ### BibTeX entry and citation info ```bibtex @article{kormilitzin2021med7, title={Med7: A transferable clinical natural language processing model for electronic health records}, author={Kormilitzin, Andrey and Vaci, Nemanja and Liu, Qiang and Nevado-Holgado, Alejo}, journal={Artificial Intelligence in Medicine}, volume={118}, pages={102086}, year={2021}, publisher={Elsevier} } ```
Froddan/hurrishiny
Froddan
2022-11-19T18:34:05Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:14:11Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Björn Hurri](https://www.artstation.com/bjornhurri) This model is fine tuned on some of his "shiny"-style paintings. I also have a version for his "matte" works. ### Usage Use by adding the keyword "hurrishiny" to the prompt. The model was trained with the "monster" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "hurrishiny monster x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 4 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/1700_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/1700_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/1700_3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/1700_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/3400_1.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/3400_2.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/3400_3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/3400_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/index1.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/index3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/index5.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrishiny/resolve/main/index6.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
yunseokj/ddpm-butterflies-128
yunseokj
2022-11-19T18:20:57Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-19T17:31:45Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/yunseokj/ddpm-butterflies-128/tensorboard?#scalars)
Froddan/hurrimatte
Froddan
2022-11-19T18:11:55Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:cc0-1.0", "region:us" ]
text-to-image
2022-11-19T15:10:08Z
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Björn Hurri](https://www.artstation.com/bjornhurri) This model is fine tuned on some of his matte-style paintings. I also have a version for his "shinier" works. ### Usage Use by adding the keyword "hurrimatte" to the prompt. The model was trained with the "monster" classname, which can also be added to the prompt. ## Samples For this model I made two checkpoints. The "hurrimatte monster x2" model is trained for twice as long as the regular checkpoint, meaning it should be more fine tuned on the style but also more rigid. The top 3 images are from the regular version, the rest are from the x2 version. I hope it gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/1200_4.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index3.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_5.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_6.png" width="256px"/> <img src="https://huggingface.co/Froddan/hurrimatte/resolve/main/index_2400_7.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
LaurentiuStancioiu/distilbert-base-uncased-finetuned-emotion
LaurentiuStancioiu
2022-11-19T18:09:47Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T17:54:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.902 - name: F1 type: f1 value: 0.9000722917492663 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3554 - Accuracy: 0.902 - F1: 0.9001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0993 | 1.0 | 125 | 0.5742 | 0.8045 | 0.7747 | | 0.4436 | 2.0 | 250 | 0.3554 | 0.902 | 0.9001 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/ghibli-face
sd-concepts-library
2022-11-19T17:52:39Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-11-19T17:52:35Z
--- license: mit --- ### ghibli-face on Stable Diffusion This is the `<ghibli-face>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ghibli-face> 0](https://huggingface.co/sd-concepts-library/ghibli-face/resolve/main/concept_images/4.jpeg) ![<ghibli-face> 1](https://huggingface.co/sd-concepts-library/ghibli-face/resolve/main/concept_images/3.jpeg) ![<ghibli-face> 2](https://huggingface.co/sd-concepts-library/ghibli-face/resolve/main/concept_images/1.jpeg) ![<ghibli-face> 3](https://huggingface.co/sd-concepts-library/ghibli-face/resolve/main/concept_images/2.jpeg) ![<ghibli-face> 4](https://huggingface.co/sd-concepts-library/ghibli-face/resolve/main/concept_images/0.jpeg)
monakth/distilbert-base-cased-finetuned-squadv2
monakth
2022-11-19T17:02:46Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-19T17:01:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-cased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-squadv This model is a fine-tuned version of [monakth/distilbert-base-cased-finetuned-squad](https://huggingface.co/monakth/distilbert-base-cased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
4eJIoBek/green_elephant_jukebox1b
4eJIoBek
2022-11-19T16:22:09Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-10-01T09:08:50Z
--- license: openrail --- это очень плохой файнтюн 1b jukebox модели на ~25 минутах ремиксов с зелёным слоником, а точнее на тех моментах, где используется момент, где пахом пытался петь(та-тратарутару та типо так), демки есть в файлах. датасет потерял. КАК ИСПОЛЬЗОВАТЬ? распаковать архив и папку juke переместить в корень гуглодиска. затем открыть inference.ipynb в колабе.
Harrier/dqn-SpaceInvadersNoFrameskip-v4
Harrier
2022-11-19T15:53:13Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-19T15:52:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 615.50 +/- 186.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Harrier -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Harrier -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Harrier ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
katboi01/rare-puppers
katboi01
2022-11-19T15:04:01Z
186
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-19T15:03:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.89552241563797 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
nypnop/distilbert-base-uncased-finetuned-bbc-news
nypnop
2022-11-19T14:09:27Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T14:57:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-bbc-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0107 - Accuracy: 0.9955 - F1: 0.9955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3463 | 0.84 | 500 | 0.0392 | 0.9865 | 0.9865 | | 0.0447 | 1.68 | 1000 | 0.0107 | 0.9955 | 0.9955 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
vikram15/bert-finetuned-ner
vikram15
2022-11-19T13:21:37Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-19T13:03:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9309775429326288 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9398233038839806 - name: Accuracy type: accuracy value: 0.9861806087007712 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.9310 - Recall: 0.9488 - F1: 0.9398 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0911 | 1.0 | 1756 | 0.0702 | 0.9197 | 0.9345 | 0.9270 | 0.9826 | | 0.0336 | 2.0 | 3512 | 0.0623 | 0.9294 | 0.9480 | 0.9386 | 0.9864 | | 0.0174 | 3.0 | 5268 | 0.0630 | 0.9310 | 0.9488 | 0.9398 | 0.9862 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
beyond/genius-base
beyond
2022-11-19T11:59:46Z
104
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "GENIUS", "conditional text generation", "sketch-based text generation", "data augmentation", "en", "zh", "dataset:c4", "dataset:beyond/chinese_clean_passages_80m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-08T06:26:13Z
--- language: - en - zh tags: - GENIUS - conditional text generation - sketch-based text generation - data augmentation license: apache-2.0 datasets: - c4 - beyond/chinese_clean_passages_80m widget: - text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>" example_title: "Example 1" - text: "<mask> machine learning <mask> my research interest <mask> data science <mask>" example_title: "Example 2" - text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>" example_title: "Example 3" - text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>" example_title: "Example with a prompt 1" - text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>" example_title: "Example with a prompt 2" inference: parameters: max_length: 200 num_beams: 3 do_sample: True --- # 💡GENIUS – generating text using sketches! **基于草稿的文本生成模型** - **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://github.com/beyondguo/genius/blob/master/GENIUS_gby_arxiv.pdf)** 💡**GENIUS** is a powerful conditional text generation model using sketches as input, which can fill in the missing contexts for a given **sketch** (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large- scale textual corpus with a novel *reconstruction from sketch* objective using an *extreme and selective masking* strategy, enabling it to generate diverse and high-quality texts given sketches. **Example 1:** - sketch: `__ machine learning __ my research interest __ data science __` - **GENIUS**: `I am a Ph.D. student in machine learning, and my research interest is in data science. I am interested in understanding how humans and machines interact and how we can improve the quality of life for people around the world.` **Example 2:** - sketch: `自然语言处理__谷歌__通用人工智能__` - **GENIUS**: `自然语言处理是谷歌在通用人工智能领域的一个重要研究方向,其目的是为了促进人类智能的发展。 ` **GENIUS** can also be used as a general textual **data augmentation tool** for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA). ![image-20221119164544165](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/hi-genius.png) - Models hosted in 🤗 Huggingface: **Model variations:** | Model | #params | Language | comment| |------------------------|--------------------------------|-------|---------| | [`genius-large`](https://huggingface.co/beyond/genius-large) | 406M | English | The version used in **paper** (recommend) | | [`genius-large-k2t`](https://huggingface.co/beyond/genius-large-k2t) | 406M | English | keywords-to-text | | [`genius-base`](https://huggingface.co/beyond/genius-base) | 139M | English | smaller version | | [`genius-base-ps`](https://huggingface.co/beyond/genius-base) | 139M | English | pre-trained both in paragraphs and short sentences | | [`genius-base-chinese`](https://huggingface.co/beyond/genius-base-chinese) | 116M | 中文 | 在一千万纯净中文段落上预训练| ![image-20221119191940969](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191919005.png) More Examples: ![image-20221119184950762](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191849815.png) ## Usage ### What is a sketch? First, what is a **sketch**? As defined in our paper, a sketch is "key information consisting of textual spans, phrases, or words, concatenated by mask tokens". It's like a draft or framework when you begin to write an article. With GENIUS model, you can input some key elements you want to mention in your wrinting, then the GENIUS model can generate cohrent text based on your sketch. The sketch which can be composed of: - keywords /key-phrases, like `__NLP__AI__computer__science__` - spans, like `Conference on Empirical Methods__submission of research papers__` - sentences, like `I really like machine learning__I work at Google since last year__` - or a mixup! ### How to use the model #### 1. If you already have a sketch in mind, and want to get a paragraph based on it... ```python from transformers import pipeline # 1. load the model with the huggingface `pipeline` genius = pipeline("text2text-generation", model='beyond/genius-large', device=0) # 2. provide a sketch (joint by <mask> tokens) sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>" # 3. here we go! generated_text = genius(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text'] print(generated_text) ``` Output: ```shell 'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.' ``` If you have a lot of sketches, you can batch-up your sketches to a Huggingface `Dataset` object, which can be much faster. TODO: we are also building a python package for more convenient use of GENIUS, which will be released in few weeks. #### 2. If you have an NLP dataset (e.g. classification) and want to do data augmentation to enlarge your dataset... Please check [genius/augmentation_clf](https://github.com/beyondguo/genius/tree/master/augmentation_clf) and [genius/augmentation_ner_qa](https://github.com/beyondguo/genius/tree/master/augmentation_ner_qa), where we provide ready-to-run scripts for data augmentation for text classification/NER/MRC tasks. ## Augmentation Experiments: Data augmentation is an important application for natural language generation (NLG) models, which is also a valuable evaluation of whether the generated text can be used in real applications. - Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes. - Text Classification Datasets: [HuffPost](https://huggingface.co/datasets/khalidalt/HuffPost), [BBC](https://huggingface.co/datasets/SetFit/bbc-news), [SST2](https://huggingface.co/datasets/glue), [IMDB](https://huggingface.co/datasets/imdb), [Yahoo](https://huggingface.co/datasets/yahoo_answers_topics), [20NG](https://huggingface.co/datasets/newsgroup). - Base classifier: [DistilBERT](https://huggingface.co/distilbert-base-cased) In-distribution (ID) evaluations: | Method | Huff | BBC | Yahoo | 20NG | IMDB | SST2 | avg. | |:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:| | none | 79.17 | **96.16** | 45.77 | 46.67 | 77.87 | 76.67 | 70.39 | | EDA | 79.20 | 95.11 | 45.10 | 46.15 | 77.88 | 75.52 | 69.83 | | BackT | 80.48 | 95.28 | 46.10 | 46.61 | 78.35 | 76.96 | 70.63 | | MLM | 80.04 | 96.07 | 45.35 | 46.53 | 75.73 | 76.61 | 70.06 | | C-MLM | 80.60 | 96.13 | 45.40 | 46.36 | 77.31 | 76.91 | 70.45 | | LAMBADA | 81.46 | 93.74 | 50.49 | 47.72 | 78.22 | 78.31 | 71.66 | | STA | 80.74 | 95.64 | 46.96 | 47.27 | 77.88 | 77.80 | 71.05 | | **GeniusAug** | 81.43 | 95.74 | 49.60 | 50.38 | **80.16** | 78.82 | 72.68 | | **GeniusAug-f** | **81.82** | 95.99 | **50.42** | **50.81** | 79.40 | **80.57** | **73.17** | Out-of-distribution (OOD) evaluations: | | Huff->BBC | BBC->Huff | IMDB->SST2 | SST2->IMDB | avg. | |------------|:----------:|:----------:|:----------:|:----------:|:----------:| | none | 62.32 | 62.00 | 74.37 | 73.11 | 67.95 | | EDA | 67.48 | 58.92 | 75.83 | 69.42 | 67.91 | | BackT | 67.75 | 63.10 | 75.91 | 72.19 | 69.74 | | MLM | 66.80 | 65.39 | 73.66 | 73.06 | 69.73 | | C-MLM | 64.94 | **67.80** | 74.98 | 71.78 | 69.87 | | LAMBADA | 68.57 | 52.79 | 75.24 | 76.04 | 68.16 | | STA | 69.31 | 64.82 | 74.72 | 73.62 | 70.61 | | **GeniusAug** | 74.87 | 66.85 | 76.02 | 74.76 | 73.13 | | **GeniusAug-f** | **76.18** | 66.89 | **77.45** | **80.36** | **75.22** | ### BibTeX entry and citation info TBD
viktor-enzell/wav2vec2-large-voxrex-swedish-4gram
viktor-enzell
2022-11-19T11:06:02Z
5,719
5
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "sv", "dataset:common_voice", "dataset:NST_Swedish_ASR_Database", "dataset:P4", "dataset:The_Swedish_Culturomics_Gigaword_Corpus", "license:cc0-1.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-26T13:32:57Z
--- language: sv metrics: - wer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard - sv license: cc0-1.0 datasets: - common_voice - NST_Swedish_ASR_Database - P4 - The_Swedish_Culturomics_Gigaword_Corpus model-index: - name: Wav2vec 2.0 large VoxRex Swedish (C) with 4-gram results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: sv-SE metrics: - name: Test WER type: wer value: 6.4723 --- # KBLab's wav2vec 2.0 large VoxRex Swedish (C) with 4-gram model Training of the acoustic model is the work of KBLab. See [VoxRex-C](https://huggingface.co/KBLab/wav2vec2-large-voxrex-swedish) for more details. This repo extends the acoustic model with a social media 4-gram language model for boosted performance. ## Model description VoxRex-C is extended with a 4-gram language model estimated from a subset extracted from [The Swedish Culturomics Gigaword Corpus](https://spraakbanken.gu.se/resurser/gigaword) from Språkbanken. The subset contains 40M words from the social media genre between 2010 and 2015. ## How to use #### Simple usage example with pipeline ```python import torch from transformers import pipeline # Load the model. Using GPU if available model_name = 'viktor-enzell/wav2vec2-large-voxrex-swedish-4gram' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') pipe = pipeline(model=model_name).to(device) # Run inference on an audio file output = pipe('path/to/audio.mp3')['text'] ``` #### More verbose usage example with audio pre-processing Example of transcribing 1% of the Common Voice test split. The model expects 16kHz audio, so audio with another sampling rate is resampled to 16kHz. ```python from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM from datasets import load_dataset import torch import torchaudio.functional as F # Import model and processor. Using GPU if available model_name = 'viktor-enzell/wav2vec2-large-voxrex-swedish-4gram' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device); processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Import and process speech data common_voice = load_dataset('common_voice', 'sv-SE', split='test[:1%]') def speech_file_to_array(sample): # Convert speech file to array and downsample to 16 kHz sampling_rate = sample['audio']['sampling_rate'] sample['speech'] = F.resample(torch.tensor(sample['audio']['array']), sampling_rate, 16_000) return sample common_voice = common_voice.map(speech_file_to_array) # Run inference inputs = processor(common_voice['speech'], sampling_rate=16_000, return_tensors='pt', padding=True).to(device) with torch.no_grad(): logits = model(**inputs).logits transcripts = processor.batch_decode(logits.cpu().numpy()).text ``` ## Training procedure Text data for the n-gram model is pre-processed by removing characters not part of the wav2vec 2.0 vocabulary and uppercasing all characters. After pre-processing and storing each text sample on a new line in a text file, a [KenLM](https://github.com/kpu/kenlm) model is estimated. See [this tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) for more details. ## Evaluation results The model was evaluated on the full Common Voice test set version 6.1. VoxRex-C achieved a WER of 9.03% without the language model and 6.47% with the language model.
KubiakJakub01/finetuned-distilbert-base-uncased
KubiakJakub01
2022-11-19T10:45:52Z
60
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T09:14:07Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KubiakJakub01/finetuned-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KubiakJakub01/finetuned-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2767 - Validation Loss: 0.4326 - Train Accuracy: 0.8319 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.4680 | 0.4008 | 0.8378 | 0 | | 0.3475 | 0.4017 | 0.8385 | 1 | | 0.2767 | 0.4326 | 0.8319 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
jonathanrichard13/pegasus-xsum-reddit-clean-4
jonathanrichard13
2022-11-19T10:22:51Z
102
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:reddit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T07:21:12Z
--- tags: - generated_from_trainer datasets: - reddit metrics: - rouge model-index: - name: pegasus-xsum-reddit-clean-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: reddit type: reddit args: default metrics: - name: Rouge1 type: rouge value: 27.7525 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-reddit-clean-4 This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the reddit dataset. It achieves the following results on the evaluation set: - Loss: 2.7697 - Rouge1: 27.7525 - Rouge2: 7.9823 - Rougel: 20.9276 - Rougelsum: 22.6678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.0594 | 1.0 | 1906 | 2.8489 | 27.9837 | 8.0824 | 20.9135 | 22.7261 | | 2.861 | 2.0 | 3812 | 2.7793 | 27.8298 | 8.048 | 20.8653 | 22.6781 | | 2.7358 | 3.0 | 5718 | 2.7697 | 27.7525 | 7.9823 | 20.9276 | 22.6678 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AndrewZeng/S2KG-base
AndrewZeng
2022-11-19T09:34:25Z
108
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "arxiv:2210.08873", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T09:15:53Z
# Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems We present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semi-supervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model, S2KG to formulate dialog history and local KB as input and predict the system response. [This paper](https://arxiv.org/abs/2210.08873) has been accepted at the SereTOD 2022 Workshop, EMNLP 2022 ## System Performance Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6%) than the second place. The evaluation results for both Track 1 and Track 2, which can be accessed via this [this link](https://docs.google.com/spreadsheets/d/1w28AKkG6Wjmuo15QlRlRyrnv859MT1ry0CHV8tFxY9o/edit#gid=0). ## S2KG for Generation We release our S2KG-base model here. You can use this model for knowledge-grounded dialogue generation follow instructions [S2KG](https://github.com/Zeng-WH/S2KG).
AIGeorgeLi/distilbert-base-uncased-finetuned-emotion
AIGeorgeLi
2022-11-19T07:43:40Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-10T02:35:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249666906714753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8554 | 1.0 | 250 | 0.3419 | 0.898 | 0.8943 | | 0.2627 | 2.0 | 500 | 0.2271 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_targeted_insult_LSTM
coderSounak
2022-11-19T07:04:24Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T07:02:35Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_targeted_insult_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_targeted_insult_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6314 - Accuracy: 0.6394 - F1: 0.6610 - Precision: 0.6262 - Recall: 0.6998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
coderSounak/finetuned_twitter_profane_LSTM
coderSounak
2022-11-19T06:57:55Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-19T06:54:58Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_profane_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_profane_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5529 - Accuracy: 0.7144 - F1: 0.7380 - Precision: 0.7013 - Recall: 0.7788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
KellyShiiii/primer-crd3
KellyShiiii
2022-11-19T06:47:19Z
92
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "generated_from_trainer", "dataset:crd3", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-17T04:19:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - crd3 metrics: - rouge model-index: - name: primer-crd3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: crd3 type: crd3 config: default split: train[:500] args: default metrics: - name: Rouge1 type: rouge value: 0.1510358452879352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # primer-crd3 This model is a fine-tuned version of [allenai/PRIMERA](https://huggingface.co/allenai/PRIMERA) on the crd3 dataset. It achieves the following results on the evaluation set: - Loss: 3.8193 - Rouge1: 0.1510 - Rouge2: 0.0279 - Rougel: 0.1251 - Rougelsum: 0.1355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 250 | 2.9569 | 0.1762 | 0.0485 | 0.1525 | 0.1605 | | 1.7993 | 2.0 | 500 | 3.4079 | 0.1612 | 0.0286 | 0.1367 | 0.1444 | | 1.7993 | 3.0 | 750 | 3.8193 | 0.1510 | 0.0279 | 0.1251 | 0.1355 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.8.0 - Datasets 2.7.0 - Tokenizers 0.13.2
sd-concepts-library/yoshimurachi
sd-concepts-library
2022-11-19T06:43:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-11-19T06:43:53Z
--- license: mit --- ### Yoshimurachi on Stable Diffusion This is the `<yoshi-san>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<yoshi-san> 0](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/3.jpeg) ![<yoshi-san> 1](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/1.jpeg) ![<yoshi-san> 2](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/2.jpeg) ![<yoshi-san> 3](https://huggingface.co/sd-concepts-library/yoshimurachi/resolve/main/concept_images/0.jpeg)
meongracun/nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:16:46Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:45:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8391 - Bleu: 0.0308 - Meteor: 0.1222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 3.1172 | 0.0194 | 0.0879 | | 3.6071 | 2.0 | 808 | 2.9990 | 0.0251 | 0.1066 | | 3.2935 | 3.0 | 1212 | 2.9471 | 0.027 | 0.1118 | | 3.1963 | 4.0 | 1616 | 2.9105 | 0.0281 | 0.1145 | | 3.1602 | 5.0 | 2020 | 2.8873 | 0.0286 | 0.1168 | | 3.1602 | 6.0 | 2424 | 2.8686 | 0.0293 | 0.1187 | | 3.1194 | 7.0 | 2828 | 2.8547 | 0.0301 | 0.1204 | | 3.0906 | 8.0 | 3232 | 2.8464 | 0.0306 | 0.1214 | | 3.0866 | 9.0 | 3636 | 2.8408 | 0.0307 | 0.1221 | | 3.0672 | 10.0 | 4040 | 2.8391 | 0.0308 | 0.1222 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:06:39Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:35:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1098 - Bleu: 0.0918 - Meteor: 0.2374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.7230 | 0.0372 | 0.1397 | | 3.1248 | 2.0 | 808 | 2.5087 | 0.0495 | 0.1692 | | 2.7527 | 3.0 | 1212 | 2.3751 | 0.062 | 0.1916 | | 2.5311 | 4.0 | 1616 | 2.2955 | 0.0703 | 0.2068 | | 2.4088 | 5.0 | 2020 | 2.2217 | 0.0785 | 0.2173 | | 2.4088 | 6.0 | 2424 | 2.1797 | 0.0822 | 0.2223 | | 2.297 | 7.0 | 2828 | 2.1409 | 0.0859 | 0.2283 | | 2.2287 | 8.0 | 3232 | 2.1239 | 0.0891 | 0.2326 | | 2.1918 | 9.0 | 3636 | 2.1117 | 0.0907 | 0.2357 | | 2.1626 | 10.0 | 4040 | 2.1098 | 0.0918 | 0.2374 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16
meongracun
2022-11-19T06:06:24Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:34:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.001-ep_10-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6393 - Bleu: 0.1929 - Meteor: 0.3605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.1057 | 0.1016 | 0.2499 | | 2.6026 | 2.0 | 808 | 1.7919 | 0.1333 | 0.2893 | | 1.8228 | 3.0 | 1212 | 1.6738 | 0.1568 | 0.3205 | | 1.4557 | 4.0 | 1616 | 1.6240 | 0.1677 | 0.3347 | | 1.2482 | 5.0 | 2020 | 1.5976 | 0.1786 | 0.3471 | | 1.2482 | 6.0 | 2424 | 1.5997 | 0.1857 | 0.3539 | | 1.0644 | 7.0 | 2828 | 1.5959 | 0.188 | 0.3553 | | 0.9399 | 8.0 | 3232 | 1.6128 | 0.19 | 0.3583 | | 0.8668 | 9.0 | 3636 | 1.6260 | 0.1922 | 0.3593 | | 0.8001 | 10.0 | 4040 | 1.6393 | 0.1929 | 0.3605 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32
meongracun
2022-11-19T05:54:44Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:26:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2914 - Bleu: 0.0708 - Meteor: 0.2054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.8210 | 0.0313 | 0.1235 | | No log | 2.0 | 404 | 2.6712 | 0.0398 | 0.1478 | | 3.0646 | 3.0 | 606 | 2.5543 | 0.0483 | 0.1661 | | 3.0646 | 4.0 | 808 | 2.4735 | 0.0537 | 0.1751 | | 2.6866 | 5.0 | 1010 | 2.4120 | 0.0591 | 0.1855 | | 2.6866 | 6.0 | 1212 | 2.3663 | 0.0618 | 0.1906 | | 2.6866 | 7.0 | 1414 | 2.3324 | 0.0667 | 0.1993 | | 2.5034 | 8.0 | 1616 | 2.3098 | 0.0684 | 0.2023 | | 2.5034 | 9.0 | 1818 | 2.2969 | 0.0696 | 0.2042 | | 2.4271 | 10.0 | 2020 | 2.2914 | 0.0708 | 0.2054 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32
meongracun
2022-11-19T05:41:31Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T05:13:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9022 - Bleu: 0.0284 - Meteor: 0.1159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 3.2021 | 0.0126 | 0.0683 | | No log | 2.0 | 404 | 3.0749 | 0.0219 | 0.0958 | | 3.559 | 3.0 | 606 | 3.0147 | 0.0252 | 0.1059 | | 3.559 | 4.0 | 808 | 2.9738 | 0.0262 | 0.1094 | | 3.2602 | 5.0 | 1010 | 2.9476 | 0.027 | 0.1113 | | 3.2602 | 6.0 | 1212 | 2.9309 | 0.0278 | 0.1138 | | 3.2602 | 7.0 | 1414 | 2.9153 | 0.0278 | 0.1139 | | 3.1839 | 8.0 | 1616 | 2.9083 | 0.0285 | 0.116 | | 3.1839 | 9.0 | 1818 | 2.9041 | 0.0284 | 0.1158 | | 3.1574 | 10.0 | 2020 | 2.9022 | 0.0284 | 0.1159 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16
meongracun
2022-11-19T05:30:40Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T04:31:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_20-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8531 - Bleu: 0.1306 - Meteor: 0.2859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.7171 | 0.0374 | 0.14 | | 3.1222 | 2.0 | 808 | 2.4821 | 0.0519 | 0.1723 | | 2.7305 | 3.0 | 1212 | 2.3370 | 0.0663 | 0.1983 | | 2.4848 | 4.0 | 1616 | 2.2469 | 0.0771 | 0.2158 | | 2.3394 | 5.0 | 2020 | 2.1567 | 0.0857 | 0.227 | | 2.3394 | 6.0 | 2424 | 2.1038 | 0.0919 | 0.2369 | | 2.2007 | 7.0 | 2828 | 2.0403 | 0.0973 | 0.2449 | | 2.1027 | 8.0 | 3232 | 2.0105 | 0.1066 | 0.2554 | | 2.0299 | 9.0 | 3636 | 1.9725 | 0.1105 | 0.2606 | | 1.9568 | 10.0 | 4040 | 1.9515 | 0.1147 | 0.2655 | | 1.9568 | 11.0 | 4444 | 1.9274 | 0.118 | 0.2699 | | 1.8986 | 12.0 | 4848 | 1.9142 | 0.1215 | 0.2739 | | 1.8512 | 13.0 | 5252 | 1.8936 | 0.1243 | 0.2777 | | 1.8258 | 14.0 | 5656 | 1.8841 | 0.1254 | 0.279 | | 1.7854 | 15.0 | 6060 | 1.8792 | 0.1278 | 0.2827 | | 1.7854 | 16.0 | 6464 | 1.8662 | 0.1274 | 0.2818 | | 1.7598 | 17.0 | 6868 | 1.8604 | 0.1293 | 0.2834 | | 1.7436 | 18.0 | 7272 | 1.8598 | 0.13 | 0.2849 | | 1.7299 | 19.0 | 7676 | 1.8545 | 0.1308 | 0.2857 | | 1.7168 | 20.0 | 8080 | 1.8531 | 0.1306 | 0.2859 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
elRivx/gBWoman
elRivx
2022-11-19T04:57:34Z
0
1
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-19T04:40:07Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # gBWoman This is a Stable Diffusion custom model that bring to you a woman generated with non-licenced images. The magic word is: gBWoman If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/m3hOa5i.png width=30% height=30%> <img src=https://imgur.com/u0Af9mX.png width=30% height=30%> <img src=https://imgur.com/VpKDMMK.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
meongracun/nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-16
meongracun
2022-11-19T04:27:12Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T03:01:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_1e-05-ep_30-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5612 - Bleu: 0.0476 - Meteor: 0.1643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 3.1116 | 0.0198 | 0.0892 | | 3.6027 | 2.0 | 808 | 2.9875 | 0.0255 | 0.1079 | | 3.2803 | 3.0 | 1212 | 2.9296 | 0.0276 | 0.1135 | | 3.1743 | 4.0 | 1616 | 2.8869 | 0.0287 | 0.116 | | 3.1283 | 5.0 | 2020 | 2.8564 | 0.03 | 0.1208 | | 3.1283 | 6.0 | 2424 | 2.8257 | 0.0309 | 0.1237 | | 3.0739 | 7.0 | 2828 | 2.8007 | 0.0324 | 0.1281 | | 3.0296 | 8.0 | 3232 | 2.7758 | 0.0334 | 0.131 | | 3.0059 | 9.0 | 3636 | 2.7548 | 0.0346 | 0.134 | | 2.965 | 10.0 | 4040 | 2.7349 | 0.0362 | 0.1371 | | 2.965 | 11.0 | 4444 | 2.7176 | 0.0374 | 0.1403 | | 2.9403 | 12.0 | 4848 | 2.6994 | 0.0382 | 0.1425 | | 2.9166 | 13.0 | 5252 | 2.6841 | 0.0393 | 0.1448 | | 2.9023 | 14.0 | 5656 | 2.6681 | 0.0404 | 0.1471 | | 2.8742 | 15.0 | 6060 | 2.6548 | 0.0411 | 0.1508 | | 2.8742 | 16.0 | 6464 | 2.6419 | 0.0422 | 0.1529 | | 2.8523 | 17.0 | 6868 | 2.6286 | 0.0428 | 0.1538 | | 2.8378 | 18.0 | 7272 | 2.6194 | 0.0434 | 0.1555 | | 2.8258 | 19.0 | 7676 | 2.6095 | 0.0441 | 0.1568 | | 2.8019 | 20.0 | 8080 | 2.6005 | 0.0447 | 0.1576 | | 2.8019 | 21.0 | 8484 | 2.5938 | 0.0455 | 0.1598 | | 2.7927 | 22.0 | 8888 | 2.5872 | 0.0459 | 0.1603 | | 2.7846 | 23.0 | 9292 | 2.5800 | 0.0462 | 0.161 | | 2.7775 | 24.0 | 9696 | 2.5757 | 0.0463 | 0.1621 | | 2.77 | 25.0 | 10100 | 2.5712 | 0.0466 | 0.1624 | | 2.7608 | 26.0 | 10504 | 2.5673 | 0.0469 | 0.1633 | | 2.7608 | 27.0 | 10908 | 2.5645 | 0.0472 | 0.1634 | | 2.7572 | 28.0 | 11312 | 2.5626 | 0.0474 | 0.1637 | | 2.7578 | 29.0 | 11716 | 2.5617 | 0.0476 | 0.1641 | | 2.7568 | 30.0 | 12120 | 2.5612 | 0.0476 | 0.1643 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.001-ep_30-seq_128_bs-16
meongracun
2022-11-19T04:24:07Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T02:57:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.001-ep_30-seq_128_bs-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.001-ep_30-seq_128_bs-16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3591 - Bleu: 0.2073 - Meteor: 0.3779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | No log | 1.0 | 404 | 2.0642 | 0.1068 | 0.2561 | | 2.5607 | 2.0 | 808 | 1.7482 | 0.1392 | 0.299 | | 1.7768 | 3.0 | 1212 | 1.6392 | 0.1614 | 0.325 | | 1.4132 | 4.0 | 1616 | 1.6131 | 0.1728 | 0.3418 | | 1.205 | 5.0 | 2020 | 1.5724 | 0.1854 | 0.3543 | | 1.205 | 6.0 | 2424 | 1.5988 | 0.1897 | 0.3592 | | 1.0069 | 7.0 | 2828 | 1.5839 | 0.1922 | 0.3618 | | 0.8711 | 8.0 | 3232 | 1.6187 | 0.196 | 0.3678 | | 0.7759 | 9.0 | 3636 | 1.6453 | 0.1968 | 0.3672 | | 0.6838 | 10.0 | 4040 | 1.6837 | 0.1981 | 0.3685 | | 0.6838 | 11.0 | 4444 | 1.7401 | 0.1976 | 0.3698 | | 0.5903 | 12.0 | 4848 | 1.7686 | 0.2016 | 0.3712 | | 0.5207 | 13.0 | 5252 | 1.8075 | 0.2026 | 0.3733 | | 0.4712 | 14.0 | 5656 | 1.8665 | 0.2028 | 0.3743 | | 0.4154 | 15.0 | 6060 | 1.9114 | 0.204 | 0.3746 | | 0.4154 | 16.0 | 6464 | 1.9556 | 0.2036 | 0.376 | | 0.3726 | 17.0 | 6868 | 1.9961 | 0.2011 | 0.374 | | 0.326 | 18.0 | 7272 | 2.0437 | 0.2027 | 0.3739 | | 0.2936 | 19.0 | 7676 | 2.0946 | 0.2038 | 0.3754 | | 0.2671 | 20.0 | 8080 | 2.1319 | 0.2041 | 0.374 | | 0.2671 | 21.0 | 8484 | 2.1717 | 0.2044 | 0.3756 | | 0.2407 | 22.0 | 8888 | 2.2025 | 0.2045 | 0.3756 | | 0.2143 | 23.0 | 9292 | 2.2375 | 0.2031 | 0.3734 | | 0.1974 | 24.0 | 9696 | 2.2544 | 0.2057 | 0.3765 | | 0.182 | 25.0 | 10100 | 2.2875 | 0.2057 | 0.3767 | | 0.1686 | 26.0 | 10504 | 2.3153 | 0.2048 | 0.3762 | | 0.1686 | 27.0 | 10908 | 2.3395 | 0.2063 | 0.3786 | | 0.1548 | 28.0 | 11312 | 2.3493 | 0.2071 | 0.3783 | | 0.145 | 29.0 | 11716 | 2.3569 | 0.2072 | 0.3781 | | 0.1412 | 30.0 | 12120 | 2.3591 | 0.2073 | 0.3779 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Sebabrata/dof-Rai2-1
Sebabrata
2022-11-19T04:21:37Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-11-18T21:38:29Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: dof-Rai2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dof-Rai2-1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
meongracun/nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32
meongracun
2022-11-19T04:11:12Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-19T02:53:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_30-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8218 - Bleu: 0.1371 - Meteor: 0.294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.6357 | 0.042 | 0.1513 | | No log | 2.0 | 404 | 2.4891 | 0.0526 | 0.1749 | | 2.781 | 3.0 | 606 | 2.3754 | 0.062 | 0.1918 | | 2.781 | 4.0 | 808 | 2.2946 | 0.0693 | 0.2047 | | 2.4692 | 5.0 | 1010 | 2.2262 | 0.0779 | 0.2175 | | 2.4692 | 6.0 | 1212 | 2.1729 | 0.0825 | 0.2231 | | 2.4692 | 7.0 | 1414 | 2.1226 | 0.0897 | 0.2328 | | 2.2484 | 8.0 | 1616 | 2.0789 | 0.0932 | 0.2381 | | 2.2484 | 9.0 | 1818 | 2.0450 | 0.1007 | 0.2478 | | 2.099 | 10.0 | 2020 | 2.0132 | 0.1041 | 0.255 | | 2.099 | 11.0 | 2222 | 1.9818 | 0.1085 | 0.2584 | | 2.099 | 12.0 | 2424 | 1.9608 | 0.113 | 0.2639 | | 1.9729 | 13.0 | 2626 | 1.9422 | 0.1165 | 0.2689 | | 1.9729 | 14.0 | 2828 | 1.9223 | 0.1186 | 0.2717 | | 1.8885 | 15.0 | 3030 | 1.9114 | 0.1219 | 0.2757 | | 1.8885 | 16.0 | 3232 | 1.9020 | 0.1238 | 0.2794 | | 1.8885 | 17.0 | 3434 | 1.8827 | 0.1254 | 0.2793 | | 1.8171 | 18.0 | 3636 | 1.8762 | 0.1278 | 0.2824 | | 1.8171 | 19.0 | 3838 | 1.8686 | 0.1298 | 0.285 | | 1.7597 | 20.0 | 4040 | 1.8595 | 0.1307 | 0.2864 | | 1.7597 | 21.0 | 4242 | 1.8533 | 0.1328 | 0.2891 | | 1.7597 | 22.0 | 4444 | 1.8453 | 0.1335 | 0.2901 | | 1.7183 | 23.0 | 4646 | 1.8400 | 0.1347 | 0.2912 | | 1.7183 | 24.0 | 4848 | 1.8342 | 0.135 | 0.2914 | | 1.6893 | 25.0 | 5050 | 1.8308 | 0.1355 | 0.2919 | | 1.6893 | 26.0 | 5252 | 1.8258 | 0.1357 | 0.2924 | | 1.6893 | 27.0 | 5454 | 1.8248 | 0.1365 | 0.2933 | | 1.6667 | 28.0 | 5656 | 1.8233 | 0.137 | 0.294 | | 1.6667 | 29.0 | 5858 | 1.8223 | 0.1371 | 0.2941 | | 1.6585 | 30.0 | 6060 | 1.8218 | 0.1371 | 0.294 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
peter2000/sdg_sentence_transformer
peter2000
2022-11-19T03:51:38Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-19T02:57:29Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4015 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Alred/t5-small-finetuned-summarization-cnn
Alred
2022-11-19T03:22:38Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-11-19T02:09:50Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-summarization-cnn results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train[:2%] args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.4825 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-summarization-cnn This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.0105 - Rouge1: 24.4825 - Rouge2: 9.1573 - Rougel: 19.7135 - Rougelsum: 22.2551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 2.0389 | 1.0 | 718 | 2.0150 | 24.4413 | 9.1782 | 19.7202 | 22.2225 | | 1.9497 | 2.0 | 1436 | 2.0105 | 24.4825 | 9.1573 | 19.7135 | 22.2551 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
monideep2255/pseudolabeling-step2-F04
monideep2255
2022-11-19T02:31:41Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-19T00:07:19Z
--- tags: - generated_from_trainer model-index: - name: pseudolabeling-step2-F04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pseudolabeling-step2-F04 This model is a fine-tuned version of [yip-i/wav2vec2-pretrain-demo](https://huggingface.co/yip-i/wav2vec2-pretrain-demo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.2502 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 74.4163 | 3.36 | 500 | 3.6878 | 1.0 | | 3.3612 | 6.71 | 1000 | 3.5619 | 1.0 | | 3.3127 | 10.07 | 1500 | 3.5773 | 1.0 | | 3.2104 | 13.42 | 2000 | 3.5299 | 1.0 | | 3.2067 | 16.78 | 2500 | 3.5704 | 0.9922 | | 3.1511 | 20.13 | 3000 | 4.3842 | 1.0 | | 3.0825 | 23.49 | 3500 | 4.2644 | 1.0 | | 3.0959 | 26.85 | 4000 | 5.2502 | 1.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
juancopi81/distilgpt2-finetuned-yannic-test-1
juancopi81
2022-11-19T02:07:14Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-19T01:36:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-yannic-test-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-yannic-test-1 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 482 | 3.5938 | | 3.6669 | 2.0 | 964 | 3.5534 | | 3.5089 | 3.0 | 1446 | 3.5315 | | 3.4295 | 4.0 | 1928 | 3.5197 | | 3.3772 | 5.0 | 2410 | 3.5143 | | 3.3383 | 6.0 | 2892 | 3.5110 | | 3.3092 | 7.0 | 3374 | 3.5084 | | 3.2857 | 8.0 | 3856 | 3.5082 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
dvitel/h0
dvitel
2022-11-19T02:02:54Z
115
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "distigpt2", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T15:40:16Z
--- license: apache-2.0 tags: - distigpt2 - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.19696969696969696 name: Exact Match - type: bleu value: 0.8881228393983 name: BLEU - type: dvitel/codebleu value: 0.6764180663401291 name: CodeBLEU - type: chrf value: 90.6099642899634 name: chrF --- # h0 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset. [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h0.py). It achieves the following results on the evaluation set: - Loss: 0.3117 - Exact Match: 0.1970 - Bleu: 0.9085 - Codebleu: 0.7341 - Ngram Match Score: 0.7211 - Weighted Ngram Match Score: 0.7299 - Syntax Match Score: 0.7536 - Dataflow Match Score: 0.7317 - Chrf: 92.8689 ## Model description DistilGPT2 fine-tuned on HearthStone dataset for 200 epochs ## Intended uses & limitations HearthStone card code synthesis. ## Training and evaluation data See split of [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:| | 0.543 | 11.94 | 1600 | 0.2701 | 0.0152 | 0.8552 | 0.6144 | 0.6027 | 0.6136 | 0.6431 | 0.5982 | 89.0280 | | 0.1459 | 23.88 | 3200 | 0.2408 | 0.0909 | 0.8841 | 0.6733 | 0.6610 | 0.6719 | 0.7210 | 0.6393 | 91.2517 | | 0.0801 | 35.82 | 4800 | 0.2498 | 0.1515 | 0.8966 | 0.6999 | 0.6954 | 0.7054 | 0.7326 | 0.6662 | 92.1356 | | 0.0498 | 47.76 | 6400 | 0.2569 | 0.1818 | 0.9012 | 0.7015 | 0.7022 | 0.7114 | 0.7428 | 0.6496 | 92.4668 | | 0.0323 | 59.7 | 8000 | 0.2732 | 0.1667 | 0.9044 | 0.7241 | 0.7025 | 0.7123 | 0.7551 | 0.7266 | 92.5429 | | 0.0214 | 71.64 | 9600 | 0.2896 | 0.1667 | 0.9034 | 0.7228 | 0.7101 | 0.7195 | 0.7670 | 0.6945 | 92.4258 | | 0.015 | 83.58 | 11200 | 0.2870 | 0.1667 | 0.9046 | 0.7292 | 0.7137 | 0.7228 | 0.7667 | 0.7137 | 92.5979 | | 0.0121 | 95.52 | 12800 | 0.2907 | 0.1667 | 0.9075 | 0.7287 | 0.7198 | 0.7297 | 0.7696 | 0.6958 | 92.7074 | | 0.0093 | 107.46 | 14400 | 0.2976 | 0.1667 | 0.9073 | 0.7365 | 0.7134 | 0.7238 | 0.7732 | 0.7356 | 92.8347 | | 0.0073 | 119.4 | 16000 | 0.3037 | 0.1818 | 0.9085 | 0.7326 | 0.7154 | 0.7241 | 0.7529 | 0.7381 | 92.8343 | | 0.006 | 131.34 | 17600 | 0.3047 | 0.1970 | 0.9104 | 0.7410 | 0.7230 | 0.7312 | 0.7667 | 0.7433 | 92.8286 | | 0.005 | 143.28 | 19200 | 0.3080 | 0.1970 | 0.9088 | 0.7377 | 0.7232 | 0.7316 | 0.7746 | 0.7214 | 92.8035 | | 0.0044 | 155.22 | 20800 | 0.3071 | 0.1970 | 0.9076 | 0.7343 | 0.7196 | 0.7283 | 0.7783 | 0.7112 | 92.7742 | | 0.004 | 167.16 | 22400 | 0.3097 | 0.1970 | 0.9082 | 0.7440 | 0.7236 | 0.7334 | 0.7601 | 0.7587 | 92.8117 | | 0.0035 | 179.1 | 24000 | 0.3111 | 0.1970 | 0.9080 | 0.7355 | 0.7204 | 0.7295 | 0.7616 | 0.7304 | 92.7990 | | 0.0036 | 191.04 | 25600 | 0.3117 | 0.1970 | 0.9085 | 0.7341 | 0.7211 | 0.7299 | 0.7536 | 0.7317 | 92.8689 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
dvitel/h2
dvitel
2022-11-19T02:02:50Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "distigpt2", "hearthstone", "dataset:dvitel/hearthstone", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T21:25:37Z
--- license: apache-2.0 tags: - distigpt2 - hearthstone metrics: - bleu - dvitel/codebleu - exact_match - chrf datasets: - dvitel/hearthstone model-index: - name: h0 results: - task: type: text-generation name: Python Code Synthesis dataset: type: dvitel/hearthstone name: HearthStone split: test metrics: - type: exact_match value: 0.0 name: Exact Match - type: bleu value: 0.6082316056517667 name: BLEU - type: dvitel/codebleu value: 0.36984242128954287 name: CodeBLEU - type: chrf value: 68.77878158023694 name: chrF --- # h2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone). [GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h2.py). It achieves the following results on the evaluation set: - Loss: 2.5771 - Exact Match: 0.0 - Bleu: 0.6619 - Codebleu: 0.5374 - Ngram Match Score: 0.4051 - Weighted Ngram Match Score: 0.4298 - Syntax Match Score: 0.5605 - Dataflow Match Score: 0.7541 - Chrf: 73.9625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:| | 1.2052 | 11.94 | 1600 | 1.2887 | 0.0 | 0.6340 | 0.4427 | 0.3384 | 0.3614 | 0.5263 | 0.5446 | 70.8004 | | 0.3227 | 23.88 | 3200 | 1.4484 | 0.0 | 0.6575 | 0.5050 | 0.3767 | 0.3995 | 0.5955 | 0.6485 | 72.9553 | | 0.205 | 35.82 | 4800 | 1.6392 | 0.0 | 0.6598 | 0.5174 | 0.3788 | 0.4022 | 0.5821 | 0.7063 | 73.2766 | | 0.1392 | 47.76 | 6400 | 1.8219 | 0.0 | 0.6584 | 0.5279 | 0.3922 | 0.4159 | 0.5742 | 0.7294 | 73.5022 | | 0.0979 | 59.7 | 8000 | 1.9416 | 0.0 | 0.6635 | 0.5305 | 0.4012 | 0.4248 | 0.5699 | 0.7261 | 73.8081 | | 0.0694 | 71.64 | 9600 | 2.1793 | 0.0 | 0.6593 | 0.5400 | 0.4027 | 0.4271 | 0.5562 | 0.7739 | 73.6746 | | 0.0512 | 83.58 | 11200 | 2.2547 | 0.0 | 0.6585 | 0.5433 | 0.4040 | 0.4283 | 0.5486 | 0.7921 | 73.7670 | | 0.0399 | 95.52 | 12800 | 2.3037 | 0.0 | 0.6585 | 0.5354 | 0.4040 | 0.4282 | 0.5454 | 0.7640 | 73.7431 | | 0.0316 | 107.46 | 14400 | 2.4113 | 0.0 | 0.6577 | 0.5294 | 0.4006 | 0.4257 | 0.5504 | 0.7409 | 73.7004 | | 0.0254 | 119.4 | 16000 | 2.4407 | 0.0 | 0.6607 | 0.5412 | 0.4041 | 0.4285 | 0.5598 | 0.7723 | 73.8828 | | 0.0208 | 131.34 | 17600 | 2.4993 | 0.0 | 0.6637 | 0.5330 | 0.4042 | 0.4286 | 0.5684 | 0.7310 | 74.1760 | | 0.0176 | 143.28 | 19200 | 2.5138 | 0.0 | 0.6627 | 0.5434 | 0.4050 | 0.4295 | 0.5620 | 0.7772 | 74.0546 | | 0.0158 | 155.22 | 20800 | 2.5589 | 0.0 | 0.6616 | 0.5347 | 0.4044 | 0.4291 | 0.5512 | 0.7541 | 73.9516 | | 0.0147 | 167.16 | 22400 | 2.5554 | 0.0 | 0.6620 | 0.5354 | 0.4049 | 0.4295 | 0.5630 | 0.7442 | 73.9461 | | 0.0134 | 179.1 | 24000 | 2.5696 | 0.0 | 0.6607 | 0.5395 | 0.4046 | 0.4293 | 0.5602 | 0.7640 | 73.8383 | | 0.0135 | 191.04 | 25600 | 2.5771 | 0.0 | 0.6619 | 0.5374 | 0.4051 | 0.4298 | 0.5605 | 0.7541 | 73.9625 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
andrewzhang505/doom_deathmatch_bots
andrewzhang505
2022-11-19T00:58:04Z
4
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T23:12:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 69.40 +/- 4.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deathmatch_bots type: doom_deathmatch_bots --- A(n) **APPO** model trained on the **doom_deathmatch_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
shi-labs/nat-tiny-in1k-224
shi-labs
2022-11-18T23:12:12Z
89
0
transformers
[ "transformers", "pytorch", "nat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2204.07143", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:07:29Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # NAT (tiny variant) NAT-Tiny trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description NAT is a hierarchical vision transformer based on Neighborhood Attention (NA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA is a sliding-window attention patterns, and as a result is highly flexible and maintains translational equivariance. NA is implemented in PyTorch implementations through its extension, [NATTEN](https://github.com/SHI-Labs/NATTEN/). ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=nat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, NatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/nat-tiny-in1k-224") model = NatForImageClassification.from_pretrained("shi-labs/nat-tiny-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/nat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022neighborhood, title = {Neighborhood Attention Transformer}, author = {Ali Hassani and Steven Walton and Jiachen Li and Shen Li and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2204.07143}, eprint = {2204.07143}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-tiny-in1k-224
shi-labs
2022-11-18T23:11:09Z
99
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:07:23Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (tiny variant) DiNAT-Tiny trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-tiny-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-tiny-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
shi-labs/dinat-base-in1k-224
shi-labs
2022-11-18T23:07:43Z
90
0
transformers
[ "transformers", "pytorch", "dinat", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2209.15001", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T22:04:27Z
--- license: mit tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DiNAT (base variant) DiNAT-Base trained on ImageNet-1K at 224x224 resolution. It was introduced in the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer). ## Model description DiNAT is a hierarchical vision transformer based on Neighborhood Attention (NA) and its dilated variant (DiNA). Neighborhood Attention is a restricted self attention pattern in which each token's receptive field is limited to its nearest neighboring pixels. NA and DiNA are therefore sliding-window attention patterns, and as a result are highly flexible and maintain translational equivariance. They come with PyTorch implementations through the [NATTEN](https://github.com/SHI-Labs/NATTEN/) package. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg) [Source](https://paperswithcode.com/paper/dilated-neighborhood-attention-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=dinat) to look for fine-tuned versions on a task that interests you. ### Example Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, DinatForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/dinat-base-in1k-224") model = DinatForImageClassification.from_pretrained("shi-labs/dinat-base-in1k-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/dinat.html#). ### Requirements Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package. If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL). You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes. Mac users only have the latter option (no pre-compiled binaries). Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information. ### BibTeX entry and citation info ```bibtex @article{hassani2022dilated, title = {Dilated Neighborhood Attention Transformer}, author = {Ali Hassani and Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2209.15001}, eprint = {2209.15001}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ```
monideep2255/pseudolabeling-step1-F04
monideep2255
2022-11-18T23:04:06Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-18T18:47:27Z
--- tags: - generated_from_trainer model-index: - name: pseudolabeling-step1-F04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pseudolabeling-step1-F04 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5392 - Wer: 0.8870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 21.4261 | 1.71 | 500 | 3.2064 | 1.0 | | 2.9275 | 3.42 | 1000 | 2.6461 | 1.2637 | | 2.49 | 5.14 | 1500 | 2.0627 | 1.2527 | | 1.8582 | 6.85 | 2000 | 1.6367 | 1.1978 | | 1.5071 | 8.56 | 2500 | 1.2845 | 1.1743 | | 1.2181 | 10.27 | 3000 | 1.1395 | 1.1586 | | 1.0386 | 11.99 | 3500 | 1.0155 | 1.0926 | | 0.9307 | 13.7 | 4000 | 0.8144 | 1.0628 | | 0.8073 | 15.41 | 4500 | 0.7666 | 1.1146 | | 0.7209 | 17.12 | 5000 | 0.7020 | 1.0911 | | 0.6618 | 18.84 | 5500 | 0.6829 | 1.0612 | | 0.6079 | 20.55 | 6000 | 0.6023 | 0.9937 | | 0.5242 | 22.26 | 6500 | 0.6057 | 0.9827 | | 0.4848 | 23.97 | 7000 | 0.5802 | 0.9435 | | 0.4602 | 25.68 | 7500 | 0.5376 | 0.9027 | | 0.446 | 27.4 | 8000 | 0.5351 | 0.8964 | | 0.4245 | 29.11 | 8500 | 0.5392 | 0.8870 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
Jaiti/distilbert-base-uncased-finetuned-ner
Jaiti
2022-11-18T22:56:48Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-11T21:25:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
OSalem99/a2c-AntBulletEnv-v0
OSalem99
2022-11-18T22:42:18Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-18T22:41:12Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 953.99 +/- 100.86 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
elRivx/80sFashionRobot
elRivx
2022-11-18T22:18:49Z
0
9
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-10T15:04:50Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # 80sFashionRobot Do you remember when the robots were fashion icons? Do you like the 80s style? This model is for you! Some recomendations: the magic word for your prompts is 80sFashionRobot .In some times, you would put some prompts like: request, in 80sFashionRobot style or an illustration of request, in 80sFashionRobot style PS: you can replace 'request' with a person, character, etc. If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/kXLw2a2.png width=30% height=30%> <img src=https://imgur.com/Ukip4RT.png width=30% height=30%> <img src=https://imgur.com/j6KyuIk.png width=30% height=30%> <img src=https://imgur.com/uyabBWZ.png width=30% height=30%> <img src=https://imgur.com/fQTcr20.png width=30% height=30%> <img src=https://imgur.com/ZzvXZob.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
elRivx/DMVC2
elRivx
2022-11-18T22:16:09Z
0
3
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-03T15:14:43Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # DMVC2 This is an own SD trainee with an 2000s videogame illustrations as a style. If you wanna test it, you can put this word on the prompt: DMVC2 . Sometimes you must put before things like 'an illustration of' If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/lrD4Q5s.png width=30% height=30%> <img src=https://imgur.com/DSW8Ein.png width=30% height=30%> <img src=https://imgur.com/Z4T2eYj.png width=30% height=30%> <img src=https://imgur.com/EzidtGk.png width=30% height=30%> <img src=https://imgur.com/1NHdWhc.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
elRivx/megaPals
elRivx
2022-11-18T22:14:49Z
0
7
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-07T18:26:15Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # megaPals Do you remember the superhero vintage animated series? Do you like the 70s style? This model is for you! Some recomendations: the magic word for your prompts is megaPals . In some times, you would put some prompts like: request, in megaPals style or a cartoon of request, in megaPals style PS: you can replace 'request' with a person, character, etc. If you enjoy my work, please consider supporting me: [![Buy me a coffee](https://badgen.net/badge/icon/buymeacoffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/elrivx) Examples: <img src=https://imgur.com/Oqf58NU.png width=30% height=30%> <img src=https://imgur.com/1RZWk6N.png width=30% height=30%> <img src=https://imgur.com/XLXVp10.png width=30% height=30%> <img src=https://imgur.com/E7FKp6m.png width=30% height=30%> <img src=https://imgur.com/WEhd4Hh.png width=30% height=30%> ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
racro/sentiment-browser-extension
racro
2022-11-18T21:51:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T06:57:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sentiment-browser-extension results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-browser-extension This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7068 - Accuracy: 0.8516 - F1: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
zthrx/painting_generator
zthrx
2022-11-18T21:46:53Z
13
18
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "image-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-18T08:39:12Z
--- language: - en license: creativeml-openrail-m thumbnail: "https://huggingface.co/zthrx/painting_generator/resolve/main/painting3.jpg" tags: - stable-diffusion - text-to-image - image-to-image - diffusers --- ### Painting Generator **Convert your photos and artworks into paintings.** Use **concep** to activate for example: concep, forest, trees etc. Model trained on brushstrokes, you don't need to put any artist names or style to get nice results. Best to use in img2img mode and inpainting Download the ckpt file from "files and versions" tab into the stable diffusion models folder of your web-ui of choice ![Sample](https://huggingface.co/zthrx/painting_generator/resolve/main/snow.jpg) ![Sample](https://huggingface.co/zthrx/painting_generator/resolve/main/painting3.jpg) ![Sample2](https://huggingface.co/zthrx/painting_generator/resolve/main/painting4.jpg) ![Sample3](https://huggingface.co/zthrx/painting_generator/resolve/main/painting5.jpg) ![Sample4](https://huggingface.co/zthrx/painting_generator/resolve/main/painting2.jpg) ![Sample5](https://huggingface.co/zthrx/painting_generator/resolve/main/loopback.jpg) ![Sample6](https://huggingface.co/zthrx/painting_generator/resolve/main/painting7.jpg) license: creativeml-openrail-m
bwhite5311/NLP-sentiment-project-2000-samples
bwhite5311
2022-11-18T20:50:13Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-18T11:25:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: NLP-sentiment-project-2000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9715 - name: F1 type: f1 value: 0.9716558925907509 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-sentiment-project-2000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1038 - Accuracy: 0.9715 - F1: 0.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
princeton-nlp/mabel-bert-base-uncased
princeton-nlp
2022-11-18T20:47:40Z
106
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gender-bias", "arxiv:2210.14975", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-26T05:56:10Z
--- tags: - gender-bias - bert --- # Model Card for `mabel-bert-base-uncased` # Model Description This is the model for MABEL, as described in our paper, "[MABEL: Attenuating Gender Bias using Textual Entailment Data](https://arxiv.org/abs/2210.14975)". MABEL is trained from an underlying `bert-base-uncased` backbone, and demonstrates a good bias-performance tradeoff across a suite of intrinsic and extrinsic bias metrics.
ahmadmwali/finetuning-sentiment-hausa2
ahmadmwali
2022-11-18T20:34:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-09T19:52:19Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-hausa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-hausa2 This model is a fine-tuned version of [Davlan/xlm-roberta-base-finetuned-hausa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6335 - Accuracy: 0.7310 - F1: 0.7296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
famube/autotrain-documentos-oficiais-2092367351
famube
2022-11-18T20:33:18Z
108
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "pt", "dataset:famube/autotrain-data-documentos-oficiais", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-11-14T15:52:11Z
--- tags: - autotrain - token-classification language: - pt widget: - text: "I love AutoTrain 🤗" datasets: - famube/autotrain-data-documentos-oficiais co2_eq_emissions: emissions: 6.461431564881563 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 2092367351 - CO2 Emissions (in grams): 6.4614 ## Validation Metrics - Loss: 0.059 - Accuracy: 0.986 - Precision: 0.000 - Recall: 0.000 - F1: 0.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/famube/autotrain-documentos-oficiais-2092367351 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("famube/autotrain-documentos-oficiais-2092367351", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
cyburn/laze_opera_panda
cyburn
2022-11-18T18:57:58Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-11-18T18:29:31Z
--- license: unknown --- # Soda Stream finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever> by laze opera panda` ## Example prompts `woman near a fountain by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/1.png" alt="Picture." width="500"/> `woman in taxi by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/2.png" alt="Picture." width="500"/> `man portrait by laze opera panda`: <img src="https://huggingface.co/cyburn/laze_opera_panda/resolve/main/3.png" alt="Picture." width="500"/>
espnet/realzza-meld-asr-hubert-transformer
espnet
2022-11-18T18:40:43Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "spoken-language-understanding", "en", "dataset:meld", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-11-18T17:10:56Z
--- tags: - espnet - audio - automatic-speech-recognition - spoken-language-understanding language: en datasets: - meld license: cc-by-4.0 --- # ESPnet2: Meld Recipe ## Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/meld/asr1/ ./run.sh ``` ## Environments - date: `Thu Nov 10 09:07:40 EST 2022` - python version: `3.8.6 (default, Dec 17 2020, 16:57:01) [GCC 10.2.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `a7bd6522b32ec6472c13f6a2289dcdff4a846c12` - Commit date: `Wed Sep 14 08:34:27 2022 -0400` ## asr_train_asr_hubert_transformer_adam_specaug_meld_raw_en_bpe850 - ASR config: conf/tuning/train_asr_hubert_transformer_adam_specaug_meld.yaml - token_type: bpe - keep_nbest_models: 5 |dataset|Snt|Emotion Classification (%)| |---|---|---| |decoder_asr_asr_model_valid.acc.ave_5best/test|2608|39.22| |decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|42.64| ### ASR results #### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decoder_asr_asr_model_valid.acc.ave_5best/test|2608|24809|55.5|28.0|16.5|8.4|52.9|96.5| |decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|10171|55.3|29.4|15.3|7.0|51.7|96.2| #### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decoder_asr_asr_model_valid.acc.ave_5best/test|2608|120780|71.1|10.7|18.2|10.6|39.5|96.5| |decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|49323|71.3|11.1|17.6|9.4|38.1|96.2| #### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decoder_asr_asr_model_valid.acc.ave_5best/test|2608|35287|57.6|21.8|20.5|7.8|50.2|96.5| |decoder_asr_asr_model_valid.acc.ave_5best/valid|1104|14430|57.4|23.2|19.4|6.1|48.6|96.2|
cyburn/soda_stream
cyburn
2022-11-18T18:20:38Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-11-18T15:47:05Z
--- license: unknown --- # Soda Stream finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever> by soda stream` ## Example prompts `woman near a fountain by soda stream`: <img src="https://huggingface.co/cyburn/soda_stream/resolve/main/1.png" alt="Picture." width="500"/> `woman in taxi by soda stream`: <img src="https://huggingface.co/cyburn/soda_stream/resolve/main/2.png" alt="Picture." width="500"/> `woman portrait by soda stream`: <img src="https://huggingface.co/cyburn/soda_stream/resolve/main/3.png" alt="Picture." width="500"/>
thomasfm/distilbert-base-uncased-finetuned-ner-nlp
thomasfm
2022-11-18T18:09:05Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-18T17:43:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-nlp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner-nlp This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0812 - Precision: 0.8835 - Recall: 0.9039 - F1: 0.8936 - Accuracy: 0.9804 ## Model description ### Essential info about tagged entities - geo: Geographical Entity - gpe: Geopolitical Entity - tim: Time Indicator ### Label description - Label 0: 'B-geo', - Label 1: 'B-gpe', - Label 2: 'B-tim', - Label 3: 'I-geo', - Label 4: 'I-gpe', - Label 5: 'I-tim', - Label 6: 'O' ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0384 | 1.0 | 1781 | 0.0671 | 0.8770 | 0.9038 | 0.8902 | 0.9799 | | 0.0295 | 2.0 | 3562 | 0.0723 | 0.8844 | 0.8989 | 0.8915 | 0.9804 | | 0.023 | 3.0 | 5343 | 0.0731 | 0.8787 | 0.9036 | 0.8910 | 0.9800 | | 0.0186 | 4.0 | 7124 | 0.0812 | 0.8835 | 0.9039 | 0.8936 | 0.9804 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
GabCcr99/Clasificador-Ojos-XD
GabCcr99
2022-11-18T17:54:36Z
187
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T17:49:49Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Clasificador-Ojos-XD results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9696969985961914 --- # Clasificador-Ojos-XD Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
eimiss/EimisSemiRealistic
eimiss
2022-11-18T16:10:42Z
0
43
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-11-18T09:21:10Z
--- thumbnail: https://imgur.com/DkGWTA2.png language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Diffusion model This model is trained with detailed semi realistic images via my anime model. # Sample generations This model is made to get semi realistic, realistic results with a lot of detail. ``` Positive:1girl, aura, blue_fire, electricity, energy, fire, flame, glowing, glowing_eyes, green_eyes, hitodama, horns, lightning, long_hair, magic, male_focus, solo, spirit Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a, CFG scale: 8, Seed: 2526294281, Size: 896x768 ``` <img src=https://imgur.com/HHdOmIF.jpg width=75% height=75%> ``` Positive: a girl,Phoenix girl,fluffy hair,war,a hell on earth, Beautiful and detailed costume, blue glowing eyes, masterpiece, (detailed hands), (glowing), twintails, smiling, beautiful detailed white gloves, (upper_body), (realistic) Negative: lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a Karras, CFG scale: 8, Seed: 2495938777/2495938779, Size: 896x768 ``` <img src=https://imgur.com/bHiTlAu.png width=75% height=75%> <img src=https://imgur.com/dGFn0uV.png width=75% height=75%> ``` Positive:1girl, blurry, bracelet, breasts, dress, earrings, fingernails, grey_eyes, jewelry, lips, lipstick, looking_at_viewer, makeup, nail_polish, necklace, petals, red_lips, short_hair, solo, white_hair Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 20, Sampler: DPM++ 2S a, CFG scale: 8, Seed: 3149099819, Size: 704x896 ``` <img src=https://imgur.com/tnGOZz8.png width=75% height=75%> Img2img results: ``` Positive:1girl, anal_hair, black_pubic_hair, blurry, blurry_background, brown_eyes, colored_pubic_hair, excessive_pubic_hair, female_pubic_hair, forehead, grass, lips, looking_at_viewer, male_pubic_hair, mismatched_pubic_hair, pov, pubic_hair, realistic, solo, stray_pubic_hair, teeth Negative:lowres, bad anatomy, ((bad hands)), text, error, ((missing fingers)), cropped, jpeg artifacts, worst quality, low quality, signature, watermark, blurry, deformed, extra ears, deformed, disfigured, mutation, censored, ((multiple_girls)) Steps: 35, Sampler: Euler a, CFG scale: 9, Seed: 2148680457, Size: 512x512, Denoising strength: 0.6, Mask blur: 4 ``` <img src=https://imgur.com/RVl7Xxd.png width=75% height=75%> ## Disclaimer If you get anime images not semi realistic ones try some prompts like semi realistic, realistic or (SemiRealImg). Usually helps. This model also works nicely with landscapes like my previous one. However I recommend my other anime model for landscapes. ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Davlan/bloom-560m_am_sft_10000samples
Davlan
2022-11-18T15:43:47Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-18T14:26:55Z
--- license: bigscience-openrail-m ---
Davlan/bloom-560m_am_continual-pretrain_10000samples
Davlan
2022-11-18T15:37:46Z
120
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-18T14:06:34Z
--- license: bigscience-openrail-m ---
Davlan/bloom-560m_am_madx_10000samples
Davlan
2022-11-18T14:44:59Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-18T14:26:38Z
--- license: bigscience-openrail-m ---
Lukejd83/dndGenerator
Lukejd83
2022-11-18T13:54:36Z
0
3
null
[ "license:odc-by", "region:us" ]
null
2022-11-18T04:53:58Z
--- license: odc-by --- Basically, generate the images by saying "dnd[RACE] person" I know some arent people, but it's what I've got to work with. ;) Make sure there are no spaces, or punctuation in the "dnd[RACE HERE]" section, so "a portrait of dndYuanTi person, intricate, elegant, highly detailed, digital painting, artstation, trending, Volumetric lighting" Here is a list of all of them (Autognome is VERY undertrained...): * dndAarakocra * dndAasimar * dndAirGenasi * dndAstralElf * dndAutognome * dndBugbear * dndCentaur * dndChangeling * dndDeepGnome * dndDragonborn * dndDwarf * dndEarthGenasi * dndEladrin * dndElf * dndFairy * dndFirbolg * dndFireGenasi * dndGenasi * dndGiff * dndGith * dndGnome * dndGoblin * dndGoliath * dndGrung * dndHadozee * dndHalfElf * dndHalfling * dndHalfOrc * dndHarengon * dndHobgoblin * dndHuman * dndKalashtar * dndKenku * dndKobold * dndLeonin * dndLizardfolk * dndLocathah * dndLoxodon * dndMinotaur * dndOrc * dndOwlin * dndPlasmoid * dndRebornLineage * dndSatyr * dndSeaElf * dndShadarKai * dndShifter * dndSimicHybrid * dndTabaxi * dndThriKreen * dndTiefling * dndTortle * dndTriton * dndVedalken * dndVerdan * dndWarforged * dndWaterGenasi * dndYuanTi
cyburn/lego_set
cyburn
2022-11-18T13:44:33Z
0
2
null
[ "license:unknown", "region:us" ]
null
2022-11-17T18:33:12Z
--- license: unknown --- # Lego Set finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. ## Model info The models included was trained on "multi-resolution" images of "Lego Sets" ## Using the model * common subject prompt tokens: `lego set <wathever>` ## Example prompts `mcdonald restaurant lego set`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/1.jpg" alt="Picture." width="500"/> `lego set crow, skull`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/2.jpg" alt="Picture." width="500"/> ## img2img example `lego set ottawa parliament building sharp focus`: <img src="https://huggingface.co/cyburn/lego_set/resolve/main/3.jpg" alt="Picture." width="500"/>
Madiator2011/Lyoko-Diffusion-v1.1
Madiator2011
2022-11-18T13:00:15Z
36
6
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-10-30T14:52:25Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: false extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. If possible do not use this model for comercial stuff and if you want to at least give some credtis :) By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well. extra_gated_fields: I have read the License and agree with its terms: checkbox --- # Lyoko Diffusion v1-1 Model Card ![sample](sample.png) This model is allowing users to generate images into styles from TV show Code Lyoko both 2D/CGI format. To switch between styles you need to add it to prompt: for CGI ```CGILyoko style style``` for 2D ```2DLyoko style style``` If you want to support my future projects you can do it via https://ko-fi.com/madiator2011 Or by using my model on runpod with my reflink https://runpod.io?ref=vfker49t This model has been trained thanks to support of Runpod.io team. ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "Madiator2011/Lyoko-Diffusion-v1.1" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept.
sukantan/wav2vec2-large-xls-r-300m-or-colab
sukantan
2022-11-18T12:58:33Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-03T11:58:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-or-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9276 - Wer: 1.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.764 | 24.97 | 400 | 0.9276 | 1.1042 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
stephenhbarlow/biobert-base-cased-v1.2-finetuned-PET
stephenhbarlow
2022-11-18T12:22:17Z
115
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-17T16:58:59Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: biobert-base-cased-v1.2-finetuned-PET results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-PET This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1756 - Accuracy: 0.9393 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3531 | 1.0 | 16 | 0.1964 | 0.9252 | 0.8995 | | 0.3187 | 2.0 | 32 | 0.1756 | 0.9393 | 0.9244 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.14.0.dev20221117 - Datasets 2.5.2 - Tokenizers 0.13.1
oskarandrsson/mt-lt-sv-finetuned
oskarandrsson
2022-11-18T11:36:42Z
108
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "lt", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T08:27:36Z
--- license: apache-2.0 language: - lt - sv tags: - generated_from_trainer - translation metrics: - bleu model-index: - name: mt-lt-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-lt-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-lt-sv](https://huggingface.co/Helsinki-NLP/opus-mt-lt-sv) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1276 - Bleu: 43.0025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.3499 | 1.0 | 4409 | 1.2304 | 40.3211 | | 1.2442 | 2.0 | 8818 | 1.1870 | 41.4633 | | 1.1875 | 3.0 | 13227 | 1.1652 | 41.9164 | | 1.1386 | 4.0 | 17636 | 1.1523 | 42.3534 | | 1.0949 | 5.0 | 22045 | 1.1423 | 42.6339 | | 1.0739 | 6.0 | 26454 | 1.1373 | 42.7617 | | 1.0402 | 7.0 | 30863 | 1.1324 | 42.8568 | | 1.0369 | 8.0 | 35272 | 1.1298 | 42.9608 | | 1.0138 | 9.0 | 39681 | 1.1281 | 42.9833 | | 1.0192 | 10.0 | 44090 | 1.1276 | 43.0025 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-uk-sv-finetuned
oskarandrsson
2022-11-18T11:36:18Z
105
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "uk", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T13:48:10Z
--- license: apache-2.0 language: - uk - sv tags: - generated_from_trainer - translation model-index: - name: mt-uk-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-uk-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-uk-sv](https://huggingface.co/Helsinki-NLP/opus-mt-uk-sv) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4210 - eval_bleu: 40.6634 - eval_runtime: 966.5303 - eval_samples_per_second: 18.744 - eval_steps_per_second: 4.687 - epoch: 6.0 - step: 40764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-ru-sv-finetuned
oskarandrsson
2022-11-18T11:35:38Z
103
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "translation", "ru", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-18T09:31:15Z
--- license: apache-2.0 language: - ru - sv tags: - generated_from_trainer - translation model-index: - name: mt-ru-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-ru-sv-finetuned This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-sv](https://huggingface.co/Helsinki-NLP/opus-mt-ru-sv) on the None dataset. It achieves the following results on the Tatoeba.rus.swe evaluation set: - eval_loss: 0.6998 - eval_bleu: 54.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
oskarandrsson/mt-bs-sv-finetuned
oskarandrsson
2022-11-18T11:35:05Z
104
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "bs", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-11-16T16:57:47Z
--- license: apache-2.0 language: - bs - sv tags: - translation model-index: - name: mt-bs-sv-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt-bs-sv-finetuned This model is a fine-tuned version of [oskarandrsson/mt-hr-sv-finetuned](https://huggingface.co/oskarandrsson/mt-hr-sv-finetuned) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8217 - eval_bleu: 53.9611 - eval_runtime: 601.8995 - eval_samples_per_second: 15.971 - eval_steps_per_second: 3.994 - epoch: 4.0 - step: 14420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
zhiguoxu/bert-base-chinese-finetuned-ner
zhiguoxu
2022-11-18T11:09:59Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-07T16:37:59Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-chinese-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0063 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0712 | 1.0 | 3 | 1.6814 | 0.0472 | | 1.545 | 2.0 | 6 | 1.1195 | 0.4993 | | 1.1234 | 3.0 | 9 | 0.7210 | 0.7259 | | 0.6518 | 4.0 | 12 | 0.4457 | 0.8595 | | 0.497 | 5.0 | 15 | 0.2754 | 0.9050 | | 0.2761 | 6.0 | 18 | 0.1742 | 0.9509 | | 0.2281 | 7.0 | 21 | 0.1053 | 0.9903 | | 0.1189 | 8.0 | 24 | 0.0642 | 0.9976 | | 0.1002 | 9.0 | 27 | 0.0416 | 1.0 | | 0.053 | 10.0 | 30 | 0.0280 | 1.0 | | 0.0525 | 11.0 | 33 | 0.0206 | 1.0 | | 0.0412 | 12.0 | 36 | 0.0156 | 1.0 | | 0.0284 | 13.0 | 39 | 0.0123 | 1.0 | | 0.0191 | 14.0 | 42 | 0.0101 | 1.0 | | 0.0227 | 15.0 | 45 | 0.0087 | 1.0 | | 0.0167 | 16.0 | 48 | 0.0077 | 1.0 | | 0.0161 | 17.0 | 51 | 0.0071 | 1.0 | | 0.015 | 18.0 | 54 | 0.0066 | 1.0 | | 0.0167 | 19.0 | 57 | 0.0064 | 1.0 | | 0.0121 | 20.0 | 60 | 0.0063 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu102 - Datasets 1.18.4 - Tokenizers 0.12.1