modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-30 00:44:18
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 536
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-30 00:43:43
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
jordyvl/dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5
|
jordyvl
| 2023-07-30T04:43:54Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-29T22:45:24Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5
This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.3085
- Accuracy: 0.828
- Brier Loss: 0.3005
- Nll: 1.3339
- F1 Micro: 0.828
- F1 Macro: 0.8285
- Ece: 0.1391
- Aurc: 0.0474
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 167 | 5.3750 | 0.61 | 0.5591 | 2.2520 | 0.61 | 0.5922 | 0.1827 | 0.1664 |
| No log | 2.0 | 334 | 5.0343 | 0.7117 | 0.4389 | 1.9483 | 0.7117 | 0.7096 | 0.1691 | 0.0962 |
| 5.4927 | 3.0 | 501 | 4.8554 | 0.7472 | 0.3777 | 1.6689 | 0.7472 | 0.7474 | 0.1221 | 0.0780 |
| 5.4927 | 4.0 | 668 | 4.7917 | 0.76 | 0.3524 | 1.5715 | 0.76 | 0.7644 | 0.0915 | 0.0699 |
| 5.4927 | 5.0 | 835 | 4.7792 | 0.765 | 0.3461 | 1.5348 | 0.765 | 0.7590 | 0.0737 | 0.0704 |
| 4.6216 | 6.0 | 1002 | 4.6378 | 0.7993 | 0.2954 | 1.3769 | 0.7993 | 0.7995 | 0.0546 | 0.0559 |
| 4.6216 | 7.0 | 1169 | 4.8666 | 0.771 | 0.3359 | 1.5727 | 0.771 | 0.7728 | 0.0670 | 0.0666 |
| 4.6216 | 8.0 | 1336 | 4.6834 | 0.7897 | 0.3047 | 1.3537 | 0.7897 | 0.7914 | 0.0531 | 0.0564 |
| 4.2978 | 9.0 | 1503 | 4.6558 | 0.7997 | 0.2912 | 1.3758 | 0.7997 | 0.7988 | 0.0521 | 0.0508 |
| 4.2978 | 10.0 | 1670 | 4.8214 | 0.7923 | 0.3144 | 1.5316 | 0.7923 | 0.7928 | 0.0815 | 0.0561 |
| 4.2978 | 11.0 | 1837 | 4.8908 | 0.7923 | 0.3201 | 1.4158 | 0.7923 | 0.7931 | 0.0988 | 0.0573 |
| 4.1375 | 12.0 | 2004 | 4.7703 | 0.8093 | 0.2971 | 1.3642 | 0.8093 | 0.8097 | 0.0812 | 0.0514 |
| 4.1375 | 13.0 | 2171 | 4.8126 | 0.806 | 0.3039 | 1.3759 | 0.806 | 0.8053 | 0.0916 | 0.0491 |
| 4.1375 | 14.0 | 2338 | 4.7875 | 0.8063 | 0.2990 | 1.3712 | 0.8062 | 0.8065 | 0.0904 | 0.0481 |
| 4.0665 | 15.0 | 2505 | 4.7995 | 0.805 | 0.3016 | 1.4133 | 0.805 | 0.8049 | 0.0909 | 0.0503 |
| 4.0665 | 16.0 | 2672 | 4.7712 | 0.8075 | 0.2957 | 1.4018 | 0.8075 | 0.8082 | 0.0880 | 0.0484 |
| 4.0665 | 17.0 | 2839 | 4.7245 | 0.812 | 0.2886 | 1.2816 | 0.8120 | 0.8139 | 0.0831 | 0.0464 |
| 4.0204 | 18.0 | 3006 | 4.8990 | 0.8055 | 0.3079 | 1.3884 | 0.8055 | 0.8046 | 0.1117 | 0.0504 |
| 4.0204 | 19.0 | 3173 | 4.9286 | 0.802 | 0.3147 | 1.3977 | 0.802 | 0.7995 | 0.1078 | 0.0522 |
| 4.0204 | 20.0 | 3340 | 4.9510 | 0.8055 | 0.3121 | 1.4482 | 0.8055 | 0.8062 | 0.1125 | 0.0521 |
| 3.9854 | 21.0 | 3507 | 4.8837 | 0.8033 | 0.3082 | 1.4528 | 0.8033 | 0.8022 | 0.1052 | 0.0502 |
| 3.9854 | 22.0 | 3674 | 5.0103 | 0.813 | 0.3069 | 1.4217 | 0.813 | 0.8169 | 0.1207 | 0.0500 |
| 3.9854 | 23.0 | 3841 | 4.9602 | 0.8093 | 0.3091 | 1.4672 | 0.8093 | 0.8103 | 0.1187 | 0.0494 |
| 3.9599 | 24.0 | 4008 | 4.8980 | 0.8177 | 0.2953 | 1.3589 | 0.8178 | 0.8203 | 0.1083 | 0.0451 |
| 3.9599 | 25.0 | 4175 | 4.8753 | 0.8145 | 0.2932 | 1.3219 | 0.8145 | 0.8140 | 0.1054 | 0.0460 |
| 3.9599 | 26.0 | 4342 | 4.9644 | 0.8193 | 0.3000 | 1.4336 | 0.8193 | 0.8200 | 0.1173 | 0.0458 |
| 3.9358 | 27.0 | 4509 | 4.9648 | 0.8203 | 0.2985 | 1.4117 | 0.8203 | 0.8197 | 0.1132 | 0.0471 |
| 3.9358 | 28.0 | 4676 | 5.0130 | 0.8195 | 0.3014 | 1.4618 | 0.8195 | 0.8201 | 0.1205 | 0.0456 |
| 3.9358 | 29.0 | 4843 | 4.8974 | 0.8255 | 0.2874 | 1.3041 | 0.8255 | 0.8258 | 0.1097 | 0.0421 |
| 3.9151 | 30.0 | 5010 | 4.9045 | 0.8255 | 0.2878 | 1.2801 | 0.8255 | 0.8250 | 0.1119 | 0.0426 |
| 3.9151 | 31.0 | 5177 | 4.9720 | 0.823 | 0.2945 | 1.3551 | 0.823 | 0.8240 | 0.1212 | 0.0439 |
| 3.9151 | 32.0 | 5344 | 4.9508 | 0.826 | 0.2913 | 1.2669 | 0.826 | 0.8268 | 0.1201 | 0.0422 |
| 3.9003 | 33.0 | 5511 | 5.0336 | 0.8237 | 0.2991 | 1.3443 | 0.8237 | 0.8240 | 0.1243 | 0.0433 |
| 3.9003 | 34.0 | 5678 | 4.9828 | 0.8237 | 0.2901 | 1.2843 | 0.8237 | 0.8239 | 0.1214 | 0.0440 |
| 3.9003 | 35.0 | 5845 | 5.0256 | 0.8287 | 0.2920 | 1.2961 | 0.8287 | 0.8291 | 0.1232 | 0.0422 |
| 3.89 | 36.0 | 6012 | 5.0229 | 0.8283 | 0.2922 | 1.2471 | 0.8283 | 0.8283 | 0.1236 | 0.0432 |
| 3.89 | 37.0 | 6179 | 5.0835 | 0.8285 | 0.2936 | 1.2892 | 0.8285 | 0.8289 | 0.1254 | 0.0442 |
| 3.89 | 38.0 | 6346 | 5.1148 | 0.8287 | 0.2946 | 1.3106 | 0.8287 | 0.8282 | 0.1287 | 0.0427 |
| 3.8846 | 39.0 | 6513 | 5.1238 | 0.827 | 0.2954 | 1.2964 | 0.827 | 0.8275 | 0.1298 | 0.0441 |
| 3.8846 | 40.0 | 6680 | 5.1481 | 0.8307 | 0.2950 | 1.3136 | 0.8308 | 0.8311 | 0.1277 | 0.0453 |
| 3.8846 | 41.0 | 6847 | 5.1491 | 0.8293 | 0.2943 | 1.2841 | 0.8293 | 0.8294 | 0.1298 | 0.0451 |
| 3.881 | 42.0 | 7014 | 5.1982 | 0.829 | 0.2969 | 1.3111 | 0.8290 | 0.8292 | 0.1331 | 0.0459 |
| 3.881 | 43.0 | 7181 | 5.2041 | 0.8283 | 0.2970 | 1.3427 | 0.8283 | 0.8283 | 0.1327 | 0.0465 |
| 3.881 | 44.0 | 7348 | 5.2310 | 0.8297 | 0.2985 | 1.3351 | 0.8297 | 0.8303 | 0.1346 | 0.0471 |
| 3.8796 | 45.0 | 7515 | 5.2394 | 0.83 | 0.2999 | 1.3308 | 0.83 | 0.8305 | 0.1348 | 0.0467 |
| 3.8796 | 46.0 | 7682 | 5.2632 | 0.83 | 0.2990 | 1.3350 | 0.83 | 0.8304 | 0.1355 | 0.0471 |
| 3.8796 | 47.0 | 7849 | 5.2821 | 0.828 | 0.2998 | 1.3354 | 0.828 | 0.8286 | 0.1383 | 0.0470 |
| 3.8753 | 48.0 | 8016 | 5.2949 | 0.829 | 0.2998 | 1.3341 | 0.8290 | 0.8294 | 0.1374 | 0.0472 |
| 3.8753 | 49.0 | 8183 | 5.3026 | 0.8287 | 0.3004 | 1.3281 | 0.8287 | 0.8293 | 0.1382 | 0.0474 |
| 3.8753 | 50.0 | 8350 | 5.3085 | 0.828 | 0.3005 | 1.3339 | 0.828 | 0.8285 | 0.1391 | 0.0474 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
NasimB/cbt-log-rarity-seed
|
NasimB
| 2023-07-30T04:27:02Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T01:22:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: cbt-log-rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cbt-log-rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1049
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3551 | 0.29 | 500 | 5.3459 |
| 5.0301 | 0.58 | 1000 | 4.9295 |
| 4.7058 | 0.87 | 1500 | 4.6870 |
| 4.4358 | 1.17 | 2000 | 4.5471 |
| 4.2948 | 1.46 | 2500 | 4.4310 |
| 4.1839 | 1.75 | 3000 | 4.3262 |
| 4.0867 | 2.04 | 3500 | 4.2510 |
| 3.8901 | 2.33 | 4000 | 4.2098 |
| 3.8635 | 2.62 | 4500 | 4.1570 |
| 3.8226 | 2.91 | 5000 | 4.1006 |
| 3.6452 | 3.21 | 5500 | 4.0979 |
| 3.5849 | 3.5 | 6000 | 4.0657 |
| 3.5624 | 3.79 | 6500 | 4.0400 |
| 3.475 | 4.08 | 7000 | 4.0368 |
| 3.3171 | 4.37 | 7500 | 4.0306 |
| 3.3088 | 4.66 | 8000 | 4.0165 |
| 3.3004 | 4.95 | 8500 | 4.0034 |
| 3.1584 | 5.24 | 9000 | 4.0145 |
| 3.1334 | 5.54 | 9500 | 4.0146 |
| 3.1257 | 5.83 | 10000 | 4.0136 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Yntec/theallysMixIV-verisimilar
|
Yntec
| 2023-07-30T04:12:07Z | 489 | 4 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"TheAlly",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-21T18:11:23Z |
---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers
- text-to-image
- TheAlly
---
# TheAlly's Mix IV: Verisimilar
Original page:
https://civitai.com/models/40369/theallys-mix-iv-verisimilar
|
NasimB/bnc_spoken_cbt_rarity-seed
|
NasimB
| 2023-07-30T03:39:52Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-30T00:49:35Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: bnc_spoken_cbt_rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnc_spoken_cbt_rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1218
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.366 | 0.29 | 500 | 5.3305 |
| 5.0478 | 0.59 | 1000 | 4.9325 |
| 4.7159 | 0.88 | 1500 | 4.6882 |
| 4.4541 | 1.17 | 2000 | 4.5478 |
| 4.3142 | 1.46 | 2500 | 4.4363 |
| 4.2068 | 1.76 | 3000 | 4.3334 |
| 4.0948 | 2.05 | 3500 | 4.2611 |
| 3.9065 | 2.34 | 4000 | 4.2156 |
| 3.8793 | 2.63 | 4500 | 4.1613 |
| 3.8461 | 2.93 | 5000 | 4.1146 |
| 3.6533 | 3.22 | 5500 | 4.1112 |
| 3.5945 | 3.51 | 6000 | 4.0788 |
| 3.5863 | 3.81 | 6500 | 4.0459 |
| 3.4902 | 4.1 | 7000 | 4.0491 |
| 3.3324 | 4.39 | 7500 | 4.0429 |
| 3.3243 | 4.68 | 8000 | 4.0290 |
| 3.3156 | 4.98 | 8500 | 4.0193 |
| 3.1646 | 5.27 | 9000 | 4.0316 |
| 3.1471 | 5.56 | 9500 | 4.0313 |
| 3.1498 | 5.85 | 10000 | 4.0303 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
zbulrush/controlnet-sd-xl-1.0-lineart
|
zbulrush
| 2023-07-30T03:35:56Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-30T03:35:56Z |
---
license: creativeml-openrail-m
---
|
roman10/distilbert-base-uncased-finetuned-p1-en
|
roman10
| 2023-07-30T03:31:12Z | 71 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-07-30T03:27:40Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: roman10/distilbert-base-uncased-finetuned-p1-en
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# roman10/distilbert-base-uncased-finetuned-p1-en
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.4677
- Validation Loss: 2.8371
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -999, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.3261 | 3.5044 | 0 |
| 3.4677 | 2.8371 | 1 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|
bochen0909/a2c-PandaReachDense-v2
|
bochen0909
| 2023-07-30T02:52:16Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T02:50:09Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.60 +/- 0.85
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RyanDA/QuickDraw-model
|
RyanDA
| 2023-07-30T02:29:06Z | 4 | 0 |
keras
|
[
"keras",
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-07-30T01:50:55Z |
---
license: bigscience-openrail-m
---
# QuickDraw Model
This model was trained on the quickdraw dataset from a selected list of doodles:
["Apple","Cell Phone","Chair","Hot Air Balloon","Jail","Ladder","Line","Spider","Windmill","Zigzag"]
|
bochen0909/a2c-AntBulletEnv-v0
|
bochen0909
| 2023-07-30T01:51:53Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T01:47:58Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1006.82 +/- 316.92
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ahsankhan123/taxi-v3
|
Ahsankhan123
| 2023-07-30T01:46:43Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-30T01:46:42Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Ahsankhan123/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Lexic0n/segformer-b0-finetuned-human-parsing
|
Lexic0n
| 2023-07-30T01:39:16Z | 170 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2023-07-30T01:38:09Z |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-human-parsing
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-human-parsing
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9476
- Mean Iou: 0.0726
- Mean Accuracy: 0.1221
- Overall Accuracy: 0.3575
- Accuracy Background: nan
- Accuracy Hat: 0.0048
- Accuracy Hair: 0.4813
- Accuracy Sunglasses: 0.0
- Accuracy Upper-clothes: 0.9405
- Accuracy Skirt: 0.0000
- Accuracy Pants: 0.0631
- Accuracy Dress: 0.1031
- Accuracy Belt: 0.0
- Accuracy Left-shoe: 0.0011
- Accuracy Right-shoe: 0.0010
- Accuracy Face: 0.4406
- Accuracy Left-leg: 0.0291
- Accuracy Right-leg: 0.0
- Accuracy Left-arm: 0.0
- Accuracy Right-arm: 0.0001
- Accuracy Bag: 0.0114
- Accuracy Scarf: 0.0
- Iou Background: 0.0
- Iou Hat: 0.0043
- Iou Hair: 0.4221
- Iou Sunglasses: 0.0
- Iou Upper-clothes: 0.3239
- Iou Skirt: 0.0000
- Iou Pants: 0.0559
- Iou Dress: 0.0728
- Iou Belt: 0.0
- Iou Left-shoe: 0.0011
- Iou Right-shoe: 0.0009
- Iou Face: 0.3872
- Iou Left-leg: 0.0271
- Iou Right-leg: 0.0
- Iou Left-arm: 0.0
- Iou Right-arm: 0.0001
- Iou Bag: 0.0106
- Iou Scarf: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
| 2.5768 | 0.4 | 20 | 2.7812 | 0.0726 | 0.1332 | 0.2876 | nan | 0.0178 | 0.3204 | 0.0004 | 0.5548 | 0.0004 | 0.2555 | 0.2373 | 0.0 | 0.0103 | 0.0003 | 0.5637 | 0.0287 | 0.0302 | 0.0001 | 0.0008 | 0.2435 | 0.0 | 0.0 | 0.0166 | 0.2759 | 0.0001 | 0.2781 | 0.0004 | 0.1710 | 0.1295 | 0.0 | 0.0098 | 0.0003 | 0.3251 | 0.0260 | 0.0248 | 0.0001 | 0.0007 | 0.0491 | 0.0 |
| 2.2093 | 0.8 | 40 | 2.5166 | 0.0563 | 0.1052 | 0.3288 | nan | 0.0 | 0.1994 | 0.0 | 0.9447 | 0.0015 | 0.0435 | 0.1164 | 0.0 | 0.0008 | 0.0000 | 0.4655 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0153 | 0.0 | 0.0 | 0.0 | 0.1946 | 0.0 | 0.3037 | 0.0015 | 0.0417 | 0.0842 | 0.0 | 0.0008 | 0.0000 | 0.3726 | 0.0007 | 0.0003 | 0.0 | 0.0 | 0.0124 | 0.0 |
| 1.8804 | 1.2 | 60 | 2.0209 | 0.0632 | 0.1110 | 0.3374 | nan | 0.0087 | 0.3724 | 0.0 | 0.9475 | 0.0014 | 0.0162 | 0.0528 | 0.0 | 0.0001 | 0.0008 | 0.4257 | 0.0561 | 0.0001 | 0.0 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0077 | 0.3472 | 0.0 | 0.3086 | 0.0014 | 0.0156 | 0.0403 | 0.0 | 0.0001 | 0.0008 | 0.3597 | 0.0515 | 0.0001 | 0.0 | 0.0 | 0.0052 | 0.0 |
| 1.8776 | 1.6 | 80 | 2.0016 | 0.0665 | 0.1154 | 0.3454 | nan | 0.0056 | 0.4172 | 0.0 | 0.9412 | 0.0000 | 0.0490 | 0.0697 | 0.0 | 0.0002 | 0.0006 | 0.4349 | 0.0329 | 0.0000 | 0.0 | 0.0000 | 0.0100 | 0.0 | 0.0 | 0.0048 | 0.3791 | 0.0 | 0.3138 | 0.0000 | 0.0438 | 0.0542 | 0.0 | 0.0002 | 0.0006 | 0.3608 | 0.0304 | 0.0000 | 0.0 | 0.0000 | 0.0093 | 0.0 |
| 1.8471 | 2.0 | 100 | 1.9476 | 0.0726 | 0.1221 | 0.3575 | nan | 0.0048 | 0.4813 | 0.0 | 0.9405 | 0.0000 | 0.0631 | 0.1031 | 0.0 | 0.0011 | 0.0010 | 0.4406 | 0.0291 | 0.0 | 0.0 | 0.0001 | 0.0114 | 0.0 | 0.0 | 0.0043 | 0.4221 | 0.0 | 0.3239 | 0.0000 | 0.0559 | 0.0728 | 0.0 | 0.0011 | 0.0009 | 0.3872 | 0.0271 | 0.0 | 0.0 | 0.0001 | 0.0106 | 0.0 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
HachiML/mpt-7b-instruct-ja-qlora
|
HachiML
| 2023-07-30T01:23:44Z | 2 | 0 |
peft
|
[
"peft",
"dataset:HachiML/databricks-dolly-15k-ja-for-peft",
"region:us"
] | null | 2023-07-27T13:03:12Z |
---
library_name: peft
datasets:
- HachiML/databricks-dolly-15k-ja-for-peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
PeterBrendan/llama-2-7b-Ads
|
PeterBrendan
| 2023-07-30T01:12:00Z | 21 | 6 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"Advertising",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-28T17:59:15Z |
---
license: mit
language:
- en
tags:
- Advertising
widget:
- text: Write me an online ad for Old Spice for a 300x250 creative
---
## llama-2-7b-Ads
### Model Overview
The "llama-2-7b-Ads" model is a fine-tuned version of the "meta-llama/Llama-2-7b-chat-hf" language model. The base model, "meta-llama/Llama-2-7b-chat-hf," was trained on a vast corpus of text, enabling it to generate coherent and contextually relevant responses for various chat-based applications. The "PeterBrendan/llama-2-7b-Ads" model was fine-tuned using the "PeterBrendan/Ads_Creative_Ad_Copy_Programmatic" dataset.
### Dataset Overview
The "PeterBrendan/Ads_Creative_Ad_Copy_Programmatic" dataset used for fine-tuning contains 7097 samples of online programmatic ad creatives, along with their respective ad sizes. The dataset includes 8 unique ad sizes, namely:
1. (300, 250)
2. (728, 90)
3. (970, 250)
4. (300, 600)
5. (160, 600)
6. (970, 90)
7. (336, 280)
8. (320, 50)
This dataset is a random sample from Project300x250.com's complete creative data set. The primary application of this dataset is to train and evaluate natural language processing models specifically for advertising creatives.
### Use Cases
The "llama-2-7b-Ads" model can be used in various natural language processing tasks related to advertising creatives. Some potential use cases include:
1. **Ad Creative Generation**: The model can generate ad copy text given different prompts, enabling advertisers to create compelling ad creatives automatically.
2. **Personalization**: By inputting user-specific data into a prompt, such as demographics or preferences, the model can generate personalized ad copy tailored to different ad sizes for targeted advertising.
#### Example Prompts:
**Example Prompt 1:**
Write me an online ad for Old Spice for a 300x250 creative
**Output:**
OLD SPICE
The Smell of a Man
GET YOUR SMELL ON
SHOP NOW
**Example Prompt 2:**
Write me an online ad for Nike Basketball Shoes for a 300x250 creative
**Output:**
Nike
Basketball Shoes
Shop Now
Nike
### Performance and Limitations
As this model is a fine-tuned version of "meta-llama/Llama-2-7b-chat-hf," it inherits its base model's performance characteristics and limitations. The quality of generated responses depends on the complexity and diversity of the input data during fine-tuning.
**Performance:** The model generally performs well in generating coherent ad copy text based on the input ad sizes. However, the actual performance may vary depending on the complexity and creativity required for the given task.
**Limitations:**
1. **Domain-Specific Bias**: The model's responses might be biased towards the content found in the "PeterBrendan/Ads_Creative_Ad_Copy_Programmatic" dataset, which primarily focuses on advertising creatives.
2. **Out-of-Domain Queries**: The model may not perform optimally when faced with queries or inputs unrelated to advertising creatives or the specified ad sizes.
3. **Limited Generalization**: Although fine-tuned, the model's generalization capabilities are still bounded by the data it was trained on. Extreme or out-of-distribution inputs may lead to inaccurate or nonsensical outputs.
### How to Use
~~~python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="PeterBrendan/llama-2-7b-Ads")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("PeterBrendan/llama-2-7b-Ads")
model = AutoModelForCausalLM.from_pretrained("PeterBrendan/llama-2-7b-Ads")
~~~
### Acknowledgments
The "PeterBrendan/llama-2-7b-Ads" model was fine-tuned using the Hugging Face Transformers library and relies on the "meta-llama/Llama-2-7b-chat-hf" base model. We extend our gratitude to the creators of the base model for their contributions.
### Disclaimer
The "PeterBrendan/llama-2-7b-Ads" model card provides an overview of the model and its use cases. However, it is essential to exercise caution and human review when deploying any AI model for critical applications like advertising. As with any AI system, the model's outputs should be thoroughly analyzed, especially in real-world scenarios, to ensure alignment with business objectives and ethical considerations.
|
Leaked/Latto
|
Leaked
| 2023-07-30T01:09:06Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"license:openrail",
"region:us"
] | null | 2023-07-30T00:25:18Z |
---
license: openrail
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
timjwhite/Reinforce-CartPole-v1
|
timjwhite
| 2023-07-30T00:48:16Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T23:39:54Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
NasimB/switchboard-rarity-seed
|
NasimB
| 2023-07-30T00:46:51Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T21:29:44Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: switchboard-rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# switchboard-rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0985
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3581 | 0.29 | 500 | 5.3466 |
| 5.0332 | 0.58 | 1000 | 4.9336 |
| 4.7065 | 0.87 | 1500 | 4.6924 |
| 4.4439 | 1.17 | 2000 | 4.5465 |
| 4.2929 | 1.46 | 2500 | 4.4328 |
| 4.1869 | 1.75 | 3000 | 4.3248 |
| 4.0802 | 2.04 | 3500 | 4.2481 |
| 3.8877 | 2.33 | 4000 | 4.2060 |
| 3.8547 | 2.62 | 4500 | 4.1542 |
| 3.83 | 2.92 | 5000 | 4.0982 |
| 3.6375 | 3.21 | 5500 | 4.0946 |
| 3.5896 | 3.5 | 6000 | 4.0648 |
| 3.5596 | 3.79 | 6500 | 4.0309 |
| 3.474 | 4.08 | 7000 | 4.0282 |
| 3.3101 | 4.37 | 7500 | 4.0247 |
| 3.3055 | 4.66 | 8000 | 4.0122 |
| 3.2891 | 4.96 | 8500 | 3.9981 |
| 3.1562 | 5.25 | 9000 | 4.0102 |
| 3.1289 | 5.54 | 9500 | 4.0093 |
| 3.1216 | 5.83 | 10000 | 4.0085 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
anas-awadalla/mpt-1b-redpajama-200b-dolly
|
anas-awadalla
| 2023-07-30T00:23:55Z | 3,301 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mosaic_gpt",
"text-generation",
"custom_code",
"dataset:togethercomputer/RedPajama-Data-1T",
"arxiv:2302.13971",
"arxiv:2205.14135",
"arxiv:2108.12409",
"license:cc-by-sa-3.0",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-06-03T19:00:49Z |
---
license: cc-by-sa-3.0
datasets:
- togethercomputer/RedPajama-Data-1T
---
# MPT-1b-RedPajama-200b-dolly
MPT-1b-RedPajama-200b-dolly is a 1.3 billion parameter decoder-only transformer pre-trained on the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) and subsequently fine-tuned on the [Databricks Dolly](https://github.com/databrickslabs/dolly/tree/master/data) instruction dataset.
The model was pre-trained for 200B tokens by sampling from the subsets of the RedPajama dataset in the same proportions as were used by the [Llama series of models](https://arxiv.org/abs/2302.13971).
This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture.
This model is an instruction fine-tuned version of [mpt-1b-redpajama-200b](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b). In other words, the pre-trained version of this model is [mpt-1b-redpajama-200b](https://huggingface.co/mosaicml/mpt-1b-redpajama-200b).
## Model Date
April 20, 2023
## How to Use
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom model architecture `MosaicGPT` that is not yet part of the `transformers` package.
`MosaicGPT` includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALIBI](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-1b-redpajama-200b-dolly', trust_remote_code=True)
```
To use the optimized triton implementation of FlashAttention, you can load with `attn_impl='triton'` and move the model to `bfloat16` like so:
```python
model = transformers.AutoModelForCausalLM.from_pretrained('mosaicml/mpt-1b-redpajama-200b-dolly', trust_remote_code=True, attn_impl='triton')
model.to(device='cuda:0', dtype=torch.bfloat16)
```
## Model Description
This model uses the MosaicML LLM codebase, which can be found in the [MosaicML Examples Repository](https://github.com/mosaicml/examples/tree/v0.0.4/examples/llm).
The architecture is a modification of a standard decoder-only transformer.
The transformer has 24 layers, 16 attention heads, and width 2048.
The model has been modified from a standard transformer in the following ways:
* It uses ALiBi and does not use positional embeddings.
* It uses QK LayerNorm.
* It does not use biases.
## Training Data
### Pre-Training
The model was pre-trained for 200B tokens (batch size 2200, sequence length 2048). It was trained on the following data mix:
* 67% RedPajama Common Crawl
* 15% [C4](https://huggingface.co/datasets/c4)
* 4.5% RedPajama GitHub
* 4.5% RedPajama Wikipedia
* 4.5% RedPajama Books
* 2.5% RedPajama Arxiv
* 2% RedPajama StackExchange
This is the same mix of data as was used in the Llama series of models](https://arxiv.org/abs/2302.13971).
Each sample was chosen from one of the datasets, with the dataset selected with the probability specified above.
The examples were shuffled within each dataset.
Each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
### Fine-Tuning
We fine tuned this model on the [databricks-dolly-15k dataset](https://github.com/databrickslabs/dolly/tree/master/data) released by Databricks, following the same hyperparameters found in their [train_dolly.py](https://github.com/databrickslabs/dolly/blob/master/train_dolly.py) script.
## Training Configuration
This model was pre-trained on 440 A100-40GBs for about half a day using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was pre-trained with sharded data parallelism using FSDP.
## Acknowledgements
This model builds on the work of [Together](https://www.together.xyz), which created the RedPajama dataset with the goal of mimicking the training data used to create the Llama series of models.
We gratefully acknowledge the hard work of the team that put together this dataset, and we hope this model serves as a useful companion to that work.
This model also builds on the work of [Databricks](https://www.databricks.com/), which created the Dolly instruction fine-tuning dataset.
We also gratefully acknowledge the work of the researchers who created the Llama series of models, which was the impetus for our efforts and those who worked on the RedPajama project.
|
NasimB/bnc_spoken_aochildes_rarity-seed
|
NasimB
| 2023-07-30T00:05:01Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T20:10:25Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: bnc_spoken_aochildes_rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnc_spoken_aochildes_rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3667 | 0.29 | 500 | 5.3506 |
| 5.0646 | 0.59 | 1000 | 4.9379 |
| 4.7383 | 0.88 | 1500 | 4.7025 |
| 4.478 | 1.18 | 2000 | 4.5619 |
| 4.3265 | 1.47 | 2500 | 4.4462 |
| 4.2316 | 1.77 | 3000 | 4.3544 |
| 4.1042 | 2.06 | 3500 | 4.2884 |
| 3.936 | 2.36 | 4000 | 4.2414 |
| 3.9057 | 2.65 | 4500 | 4.1840 |
| 3.8624 | 2.95 | 5000 | 4.1340 |
| 3.6568 | 3.24 | 5500 | 4.1357 |
| 3.622 | 3.54 | 6000 | 4.1047 |
| 3.6008 | 3.83 | 6500 | 4.0736 |
| 3.486 | 4.12 | 7000 | 4.0760 |
| 3.3511 | 4.42 | 7500 | 4.0744 |
| 3.3423 | 4.71 | 8000 | 4.0601 |
| 3.332 | 5.01 | 8500 | 4.0531 |
| 3.1709 | 5.3 | 9000 | 4.0641 |
| 3.1645 | 5.6 | 9500 | 4.0631 |
| 3.1651 | 5.89 | 10000 | 4.0630 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
RyanDA/MNIST-Model
|
RyanDA
| 2023-07-29T23:26:53Z | 5 | 0 |
keras
|
[
"keras",
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-07-29T23:14:03Z |
---
license: bigscience-openrail-m
---
# MNIST Model
This model was created using the full MNIST model dataset with no transforms applied (it's very easy to trick)
|
ld76/whisper-tiny-en
|
ld76
| 2023-07-29T23:25:17Z | 86 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"en",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-29T21:27:26Z |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: Whisper Tiny en - ld76
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3616212792906903
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny en - ld76
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8795
- Wer Ortho: 0.3577
- Wer: 0.3616
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.0006 | 17.54 | 500 | 0.7812 | 0.3419 | 0.3477 |
| 0.0 | 35.09 | 1000 | 0.8306 | 0.3267 | 0.3319 |
| 0.0 | 52.63 | 1500 | 0.8573 | 0.3570 | 0.3610 |
| 0.0 | 70.18 | 2000 | 0.8795 | 0.3577 | 0.3616 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
sshalini6/medium-5e4-r16-a32-d0.1
|
sshalini6
| 2023-07-29T23:19:59Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T19:20:36Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
YaTharThShaRma999/Llama2-chat-kimiko-Sharded-2gb
|
YaTharThShaRma999
| 2023-07-29T23:17:10Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"text-generation-inference",
"en",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T19:32:00Z |
---
license: other
language:
- en
library_name: transformers
tags:
- text-generation-inference
---
This is a model that uses kimiko lora but merges it with llama-2-chat 7b instead of the base llama-2 model.
It performs pretty well and could be thought of as a uncensored llama-2-chat model.
The prompt template is similar to the normal kimiko. I haven't tested out all possible prompts but this one works best for me.
**The system prompt should just describe a character, not say something like act like a character.**
An example system prompt is
John is a buisnessman in paris. He is tired and in his home right now.
```
<<SYSTEM>>
##system prompt for the ai(where you would put personas as well)
<<HUMAN>>
##Chat with the bot
<<Character Name>>
```
To use with huggingface, just check out llama docs and would work since its the same architecture.
|
vladfatu/lunar-lander
|
vladfatu
| 2023-07-29T22:10:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T22:10:20Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 254.88 +/- 23.18
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ahsankhan123/q-FrozenLake-v1-4x4-noSlippery
|
Ahsankhan123
| 2023-07-29T22:08:25Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T22:08:23Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Ahsankhan123/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
mgmeskill/ppo-SnowballTarget
|
mgmeskill
| 2023-07-29T22:04:40Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-07-29T22:04:37Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: mgmeskill/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
0x05a4/DeepRL-DQN-SIv4
|
0x05a4
| 2023-07-29T21:52:36Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T21:52:01Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 650.00 +/- 136.11
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga 0x05a4 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga 0x05a4 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga 0x05a4
```
## Hyperparameters
```python
OrderedDict([('batch_size', 16),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 2000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Jinmane/anyloracleanlinearmix_v10
|
Jinmane
| 2023-07-29T21:49:58Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-29T21:08:25Z |
---
license: creativeml-openrail-m
---
|
VinEuro/a2c-AntBulletEnv-v0
|
VinEuro
| 2023-07-29T21:49:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T21:48:06Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 833.14 +/- 76.31
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Huggingfly/rl_course_vizdoom_health_gathering_supreme
|
Huggingfly
| 2023-07-29T21:40:58Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T20:34:00Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 12.38 +/- 4.93
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r Huggingfly/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Jinmane/calicomix_v60
|
Jinmane
| 2023-07-29T21:29:24Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-29T21:24:25Z |
---
license: creativeml-openrail-m
---
|
froggoboom/xgen-7b-dolly-15k-4bit-final-2
|
froggoboom
| 2023-07-29T21:27:25Z | 0 | 0 |
peft
|
[
"peft",
"license:other",
"region:us"
] | null | 2023-07-29T21:27:04Z |
---
license: other
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
apple/coreml-stable-diffusion-2-base-palettized
|
apple
| 2023-07-29T21:25:22Z | 17 | 3 | null |
[
"coreml",
"stable-diffusion",
"text-to-image",
"core-ml",
"arxiv:2112.10752",
"arxiv:2202.00512",
"arxiv:1910.09700",
"license:other",
"region:us"
] |
text-to-image
| 2023-06-14T09:41:50Z |
---
license: other
tags:
- stable-diffusion
- text-to-image
- core-ml
---
# Stable Diffusion v2 Model Card
This model was generated by Hugging Face using [Apple’s repository](https://github.com/apple/ml-stable-diffusion) which has [ASCL](https://github.com/apple/ml-stable-diffusion/blob/main/LICENSE.md). This version contains 6-bit palettized Core ML weights for iOS 17 or macOS 14. To use weights without quantization, please visit [this model instead](https://huggingface.co/apple/coreml-stable-diffusion-2-base).
This model card focuses on the model associated with the Stable Diffusion v2 model, available [here](https://github.com/Stability-AI/stablediffusion).
The model is trained from scratch 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. Then it is further trained for 850k steps at resolution `512x512` on the same dataset on images with resolution `>= 512x512`.

These weights here have been converted to Core ML for use on Apple Silicon hardware.
There are 4 variants of the Core ML weights:
```
coreml-stable-diffusion-2-base
├── original
│ ├── compiled # Swift inference, "original" attention
│ └── packages # Python inference, "original" attention
└── split_einsum
├── compiled # Swift inference, "split_einsum" attention
└── packages # Python inference, "split_einsum" attention
```
There are also two zip archives suitable for use in the [Hugging Face demo app](https://github.com/huggingface/swift-coreml-diffusers) and other third party tools:
- `coreml-stable-diffusion-2-base-palettized_original_compiled.zip` contains the compiled, 6-bit model with `ORIGINAL` attention implementation.
- `coreml-stable-diffusion-2-base-palettized_split_einsum_v2_compiled.zip` contains the compiled, 6-bit model with `SPLIT_EINSUM_V2` attention implementation.
Please, refer to https://huggingface.co/blog/diffusers-coreml for details.
- Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-base#examples)
- Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-base-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-base/resolve/main/512-base-ema.ckpt).
## Model Details
- **Developed by:** Robin Rombach, Patrick Esser
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)).
- **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/).
- **Cite as:**
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
# Uses
## Direct Use
The model is intended for research purposes only. Possible research areas and tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
_Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_.
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a subset of the large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section).
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent.
## Training
**Training Data**
The model developers used the following dataset for training the model:
- LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic.
**Training Procedure**
Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
- Text prompts are encoded through the OpenCLIP-ViT/H text-encoder.
- The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512.
We currently provide the following checkpoints:
- `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`.
850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`.
- `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset.
- `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized.
- `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama).
- `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752).
In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml).
- **Hardware:** 32 x 8 x A100 GPUs
- **Optimizer:** AdamW
- **Gradient Accumulations**: 1
- **Batch:** 32 x 8 x 2 x 4 = 2048
- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
## Evaluation Results
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints:

Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
## Environmental Impact
**Stable Diffusion v1** **Estimated Emissions**
Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- **Hardware Type:** A100 PCIe 40GB
- **Hours used:** 200000
- **Cloud Provider:** AWS
- **Compute Region:** US-east
- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq.
## Citation
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
*This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
|
azhang1212/angela_untranslated_entities_test
|
azhang1212
| 2023-07-29T21:23:13Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-07-29T20:03:18Z |
---
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: angela_untranslated_entities_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# angela_untranslated_entities_test
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1681
- Precision: 0.4056
- Recall: 0.2198
- F1: 0.2851
- Accuracy: 0.9528
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1724 | 1.0 | 1283 | 0.1654 | 0.4156 | 0.1148 | 0.1800 | 0.9550 |
| 0.1583 | 2.0 | 2566 | 0.1551 | 0.4532 | 0.1307 | 0.2029 | 0.9558 |
| 0.147 | 3.0 | 3849 | 0.1576 | 0.4250 | 0.2063 | 0.2778 | 0.9542 |
| 0.1367 | 4.0 | 5132 | 0.1627 | 0.4105 | 0.2133 | 0.2807 | 0.9534 |
| 0.1215 | 5.0 | 6415 | 0.1681 | 0.4056 | 0.2198 | 0.2851 | 0.9528 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
VinEuro/PyramidsTraining
|
VinEuro
| 2023-07-29T21:08:36Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-07-29T20:56:57Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: VinEuro/PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
NasimB/simple_wikipedia-rarity-seed
|
NasimB
| 2023-07-29T21:05:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T17:12:01Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: simple_wikipedia-rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# simple_wikipedia-rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1526
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3353 | 0.29 | 500 | 5.3432 |
| 5.0331 | 0.58 | 1000 | 4.9248 |
| 4.7045 | 0.87 | 1500 | 4.6995 |
| 4.4613 | 1.17 | 2000 | 4.5660 |
| 4.3127 | 1.46 | 2500 | 4.4566 |
| 4.2095 | 1.75 | 3000 | 4.3611 |
| 4.1096 | 2.04 | 3500 | 4.3006 |
| 3.9248 | 2.33 | 4000 | 4.2579 |
| 3.8938 | 2.62 | 4500 | 4.2018 |
| 3.8576 | 2.91 | 5000 | 4.1488 |
| 3.6767 | 3.21 | 5500 | 4.1456 |
| 3.6134 | 3.5 | 6000 | 4.1125 |
| 3.5925 | 3.79 | 6500 | 4.0849 |
| 3.5138 | 4.08 | 7000 | 4.0796 |
| 3.3429 | 4.37 | 7500 | 4.0750 |
| 3.3382 | 4.66 | 8000 | 4.0624 |
| 3.328 | 4.95 | 8500 | 4.0507 |
| 3.1885 | 5.24 | 9000 | 4.0623 |
| 3.1615 | 5.54 | 9500 | 4.0621 |
| 3.1534 | 5.83 | 10000 | 4.0617 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
athrado/bert-finetuned-nli
|
athrado
| 2023-07-29T20:43:39Z | 8 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"text-classification",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-11T14:30:23Z |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: athrado/bert-finetuned-nli
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# athrado/bert-finetuned-nli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0641
- Train Accuracy: 0.9797
- Validation Loss: 0.4812
- Validation Accuracy: 0.8586
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2775, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.5572 | 0.7599 | 0.4802 | 0.8020 | 0 |
| 0.3324 | 0.8795 | 0.3869 | 0.8444 | 1 |
| 0.2057 | 0.9272 | 0.3933 | 0.8646 | 2 |
| 0.1212 | 0.9597 | 0.4413 | 0.8747 | 3 |
| 0.0641 | 0.9797 | 0.4812 | 0.8586 | 4 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.0
- Datasets 2.14.1
- Tokenizers 0.13.3
|
VinEuro/ppo-SnowballTarget
|
VinEuro
| 2023-07-29T20:41:42Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-07-29T20:41:39Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: VinEuro/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Pula23/Hggjg
|
Pula23
| 2023-07-29T20:36:46Z | 0 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"conversational",
"aa",
"dataset:Open-Orca/OpenOrca",
"license:openrail",
"region:us"
] |
text-generation
| 2023-07-29T20:32:45Z |
---
license: openrail
datasets:
- Open-Orca/OpenOrca
language:
- aa
metrics:
- accuracy
- bertscore
library_name: adapter-transformers
pipeline_tag: conversational
---
|
etetet/my_awesome_eli5_mlm_model
|
etetet
| 2023-07-29T20:34:10Z | 178 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-07-29T20:07:20Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: my_awesome_eli5_mlm_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_mlm_model
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2578 | 1.0 | 1145 | 2.0618 |
| 2.1775 | 2.0 | 2290 | 2.0267 |
| 2.1086 | 3.0 | 3435 | 2.0174 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
PhilSad/sdxl_phil_lora_attempts
|
PhilSad
| 2023-07-29T20:32:21Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-07-29T03:01:31Z |
This is a repo to store my attemps to find a quick training working for photorealist and stylised lora dreambooth
currently ~15 min & 17 GB vram
use "shs man" to trigger
|
gArthur98/Greg-DistilBert-classifier
|
gArthur98
| 2023-07-29T20:30:50Z | 113 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-29T19:42:30Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: Greg-DistilBert-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Greg-DistilBert-classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7835
- F1: 0.7175
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8486 | 0.5 | 500 | 0.9540 | 0.6137 |
| 0.7857 | 1.0 | 1000 | 0.7877 | 0.6671 |
| 0.7039 | 1.5 | 1500 | 0.7438 | 0.7035 |
| 0.6526 | 2.01 | 2000 | 0.7396 | 0.7107 |
| 0.5131 | 2.51 | 2500 | 0.7835 | 0.7175 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_2_beta_1
|
asenella
| 2023-07-29T20:28:26Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:28:07Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_2_beta_2.5
|
asenella
| 2023-07-29T20:27:39Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:27:21Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_3_beta_1
|
asenella
| 2023-07-29T20:27:10Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:26:22Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_3_beta_2.5
|
asenella
| 2023-07-29T20:27:02Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:26:35Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_0_beta_2.5
|
asenella
| 2023-07-29T20:26:56Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:26:24Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_0_beta_1
|
asenella
| 2023-07-29T20:22:36Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:22:17Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_3_beta_0.5
|
asenella
| 2023-07-29T20:22:24Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:22:05Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/whole_mmnist_JNFDccaconfig_resnet_seed_1_beta_1
|
asenella
| 2023-07-29T20:21:05Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:20:47Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Sookeyy/q-Taxi-v3
|
Sookeyy
| 2023-07-29T20:18:49Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T20:18:48Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.42 +/- 2.75
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Sookeyy/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
asenella/whole_mmnist_JNFconfig_resnet_seed_2_beta_1
|
asenella
| 2023-07-29T20:06:20Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-29T20:06:00Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
rzambrano/rnd-PyramidsTraining
|
rzambrano
| 2023-07-29T20:01:55Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-07-29T20:01:49Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: rzambrano/rnd-PyramidsTraining
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
RohaanKhanCentric/llama2-qlora-finetunined-Arabic
|
RohaanKhanCentric
| 2023-07-29T19:54:47Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T19:54:40Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
darthPanda/Reinforce-CartPole-v1
|
darthPanda
| 2023-07-29T19:52:54Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T19:08:40Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 269.29 +/- 125.27
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
JMullings/ts-xor-demo
|
JMullings
| 2023-07-29T19:43:43Z | 0 | 0 | null |
[
"tabular-classification",
"en",
"license:mit",
"region:us"
] |
tabular-classification
| 2023-07-29T14:53:17Z |
---
license: mit
language:
- en
pipeline_tag: tabular-classification
---
# XOR Training Exercise using TensorFlow.js
In this example, we will use TensorFlow.js to train a neural network for the XOR (exclusive OR) problem. The XOR problem is a classic problem in machine learning where the model needs to learn a non-linear decision boundary to correctly classify inputs.
## Model Description
The neural network used for this XOR problem consists of an input layer with two neurons, a hidden layer with two neurons, and an output layer with one neuron. The activation function used in the hidden layer is ReLU (Rectified Linear Unit), and the output layer uses the sigmoid activation function to produce values between 0 and 1.
## Dataset
The XOR dataset consists of four samples, each with two features (inputs) and one label (output). The dataset is as follows:
| Input 1 | Input 2 | Output |
|:-------:|:-------:|:------:|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
## Training Procedure
The training is performed using TensorFlow.js with the following hyperparameters:
- Learning Rate: 0.1
- Number of Epochs: 10000
- Loss Function: Mean Squared Error (MSE)
- Optimizer: Stochastic Gradient Descent (SGD)
## Code Implementation
Below is the code implementation for training the XOR neural network using TensorFlow.js:
```javascript
// Import TensorFlow.js library
import * as tf from '@tensorflow/tfjs-node-gpu';
this.model = await tf.loadLayersModel(`file://${this.model_path}/model.json`);
this.model.compile({
optimizer: tf.train.sgd(0.1),
loss: 'binaryCrossentropy', // Binary classification loss
metrics: ['accuracy'],
});
this.model.summary();
const x = tf.tensor2d([[1,1]]);
const prediction = this.model.predict(x) as tf.Tensor;
```
## Resulting Prediction
The resulting predictions for the XOR dataset after training the model are as follows:
```
Tensor
[[0.0020679],
[0.9994502],
[0.9994048],
[0.0002599]]
```
## Intended Uses & Limitations
- The trained XOR neural network is suitable for solving the XOR problem and may not be suitable for more complex tasks without modifications.
- TensorFlow.js allows running machine learning models directly in the browser, making it useful for web applications with client-side inference.
## Framework Versions Used
- TensorFlow.js
Please note that this example assumes you have set up your project with the necessary dependencies and have a basic understanding of JavaScript and TensorFlow.js.
|
froggoboom/results
|
froggoboom
| 2023-07-29T19:40:07Z | 0 | 0 | null |
[
"generated_from_trainer",
"region:us"
] | null | 2023-07-29T19:36:30Z |
---
tags:
- generated_from_trainer
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
### Training results
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.1
- Tokenizers 0.13.3
|
aphi/a2c-AntBulletEnv-v0
|
aphi
| 2023-07-29T19:38:48Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T19:37:41Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 2036.04 +/- 73.10
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Huggingfly/ppo-CartPole-v1
|
Huggingfly
| 2023-07-29T19:35:12Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T19:35:07Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -141.58 +/- 106.24
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'Huggingfly/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
VicBeltran/ppo-LunarLander-v2
|
VicBeltran
| 2023-07-29T19:23:19Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T18:53:13Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.36 +/- 21.98
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
cgr28/rl_course_vizdoom_health_gathering_supreme
|
cgr28
| 2023-07-29T19:15:54Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-27T04:42:25Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.25 +/- 3.57
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r cgr28/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
digiplay/KawaiiRealisticAnimeMix_A0.3
|
digiplay
| 2023-07-29T19:14:25Z | 328 | 3 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-29T18:46:32Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info:
https://civitai.com/models/104100?modelVersionId=128610
Sample image and prompt :
1girl, anime key visual, outdoor,vibrant color,very close-up,tiny smile

|
rzambrano/ppo-SnowballTarget
|
rzambrano
| 2023-07-29T19:11:34Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-07-29T19:09:45Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: rzambrano/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ShekDass/donut-base-cord-smart-86
|
ShekDass
| 2023-07-29T19:10:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:naver-clova-ix/donut-base-finetuned-cord-v2",
"base_model:finetune:naver-clova-ix/donut-base-finetuned-cord-v2",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2023-07-29T17:37:11Z |
---
license: mit
base_model: naver-clova-ix/donut-base-finetuned-cord-v2
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut-base-cord-smart-86
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-cord-smart-86
This model is a fine-tuned version of [naver-clova-ix/donut-base-finetuned-cord-v2](https://huggingface.co/naver-clova-ix/donut-base-finetuned-cord-v2) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
maije/llama2-qlora-finetuned-cm-repo-create-7.17-loss
|
maije
| 2023-07-29T18:52:31Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T18:52:13Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
wilson-wei/wav2vec2-base-finetuned-gtzan
|
wilson-wei
| 2023-07-29T18:47:34Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:facebook/wav2vec2-base",
"base_model:finetune:facebook/wav2vec2-base",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-07-29T14:52:44Z |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 0.84
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-gtzan
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8879
- Accuracy: 0.84
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 17
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9838 | 1.0 | 113 | 1.8627 | 0.37 |
| 1.6128 | 2.0 | 226 | 1.5998 | 0.48 |
| 1.0259 | 3.0 | 339 | 1.3821 | 0.57 |
| 1.2766 | 4.0 | 452 | 1.1708 | 0.66 |
| 0.6014 | 5.0 | 565 | 0.7257 | 0.77 |
| 0.5815 | 6.0 | 678 | 1.0738 | 0.68 |
| 0.7664 | 7.0 | 791 | 0.7244 | 0.8 |
| 0.2303 | 8.0 | 904 | 0.5838 | 0.84 |
| 0.4829 | 9.0 | 1017 | 0.5741 | 0.87 |
| 0.0859 | 10.0 | 1130 | 0.6199 | 0.83 |
| 0.2983 | 11.0 | 1243 | 0.8117 | 0.84 |
| 0.0642 | 12.0 | 1356 | 0.5938 | 0.88 |
| 0.0688 | 13.0 | 1469 | 0.9978 | 0.84 |
| 0.1542 | 14.0 | 1582 | 0.7437 | 0.85 |
| 0.0117 | 15.0 | 1695 | 0.9100 | 0.84 |
| 0.039 | 16.0 | 1808 | 0.7757 | 0.85 |
| 0.0661 | 17.0 | 1921 | 0.8879 | 0.84 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.0
- Tokenizers 0.13.3
|
mohamedemam/bert_sentaces_similarty
|
mohamedemam
| 2023-07-29T18:35:28Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"resnet",
"sentence-similarity",
"en",
"dataset:AlekseyKorshuk/quora-question-pairs",
"license:mit",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-07-29T17:47:12Z |
---
license: mit
datasets:
- AlekseyKorshuk/quora-question-pairs
language:
- en
metrics:
- accuracy
pipeline_tag: sentence-similarity
---
|
chaimag/ko-llama-7B
|
chaimag
| 2023-07-29T18:33:06Z | 6 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T15:49:00Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
atari713/taxi-v3
|
atari713
| 2023-07-29T18:29:07Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T18:24:38Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="atari713/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
minatosnow/swinv2-tiny-patch4-window8-256-mineral
|
minatosnow
| 2023-07-29T18:25:36Z | 147 | 0 |
transformers
|
[
"transformers",
"pytorch",
"swinv2",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swinv2-tiny-patch4-window8-256",
"base_model:finetune:microsoft/swinv2-tiny-patch4-window8-256",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-29T18:24:58Z |
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-mineral
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.24666666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-mineral
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 5.2045
- Accuracy: 0.2467
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 5.692 | 0.96 | 18 | 5.6904 | 0.0017 |
| 5.6759 | 1.97 | 37 | 5.6829 | 0.0017 |
| 5.6699 | 2.99 | 56 | 5.6722 | 0.0033 |
| 5.6484 | 4.0 | 75 | 5.6601 | 0.0033 |
| 5.6355 | 4.96 | 93 | 5.6486 | 0.005 |
| 5.6088 | 5.97 | 112 | 5.6375 | 0.0067 |
| 5.5941 | 6.99 | 131 | 5.6268 | 0.0083 |
| 5.5636 | 8.0 | 150 | 5.6131 | 0.0117 |
| 5.5499 | 8.96 | 168 | 5.5987 | 0.0117 |
| 5.5038 | 9.97 | 187 | 5.5798 | 0.0083 |
| 5.437 | 10.99 | 206 | 5.5757 | 0.0133 |
| 5.3642 | 12.0 | 225 | 5.5482 | 0.0133 |
| 5.2877 | 12.96 | 243 | 5.5107 | 0.0183 |
| 5.1992 | 13.97 | 262 | 5.4744 | 0.025 |
| 5.0956 | 14.99 | 281 | 5.4006 | 0.0333 |
| 4.9566 | 16.0 | 300 | 5.3490 | 0.0433 |
| 4.8827 | 16.96 | 318 | 5.2856 | 0.0517 |
| 4.7089 | 17.97 | 337 | 5.1565 | 0.075 |
| 4.5187 | 18.99 | 356 | 5.0459 | 0.0817 |
| 4.4164 | 20.0 | 375 | 4.9614 | 0.0983 |
| 4.2402 | 20.96 | 393 | 4.8814 | 0.0983 |
| 4.0046 | 21.97 | 412 | 4.7763 | 0.1167 |
| 3.8336 | 22.99 | 431 | 4.6775 | 0.125 |
| 3.6379 | 24.0 | 450 | 4.6089 | 0.14 |
| 3.4647 | 24.96 | 468 | 4.5512 | 0.1433 |
| 3.3663 | 25.97 | 487 | 4.4674 | 0.1533 |
| 3.1445 | 26.99 | 506 | 4.4247 | 0.15 |
| 3.0248 | 28.0 | 525 | 4.3519 | 0.1633 |
| 2.8415 | 28.96 | 543 | 4.3256 | 0.1633 |
| 2.6664 | 29.97 | 562 | 4.3015 | 0.18 |
| 2.5225 | 30.99 | 581 | 4.2571 | 0.1867 |
| 2.4433 | 32.0 | 600 | 4.2507 | 0.1833 |
| 2.3169 | 32.96 | 618 | 4.2097 | 0.1933 |
| 2.145 | 33.97 | 637 | 4.1741 | 0.1883 |
| 2.0045 | 34.99 | 656 | 4.1681 | 0.1967 |
| 1.9272 | 36.0 | 675 | 4.1376 | 0.2083 |
| 1.7761 | 36.96 | 693 | 4.1391 | 0.1933 |
| 1.7038 | 37.97 | 712 | 4.0957 | 0.205 |
| 1.5902 | 38.99 | 731 | 4.1309 | 0.2067 |
| 1.4921 | 40.0 | 750 | 4.1324 | 0.2033 |
| 1.3552 | 40.96 | 768 | 4.1510 | 0.2067 |
| 1.2597 | 41.97 | 787 | 4.1636 | 0.205 |
| 1.2909 | 42.99 | 806 | 4.1422 | 0.2267 |
| 1.1661 | 44.0 | 825 | 4.1553 | 0.21 |
| 1.1031 | 44.96 | 843 | 4.1976 | 0.2167 |
| 1.0203 | 45.97 | 862 | 4.1673 | 0.2183 |
| 0.9883 | 46.99 | 881 | 4.1628 | 0.2167 |
| 0.976 | 48.0 | 900 | 4.1852 | 0.2267 |
| 0.8848 | 48.96 | 918 | 4.2108 | 0.2167 |
| 0.8616 | 49.97 | 937 | 4.2583 | 0.2133 |
| 0.8079 | 50.99 | 956 | 4.1821 | 0.23 |
| 0.8256 | 52.0 | 975 | 4.2021 | 0.2217 |
| 0.7439 | 52.96 | 993 | 4.2577 | 0.2167 |
| 0.6863 | 53.97 | 1012 | 4.2398 | 0.225 |
| 0.715 | 54.99 | 1031 | 4.2934 | 0.21 |
| 0.6924 | 56.0 | 1050 | 4.2675 | 0.225 |
| 0.6454 | 56.96 | 1068 | 4.2916 | 0.2117 |
| 0.5688 | 57.97 | 1087 | 4.3216 | 0.2217 |
| 0.5958 | 58.99 | 1106 | 4.3202 | 0.2133 |
| 0.5834 | 60.0 | 1125 | 4.3022 | 0.2267 |
| 0.5583 | 60.96 | 1143 | 4.3746 | 0.225 |
| 0.565 | 61.97 | 1162 | 4.3334 | 0.215 |
| 0.55 | 62.99 | 1181 | 4.3330 | 0.2217 |
| 0.4972 | 64.0 | 1200 | 4.3866 | 0.2183 |
| 0.4895 | 64.96 | 1218 | 4.3797 | 0.2267 |
| 0.4537 | 65.97 | 1237 | 4.3761 | 0.2267 |
| 0.4941 | 66.99 | 1256 | 4.4122 | 0.2317 |
| 0.4422 | 68.0 | 1275 | 4.4636 | 0.2217 |
| 0.3731 | 68.96 | 1293 | 4.4118 | 0.2217 |
| 0.4338 | 69.97 | 1312 | 4.4002 | 0.2217 |
| 0.4482 | 70.99 | 1331 | 4.4558 | 0.2233 |
| 0.4206 | 72.0 | 1350 | 4.4238 | 0.23 |
| 0.4009 | 72.96 | 1368 | 4.4717 | 0.2267 |
| 0.4297 | 73.97 | 1387 | 4.5047 | 0.23 |
| 0.4031 | 74.99 | 1406 | 4.4637 | 0.2233 |
| 0.3489 | 76.0 | 1425 | 4.4878 | 0.2183 |
| 0.4202 | 76.96 | 1443 | 4.4785 | 0.23 |
| 0.3307 | 77.97 | 1462 | 4.4647 | 0.2267 |
| 0.3919 | 78.99 | 1481 | 4.5011 | 0.2233 |
| 0.3511 | 80.0 | 1500 | 4.4895 | 0.2367 |
| 0.334 | 80.96 | 1518 | 4.4878 | 0.2283 |
| 0.3958 | 81.97 | 1537 | 4.5025 | 0.2367 |
| 0.316 | 82.99 | 1556 | 4.5792 | 0.2317 |
| 0.3135 | 84.0 | 1575 | 4.4894 | 0.2333 |
| 0.3292 | 84.96 | 1593 | 4.5495 | 0.235 |
| 0.3116 | 85.97 | 1612 | 4.5069 | 0.2317 |
| 0.3162 | 86.99 | 1631 | 4.5407 | 0.23 |
| 0.3173 | 88.0 | 1650 | 4.5997 | 0.2217 |
| 0.2857 | 88.96 | 1668 | 4.5476 | 0.2283 |
| 0.2869 | 89.97 | 1687 | 4.5655 | 0.2217 |
| 0.299 | 90.99 | 1706 | 4.5743 | 0.24 |
| 0.3142 | 92.0 | 1725 | 4.5478 | 0.23 |
| 0.3066 | 92.96 | 1743 | 4.5509 | 0.2367 |
| 0.2542 | 93.97 | 1762 | 4.5452 | 0.225 |
| 0.2707 | 94.99 | 1781 | 4.5017 | 0.225 |
| 0.2781 | 96.0 | 1800 | 4.5425 | 0.23 |
| 0.2611 | 96.96 | 1818 | 4.6214 | 0.2233 |
| 0.2816 | 97.97 | 1837 | 4.5780 | 0.2233 |
| 0.2698 | 98.99 | 1856 | 4.5237 | 0.225 |
| 0.2568 | 100.0 | 1875 | 4.6262 | 0.2167 |
| 0.2925 | 100.96 | 1893 | 4.6138 | 0.2133 |
| 0.2542 | 101.97 | 1912 | 4.6329 | 0.22 |
| 0.2276 | 102.99 | 1931 | 4.5854 | 0.23 |
| 0.2701 | 104.0 | 1950 | 4.5662 | 0.2167 |
| 0.2492 | 104.96 | 1968 | 4.6098 | 0.225 |
| 0.2394 | 105.97 | 1987 | 4.6215 | 0.2333 |
| 0.2409 | 106.99 | 2006 | 4.6277 | 0.2317 |
| 0.2578 | 108.0 | 2025 | 4.6173 | 0.2267 |
| 0.229 | 108.96 | 2043 | 4.6405 | 0.2283 |
| 0.2438 | 109.97 | 2062 | 4.6041 | 0.2233 |
| 0.2441 | 110.99 | 2081 | 4.6367 | 0.23 |
| 0.2353 | 112.0 | 2100 | 4.5877 | 0.2467 |
| 0.1876 | 112.96 | 2118 | 4.6518 | 0.2333 |
| 0.1996 | 113.97 | 2137 | 4.6810 | 0.2367 |
| 0.1908 | 114.99 | 2156 | 4.6483 | 0.245 |
| 0.1905 | 116.0 | 2175 | 4.6117 | 0.22 |
| 0.1995 | 116.96 | 2193 | 4.6283 | 0.2183 |
| 0.2044 | 117.97 | 2212 | 4.6130 | 0.2283 |
| 0.2156 | 118.99 | 2231 | 4.6729 | 0.2167 |
| 0.2003 | 120.0 | 2250 | 4.6124 | 0.24 |
| 0.1861 | 120.96 | 2268 | 4.6839 | 0.23 |
| 0.2072 | 121.97 | 2287 | 4.7217 | 0.2267 |
| 0.1973 | 122.99 | 2306 | 4.7596 | 0.23 |
| 0.2191 | 124.0 | 2325 | 4.7394 | 0.2283 |
| 0.1738 | 124.96 | 2343 | 4.7356 | 0.23 |
| 0.1669 | 125.97 | 2362 | 4.7210 | 0.235 |
| 0.1971 | 126.99 | 2381 | 4.6826 | 0.23 |
| 0.1972 | 128.0 | 2400 | 4.7256 | 0.2233 |
| 0.1794 | 128.96 | 2418 | 4.6589 | 0.235 |
| 0.1894 | 129.97 | 2437 | 4.7391 | 0.2317 |
| 0.1854 | 130.99 | 2456 | 4.7441 | 0.23 |
| 0.1551 | 132.0 | 2475 | 4.7559 | 0.2233 |
| 0.179 | 132.96 | 2493 | 4.7555 | 0.235 |
| 0.2235 | 133.97 | 2512 | 4.7686 | 0.2183 |
| 0.179 | 134.99 | 2531 | 4.7334 | 0.2283 |
| 0.1595 | 136.0 | 2550 | 4.7324 | 0.2267 |
| 0.1598 | 136.96 | 2568 | 4.7099 | 0.245 |
| 0.178 | 137.97 | 2587 | 4.7363 | 0.2317 |
| 0.1976 | 138.99 | 2606 | 4.7806 | 0.2217 |
| 0.153 | 140.0 | 2625 | 4.8128 | 0.2267 |
| 0.1946 | 140.96 | 2643 | 4.7925 | 0.2233 |
| 0.1597 | 141.97 | 2662 | 4.8279 | 0.2117 |
| 0.1515 | 142.99 | 2681 | 4.8203 | 0.2233 |
| 0.2013 | 144.0 | 2700 | 4.7393 | 0.23 |
| 0.1431 | 144.96 | 2718 | 4.7866 | 0.2367 |
| 0.1864 | 145.97 | 2737 | 4.7730 | 0.2317 |
| 0.1676 | 146.99 | 2756 | 4.8112 | 0.2333 |
| 0.1502 | 148.0 | 2775 | 4.8374 | 0.215 |
| 0.1584 | 148.96 | 2793 | 4.8600 | 0.2317 |
| 0.1901 | 149.97 | 2812 | 4.8647 | 0.2167 |
| 0.1347 | 150.99 | 2831 | 4.8073 | 0.215 |
| 0.1859 | 152.0 | 2850 | 4.8766 | 0.2283 |
| 0.1483 | 152.96 | 2868 | 4.8392 | 0.23 |
| 0.149 | 153.97 | 2887 | 4.8734 | 0.215 |
| 0.1411 | 154.99 | 2906 | 4.9380 | 0.2083 |
| 0.1589 | 156.0 | 2925 | 4.8365 | 0.2367 |
| 0.1608 | 156.96 | 2943 | 4.8053 | 0.23 |
| 0.1759 | 157.97 | 2962 | 4.8690 | 0.2383 |
| 0.142 | 158.99 | 2981 | 4.8490 | 0.23 |
| 0.1433 | 160.0 | 3000 | 4.8658 | 0.2267 |
| 0.1407 | 160.96 | 3018 | 4.8936 | 0.2267 |
| 0.1442 | 161.97 | 3037 | 4.8534 | 0.235 |
| 0.1669 | 162.99 | 3056 | 4.9050 | 0.2317 |
| 0.1384 | 164.0 | 3075 | 4.8717 | 0.235 |
| 0.1366 | 164.96 | 3093 | 4.8951 | 0.2317 |
| 0.1428 | 165.97 | 3112 | 4.9253 | 0.225 |
| 0.1376 | 166.99 | 3131 | 4.9108 | 0.22 |
| 0.1238 | 168.0 | 3150 | 4.8965 | 0.2267 |
| 0.1129 | 168.96 | 3168 | 4.8446 | 0.2317 |
| 0.1296 | 169.97 | 3187 | 4.9100 | 0.2217 |
| 0.1383 | 170.99 | 3206 | 4.8886 | 0.2333 |
| 0.1511 | 172.0 | 3225 | 4.8883 | 0.235 |
| 0.1426 | 172.96 | 3243 | 4.8783 | 0.2333 |
| 0.1112 | 173.97 | 3262 | 4.9305 | 0.225 |
| 0.1456 | 174.99 | 3281 | 4.8354 | 0.2417 |
| 0.1343 | 176.0 | 3300 | 4.8553 | 0.225 |
| 0.1133 | 176.96 | 3318 | 4.8739 | 0.2317 |
| 0.1213 | 177.97 | 3337 | 4.8865 | 0.2333 |
| 0.1309 | 178.99 | 3356 | 4.9231 | 0.22 |
| 0.1197 | 180.0 | 3375 | 4.8976 | 0.2383 |
| 0.1619 | 180.96 | 3393 | 4.8812 | 0.2383 |
| 0.1254 | 181.97 | 3412 | 4.8260 | 0.225 |
| 0.0934 | 182.99 | 3431 | 4.8645 | 0.2283 |
| 0.1156 | 184.0 | 3450 | 4.8253 | 0.24 |
| 0.1008 | 184.96 | 3468 | 4.8692 | 0.2467 |
| 0.1273 | 185.97 | 3487 | 4.9049 | 0.24 |
| 0.1352 | 186.99 | 3506 | 4.8660 | 0.2333 |
| 0.1411 | 188.0 | 3525 | 4.8252 | 0.2333 |
| 0.124 | 188.96 | 3543 | 4.8715 | 0.2317 |
| 0.1121 | 189.97 | 3562 | 4.8768 | 0.24 |
| 0.1337 | 190.99 | 3581 | 4.9004 | 0.2433 |
| 0.106 | 192.0 | 3600 | 4.8300 | 0.2333 |
| 0.1044 | 192.96 | 3618 | 4.7903 | 0.25 |
| 0.1259 | 193.97 | 3637 | 4.8227 | 0.2267 |
| 0.1182 | 194.99 | 3656 | 4.8286 | 0.2283 |
| 0.1269 | 196.0 | 3675 | 4.8475 | 0.2467 |
| 0.1304 | 196.96 | 3693 | 4.8759 | 0.2367 |
| 0.1086 | 197.97 | 3712 | 4.8773 | 0.2283 |
| 0.1184 | 198.99 | 3731 | 4.8875 | 0.2317 |
| 0.114 | 200.0 | 3750 | 4.9083 | 0.2283 |
| 0.1028 | 200.96 | 3768 | 4.8888 | 0.2283 |
| 0.1355 | 201.97 | 3787 | 4.8358 | 0.23 |
| 0.1038 | 202.99 | 3806 | 4.8567 | 0.23 |
| 0.1122 | 204.0 | 3825 | 4.8578 | 0.2317 |
| 0.0864 | 204.96 | 3843 | 4.9288 | 0.2333 |
| 0.0969 | 205.97 | 3862 | 4.8940 | 0.2567 |
| 0.0986 | 206.99 | 3881 | 4.8632 | 0.2483 |
| 0.1291 | 208.0 | 3900 | 4.9114 | 0.2433 |
| 0.1244 | 208.96 | 3918 | 4.9076 | 0.2483 |
| 0.1112 | 209.97 | 3937 | 4.8954 | 0.245 |
| 0.1032 | 210.99 | 3956 | 4.8885 | 0.2433 |
| 0.0919 | 212.0 | 3975 | 4.9197 | 0.2433 |
| 0.1153 | 212.96 | 3993 | 4.9020 | 0.25 |
| 0.0978 | 213.97 | 4012 | 4.9312 | 0.2433 |
| 0.1316 | 214.99 | 4031 | 4.9504 | 0.2417 |
| 0.1222 | 216.0 | 4050 | 4.9403 | 0.2367 |
| 0.1108 | 216.96 | 4068 | 4.8719 | 0.2483 |
| 0.0996 | 217.97 | 4087 | 4.8812 | 0.24 |
| 0.0907 | 218.99 | 4106 | 4.9203 | 0.25 |
| 0.0974 | 220.0 | 4125 | 4.9728 | 0.2417 |
| 0.1127 | 220.96 | 4143 | 4.9708 | 0.2467 |
| 0.0891 | 221.97 | 4162 | 5.0154 | 0.2517 |
| 0.0973 | 222.99 | 4181 | 4.9533 | 0.24 |
| 0.0912 | 224.0 | 4200 | 4.9306 | 0.2333 |
| 0.0971 | 224.96 | 4218 | 4.9873 | 0.2283 |
| 0.1069 | 225.97 | 4237 | 4.9154 | 0.2433 |
| 0.1163 | 226.99 | 4256 | 4.9178 | 0.2367 |
| 0.1139 | 228.0 | 4275 | 4.9395 | 0.2383 |
| 0.0816 | 228.96 | 4293 | 4.8986 | 0.2333 |
| 0.0899 | 229.97 | 4312 | 4.9542 | 0.2517 |
| 0.0984 | 230.99 | 4331 | 4.9305 | 0.2433 |
| 0.0732 | 232.0 | 4350 | 4.9264 | 0.2417 |
| 0.0947 | 232.96 | 4368 | 4.9676 | 0.235 |
| 0.0826 | 233.97 | 4387 | 5.0179 | 0.235 |
| 0.086 | 234.99 | 4406 | 4.9719 | 0.2283 |
| 0.1055 | 236.0 | 4425 | 4.9457 | 0.235 |
| 0.0872 | 236.96 | 4443 | 4.9355 | 0.2533 |
| 0.0826 | 237.97 | 4462 | 4.9467 | 0.245 |
| 0.081 | 238.99 | 4481 | 5.0036 | 0.245 |
| 0.0746 | 240.0 | 4500 | 5.0125 | 0.245 |
| 0.0725 | 240.96 | 4518 | 5.0061 | 0.2367 |
| 0.1104 | 241.97 | 4537 | 5.0150 | 0.2483 |
| 0.0885 | 242.99 | 4556 | 5.0063 | 0.2333 |
| 0.0847 | 244.0 | 4575 | 4.9919 | 0.2383 |
| 0.0751 | 244.96 | 4593 | 4.9881 | 0.2367 |
| 0.0872 | 245.97 | 4612 | 5.0013 | 0.2383 |
| 0.0771 | 246.99 | 4631 | 5.0273 | 0.235 |
| 0.0941 | 248.0 | 4650 | 5.0507 | 0.2317 |
| 0.116 | 248.96 | 4668 | 5.0491 | 0.245 |
| 0.0733 | 249.97 | 4687 | 5.0391 | 0.24 |
| 0.0821 | 250.99 | 4706 | 5.0231 | 0.235 |
| 0.075 | 252.0 | 4725 | 5.0388 | 0.2317 |
| 0.0885 | 252.96 | 4743 | 4.9838 | 0.2383 |
| 0.0759 | 253.97 | 4762 | 4.9536 | 0.2433 |
| 0.0773 | 254.99 | 4781 | 5.0145 | 0.2383 |
| 0.0707 | 256.0 | 4800 | 5.0352 | 0.2217 |
| 0.0861 | 256.96 | 4818 | 5.0295 | 0.2483 |
| 0.0739 | 257.97 | 4837 | 5.0354 | 0.2433 |
| 0.0822 | 258.99 | 4856 | 5.0563 | 0.245 |
| 0.0681 | 260.0 | 4875 | 5.0407 | 0.245 |
| 0.0872 | 260.96 | 4893 | 5.0511 | 0.2367 |
| 0.079 | 261.97 | 4912 | 5.1087 | 0.23 |
| 0.0733 | 262.99 | 4931 | 5.0523 | 0.225 |
| 0.097 | 264.0 | 4950 | 5.0368 | 0.2317 |
| 0.0669 | 264.96 | 4968 | 5.0501 | 0.2283 |
| 0.0801 | 265.97 | 4987 | 5.0515 | 0.235 |
| 0.0894 | 266.99 | 5006 | 5.0182 | 0.245 |
| 0.0815 | 268.0 | 5025 | 5.0713 | 0.23 |
| 0.0934 | 268.96 | 5043 | 5.0082 | 0.2417 |
| 0.0728 | 269.97 | 5062 | 5.0473 | 0.23 |
| 0.088 | 270.99 | 5081 | 5.0689 | 0.2267 |
| 0.0706 | 272.0 | 5100 | 5.0403 | 0.2383 |
| 0.0931 | 272.96 | 5118 | 5.0298 | 0.235 |
| 0.0784 | 273.97 | 5137 | 5.0141 | 0.2367 |
| 0.0831 | 274.99 | 5156 | 5.0314 | 0.2417 |
| 0.0624 | 276.0 | 5175 | 5.0445 | 0.2383 |
| 0.0819 | 276.96 | 5193 | 5.0632 | 0.2517 |
| 0.0714 | 277.97 | 5212 | 5.0520 | 0.255 |
| 0.0893 | 278.99 | 5231 | 5.0075 | 0.2533 |
| 0.0777 | 280.0 | 5250 | 5.0122 | 0.24 |
| 0.0686 | 280.96 | 5268 | 5.0477 | 0.2333 |
| 0.0849 | 281.97 | 5287 | 5.0238 | 0.2433 |
| 0.0969 | 282.99 | 5306 | 5.0061 | 0.2383 |
| 0.0906 | 284.0 | 5325 | 5.0771 | 0.2517 |
| 0.0843 | 284.96 | 5343 | 5.0882 | 0.2417 |
| 0.0538 | 285.97 | 5362 | 5.0800 | 0.2467 |
| 0.0678 | 286.99 | 5381 | 5.0976 | 0.2367 |
| 0.0729 | 288.0 | 5400 | 5.0817 | 0.2333 |
| 0.0922 | 288.96 | 5418 | 5.0955 | 0.2433 |
| 0.0684 | 289.97 | 5437 | 5.0873 | 0.2467 |
| 0.082 | 290.99 | 5456 | 5.1424 | 0.2383 |
| 0.0798 | 292.0 | 5475 | 5.0631 | 0.2433 |
| 0.0781 | 292.96 | 5493 | 5.0474 | 0.2517 |
| 0.0857 | 293.97 | 5512 | 5.0502 | 0.2417 |
| 0.0733 | 294.99 | 5531 | 5.0599 | 0.235 |
| 0.072 | 296.0 | 5550 | 5.0549 | 0.2433 |
| 0.101 | 296.96 | 5568 | 5.0783 | 0.24 |
| 0.0982 | 297.97 | 5587 | 5.1048 | 0.24 |
| 0.0782 | 298.99 | 5606 | 5.1096 | 0.235 |
| 0.0654 | 300.0 | 5625 | 5.1158 | 0.2333 |
| 0.0761 | 300.96 | 5643 | 5.0416 | 0.2383 |
| 0.079 | 301.97 | 5662 | 5.1202 | 0.235 |
| 0.0845 | 302.99 | 5681 | 5.1711 | 0.2333 |
| 0.0718 | 304.0 | 5700 | 5.1572 | 0.2383 |
| 0.0675 | 304.96 | 5718 | 5.1230 | 0.235 |
| 0.0683 | 305.97 | 5737 | 5.1464 | 0.23 |
| 0.0899 | 306.99 | 5756 | 5.0815 | 0.24 |
| 0.0692 | 308.0 | 5775 | 5.0867 | 0.2367 |
| 0.0843 | 308.96 | 5793 | 5.1006 | 0.2283 |
| 0.0742 | 309.97 | 5812 | 5.0545 | 0.2317 |
| 0.0689 | 310.99 | 5831 | 5.0509 | 0.2317 |
| 0.0714 | 312.0 | 5850 | 5.0536 | 0.2367 |
| 0.0669 | 312.96 | 5868 | 5.0488 | 0.2433 |
| 0.0726 | 313.97 | 5887 | 5.0903 | 0.2433 |
| 0.0509 | 314.99 | 5906 | 5.1158 | 0.2433 |
| 0.062 | 316.0 | 5925 | 5.0651 | 0.2417 |
| 0.0528 | 316.96 | 5943 | 5.0545 | 0.2467 |
| 0.0627 | 317.97 | 5962 | 5.0730 | 0.2417 |
| 0.0678 | 318.99 | 5981 | 5.0354 | 0.24 |
| 0.0603 | 320.0 | 6000 | 5.0496 | 0.2483 |
| 0.0703 | 320.96 | 6018 | 5.0788 | 0.2367 |
| 0.0797 | 321.97 | 6037 | 5.1071 | 0.24 |
| 0.0914 | 322.99 | 6056 | 5.0996 | 0.24 |
| 0.0688 | 324.0 | 6075 | 5.0954 | 0.24 |
| 0.0591 | 324.96 | 6093 | 5.1014 | 0.245 |
| 0.0622 | 325.97 | 6112 | 5.0859 | 0.24 |
| 0.0715 | 326.99 | 6131 | 5.0557 | 0.2533 |
| 0.0483 | 328.0 | 6150 | 5.1148 | 0.2383 |
| 0.0922 | 328.96 | 6168 | 5.1338 | 0.24 |
| 0.0588 | 329.97 | 6187 | 5.1553 | 0.245 |
| 0.0615 | 330.99 | 6206 | 5.1083 | 0.2483 |
| 0.0508 | 332.0 | 6225 | 5.1167 | 0.245 |
| 0.0691 | 332.96 | 6243 | 5.1116 | 0.2433 |
| 0.0684 | 333.97 | 6262 | 5.1211 | 0.2417 |
| 0.0519 | 334.99 | 6281 | 5.1481 | 0.2433 |
| 0.0571 | 336.0 | 6300 | 5.1662 | 0.245 |
| 0.038 | 336.96 | 6318 | 5.1616 | 0.245 |
| 0.0589 | 337.97 | 6337 | 5.1507 | 0.2483 |
| 0.0609 | 338.99 | 6356 | 5.1083 | 0.245 |
| 0.0484 | 340.0 | 6375 | 5.1392 | 0.2417 |
| 0.0842 | 340.96 | 6393 | 5.1476 | 0.2483 |
| 0.0569 | 341.97 | 6412 | 5.1547 | 0.245 |
| 0.0626 | 342.99 | 6431 | 5.1824 | 0.2383 |
| 0.0399 | 344.0 | 6450 | 5.1972 | 0.2417 |
| 0.0803 | 344.96 | 6468 | 5.1678 | 0.2433 |
| 0.0533 | 345.97 | 6487 | 5.1815 | 0.2417 |
| 0.0542 | 346.99 | 6506 | 5.1768 | 0.2383 |
| 0.0624 | 348.0 | 6525 | 5.1759 | 0.2333 |
| 0.055 | 348.96 | 6543 | 5.1954 | 0.2433 |
| 0.0678 | 349.97 | 6562 | 5.1478 | 0.2417 |
| 0.0557 | 350.99 | 6581 | 5.1236 | 0.24 |
| 0.0581 | 352.0 | 6600 | 5.1462 | 0.245 |
| 0.0509 | 352.96 | 6618 | 5.1428 | 0.235 |
| 0.0636 | 353.97 | 6637 | 5.1659 | 0.24 |
| 0.0671 | 354.99 | 6656 | 5.1583 | 0.24 |
| 0.0768 | 356.0 | 6675 | 5.1143 | 0.2283 |
| 0.0719 | 356.96 | 6693 | 5.1047 | 0.235 |
| 0.0653 | 357.97 | 6712 | 5.1262 | 0.2467 |
| 0.0646 | 358.99 | 6731 | 5.1456 | 0.245 |
| 0.0466 | 360.0 | 6750 | 5.1514 | 0.2517 |
| 0.0447 | 360.96 | 6768 | 5.1479 | 0.24 |
| 0.0671 | 361.97 | 6787 | 5.1508 | 0.2383 |
| 0.0618 | 362.99 | 6806 | 5.1520 | 0.2367 |
| 0.0559 | 364.0 | 6825 | 5.1495 | 0.2367 |
| 0.0745 | 364.96 | 6843 | 5.1606 | 0.235 |
| 0.0542 | 365.97 | 6862 | 5.1888 | 0.235 |
| 0.0737 | 366.99 | 6881 | 5.2100 | 0.2417 |
| 0.0524 | 368.0 | 6900 | 5.2309 | 0.2317 |
| 0.0548 | 368.96 | 6918 | 5.2278 | 0.2283 |
| 0.0742 | 369.97 | 6937 | 5.1995 | 0.2383 |
| 0.0512 | 370.99 | 6956 | 5.2024 | 0.24 |
| 0.0529 | 372.0 | 6975 | 5.1839 | 0.24 |
| 0.0647 | 372.96 | 6993 | 5.2155 | 0.2433 |
| 0.055 | 373.97 | 7012 | 5.1983 | 0.2417 |
| 0.0586 | 374.99 | 7031 | 5.1605 | 0.2467 |
| 0.0619 | 376.0 | 7050 | 5.1739 | 0.24 |
| 0.0462 | 376.96 | 7068 | 5.1929 | 0.2467 |
| 0.0406 | 377.97 | 7087 | 5.2178 | 0.2467 |
| 0.0578 | 378.99 | 7106 | 5.2028 | 0.2433 |
| 0.0643 | 380.0 | 7125 | 5.1912 | 0.245 |
| 0.0442 | 380.96 | 7143 | 5.2069 | 0.2417 |
| 0.0642 | 381.97 | 7162 | 5.1740 | 0.2417 |
| 0.0423 | 382.99 | 7181 | 5.1597 | 0.2417 |
| 0.0663 | 384.0 | 7200 | 5.1497 | 0.2467 |
| 0.0539 | 384.96 | 7218 | 5.1274 | 0.2467 |
| 0.0426 | 385.97 | 7237 | 5.1322 | 0.24 |
| 0.0489 | 386.99 | 7256 | 5.1582 | 0.2433 |
| 0.0591 | 388.0 | 7275 | 5.1627 | 0.245 |
| 0.0528 | 388.96 | 7293 | 5.1561 | 0.2483 |
| 0.0666 | 389.97 | 7312 | 5.1548 | 0.2433 |
| 0.053 | 390.99 | 7331 | 5.1537 | 0.2433 |
| 0.0546 | 392.0 | 7350 | 5.1460 | 0.25 |
| 0.0546 | 392.96 | 7368 | 5.1467 | 0.2467 |
| 0.0334 | 393.97 | 7387 | 5.1394 | 0.25 |
| 0.0548 | 394.99 | 7406 | 5.1488 | 0.2417 |
| 0.0441 | 396.0 | 7425 | 5.1643 | 0.2467 |
| 0.0476 | 396.96 | 7443 | 5.1578 | 0.255 |
| 0.0602 | 397.97 | 7462 | 5.1754 | 0.2517 |
| 0.0455 | 398.99 | 7481 | 5.1758 | 0.2533 |
| 0.0364 | 400.0 | 7500 | 5.1471 | 0.255 |
| 0.0479 | 400.96 | 7518 | 5.1424 | 0.2517 |
| 0.052 | 401.97 | 7537 | 5.1626 | 0.245 |
| 0.0521 | 402.99 | 7556 | 5.1680 | 0.2533 |
| 0.0527 | 404.0 | 7575 | 5.1557 | 0.2517 |
| 0.0534 | 404.96 | 7593 | 5.1781 | 0.2567 |
| 0.0431 | 405.97 | 7612 | 5.1900 | 0.2533 |
| 0.0506 | 406.99 | 7631 | 5.1651 | 0.2533 |
| 0.043 | 408.0 | 7650 | 5.1529 | 0.2567 |
| 0.0419 | 408.96 | 7668 | 5.1589 | 0.255 |
| 0.0388 | 409.97 | 7687 | 5.1641 | 0.2567 |
| 0.0601 | 410.99 | 7706 | 5.1679 | 0.2567 |
| 0.0521 | 412.0 | 7725 | 5.1805 | 0.255 |
| 0.0564 | 412.96 | 7743 | 5.1811 | 0.2517 |
| 0.0395 | 413.97 | 7762 | 5.1670 | 0.2483 |
| 0.0542 | 414.99 | 7781 | 5.1530 | 0.2517 |
| 0.0482 | 416.0 | 7800 | 5.1599 | 0.2483 |
| 0.0597 | 416.96 | 7818 | 5.1715 | 0.2517 |
| 0.0579 | 417.97 | 7837 | 5.1748 | 0.2517 |
| 0.0331 | 418.99 | 7856 | 5.1811 | 0.25 |
| 0.045 | 420.0 | 7875 | 5.1903 | 0.25 |
| 0.0424 | 420.96 | 7893 | 5.1830 | 0.2583 |
| 0.0474 | 421.97 | 7912 | 5.1867 | 0.2567 |
| 0.051 | 422.99 | 7931 | 5.1793 | 0.255 |
| 0.0563 | 424.0 | 7950 | 5.1588 | 0.2517 |
| 0.039 | 424.96 | 7968 | 5.1612 | 0.2483 |
| 0.0722 | 425.97 | 7987 | 5.1692 | 0.2433 |
| 0.0492 | 426.99 | 8006 | 5.1873 | 0.245 |
| 0.0594 | 428.0 | 8025 | 5.1983 | 0.245 |
| 0.0646 | 428.96 | 8043 | 5.2049 | 0.2483 |
| 0.0412 | 429.97 | 8062 | 5.1985 | 0.25 |
| 0.0493 | 430.99 | 8081 | 5.2013 | 0.24 |
| 0.0582 | 432.0 | 8100 | 5.1916 | 0.2467 |
| 0.0528 | 432.96 | 8118 | 5.1852 | 0.2483 |
| 0.0432 | 433.97 | 8137 | 5.1820 | 0.25 |
| 0.0313 | 434.99 | 8156 | 5.1844 | 0.2483 |
| 0.048 | 436.0 | 8175 | 5.1884 | 0.2467 |
| 0.0591 | 436.96 | 8193 | 5.1952 | 0.2467 |
| 0.0379 | 437.97 | 8212 | 5.2027 | 0.25 |
| 0.0355 | 438.99 | 8231 | 5.2032 | 0.2517 |
| 0.0499 | 440.0 | 8250 | 5.1997 | 0.2533 |
| 0.0464 | 440.96 | 8268 | 5.1866 | 0.255 |
| 0.0455 | 441.97 | 8287 | 5.1744 | 0.255 |
| 0.0429 | 442.99 | 8306 | 5.1745 | 0.2533 |
| 0.0532 | 444.0 | 8325 | 5.1885 | 0.2483 |
| 0.053 | 444.96 | 8343 | 5.1893 | 0.2517 |
| 0.0453 | 445.97 | 8362 | 5.1899 | 0.2467 |
| 0.0414 | 446.99 | 8381 | 5.1957 | 0.2433 |
| 0.0449 | 448.0 | 8400 | 5.2016 | 0.2433 |
| 0.0424 | 448.96 | 8418 | 5.2080 | 0.245 |
| 0.0377 | 449.97 | 8437 | 5.2015 | 0.2417 |
| 0.0448 | 450.99 | 8456 | 5.1974 | 0.2433 |
| 0.0647 | 452.0 | 8475 | 5.1928 | 0.24 |
| 0.0549 | 452.96 | 8493 | 5.1991 | 0.24 |
| 0.0455 | 453.97 | 8512 | 5.1975 | 0.245 |
| 0.0531 | 454.99 | 8531 | 5.1890 | 0.2417 |
| 0.0476 | 456.0 | 8550 | 5.1756 | 0.245 |
| 0.0366 | 456.96 | 8568 | 5.1726 | 0.2467 |
| 0.0534 | 457.97 | 8587 | 5.1726 | 0.2467 |
| 0.0521 | 458.99 | 8606 | 5.1757 | 0.2467 |
| 0.042 | 460.0 | 8625 | 5.1777 | 0.2467 |
| 0.0513 | 460.96 | 8643 | 5.1781 | 0.2483 |
| 0.0463 | 461.97 | 8662 | 5.1803 | 0.25 |
| 0.0563 | 462.99 | 8681 | 5.1841 | 0.2483 |
| 0.0366 | 464.0 | 8700 | 5.1888 | 0.245 |
| 0.0439 | 464.96 | 8718 | 5.1896 | 0.2467 |
| 0.0645 | 465.97 | 8737 | 5.1916 | 0.2483 |
| 0.0358 | 466.99 | 8756 | 5.1958 | 0.25 |
| 0.0397 | 468.0 | 8775 | 5.1982 | 0.2467 |
| 0.0498 | 468.96 | 8793 | 5.2001 | 0.245 |
| 0.0597 | 469.97 | 8812 | 5.2035 | 0.245 |
| 0.031 | 470.99 | 8831 | 5.2055 | 0.245 |
| 0.0466 | 472.0 | 8850 | 5.2071 | 0.245 |
| 0.0406 | 472.96 | 8868 | 5.2064 | 0.245 |
| 0.047 | 473.97 | 8887 | 5.2062 | 0.2467 |
| 0.0472 | 474.99 | 8906 | 5.2057 | 0.245 |
| 0.0392 | 476.0 | 8925 | 5.2060 | 0.2467 |
| 0.0314 | 476.96 | 8943 | 5.2054 | 0.2467 |
| 0.0411 | 477.97 | 8962 | 5.2049 | 0.2467 |
| 0.0427 | 478.99 | 8981 | 5.2046 | 0.2467 |
| 0.0469 | 480.0 | 9000 | 5.2045 | 0.2467 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.1
- Datasets 2.14.0
- Tokenizers 0.13.3
|
squarelike/Gugugo-koen-1.3B-V1.0
|
squarelike
| 2023-07-29T18:18:11Z | 129 | 6 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt_neox",
"text-generation",
"translation",
"en",
"ko",
"dataset:squarelike/sharegpt_deepl_ko_translation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-26T16:06:55Z |
---
license: apache-2.0
datasets:
- squarelike/sharegpt_deepl_ko_translation
language:
- en
- ko
pipeline_tag: translation
---
[https://github.com/jwj7140/Gugugo](https://github.com/jwj7140/Gugugo)
Prompt Template:
```
### 한국어: {sentence}</끝>
### 영어:
```
```
### 영어: {sentence}</끝>
### 한국어:
```
|
s3nh/Baichuan-13B-Instruction-GGML
|
s3nh
| 2023-07-29T18:16:19Z | 0 | 3 |
transformers
|
[
"transformers",
"text-generation-inference",
"text-generation",
"en",
"arxiv:2104.09864",
"arxiv:2108.12409",
"arxiv:2307.00360",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-27T07:52:31Z |
---
license: openrail
language:
- en
tags:
- text-generation-inference
pipeline_tag: text-generation
library_name: transformers
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/AlpachinoNLP/Baichuan-13B-Instruction/).
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
## 使用方式
如下是一个使用Baichuan-13B-Chat进行对话的示例,正确输出为"乔戈里峰。世界第二高峰———乔戈里峰西方登山者称其为k2峰,海拔高度是8611米,位于喀喇昆仑山脉的中巴边境上"
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction")
messages = []
messages.append({"role": "Human", "content": "世界上第二高的山峰是哪座"})
response = model.chat(tokenizer, messages)
print(response)
```
## 量化部署
Baichuan-13B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 `from_pretrained` 时添加 `device_map='auto'` 或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。
使用 int8 量化 (To use int8 quantization):
```python
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(8).cuda()
```
同样的,如需使用 int4 量化 (Similarly, to use int4 quantization):
```python
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(4).cuda()
```
## 模型详情
### 模型结构
<!-- Provide the basic links for the model. -->
整体模型基于Baichuan-13B,为了获得更好的推理性能,Baichuan-13B 使用了 ALiBi 线性偏置技术,相对于 Rotary Embedding 计算量更小,对推理性能有显著提升;与标准的 LLaMA-13B 相比,生成 2000 个 tokens 的平均推理速度 (tokens/s),实测提升 31.6%:
| Model | tokens/s |
| ------------ | -------- |
| LLaMA-13B | 19.4 |
| Baichuan-13B | 25.4 |
具体参数和见下表
| 模型名称 | 隐含层维度 | 层数 | 头数 | 词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长度 |
| ------------ | ---------- | ---- | ---- | -------- | -------------- | ------------------ | ----------------------------------------- | -------- |
| Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 |
| Baichuan-13B | 5,120 | 40 | 40 | 64,000 | 13,264,901,120 | 1.4万亿 | [ALiBi](https://arxiv.org/abs/2108.12409) | 4,096 |
## 训练详情
数据集主要由三部分组成:
* 在 [sharegpt_zh](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/ShareGPT) 数据集中筛选的出 13k 高质量数据。
* [lima](https://huggingface.co/datasets/GAIR/lima)
* 按照任务类型挑选的 2.3k 高质量中文数据集,每个任务类型的数据量在 100 条左右。
硬件:8*A40
## 测评结果
## [CMMLU](https://github.com/haonan-li/CMMLU)
| Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
| ---------------------------------------------------------- | :-------: | :--------: | :-------------: | :------: | :------------: | :------: |
| Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
| Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 |
| Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 |
| Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 |
| Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
| LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
| moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
| Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 |
| Baichuan-13B-Chat | 42.8 | **62.6** | **59.7** | **59.0** | **56.1** | **55.8** |
| **Baichuan-13B-Instruction** | **44.50** | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 |
| Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
| ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |
| [ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b) | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 |
| [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) | 32.79 | 44.43 | 46.78 | 44.79 | 43.11 | 42.33 |
| [ChatGLM-6B](https://github.com/THUDM/GLM-130B) | 32.22 | 42.91 | 44.81 | 42.60 | 41.93 | 40.79 |
| [BatGPT-15B](https://arxiv.org/abs/2307.00360) | 33.72 | 36.53 | 38.07 | 46.94 | 38.32 | 38.51 |
| [Chinese-LLaMA-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca) | 26.76 | 26.57 | 27.42 | 28.33 | 26.73 | 27.34 |
| [MOSS-SFT-16B](https://github.com/OpenLMLab/MOSS) | 25.68 | 26.35 | 27.21 | 27.92 | 26.70 | 26.88 |
| [Chinese-GLM-10B](https://github.com/THUDM/GLM) | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 |
| [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 |
| [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 |
| **Baichuan-13B-Instruction** | **42.56** | **62.09** | **60.41** | **58.97** | **56.95** | **55.88** |
> 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果,Model 5-shot 中其他模型的得分来自于[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) 官方的评测结果。
|
s3nh/StableBeluga-7B-GGML
|
s3nh
| 2023-07-29T18:15:45Z | 0 | 2 |
transformers
|
[
"transformers",
"text-generation-inference",
"text-generation",
"en",
"arxiv:2307.09288",
"arxiv:2306.02707",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-28T06:48:02Z |
---
license: openrail
language:
- en
tags:
- text-generation-inference
pipeline_tag: text-generation
library_name: transformers
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/stabilityai/StableBeluga-7B).
It consist of k_quant quantization in every format:
-4_0
-4_1
-5_0
-5_1
-8_0
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
## Usage
Start chatting with `Stable Beluga 7B` using the following code snippet:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga-7B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga-7B", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are StableBeluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"
message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Stable Beluga 7B should be used with this prompt format:
```
### System:
This is a system prompt, please behave and help the user.
### User:
Your prompt here
### Assistant:
The output of Stable Beluga 7B
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: Stable Beluga 7B is an auto-regressive language model fine-tuned on Llama2 7B.
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints (`Stable Beluga 7B`) is licensed under the [STABLE BELUGA NON-COMMERCIAL COMMUNITY LICENSE AGREEMENT](https://huggingface.co/stabilityai/StableBeluga-7B/blob/main/LICENSE.txt)
* **Contact**: For questions and comments about the model, please email `[email protected]`
### Training Dataset
` Stable Beluga 7B` is trained on our internal Orca-style dataset
### Training Procedure
Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:
| Dataset | Batch Size | Learning Rate |Learning Rate Decay| Warm-up | Weight Decay | Betas |
|-------------------|------------|---------------|-------------------|---------|--------------|-------------|
| Orca pt1 packed | 256 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
| Orca pt2 unpacked | 512 | 3e-5 | Cosine to 3e-6 | 100 | 1e-6 | (0.9, 0.95) |
## Ethical Considerations and Limitations
Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.
## Citations
```bibtext
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtext
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
s3nh/starcoderbase-3b-GPTQ
|
s3nh
| 2023-07-29T18:13:43Z | 9 | 1 |
transformers
|
[
"transformers",
"gpt_bigcode",
"text-generation",
"en",
"arxiv:2305.06161",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-28T11:25:26Z |
---
license: openrail
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/bigcode/starcoderbase-3b).
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
## Use
### Intended use
The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant.
**Feel free to share your generations in the Community tab!**
### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/starcoderbase-3b"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Fill-in-the-middle
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
```python
input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
# Limitations
The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 500k
- **Pretraining tokens:** 1 trillion
- **Precision:** bfloat16
## Hardware
- **GPUs:** 256 Tesla A100
- **Training time:** 12 days
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# License
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
# Citation
```
@article{li2023starcoder,
title={StarCoder: may the source be with you!},
author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
year={2023},
eprint={2305.06161},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
s3nh/LLongMA-2-7b-16k-GGML
|
s3nh
| 2023-07-29T18:13:18Z | 0 | 1 |
transformers
|
[
"transformers",
"text-generation",
"en",
"license:openrail",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-28T19:32:42Z |
---
license: openrail
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k).
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
|
VinEuro/Pixelcopter-PLE-v0
|
VinEuro
| 2023-07-29T18:00:25Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T17:56:01Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 16.70 +/- 10.16
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
vishnun/peft-codevsnl
|
vishnun
| 2023-07-29T17:55:10Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T17:14:43Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
hadiqa123/xls-r_cv_ur
|
hadiqa123
| 2023-07-29T17:41:57Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-09-22T04:28:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: xls-r_cv_ur
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r_cv_ur
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4888
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 8.4361 | 1.14 | 100 | 2.3733 | 1.0 |
| 1.9609 | 2.27 | 200 | 1.8280 | 1.0 |
| 1.8191 | 3.41 | 300 | 1.8259 | 1.0 |
| 1.8359 | 4.55 | 400 | 1.8069 | 1.0 |
| 1.7667 | 5.68 | 500 | 1.8038 | 1.0 |
| 1.7751 | 6.82 | 600 | 1.7473 | 1.0 |
| 1.7428 | 7.95 | 700 | 1.6996 | 1.0 |
| 1.697 | 9.09 | 800 | 1.6364 | 1.0 |
| 1.6532 | 10.23 | 900 | 1.4985 | 1.0 |
| 1.5217 | 11.36 | 1000 | 1.2836 | 1.0 |
| 1.3385 | 12.5 | 1100 | 1.0293 | 1.0 |
| 1.1596 | 13.64 | 1200 | 0.8294 | 1.0 |
| 1.0655 | 14.77 | 1300 | 0.7150 | 1.0 |
| 0.9951 | 15.91 | 1400 | 0.6364 | 1.0 |
| 0.9013 | 17.05 | 1500 | 0.5548 | 1.0 |
| 0.8276 | 18.18 | 1600 | 0.5200 | 1.0 |
| 0.8129 | 19.32 | 1700 | 0.4888 | 1.0 |
### Framework versions
- Transformers 4.21.0
- Pytorch 1.11.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
sm136599/chatfoodie-koalpaca-polyglot-5_8b-5150step-8batch_5epoch
|
sm136599
| 2023-07-29T17:36:47Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T17:36:46Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
lesliepzimmermann/dqn-SpaceInvadersNoFrameskip-v4
|
lesliepzimmermann
| 2023-07-29T17:28:15Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T17:27:38Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 667.50 +/- 132.75
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lesliepzimmermann -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lesliepzimmermann -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga lesliepzimmermann
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
VinEuro/CartPole-v1
|
VinEuro
| 2023-07-29T17:27:43Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T17:27:33Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Gerti/distilbert-base-multilingual-cased-finetuned-sentiment-albanian
|
Gerti
| 2023-07-29T17:02:43Z | 106 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-multilingual-cased",
"base_model:finetune:distilbert/distilbert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-26T07:59:47Z |
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased-finetuned-sentiment-albanian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-finetuned-sentiment-albanian
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3126
- F1-score: : 0.9393
- Accuracy score: : 0.8902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score: | Accuracy score: |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:----------------:|
| 0.3698 | 1.0 | 149 | 0.3424 | 0.9290 | 0.8675 |
| 0.2995 | 2.0 | 298 | 0.3174 | 0.9362 | 0.8822 |
| 0.251 | 3.0 | 447 | 0.3126 | 0.9393 | 0.8902 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
jakezou/miaolora
|
jakezou
| 2023-07-29T16:59:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T06:25:34Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|
digitaljungle/rl_course_vizdoom_health_gathering_supreme
|
digitaljungle
| 2023-07-29T16:57:25Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T16:57:07Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 9.78 +/- 4.91
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r digitaljungle/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
Controlyourself/ppo-LunarLander-v2
|
Controlyourself
| 2023-07-29T16:55:47Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T16:55:28Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 262.96 +/- 25.25
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
NasimB/qed-rarity-seed
|
NasimB
| 2023-07-29T16:48:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-29T13:09:50Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: qed-rarity-seed
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qed-rarity-seed
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1171
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.3592 | 0.29 | 500 | 5.3361 |
| 5.0454 | 0.58 | 1000 | 4.9330 |
| 4.7118 | 0.88 | 1500 | 4.6958 |
| 4.4583 | 1.17 | 2000 | 4.5571 |
| 4.3049 | 1.46 | 2500 | 4.4421 |
| 4.2187 | 1.75 | 3000 | 4.3410 |
| 4.099 | 2.05 | 3500 | 4.2645 |
| 3.9157 | 2.34 | 4000 | 4.2163 |
| 3.8896 | 2.63 | 4500 | 4.1655 |
| 3.8487 | 2.92 | 5000 | 4.1078 |
| 3.6548 | 3.21 | 5500 | 4.1099 |
| 3.6051 | 3.51 | 6000 | 4.0753 |
| 3.5947 | 3.8 | 6500 | 4.0445 |
| 3.4956 | 4.09 | 7000 | 4.0427 |
| 3.3396 | 4.38 | 7500 | 4.0386 |
| 3.336 | 4.68 | 8000 | 4.0234 |
| 3.3241 | 4.97 | 8500 | 4.0114 |
| 3.1753 | 5.26 | 9000 | 4.0252 |
| 3.1537 | 5.55 | 9500 | 4.0240 |
| 3.1587 | 5.84 | 10000 | 4.0228 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
darthPanda/dqn-SpaceInvadersNoFrameskip-v4_1
|
darthPanda
| 2023-07-29T16:33:58Z | 11 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T16:33:27Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 457.00 +/- 67.39
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga darthPanda -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga darthPanda -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga darthPanda
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 10000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
2Nisavi2/Cifrar_10_Deployment
|
2Nisavi2
| 2023-07-29T16:31:15Z | 2 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-07-29T05:10:05Z |
<div align="center">
<img src="https://radcolombia.org/web/sites/default/files/archivos/instituciones/universidad-bosque/logo-ub.png" width="500"/>
Facultad de Ciencias
Maestría en Estadística Aplicada y Ciencia de Datos
***"Despliegue Modelo VGG16 para Cifrar10 Desde HuggingFace"***
*Proyecto Final GCP*
</div>
En este repositório encontrara el dataset Cifrar10 entrenado sobre VGG16. Para la prueba de la efectividad del modelo, ingrese a este [link](https://3174c43e92e93f5122.gradio.live)
|
HongyangLi/basedbert-finetuned-squad
|
HongyangLi
| 2023-07-29T16:30:13Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-07-29T16:09:49Z |
---
tags:
- generated_from_trainer
model-index:
- name: basedbert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# basedbert-finetuned-squad
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 29 | 3.1855 |
| No log | 2.0 | 58 | 2.0997 |
| No log | 3.0 | 87 | 1.9130 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.14.1
- Tokenizers 0.13.3
|
VinEuro/dqn-SpaceInvadersNoFrameskip-v4
|
VinEuro
| 2023-07-29T16:25:41Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T16:25:06Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 561.00 +/- 94.55
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VinEuro -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga VinEuro -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga VinEuro
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 750000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
ichacon/ppo-LunarLander-v2
|
ichacon
| 2023-07-29T16:24:31Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T16:24:12Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: ppo
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.39 +/- 19.64
name: mean_reward
verified: false
---
# **ppo** Agent playing **LunarLander-v2**
This is a trained model of a **ppo** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ClearRabbitt/Clear
|
ClearRabbitt
| 2023-07-29T16:04:12Z | 0 | 0 | null |
[
"DMMD",
"Dramatical Murder",
"Dramatical Murder Re:Connect",
"Yaoi",
"BL",
"ja",
"license:openrail",
"region:us"
] | null | 2023-07-26T10:29:21Z |
---
language:
- ja
tags:
- DMMD
- Dramatical Murder
- Dramatical Murder Re:Connect
- Yaoi
- BL
license: openrail
---

Clear from Dramatical Murder!
Trained with
Dramatical Murder,
Dramatical Murder Re:Connect,
Birthday CD,
All of his drama CDs,
His song クラゲの歌
I posted finished 500 epochs and a lower epoch where I think he might've just begun to overtrain.

I might continue to train him if he hasn't overtrained but I truly think he has so I won't touch this, instead I'll just train my future Aoba model
|
chunwoolee0/distilbert-base-uncased-finetuned-emotion
|
chunwoolee0
| 2023-07-29T15:55:44Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-19T11:33:23Z |
---
tags:
- generated_from_trainer
datasets:
- emotion
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model was trained from scratch on the emotion dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3
|
user10211125/doodle_style_model
|
user10211125
| 2023-07-29T15:54:49Z | 43 | 0 |
diffusers
|
[
"diffusers",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-29T15:36:28Z |
doodle(風格)+teary+lookingDisgusted+sadMadFace
|
Krainez/q-Taxi-v3
|
Krainez
| 2023-07-29T15:49:17Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T15:49:15Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Krainez/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Iam/llama2-qlora-finetunined-french
|
Iam
| 2023-07-29T15:45:02Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-29T15:40:08Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
ParthNakum21/GenzTranscribe-en-gu
|
ParthNakum21
| 2023-07-29T15:43:44Z | 102 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:opus100",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-29T09:27:29Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- opus100
metrics:
- bleu
model-index:
- name: GenzTranscribe-en-gu
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus100
type: opus100
config: en-gu
split: train
args: en-gu
metrics:
- name: Bleu
type: bleu
value: 59.9227
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GenzTranscribe-en-gu
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus100 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3075
- Bleu: 59.9227
- Gen Len: 9.6443
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.3593 | 1.0 | 31831 | 0.3253 | 58.1921 | 9.7108 |
| 0.3421 | 2.0 | 63662 | 0.3075 | 59.9227 | 9.6443 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|
c72599/hubert-base-ls960-finetuned-gtzan
|
c72599
| 2023-07-29T15:42:18Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:facebook/hubert-base-ls960",
"base_model:finetune:facebook/hubert-base-ls960",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-07-29T07:10:24Z |
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-ls960-finetuned-gtzan
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6645
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2685 | 1.0 | 56 | 2.2069 | 0.44 |
| 2.0208 | 1.99 | 112 | 1.8352 | 0.46 |
| 1.7603 | 2.99 | 168 | 1.5275 | 0.49 |
| 1.4843 | 4.0 | 225 | 1.4296 | 0.52 |
| 1.347 | 5.0 | 281 | 1.2222 | 0.52 |
| 1.2364 | 5.99 | 337 | 1.1477 | 0.62 |
| 1.2082 | 6.99 | 393 | 1.0181 | 0.67 |
| 0.9861 | 8.0 | 450 | 0.9598 | 0.71 |
| 0.752 | 9.0 | 506 | 0.7499 | 0.77 |
| 1.006 | 9.99 | 562 | 0.8190 | 0.79 |
| 0.6725 | 10.99 | 618 | 0.8798 | 0.75 |
| 0.7457 | 12.0 | 675 | 0.6276 | 0.81 |
| 0.4605 | 13.0 | 731 | 0.6086 | 0.85 |
| 0.5751 | 13.99 | 787 | 0.6894 | 0.75 |
| 0.4886 | 14.99 | 843 | 0.6109 | 0.83 |
| 0.2429 | 16.0 | 900 | 0.6076 | 0.85 |
| 0.3084 | 17.0 | 956 | 0.4646 | 0.86 |
| 0.3762 | 17.99 | 1012 | 0.8349 | 0.81 |
| 0.2897 | 18.99 | 1068 | 0.4509 | 0.89 |
| 0.1296 | 20.0 | 1125 | 0.6791 | 0.86 |
| 0.1291 | 21.0 | 1181 | 0.6466 | 0.85 |
| 0.3784 | 21.99 | 1237 | 0.6272 | 0.88 |
| 0.1156 | 22.99 | 1293 | 0.7916 | 0.85 |
| 0.2093 | 24.0 | 1350 | 0.6536 | 0.85 |
| 0.2167 | 25.0 | 1406 | 0.7050 | 0.87 |
| 0.1095 | 25.99 | 1462 | 0.6128 | 0.88 |
| 0.1004 | 26.99 | 1518 | 0.6092 | 0.89 |
| 0.0897 | 28.0 | 1575 | 0.6730 | 0.88 |
| 0.083 | 29.0 | 1631 | 0.6396 | 0.89 |
| 0.0343 | 29.87 | 1680 | 0.6645 | 0.88 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.14.1
- Tokenizers 0.13.3
|
lesliepzimmermann/q-Taxi-v3
|
lesliepzimmermann
| 2023-07-29T15:41:01Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T15:15:14Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="lesliepzimmermann/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
nikbhi/LunarLander_ppo_v3
|
nikbhi
| 2023-07-29T15:35:57Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-29T15:35:37Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: ppo
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 279.69 +/- 9.19
name: mean_reward
verified: false
---
# **ppo** Agent playing **LunarLander-v2**
This is a trained model of a **ppo** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
yzheng-1/FinBERT_Chinese
|
yzheng-1
| 2023-07-29T15:35:39Z | 45 | 1 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2023-07-29T15:31:55Z |
FinBERT Model from https://github.com/valuesimplex/FinBERT
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.