modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-30 00:44:18
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 536
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-30 00:43:43
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
feic36/xlm-roberta-base-finetuned-panx-de-fr
|
feic36
| 2023-07-30T17:09:48Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-07-30T16:58:02Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1606
- F1: 0.8620
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2873 | 1.0 | 715 | 0.1802 | 0.8245 |
| 0.1446 | 2.0 | 1430 | 0.1601 | 0.8512 |
| 0.0925 | 3.0 | 2145 | 0.1606 | 0.8620 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.0.1+cu118
- Datasets 1.16.1
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e5_s6789_v3_l54_v50
|
KingKazma
| 2023-07-30T16:59:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:59:33Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e4_s6789_v3_l4_v50
|
KingKazma
| 2023-07-30T16:51:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:51:56Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
ctrltokyo/llm_prompt_mask_fill_model
|
ctrltokyo
| 2023-07-30T16:47:26Z | 62 | 1 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"en",
"dataset:sahil2801/code_instructions_120k",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-07-29T12:13:23Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: ctrltokyo/llm_prompt_mask_fill_model
results: []
datasets:
- sahil2801/code_instructions_120k
metrics:
- accuracy
language:
- en
widget:
- text: "A web application with a REST API on Rails. This will be used for [MASK]."
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ctrltokyo/llm_prompt_mask_fill_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [code_instructions_120k](https://huggingface.co/datasets/sahil2801/code_instructions_120k) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.1215
- Validation Loss: 1.5672
- Epoch: 0
## Model description
It's just distilbert-base-uncased with some fine tuning.
## Intended uses & limitations
This model could be used for live autocompletion of PROMPTS in a coding-specific chatbot. Don't try this on code, because it won't work.
## Training and evaluation data
Evaluated on 5% of training data. No further evaluation performed at this point. Trained on NVIDIA V100.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 108, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1215 | 1.5672 | 0 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.1
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e3_s6789_v3_l4_v50
|
KingKazma
| 2023-07-30T16:44:00Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:43:59Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e2_s6789_v3_l4_v50
|
KingKazma
| 2023-07-30T16:36:03Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:36:01Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
feic36/xlm-roberta-base-finetuned-panx-de
|
feic36
| 2023-07-30T16:35:15Z | 125 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-07-30T16:25:41Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8653353814644136
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1339
- F1: 0.8653
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2583 | 1.0 | 525 | 0.1596 | 0.8231 |
| 0.1262 | 2.0 | 1050 | 0.1395 | 0.8468 |
| 0.0824 | 3.0 | 1575 | 0.1339 | 0.8653 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.0.1+cu118
- Datasets 1.16.1
- Tokenizers 0.13.3
|
kimetsu/Whisper-Small-TF-TIMIT-FLEUR
|
kimetsu
| 2023-07-30T16:33:39Z | 76 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-03-29T09:43:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-Small-TF-TIMIT-FLEUR
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-Small-TF-TIMIT-FLEUR
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8885
- Wer: 35.0461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4965 | 1.27 | 500 | 0.9304 | 37.3857 |
| 0.1668 | 2.54 | 1000 | 0.8561 | 32.7384 |
| 0.069 | 3.81 | 1500 | 0.8093 | 52.7441 |
| 0.0152 | 5.08 | 2000 | 0.9021 | 54.9437 |
| 0.0083 | 6.35 | 2500 | 0.8471 | 57.3611 |
| 0.0021 | 7.61 | 3000 | 0.8885 | 35.0461 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|
kimetsu/Whisper-Small-TF-TIMIT
|
kimetsu
| 2023-07-30T16:32:47Z | 78 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-03-06T16:37:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-Small-TF-TIMIT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-Small-TF-TIMIT
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7104
- Wer: 98.0856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3408 | 3.45 | 500 | 0.3994 | 83.6838 |
| 0.2057 | 6.9 | 1000 | 0.4079 | 92.3470 |
| 0.0616 | 10.34 | 1500 | 0.5076 | 94.2053 |
| 0.023 | 13.79 | 2000 | 0.5998 | 95.3184 |
| 0.0043 | 17.24 | 2500 | 0.6825 | 97.1284 |
| 0.0023 | 20.69 | 3000 | 0.7104 | 98.0856 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|
kimetsu/Whisper-Small-TF-TIMIT-FLEUR-Normalizado
|
kimetsu
| 2023-07-30T16:31:42Z | 85 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-04-04T16:17:00Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-Small-TF-TIMIT-FLEUR-Normalizado
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-Small-TF-TIMIT-FLEUR-Normalizado
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7395
- Wer: 85.3796
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5923 | 1.27 | 500 | 0.9379 | 98.7612 |
| 0.1823 | 2.54 | 1000 | 0.6721 | 89.3262 |
| 0.0852 | 3.81 | 1500 | 0.6534 | 86.1141 |
| 0.0327 | 5.08 | 2000 | 0.6794 | 84.4019 |
| 0.0106 | 6.35 | 2500 | 0.7170 | 82.5587 |
| 0.0064 | 7.61 | 3000 | 0.7395 | 85.3796 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|
efainman/rl_course_vizdoom_health_gathering_supreme
|
efainman
| 2023-07-30T16:28:20Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T16:28:15Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.31 +/- 4.54
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r efainman/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
teftef/LARM_mix_xl
|
teftef
| 2023-07-30T16:20:10Z | 0 | 2 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-30T13:06:56Z |
---
license: creativeml-openrail-m
---
# LARM_mix_xl
StableDiffusionXL model merge for anime.
Negative Prompt Embedding can be obtained [here](https://huggingface.co/gsdf/CounterfeitXL/tree/main/embeddings) .
### Examples
<img src="https://cdn-uploads.huggingface.co/production/uploads/63056e2d99870e13d3df4e73/GPBK1UTXyejQpEaHSaBpu.png" width="1200" >
- Prompt: face focus, dynamic angle, masterpiece, best quality, solo, 1girl, face focus, cute, masterpiece, best quality, 1girl holding lycoris, black background, light particle, solo, black hair, red eyes, standing, pixiv, depth of field, cinematic compotision, best lighting, looking up
- Negative prompt: (low quality, worst quality:1.3), 3d, embedding:negativeXL_C.safetensors, watermark, signature, ugly, nsfw, (worst quality, low quality, normal quality:1.2), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.1)
- Steps: 30
- Sampler: ddpm_2s_ancestral
- CFG scale: 12
- Seed: 3178
- Size: 1024x1024
- Scheduler normal
- Denoise: 1.0
<img src="https://cdn-uploads.huggingface.co/production/uploads/63056e2d99870e13d3df4e73/3oI1BQh1NxU0JuHja7VOJ.png" width="1200" >
- Prompt: face focus, dynamic angle, masterpiece, best quality, solo, 1girl, looking at viewer, solo, brown hair, outdoors, brown eyes, falling autumn leaves, plaid brown dress, medium hair, black boots, white coat, pixiv, depth of field, smile
- Negative prompt: (low quality, worst quality:1.3), 3d, embedding:negativeXL_C.safetensors, watermark, signature, ugly,
nsfw, (worst quality, low quality, normal quality:1.2), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.1),
- Steps: 30
- Sampler: ddpm_2s_ancestral
- CFG scale: 12
- Seed: 3157
- Size: 1024x1024
- Scheduler normal
- Denoise: 1.0
### Notes
・Feel free to use it for merging.
・Do not sell this model for commercial purposes.
・Do not use for crimes.
thanks to the author of
[Counterfeit XL](https://civitai.com/models/118406/counterfeitxl)
[Reproduction](https://civitai.com/models/118729?modelVersionId=128846)
[Swim In Latent](https://civitai.com/models/118525/swim-in-latent)
[not waifu](https://huggingface.co/gmonsoon/notwaifu-diffusion-xl/tree/main)
Public : 2023/07/30 teftef
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e0_s6789_v3_l4_v50
|
KingKazma
| 2023-07-30T16:20:08Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:20:06Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e0_s6789_v3_l54_v50
|
KingKazma
| 2023-07-30T16:19:01Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:18:58Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
yeiker/Canservero
|
yeiker
| 2023-07-30T16:17:12Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-30T16:17:12Z |
---
license: creativeml-openrail-m
---
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e-1_s6789_v3_l4_v50
|
KingKazma
| 2023-07-30T16:12:05Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:12:04Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e-1_s6789_v3_l54_v50
|
KingKazma
| 2023-07-30T16:11:04Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T16:11:00Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
Ningxin/llama2_wikitext_centralized_4
|
Ningxin
| 2023-07-30T15:58:28Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T15:56:15Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
iamnambiar/q-FrozenLake-v1-4x4-noSlippery
|
iamnambiar
| 2023-07-30T15:55:43Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T15:32:31Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="iamnambiar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
matnord/PPO-LunarLander
|
matnord
| 2023-07-30T15:44:04Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T15:43:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.51 +/- 17.11
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
pratsy/poca-SoccerTwos
|
pratsy
| 2023-07-30T15:31:10Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-07-30T15:30:34Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: pratsy/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
d-karpone/whisper-small-dv
|
d-karpone
| 2023-07-30T15:14:26Z | 78 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-30T14:36:45Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-small-dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3305785123966942
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-dv
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6857
- Wer Ortho: 32.4491
- Wer: 0.3306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0008 | 17.86 | 500 | 0.6857 | 32.4491 | 0.3306 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|
csabad/ppo-LunarLander-v2
|
csabad
| 2023-07-30T14:42:50Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T14:42:27Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 223.00 +/- 20.20
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
reach-vb/bark-endpoint
|
reach-vb
| 2023-07-30T14:34:35Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bark",
"text-to-audio",
"audio",
"text-to-speech",
"en",
"de",
"es",
"fr",
"hi",
"it",
"ja",
"ko",
"pl",
"pt",
"ru",
"tr",
"zh",
"license:cc-by-nc-4.0",
"region:us"
] |
text-to-speech
| 2023-07-30T14:34:35Z |
---
language:
- en
- de
- es
- fr
- hi
- it
- ja
- ko
- pl
- pt
- ru
- tr
- zh
thumbnail: >-
https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
library: bark
license: cc-by-nc-4.0
tags:
- bark
- audio
- text-to-speech
pipeline_tag: text-to-speech
inference: false
duplicated_from: suno/bark
---
# Bark
Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai).
Bark can generate highly realistic, multilingual speech as well as other audio - including music,
background noise and simple sound effects. The model can also produce nonverbal
communications like laughing, sighing and crying. To support the research community,
we are providing access to pretrained model checkpoints ready for inference.
The original github repo and model card can be found [here](https://github.com/suno-ai/bark).
This model is meant for research purposes only.
The model output is not censored and the authors do not endorse the opinions in the generated content.
Use at your own risk.
Two checkpoints are released:
- [small](https://huggingface.co/suno/bark-small)
- [**large** (this checkpoint)](https://huggingface.co/suno/bark)
## Example
Try out Bark yourself!
* Bark Colab:
<a target="_blank" href="https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
* Hugging Face Colab:
<a target="_blank" href="https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
* Hugging Face Demo:
<a target="_blank" href="https://huggingface.co/spaces/suno/bark">
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
</a>
## 🤗 Transformers Usage
You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main:
```
pip install git+https://github.com/huggingface/transformers.git
```
2. Run the following Python code to generate speech samples:
```python
from transformers import AutoProcessor, AutoModel
processor = AutoProcessor.from_pretrained("suno/bark-small")
model = AutoModel.from_pretrained("suno/bark-small")
inputs = processor(
text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
return_tensors="pt",
)
speech_values = model.generate(**inputs, do_sample=True)
```
3. Listen to the speech samples either in an ipynb notebook:
```python
from IPython.display import Audio
sampling_rate = model.generation_config.sample_rate
Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
```
Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
```python
import scipy
sampling_rate = model.config.sample_rate
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
```
For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark).
## Suno Usage
You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark):
1. First install the [`bark` library](https://github.com/suno-ai/bark)
3. Run the following Python code:
```python
from bark import SAMPLE_RATE, generate_audio, preload_models
from IPython.display import Audio
# download and load all models
preload_models()
# generate audio from text
text_prompt = """
Hello, my name is Suno. And, uh — and I like pizza. [laughs]
But I also have other interests such as playing tic tac toe.
"""
speech_array = generate_audio(text_prompt)
# play text in notebook
Audio(speech_array, rate=SAMPLE_RATE)
```
[pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm)
To save `audio_array` as a WAV file:
```python
from scipy.io.wavfile import write as write_wav
write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array)
```
## Model Details
The following is additional information about the models released here.
Bark is a series of three transformer models that turn text into audio.
### Text to semantic tokens
- Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
- Output: semantic tokens that encode the audio to be generated
### Semantic to coarse tokens
- Input: semantic tokens
- Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook
### Coarse to fine tokens
- Input: the first two codebooks from EnCodec
- Output: 8 codebooks from EnCodec
### Architecture
| Model | Parameters | Attention | Output Vocab size |
|:-------------------------:|:----------:|------------|:-----------------:|
| Text to semantic tokens | 80/300 M | Causal | 10,000 |
| Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 |
| Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 |
### Release date
April 2023
## Broader Implications
We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages.
While we hope that this release will enable users to express their creativity and build applications that are a force
for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward
to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark,
we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository).
|
digiplay/DreamShaper_8
|
digiplay
| 2023-07-30T14:30:18Z | 2,414 | 15 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-30T13:39:08Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info:
https://civitai.com/models/4384?modelVersionId=128713
Original Author's DEMO images :

,%20(extremely%20intricate_1.3),%20(realistic),%20portrait%20of%20a%20girl,%20the%20most%20beautiful%20in%20the%20world,%20(medieval%20armor),%20me.jpeg)
,%20best%20quality,%20beautiful%20lighting,%20(ulzzang-6500_0.5),%20lucy%20_(cyberpunk_),%201girl,%20white%20hair,.jpeg)
Sample image generated by huggingface's API :

*generated by huggingface's API
|
minatosnow/swinv2-small-patch4-window16-256-mineral
|
minatosnow
| 2023-07-30T14:23:14Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swinv2-small-patch4-window16-256",
"base_model:finetune:microsoft/swinv2-small-patch4-window16-256",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-29T18:28:25Z |
---
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window16-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-small-patch4-window16-256-mineral
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.24
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-small-patch4-window16-256-mineral
This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9130
- Accuracy: 0.24
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 5.6941 | 0.96 | 18 | 5.6921 | 0.005 |
| 5.6886 | 1.97 | 37 | 5.6825 | 0.005 |
| 5.6735 | 2.99 | 56 | 5.6691 | 0.005 |
| 5.6521 | 4.0 | 75 | 5.6549 | 0.0033 |
| 5.6394 | 4.96 | 93 | 5.6416 | 0.0033 |
| 5.6078 | 5.97 | 112 | 5.6278 | 0.0033 |
| 5.5743 | 6.99 | 131 | 5.6128 | 0.0017 |
| 5.5509 | 8.0 | 150 | 5.5918 | 0.0017 |
| 5.5115 | 8.96 | 168 | 5.5696 | 0.0067 |
| 5.4411 | 9.97 | 187 | 5.5440 | 0.01 |
| 5.3335 | 10.99 | 206 | 5.5135 | 0.0167 |
| 5.2413 | 12.0 | 225 | 5.4640 | 0.0217 |
| 5.1738 | 12.96 | 243 | 5.4084 | 0.0333 |
| 5.0222 | 13.97 | 262 | 5.3321 | 0.045 |
| 4.8594 | 14.99 | 281 | 5.2485 | 0.0533 |
| 4.7441 | 16.0 | 300 | 5.1509 | 0.065 |
| 4.5946 | 16.96 | 318 | 5.0701 | 0.0717 |
| 4.3382 | 17.97 | 337 | 4.9767 | 0.0867 |
| 4.2008 | 18.99 | 356 | 4.8622 | 0.105 |
| 4.0563 | 20.0 | 375 | 4.7726 | 0.1033 |
| 3.8064 | 20.96 | 393 | 4.6898 | 0.115 |
| 3.5584 | 21.97 | 412 | 4.5997 | 0.125 |
| 3.3377 | 22.99 | 431 | 4.4848 | 0.1367 |
| 3.1119 | 24.0 | 450 | 4.4052 | 0.1533 |
| 2.8686 | 24.96 | 468 | 4.3705 | 0.15 |
| 2.7649 | 25.97 | 487 | 4.2980 | 0.165 |
| 2.5698 | 26.99 | 506 | 4.2363 | 0.1767 |
| 2.4344 | 28.0 | 525 | 4.1733 | 0.1767 |
| 2.2186 | 28.96 | 543 | 4.1783 | 0.1733 |
| 2.0227 | 29.97 | 562 | 4.1306 | 0.18 |
| 1.9153 | 30.99 | 581 | 4.0948 | 0.175 |
| 1.7363 | 32.0 | 600 | 4.0612 | 0.1783 |
| 1.6171 | 32.96 | 618 | 4.0209 | 0.185 |
| 1.4865 | 33.97 | 637 | 4.0194 | 0.185 |
| 1.3194 | 34.99 | 656 | 3.9881 | 0.205 |
| 1.2811 | 36.0 | 675 | 3.9862 | 0.215 |
| 1.1703 | 36.96 | 693 | 3.9905 | 0.2033 |
| 1.114 | 37.97 | 712 | 3.9514 | 0.2133 |
| 0.9645 | 38.99 | 731 | 3.9678 | 0.2067 |
| 0.8976 | 40.0 | 750 | 3.9874 | 0.2167 |
| 0.8147 | 40.96 | 768 | 3.9257 | 0.2083 |
| 0.7239 | 41.97 | 787 | 3.9394 | 0.2217 |
| 0.7732 | 42.99 | 806 | 3.9473 | 0.215 |
| 0.7009 | 44.0 | 825 | 3.9461 | 0.215 |
| 0.5945 | 44.96 | 843 | 4.0207 | 0.2133 |
| 0.555 | 45.97 | 862 | 4.0353 | 0.2083 |
| 0.5241 | 46.99 | 881 | 4.0232 | 0.2167 |
| 0.4789 | 48.0 | 900 | 4.0026 | 0.22 |
| 0.4284 | 48.96 | 918 | 4.0031 | 0.22 |
| 0.4701 | 49.97 | 937 | 4.0572 | 0.215 |
| 0.4501 | 50.99 | 956 | 4.0877 | 0.215 |
| 0.3966 | 52.0 | 975 | 4.0207 | 0.2167 |
| 0.3564 | 52.96 | 993 | 4.0827 | 0.215 |
| 0.3472 | 53.97 | 1012 | 4.0902 | 0.235 |
| 0.3731 | 54.99 | 1031 | 4.0953 | 0.2417 |
| 0.3161 | 56.0 | 1050 | 4.1660 | 0.2033 |
| 0.3352 | 56.96 | 1068 | 4.1153 | 0.2217 |
| 0.3317 | 57.97 | 1087 | 4.1096 | 0.2167 |
| 0.294 | 58.99 | 1106 | 4.1856 | 0.215 |
| 0.3299 | 60.0 | 1125 | 4.1476 | 0.2233 |
| 0.2847 | 60.96 | 1143 | 4.2046 | 0.225 |
| 0.2924 | 61.97 | 1162 | 4.1568 | 0.2183 |
| 0.2818 | 62.99 | 1181 | 4.1519 | 0.2333 |
| 0.2698 | 64.0 | 1200 | 4.2275 | 0.215 |
| 0.2579 | 64.96 | 1218 | 4.1626 | 0.235 |
| 0.2597 | 65.97 | 1237 | 4.2277 | 0.2217 |
| 0.2443 | 66.99 | 1256 | 4.1929 | 0.2367 |
| 0.2532 | 68.0 | 1275 | 4.2779 | 0.2233 |
| 0.2305 | 68.96 | 1293 | 4.2441 | 0.2367 |
| 0.2423 | 69.97 | 1312 | 4.2583 | 0.2217 |
| 0.222 | 70.99 | 1331 | 4.2935 | 0.23 |
| 0.2096 | 72.0 | 1350 | 4.2714 | 0.23 |
| 0.1776 | 72.96 | 1368 | 4.2348 | 0.225 |
| 0.2009 | 73.97 | 1387 | 4.2930 | 0.2283 |
| 0.2087 | 74.99 | 1406 | 4.3071 | 0.235 |
| 0.1818 | 76.0 | 1425 | 4.2960 | 0.235 |
| 0.2236 | 76.96 | 1443 | 4.2910 | 0.24 |
| 0.1802 | 77.97 | 1462 | 4.2896 | 0.25 |
| 0.2037 | 78.99 | 1481 | 4.3314 | 0.245 |
| 0.1912 | 80.0 | 1500 | 4.2612 | 0.2333 |
| 0.2305 | 80.96 | 1518 | 4.2790 | 0.2367 |
| 0.2188 | 81.97 | 1537 | 4.3069 | 0.2217 |
| 0.1639 | 82.99 | 1556 | 4.3539 | 0.2183 |
| 0.1741 | 84.0 | 1575 | 4.3211 | 0.225 |
| 0.1937 | 84.96 | 1593 | 4.3576 | 0.2117 |
| 0.1712 | 85.97 | 1612 | 4.3434 | 0.2233 |
| 0.1665 | 86.99 | 1631 | 4.3349 | 0.2117 |
| 0.1846 | 88.0 | 1650 | 4.4170 | 0.235 |
| 0.1827 | 88.96 | 1668 | 4.3350 | 0.23 |
| 0.1591 | 89.97 | 1687 | 4.3397 | 0.215 |
| 0.1508 | 90.99 | 1706 | 4.3273 | 0.2317 |
| 0.1808 | 92.0 | 1725 | 4.3315 | 0.2317 |
| 0.17 | 92.96 | 1743 | 4.2760 | 0.24 |
| 0.14 | 93.97 | 1762 | 4.3144 | 0.2333 |
| 0.1734 | 94.99 | 1781 | 4.3667 | 0.2283 |
| 0.1593 | 96.0 | 1800 | 4.3903 | 0.225 |
| 0.1523 | 96.96 | 1818 | 4.3314 | 0.24 |
| 0.1599 | 97.97 | 1837 | 4.4115 | 0.23 |
| 0.1352 | 98.99 | 1856 | 4.3626 | 0.2467 |
| 0.1406 | 100.0 | 1875 | 4.3555 | 0.2383 |
| 0.1486 | 100.96 | 1893 | 4.3116 | 0.2383 |
| 0.149 | 101.97 | 1912 | 4.3894 | 0.23 |
| 0.115 | 102.99 | 1931 | 4.3755 | 0.2233 |
| 0.1301 | 104.0 | 1950 | 4.3765 | 0.2317 |
| 0.1429 | 104.96 | 1968 | 4.4027 | 0.235 |
| 0.1209 | 105.97 | 1987 | 4.3803 | 0.2317 |
| 0.1287 | 106.99 | 2006 | 4.3235 | 0.2467 |
| 0.1318 | 108.0 | 2025 | 4.3484 | 0.24 |
| 0.1136 | 108.96 | 2043 | 4.3977 | 0.225 |
| 0.1326 | 109.97 | 2062 | 4.3978 | 0.2267 |
| 0.1415 | 110.99 | 2081 | 4.3214 | 0.2383 |
| 0.1229 | 112.0 | 2100 | 4.3699 | 0.2467 |
| 0.1004 | 112.96 | 2118 | 4.3828 | 0.2583 |
| 0.0961 | 113.97 | 2137 | 4.3564 | 0.2517 |
| 0.1132 | 114.99 | 2156 | 4.3384 | 0.2533 |
| 0.1166 | 116.0 | 2175 | 4.4152 | 0.2417 |
| 0.1193 | 116.96 | 2193 | 4.3634 | 0.2417 |
| 0.096 | 117.97 | 2212 | 4.3826 | 0.235 |
| 0.1158 | 118.99 | 2231 | 4.4524 | 0.235 |
| 0.099 | 120.0 | 2250 | 4.4978 | 0.2233 |
| 0.1065 | 120.96 | 2268 | 4.4124 | 0.24 |
| 0.129 | 121.97 | 2287 | 4.3814 | 0.235 |
| 0.1047 | 122.99 | 2306 | 4.3663 | 0.2467 |
| 0.101 | 124.0 | 2325 | 4.5113 | 0.23 |
| 0.1076 | 124.96 | 2343 | 4.4553 | 0.2367 |
| 0.1135 | 125.97 | 2362 | 4.4351 | 0.23 |
| 0.1066 | 126.99 | 2381 | 4.4874 | 0.235 |
| 0.1256 | 128.0 | 2400 | 4.4635 | 0.2333 |
| 0.0932 | 128.96 | 2418 | 4.4576 | 0.2383 |
| 0.1189 | 129.97 | 2437 | 4.5770 | 0.2267 |
| 0.1096 | 130.99 | 2456 | 4.4921 | 0.2317 |
| 0.0791 | 132.0 | 2475 | 4.5090 | 0.2267 |
| 0.1152 | 132.96 | 2493 | 4.4572 | 0.2417 |
| 0.1264 | 133.97 | 2512 | 4.5109 | 0.25 |
| 0.1009 | 134.99 | 2531 | 4.5236 | 0.2283 |
| 0.0956 | 136.0 | 2550 | 4.4783 | 0.245 |
| 0.0919 | 136.96 | 2568 | 4.5484 | 0.2467 |
| 0.1042 | 137.97 | 2587 | 4.5423 | 0.2433 |
| 0.1039 | 138.99 | 2606 | 4.4918 | 0.245 |
| 0.094 | 140.0 | 2625 | 4.5456 | 0.2467 |
| 0.1056 | 140.96 | 2643 | 4.5219 | 0.245 |
| 0.0918 | 141.97 | 2662 | 4.5255 | 0.245 |
| 0.0877 | 142.99 | 2681 | 4.4923 | 0.2383 |
| 0.105 | 144.0 | 2700 | 4.5352 | 0.235 |
| 0.0892 | 144.96 | 2718 | 4.4715 | 0.245 |
| 0.0963 | 145.97 | 2737 | 4.5060 | 0.245 |
| 0.095 | 146.99 | 2756 | 4.5593 | 0.2433 |
| 0.0997 | 148.0 | 2775 | 4.5804 | 0.24 |
| 0.0839 | 148.96 | 2793 | 4.5917 | 0.23 |
| 0.0924 | 149.97 | 2812 | 4.5931 | 0.2267 |
| 0.0781 | 150.99 | 2831 | 4.5784 | 0.2317 |
| 0.0986 | 152.0 | 2850 | 4.6546 | 0.2283 |
| 0.0823 | 152.96 | 2868 | 4.5985 | 0.2367 |
| 0.0887 | 153.97 | 2887 | 4.6148 | 0.23 |
| 0.0671 | 154.99 | 2906 | 4.6397 | 0.2333 |
| 0.0897 | 156.0 | 2925 | 4.5834 | 0.235 |
| 0.093 | 156.96 | 2943 | 4.5397 | 0.2433 |
| 0.0973 | 157.97 | 2962 | 4.5532 | 0.2333 |
| 0.1001 | 158.99 | 2981 | 4.5827 | 0.24 |
| 0.0884 | 160.0 | 3000 | 4.5728 | 0.235 |
| 0.084 | 160.96 | 3018 | 4.6542 | 0.235 |
| 0.0902 | 161.97 | 3037 | 4.6366 | 0.2417 |
| 0.0944 | 162.99 | 3056 | 4.5957 | 0.2383 |
| 0.0828 | 164.0 | 3075 | 4.6521 | 0.23 |
| 0.0812 | 164.96 | 3093 | 4.6761 | 0.2367 |
| 0.0817 | 165.97 | 3112 | 4.6272 | 0.225 |
| 0.07 | 166.99 | 3131 | 4.6536 | 0.2433 |
| 0.0746 | 168.0 | 3150 | 4.5671 | 0.245 |
| 0.0782 | 168.96 | 3168 | 4.5915 | 0.24 |
| 0.0677 | 169.97 | 3187 | 4.6373 | 0.2433 |
| 0.0626 | 170.99 | 3206 | 4.6723 | 0.2583 |
| 0.0697 | 172.0 | 3225 | 4.6817 | 0.245 |
| 0.077 | 172.96 | 3243 | 4.6793 | 0.23 |
| 0.068 | 173.97 | 3262 | 4.7110 | 0.2417 |
| 0.0875 | 174.99 | 3281 | 4.7012 | 0.2433 |
| 0.0787 | 176.0 | 3300 | 4.7113 | 0.2367 |
| 0.0779 | 176.96 | 3318 | 4.6998 | 0.24 |
| 0.0823 | 177.97 | 3337 | 4.7092 | 0.24 |
| 0.0685 | 178.99 | 3356 | 4.6763 | 0.245 |
| 0.0698 | 180.0 | 3375 | 4.7181 | 0.2567 |
| 0.0924 | 180.96 | 3393 | 4.7151 | 0.2483 |
| 0.084 | 181.97 | 3412 | 4.7231 | 0.2417 |
| 0.0508 | 182.99 | 3431 | 4.6856 | 0.2317 |
| 0.0637 | 184.0 | 3450 | 4.7041 | 0.2417 |
| 0.06 | 184.96 | 3468 | 4.7205 | 0.24 |
| 0.0659 | 185.97 | 3487 | 4.7251 | 0.2433 |
| 0.0842 | 186.99 | 3506 | 4.7215 | 0.23 |
| 0.0733 | 188.0 | 3525 | 4.7068 | 0.24 |
| 0.0647 | 188.96 | 3543 | 4.7594 | 0.2367 |
| 0.0569 | 189.97 | 3562 | 4.7831 | 0.2233 |
| 0.0883 | 190.99 | 3581 | 4.7212 | 0.235 |
| 0.0622 | 192.0 | 3600 | 4.6878 | 0.2417 |
| 0.057 | 192.96 | 3618 | 4.6654 | 0.2467 |
| 0.0654 | 193.97 | 3637 | 4.6358 | 0.2517 |
| 0.0868 | 194.99 | 3656 | 4.6621 | 0.2333 |
| 0.0789 | 196.0 | 3675 | 4.6985 | 0.2333 |
| 0.0657 | 196.96 | 3693 | 4.6636 | 0.2567 |
| 0.0648 | 197.97 | 3712 | 4.7698 | 0.2467 |
| 0.0635 | 198.99 | 3731 | 4.7226 | 0.2417 |
| 0.0637 | 200.0 | 3750 | 4.7481 | 0.245 |
| 0.0665 | 200.96 | 3768 | 4.7789 | 0.2483 |
| 0.0799 | 201.97 | 3787 | 4.7014 | 0.235 |
| 0.064 | 202.99 | 3806 | 4.7528 | 0.2417 |
| 0.0772 | 204.0 | 3825 | 4.7401 | 0.2383 |
| 0.0438 | 204.96 | 3843 | 4.7678 | 0.2417 |
| 0.0766 | 205.97 | 3862 | 4.7180 | 0.2367 |
| 0.0687 | 206.99 | 3881 | 4.7058 | 0.2433 |
| 0.0801 | 208.0 | 3900 | 4.7584 | 0.235 |
| 0.0772 | 208.96 | 3918 | 4.7304 | 0.2433 |
| 0.0663 | 209.97 | 3937 | 4.6940 | 0.2367 |
| 0.0529 | 210.99 | 3956 | 4.6940 | 0.235 |
| 0.0568 | 212.0 | 3975 | 4.7333 | 0.235 |
| 0.0697 | 212.96 | 3993 | 4.6673 | 0.2367 |
| 0.0394 | 213.97 | 4012 | 4.6733 | 0.245 |
| 0.0625 | 214.99 | 4031 | 4.7383 | 0.225 |
| 0.0588 | 216.0 | 4050 | 4.7674 | 0.24 |
| 0.0594 | 216.96 | 4068 | 4.6873 | 0.2417 |
| 0.0451 | 217.97 | 4087 | 4.6718 | 0.2433 |
| 0.047 | 218.99 | 4106 | 4.7146 | 0.2283 |
| 0.0445 | 220.0 | 4125 | 4.7174 | 0.2283 |
| 0.0746 | 220.96 | 4143 | 4.6702 | 0.2367 |
| 0.0697 | 221.97 | 4162 | 4.6462 | 0.2367 |
| 0.0562 | 222.99 | 4181 | 4.6956 | 0.2333 |
| 0.047 | 224.0 | 4200 | 4.7278 | 0.2383 |
| 0.0612 | 224.96 | 4218 | 4.7307 | 0.235 |
| 0.0625 | 225.97 | 4237 | 4.6670 | 0.2567 |
| 0.0739 | 226.99 | 4256 | 4.7110 | 0.2317 |
| 0.0637 | 228.0 | 4275 | 4.7039 | 0.22 |
| 0.0461 | 228.96 | 4293 | 4.7119 | 0.2267 |
| 0.0506 | 229.97 | 4312 | 4.7099 | 0.23 |
| 0.0412 | 230.99 | 4331 | 4.6714 | 0.2317 |
| 0.057 | 232.0 | 4350 | 4.6921 | 0.2367 |
| 0.0402 | 232.96 | 4368 | 4.7545 | 0.2317 |
| 0.058 | 233.97 | 4387 | 4.7573 | 0.225 |
| 0.0661 | 234.99 | 4406 | 4.6800 | 0.2283 |
| 0.0613 | 236.0 | 4425 | 4.6533 | 0.2433 |
| 0.0462 | 236.96 | 4443 | 4.6748 | 0.2283 |
| 0.0494 | 237.97 | 4462 | 4.6874 | 0.23 |
| 0.0643 | 238.99 | 4481 | 4.7291 | 0.2333 |
| 0.0422 | 240.0 | 4500 | 4.7088 | 0.23 |
| 0.0376 | 240.96 | 4518 | 4.7422 | 0.225 |
| 0.0696 | 241.97 | 4537 | 4.8011 | 0.2283 |
| 0.0609 | 242.99 | 4556 | 4.8013 | 0.2217 |
| 0.0637 | 244.0 | 4575 | 4.7603 | 0.225 |
| 0.0529 | 244.96 | 4593 | 4.7895 | 0.2233 |
| 0.0603 | 245.97 | 4612 | 4.7639 | 0.235 |
| 0.0365 | 246.99 | 4631 | 4.7285 | 0.2433 |
| 0.0732 | 248.0 | 4650 | 4.7252 | 0.2283 |
| 0.0709 | 248.96 | 4668 | 4.7620 | 0.23 |
| 0.0485 | 249.97 | 4687 | 4.7529 | 0.2367 |
| 0.0449 | 250.99 | 4706 | 4.8006 | 0.2417 |
| 0.0506 | 252.0 | 4725 | 4.8028 | 0.2333 |
| 0.0455 | 252.96 | 4743 | 4.7778 | 0.2367 |
| 0.0594 | 253.97 | 4762 | 4.7439 | 0.2383 |
| 0.0551 | 254.99 | 4781 | 4.8069 | 0.2367 |
| 0.0435 | 256.0 | 4800 | 4.8171 | 0.2383 |
| 0.042 | 256.96 | 4818 | 4.7961 | 0.2383 |
| 0.0403 | 257.97 | 4837 | 4.8172 | 0.2383 |
| 0.0524 | 258.99 | 4856 | 4.8537 | 0.23 |
| 0.0461 | 260.0 | 4875 | 4.7698 | 0.2283 |
| 0.05 | 260.96 | 4893 | 4.8058 | 0.2483 |
| 0.0545 | 261.97 | 4912 | 4.8398 | 0.2333 |
| 0.0405 | 262.99 | 4931 | 4.8228 | 0.2367 |
| 0.0615 | 264.0 | 4950 | 4.8395 | 0.2367 |
| 0.0381 | 264.96 | 4968 | 4.8231 | 0.2233 |
| 0.0464 | 265.97 | 4987 | 4.8180 | 0.2367 |
| 0.058 | 266.99 | 5006 | 4.8744 | 0.235 |
| 0.0553 | 268.0 | 5025 | 4.8866 | 0.2367 |
| 0.0505 | 268.96 | 5043 | 4.8534 | 0.24 |
| 0.049 | 269.97 | 5062 | 4.8702 | 0.2333 |
| 0.0444 | 270.99 | 5081 | 4.8715 | 0.2267 |
| 0.0457 | 272.0 | 5100 | 4.8274 | 0.225 |
| 0.0546 | 272.96 | 5118 | 4.8441 | 0.225 |
| 0.0378 | 273.97 | 5137 | 4.8229 | 0.225 |
| 0.0374 | 274.99 | 5156 | 4.8053 | 0.2217 |
| 0.047 | 276.0 | 5175 | 4.8619 | 0.2333 |
| 0.0526 | 276.96 | 5193 | 4.8793 | 0.2417 |
| 0.0503 | 277.97 | 5212 | 4.9060 | 0.2283 |
| 0.0414 | 278.99 | 5231 | 4.8687 | 0.24 |
| 0.0361 | 280.0 | 5250 | 4.8537 | 0.24 |
| 0.0449 | 280.96 | 5268 | 4.8204 | 0.2383 |
| 0.0596 | 281.97 | 5287 | 4.8030 | 0.2367 |
| 0.0494 | 282.99 | 5306 | 4.8060 | 0.2483 |
| 0.0483 | 284.0 | 5325 | 4.7878 | 0.235 |
| 0.0338 | 284.96 | 5343 | 4.8254 | 0.2383 |
| 0.0319 | 285.97 | 5362 | 4.8264 | 0.2383 |
| 0.0454 | 286.99 | 5381 | 4.8426 | 0.2367 |
| 0.0409 | 288.0 | 5400 | 4.8198 | 0.2483 |
| 0.0435 | 288.96 | 5418 | 4.8339 | 0.2367 |
| 0.0498 | 289.97 | 5437 | 4.8387 | 0.225 |
| 0.0447 | 290.99 | 5456 | 4.8342 | 0.23 |
| 0.0402 | 292.0 | 5475 | 4.8496 | 0.2333 |
| 0.0366 | 292.96 | 5493 | 4.8671 | 0.2317 |
| 0.0369 | 293.97 | 5512 | 4.8366 | 0.2467 |
| 0.0361 | 294.99 | 5531 | 4.7992 | 0.2433 |
| 0.0448 | 296.0 | 5550 | 4.8486 | 0.2267 |
| 0.055 | 296.96 | 5568 | 4.8979 | 0.2267 |
| 0.0585 | 297.97 | 5587 | 4.8660 | 0.2367 |
| 0.0477 | 298.99 | 5606 | 4.8717 | 0.2433 |
| 0.0247 | 300.0 | 5625 | 4.8838 | 0.2283 |
| 0.047 | 300.96 | 5643 | 4.8248 | 0.2383 |
| 0.0608 | 301.97 | 5662 | 4.8330 | 0.2367 |
| 0.0417 | 302.99 | 5681 | 4.8236 | 0.2317 |
| 0.0494 | 304.0 | 5700 | 4.8070 | 0.2383 |
| 0.0316 | 304.96 | 5718 | 4.8213 | 0.2267 |
| 0.0421 | 305.97 | 5737 | 4.8634 | 0.2317 |
| 0.0411 | 306.99 | 5756 | 4.8770 | 0.24 |
| 0.0404 | 308.0 | 5775 | 4.9030 | 0.2383 |
| 0.0397 | 308.96 | 5793 | 4.9433 | 0.2383 |
| 0.053 | 309.97 | 5812 | 4.9301 | 0.2333 |
| 0.0303 | 310.99 | 5831 | 4.8961 | 0.2283 |
| 0.0369 | 312.0 | 5850 | 4.8560 | 0.2433 |
| 0.0423 | 312.96 | 5868 | 4.9177 | 0.225 |
| 0.0343 | 313.97 | 5887 | 4.8928 | 0.2233 |
| 0.0216 | 314.99 | 5906 | 4.8958 | 0.23 |
| 0.0287 | 316.0 | 5925 | 4.8803 | 0.235 |
| 0.0286 | 316.96 | 5943 | 4.8615 | 0.23 |
| 0.0304 | 317.97 | 5962 | 4.8736 | 0.2317 |
| 0.0486 | 318.99 | 5981 | 4.8825 | 0.2233 |
| 0.0404 | 320.0 | 6000 | 4.8618 | 0.2283 |
| 0.0439 | 320.96 | 6018 | 4.8848 | 0.23 |
| 0.0428 | 321.97 | 6037 | 4.8975 | 0.2267 |
| 0.0498 | 322.99 | 6056 | 4.8614 | 0.2383 |
| 0.0314 | 324.0 | 6075 | 4.8718 | 0.235 |
| 0.0334 | 324.96 | 6093 | 4.9021 | 0.2383 |
| 0.0431 | 325.97 | 6112 | 4.8973 | 0.2283 |
| 0.0473 | 326.99 | 6131 | 4.8671 | 0.24 |
| 0.0348 | 328.0 | 6150 | 4.9050 | 0.2333 |
| 0.0718 | 328.96 | 6168 | 4.8869 | 0.2417 |
| 0.0387 | 329.97 | 6187 | 4.8552 | 0.245 |
| 0.0335 | 330.99 | 6206 | 4.8932 | 0.2367 |
| 0.0355 | 332.0 | 6225 | 4.9195 | 0.245 |
| 0.0407 | 332.96 | 6243 | 4.9163 | 0.2333 |
| 0.0471 | 333.97 | 6262 | 4.8860 | 0.225 |
| 0.0334 | 334.99 | 6281 | 4.8943 | 0.235 |
| 0.0301 | 336.0 | 6300 | 4.9223 | 0.2367 |
| 0.0281 | 336.96 | 6318 | 4.9101 | 0.2433 |
| 0.0305 | 337.97 | 6337 | 4.8897 | 0.24 |
| 0.0505 | 338.99 | 6356 | 4.9290 | 0.2417 |
| 0.024 | 340.0 | 6375 | 4.9442 | 0.2333 |
| 0.0504 | 340.96 | 6393 | 4.9183 | 0.2367 |
| 0.0259 | 341.97 | 6412 | 4.8832 | 0.235 |
| 0.0313 | 342.99 | 6431 | 4.8958 | 0.2317 |
| 0.0293 | 344.0 | 6450 | 4.8979 | 0.2433 |
| 0.0427 | 344.96 | 6468 | 4.9055 | 0.2417 |
| 0.0399 | 345.97 | 6487 | 4.8957 | 0.2433 |
| 0.0273 | 346.99 | 6506 | 4.8989 | 0.24 |
| 0.0388 | 348.0 | 6525 | 4.9087 | 0.2367 |
| 0.0306 | 348.96 | 6543 | 4.9264 | 0.2283 |
| 0.0411 | 349.97 | 6562 | 4.9219 | 0.2367 |
| 0.0394 | 350.99 | 6581 | 4.8998 | 0.24 |
| 0.0507 | 352.0 | 6600 | 4.9304 | 0.2317 |
| 0.0263 | 352.96 | 6618 | 4.9232 | 0.23 |
| 0.0395 | 353.97 | 6637 | 4.9241 | 0.2367 |
| 0.0394 | 354.99 | 6656 | 4.9263 | 0.2433 |
| 0.0391 | 356.0 | 6675 | 4.9273 | 0.26 |
| 0.0647 | 356.96 | 6693 | 4.9034 | 0.2633 |
| 0.038 | 357.97 | 6712 | 4.8910 | 0.2467 |
| 0.0368 | 358.99 | 6731 | 4.8830 | 0.245 |
| 0.0308 | 360.0 | 6750 | 4.8867 | 0.2367 |
| 0.0346 | 360.96 | 6768 | 4.8657 | 0.2433 |
| 0.0279 | 361.97 | 6787 | 4.8678 | 0.24 |
| 0.0443 | 362.99 | 6806 | 4.8723 | 0.2433 |
| 0.027 | 364.0 | 6825 | 4.8756 | 0.2433 |
| 0.0447 | 364.96 | 6843 | 4.8742 | 0.235 |
| 0.028 | 365.97 | 6862 | 4.9042 | 0.235 |
| 0.0483 | 366.99 | 6881 | 4.9086 | 0.2367 |
| 0.034 | 368.0 | 6900 | 4.8886 | 0.24 |
| 0.0363 | 368.96 | 6918 | 4.8778 | 0.2467 |
| 0.0417 | 369.97 | 6937 | 4.9051 | 0.2417 |
| 0.0326 | 370.99 | 6956 | 4.9112 | 0.2367 |
| 0.028 | 372.0 | 6975 | 4.9116 | 0.2333 |
| 0.0343 | 372.96 | 6993 | 4.9104 | 0.245 |
| 0.0229 | 373.97 | 7012 | 4.9401 | 0.2367 |
| 0.0337 | 374.99 | 7031 | 4.9341 | 0.245 |
| 0.0356 | 376.0 | 7050 | 4.9336 | 0.2317 |
| 0.029 | 376.96 | 7068 | 4.9132 | 0.2333 |
| 0.0272 | 377.97 | 7087 | 4.9102 | 0.2367 |
| 0.0256 | 378.99 | 7106 | 4.9255 | 0.2317 |
| 0.0276 | 380.0 | 7125 | 4.9282 | 0.2267 |
| 0.026 | 380.96 | 7143 | 4.9527 | 0.22 |
| 0.0385 | 381.97 | 7162 | 4.9411 | 0.2217 |
| 0.026 | 382.99 | 7181 | 4.9530 | 0.2367 |
| 0.0444 | 384.0 | 7200 | 4.9387 | 0.2383 |
| 0.0369 | 384.96 | 7218 | 4.9042 | 0.2333 |
| 0.0203 | 385.97 | 7237 | 4.8860 | 0.23 |
| 0.0238 | 386.99 | 7256 | 4.8775 | 0.2333 |
| 0.0315 | 388.0 | 7275 | 4.8641 | 0.2333 |
| 0.0349 | 388.96 | 7293 | 4.8677 | 0.2467 |
| 0.038 | 389.97 | 7312 | 4.8688 | 0.24 |
| 0.0301 | 390.99 | 7331 | 4.8932 | 0.245 |
| 0.0363 | 392.0 | 7350 | 4.9023 | 0.2417 |
| 0.0329 | 392.96 | 7368 | 4.8825 | 0.24 |
| 0.0174 | 393.97 | 7387 | 4.8711 | 0.24 |
| 0.0284 | 394.99 | 7406 | 4.8762 | 0.2433 |
| 0.0178 | 396.0 | 7425 | 4.8684 | 0.2417 |
| 0.0359 | 396.96 | 7443 | 4.8660 | 0.245 |
| 0.029 | 397.97 | 7462 | 4.8799 | 0.2433 |
| 0.0227 | 398.99 | 7481 | 4.8845 | 0.25 |
| 0.0135 | 400.0 | 7500 | 4.8898 | 0.2383 |
| 0.0297 | 400.96 | 7518 | 4.8967 | 0.2383 |
| 0.0263 | 401.97 | 7537 | 4.8884 | 0.2333 |
| 0.0386 | 402.99 | 7556 | 4.8719 | 0.24 |
| 0.0298 | 404.0 | 7575 | 4.8609 | 0.2433 |
| 0.0232 | 404.96 | 7593 | 4.8602 | 0.2483 |
| 0.0232 | 405.97 | 7612 | 4.8667 | 0.2467 |
| 0.032 | 406.99 | 7631 | 4.8684 | 0.2483 |
| 0.0306 | 408.0 | 7650 | 4.8755 | 0.2433 |
| 0.0299 | 408.96 | 7668 | 4.8687 | 0.245 |
| 0.0307 | 409.97 | 7687 | 4.8724 | 0.24 |
| 0.0304 | 410.99 | 7706 | 4.8798 | 0.25 |
| 0.0293 | 412.0 | 7725 | 4.8901 | 0.2483 |
| 0.0273 | 412.96 | 7743 | 4.9025 | 0.24 |
| 0.0184 | 413.97 | 7762 | 4.8870 | 0.24 |
| 0.0377 | 414.99 | 7781 | 4.8901 | 0.2417 |
| 0.0278 | 416.0 | 7800 | 4.8895 | 0.2417 |
| 0.0345 | 416.96 | 7818 | 4.9046 | 0.2533 |
| 0.0301 | 417.97 | 7837 | 4.9002 | 0.2483 |
| 0.0159 | 418.99 | 7856 | 4.8982 | 0.245 |
| 0.0203 | 420.0 | 7875 | 4.9008 | 0.2483 |
| 0.0182 | 420.96 | 7893 | 4.9113 | 0.2467 |
| 0.0258 | 421.97 | 7912 | 4.9180 | 0.25 |
| 0.0266 | 422.99 | 7931 | 4.9134 | 0.2433 |
| 0.0304 | 424.0 | 7950 | 4.9005 | 0.2417 |
| 0.0247 | 424.96 | 7968 | 4.8937 | 0.2417 |
| 0.0493 | 425.97 | 7987 | 4.8835 | 0.245 |
| 0.0286 | 426.99 | 8006 | 4.8968 | 0.24 |
| 0.0228 | 428.0 | 8025 | 4.9066 | 0.2383 |
| 0.0362 | 428.96 | 8043 | 4.9031 | 0.245 |
| 0.0244 | 429.97 | 8062 | 4.8997 | 0.2467 |
| 0.0204 | 430.99 | 8081 | 4.9059 | 0.2433 |
| 0.0344 | 432.0 | 8100 | 4.9052 | 0.2433 |
| 0.0252 | 432.96 | 8118 | 4.8975 | 0.2433 |
| 0.0242 | 433.97 | 8137 | 4.8961 | 0.2467 |
| 0.0135 | 434.99 | 8156 | 4.9086 | 0.2467 |
| 0.0296 | 436.0 | 8175 | 4.9135 | 0.2417 |
| 0.0432 | 436.96 | 8193 | 4.9079 | 0.2433 |
| 0.0242 | 437.97 | 8212 | 4.8981 | 0.24 |
| 0.0227 | 438.99 | 8231 | 4.8857 | 0.24 |
| 0.021 | 440.0 | 8250 | 4.8874 | 0.2383 |
| 0.0244 | 440.96 | 8268 | 4.8847 | 0.24 |
| 0.0234 | 441.97 | 8287 | 4.8964 | 0.2367 |
| 0.0278 | 442.99 | 8306 | 4.9161 | 0.2383 |
| 0.0322 | 444.0 | 8325 | 4.9212 | 0.2367 |
| 0.038 | 444.96 | 8343 | 4.9251 | 0.24 |
| 0.0327 | 445.97 | 8362 | 4.9340 | 0.24 |
| 0.0256 | 446.99 | 8381 | 4.9246 | 0.2417 |
| 0.0327 | 448.0 | 8400 | 4.9294 | 0.2367 |
| 0.0246 | 448.96 | 8418 | 4.9311 | 0.2417 |
| 0.0239 | 449.97 | 8437 | 4.9220 | 0.2383 |
| 0.0219 | 450.99 | 8456 | 4.9205 | 0.24 |
| 0.0287 | 452.0 | 8475 | 4.9249 | 0.2367 |
| 0.0244 | 452.96 | 8493 | 4.9275 | 0.24 |
| 0.0222 | 453.97 | 8512 | 4.9322 | 0.2417 |
| 0.0277 | 454.99 | 8531 | 4.9318 | 0.2383 |
| 0.0315 | 456.0 | 8550 | 4.9291 | 0.2383 |
| 0.021 | 456.96 | 8568 | 4.9293 | 0.2367 |
| 0.0288 | 457.97 | 8587 | 4.9233 | 0.2333 |
| 0.0229 | 458.99 | 8606 | 4.9236 | 0.2383 |
| 0.0257 | 460.0 | 8625 | 4.9225 | 0.2367 |
| 0.0291 | 460.96 | 8643 | 4.9222 | 0.2383 |
| 0.0325 | 461.97 | 8662 | 4.9216 | 0.2367 |
| 0.0268 | 462.99 | 8681 | 4.9202 | 0.2367 |
| 0.0156 | 464.0 | 8700 | 4.9175 | 0.2367 |
| 0.0196 | 464.96 | 8718 | 4.9147 | 0.2333 |
| 0.0448 | 465.97 | 8737 | 4.9100 | 0.2333 |
| 0.0232 | 466.99 | 8756 | 4.9088 | 0.2333 |
| 0.0274 | 468.0 | 8775 | 4.9096 | 0.2367 |
| 0.029 | 468.96 | 8793 | 4.9105 | 0.2367 |
| 0.0337 | 469.97 | 8812 | 4.9125 | 0.235 |
| 0.0178 | 470.99 | 8831 | 4.9120 | 0.235 |
| 0.0286 | 472.0 | 8850 | 4.9125 | 0.2367 |
| 0.0159 | 472.96 | 8868 | 4.9102 | 0.2367 |
| 0.0318 | 473.97 | 8887 | 4.9116 | 0.2383 |
| 0.0302 | 474.99 | 8906 | 4.9113 | 0.24 |
| 0.0184 | 476.0 | 8925 | 4.9120 | 0.24 |
| 0.025 | 476.96 | 8943 | 4.9128 | 0.24 |
| 0.027 | 477.97 | 8962 | 4.9126 | 0.24 |
| 0.0298 | 478.99 | 8981 | 4.9130 | 0.24 |
| 0.0349 | 480.0 | 9000 | 4.9130 | 0.24 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.1
- Datasets 2.14.0
- Tokenizers 0.13.3
|
jasonching/output
|
jasonching
| 2023-07-30T14:20:39Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-30T10:29:18Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - jasonching/output
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
Maldopast/whisper-tiny-finetuned-en-us
|
Maldopast
| 2023-07-30T14:05:31Z | 84 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-30T13:59:42Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en_us
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3305785123966942
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en_us
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4863
- Wer Ortho: 0.3362
- Wer: 0.3306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0233 | 4.42 | 500 | 0.4863 | 0.3362 | 0.3306 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.0
- Tokenizers 0.13.3
|
chandrasutrisnotjhong/Pixelcopter-PLE-v0
|
chandrasutrisnotjhong
| 2023-07-30T13:42:41Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T13:42:01Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 27.90 +/- 18.81
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
VinEuro/rl_course_vizdoom_health_gathering_supreme
|
VinEuro
| 2023-07-30T13:40:30Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T13:14:09Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 8.35 +/- 3.27
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r VinEuro/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
accuracy-maker/ppo-Huggy
|
accuracy-maker
| 2023-07-30T13:29:53Z | 18 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-30T13:29:50Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: chrisght/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
sshalini6/whisper-small-5e4-r16-a32-d0.1
|
sshalini6
| 2023-07-30T13:12:45Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T07:34:57Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
Technotech/sd-prompt-instruct-3b-epoch-0.4-ggml
|
Technotech
| 2023-07-30T12:54:59Z | 1 | 0 |
transformers
|
[
"transformers",
"llama",
"stable-diffusion",
"instruct",
"magic-prompt",
"natural language inference",
"en",
"dataset:Technotech/sd-prompt-instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-07-30T10:39:26Z |
---
library_name: transformers
license: apache-2.0
datasets:
- Technotech/sd-prompt-instruct
language:
- en
tags:
- stable-diffusion
- instruct
- magic-prompt
- natural language inference
---
# Stable Diffusion Prompt Instruct 3B GGML (OpenLlama v2 3B)
Trained for 0.4 epochs (test) on [Technotech/sd-prompt-instruct](https://huggingface.co/datasets/Technotech/sd-prompt-instruct).
## Prompt Format
```
### Instruction: {prompt}
### Response: {response}
```
## Formats
At the moment, k-quants are not compatible with OpenLlama v2 3B, which this model is fine tuned from.
| Quant | Name | Size |
| ----- | ----- | ----- |
| `q4_0` | `sd-prompt-instruct-ggml.q4_0.bin` | `(1.93 GB)`
| `q4_1` | `sd-prompt-instruct-ggml.q4_1.bin` | `(2.14 GB)`
| `q5_0` | `sd-prompt-instruct-ggml.q5_0.bin` | `(2.36 GB)`
| `q5_1` | `sd-prompt-instruct-ggml.q5_1.bin` | `(2.57 GB)`
|
Qasim30/Reinforce-mycopter
|
Qasim30
| 2023-07-30T12:45:31Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T12:12:17Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-mycopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 17.50 +/- 10.12
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
xiao12346/t5-large_PREFIX_TUNING_SEQ2SEQ_c1
|
xiao12346
| 2023-07-30T12:39:31Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T12:39:31Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
noystl/corpify_t5_large
|
noystl
| 2023-07-30T12:33:32Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"license:cc",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-30T09:48:35Z |
---
license: cc
---
Corpify-t5 is "corpy" textual style-transfer model which involves the transformation
of casual and informal English text into a style suited for a professional workplace setting.
Usage example:
```
from transformers import pipeline
pipe = pipeline("text2text-generation", model="noystl/corpify_t5_large")
input_text = "I can't stand you farting in the office all the time"
generated_text = pipe(input_text)
print(generated_text[0]['generated_text'])
```
Output:
```
I'm not sure if I can accommodate you in the office.
```
The data, code and more information on the project could be found here: https://github.com/maayansharon10/Corpify
|
NasimB/simple_wikipedia-log-rarity-seed
|
NasimB
| 2023-07-30T12:29:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T08:44:43Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: simple_wikipedia-log-rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# simple_wikipedia-log-rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1528
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3397 | 0.29 | 500 | 5.3500 |
| 5.0305 | 0.58 | 1000 | 4.9322 |
| 4.7176 | 0.87 | 1500 | 4.7007 |
| 4.4695 | 1.17 | 2000 | 4.5715 |
| 4.3034 | 1.46 | 2500 | 4.4625 |
| 4.2247 | 1.75 | 3000 | 4.3657 |
| 4.1027 | 2.04 | 3500 | 4.3050 |
| 3.9238 | 2.33 | 4000 | 4.2594 |
| 3.8913 | 2.62 | 4500 | 4.2022 |
| 3.8633 | 2.91 | 5000 | 4.1553 |
| 3.6726 | 3.21 | 5500 | 4.1434 |
| 3.6113 | 3.5 | 6000 | 4.1167 |
| 3.6006 | 3.79 | 6500 | 4.0839 |
| 3.5168 | 4.08 | 7000 | 4.0827 |
| 3.3434 | 4.37 | 7500 | 4.0770 |
| 3.3399 | 4.66 | 8000 | 4.0610 |
| 3.3254 | 4.95 | 8500 | 4.0501 |
| 3.1918 | 5.24 | 9000 | 4.0638 |
| 3.1599 | 5.54 | 9500 | 4.0629 |
| 3.1599 | 5.83 | 10000 | 4.0621 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Mahmoud-Ghareeb/relation_between_two_sentences
|
Mahmoud-Ghareeb
| 2023-07-30T12:28:43Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-29T14:07:24Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Repoo/relation_between_two_sentences
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Repoo/relation_between_two_sentences
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.1074
- Validation Loss: 1.0986
- Train Accuracy: 0.3419
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 1.1794 | 1.1038 | 0.3187 | 0 |
| 1.1724 | 1.0996 | 0.3402 | 1 |
| 1.1570 | 1.1092 | 0.3427 | 2 |
| 1.1470 | 1.0993 | 0.3411 | 3 |
| 1.1145 | 1.1131 | 0.3419 | 4 |
| 1.1042 | 1.1027 | 0.3171 | 5 |
| 1.1060 | 1.0988 | 0.3402 | 6 |
| 1.1073 | 1.1132 | 0.3411 | 7 |
| 1.1074 | 1.0997 | 0.3411 | 8 |
| 1.1074 | 1.0986 | 0.3419 | 9 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
AhmedSSoliman/DistilBERT-Marian-Model-on-DJANGO
|
AhmedSSoliman
| 2023-07-30T12:01:43Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"Code Generation",
"Machine translation",
"Text generation",
"translation",
"en",
"dataset:AhmedSSoliman/DJANGO",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-11T21:54:43Z |
---
license: mit
datasets:
- AhmedSSoliman/DJANGO
language:
- en
metrics:
- bleu
- accuracy
pipeline_tag: translation
tags:
- Code Generation
- Machine translation
- Text generation
---
|
AhmedSSoliman/MarianCG-CoNaLa-Large
|
AhmedSSoliman
| 2023-07-30T11:58:54Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-24T22:50:16Z |
---
widget:
- text: "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]"
- text: "check if all elements in list `mylist` are identical"
- text: "enable debug mode on flask application `app`"
- text: "getting the length of `my_tuple`"
- text: 'find all files in directory "/mydir" with extension ".txt"'
---
```
```
[](https://paperswithcode.com/sota/code-generation-on-conala?p=mariancg-a-code-generation-transformer-model)
```
```
# MarianCG: a code generation transformer model inspired by machine translation
This model is to improve the solving of the code generation problem and implement a transformer model that can work with high accurate results. We implemented MarianCG transformer model which is a code generation model that can be able to generate code from natural language. This work declares the impact of using Marian machine translation model for solving the problem of code generation. In our implementation, we prove that a machine translation model can be operated and working as a code generation model. Finally, we set the new contributors and state-of-the-art on CoNaLa reaching a BLEU score of 30.92 and Exact Match Accuracy of 6.2 in the code generation problem with CoNaLa dataset.
MarianCG model and its implemetation with the code of training and the generated output is available at this repository:
https://github.com/AhmedSSoliman/MarianCG-NL-to-Code
CoNaLa Dataset for Code Generation is available at
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large
This is the model is avialable on the huggingface hub https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large
```python
# Model and Tokenizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# model_name = "AhmedSSoliman/MarianCG-NL-to-Code"
model = AutoModelForSeq2SeqLM.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa-Large")
tokenizer = AutoTokenizer.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa-Large")
# Input (Natural Language) and Output (Python Code)
NL_input = "create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]"
output = model.generate(**tokenizer(NL_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt"))
output_code = tokenizer.decode(output[0], skip_special_tokens=True)
```
This model is available in spaces using gradio at: https://huggingface.co/spaces/AhmedSSoliman/MarianCG-CoNaLa-Large
---
Tasks:
- Translation
- Code Generation
- Text2Text Generation
- Text Generation
---
# Citation
We now have a [paper](https://doi.org/10.1186/s44147-022-00159-4) for this work and you can cite:
```
@article{soliman2022mariancg,
title={MarianCG: a code generation transformer model inspired by machine translation},
author={Soliman, Ahmed S and Hadhoud, Mayada M and Shaheen, Samir I},
journal={Journal of Engineering and Applied Science},
volume={69},
number={1},
pages={1--23},
year={2022},
publisher={SpringerOpen}
url={https://doi.org/10.1186/s44147-022-00159-4}
}
```
|
AhmedSSoliman/MarianCG-DJANGO
|
AhmedSSoliman
| 2023-07-30T11:58:02Z | 123 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-08-30T12:14:00Z |
---
widget:
- text: "define the method i with an argument self."
- text: "substitute asvar for self.asvar."
- text: "convert host to lowercase."
- text: "for every var in self.vars,"
- text: "call the method parser.delete_first_token."
---
```
```
[](https://paperswithcode.com/sota/code-generation-on-django?p=mariancg-a-code-generation-transformer-model)
```
```
# MarianCG: a code generation transformer model inspired by machine translation
This model is to improve the solving of the code generation problem and implement a transformer model that can work with high accurate results. We implemented MarianCG transformer model which is a code generation model that can be able to generate code from natural language. This work declares the impact of using Marian machine translation model for solving the problem of code generation. In our implementation, we prove that a machine translation model can be operated and working as a code generation model. Finally, we set the new contributors and state-of-the-art on CoNaLa reaching a BLEU score of 30.92 and Exact Match Accuracy of 6.2 in the code generation problem with CoNaLa dataset.
MarianCG model and its implementation with the code of training and the generated output is available at this repository:
https://github.com/AhmedSSoliman/MarianCG-NL-to-Code
DJANGO dataset is available at
https://huggingface.co/datasets/AhmedSSoliman/DJANGO
This model is avialable on the huggingface hub https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO
```python
# Model and Tokenizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# model_name = "AhmedSSoliman/MarianCG-NL-to-Code"
model = AutoModelForSeq2SeqLM.from_pretrained("AhmedSSoliman/MarianCG-DJANGO")
tokenizer = AutoTokenizer.from_pretrained("AhmedSSoliman/MarianCG-DJANGO")
# Input (Natural Language) and Output (Python Code)
NL_input = "define the method i with an argument self."
output = model.generate(**tokenizer(NL_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt"))
output_code = tokenizer.decode(output[0], skip_special_tokens=True)
```
This model is available in spaces using gradio at: https://huggingface.co/spaces/AhmedSSoliman/MarianCG-DJANGO
---
Tasks:
- Translation
- Code Generation
- Text2Text Generation
- Text Generation
---
# Citation
We now have a [paper](https://doi.org/10.1186/s44147-022-00159-4) for this work and you can cite:
```
@article{soliman2022mariancg,
title={MarianCG: a code generation transformer model inspired by machine translation},
author={Soliman, Ahmed S and Hadhoud, Mayada M and Shaheen, Samir I},
journal={Journal of Engineering and Applied Science},
volume={69},
number={1},
pages={1--23},
year={2022},
publisher={SpringerOpen}
url={https://doi.org/10.1186/s44147-022-00159-4}
}
```
|
AhmedSSoliman/LUKE-Marian-Model-on-DJANGO
|
AhmedSSoliman
| 2023-07-30T11:57:00Z | 94 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"Machine Translation ",
"Code Generation",
"Text Generation",
"translation",
"en",
"dataset:AhmedSSoliman/DJANGO",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-11T22:18:29Z |
---
license: mit
datasets:
- AhmedSSoliman/DJANGO
language:
- en
metrics:
- bleu
- accuracy
pipeline_tag: translation
tags:
- 'Machine Translation '
- Code Generation
- Text Generation
---
|
sshalini6/whisper-small-5e4-r8-a32-d0.1
|
sshalini6
| 2023-07-30T11:39:54Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T11:39:53Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
NasimB/aochildes_cbt_rarity-seed
|
NasimB
| 2023-07-30T11:26:12Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T07:41:30Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: aochildes_cbt_rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aochildes_cbt_rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.365 | 0.29 | 500 | 5.3408 |
| 5.0483 | 0.59 | 1000 | 4.9282 |
| 4.7186 | 0.88 | 1500 | 4.6933 |
| 4.4606 | 1.17 | 2000 | 4.5590 |
| 4.315 | 1.47 | 2500 | 4.4381 |
| 4.2073 | 1.76 | 3000 | 4.3375 |
| 4.0917 | 2.05 | 3500 | 4.2624 |
| 3.9138 | 2.35 | 4000 | 4.2183 |
| 3.8813 | 2.64 | 4500 | 4.1641 |
| 3.8464 | 2.93 | 5000 | 4.1152 |
| 3.6477 | 3.23 | 5500 | 4.1130 |
| 3.6014 | 3.52 | 6000 | 4.0847 |
| 3.5838 | 3.81 | 6500 | 4.0509 |
| 3.4799 | 4.11 | 7000 | 4.0527 |
| 3.3288 | 4.4 | 7500 | 4.0486 |
| 3.328 | 4.69 | 8000 | 4.0350 |
| 3.3186 | 4.99 | 8500 | 4.0239 |
| 3.1615 | 5.28 | 9000 | 4.0374 |
| 3.1453 | 5.58 | 9500 | 4.0360 |
| 3.1478 | 5.87 | 10000 | 4.0353 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Qasim30/Reinforce-mycartmodel
|
Qasim30
| 2023-07-30T11:18:47Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T11:18:36Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-mycartmodel
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
toto10/Ooga
|
toto10
| 2023-07-30T11:17:57Z | 13 | 0 |
transformers
|
[
"transformers",
"arxiv:2211.06679",
"endpoints_compatible",
"region:us"
] | null | 2023-07-30T11:10:12Z |
# Stable Diffusion web UI-UX
Not just a browser interface based on Gradio library for Stable Diffusion.
A pixel perfect design, mobile friendly, customizable interface that adds accessibility, ease of use and extended functionallity to the stable diffusion web ui.
Enjoy!
Default theme

## Features of ui-ux
- resizable viewport
- switchable viewports (DoubleClick on the split handler to swap views) option in settings for default position
- mobile navigation
- top header tabs (option setting)
- hidden tabs (option setting) no need to restart this is a different implementation
- drag and drop reordable quick settings offcanvas aside view
- drag and drop images to txt2img and img2img and import generation info parameters along with a preview image
- ignore - remove overrides when import [multiselect] (option setting)
- resizable cards for extra networks and number of rows (option setting)
- lazy loading alternative offcanvas aside view for extra networks (option setting)
- live preview image fit method (option setting)
- generated image fit method (option setting)
- max resolution output for txt2img and img2img (option setting)
- performant dispatch for gradio's range slider and input number field issue: https://github.com/gradio-app/gradio/issues/3204 (option setting) latest update uses only one instance clone to mediate for the release event
- ticks input range sliders (option setting)
- pacman preloader unified colors on reload ui
- frame border animation when generating images
- progress bar on top of the page always visible (when scroll for mobile)
- remix icons
- style theme configurator extension to customize every aspect of theme in real time with cool global functions to change the hue / saturation / brightness or invert the theme colors
- pan and zoom in out functionality for sketch, inpaint, inpaint sketch
- fullscreen support for sketch, inpaint, inpaint sketch
- better lightbox with zoom in-out mobile gestures support etc..
## TODO
- small arrows next to icons sent to inpaint, extras, img2img etc
- component gallery navigate to previous generations inside the txt2img, img2img interface
- and auto load the current generation settings
- credits/about page display all 300+ contributors so far inside the UI
Quick Settings aside off-canvas view - drag and drop to custom sort your settings

Extra Networks aside off-canvas view

Detail img2img sketch view

Theme Configurator - aside off-canvas view

Mobile 395px width

## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
-
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui-ux repository, for example by running `git clone https://github.com/anapnoe/stable-diffusion-webui-ux.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv
# Red Hat-based:
sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/anapnoe/stable-diffusion-webui-ux/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
and replace the path in step 3 with `git clone https://github.com/anapnoe/stable-diffusion-webui-ux`
## Contributing
Here's how to add code to the original repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) [crawlable wiki](https://github-wiki-see.page/m/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- LyCORIS - KohakuBlueleaf
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
|
msladic/rl_course_vizdoom_health_gathering_supreme
|
msladic
| 2023-07-30T11:13:02Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T11:10:38Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 13.53 +/- 5.22
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r msladic/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
emaeon/lora-large-healthcare-model-17_desc
|
emaeon
| 2023-07-30T11:05:51Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-28T08:13:22Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
Aityz/reviews_model
|
Aityz
| 2023-07-30T11:05:33Z | 127 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T09:13:54Z |
---
license: apache-2.0
base_model: aityz/reviews_model
tags:
- generated_from_trainer
model-index:
- name: reviews_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reviews_model
This model is a fine-tuned version of [aityz/reviews_model](https://huggingface.co/aityz/reviews_model) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cpu
- Tokenizers 0.13.3
|
AliGhiasvand86/digit_recognition2
|
AliGhiasvand86
| 2023-07-30T11:05:29Z | 216 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-30T11:05:22Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: digit_recognition2
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.19801980257034302
---
# digit_recognition2
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### number 1

#### number 2

#### number 3

#### number 4

#### number 5

#### number 6

#### number 7

#### number 8

#### number 9

|
mlabonne/llama-2-13b-miniguanaco
|
mlabonne
| 2023-07-30T11:03:45Z | 128 | 2 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"dataset:mlabonne/guanaco-llama2-1k",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T11:00:10Z |
---
license: apache-2.0
datasets:
- mlabonne/guanaco-llama2-1k
pipeline_tag: text-generation
---
# 🦙🧠 Miniguanaco-13b
📝 [Article](https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32) |
💻 [Colab](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) |
📄 [Script](https://gist.github.com/mlabonne/b5718e1b229ce6553564e3f56df72c5c)
<center><img src="https://i.imgur.com/1IZmjU4.png" width="300"></center>
This is a `Llama-2-13b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2-1k`](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k) dataset, which is a subset of the [`timdettmers/openassistant-guanaco`](https://huggingface.co/datasets/timdettmers/openassistant-guanaco).
## 🔧 Training
It was trained on an RTX 3090. It is mainly designed for educational purposes, not for inference. Parameters:
```
max_seq_length = 2048
use_nested_quant = True
bnb_4bit_compute_dtype=bfloat16
lora_r=8
lora_alpha=16
lora_dropout=0.05
per_device_train_batch_size=2
```
## 💻 Usage
``` python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/llama-2-13b-miniguanaco"
prompt = "What is a large language model?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'<s>[INST] {prompt} [/INST]',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
|
intanm/bri_topic_modeling_baseline_30_001
|
intanm
| 2023-07-30T10:59:06Z | 108 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:indobenchmark/indobert-base-p1",
"base_model:finetune:indobenchmark/indobert-base-p1",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-30T10:55:15Z |
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bri_topic_modeling_baseline_30_001
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bri_topic_modeling_baseline_30_001
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8029
- Accuracy: 0.7748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 223 | 0.9959 | 0.7284 |
| No log | 2.0 | 446 | 0.8029 | 0.7748 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
emaeon/lora-large-healthcare-model-10_desc
|
emaeon
| 2023-07-30T10:56:54Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-28T08:04:24Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-9_desc
|
emaeon
| 2023-07-30T10:55:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-28T07:23:46Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-8_desc
|
emaeon
| 2023-07-30T10:54:20Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T08:41:23Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-7_desc
|
emaeon
| 2023-07-30T10:53:02Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T08:37:03Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
AliGhiasvand86/digit_recognition
|
AliGhiasvand86
| 2023-07-30T10:52:26Z | 196 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-30T10:52:18Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: digit_recognition
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.10891088843345642
---
# digit_recognition
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### 1

#### 2

#### 3

#### 4

#### 5

#### 6

#### 7

#### 8

#### 9

|
emaeon/lora-large-healthcare-model-5_desc
|
emaeon
| 2023-07-30T10:50:27Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T08:28:23Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-4_desc
|
emaeon
| 2023-07-30T10:49:09Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T08:24:03Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-3_desc
|
emaeon
| 2023-07-30T10:47:53Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T07:21:29Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
emaeon/lora-large-healthcare-model-0_desc
|
emaeon
| 2023-07-30T10:44:02Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-20T07:08:30Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
yukangcao/cat_toy_dreambooth
|
yukangcao
| 2023-07-30T10:42:04Z | 31 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:stabilityai/stable-diffusion-2-1",
"base_model:finetune:stabilityai/stable-diffusion-2-1",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-30T10:28:24Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a photo of cat toy
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - RaikkonenCao/cat_toy_dreambooth
This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of cat toy using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
AbstractQbit/electra_large_imdb_htsplice
|
AbstractQbit
| 2023-07-30T10:32:13Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"arxiv:1905.05583",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-30T10:03:48Z |
`google/electra-large-discriminator` finetuned on imdb dataset for 2 epoches.
Large examples tokenized with head and tail parts of a review, as described in [How to Fine-Tune BERT for Text Classification?](https://arxiv.org/abs/1905.05583)
```python
def preprocess_function(example):
tokens = tokenizer(example["text"], truncation=False)
if len(tokens['input_ids']) > 512:
tokens['input_ids'] = tokens['input_ids'][:129] + \
[102] + tokens['input_ids'][-382:]
tokens['token_type_ids'] = [0]*512
tokens['attention_mask'] = [1]*512
return tokens
```
|
Daniil-plotnikov/russian-vision-v5-1
|
Daniil-plotnikov
| 2023-07-30T10:22:58Z | 29 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"ru",
"en",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-29T17:01:58Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
language:
- ru
- en
---
### Russian-Vision-V5.1
Данная модель просто идеально по сравнению с другими! Примеры картинок:
<img src="https://ibb.co/pRNF7jr" alt="." width="1024" height="683">
https://ibb.co/8MwnXJ4
https://ibb.co/W21dfHQ
https://ibb.co/KWcqKjx
https://ibb.co/2dzvg2j
https://ibb.co/yNqhS6x
https://ibb.co/0hCnFBP
https://ibb.co/1sFTZCB
https://ibb.co/hY5KHG6
https://ibb.co/CsVX64L
https://ibb.co/HBr5mZw
https://ibb.co/gFnLbhw
https://ibb.co/CBKfyHZ
https://ibb.co/H4RBJRn
|
TFLai/llama-2-13b-4bit-alpaca-gpt4
|
TFLai
| 2023-07-30T10:21:52Z | 8 | 2 |
peft
|
[
"peft",
"dataset:vicgalle/alpaca-gpt4",
"region:us"
] | null | 2023-07-21T13:37:13Z |
---
library_name: peft
datasets:
- vicgalle/alpaca-gpt4
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
AdiOO7/Azure-tickets-Classifier-llama-2
|
AdiOO7
| 2023-07-30T10:20:09Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T10:20:08Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
yukangcao/dog_dreambooth
|
yukangcao
| 2023-07-30T10:10:39Z | 29 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:stabilityai/stable-diffusion-2-1",
"base_model:finetune:stabilityai/stable-diffusion-2-1",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-30T09:45:44Z |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - RaikkonenCao/dog_dreambooth
This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
StupidTree/llama2-qlora-finetunined-french
|
StupidTree
| 2023-07-30T10:04:52Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T10:04:47Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e5_s6789_v3_l5_v100
|
KingKazma
| 2023-07-30T10:00:26Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T09:57:20Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
jondurbin/airoboros-33b-gpt4-2.0-peft
|
jondurbin
| 2023-07-30T09:48:48Z | 0 | 0 | null |
[
"license:cc-by-nc-4.0",
"region:us"
] | null | 2023-07-27T13:11:27Z |
---
license: cc-by-nc-4.0
---
Adapter model for https://hf.co/jondurbin/airoboros-33b-gpt4-2.0
|
JNK789/Taxi-v3-unit2-assignment
|
JNK789
| 2023-07-30T09:43:42Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T09:43:40Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3-unit2-assignment
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="JNK789/Taxi-v3-unit2-assignment", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e3_s6789_v3_l5_v100
|
KingKazma
| 2023-07-30T09:42:37Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T09:40:38Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
Amandm77/LunarLander-v2-ppo
|
Amandm77
| 2023-07-30T09:39:58Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T09:39:41Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 272.44 +/- 16.63
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Skie0007/lander_v2
|
Skie0007
| 2023-07-30T09:32:38Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T09:32:18Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.31 +/- 20.20
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Conquer2020/llama2-qlora-finetunined-french
|
Conquer2020
| 2023-07-30T09:22:58Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T09:22:53Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
OmarEmam99/distilbert-base-uncased-finetuned-emotion
|
OmarEmam99
| 2023-07-30T09:20:05Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-10T09:04:27Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9335
- name: F1
type: f1
value: 0.9336312134570528
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1507
- Accuracy: 0.9335
- F1: 0.9336
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1737 | 1.0 | 250 | 0.1817 | 0.931 | 0.9320 |
| 0.1136 | 2.0 | 500 | 0.1629 | 0.9305 | 0.9312 |
| 0.0985 | 3.0 | 750 | 0.1507 | 0.9335 | 0.9336 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e0_s6789_v3_l5_v100
|
KingKazma
| 2023-07-30T09:15:54Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T09:15:33Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
elhindih/llama-2-7b-rp
|
elhindih
| 2023-07-30T09:15:26Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T09:14:42Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
- PEFT 0.4.0
|
EarthnDusk/Epic-Poltergeist-Backups-2023
|
EarthnDusk
| 2023-07-30T09:15:04Z | 0 | 0 | null |
[
"en",
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-05-19T00:55:23Z |
---
license: creativeml-openrail-m
language:
- en
---
Test these out here: start your ONLINE GENERATION now! https://tensor.art/images/618050252349634200?post_id=618057377695934307&source_id=nz-3plnjkUG1ofAvanb09hMv
Join our Reddit: https://www.reddit.com/r/earthndusk/
WE ARE PROUDLY SPONSORED BY: https://www.piratediffusion.com/
If you got requests, or concerns, We're still looking for beta testers: JOIN THE DISCORD AND DEMAND THINGS OF US: https://discord.gg/Da7s8d3KJ7
Listen to the music that we've made that goes with our art: https://open.spotify.com/playlist/00R8x00YktB4u541imdSSf?si=b60d209385a74b38
We stream a lot of our testing on twitch: https://www.twitch.tv/duskfallcrew
any chance you can spare a coffee or three? https://ko-fi.com/DUSKFALLcrew
[](https://ko-fi.com/Z8Z8L4EO)
Merge permissions: MUST CREDIT, linkback to Earth & DUSK or to the respective civitAI profile. You may not sell your merge loras or lora bind checkpoints, or merged models you make from our content but you may use them on generative services.
|
lovelybbq/clear
|
lovelybbq
| 2023-07-30T09:14:28Z | 0 | 0 | null |
[
"en",
"region:us"
] | null | 2023-07-26T16:03:18Z |
---
language:
- en
---
Cropped version of NoCrypt's repo.tar.lz4
All credits to https://huggingface.co/NoCrypt
|
vin293/buffalo
|
vin293
| 2023-07-30T09:06:12Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-07-30T09:06:12Z |
---
license: bigscience-openrail-m
---
|
goreactdev/lora-trained-xl
|
goreactdev
| 2023-07-30T08:41:35Z | 2 | 2 |
diffusers
|
[
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-07-30T07:49:26Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - goreactdev/lora-trained-xl
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
|
pratsy/a2c-AntBulletEnv-v0
|
pratsy
| 2023-07-30T08:31:54Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T08:30:44Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1904.37 +/- 158.79
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Carlosavc/llama2-qlora-finetunined-french
|
Carlosavc
| 2023-07-30T08:29:46Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T08:23:26Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
efainman/ppo-CartPole-v1
|
efainman
| 2023-07-30T08:28:12Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T08:23:28Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -165.04 +/- 72.42
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'efainman/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
Mtc2/ppo-with-rnd-Pyramids
|
Mtc2
| 2023-07-30T08:14:32Z | 9 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-07-30T08:14:29Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Mtc2/ppo-with-rnd-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
kejolong/pinkbunny
|
kejolong
| 2023-07-30T07:56:16Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-30T07:52:44Z |
---
license: creativeml-openrail-m
---
|
rahul-appu/q-FrozenLake-v1-4x4-noSlippery
|
rahul-appu
| 2023-07-30T07:51:35Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T07:51:33Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="rahul-appu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
NasimB/bnc_spoken_gutenberg_fixed_rarity-seed
|
NasimB
| 2023-07-30T07:07:38Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T04:18:55Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: bnc_spoken_gutenberg_fixed_rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnc_spoken_gutenberg_fixed_rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.36 | 0.29 | 500 | 5.3399 |
| 5.0618 | 0.59 | 1000 | 4.9347 |
| 4.7196 | 0.88 | 1500 | 4.7026 |
| 4.4644 | 1.17 | 2000 | 4.5576 |
| 4.3203 | 1.46 | 2500 | 4.4384 |
| 4.2142 | 1.76 | 3000 | 4.3396 |
| 4.0914 | 2.05 | 3500 | 4.2702 |
| 3.9075 | 2.34 | 4000 | 4.2264 |
| 3.8854 | 2.63 | 4500 | 4.1740 |
| 3.8439 | 2.93 | 5000 | 4.1252 |
| 3.6556 | 3.22 | 5500 | 4.1193 |
| 3.6025 | 3.51 | 6000 | 4.0910 |
| 3.5842 | 3.8 | 6500 | 4.0570 |
| 3.4933 | 4.1 | 7000 | 4.0614 |
| 3.3389 | 4.39 | 7500 | 4.0542 |
| 3.3321 | 4.68 | 8000 | 4.0411 |
| 3.3168 | 4.97 | 8500 | 4.0319 |
| 3.1664 | 5.27 | 9000 | 4.0464 |
| 3.1532 | 5.56 | 9500 | 4.0444 |
| 3.1517 | 5.85 | 10000 | 4.0435 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
DucQuynh/roberta-base-finetune-subjqa
|
DucQuynh
| 2023-07-30T06:52:12Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-05-22T05:44:34Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-base-finetune-subjqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetune-subjqa
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 14
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
bluefoxcreation/Codeformer-ONNX
|
bluefoxcreation
| 2023-07-30T06:46:16Z | 0 | 5 | null |
[
"onnx",
"license:other",
"region:us"
] | null | 2023-07-30T06:39:59Z |
---
license: other
tags:
- onnx
---
|
thehive/everyjourney-sdxl-0.9-finetuned
|
thehive
| 2023-07-30T06:37:45Z | 0 | 39 | null |
[
"stable-diffusion-xl",
"text-to-image",
"en",
"license:other",
"region:us"
] |
text-to-image
| 2023-07-06T14:37:45Z |
---
license: other
language:
- en
pipeline_tag: text-to-image
tags:
- stable-diffusion-xl
---
**Please for anyone, due to StabilityAI SDXL 0.9 Research License, don't reupload my finetuned models to other site, like Civitai or image generating site like Seeart other sites. Thank you for understanding this.**
Like my works and want to collaboration or funding my projects? contact me.
Finetuned on SDXL Base 0.9 Official Release, Expected to be successor of [Everyjourney](https://huggingface.co/aiartindo/Everyjourney), currently in alpha stage, since i'm captioned this model with BLIP2, the image generated with this model may not meet your expectations, waiting for SDXL finetune/training process to be more polished.
My other works:
- https://huggingface.co/gmonsoon/notwaifu-diffusion-xl
- https://huggingface.co/gmonsoon/waifujourney-xl
**Recommended Settings**
- Sampler: any DPM++ Karras samplers
- Sampling Steps: 42 (because 42 is the answer to the Ultimate Question of Life, the Universe and Everything. :D )
- CFG Scale: 8
**Result & Comparison**






**Review**
[review by The Prompt Wizard](https://youtu.be/kDid7cxKLq0)
### Model Description
- **Finetuned by:** [Gorilla Monsoon III](https://huggingface.co/gmonsoon)
- **Model type:** Diffusion-based text-to-image generative model
- **License:** [SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
**Credits**
- Stability AI
- Kohya_SS
- Linaqruf
|
twbrandon7/rl-course-unit2-taxi-v3
|
twbrandon7
| 2023-07-30T06:22:29Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T06:22:27Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: rl-course-unit2-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="twbrandon7/rl-course-unit2-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
dvs/videomae-base-finetuned-movienet-take2
|
dvs
| 2023-07-30T06:18:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-07-28T21:29:04Z |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
model-index:
- name: videomae-base-finetuned-movienet-take2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-movienet-take2
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.0793
- eval_accuracy: 0.7969
- eval_runtime: 131.1948
- eval_samples_per_second: 1.463
- eval_steps_per_second: 0.183
- epoch: 9.01
- step: 1704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2960
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
twbrandon7/q-FrozenLake-v1-4x4-noSlippery
|
twbrandon7
| 2023-07-30T06:11:50Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T06:11:47Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="twbrandon7/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sanka85/rstp_instruct_new_2
|
sanka85
| 2023-07-30T06:09:31Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-30T06:09:25Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
jonng1000/git-base-pokemon
|
jonng1000
| 2023-07-30T06:01:33Z | 66 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"git",
"image-text-to-text",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/git-base",
"base_model:finetune:microsoft/git-base",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-07-29T08:48:40Z |
---
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: git-base-pokemon
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-pokemon
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.1
- Tokenizers 0.13.3
|
taehoon1lee/ppo-Huggy
|
taehoon1lee
| 2023-07-30T05:05:01Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-30T05:04:55Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: taehoon1lee/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
hasibul1ah/article19_500r_data_clm-model
|
hasibul1ah
| 2023-07-30T04:57:13Z | 198 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bloom",
"text-generation",
"generated_from_trainer",
"base_model:bigscience/bloom-560m",
"base_model:finetune:bigscience/bloom-560m",
"license:bigscience-bloom-rail-1.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T04:29:04Z |
---
license: bigscience-bloom-rail-1.0
base_model: bigscience/bloom-560m
tags:
- generated_from_trainer
model-index:
- name: article19_500r_data_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# article19_500r_data_clm-model
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8149
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 259 | 3.5163 |
| 3.0863 | 2.0 | 518 | 3.5642 |
| 3.0863 | 3.0 | 777 | 3.8149 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
MichelNivard/Rchat_3b_peft
|
MichelNivard
| 2023-07-30T04:47:44Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T19:58:12Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.