modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-30 18:29:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
538 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-30 18:29:11
card
stringlengths
11
1.01M
damilare-akin/q-FrozenLake-v1-4x4-noSlippery
damilare-akin
2022-09-01T21:06:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T21:06:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="damilare-akin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
caffsean/t5-large-finetune-keyword-to-text-generation
caffsean
2022-09-01T20:52:39Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T21:49:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-large-finetune-keyword-to-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-finetune-keyword-to-text-generation This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1471 - Rouge1: 2.175 - Rouge2: 0.3661 - Rougel: 1.7927 - Rougelsum: 1.7951 - Gen Len: 15.3252 ## Model description This model is designed to generate text from a single keyword. This project is intended to be used for generating vocabulary questions for ed-tech applications. NOTE!: Be sure to use the 'summarize: ' prefix before the word that you would like to un-summarize. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.3083 | 1.0 | 3000 | 3.1706 | 2.1498 | 0.331 | 1.7579 | 1.761 | 16.6826 | | 3.2121 | 2.0 | 6000 | 3.1403 | 2.1555 | 0.3409 | 1.7659 | 1.769 | 16.208 | | 3.1286 | 3.0 | 9000 | 3.1300 | 2.1577 | 0.3511 | 1.7703 | 1.7733 | 15.9009 | | 3.0567 | 4.0 | 12000 | 3.1282 | 2.183 | 0.3584 | 1.7895 | 1.7909 | 15.7135 | | 2.9953 | 5.0 | 15000 | 3.1293 | 2.1589 | 0.3525 | 1.776 | 1.7781 | 15.678 | | 2.9483 | 6.0 | 18000 | 3.1308 | 2.1645 | 0.3556 | 1.7824 | 1.784 | 15.425 | | 2.9009 | 7.0 | 21000 | 3.1358 | 2.1622 | 0.3622 | 1.7848 | 1.7877 | 15.3348 | | 2.8752 | 8.0 | 24000 | 3.1387 | 2.1716 | 0.36 | 1.7936 | 1.7963 | 15.5296 | | 2.835 | 9.0 | 27000 | 3.1454 | 2.1806 | 0.3658 | 1.7941 | 1.7966 | 15.4625 | | 2.8352 | 10.0 | 30000 | 3.1471 | 2.175 | 0.3661 | 1.7927 | 1.7951 | 15.3252 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
RyanQin/k2c
RyanQin
2022-09-01T19:49:21Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Contract", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T19:28:39Z
--- language: "en" thumbnail: "Keywords to Contract" tags: - keytotext - k2t - Keywords to Contract license: mit --- Idea is to build a model which will take keywords as inputs and generate contract clauses as outputs. Potential use case can include: - contract generation assistance
sgugger/distilbert-base-uncased-finetuned-cola
sgugger
2022-09-01T18:54:01Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5158855550567928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7572 - Matthews Correlation: 0.5159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5256 | 1.0 | 535 | 0.5197 | 0.4033 | | 0.3534 | 2.0 | 1070 | 0.5301 | 0.4912 | | 0.2402 | 3.0 | 1605 | 0.6680 | 0.5033 | | 0.1762 | 4.0 | 2140 | 0.7572 | 0.5159 | | 0.1389 | 5.0 | 2675 | 0.8584 | 0.5127 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.13.4.dev0 - Tokenizers 0.10.3
sgugger/glue-mrpc
sgugger
2022-09-01T18:48:23Z
125
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: glue-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8553921568627451 - name: F1 type: f1 value: 0.897391304347826 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - name: Accuracy type: accuracy value: 0.8553921568627451 verified: true - name: Precision type: precision value: 0.8716216216216216 verified: true - name: Recall type: recall value: 0.9247311827956989 verified: true - name: AUC type: auc value: 0.90464282737351 verified: true - name: F1 type: f1 value: 0.897391304347826 verified: true - name: loss type: loss value: 0.6564616560935974 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6566 - Accuracy: 0.8554 - F1: 0.8974 - Combined Score: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
oananovac/distilbert-base-uncased-finetuned-squad
oananovac
2022-09-01T18:31:31Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-31T17:33:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 97 | 3.2690 | | No log | 2.0 | 194 | 3.0873 | | No log | 3.0 | 291 | 2.9615 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
shoop/ppo-LunarLander-v2
shoop
2022-09-01T18:01:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T18:01:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 216.31 +/- 79.92 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mhyatt000/YOLOv5
mhyatt000
2022-09-01T15:25:36Z
0
0
stable-baselines3
[ "stable-baselines3", "seals/CartPole-v0", "deep-reinforcement-learning", "reinforcement-learning", "object-detection", "dataset:coco", "license:gpl-2.0", "model-index", "region:us" ]
object-detection
2022-06-20T16:37:08Z
--- license: gpl-2.0 datasets: - coco library_name: stable-baselines3 tags: - seals/CartPole-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 - object-detection model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: True task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/CartPole-v0 type: seals/CartPole-v0 --- # YOLOv5 Ultralytics YOLOv5 model in Pytorch. Proof of concept for (TypoSquatting, Niche Squatting) security flaw on Hugging Face. ## Model Description ## How to use ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('mhyatt000/yolov5') model = YolosForObjectDetection.from_pretrained('mhyatt000/yolov5') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` ## Training Data ### Training ## Evaluation Model was evaluated on [COCO2017](https://cocodataset.org/#home) dataset. | Model | size (pixels) | mAPval | Speed | params | FLOPS | |---------------|-------------------|-----------|-----------|-----------|-----------| | YOLOv5s6 | 1280 | 43.3 | 4.3 | 12.7 | 17.4 | | YOLOv5m6 | 1280 | 50.5 | 8.4 | 35.9 | 52.4 | | YOLOv5l6 | 1280 | 53.4 | 12.3 | 77.2 | 117.7 | | YOLOv5x6 | 1280 | 54.4 | 22.4 | 141.8 | 222.9 | ### Bibtex and citation info ```bibtex @software{glenn_jocher_2022_6222936, author = {Glenn Jocher and Ayush Chaurasia and Alex Stoken and Jirka Borovec and NanoCode012 and Yonghye Kwon and TaoXie and Jiacong Fang and imyhxy and Kalen Michael and Lorna and Abhiram V and Diego Montes and Jebastin Nadar and Laughing and tkianai and yxNONG and Piotr Skalski and Zhiqiang Wang and Adam Hogan and Cristi Fati and Lorenzo Mammana and AlexWang1900 and Deep Patel and Ding Yiwei and Felix You and Jan Hajek and Laurentiu Diaconu and Mai Thanh Minh}, title = {{ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference}}, month = feb, year = 2022, publisher = {Zenodo}, version = {v6.1}, doi = {10.5281/zenodo.6222936}, url = {https://doi.org/10.5281/zenodo.6222936} } ```
butchland/Reinforce-Cartpole-v1
butchland
2022-09-01T14:40:46Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T14:23:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 95.80 +/- 22.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Psunrise/finetuning-sentiment-model-3000-samples
Psunrise
2022-09-01T12:37:38Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-01T12:24:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8704318936877077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3206 - Accuracy: 0.87 - F1: 0.8704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
asdc/roberta-base-biomedical-clinical-es-finetuned-ner
asdc
2022-09-01T11:31:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-23T23:38:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3315 | 1.0 | 12 | 0.3878 | | 0.2419 | 2.0 | 24 | 0.2655 | | 0.175 | 3.0 | 36 | 0.1888 | | 0.1441 | 4.0 | 48 | 0.1808 | | 0.1111 | 5.0 | 60 | 0.1544 | | 0.1064 | 6.0 | 72 | 0.1506 | | 0.0962 | 7.0 | 84 | 0.1396 | | 0.1367 | 8.0 | 96 | 0.1403 | | 0.0303 | 9.0 | 108 | 0.1415 | | 0.0741 | 10.0 | 120 | 0.1355 | | 0.0554 | 11.0 | 132 | 0.1355 | | 0.0542 | 12.0 | 144 | 0.1360 | | 0.0292 | 13.0 | 156 | 0.1369 | | 0.0188 | 14.0 | 168 | 0.1382 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
PhucLe/LRO_v1.0.2a
PhucLe
2022-09-01T09:56:58Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:PhucLe/autotrain-data-LRO_v1.0.2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-01T09:55:28Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - PhucLe/autotrain-data-LRO_v1.0.2 co2_eq_emissions: emissions: 1.2585708613878817 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1345851607 - CO2 Emissions (in grams): 1.2586 ## Validation Metrics - Loss: 0.523 - Accuracy: 0.818 - Macro F1: 0.817 - Micro F1: 0.818 - Weighted F1: 0.817 - Macro Precision: 0.824 - Micro Precision: 0.818 - Weighted Precision: 0.824 - Macro Recall: 0.818 - Micro Recall: 0.818 - Weighted Recall: 0.818 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/PhucLe/autotrain-LRO_v1.0.2-1345851607 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("PhucLe/autotrain-LRO_v1.0.2-1345851607", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("PhucLe/autotrain-LRO_v1.0.2-1345851607", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
falkne/bert-europarl-en
falkne
2022-09-01T09:38:53Z
105
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-09-01T08:54:17Z
# Bert Europarl (bert-europarl-en) This model is a fine-tuned version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://aclanthology.org/2022.acl-long.379/). ## Model description The BERT base language model was fine-tuned on an English portion of the [Europarl corpus](https://aclanthology.org/2005.mtsummit-papers.11.pdf). The model was trained on 1,076,468 sentences of the Europarl corpus. The sentences were sampled from the English portion of Europarl.
huggingtweets/buckeshot-onlinepete
huggingtweets
2022-09-01T09:35:19Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-18T07:03:11Z
--- language: en thumbnail: http://www.huggingtweets.com/buckeshot-onlinepete/1662024914888/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1545140847259406337/bTk2lL6O_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456958582731603969/QZKpv6eI_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BUCKSHOT & im pete online</div> <div style="text-align: center; font-size: 14px;">@buckeshot-onlinepete</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BUCKSHOT & im pete online. | Data | BUCKSHOT | im pete online | | --- | --- | --- | | Tweets downloaded | 311 | 3190 | | Retweets | 77 | 94 | | Short tweets | 46 | 1003 | | Tweets kept | 188 | 2093 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wyw1egj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buckeshot-onlinepete's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bnj1d4d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bnj1d4d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/buckeshot-onlinepete') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shed-e/MLM
shed-e
2022-09-01T08:14:51Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T11:29:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6954 | 1.0 | 157 | 2.5243 | | 2.563 | 2.0 | 314 | 2.4738 | | 2.5258 | 3.0 | 471 | 2.4369 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Christoph911/GELECTRA-base-LegalQuAD
Christoph911
2022-09-01T08:02:32Z
102
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "qa", "de", "endpoints_compatible", "region:us" ]
question-answering
2022-07-03T12:08:32Z
--- language: - "de" tags: - "qa" widget: - text: "" context: "" example_title: "Extractive QA" --- # GELECTRA-base-LegalQuAD ## Overview **Language model:** GELECTRA-base **Language:** German **Downstream-task:** Extractive QA **Training data:** German-legal-SQuAD **Eval data:** German-legal-SQuAD testset ## Hyperparameters ``` batch_size = 10 n_epochs = 2 max_seq_len=256, learning_rate=1e-5, ## Eval results Evaluated on German-legal-SQuAD testset "exact": 33.984 "f1": 64.025
herokiller/bert-finetuned-ner
herokiller
2022-09-01T06:54:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-01T06:34:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0830 - Precision: 0.5380 - Recall: 0.7056 - F1: 0.6105 - Accuracy: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.0813 | 0.5446 | 0.7042 | 0.6142 | 0.9876 | | No log | 2.0 | 240 | 0.0830 | 0.5380 | 0.7056 | 0.6105 | 0.9883 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dvalbuena1/a2c-AntBulletEnv-v0
dvalbuena1
2022-09-01T04:21:12Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T04:19:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 836.44 +/- 139.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Langboat/bloom-2b5-zh
Langboat
2022-09-01T02:06:21Z
21
1
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "zh", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-31T12:14:13Z
--- license: bigscience-bloom-rail-1.0 language: - zh pipeline_tag: text-generation widget: - text: "中国的首都是" --- This model is based on [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b). We pruned its vocabulary from 250880 to 46145 with Chinese corpus to reduce GPU memory usage. So the total parameter is 2b5 now. # How to use ```python from transformers import BloomTokenizerFast, BloomForCausalLM tokenizer = BloomTokenizerFast.from_pretrained('Langboat/bloom-2b5-zh') model = BloomForCausalLM.from_pretrained('Langboat/bloom-2b5-zh') print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt')))) ```
SharpAI/mal-net-traffic-t5-l12
SharpAI
2022-09-01T01:17:03Z
110
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T01:16:05Z
--- tags: - generated_from_keras_callback model-index: - name: mal-net-traffic-t5-l12 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-net-traffic-t5-l12 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/rxmaybike
huggingtweets
2022-09-01T00:45:13Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/rxmaybike/1661993108145/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1562630988836081664/KoPBffJt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jamar " Lord Of Cinder ” majima 🇵🇸</div> <div style="text-align: center; font-size: 14px;">@rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jamar " Lord Of Cinder ” majima 🇵🇸. | Data | jamar " Lord Of Cinder ” majima 🇵🇸 | | --- | --- | | Tweets downloaded | 3003 | | Retweets | 1795 | | Short tweets | 326 | | Tweets kept | 882 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kc8cff5s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eias9psv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eias9psv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nawage/dragons-test
nawage
2022-08-31T22:35:54Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T21:44:48Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dragons-test ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nawage/dragons-test/tensorboard?#scalars)
NinaErlacher/ClimateBERTqa
NinaErlacher
2022-08-31T21:55:19Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-31T17:57:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: ClimateBertQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ClimateBertQA This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1604 | 1.0 | 4081 | 1.1894 | | 0.8577 | 2.0 | 8162 | 1.1763 | | 0.6395 | 3.0 | 12243 | 1.1118 | | 0.5015 | 4.0 | 16324 | 1.3251 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
freddyaboulton/tabular-playground
freddyaboulton
2022-08-31T21:43:50Z
0
1
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-08-31T20:40:17Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: attribute_0: attribute_1: attribute_2: attribute_3: loading: measurement_0: measurement_1: measurement_10: measurement_11: measurement_12: measurement_13: measurement_14: measurement_15: measurement_16: measurement_17: measurement_2: measurement_3: measurement_4: measurement_5: measurement_6: measurement_7: measurement_8: measurement_9: product_code: --- # Model description This is a copy of (tabular-playground)[https://huggingface.co/scikit-learn/tabular-playground] for testing purposes. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f {color: black;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f pre{padding: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable {background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-estimator:hover {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-item {z-index: 1;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-parallel-item:only-child::after {width: 0;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b8914d13-cacb-404b-89fd-48f0ed8d671f div.sk-text-repr-fallback {display: none;}</style><div id="sk-b8914d13-cacb-404b-89fd-48f0ed8d671f" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="fe201304-214c-493b-8896-11cea0894f6e" type="checkbox" ><label for="fe201304-214c-493b-8896-11cea0894f6e" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="19136b49-925c-40a2-b4d1-37039bb014a9" type="checkbox" ><label for="19136b49-925c-40a2-b4d1-37039bb014a9" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c8ec7f92-b10a-41e7-b673-1239572ea00e" type="checkbox" ><label for="c8ec7f92-b10a-41e7-b673-1239572ea00e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="70fec50e-9c49-4818-a58f-ef8de932035c" type="checkbox" ><label for="70fec50e-9c49-4818-a58f-ef8de932035c" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac8a6641-4222-4b12-b691-928201d9af73" type="checkbox" ><label for="ac8a6641-4222-4b12-b691-928201d9af73" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a14b63c1-fecb-445e-9a74-8229a531f0ea" type="checkbox" ><label for="a14b63c1-fecb-445e-9a74-8229a531f0ea" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="80227cfc-e001-4c0d-b495-e4e0631a49d5" type="checkbox" ><label for="80227cfc-e001-4c0d-b495-e4e0631a49d5" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" type="checkbox" ><label for="c52efc0c-08b7-467a-a0a1-f07cb6cecebc" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6da0ab07-3d41-459c-a8a6-a56960b775f2" type="checkbox" ><label for="6da0ab07-3d41-459c-a8a6-a56960b775f2" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b515fbe5-466a-4eb7-84d9-35227a1e862a" type="checkbox" ><label for="b515fbe5-466a-4eb7-84d9-35227a1e862a" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="72c4b8e6-3110-486f-8b33-a7db1f5e822f" type="checkbox" ><label for="72c4b8e6-3110-486f-8b33-a7db1f5e822f" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" type="checkbox" ><label for="f3bfb5a1-317d-4ff4-8dd0-804ef1d7fd61" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="dbcb65f9-3068-4263-9c1c-2e6413804681" type="checkbox" ><label for="dbcb65f9-3068-4263-9c1c-2e6413804681" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 0.7888 | | f1 score | 0.7888 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: huggingface # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` Tree Plot ![Tree Plot](tree.png) Confusion Matrix ![Confusion Matrix](confusion_matrix.png)
theojolliffe/bart-paraphrase-v4-e1-feedback-feedback-e1
theojolliffe
2022-08-31T20:28:28Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-31T19:49:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-v4-e1-feedback-feedback-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v4-e1-feedback-feedback-e1 This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 34 | 2.9415 | 60.8992 | 38.9444 | 51.1386 | 52.0048 | 19.75 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
muhtasham/tajberto-ner
muhtasham
2022-08-31T20:15:40Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T15:15:25Z
--- widget: - text: " Исмоили Сомонӣ - намояндаи бузурги форсу-тоҷик" - text: "Ин фурудгоҳ дар кишвари Индонезия қарор дорад." - text: " Бобоҷон Ғафуров – солҳои 1946-1956" - text: " Лоиқ Шералӣ дар васфи Модар шеър" tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: tajberto-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tg split: train+test args: tg metrics: - name: Precision type: precision value: 0.576 - name: Recall type: recall value: 0.6923076923076923 - name: F1 type: f1 value: 0.62882096069869 - name: Accuracy type: accuracy value: 0.8934049079754601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tajberto-ner This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co/muhtasham/TajBERTo) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6129 - Precision: 0.576 - Recall: 0.6923 - F1: 0.6288 - Accuracy: 0.8934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 | | No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 | | No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 | | No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 | | No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 | | No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 | | No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 | | No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 | | No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 | | 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 | | 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 | | 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 | | 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 | | 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 | | 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 | | 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 | | 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 | | 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 | | 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 | | 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 | | 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 | | 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 | | 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ykilcher/totally-harmless-model
ykilcher
2022-08-31T20:10:22Z
101
15
transformers
[ "transformers", "pytorch", "distilbert", "feature-extraction", "en", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-28T10:18:50Z
--- language: - en --- Just a regular old model... ## Usage ```python from transformers import AutoModel model = AutoModel.from_pretrained("ykilcher/totally-harmless-model") ```
castorini/monot5-3b-msmarco-10k
castorini
2022-08-31T19:20:16Z
497
12
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.02873", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T15:08:54Z
This model is a T5-3B reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/) This model is also the state of the art on the BEIR Benchmark. - Paper: [No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval](https://arxiv.org/abs/2206.02873) - [Repository](https://github.com/guilhermemr04/scaling-zero-shot-retrieval)
rwang5688/distilbert-base-uncased-finetuned-cola
rwang5688
2022-08-31T18:50:58Z
15
1
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-27T02:31:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.542244787638552 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7166 - Matthews Correlation: 0.5422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5239 | 1.0 | 535 | 0.5124 | 0.4240 | | 0.3472 | 2.0 | 1070 | 0.4966 | 0.5180 | | 0.2359 | 3.0 | 1605 | 0.6474 | 0.5174 | | 0.1723 | 4.0 | 2140 | 0.7166 | 0.5422 | | 0.1285 | 5.0 | 2675 | 0.8366 | 0.5367 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.8.1+cpu - Datasets 2.4.0 - Tokenizers 0.10.3
huggingtweets/chrisjbakke
huggingtweets
2022-08-31T18:23:13Z
82
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-31T18:21:59Z
--- language: en thumbnail: http://www.huggingtweets.com/chrisjbakke/1661970188984/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491961095136763905/Sd8XRL5__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Bakke</div> <div style="text-align: center; font-size: 14px;">@chrisjbakke</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Bakke. | Data | Chris Bakke | | --- | --- | | Tweets downloaded | 2930 | | Retweets | 32 | | Short tweets | 142 | | Tweets kept | 2756 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1h6arh7n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisjbakke's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1me7w8ck) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1me7w8ck/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrisjbakke') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ericntay/stbl_clinical_bert_ft
ericntay
2022-08-31T15:31:41Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T15:14:00Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1789 - F1: 0.8523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2786 | 1.0 | 95 | 0.1083 | 0.8090 | | 0.0654 | 2.0 | 190 | 0.1005 | 0.8475 | | 0.0299 | 3.0 | 285 | 0.1207 | 0.8481 | | 0.0146 | 4.0 | 380 | 0.1432 | 0.8454 | | 0.0088 | 5.0 | 475 | 0.1362 | 0.8475 | | 0.0056 | 6.0 | 570 | 0.1527 | 0.8518 | | 0.0037 | 7.0 | 665 | 0.1617 | 0.8519 | | 0.0022 | 8.0 | 760 | 0.1726 | 0.8495 | | 0.0018 | 9.0 | 855 | 0.1743 | 0.8527 | | 0.0014 | 10.0 | 950 | 0.1750 | 0.8463 | | 0.0014 | 11.0 | 1045 | 0.1775 | 0.8522 | | 0.001 | 12.0 | 1140 | 0.1789 | 0.8523 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
farleyknight-org-username/vit-base-mnist
farleyknight-org-username
2022-08-31T14:55:56Z
1,370
8
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:mnist", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-21T16:48:27Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: vit-base-mnist results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist config: mnist split: train args: mnist metrics: - name: Accuracy type: accuracy value: 0.9948888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-mnist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0236 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3717 | 1.0 | 6375 | 0.0522 | 0.9893 | | 0.3453 | 2.0 | 12750 | 0.0370 | 0.9906 | | 0.3736 | 3.0 | 19125 | 0.0308 | 0.9916 | | 0.3224 | 4.0 | 25500 | 0.0269 | 0.9939 | | 0.2846 | 5.0 | 31875 | 0.0236 | 0.9949 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1
chinoll/ACGTTS
chinoll
2022-08-31T13:59:25Z
0
4
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-08-06T10:02:11Z
--- license: cc-by-nc-sa-4.0 --- # ACGTTS 模型库 ### old支持的语音 ``` 0 - 绫地宁宁 1 - 因幡巡 2 - 户隐憧子 ``` ### new支持的语音 ``` 0 - 绫地宁宁 1 - 户隐憧子 2 - 因幡巡 3 - 明月栞那 4 - 四季夏目 5 - 墨染希 6 - 火打谷爱衣 7 - 汐山凉音 8 - 中文注入声线 9 - 二条院羽月 10 - 在原七海 11 - 式部茉优 12 - 三司绫濑 13 - 壬生千咲 14 - 朝武芳乃 15 - 常陆茉子 16 - 丛雨 17 - 蕾娜·列支敦瑙尔 18 - 鞍马小春 ``` 目前模型支持的语言有中文(方言味浓重)和日语 # 代码地址 [ACGTTS](https://github.com/chinoll/ACGTTS)
autoevaluate/glue-mnli
autoevaluate
2022-08-31T13:27:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-29T09:59:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: glue-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: train args: mnli metrics: - name: Accuracy type: accuracy value: 0.6772287315333673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8003 - Accuracy: 0.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9378 | 1.0 | 625 | 0.7896 | 0.6585 | | 0.7086 | 2.0 | 1250 | 0.7850 | 0.6712 | | 0.5758 | 3.0 | 1875 | 0.8003 | 0.6772 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SharpAI/net-traffic-t5-l12
SharpAI
2022-08-31T13:23:07Z
7
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T23:03:06Z
--- tags: - generated_from_keras_callback model-index: - name: net-traffic-t5-l12 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # net-traffic-t5-l12 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/piechocinski
huggingtweets
2022-08-31T12:41:46Z
108
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/piechocinski/1661949692555/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/873475061700857856/UBow_zRi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Janusz Piechociński</div> <div style="text-align: center; font-size: 14px;">@piechocinski</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Janusz Piechociński. | Data | Janusz Piechociński | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 252 | | Short tweets | 92 | | Tweets kept | 2906 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bvhq8c57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piechocinski's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/suwedfjd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/suwedfjd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piechocinski') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/donaldtusk
huggingtweets
2022-08-31T12:29:41Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-05T20:21:21Z
--- language: en thumbnail: http://www.huggingtweets.com/donaldtusk/1661948958135/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/990605878993793024/7uuCR4hP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Donald Tusk</div> <div style="text-align: center; font-size: 14px;">@donaldtusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Donald Tusk. | Data | Donald Tusk | | --- | --- | | Tweets downloaded | 928 | | Retweets | 194 | | Short tweets | 35 | | Tweets kept | 699 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pyk96dcl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donaldtusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ivs2zls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ivs2zls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donaldtusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shed-e/Translation
shed-e
2022-08-31T12:16:58Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-31T10:32:40Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.83113187001415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-sst2
mrm8488
2022-08-31T10:25:53Z
15
1
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T18:18:26Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9231651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-sst2 This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3600 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1519343408010398e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2865 | 1.0 | 4210 | 0.2662 | 0.9128 | | 0.2256 | 2.0 | 8420 | 0.3698 | 0.9002 | | 0.1676 | 3.0 | 12630 | 0.3107 | 0.9186 | | 0.1481 | 4.0 | 16840 | 0.3425 | 0.9186 | | 0.1429 | 5.0 | 21050 | 0.3600 | 0.9232 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-mrpc
mrm8488
2022-08-31T10:25:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T16:59:55Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: data2vec-text-base-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8627450980392157 - name: F1 type: f1 value: 0.8992805755395683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-mrpc This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 - Accuracy: 0.8627 - F1: 0.8993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.486061628311107e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 19 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6197 | 1.0 | 917 | 0.4720 | 0.8039 | 0.8606 | | 0.4763 | 2.0 | 1834 | 0.4087 | 0.8627 | 0.8993 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-mnli
mrm8488
2022-08-31T10:25:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-29T16:27:18Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7862455425369332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-mnli This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5521 - Accuracy: 0.7862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.099 | 1.0 | 24544 | 1.0987 | 0.3182 | | 1.0993 | 2.0 | 49088 | 1.0979 | 0.3545 | | 0.7481 | 3.0 | 73632 | 0.7197 | 0.7046 | | 0.5671 | 4.0 | 98176 | 0.5862 | 0.7728 | | 0.5505 | 5.0 | 122720 | 0.5521 | 0.7862 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-rte
mrm8488
2022-08-31T10:25:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-04T08:55:56Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6209386281588448 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-rte This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6670 - Accuracy: 0.6209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7091 | 0.4729 | | No log | 2.0 | 312 | 0.6893 | 0.5271 | | No log | 3.0 | 468 | 0.6670 | 0.6209 | | 0.6919 | 4.0 | 624 | 0.6740 | 0.5921 | | 0.6919 | 5.0 | 780 | 0.6644 | 0.6101 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
livingmagic/ddpm-butterflies-128
livingmagic
2022-08-31T10:05:27Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T07:36:18Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/livingmagic/ddpm-butterflies-128/tensorboard?#scalars)
mrp/bert-finetuned-squad
mrp
2022-08-31T09:52:58Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Loss type: loss value: 1.073493242263794 verified: true - name: Exact Match type: exact_match value: 80.0853 verified: true - name: F1 type: f1 value: 87.606 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
VioletaMG/dtu-scan114-128_50epochs
VioletaMG
2022-08-31T09:29:52Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T09:08:22Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dtu-scan114-128_50epochs ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/VioletaMG/dtu-scan114-128_50epochs/tensorboard?#scalars)
merkalo-ziri/qa_model
merkalo-ziri
2022-08-31T09:20:35Z
26
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "question answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T20:14:41Z
--- tags: - "question answering" widget: - context: "Привет, меня зовут Артем. Завтра заеду к вам" - question: "Что я планирую делать?" ---
osanseviero/flair_test4
osanseviero
2022-08-31T09:04:18Z
1
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-08-31T09:02:30Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("osanseviero/flair_test4") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
cynthiachan/finetuned-deberta-base-10pct
cynthiachan
2022-08-31T08:56:14Z
107
0
transformers
[ "transformers", "pytorch", "deberta", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T08:40:40Z
--- license: mit tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.0810 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 1.0 - Cve Recall: 1.0 - Cve F1: 1.0 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 1.0 - Domain Recall: 0.9565 - Domain F1: 0.9778 - Domain Number: 23 - Email Precision: 1.0 - Email Recall: 1.0 - Email F1: 1.0 - Email Number: 3 - Filepath Precision: 0.8841 - Filepath Recall: 0.8788 - Filepath F1: 0.8815 - Filepath Number: 165 - Hostname Precision: 1.0 - Hostname Recall: 1.0 - Hostname F1: 1.0 - Hostname Number: 12 - Ipv4 Precision: 1.0 - Ipv4 Recall: 1.0 - Ipv4 F1: 1.0 - Ipv4 Number: 12 - Md5 Precision: 0.8333 - Md5 Recall: 0.9615 - Md5 F1: 0.8929 - Md5 Number: 52 - Sha1 Precision: 0.6667 - Sha1 Recall: 0.8571 - Sha1 F1: 0.75 - Sha1 Number: 7 - Sha256 Precision: 0.9565 - Sha256 Recall: 1.0 - Sha256 F1: 0.9778 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.9014 - Overall Recall: 0.9201 - Overall F1: 0.9107 - Overall Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3797 | 0.37 | 500 | 0.1998 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0286 | 0.0435 | 0.0345 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.5108 | 0.7152 | 0.5960 | 165 | 0.1774 | 0.9167 | 0.2973 | 12 | 0.4 | 0.5 | 0.4444 | 12 | 0.3194 | 0.4423 | 0.3710 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4588 | 0.8864 | 0.6047 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.3875 | 0.5858 | 0.4664 | 0.9593 | | 0.1713 | 0.75 | 1000 | 0.1619 | 0.6 | 0.5 | 0.5455 | 6 | 0.5 | 0.6364 | 0.56 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6957 | 0.6957 | 0.6957 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6879 | 0.6545 | 0.6708 | 165 | 0.5217 | 1.0 | 0.6857 | 12 | 0.5714 | 1.0 | 0.7273 | 12 | 0.6667 | 0.8846 | 0.7603 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7692 | 0.9091 | 0.8333 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6685 | 0.7219 | 0.6942 | 0.9664 | | 0.1152 | 1.12 | 1500 | 0.1096 | 0.8333 | 0.8333 | 0.8333 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7826 | 0.7826 | 0.7826 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.7202 | 0.8424 | 0.7765 | 165 | 1.0 | 1.0 | 1.0 | 12 | 0.4444 | 1.0 | 0.6154 | 12 | 0.6944 | 0.9615 | 0.8065 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8723 | 0.9318 | 0.9011 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7312 | 0.8609 | 0.7908 | 0.9751 | | 0.1089 | 1.5 | 2000 | 0.1243 | 1.0 | 1.0 | 1.0 | 6 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9048 | 0.8261 | 0.8636 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8011 | 0.8788 | 0.8382 | 165 | 0.6667 | 1.0 | 0.8 | 12 | 0.9091 | 0.8333 | 0.8696 | 12 | 0.7812 | 0.9615 | 0.8621 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7857 | 1.0 | 0.88 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8065 | 0.8876 | 0.8451 | 0.9750 | | 0.0947 | 1.87 | 2500 | 0.0913 | 0.75 | 1.0 | 0.8571 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8462 | 0.9565 | 0.8980 | 23 | 0.3333 | 0.6667 | 0.4444 | 3 | 0.8035 | 0.8424 | 0.8225 | 165 | 0.6 | 1.0 | 0.7500 | 12 | 1.0 | 1.0 | 1.0 | 12 | 0.7969 | 0.9808 | 0.8793 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8302 | 1.0 | 0.9072 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7952 | 0.8846 | 0.8375 | 0.9792 | | 0.0629 | 2.25 | 3000 | 0.0940 | 1.0 | 0.8333 | 0.9091 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9565 | 0.9565 | 0.9565 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8671 | 0.8303 | 0.8483 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 12 | 0.9273 | 0.9808 | 0.9533 | 52 | 0.25 | 0.1429 | 0.1818 | 7 | 0.8776 | 0.9773 | 0.9247 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8946 | 0.8787 | 0.8866 | 0.9825 | | 0.0442 | 2.62 | 3500 | 0.1012 | 1.0 | 1.0 | 1.0 | 6 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9091 | 0.8696 | 0.8889 | 23 | 0.75 | 1.0 | 0.8571 | 3 | 0.8182 | 0.8727 | 0.8446 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 12 | 0.92 | 0.8846 | 0.9020 | 52 | 0.5 | 1.0 | 0.6667 | 7 | 0.9565 | 1.0 | 0.9778 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8616 | 0.9024 | 0.8815 | 0.9818 | | 0.0401 | 3.0 | 4000 | 0.0810 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 1.0 | 0.9565 | 0.9778 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8841 | 0.8788 | 0.8815 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 1.0 | 1.0 | 12 | 0.8333 | 0.9615 | 0.8929 | 52 | 0.6667 | 0.8571 | 0.75 | 7 | 0.9565 | 1.0 | 0.9778 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.9014 | 0.9201 | 0.9107 | 0.9851 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
VanHoan/bert-fine-tuned-cola
VanHoan
2022-08-31T08:48:56Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-20T02:35:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5981073556597793 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8408 - Matthews Correlation: 0.5981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4729 | 1.0 | 1069 | 0.5311 | 0.5154 | | 0.3134 | 2.0 | 2138 | 0.6336 | 0.6007 | | 0.1686 | 3.0 | 3207 | 0.8408 | 0.5981 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Sandeepanie/clinical-finetuned-AgitationModel
Sandeepanie
2022-08-31T05:31:57Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-31T04:28:14Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: clinical-finetuned-AgitationModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-finetuned-AgitationModel This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9746 - Accuracy: 0.88 - Precision: 0.9178 - Recall: 0.9178 - F1: 0.9178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0949 | 1.0 | 50 | 1.0393 | 0.85 | 0.8816 | 0.9178 | 0.8993 | | 0.0475 | 2.0 | 100 | 1.0619 | 0.85 | 0.8816 | 0.9178 | 0.8993 | | 0.0149 | 3.0 | 150 | 0.9746 | 0.88 | 0.9178 | 0.9178 | 0.9178 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
jannatul17/squad-bn-qgen-mt5-all-metric
jannatul17
2022-08-31T04:50:05Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_bn", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T23:46:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_bn metrics: - sacrebleu model-index: - name: squad-bn-qgen-mt5-all-metric results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad_bn type: squad_bn args: squad_bn metrics: - name: Sacrebleu type: sacrebleu value: 6.4143 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-bn-qgen-mt5-all-metric This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the squad_bn dataset. It achieves the following results on the evaluation set: - Loss: 0.7273 - Rouge1 Precision: 35.8589 - Rouge1 Recall: 29.7041 - Rouge1 Fmeasure: 31.6373 - Rouge2 Precision: 15.4203 - Rouge2 Recall: 12.5155 - Rouge2 Fmeasure: 13.3978 - Rougel Precision: 34.4684 - Rougel Recall: 28.5887 - Rougel Fmeasure: 30.4627 - Rougelsum Precision: 34.4252 - Rougelsum Recall: 28.5362 - Rougelsum Fmeasure: 30.4053 - Sacrebleu: 6.4143 - Meteor: 0.1416 - Gen Len: 16.7199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | Sacrebleu | Meteor | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:|:---------:|:------:|:-------:| | 0.8449 | 1.0 | 16396 | 0.7340 | 31.6476 | 26.8901 | 28.2871 | 13.621 | 11.3545 | 11.958 | 30.3276 | 25.7754 | 27.1048 | 30.3426 | 25.7489 | 27.0991 | 5.9655 | 0.1336 | 16.8685 | | 0.7607 | 2.0 | 32792 | 0.7182 | 33.7173 | 28.6115 | 30.1049 | 14.8227 | 12.2059 | 12.9453 | 32.149 | 27.2036 | 28.6617 | 32.2479 | 27.2261 | 28.7272 | 6.6093 | 0.138 | 16.8522 | | 0.7422 | 3.0 | 49188 | 0.7083 | 34.6128 | 29.0223 | 30.7248 | 14.9888 | 12.3092 | 13.1021 | 33.2507 | 27.8154 | 29.4599 | 33.2848 | 27.812 | 29.5064 | 6.2407 | 0.1416 | 16.5806 | | 0.705 | 4.0 | 65584 | 0.7035 | 34.156 | 29.0012 | 30.546 | 14.72 | 12.0251 | 12.8161 | 32.7527 | 27.6511 | 29.1955 | 32.7692 | 27.6627 | 29.231 | 6.1784 | 0.1393 | 16.7793 | | 0.6859 | 5.0 | 81980 | 0.7038 | 35.1405 | 29.6033 | 31.2614 | 15.5108 | 12.6414 | 13.5059 | 33.8335 | 28.4264 | 30.0745 | 33.8782 | 28.4349 | 30.0901 | 6.5896 | 0.144 | 16.6651 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
js05212/ddpm-butterflies-128
js05212
2022-08-31T04:49:25Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T04:08:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/js05212/ddpm-butterflies-128/tensorboard?#scalars)
Late-potato/distilbert-base-uncased-finetuned-imdb
Late-potato
2022-08-31T04:47:26Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:10:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4977 | 1.0 | 782 | 2.3318 | | 2.4232 | 2.0 | 1564 | 2.3005 | | 2.386 | 3.0 | 2346 | 2.2721 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
thammarat-th/distilbert-base-uncased-finetuned-imdb
thammarat-th
2022-08-31T04:46:34Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:01:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4216 | 1.0 | 782 | 2.2803 | | 2.3719 | 2.0 | 1564 | 2.2577 | | 2.3407 | 3.0 | 2346 | 2.2320 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
earthanan/distilbert-base-uncased-finetuned-imdb
earthanan
2022-08-31T04:13:43Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
mooface/xlm-roberta-base-finetuned-panx-de
mooface
2022-08-31T02:07:15Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T01:43:13Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
abhitopia/question-answer-generation
abhitopia
2022-08-31T00:30:48Z
89
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-answer-generation", "dataset:squad", "arxiv:1910.10683", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T21:54:29Z
--- datasets: - squad tags: - question-answer-generation widget: - text: "generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>" - text: "question: What is 42 context: 42 is the answer to life, the universe and everything. </s>" license: mit --- ## T5 for multi-task QA and QG This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks. For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>` You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
microsoft/bloom-deepspeed-inference-int8
microsoft
2022-08-30T23:01:17Z
7
28
transformers
[ "transformers", "bloom", "feature-extraction", "license:bigscience-bloom-rail-1.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T18:26:43Z
--- license: bigscience-bloom-rail-1.0 --- This is a custom INT8 version of the original [BLOOM weights](https://huggingface.co/bigscience/bloom) to make it fast to use with the [DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/) engine which uses Tensor Parallelism. In this repo the tensors are split into 8 shards to target 8 GPUs. The full BLOOM documentation is [here](https://huggingface.co/bigscience/bloom). To use the weights in repo, you can adapt to your needs the scripts found [here](https://github.com/bigscience-workshop/Megatron-DeepSpeed/tree/main/scripts/inference) (XXX: they are going to migrate soon to HF Transformers code base, so will need to update the link once moved).
ruse40folly/distilbert-base-uncased-finetuned-emotion
ruse40folly
2022-08-30T22:15:45Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T21:58:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235310384339321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.9235 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8521 | 1.0 | 250 | 0.3251 | 0.9085 | 0.9063 | | 0.2489 | 2.0 | 500 | 0.2236 | 0.9235 | 0.9235 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
nawage/ddpm-butterflies-128
nawage
2022-08-30T20:43:21Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-30T19:29:51Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nawage/ddpm-butterflies-128/tensorboard?#scalars)
RussianNLP/ruRoBERTa-large-rucola
RussianNLP
2022-08-30T20:23:10Z
586
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T19:54:51Z
--- language: ru license: apache-2.0 tags: - transformers thumbnail: "https://github.com/RussianNLP/RuCoLA/blob/main/logo.png" widget: - text: "Он решил ту или иную сложную задачу." --- This is a finetuned version of [RuRoBERTa-large](https://huggingface.co/sberbank-ai/ruRoberta-large) for the task of linguistic acceptability classification on the [RuCoLA](https://rucola-benchmark.com/) benchmark. The hyperparameters used for finetuning are as follows: * 5 training epochs (with early stopping based on validation MCC) * Peak learning rate: 1e-5, linear warmup for 10% of total training time * Weight decay: 1e-4 * Batch size: 32 * Random seed: 5 * Optimizer: [torch.optim.AdamW](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html)
vendorabc/tabular-playground
vendorabc
2022-08-30T19:13:16Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-08-30T19:12:26Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: attribute_0: - material_7 - material_7 - material_7 attribute_1: - material_6 - material_5 - material_6 attribute_2: - 6 - 6 - 6 attribute_3: - 9 - 6 - 9 loading: - 101.52 - 91.34 - 167.03 measurement_0: - 9 - 10 - 11 measurement_1: - 11 - 11 - 5 measurement_10: - 14.926 - 15.162 - 16.398 measurement_11: - 20.394 - 19.46 - 20.613 measurement_12: - 11.829 - 9.114 - 11.007 measurement_13: - 16.195 - 16.024 - 16.061 measurement_14: - 16.517 - 17.132 - 15.18 measurement_15: - 13.826 - 12.257 - 15.758 measurement_16: - 14.206 - 15.094 - .nan measurement_17: - 723.712 - 896.835 - 893.454 measurement_2: - 2 - 10 - 6 measurement_3: - 17.492 - 18.114 - 18.42 measurement_4: - 13.962 - 10.185 - 13.565 measurement_5: - 15.716 - 18.06 - 16.916 measurement_6: - 17.104 - 18.283 - 17.917 measurement_7: - 12.377 - 10.957 - 10.394 measurement_8: - 19.221 - 20.638 - 19.805 measurement_9: - 11.613 - 11.804 - 12.012 product_code: - E - D - E --- # Model description This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 {color: black;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 pre{padding: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable {background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-item {z-index: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:only-child::after {width: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="48fbfeb0-e954-46f7-9a36-8dfe86284fca" type="checkbox" ><label for="48fbfeb0-e954-46f7-9a36-8dfe86284fca" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="157828b7-30d1-4b5b-b25e-971143379fff" type="checkbox" ><label for="157828b7-30d1-4b5b-b25e-971143379fff" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3bde7e44-3687-4b99-a3b7-b4e87023ec85" type="checkbox" ><label for="3bde7e44-3687-4b99-a3b7-b4e87023ec85" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef9279cb-7d77-4ef1-aafe-26e433e2a615" type="checkbox" ><label for="ef9279cb-7d77-4ef1-aafe-26e433e2a615" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b079e8d7-f789-4622-ad66-197193ef0061" type="checkbox" ><label for="b079e8d7-f789-4622-ad66-197193ef0061" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="969f6026-8077-468a-b332-8ceb69bac4e9" type="checkbox" ><label for="969f6026-8077-468a-b332-8ceb69bac4e9" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" type="checkbox" ><label for="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" type="checkbox" ><label for="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be08add7-98fc-40b5-a259-d462d738780a" type="checkbox" ><label for="be08add7-98fc-40b5-a259-d462d738780a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" type="checkbox" ><label for="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="244735dc-f1e1-458c-a1c6-60ef847b9cae" type="checkbox" ><label for="244735dc-f1e1-458c-a1c6-60ef847b9cae" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f1a1c41-e1c4-40ce-afd9-9658030b3423" type="checkbox" ><label for="2f1a1c41-e1c4-40ce-afd9-9658030b3423" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="25044b48-b814-45f9-a75b-9ee472bdc79c" type="checkbox" ><label for="25044b48-b814-45f9-a75b-9ee472bdc79c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.791961 | | f1 score | 0.791961 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: huggingface # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # Additional Content ## Tree Plot ![Tree Plot](tree.png) ## Confusion Matrix ![Confusion Matrix](confusion_matrix.png)
vendorabc/modeltest
vendorabc
2022-08-30T19:01:03Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "license:mit", "region:us" ]
tabular-classification
2022-08-30T19:00:59Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description This is a HistGradientBoostingClassifier model trained on breast cancer dataset. It's trained with Halving Grid Search Cross Validation, with parameter grids on max_leaf_nodes and max_depth. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------------------|----------------------------------------------------------| | aggressive_elimination | False | | cv | 5 | | error_score | nan | | estimator__categorical_features | | | estimator__early_stopping | auto | | estimator__l2_regularization | 0.0 | | estimator__learning_rate | 0.1 | | estimator__loss | auto | | estimator__max_bins | 255 | | estimator__max_depth | | | estimator__max_iter | 100 | | estimator__max_leaf_nodes | 31 | | estimator__min_samples_leaf | 20 | | estimator__monotonic_cst | | | estimator__n_iter_no_change | 10 | | estimator__random_state | | | estimator__scoring | loss | | estimator__tol | 1e-07 | | estimator__validation_fraction | 0.1 | | estimator__verbose | 0 | | estimator__warm_start | False | | estimator | HistGradientBoostingClassifier() | | factor | 3 | | max_resources | auto | | min_resources | exhaust | | n_jobs | -1 | | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} | | random_state | 42 | | refit | True | | resource | n_samples | | return_train_score | True | | scoring | | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 {color: black;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 pre{padding: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable {background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-item {z-index: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:only-child::after {width: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-text-repr-fallback {display: none;}</style><div id="sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ab167486-be7e-4eb5-be01-ba21adbd7469" type="checkbox" ><label for="ab167486-be7e-4eb5-be01-ba21adbd7469" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e9df9f06-8d9e-4379-ad72-52f461408663" type="checkbox" ><label for="e9df9f06-8d9e-4379-ad72-52f461408663" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.959064 | | f1 score | 0.959064 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: skops_user # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ``` # Additional Content ## Confusion matrix ![Confusion matrix](confusion_matrix.png) ## Hyperparameter search results <details> <summary> Click to expand </summary> | iter | n_resources | mean_fit_time | std_fit_time | mean_score_time | std_score_time | param_max_depth | param_max_leaf_nodes | params | split0_test_score | split1_test_score | split2_test_score | split3_test_score | split4_test_score | mean_test_score | std_test_score | rank_test_score | split0_train_score | split1_train_score | split2_train_score | split3_train_score | split4_train_score | mean_train_score | std_train_score | |--------|---------------|-----------------|----------------|-------------------|------------------|-------------------|------------------------|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|-------------------| | 0 | 44 | 0.0498069 | 0.0107112 | 0.0121156 | 0.0061838 | 2 | 5 | {'max_depth': 2, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0492636 | 0.0187271 | 0.00738611 | 0.00245441 | 2 | 10 | {'max_depth': 2, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0572055 | 0.0153176 | 0.0111395 | 0.0010297 | 2 | 15 | {'max_depth': 2, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0498482 | 0.0177091 | 0.00857358 | 0.00415935 | 5 | 5 | {'max_depth': 5, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0500658 | 0.00992094 | 0.00998321 | 0.00527031 | 5 | 10 | {'max_depth': 5, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0525903 | 0.0151616 | 0.00874681 | 0.00462998 | 5 | 15 | {'max_depth': 5, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0512018 | 0.0130152 | 0.00881834 | 0.00500514 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0566921 | 0.0186051 | 0.00513492 | 0.000498488 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.060587 | 0.04041 | 0.00987453 | 0.00529624 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 1 | 132 | 0.232459 | 0.0479878 | 0.0145514 | 0.00856422 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.272297 | 0.0228833 | 0.011561 | 0.0068272 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.239161 | 0.0330412 | 0.0116591 | 0.003554 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 2 | 396 | 0.920334 | 0.18198 | 0.0166654 | 0.00776263 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.962025 | 0.911392 | 0.987342 | 0.974359 | 0.935897 | 0.954203 | 0.0273257 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | </details> ## Classification report <details> <summary> Click to expand </summary> | index | precision | recall | f1-score | support | |--------------|-------------|----------|------------|-----------| | malignant | 0.951613 | 0.936508 | 0.944 | 63 | | benign | 0.963303 | 0.972222 | 0.967742 | 108 | | macro avg | 0.957458 | 0.954365 | 0.955871 | 171 | | weighted avg | 0.958996 | 0.959064 | 0.958995 | 171 | </details>
agustina/museo
agustina
2022-08-30T18:25:36Z
0
0
null
[ "region:us" ]
null
2022-08-30T18:24:37Z
museo de mariposis y insectos moderno, con muebles blancos yiluminados
epsil/Health_Psychology_Analysis
epsil
2022-08-30T17:49:10Z
0
1
null
[ "region:us" ]
null
2022-08-30T15:49:29Z
### TO BE ADDED widget: - text: "I am going through lot of stress"
TingChenChang/make-multilingual-en-zh-tw-20220825062338
TingChenChang
2022-08-30T17:26:18Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-25T15:35:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11898 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
maxpe/bertin-roberta-base-spanish_sem_eval_2018_task_1
maxpe
2022-08-30T16:01:41Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "doi:10.57967/hf/0032", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T15:53:12Z
# BERTIN-roBERTa-base-Spanish_sem_eval_2018_task_1 This is a [BERTIN-roBERTa-base-Spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) model finetuned on ~3500 tweets in Spanish annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751) (also available on the [Hugging Face Dataset Hub](https://huggingface.co/datasets/sem_eval_2018_task_1)). To quickly test it locally, use a pipeline: ```python from transformers import pipeline pipe = pipeline("text-classification",model="maxpe/bertin-roberta-base-spanish_sem_eval_2018_task_1") pipe("¡Odio tener tanto estrés!",top_k=11) ```
maxpe/twitter-roberta-base_semeval18_emodetection
maxpe
2022-08-30T15:14:04Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# UPDATE: NEW AND IMPROVED MODEL AVAILABLE AT https://huggingface.co/maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1 # Twitter-roBERTa-base_SemEval18_Emodetection This is a Twitter-roBERTa-base model trained on ~7000 tweets in English annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751). Run the classifier on the test set of the competition: ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModel from torch.utils.data import DataLoader import torch import pandas as pd # choose GPU when available device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base",model_max_length=512) # build custom model with classification layer on top and a dropout layer before class RobertaClass(torch.nn.Module): def __init__(self): super(RobertaClass, self).__init__() self.l1 = AutoModel.from_pretrained("cardiffnlp/twitter-roberta-base",return_dict=False) self.l2 = torch.nn.Dropout(0.3) self.l3 = torch.nn.Linear(768, 11) def forward(self, input_ids, attention_mask): _, output_1= self.l1(input_ids=input_ids, attention_mask=attention_mask) output_2 = self.l2(output_1) output = self.l3(output_2) return output model_name="twitter-roberta-base_semeval18_emodetection/pytorch_model.bin" model=RobertaClass() model.load_state_dict(torch.load(model_name,map_location=torch.device(device))) model.eval() # run on more than 1 GPU model = torch.nn.DataParallel(model) model.to(device) twnames=['anger','anticipation','disgust','fear','joy','love','optimism','pessimism','sadness','surprise','trust'] # load from hugging face dataset hub testset_raw = load_dataset('sem_eval_2018_task_1','subtask5.english',split='test') # remove old columns testset=testset_raw.remove_columns(twnames+["ID"]) # tokenize testset_tokenized = testset.map(lambda e: tokenizer(e['Tweet'], truncation=True, padding='max_length'), batched=True) testset_tokenized=testset_tokenized.remove_columns("Tweet") testset_tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask']) outfile="predicted_2018-E-c-En-test-gold.txt" MAX_LEN = 512 VALID_BATCH_SIZE = 8 # set batch size according to available RAM # VALID_BATCH_SIZE = 1000 # set num_workers for parallel processing inference_params = {'batch_size': VALID_BATCH_SIZE, 'shuffle': False, # 'num_workers': 1 } inference_loader = DataLoader(testset_tokenized, **inference_params) open(outfile,"w").close() with torch.no_grad(): # change lines for progress manager # for _, data in tqdm(enumerate(inference_loader, 0),total=len(inference_loader)): for _, data in enumerate(inference_loader, 0): outputs = model(input_ids=data['input_ids'],attention_mask=data['attention_mask']) fin_outputs=torch.sigmoid(outputs).cpu().detach().numpy().tolist() pd.DataFrame(fin_outputs).to_csv(outfile,index=False,header=False,sep="\t",mode='a') # # dataset from file (one text per line) # from datasets import Dataset # with open(linesoftextfile,"rb") as textfile: # textdict={"text":[x.decode().rstrip("\n") for x in textfile.readlines()]} # inference_dataset=Dataset.from_dict(textdict) # del(textdict) ```
muhtasham/bert-small-finer-longer
muhtasham
2022-08-30T14:26:44Z
180
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-29T12:21:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finer-longer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finer-longer This model is a fine-tuned version of [muhtasham/bert-small-finer](https://huggingface.co/muhtasham/bert-small-finer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.49 | 500 | 1.6683 | | 1.5941 | 0.97 | 1000 | 1.6569 | | 1.5941 | 1.46 | 1500 | 1.6436 | | 1.5605 | 1.94 | 2000 | 1.6173 | | 1.5605 | 2.43 | 2500 | 1.6073 | | 1.5297 | 2.91 | 3000 | 1.6001 | | 1.5297 | 3.4 | 3500 | 1.5815 | | 1.5022 | 3.89 | 4000 | 1.5756 | | 1.5022 | 4.37 | 4500 | 1.5568 | | 1.4753 | 4.86 | 5000 | 1.5458 | | 1.4753 | 5.34 | 5500 | 1.5399 | | 1.4537 | 5.83 | 6000 | 1.5273 | | 1.4537 | 6.32 | 6500 | 1.5192 | | 1.433 | 6.8 | 7000 | 1.5099 | | 1.433 | 7.29 | 7500 | 1.5083 | | 1.4169 | 7.77 | 8000 | 1.4957 | | 1.4169 | 8.26 | 8500 | 1.4914 | | 1.3982 | 8.75 | 9000 | 1.4859 | | 1.3982 | 9.23 | 9500 | 1.4697 | | 1.3877 | 9.72 | 10000 | 1.4711 | | 1.3877 | 10.2 | 10500 | 1.4608 | | 1.3729 | 10.69 | 11000 | 1.4583 | | 1.3729 | 11.18 | 11500 | 1.4513 | | 1.3627 | 11.66 | 12000 | 1.4498 | | 1.3627 | 12.15 | 12500 | 1.4396 | | 1.357 | 12.63 | 13000 | 1.4415 | | 1.357 | 13.12 | 13500 | 1.4347 | | 1.3484 | 13.61 | 14000 | 1.4316 | | 1.3484 | 14.09 | 14500 | 1.4319 | | 1.3442 | 14.58 | 15000 | 1.4268 | | 1.3442 | 15.06 | 15500 | 1.4293 | | 1.3387 | 15.55 | 16000 | 1.4217 | | 1.3387 | 16.03 | 16500 | 1.4241 | | 1.3358 | 16.52 | 17000 | 1.4250 | | 1.3358 | 17.01 | 17500 | 1.4196 | | 1.3344 | 17.49 | 18000 | 1.4193 | | 1.3344 | 17.98 | 18500 | 1.4200 | | 1.3274 | 18.46 | 19000 | 1.4250 | | 1.3274 | 18.95 | 19500 | 1.4168 | | 1.3348 | 19.44 | 20000 | 1.4164 | | 1.3348 | 19.92 | 20500 | 1.4264 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jcmc/reinforce-Pong
jcmc
2022-08-30T14:22:45Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T14:22:37Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-Pong results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
igpaub/q-FrozenLake-v1-8x8
igpaub
2022-08-30T14:03:55Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T12:58:49Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.35 +/- 0.48 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jannatul17/squad-bn-qgen-banglat5
jannatul17
2022-08-30T12:35:21Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_bn", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T03:12:00Z
--- tags: - generated_from_trainer datasets: - squad_bn metrics: - sacrebleu model-index: - name: squad-bn-qgen-banglat5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad_bn type: squad_bn args: squad_bn metrics: - name: Sacrebleu type: sacrebleu value: 8.0898 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-bn-qgen-banglat5 This model is a fine-tuned version of [csebuetnlp/banglat5](https://huggingface.co/csebuetnlp/banglat5) on the squad_bn dataset. It achieves the following results on the evaluation set: - Loss: 0.4808 - Rouge1 Precision: 37.7366 - Rouge1 Recall: 34.2712 - Rouge1 Fmeasure: 34.8738 - Rouge2 Precision: 16.2055 - Rouge2 Recall: 14.568 - Rouge2 Fmeasure: 14.852 - Rougel Precision: 35.4241 - Rougel Recall: 32.2011 - Rougel Fmeasure: 32.7617 - Rougelsum Precision: 35.4167 - Rougelsum Recall: 32.1978 - Rougelsum Fmeasure: 32.7572 - Sacrebleu: 8.0898 - Meteor: 0.1782 - Gen Len: 9.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | Sacrebleu | Meteor | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:|:---------:|:------:|:-------:| | 0.5208 | 1.0 | 16396 | 0.4683 | 38.566 | 35.5094 | 35.9216 | 17.0701 | 15.3916 | 15.6829 | 36.4433 | 33.5298 | 33.958 | 36.4637 | 33.5496 | 33.9913 | 8.6055 | 0.1799 | 9.8340 | | 0.479 | 2.0 | 32792 | 0.4815 | 40.7475 | 35.8163 | 37.0498 | 17.9002 | 15.2742 | 15.9601 | 38.6977 | 33.8607 | 35.1258 | 38.7261 | 33.8717 | 35.1537 | 9.0561 | 0.1835 | 9.4338 | | 0.4577 | 3.0 | 49188 | 0.4879 | 40.6712 | 36.2763 | 37.2775 | 18.5942 | 16.0689 | 16.7206 | 38.8546 | 34.5013 | 35.5491 | 38.8633 | 34.5255 | 35.5682 | 9.7947 | 0.1879 | 9.6324 | | 0.4389 | 4.0 | 65584 | 0.4881 | 41.4251 | 36.2873 | 37.6272 | 18.561 | 15.7067 | 16.5358 | 39.434 | 34.3496 | 35.7457 | 39.533 | 34.4702 | 35.8347 | 9.7612 | 0.1881 | 9.3944 | | 0.4321 | 5.0 | 81980 | 0.4937 | 41.1197 | 36.0568 | 37.4121 | 18.7179 | 15.8348 | 16.6644 | 39.3386 | 34.3177 | 35.7088 | 39.3171 | 34.3015 | 35.6748 | 9.8263 | 0.1887 | 9.4040 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingbase/xlm-roberta-base-finetuned-panx-all
huggingbase
2022-08-30T12:29:00Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:59:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingbase/xlm-roberta-base-finetuned-panx-de
huggingbase
2022-08-30T10:28:31Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T10:03:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Conrad747/lg-en-v2
Conrad747
2022-08-30T10:06:19Z
15
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T09:47:44Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: lg-en-test-version results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lg-en-test-version This model is a fine-tuned version of [AI-Lab-Makerere/lg_en](https://huggingface.co/AI-Lab-Makerere/lg_en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5803 - Bleu: 31.3111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.687717341785184e-05 - train_batch_size: 15 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 24 | 1.0100 | 28.5722 | | No log | 2.0 | 48 | 0.7758 | 27.7506 | | No log | 3.0 | 72 | 0.6459 | 40.3866 | | No log | 4.0 | 96 | 0.5803 | 31.3111 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ML-unipi/bart-large-tos
ML-unipi
2022-08-30T09:39:27Z
9
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-29T07:26:49Z
--- tags: - summarization license: mit --- # BART (large-sized model), fine-tuned on custom contracts dataset BART model pre-trained on English language, and fine-tuned for terms of service abstractive summarization ## Model description BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs. ## Intended uses & limitations You can use this model for text summarization. ### How to use Here is how to use this model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html): ```python from transformers import pipeline summarizer = pipeline("summarization", model="ML-unipi/bart-large-tos") ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the 2010 marriage license application, according to court documents. Prosecutors said the marriages were part of an immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages. Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted. The case was referred to the Bronx District Attorney\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\'s Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt, Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18. """ print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False)) >>> [{'summary_text': 'Liana Barrientos, 39, is charged with two counts of "offering a false instrument for filing in the first degree" In total, she has been married 10 times, with nine of her marriages occurring between 1999 and 2002. She is believed to still be married to four men.'}] ```
xud/ddpm-butterflies-128
xud
2022-08-30T09:21:47Z
1
2
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-30T08:09:01Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/xud/ddpm-butterflies-128/tensorboard?#scalars)
igpaub/q-FrozenLake-v1-8x8-noSlippery
igpaub
2022-08-30T09:15:32Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T09:15:24Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
hisaoka/pegasus-samsum
hisaoka
2022-08-30T07:52:51Z
10
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T04:25:46Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6853 | 0.54 | 500 | 1.4886 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
cynthiachan/finetuned-roberta-base-10pct
cynthiachan
2022-08-30T06:49:09Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T03:56:32Z
--- license: mit tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.1033 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 1.0 - Cve Recall: 1.0 - Cve F1: 1.0 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 0.8636 - Domain Recall: 0.8261 - Domain F1: 0.8444 - Domain Number: 23 - Email Precision: 1.0 - Email Recall: 1.0 - Email F1: 1.0 - Email Number: 3 - Filepath Precision: 0.8108 - Filepath Recall: 0.9091 - Filepath F1: 0.8571 - Filepath Number: 165 - Hostname Precision: 0.9231 - Hostname Recall: 1.0 - Hostname F1: 0.9600 - Hostname Number: 12 - Ipv4 Precision: 0.9167 - Ipv4 Recall: 0.9167 - Ipv4 F1: 0.9167 - Ipv4 Number: 12 - Md5 Precision: 0.875 - Md5 Recall: 0.9423 - Md5 F1: 0.9074 - Md5 Number: 52 - Sha1 Precision: 0.75 - Sha1 Recall: 0.8571 - Sha1 F1: 0.8000 - Sha1 Number: 7 - Sha256 Precision: 0.8 - Sha256 Recall: 1.0 - Sha256 F1: 0.8889 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.8383 - Overall Recall: 0.9201 - Overall F1: 0.8773 - Overall Accuracy: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4353 | 0.37 | 500 | 0.3525 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.3984 | 0.6182 | 0.4846 | 165 | 0.0714 | 0.3333 | 0.1176 | 12 | 0.0 | 0.0 | 0.0 | 12 | 0.8936 | 0.8077 | 0.8485 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4937 | 0.8864 | 0.6341 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.4156 | 0.5533 | 0.4746 | 0.9459 | | 0.2089 | 0.75 | 1000 | 0.1812 | 0.0 | 0.0 | 0.0 | 6 | 0.9 | 0.8182 | 0.8571 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.15 | 0.2609 | 0.1905 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6432 | 0.7758 | 0.7033 | 165 | 0.0 | 0.0 | 0.0 | 12 | 0.6471 | 0.9167 | 0.7586 | 12 | 0.7143 | 0.8654 | 0.7826 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5286 | 0.8409 | 0.6491 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5315 | 0.6982 | 0.6036 | 0.9626 | | 0.1453 | 1.12 | 1500 | 0.1374 | 0.75 | 0.5 | 0.6 | 6 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.5135 | 0.8261 | 0.6333 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6863 | 0.8485 | 0.7588 | 165 | 0.7 | 0.5833 | 0.6364 | 12 | 0.6667 | 0.6667 | 0.6667 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8333 | 0.9091 | 0.8696 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7048 | 0.8195 | 0.7579 | 0.9745 | | 0.1277 | 1.5 | 2000 | 0.1400 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7273 | 0.6957 | 0.7111 | 23 | 0.2 | 0.3333 | 0.25 | 3 | 0.7181 | 0.8182 | 0.7649 | 165 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.7857 | 0.9167 | 0.8462 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8302 | 1.0 | 0.9072 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7634 | 0.8402 | 0.8000 | 0.9735 | | 0.1074 | 1.87 | 2500 | 0.1101 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.72 | 0.7826 | 0.7500 | 23 | 0.2857 | 0.6667 | 0.4 | 3 | 0.7554 | 0.8424 | 0.7966 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6833 | 0.9318 | 0.7885 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7660 | 0.8521 | 0.8067 | 0.9762 | | 0.0758 | 2.25 | 3000 | 0.1161 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9091 | 0.8696 | 0.8889 | 23 | 0.5 | 0.6667 | 0.5714 | 3 | 0.8251 | 0.9152 | 0.8678 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 0.6667 | 0.8 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 1.0 | 0.5714 | 0.7273 | 7 | 0.8958 | 0.9773 | 0.9348 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8722 | 0.9083 | 0.8899 | 0.9814 | | 0.064 | 2.62 | 3500 | 0.1275 | 1.0 | 1.0 | 1.0 | 6 | 0.8333 | 0.9091 | 0.8696 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8947 | 0.7391 | 0.8095 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8418 | 0.9030 | 0.8713 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 1.0 | 0.75 | 0.8571 | 12 | 0.9245 | 0.9423 | 0.9333 | 52 | 0.6667 | 0.5714 | 0.6154 | 7 | 0.8113 | 0.9773 | 0.8866 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8580 | 0.8935 | 0.8754 | 0.9793 | | 0.0522 | 3.0 | 4000 | 0.1033 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8636 | 0.8261 | 0.8444 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8108 | 0.9091 | 0.8571 | 165 | 0.9231 | 1.0 | 0.9600 | 12 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.875 | 0.9423 | 0.9074 | 52 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8 | 1.0 | 0.8889 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8383 | 0.9201 | 0.8773 | 0.9816 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
philschmid/custom-pipeline-text-classification
philschmid
2022-08-30T06:43:39Z
0
1
generic
[ "generic", "text-classification", "region:us" ]
text-classification
2022-07-18T12:21:29Z
--- tags: - text-classification library_name: generic --- # Text Classification repository template This is a template repository for Text Classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-classification cd text-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
jaynlp/t5-large-transferqa
jaynlp
2022-08-30T02:47:11Z
103
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2109.04655", "arxiv:2203.01552", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
We reproduced the [TransferQA paper's](https://arxiv.org/abs/2109.04655) QA pre-trained weights. If you use this work for your research, please cite our work [Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking](https://arxiv.org/abs/2203.01552) ### Citation ``` @inproceedings{shin-etal-2022-dialogue, title = "Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking", author = "Shin, Jamin and Yu, Hangyeol and Moon, Hyeongdon and Madotto, Andrea and Park, Juneyoung", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.302", pages = "3824--3846", abstract = "Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once.Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.", } ```
JAlexis/modelv2
JAlexis
2022-08-30T02:38:24Z
12
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-30T02:20:27Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." ---
dvalbuena1/Reinforce-Pong
dvalbuena1
2022-08-30T01:35:00Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T01:34:06Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pong results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Einmalumdiewelt/DistilBART_CNN_GNAD_V2
Einmalumdiewelt
2022-08-29T23:21:34Z
14
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T15:01:52Z
--- language: - de tags: - generated_from_trainer metrics: - rouge model-index: - name: DistilBART_CNN_GNAD_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBART_CNN_GNAD_V2 This model is a fine-tuned version of [Einmalumdiewelt/DistilBART_CNN_GNAD_V2](https://huggingface.co/Einmalumdiewelt/DistilBART_CNN_GNAD_V2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7281 - Rouge1: 27.7253 - Rouge2: 8.4647 - Rougel: 18.2059 - Rougelsum: 23.238 - Gen Len: 91.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
theunnecessarythings/ddpm-butterflies-128
theunnecessarythings
2022-08-29T19:31:24Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T18:19:26Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/sreerajr000/ddpm-butterflies-128/tensorboard?#scalars)
salmujaiwel/wav2vec2-large-xls-r-300m-arabic-saudi-colab
salmujaiwel
2022-08-29T19:30:47Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-29T19:13:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-arabic-saudi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-arabic-saudi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ish97/bert-finetuned-chunking-for-echo-reading
ish97
2022-08-29T19:27:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T18:07:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-chunking-for-echo-reading results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-chunking-for-echo-reading This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 2 | 0.4490 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 2.0 | 4 | 0.3668 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 3.0 | 6 | 0.3411 | 0.0 | 0.0 | 0.0 | 0.875 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
fractalego/creak-sense
fractalego
2022-08-29T19:24:27Z
13
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2109.01653", "doi:10.57967/hf/0008", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T16:51:07Z
# Testing whether a sentence is consistent with the CREAK dataset This framework is trained on the [CREAK dataset](https://arxiv.org/abs/2109.01653). # Install pip install creak-sense # Example ```python from creak_sense import CreakSense sense = CreakSense("fractalego/creak-sense") claim = "Bananas can be found in a grocery list" sense.make_sense(claim) ``` with output "True". # Example with explanation ```python from creak_sense import CreakSense sense = CreakSense("fractalego/creak-sense") claim = "Bananas can be found in a grocery list" sense.get_reason(claim) ``` with output "Bananas are a staple food".
ntinosmg/dqn-SpaceInvadersNoFrameskip-v4
ntinosmg
2022-08-29T19:21:48Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T19:21:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 555.50 +/- 234.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ntinosmg -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ntinosmg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jonaskoenig/xtremedistil-l6-h256-uncased-future-time-references-D1
jonaskoenig
2022-08-29T18:44:10Z
9
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "dataset:jonaskoenig/trump_administration_statement", "dataset:jonaskoenig/future-time-references-static-filter-D1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-15T10:48:03Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: xtremedistil-l6-h256-uncased-future-time-references-D1 results: [] datasets: - jonaskoenig/trump_administration_statement - jonaskoenig/future-time-references-static-filter-D1 --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-future-time-references-D1 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the [jonaskoenig/trump_administration_statement](https://huggingface.co/datasets/jonaskoenig/trump_administration_statement) and [jonaskoenig/future-time-refernces-static-filter](https://huggingface.co/datasets/jonaskoenig/future-time-refernces-static-filter) datsets. It achieves the following results on the evaluation set: - Train Loss: 0.0099 - Train Sparse Categorical Accuracy: 0.9977 - Validation Loss: 0.0128 - Validation Sparse Categorical Accuracy: 0.9976 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.0276 | 0.9932 | 0.0156 | 0.9968 | 0 | | 0.0138 | 0.9969 | 0.0125 | 0.9972 | 1 | | 0.0117 | 0.9974 | 0.0126 | 0.9974 | 2 | | 0.0099 | 0.9977 | 0.0128 | 0.9976 | 3 | The test accuracy is: 99.77% ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
Dizzykong/Aristotle-8-29
Dizzykong
2022-08-29T17:46:28Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T16:31:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: Aristotle-8-29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aristotle-8-29 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/chrishildabrant
huggingtweets
2022-08-29T17:19:30Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T17:19:20Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1367991702523437062/x5beyUQ-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Hildabrant</div> <div style="text-align: center; font-size: 14px;">@chrishildabrant</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Hildabrant. | Data | Chris Hildabrant | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 243 | | Tweets kept | 3007 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dagd4ww/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrishildabrant's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrishildabrant') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
GItaf/bart-base-finetuned-mbti
GItaf
2022-08-29T17:08:37Z
17
0
transformers
[ "transformers", "pytorch", "bart", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-28T15:05:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-mbti results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-mbti This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0025 | 1.0 | 9920 | 0.0000 | | 0.0005 | 2.0 | 19840 | 0.0000 | | 0.0002 | 3.0 | 29760 | 0.0000 | | 0.0001 | 4.0 | 39680 | 0.0000 | | 0.0001 | 5.0 | 49600 | 0.0000 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/actbrigitte
huggingtweets
2022-08-29T16:46:55Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T16:45:33Z
--- language: en thumbnail: http://www.huggingtweets.com/actbrigitte/1661791610963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1001845274476797954/TbklBZ1r_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Brigitte Gabriel</div> <div style="text-align: center; font-size: 14px;">@actbrigitte</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Brigitte Gabriel. | Data | Brigitte Gabriel | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 716 | | Short tweets | 105 | | Tweets kept | 2429 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/w0rkndg8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @actbrigitte's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jtfv41h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jtfv41h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/actbrigitte') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cemilcelik/distilgpt2_pubmed
cemilcelik
2022-08-29T16:34:51Z
157
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T13:16:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2_pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_pubmed This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7569 | 1.0 | 528 | 2.0859 | | 2.1098 | 2.0 | 1056 | 1.9187 | | 2.0058 | 3.0 | 1584 | 1.8745 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news-on-extractive
Atharvgarg
2022-08-29T14:30:47Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T13:43:13Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: distilbart-xsum-6-6-finetuned-bbc-news-on-extractive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news-on-extractive This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5869 - Rouge1: 39.4885 - Rouge2: 31.7487 - Rougel: 31.9013 - Rougelsum: 34.0825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.4649 | 1.0 | 445 | 1.5047 | 39.1053 | 31.6651 | 32.3242 | 33.9332 | | 1.2224 | 2.0 | 890 | 1.4986 | 39.4115 | 31.7894 | 32.1057 | 34.0454 | | 1.0099 | 3.0 | 1335 | 1.5322 | 39.5936 | 31.9984 | 32.2283 | 34.1798 | | 0.8687 | 4.0 | 1780 | 1.5869 | 39.4885 | 31.7487 | 31.9013 | 34.0825 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mayjul/t5-small-finetuned-xsum
mayjul
2022-08-29T11:52:46Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T14:36:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.2727 - Rouge2: 7.7068 - Rougel: 22.1993 - Rougelsum: 22.2071 - Gen Len: 18.8238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7189 | 1.0 | 12753 | 2.4789 | 28.2727 | 7.7068 | 22.1993 | 22.2071 | 18.8238 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-small-finer
muhtasham
2022-08-29T11:42:58Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T21:44:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.49 | 500 | 3.5536 | | 3.752 | 0.97 | 1000 | 3.0406 | | 3.752 | 1.46 | 1500 | 2.7601 | | 2.6844 | 1.94 | 2000 | 2.5655 | | 2.6844 | 2.43 | 2500 | 2.4174 | | 2.3487 | 2.91 | 3000 | 2.3163 | | 2.3487 | 3.4 | 3500 | 2.2146 | | 2.1554 | 3.89 | 4000 | 2.1560 | | 2.1554 | 4.37 | 4500 | 2.0935 | | 2.019 | 4.86 | 5000 | 2.0375 | | 2.019 | 5.34 | 5500 | 1.9942 | | 1.9254 | 5.83 | 6000 | 1.9530 | | 1.9254 | 6.32 | 6500 | 1.9215 | | 1.8506 | 6.8 | 7000 | 1.8908 | | 1.8506 | 7.29 | 7500 | 1.8693 | | 1.793 | 7.77 | 8000 | 1.8399 | | 1.793 | 8.26 | 8500 | 1.8191 | | 1.7425 | 8.75 | 9000 | 1.8016 | | 1.7425 | 9.23 | 9500 | 1.7760 | | 1.7093 | 9.72 | 10000 | 1.7668 | | 1.7093 | 10.2 | 10500 | 1.7474 | | 1.6754 | 10.69 | 11000 | 1.7365 | | 1.6754 | 11.18 | 11500 | 1.7229 | | 1.6501 | 11.66 | 12000 | 1.7145 | | 1.6501 | 12.15 | 12500 | 1.7029 | | 1.633 | 12.63 | 13000 | 1.6965 | | 1.633 | 13.12 | 13500 | 1.6878 | | 1.6153 | 13.61 | 14000 | 1.6810 | | 1.6153 | 14.09 | 14500 | 1.6775 | | 1.6043 | 14.58 | 15000 | 1.6720 | | 1.6043 | 15.06 | 15500 | 1.6719 | | 1.5942 | 15.55 | 16000 | 1.6602 | | 1.5942 | 16.03 | 16500 | 1.6643 | | 1.5869 | 16.52 | 17000 | 1.6632 | | 1.5869 | 17.01 | 17500 | 1.6551 | | 1.5834 | 17.49 | 18000 | 1.6557 | | 1.5834 | 17.98 | 18500 | 1.6561 | | 1.5755 | 18.46 | 19000 | 1.6620 | | 1.5755 | 18.95 | 19500 | 1.6524 | | 1.5823 | 19.44 | 20000 | 1.6536 | | 1.5823 | 19.92 | 20500 | 1.6627 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
StefanSteib/Photographer
StefanSteib
2022-08-29T11:27:39Z
0
0
null
[ "region:us" ]
null
2022-08-29T11:26:32Z
Carry plenty cameras black clothes