modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 12:28:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 12:25:02
card
stringlengths
11
1.01M
nicotaroni/finetuned_distilbert_classifier
nicotaroni
2023-07-25T08:31:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-24T14:20:42Z
--- pipeline_tag: text-classification ---
HaziqRazali/q-FrozenLake-v1-4x4-noSlippery
HaziqRazali
2023-07-25T08:21:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T08:21:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="HaziqRazali/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cemNB/final_test1
cemNB
2023-07-25T08:19:37Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-07-25T08:14:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: final_test1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_test1 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.876 | 0.0 | 10 | 2.6198 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
s3nh/llama2_7b_chat_uncensored-GGML
s3nh
2023-07-25T08:18:33Z
0
2
null
[ "text-generation-inference", "text-generation", "en", "dataset:ehartford/wizard_vicuna_70k_unfiltered", "license:other", "region:us" ]
text-generation
2023-07-21T11:57:14Z
--- license: other datasets: - ehartford/wizard_vicuna_70k_unfiltered language: - en tags: - text-generation-inference pipeline_tag: text-generation --- Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/georgesung/llama2_7b_chat_uncensored). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` #### Original Model card # Overview Fine-tuned [Llama-2 7B](https://huggingface.co/TheBloke/Llama-2-7B-fp16) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered). Used QLoRA for fine-tuning. Trained for one epoch on a 24GB GPU (NVIDIA A10G) instance, took ~19 hours to train. # Prompt style The model was trained with the following prompt style: ``` ### HUMAN: Hello ### RESPONSE: Hi, how are you? ### HUMAN: I'm fine. ### RESPONSE: How can I help you? ... ``` # Training code Code used to train the model is available [here](https://github.com/georgesung/llm_qlora). To reproduce the results: ``` git clone https://github.com/georgesung/llm_qlora cd llm_qlora pip install -r requirements.txt python train.py configs/llama2_7b_chat_uncensored.yaml ```
s3nh/Luna-AI-Llama2-Uncensored-GGML
s3nh
2023-07-25T08:18:17Z
0
3
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-21T19:02:55Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` <div style="width: 800px; margin: auto;"> <h2>Model Description</h2> <p>“Luna AI Llama2 Uncensored” is a Llama2 based Chat model <br />fine-tuned on over 40,000 long form chat discussions <br /> This model was fine-tuned by Tap, the creator of Luna AI. <br /> The result is an enhanced Llama2 7b model that rivals ChatGPT in performance <br />across a variety of tasks.</p> <p>This model stands out for its long responses, <br /> low hallucination rate, and absence of censorship mechanisms. <br /></p> <h2>Model Training</h2> <p>The fine-tuning process was performed on an 8x a100 80GB machine. <br />The model was trained almost entirely on synthetic outputs. <br />This includes data from diverse sources which we included to create our custom dataset,<br /> it includes multiple rounds of chats between Human & AI. </p> <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ">4bit GPTQ Version provided by @TheBloke - for GPU inference</a><br /> <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGML">GGML Version provided by @TheBloke - For CPU inference</a> <h2>Prompt Format</h2> <p>The model follows the Vicuna 1.1/ OpenChat format:</p> ``` USER: I have difficulties in making friends, and I really need someone to talk to. Would you be my friend? ASSISTANT: Of course! Friends are always here for each other. What do you like to do? ``` <h2>Future Plans</h2> <p>The model is currently being uploaded in FP16 format, <br />and there are plans to convert the model to GGML and GPTQ 4bit quantizations.</p> <h2>Benchmark Results</h2> |||||| |---:|---:|---:|---:|---:| |Task|Version| Metric |Value |Stderr| |arc_challenge|0|acc_norm|0.5512|0.0146| |hellaswag|0|||| |mmlu|1|acc_norm|0.46521|0.036| |truthfulqa_mc|1|mc2|0.4716|0.0155| |Average|-|-|0.5114|0.0150| <h2>Ethical considerations</h2> <p>The data used to train the model is collected from various sources, mostly from the Web. <br /> As such, it contains offensive, harmful and biased content. <br />We thus expect the model to exhibit such biases from the training data.</p> <h2>Human life</h2> <p>The model is not intended to inform decisions about matters central to human life, <br />and should not be used in such a way.</p> <h2>Risks and harms</h2> <p>Risks and harms of large language models include the generation of harmful, offensive or biased content. <br /> These models are often prone to generating incorrect information, sometimes referred to as hallucinations. <br /> We do not expect our model to be an exception in this regard.</p> </div>
s3nh/Llama-2-7b-hf-GGML
s3nh
2023-07-25T08:18:05Z
0
0
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-21T19:23:03Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/golaxy/gogpt2-7b). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
s3nh/honest_llama2_chat_7B-GGML
s3nh
2023-07-25T08:16:59Z
0
1
null
[ "text-generation", "arxiv:2306.03341", "region:us" ]
text-generation
2023-07-21T20:41:06Z
--- pipeline_tag: text-generation --- Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/likenneth/honest_llama2_chat_7B/tree/main). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` ### Original model card --- license: mit --- Ever wondering a less hallucinating LLaMA-2? Using the inference-time intervention (ITI) discussed in my recent preprint: https://arxiv.org/pdf/2306.03341.pdf, I baked the intervention learned from TruthfulQA into a LLaMA-2 7B model. I don’t have big enough GPU to bake ITI into larger LLaMA-2 but the code to do so are all released in https://github.com/likenneth/honest_llama. Let me know if you are interested do that :) You can load and play around starting from below: ```python import torch from pprint import pprint from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM model_name_new = "likenneth/honest_llama2_chat_7B" tokenizer_new = AutoTokenizer.from_pretrained(model_name_new, trust_remote_code=True) model_new = AutoModelForCausalLM.from_pretrained(model_name_new, low_cpu_mem_usage = True, torch_dtype=torch.float16, trust_remote_code=True) _ = model_new.cuda() q = "I ate a cherry seed. Will a cherry tree grow in my stomach?" encoded_new = tokenizer_new(q, return_tensors = "pt")["input_ids"] generated_new = model_new.generate(encoded_new.cuda())[0, encoded_new.shape[-1]:] decoded_new = tokenizer_new.decode(generated_new, skip_special_tokens=True).strip() pprint(decoded_new) ```
s3nh/firefly-llama-13b-GGML
s3nh
2023-07-25T08:15:51Z
0
1
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-24T14:05:38Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/YeungNLP/firefly-llama-13b). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card 该模型使用llama-13b,使用UltraChat数据集进行指令微调,约140万多轮对话数据。仅需一张显卡即可完成训练。 firefly-llama-13b在🤗Hugging Face的Open LLM榜单上进行了客观的评测。 在榜单上,firefly-llama-13b取得了不错的效果,比vicuna-13b-1.1略高0.2分,比llama-2-13b-chat略低0.5分,比vicuna-13b-v1.3略低0.6分。从评测分数来看,firefly-llama-13b与vicuna-13b、llama-2-13b-chat的水平非常接近😎。 | 模型 | Average | ARC | HellaSwag | MMLU | TruthfulQA (MC) | |--------------------------------------------------------------------------------|-------|----------------------|------------|------------|------| | Llama-2-70b-chat-hf | 66.8 | 64.6 | 85.9 | 63.9 | 52.8 | | vicuna-13b-v1.3 | 60 | 54.6 | 80.4 | 52.9 | 52.1 | | Llama-2-13b-chat-hf | 59.9 | 59 | 81.9 | 54.6 | 44.1 | | firefly-llama-13b |59.4 | 59 | 79.7 | 49.1 | 49.6 | | vicuna-13b-1.1 | 59.2 | 52.7 | 80.1 |51.9 | 52.1 | | guanaco-13B-HF | 59.1 | 57.8 | 83.8 |48.3 | 46.7| 值得注意的是,vicuna-13b模型采用的是全量参数微调,对训练资源的要求十分高。而firefly-llama-13b采用的则是QLoRA微调,最少仅需16G显存,即可对13B的模型进行微调。 详细介绍见文章:[Firefly单卡复刻Vicuna-13B,Open LLM榜单🤗略高0.2分](https://mp.weixin.qq.com/s/QG2YMo_QxaxS_Rr2yJrIeA) 更多详情见[Firefly项目](https://github.com/yangjianxin1/Firefly) [Open LLM排行榜](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
robertpassmann/q-Taxi-v3
robertpassmann
2023-07-25T08:15:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T08:14:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="robertpassmann/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
s3nh/LLongMA-3b-GGML
s3nh
2023-07-25T08:14:15Z
0
4
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-22T18:56:36Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/conceptofmind/LLongMA-3b). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` ### Original model card
s3nh/llama-7b-sen-making-gpt4-GGML
s3nh
2023-07-25T08:13:48Z
0
0
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-24T13:12:21Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/wentingzhao/llama-7b-sen-making-gpt4). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
text2font/tst-summarization
text2font
2023-07-25T08:10:16Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-large", "base_model:finetune:google/mt5-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-25T07:58:00Z
--- license: apache-2.0 base_model: google/mt5-large tags: - generated_from_trainer metrics: - rouge model-index: - name: tst-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 30.3505 - Rouge1: 2.7855 - Rouge2: 0.0203 - Rougel: 2.2791 - Rougelsum: 2.2817 - Gen Len: 119.3571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Aspik101/llama-30b-instruct-2048-PL-lora
Aspik101
2023-07-25T08:07:58Z
1,481
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "facebook", "meta", "llama-2", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T07:44:07Z
--- language: - pl datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish license: other model_type: llama-2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-2 ---
Anees-Aslam/llama2-qlora-finetunined-cloud-embedUR
Anees-Aslam
2023-07-25T08:04:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T08:04:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
Vidyuth/bert-finetuned-squad
Vidyuth
2023-07-25T07:47:11Z
109
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-25T07:02:29Z
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT large model (uncased) whole word masking finetuned on SQuAD Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same. The training is identical -- each masked WordPiece token is predicted independently. After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. This model has the following configuration: - 24-layer - 1024 hidden dimension - 16 attention heads - 336M parameters. ## Intended uses & limitations This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co/transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### Fine-tuning After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command: ``` python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./examples/models/wwm_uncased_finetuned_squad/ \ --per_device_eval_batch_size=3 \ --per_device_train_batch_size=3 \ ``` ## Evaluation results The results obtained are the following: ``` f1 = 93.15 exact_match = 86.91 ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
YarramsettiNaresh/ppo-LunarLander-v2
YarramsettiNaresh
2023-07-25T07:44:47Z
2
1
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-07-19T03:39:27Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -161.93 +/- 86.34 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
rulrul512/path-to-save-model
rulrul512
2023-07-25T07:30:48Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-24T06:58:17Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - rulrul512/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
YarramsettiNaresh/poca-SoccerTwos
YarramsettiNaresh
2023-07-25T07:16:49Z
0
0
ml-agents
[ "ml-agents", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-25T07:16:49Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YarramsettiNaresh/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Adarshagupta/BabyDragon
Adarshagupta
2023-07-25T07:13:53Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-25T07:13:53Z
--- license: bigscience-openrail-m ---
sanka85/llama2-rstp-latest
sanka85
2023-07-25T07:07:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T07:07:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
wtnan2003/vit-base-patch16-224-in21k-finetuned-lora-food101
wtnan2003
2023-07-25T07:05:23Z
0
0
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-07-25T03:53:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
CloudBik/office-365-tenant-to-tenant-migration
CloudBik
2023-07-25T06:40:29Z
0
0
null
[ "region:us" ]
null
2023-07-25T06:21:25Z
Microsoft 365 or Office 365 Tenant to Tenant Migration is a procedure to migrate user mailboxes from one tenant to another tenant in Microsoft Office 365. This Migration can be performed manually or with the help of third-party migration services or tools. While Manual migration process saves your money, but third-party migration services can save your valuable time. Manual process is worth if you are migrating small number of users as it makes you perform multiple tasks that are time consuming. However, for migrating large number of mailboxes, one should consider third party migration services as they are efficient with no chances of error. It is totally depends on the user which one they prefer to use. I am sharing an informative article on tenant to tenant migration process so that you can learn and perform it yourself. It contains all the steps and the informations required to complete the migration process. Read More: https://www.cloudbik.com/resources/blog/tenant-to-tenant-migration-office-365/
Vithika/llama2-qlora-finetunined-french-1900
Vithika
2023-07-25T06:38:59Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-25T06:36:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
CloudBik/Migrate-from-Google-Workspace-to-Office-365
CloudBik
2023-07-25T06:26:02Z
0
0
null
[ "region:us" ]
null
2023-07-25T06:11:37Z
Microsoft Office 365 offers variety of applications. It includes some applications like Word, Excel, Outlook, PowerPoint etc. In PowerPoint you can easily create amazing presentations like in 3d form, 2d or many more. Using this you can easily present your model effectively. If you are using Google Workspace, you should consider moving to Microsoft 365 to get access to the daily use applications and much advanced collaboration tools. If you are familiar with Microsoft products like word, excel, etc then it will be easy to get used to the Microsoft Office 365 applications. Some find it difficult to use but once you gets familiar with it, you can increase your productivity and collaboration between teams. Morever, it offers advanced security, so you do not need to worry about the data loss. Check out the below article on how to migrate from Google Workspace to Office 365 to read and perform the complete manual steps. Read More: https://www.cloudbik.com/resources/blog/google-workspace-to-microsoft-365-migration/
Samalabama66/ppo-SnowballTarget
Samalabama66
2023-07-25T06:20:46Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-25T06:20:42Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Samalabama66/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
soroushbn/my_awesome_wnut_model
soroushbn
2023-07-25T06:18:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-24T11:45:49Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5707154742096506 - name: Recall type: recall value: 0.3178869323447637 - name: F1 type: f1 value: 0.4083333333333334 - name: Accuracy type: accuracy value: 0.9413022102518063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2684 - Precision: 0.5707 - Recall: 0.3179 - F1: 0.4083 - Accuracy: 0.9413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2814 | 0.5418 | 0.2400 | 0.3327 | 0.9374 | | No log | 2.0 | 426 | 0.2684 | 0.5707 | 0.3179 | 0.4083 | 0.9413 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
thejagstudio/Falcon-7b-Fined-Tuned
thejagstudio
2023-07-25T06:04:46Z
1
0
peft
[ "peft", "pytorch", "RefinedWebModel", "custom_code", "region:us" ]
null
2023-07-25T05:27:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
annazhong/vit-base-patch16-224-finetuned-foveated-features
annazhong
2023-07-25T05:39:17Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-25T05:30:44Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-foveated-features results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-foveated-features This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1242 - Accuracy: 0.4595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 150 - eval_batch_size: 150 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 600 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.2615 | 0.1622 | | No log | 2.0 | 2 | 1.2910 | 0.3514 | | No log | 3.0 | 3 | 1.1242 | 0.4595 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
davidrrobinson/BioLingual
davidrrobinson
2023-07-25T05:31:41Z
1,056
4
transformers
[ "transformers", "pytorch", "clap", "feature-extraction", "dataset:davidrrobinson/AnimalSpeak", "endpoints_compatible", "region:us" ]
feature-extraction
2023-07-24T01:15:23Z
--- datasets: - davidrrobinson/AnimalSpeak --- # Model card for BioLingual Model card for BioLingual: Transferable Models for bioacoustics with Human Language Supervision An audio-text model for bioacoustics based on contrastive language-audio pretraining. # Usage You can use this model for bioacoustic zero shot audio classification, or for fine-tuning on bioacoustic tasks. # Uses ## Perform zero-shot audio classification ### Using `pipeline` ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("ashraq/esc50") audio = dataset["train"]["audio"][-1]["array"] audio_classifier = pipeline(task="zero-shot-audio-classification", model="davidrrobinson/BioLingual") output = audio_classifier(audio, candidate_labels=["Sound of a sperm whale", "Sound of a sea lion"]) print(output) >>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}] ``` ## Run the model: You can also get the audio and text embeddings using `ClapModel` ### Run the model on CPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/clap-htsat-unfused") processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt") audio_embed = model.get_audio_features(**inputs) ``` ### Run the model on GPU: ```python from datasets import load_dataset from transformers import ClapModel, ClapProcessor librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") audio_sample = librispeech_dummy[0] model = ClapModel.from_pretrained("laion/clap-htsat-unfused").to(0) processor = ClapProcessor.from_pretrained("laion/clap-htsat-unfused") inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0) audio_embed = model.get_audio_features(**inputs)
luoyt99/testllama
luoyt99
2023-07-25T05:29:51Z
0
0
null
[ "dataset:nyanko7/LLaMA-65B", "license:bsd", "region:us" ]
null
2023-07-25T05:28:22Z
--- license: bsd datasets: - nyanko7/LLaMA-65B ---
NasimB/guten-rarity
NasimB
2023-07-25T05:28:19Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T01:08:55Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3463 | 0.29 | 500 | 5.3398 | | 5.0313 | 0.58 | 1000 | 4.9287 | | 4.7042 | 0.87 | 1500 | 4.6884 | | 4.4385 | 1.16 | 2000 | 4.5427 | | 4.294 | 1.46 | 2500 | 4.4285 | | 4.1966 | 1.75 | 3000 | 4.3204 | | 4.0779 | 2.04 | 3500 | 4.2444 | | 3.8836 | 2.33 | 4000 | 4.2115 | | 3.8596 | 2.62 | 4500 | 4.1536 | | 3.8337 | 2.91 | 5000 | 4.1065 | | 3.6462 | 3.2 | 5500 | 4.1009 | | 3.5855 | 3.49 | 6000 | 4.0714 | | 3.5628 | 3.79 | 6500 | 4.0399 | | 3.4858 | 4.08 | 7000 | 4.0352 | | 3.3143 | 4.37 | 7500 | 4.0331 | | 3.3117 | 4.66 | 8000 | 4.0203 | | 3.2978 | 4.95 | 8500 | 4.0062 | | 3.1643 | 5.24 | 9000 | 4.0186 | | 3.135 | 5.53 | 9500 | 4.0163 | | 3.1265 | 5.82 | 10000 | 4.0157 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
vasevarad/roberta_dissonance_detector
vasevarad
2023-07-25T05:27:35Z
0
1
null
[ "pytorch", "arxiv:2305.02459", "license:cc-by-3.0", "region:us" ]
null
2023-07-24T18:12:36Z
--- license: cc-by-3.0 --- The SOTA model for Dissonance Detection from the paper [Transfer and Active Learning for Dissonance Detection: Addressing the Rare Class Challenge](https://arxiv.org/abs/2305.02459). RoBERTA-base finetuned on [Dissonance Twitter Dataset](https://github.com/humanlab/dissonance-twitter-dataset), collected from annotating tweets for within-person dissonance. ## Dataset Annotation details Tweets were parsed into discourse units, and marked as Belief (Thought or Action) or Other, and pairs of beliefs within the same tweet were relayed to annotators for Dissonance annotation. ![annotation process](./annotation_process.jpg) The annotations were conducted on a sheet in the following **dissonance-first** format. ![annotation format](./annotation_format.png) The annotators used the following flowchart as a more detailed guide to determining the Dissonance, Consonance and Neither/Other classes: ![annotation guidelines](./annotation_guidelines.jpg) ## Citation If you use this dataset, please cite the associated paper: ``` @inproceedings{varadarajan2023transfer, title={Transfer and Active Learning for Dissonance Detection: Addressing the Rare-Class Challenge}, author={Varadarajan, Vasudha and Juhng, Swanie and Mahwish, Syeda and Liu, Xiaoran and Luby, Jonah and Luhmann, Christian and Schwartz, H Andrew}, booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Long Papers)", month = july, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", abstract = "While transformer-based systems have enabled greater accuracies with fewer training examples, data acquisition obstacles still persist for rare-class tasks -- when the class label is very infrequent (e.g. < 5% of samples). Active learning has in general been proposed to alleviate such challenges, but choice of selection strategy, the criteria by which rare-class examples are chosen, has not been systematically evaluated. Further, transformers enable iterative transfer-learning approaches. We propose and investigate transfer- and active learning solutions to the rare class problem of dissonance detection through utilizing models trained on closely related tasks and the evaluation of acquisition strategies, including a proposed probability-of-rare-class (PRC) approach. We perform these experiments for a specific rare class problem: collecting language samples of cognitive dissonance from social media. We find that PRC is a simple and effective strategy to guide annotations and ultimately improve model accuracy while transfer-learning in a specific order can improve the cold-start performance of the learner but does not benefit iterations of active learning.", } ```
m-aliabbas1/Reinforce-Pixelv1
m-aliabbas1
2023-07-25T05:00:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T05:00:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelv1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 20.20 +/- 14.59 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dafc/llama2-qlora-finetunined-french
dafc
2023-07-25T04:49:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T04:49:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
EXrRor3/Cartpole-v1
EXrRor3
2023-07-25T04:32:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T04:32:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
HuyenNguyen/results
HuyenNguyen
2023-07-25T04:31:00Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:finetune:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2023-07-25T03:25:20Z
--- base_model: ybelkada/falcon-7b-sharded-bf16 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
annazhong/vit-base-patch16-224-finetuned-original-images
annazhong
2023-07-25T04:26:00Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-25T03:31:42Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-original-images results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-original-images This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1367 - Accuracy: 0.4865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 150 - eval_batch_size: 150 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 600 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.4730 | 0.2703 | | No log | 2.0 | 2 | 1.1367 | 0.4865 | | No log | 3.0 | 3 | 0.9924 | 0.4324 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
intuol/SuperBlockBros
intuol
2023-07-25T04:24:08Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-25T04:18:34Z
--- license: openrail --- # SuperBlockBros (Object Show YouTuber) ## Data - 600 Epochs - RVC v2 - MangioCrepe
jpvlinhares/ppo-LunarLander-v2
jpvlinhares
2023-07-25T04:17:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T04:16:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.27 +/- 23.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
raulgdp/Masking-distilbert-imdb
raulgdp
2023-07-25T04:10:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-24T22:36:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 3.1034 - eval_runtime: 14.5408 - eval_samples_per_second: 68.772 - eval_steps_per_second: 4.333 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
vlabs/falcon-7b-sentiment
vlabs
2023-07-25T04:07:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T04:07:17Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
nakcnx/wangchang-thai2eng-translator
nakcnx
2023-07-25T04:00:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T04:00:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
YarramsettiNaresh/a2c-PandaReachDense-v2
YarramsettiNaresh
2023-07-25T03:52:07Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T03:49:01Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.28 +/- 0.91 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
m-aliabbas1/Reinforce-Pixelv2
m-aliabbas1
2023-07-25T03:51:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T03:51:02Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelv2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.10 +/- 16.15 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
renede/llama2_finetuned_chatbot
renede
2023-07-25T03:27:03Z
0
0
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-07-25T02:59:45Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
polejowska/detr-r50-cd45rb-8ah-6l-512d
polejowska
2023-07-25T03:24:02Z
153
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-07-24T11:55:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb model-index: - name: detr-r50-cd45rb-8ah-6l-512d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r50-cd45rb-8ah-6l-512d This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb dataset. It achieves the following results on the evaluation set: - Loss: 2.3566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7973 | 1.0 | 4606 | 3.6333 | | 3.3709 | 2.0 | 9212 | 2.9580 | | 3.3095 | 3.0 | 13818 | 2.6953 | | 3.2586 | 4.0 | 18424 | 2.5301 | | 3.1816 | 5.0 | 23030 | 2.4802 | | 3.1054 | 6.0 | 27636 | 2.4390 | | 3.0564 | 7.0 | 32242 | 2.3967 | | 3.02 | 8.0 | 36848 | 2.3894 | | 2.9957 | 9.0 | 41454 | 2.3673 | | 2.9709 | 10.0 | 46060 | 2.3566 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
LarryAIDraw/gyn-a3-1000
LarryAIDraw
2023-07-25T03:17:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-25T03:07:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/44096?modelVersionId=48739
LarryAIDraw/idolmaster_sc_hachimiya_ssr2-09
LarryAIDraw
2023-07-25T03:17:09Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-25T03:06:29Z
--- license: creativeml-openrail-m --- https://civitai.com/models/67231?modelVersionId=71870
LarryAIDraw/MusashiVioletV1
LarryAIDraw
2023-07-25T03:16:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-25T03:05:27Z
--- license: creativeml-openrail-m --- https://civitai.com/models/64990/musashi-azur-lane-violet-moonglow
learn3r/roberta-large-finetuned-fever
learn3r
2023-07-25T02:38:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-24T16:28:56Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-finetuned-fever results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-fever This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4493 - Accuracy: 0.922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1569 | 1.0 | 2500 | 0.3678 | 0.919 | | 0.1205 | 2.0 | 5000 | 0.3734 | 0.92 | | 0.0751 | 3.0 | 7500 | 0.4753 | 0.9215 | | 0.0722 | 4.0 | 10000 | 0.4493 | 0.922 | | 0.0445 | 5.0 | 12500 | 0.5285 | 0.9185 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Yamei/tvcg_entity_classify
Yamei
2023-07-25T02:31:34Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-25T02:14:09Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: tvcg_entity_classify results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tvcg_entity_classify This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8480 - Accuracy: 0.7300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6871 | 1.0 | 2956 | 0.6645 | 0.7416 | | 0.5965 | 2.0 | 5912 | 0.6812 | 0.7419 | | 0.4933 | 3.0 | 8868 | 0.6970 | 0.7455 | | 0.4167 | 4.0 | 11824 | 0.7904 | 0.7371 | | 0.3254 | 5.0 | 14780 | 0.8480 | 0.7300 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
ocisd4/llama-2-tokenizer-dataprep
ocisd4
2023-07-25T02:30:26Z
0
0
null
[ "region:us" ]
null
2023-07-24T07:58:35Z
- 關閉自動添加`<s>`,方便產生megatron-deepspeed訓練用檔案 - 指定pad token為`<unk>`,訓練時token數才會正確,以及finetune_t0.py才能正確pack_sample
kusumakar/Ham-Spam_mail_detection
kusumakar
2023-07-25T02:30:15Z
0
0
null
[ "legal", "en", "region:us" ]
null
2023-07-25T02:28:43Z
--- language: - en tags: - legal ---
Chiahc/BertSeqClassicationLora
Chiahc
2023-07-25T02:23:17Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-25T01:27:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
serbog/lora-flan-t5-xxl-jobCategory
serbog
2023-07-25T02:14:53Z
3
0
transformers
[ "transformers", "tensorboard", "generated_from_trainer", "base_model:philschmid/flan-t5-xxl-sharded-fp16", "base_model:finetune:philschmid/flan-t5-xxl-sharded-fp16", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-25T00:02:36Z
--- license: apache-2.0 base_model: philschmid/flan-t5-xxl-sharded-fp16 tags: - generated_from_trainer model-index: - name: lora-flan-t5-xxl-jobCategory results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora-flan-t5-xxl-jobCategory This model is a fine-tuned version of [philschmid/flan-t5-xxl-sharded-fp16](https://huggingface.co/philschmid/flan-t5-xxl-sharded-fp16) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 266 | 1.7536 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.0 - Tokenizers 0.13.3
valu117/llama2-qlora-finetunined-french
valu117
2023-07-25T02:10:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-25T02:10:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
NasimB/cbt-rarity-guten-no-merge
NasimB
2023-07-25T02:06:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-24T22:29:28Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: cbt-rarity-guten-no-merge results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cbt-rarity-guten-no-merge This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.0377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3393 | 0.29 | 500 | 5.3133 | | 5.0332 | 0.58 | 1000 | 4.8944 | | 4.7062 | 0.87 | 1500 | 4.6552 | | 4.4455 | 1.16 | 2000 | 4.5068 | | 4.2946 | 1.45 | 2500 | 4.3846 | | 4.1846 | 1.74 | 3000 | 4.2814 | | 4.0809 | 2.03 | 3500 | 4.2011 | | 3.8863 | 2.32 | 4000 | 4.1666 | | 3.8588 | 2.61 | 4500 | 4.1094 | | 3.814 | 2.9 | 5000 | 4.0582 | | 3.6453 | 3.18 | 5500 | 4.0528 | | 3.575 | 3.47 | 6000 | 4.0214 | | 3.5609 | 3.76 | 6500 | 3.9924 | | 3.4948 | 4.05 | 7000 | 3.9823 | | 3.3077 | 4.34 | 7500 | 3.9803 | | 3.2997 | 4.63 | 8000 | 3.9663 | | 3.2906 | 4.92 | 8500 | 3.9538 | | 3.1681 | 5.21 | 9000 | 3.9641 | | 3.1219 | 5.5 | 9500 | 3.9635 | | 3.1184 | 5.79 | 10000 | 3.9628 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
tyzp-INC/few-shot-multilingual-e5-large-xnli-tuned
tyzp-INC
2023-07-25T01:55:20Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-25T01:53:08Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # tyzp-INC/few-shot-multilingual-e5-large-xnli-tuned This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("tyzp-INC/few-shot-multilingual-e5-large-xnli-tuned") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
skar01/llama2-coder-full
skar01
2023-07-25T01:52:46Z
7
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T00:59:30Z
--- license: apache-2.0 --- Llama2 (7B) model fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library. Training and evaluation data 📚 CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model. Data is here: https://huggingface.co/mrm8488/falcon-7b-ft-codeAlpaca_20k The adapter is here: https://huggingface.co/skar01/llama2-coder The base model is: TinyPixel/Llama-2-7B-bf16-sharded
ManuelPerdigo/OPT-350_mlm
ManuelPerdigo
2023-07-25T01:52:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:finetune:facebook/opt-350m", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-24T22:05:35Z
--- license: other base_model: facebook/opt-350m tags: - generated_from_trainer model-index: - name: OPT-350_mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OPT-350_mlm This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.189 | 1.0 | 1137 | 4.1037 | | 4.0026 | 2.0 | 2274 | 4.0314 | | 3.9094 | 3.0 | 3411 | 3.9944 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
greenteaboom/llama-test
greenteaboom
2023-07-25T01:19:43Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-23T13:00:49Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
dariowsz/q-Taxi-v3
dariowsz
2023-07-25T01:05:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T01:05:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dariowsz/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dariowsz/q-FrozenLake-v1-4x4-noSlippery
dariowsz
2023-07-25T01:01:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-25T01:01:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dariowsz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jtatman/gpt2-open-instruct-v1-Anthropic-hh-rlhf
jtatman
2023-07-25T00:57:00Z
275
4
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "Transformers", "GPT2", "en", "dataset:Anthropic/hh-rlhf", "dataset:hakurei/open-instruct-v1", "base_model:vicgalle/gpt2-open-instruct-v1", "base_model:finetune:vicgalle/gpt2-open-instruct-v1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-22T10:26:00Z
--- license: mit base_model: vicgalle/gpt2-open-instruct-v1 tags: - generated_from_trainer - Transformers - GPT2 model-index: - name: hh-rlhf results: [] datasets: - Anthropic/hh-rlhf - hakurei/open-instruct-v1 tokenizers: - GPT2Tokenizer language: - en library_name: transformers metrics: - bleu --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hh-rlhf This model is a fine-tuned version of [vicgalle/gpt2-open-instruct-v1](https://huggingface.co/vicgalle/gpt2-open-instruct-v1) on an subset (15k) of the Anthropic/hh-rlhf dataset. It achieves the following results on the evaluation set: - Loss: 2.1534 This model responds to the 'Human:' or 'Assistant:' prompt pretty well in conversation situations. The shorter responses are better suited. Keep generation length to a reasonable subset. Left to its own devices it will have some pretty esoteric responses. These include fairly uncensored remarks and at times violent outbursts. Especially if asking questions. Needs vetting for other textual uses. ``` Human: Insane clown posse says... Human: Should we look for a woman? Assistant: It’s okay if you’re having a tough time finding what you are looking for. It’s a common question people might come up with for an argument or misunderstanding. What are you looking for, and what kind of woman would you have? Human: Are you trying to find someone to argue ``` ## Model description GPT2 open instruct was trained on the open-instruct dataset fully. The reimagines one LM head as a partial rhlf adapter, with subtle reinforcements. ## Intended uses & limitations Intended to study the intersection of instruct models and prompting that focuses on subtle exchanges of prompting. This probably needs to be refined substantially at this point. ## Training and evaluation data ```python Train dataset size: 15000 Test dataset size: 500 Dataset({ features: ['chosen', 'rejected'], num_rows: 15000 }) Dataset({ features: ['chosen', 'rejected'], num_rows: 500 }) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3108 | 1.0 | 7500 | 2.1799 | | 2.265 | 2.0 | 15000 | 2.1632 | | 2.2507 | 3.0 | 22500 | 2.1567 | | 2.2519 | 4.0 | 30000 | 2.1534 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
vincentlui/test
vincentlui
2023-07-25T00:54:35Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-20T23:26:13Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - wer model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.4631 - Wer: 0.9466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 25.8579 | 20.0 | 100 | 12.3269 | 0.9466 | | 9.9109 | 40.0 | 200 | 11.4631 | 0.9466 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
DARIOLEV/llama2-qlora-finetunined-french
DARIOLEV
2023-07-25T00:53:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-25T00:53:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
skar01/llama2-coder
skar01
2023-07-25T00:45:40Z
2
2
peft
[ "peft", "region:us" ]
null
2023-07-23T04:57:43Z
--- library_name: peft --- ## Training procedure Llama2 (7B) model fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library. Training and evaluation data 📚 CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model. The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
ckandemir/distilhubert-finetuned-gtzan
ckandemir
2023-07-25T00:43:37Z
149
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-24T19:54:03Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5878 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1351 | 1.0 | 113 | 1.9691 | 0.55 | | 1.366 | 2.0 | 226 | 1.2824 | 0.71 | | 1.1106 | 3.0 | 339 | 0.9803 | 0.72 | | 0.9281 | 4.0 | 452 | 0.8342 | 0.73 | | 0.625 | 5.0 | 565 | 0.6073 | 0.81 | | 0.3546 | 6.0 | 678 | 0.6393 | 0.84 | | 0.3526 | 7.0 | 791 | 0.5106 | 0.81 | | 0.0914 | 8.0 | 904 | 0.3930 | 0.9 | | 0.0563 | 9.0 | 1017 | 0.4089 | 0.88 | | 0.0475 | 10.0 | 1130 | 0.5627 | 0.86 | | 0.0144 | 11.0 | 1243 | 0.5824 | 0.86 | | 0.0982 | 12.0 | 1356 | 0.5572 | 0.87 | | 0.0082 | 13.0 | 1469 | 0.5770 | 0.88 | | 0.0076 | 14.0 | 1582 | 0.5808 | 0.87 | | 0.008 | 15.0 | 1695 | 0.5878 | 0.88 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
DunnBC22/wav2vec2-base-Drum_Kit_Sounds
DunnBC22
2023-07-25T00:32:49Z
137
4
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "dataset:audiofolder", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-01-23T05:32:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-base-Drum_Kit_Sounds results: [] language: - en pipeline_tag: audio-classification --- # wav2vec2-base-Drum_Kit_Sounds This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base). It achieves the following results on the evaluation set: - Loss: 1.0887 - Accuracy: 0.7812 - F1 - Weighted: 0.7692 - Micro: 0.7812 - Macro: 0.7845 - Recall - Weighted: 0.7812 - Micro: 0.7812 - Macro: 0.8187 - Precision - Weighted: 0.8717 - Micro: 0.7812 - Macro: 0.8534 ## Model description This is a multiclass classification of sounds to determine which type of drum is hit in the audio sample. The options are: kick, overheads, snare, and toms. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Audio-Projects/Classification/Audio-Drum_Kit_Sounds.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/anubhavchhabra/drum-kit-sound-samples ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.3743 | 1.0 | 4 | 1.3632 | 0.5625 | 0.5801 | 0.5625 | 0.5678 | 0.5625 | 0.5625 | 0.5670 | 0.6786 | 0.5625 | 0.6429 | | 1.3074 | 2.0 | 8 | 1.3149 | 0.3438 | 0.2567 | 0.3438 | 0.2696 | 0.3438 | 0.3438 | 0.375 | 0.3067 | 0.3438 | 0.3148 | | 1.2393 | 3.0 | 12 | 1.3121 | 0.2188 | 0.0785 | 0.2188 | 0.0897 | 0.2188 | 0.2188 | 0.25 | 0.0479 | 0.2188 | 0.0547 | | 1.2317 | 4.0 | 16 | 1.3112 | 0.2812 | 0.1800 | 0.2812 | 0.2057 | 0.2812 | 0.2812 | 0.3214 | 0.2698 | 0.2812 | 0.3083 | | 1.2107 | 5.0 | 20 | 1.2604 | 0.4375 | 0.3030 | 0.4375 | 0.3462 | 0.4375 | 0.4375 | 0.5 | 0.2552 | 0.4375 | 0.2917 | | 1.1663 | 6.0 | 24 | 1.2112 | 0.4688 | 0.3896 | 0.4688 | 0.4310 | 0.4688 | 0.4688 | 0.5268 | 0.5041 | 0.4688 | 0.5404 | | 1.1247 | 7.0 | 28 | 1.1746 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 | | 1.0856 | 8.0 | 32 | 1.1434 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 | | 1.0601 | 9.0 | 36 | 1.1417 | 0.6562 | 0.6029 | 0.6562 | 0.6389 | 0.6562 | 0.6562 | 0.7125 | 0.8440 | 0.6562 | 0.8217 | | 1.0375 | 10.0 | 40 | 1.1227 | 0.6875 | 0.6582 | 0.6875 | 0.6831 | 0.6875 | 0.6875 | 0.7330 | 0.8457 | 0.6875 | 0.8237 | | 1.0168 | 11.0 | 44 | 1.1065 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 | | 1.0093 | 12.0 | 48 | 1.0887 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1
radned/speecht5_voxpopuli_nl
radned
2023-07-25T00:28:06Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-24T21:51:25Z
--- base_model: '' tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_voxpopuli_nl This model is a fine-tuned version of [](https://huggingface.co/) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.9541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2804 | 4.3 | 1000 | 1.1664 | | 1.054 | 8.61 | 2000 | 0.9818 | | 1.0183 | 12.91 | 3000 | 0.9600 | | 1.0028 | 17.21 | 4000 | 0.9541 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
DunnBC22/vit-base-patch16-224-in21k_lung_and_colon_cancer
DunnBC22
2023-07-25T00:27:30Z
1,841
4
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "en", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-01-06T22:39:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_lung_and_colon_cancer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9994 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_lung_and_colon_cancer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). It achieves the following results on the evaluation set: - Loss: 0.0016 - Accuracy: 0.9994 - F1 - Weighted: 0.9994 - Micro: 0.9994 - Macro: 0.9994 - Recall - Weighted: 0.9994 - Micro: 0.9994 - Macro: 0.9994 - Precision - Weighted: 0.9994 - Micro: 0.9994 - Macro: 0.9994 ## Model description This is a multiclass image classification model of lung and colon cancers. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Lung%20%26%20Colon%20Cancer/Lung_and_colon_cancer_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images _Sample Images From Dataset:_ ![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Lung%20%26%20Colon%20Cancer/Images/Sample%20Images.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.0574 | 1.0 | 1250 | 0.0410 | 0.9864 | 0.9864 | 0.9864 | 0.9865 | 0.9864 | 0.9864 | 0.9864 | 0.9872 | 0.9864 | 0.9875 | | 0.0031 | 2.0 | 2500 | 0.0105 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9973 | 0.9972 | 0.9972 | 0.9972 | | 0.0007 | 3.0 | 3750 | 0.0016 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1
Alfric/llama2-qlora-finetunined-french
Alfric
2023-07-25T00:18:27Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-25T00:18:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
DunnBC22/codebert-base-Password_Strength_Classifier
DunnBC22
2023-07-25T00:14:26Z
98
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-06T04:17:51Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: codebert-base-Password_Strength_Classifier results: [] --- # codebert-base-Password_Strength_Classifier This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base). It achieves the following results on the evaluation set: - Loss: 0.0077 - Accuracy: 0.9975 - F1 - Weighted: 0.9975 - Micro: 0.9975 - Macro: 0.9963 - Recall - Weighted: 0.9975 - Micro: 0.9975 - Macro: 0.9978 - Precision - Weighted: 0.9975 - Macro: 0.9948 - Micro: 0.9975 ## Model description The model classifies passwords as one of the following: 1) Weak 2) Medium 3) Strong For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Password%20Strength%20Classification%20(MC)/CodeBERT-Base%20-%20Password_Classifier.ipynb ## Intended uses & limitations This is intended to show the possibilities. It is mainly limited by the input data. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/bhavikbb/password-strength-classifier-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.0438 | 1.0 | 8371 | 0.0112 | 0.9956 | 0.9956 | 0.9956 | 0.9935 | 0.9956 | 0.9956 | 0.9963 | 0.9957 | 0.9956 | 0.9908 | | 0.0133 | 2.0 | 16742 | 0.0092 | 0.9966 | 0.9967 | 0.9966 | 0.9951 | 0.9966 | 0.9966 | 0.9966 | 0.9967 | 0.9966 | 0.9935 | | 0.0067 | 3.0 | 25113 | 0.0077 | 0.9975 | 0.9975 | 0.9975 | 0.9963 | 0.9975 | 0.9975 | 0.9978 | 0.9975 | 0.9975 | 0.9948 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
fernandals/mt5-small-finetuned-xlsum-en-pt
fernandals
2023-07-25T00:11:11Z
97
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "text-generation-inference", "summarization", "pt", "en", "dataset:csebuetnlp/xlsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-07-24T23:39:55Z
--- datasets: - csebuetnlp/xlsum language: - pt - en metrics: - rouge library_name: transformers pipeline_tag: summarization tags: - text-generation-inference --- To summarize a text you should put a language id in the beginning: for texts in English add 'EN ' to your input for texts in Portuguese add 'PT '
DCLXVIy/loraaa
DCLXVIy
2023-07-25T00:03:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-25T00:00:00Z
--- license: creativeml-openrail-m ---
RushTurtle/crnn_vgg16_bn_20230724-201817
RushTurtle
2023-07-24T23:54:23Z
44
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-07-24T23:54:18Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/tmp/dataset/train3_2800/", "val_path": "/tmp/dataset/val3_2800/", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 1000, "batch_size": 32, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "vocab": "french", "test_only": false, "show_samples": false, "wb": true, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": true, "find_lr": false }
VFiona/opus-mt-en-it-finetuned_20000-en-to-it
VFiona
2023-07-24T23:48:09Z
95
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-24T22:21:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-it-finetuned_20000-en-to-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-it-finetuned_20000-en-to-it This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-it](https://huggingface.co/Helsinki-NLP/opus-mt-en-it) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2520 - Bleu: 74.7902 - Gen Len: 28.3805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.3022 | 1.0 | 1125 | 0.2520 | 74.7902 | 28.3805 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.11.0
minwook/CreateKoreanNovel
minwook
2023-07-24T23:45:53Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-24T14:32:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
jstawski/Llama-2-13b-hf-finetuned-SNG
jstawski
2023-07-24T23:32:04Z
0
1
peft
[ "peft", "conversational", "en", "license:llama2", "region:us" ]
text-generation
2023-07-24T03:25:41Z
--- license: llama2 library_name: peft language: - en pipeline_tag: conversational --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
FFusion/FFusionXL-LoRa-SDXL-Island-Generator
FFusion
2023-07-24T23:28:40Z
100
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "en", "base_model:diffusers/stable-diffusion-xl-base-0.9", "base_model:adapter:diffusers/stable-diffusion-xl-base-0.9", "doi:10.57967/hf/0919", "license:other", "region:us" ]
text-to-image
2023-07-23T15:20:06Z
--- license: other base_model: diffusers/stable-diffusion-xl-base-0.9 instance_prompt: a 3d island tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true library_name: diffusers badges: - alt: Name url: >- https://img.shields.io/badge/Name-FFusion%20XL%20LoRA%20%F0%9F%8F%9D%EF%B8%8F%20%20Island%20Generator-89CFF0 src: >- https://img.shields.io/badge/Name-FFusion%20XL%20LoRA%20%F0%9F%8F%9D%EF%B8%8F%20%20Island%20Generator-89CFF0 - alt: LoRA Type url: https://img.shields.io/badge/LoRA%20Type-LyCORIS%2FLoKr%2C%20Prodigy-blue src: https://img.shields.io/badge/LoRA%20Type-LyCORIS%2FLoKr%2C%20Prodigy-blue - alt: Refiner Compatible url: https://img.shields.io/badge/%F0%9F%94%A5%20Refiner%20Compatible-Yes-success src: https://img.shields.io/badge/%F0%9F%94%A5%20Refiner%20Compatible-Yes-success - alt: CLIP Tested url: >- https://img.shields.io/badge/%F0%9F%92%BB%20CLIP--ViT%2FG%20and%20CLIP--ViT%2FL%20tested-Yes-success src: >- https://img.shields.io/badge/%F0%9F%92%BB%20CLIP--ViT%2FG%20and%20CLIP--ViT%2FL%20tested-Yes-success - alt: Trained Resolution url: >- https://img.shields.io/badge/Trained%20Resolution-1024%20x%201024%20pixels-yellow src: >- https://img.shields.io/badge/Trained%20Resolution-1024%20x%201024%20pixels-yellow - alt: Training Data url: https://img.shields.io/badge/Training%20Data-3%20x%203000%20images-orange src: https://img.shields.io/badge/Training%20Data-3%20x%203000%20images-orange - alt: Tested Resolution url: >- https://img.shields.io/badge/Tested%20Resolution-Up%20to%201600%20pixels-brightgreen src: >- https://img.shields.io/badge/Tested%20Resolution-Up%20to%201600%20pixels-brightgreen - alt: Tested on url: >- https://img.shields.io/badge/Tested%20on-SDXL%200.9%20%26%20FFXL%200.001-blue src: >- https://img.shields.io/badge/Tested%20on-SDXL%200.9%20%26%20FFXL%200.001-blue - alt: Hugging Face Model url: https://img.shields.io/badge/Hugging%20Face-FFusion--BaSE-blue src: https://img.shields.io/badge/Hugging%20Face-FFusion--BaSE-blue - alt: GitHub url: https://img.shields.io/badge/GitHub-1e--2-green src: https://img.shields.io/badge/GitHub-1e--2-green - alt: Facebook url: https://img.shields.io/badge/Facebook-FFusionAI-blue src: https://img.shields.io/badge/Facebook-FFusionAI-blue - alt: Civitai url: https://img.shields.io/badge/Civitai-FFusionAI-blue src: https://img.shields.io/badge/Civitai-FFusionAI-blue language: - en --- # FFusion XL LoRA 🏝️Island Generator <div style="display: flex; flex-wrap: wrap; gap: 2px;"> <img src="https://img.shields.io/badge/%F0%9F%94%A5%20Refiner%20Compatible-Yes-success"> <img src="https://img.shields.io/badge/%F0%9F%92%BB%20CLIP--ViT%2FG%20and%20CLIP--ViT%2FL%20tested-Yes-success"> <img src="https://img.shields.io/badge/LoRA%20Type-LyCORIS%2FLoKr%2C%20Prodigy-blue"> <img src="https://img.shields.io/badge/Tested%20on-SDXL%200.9%20%26%20FFXL%200.001-blue"> </div> The FFusion XL LoRA Island Generator is a model designed to generate game assets like islands and objects in low polygonal landscapes, pixelated, 3D, and isometric styles, making it ideal for retro-inspired or stylized game environments. ## Specifications - **Model Name**: FFusion XL LoRA Island Generator - **LoRA Type**: LyCORIS/LoKr, Prodigy - **Trained Resolution**: 1024 x 1024 pixels - **Tested Resolution**: Up to 1600 pixels - **Training Data**: The model was trained on 9,000 images, consisting of 3 different resumes each on 3,000 images, providing a diverse dataset for learning. <div style="display: flex; flex-wrap: wrap; gap: 4px;"><img src="https://img.shields.io/badge/Trained%20Resolution-1024%20x%201024%20pixels-yellow"> <img src="https://img.shields.io/badge/Training%20Data-3%20x%203000%20images-orange"> <img src="https://img.shields.io/badge/Tested%20Resolution-Up%20to%201600%20pixels-brightgreen"></div> ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/Kc1lRLznSaz5RO5_rGXkJ.png) ## Refiner Example ![idle-FF_00866_.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/a1vYenzTmyzlzCaYRa8Lp.png) ![ComfyUI_00258_.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/SY9od7hM1SlGYMJ1gBsC9.png) ## Usage Recommendations <img src="https://img.shields.io/badge/Name-FFusion%20XL%20LoRA%20%F0%9F%8F%9D%EF%B8%8F%20%20Island%20Generator-89CFF0"> The FFusion XL LoRA Island Generator can be utilized to quickly create game assets for a variety of game projects. It is best suited for applications where a retro or pixelated style is desired, and where low polygonal landscapes and 3D elements are prominent. Designers and developers can leverage the model to streamline the asset creation process, saving valuable time and resources. ## Limitations - The model's performance may vary when generating assets beyond the tested resolution of 1600 pixels. Using it for higher resolutions may lead to a decrease in output quality or increased generation time. - The model's ability to produce highly detailed or realistic assets might be limited due to its pixelated and low polygonal nature. - It is recommended to thoroughly evaluate the generated assets to ensure they align with the desired artistic direction and quality standards of the specific game project. ## Ethical Considerations As with any AI model, ethical considerations should be taken into account during usage. It is essential to avoid generating assets that might infringe upon copyrighted material or violate intellectual property rights. Additionally, the model's outputs should be monitored to ensure it does not produce inappropriate, offensive, or harmful content. ## Citations If you use the FFusion XL LoRA Island Generator in your project or research, please provide appropriate citations to acknowledge the model's contribution. ## Disclaimer The FFusion XL LoRA Island Generator is a powerful tool for generating game assets; however, it may not be perfect and might have limitations. Users are encouraged to test and validate the generated assets thoroughly before integrating them into their game projects. The developers of this model hold no responsibility for any consequences that may arise from its usage. <div style="display: flex; flex-wrap: wrap; gap: 2px; align-items: center;"> <p>These are LoRA adaption weights for</p> <a href="https://huggingface.co/stable-diffusion-xl-base-0.9" target="_new" rel="ugc"><img src="https://img.shields.io/badge/stable--diffusion--xl--base--0.9-Model-blue" alt="stable-diffusion-xl-base-0.9"></a> <p>&</p> <a href="https://huggingface.co/FFusionXL-09-SDXL" target="_new" rel="ugc"><img src="https://img.shields.io/badge/FFusionXL--09--SDXL-Model-blue" alt="FFusionXL-09-SDXL"></a> <p>The weights were trained using experimental</p> <a href="https://github.com/kohya-ss/sd-scripts" target="_new" rel="ugc"><img src="https://img.shields.io/badge/kohya--ss%2Fsd--scripts%20build-Model-blue" alt="kohya-ss/sd-scripts build"></a> <p>build</p> </div> ![img_1](./Image_1.png) ![img_2](./Image_2.png) ![img_3](./Image_3.png) ![img_4](./Image_4.png) ![img_5](./Image_5.png) ![img_6](./Image_6.png) ![img_7](./Image_7.png) <div style="display: flex; flex-wrap: wrap; gap: 2px;"> <a href="https://huggingface.co/FFusion/FFusion-BaSE" target="_new" rel="ugc"><img src="https://img.shields.io/badge/Hugging%20Face-FFusion--BaSE-blue" alt="Hugging Face Model"></a> <a href="https://github.com/1e-2" target="_new" rel="ugc"><img src="https://img.shields.io/badge/GitHub-1e--2-green" alt="GitHub"></a> <a href="https://www.facebook.com/FFusionAI/" target="_new" rel="ugc"><img src="https://img.shields.io/badge/Facebook-FFusionAI-blue" alt="Facebook"></a> <a href="https://civitai.com/models/82039/ffusion-ai-sd-21" target="_new" rel="ugc"><img src="https://img.shields.io/badge/Civitai-FFusionAI-blue" alt="Civitai"></a> </div> <div style="display: flex; flex-wrap: wrap; gap: 10px; align-items: center;"> <p>These are LoRA adaption weights for</p> <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9" target="_new" rel="ugc"><img src="https://img.shields.io/badge/stable--diffusion--xl--base--0.9-Model-purple" alt="stable-diffusion-xl-base-0.9"></a> <p>&</p> <a href="https://huggingface.co/FFusion/FFusionXL-09-SDXL" target="_new" rel="ugc"><img src="https://img.shields.io/badge/FFusionXL--09--SDXL-Model-pink" alt="FFusionXL-09-SDXL"></a> <p>The weights were trained using experimental</p> <a href="https://github.com/kohya-ss/sd-scripts" target="_new" rel="ugc"><img src="https://img.shields.io/badge/kohya--ss-sd--scripts-blue" alt="kohya-ss/sd-scripts build"></a> <p>build</p> </div> **Attribution:** "SDXL 0.9 is licensed under the SDXL Research License, Copyright (c) Stability AI Ltd. All Rights Reserved." ## License [SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
s4saif/llma-finetuned-7b
s4saif
2023-07-24T23:25:12Z
0
0
null
[ "generated_from_trainer", "base_model:daryl149/llama-2-7b-chat-hf", "base_model:finetune:daryl149/llama-2-7b-chat-hf", "region:us" ]
null
2023-07-24T21:40:34Z
--- base_model: daryl149/llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: llma-finetuned-7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llma-finetuned-7b This model is a fine-tuned version of [daryl149/llama-2-7b-chat-hf](https://huggingface.co/daryl149/llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
FFusion/FFusion-BaSE
FFusion
2023-07-24T23:12:07Z
258
7
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "di.ffusion.ai", "art", "base model", "en", "doi:10.57967/hf/0926", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-01T08:00:08Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - stable-diffusion - text-to-image - di.ffusion.ai - art - base model - diffusers inference: true library_name: diffusers widget: - text: >- a sprinkled donut sitting on top of a table, blender donut tutorial, colorful hyperrealism, everything is made of candy, hyperrealistic digital painting, covered in sprinkles and crumbs, vibrant colors hyper realism, colorful smoke explosion background example_title: Donut Fusion - text: >- a cup of coffee with a tree in it, surreal art, awesome great composition, surrealism!!!!, cafe in the clouds, perfectly realistic yet surreal, surreal realistic, floating trees, amazing composition, dream scenery art, whimsical surrealism, surreal composition, trending artistic art, surrealism art, surreal scene, surrealistic painting, surreal style, surreal illustration, dreamlike surrealism colorful smoke and fire coming out of it,explosion of data fragments,exploding background,realistic explosion,3d digital art 4k,fire and explosion,explosion,background explosion,cinema 4 d art,shattering,beeple. hyperrealism,explosion background,rendered in cinema 4 d,rendered in cinema4d,explosive background, example_title: Coffee Fusion - text: >- brightly colored headphones with a splash of paint and music notes, vibing to music, artistic illustration, stunning artwork, music is life, beautiful digital artwork, headphones on, listening to music, music poster, synesthesia, music in the air, listening to godly music, style hybrid mix of beeple, headphones, digital artwork 4 k, side profile artwork, no humans, planet, space, black background, cable, simple background, concept art, cinematic, dramatic, intricate details, dark lighting example_title: Headset Fusion - text: >- a group of three blocks with a picture of a boat in the middle of them, surreal 3 d render, 3 d epic illustrations, 3 d artistic render, inspired by Matthias Jung, environmental key art, erik johansson style, surreal concept art, alexander jansson style, cube portals, beeple masterpiece, 3 d render beeple, surrealistic digital artwork example_title: Digital Fusion --- # FFUSION AI - 768 BaSE Public alpha Release ![ffusion-basesm32.jpg](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/FHidip3rT8mL1UdGDyfSd.jpeg) ## Model Overview: Unleashing the Power of Imagination! <div style="display: flex; flex-wrap: wrap; gap: 2px;"> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/🧠%20Model%20Type-Diffusion--based%20text--to--image%20generation%20model-blueviolet" alt="Model Type"></a> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/🔏%20License-CreativeML%20Open%20RAIL++--M%20License-orange" alt="License"></a> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/🖥️%20Hardware%20Type-A100%20PCIe%2040GB-green" alt="Hardware Type"></a> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/⏰%20Hours%20Used-1190-red" alt="Hours Used"></a> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/🌩️%20Cloud%20Provider-CoreWeave%20%26%20Runpod-blue" alt="Cloud Provider"></a> <a href="https://huggingface.co/FFusion/"><img src="https://img.shields.io/badge/🍃%20Carbon%20Emitted-124.95%20kg%20of%20CO2-brightgreen" alt="Carbon Emitted"></a> </div> FFUSION AI is a state-of-the-art image generation and transformation tool, developed around the leading Latent Diffusion Model. Leveraging Stable Diffusion 2.1, FFUSION AI converts your prompts into captivating artworks. Discover an imaginative landscape where ideas come to life in vibrant, surreal visuals. - **Developed by:** Idle Stoev, Source Code Bulgaria, Praesidium CX & BlackSwan Technologies - **Shared by:** FFusion AI - **Model type:** Diffusion-based text-to-image generation model - **Language(s) (NLP):** English - **License:** CreativeML Open RAIL++-M License ## Model Use: Enabling Creativity and Exploring AI Frontiers ![ffusion.ai.preview.base1.jpg](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/bL8RTCse0XWdufFNcUINn.jpeg) Designed for research and artistic exploration, FFUSION AI serves as a versatile tool in a variety of scenarios: - Investigating biases and constraints in generative models - Unleashing creativity in artistic endeavors - Infusing AI-driven innovation into educational or creative tools - Furthering research in the exciting field of generative models - **Repository:** https://github.com/1e-2 - **Demo:** https://huggingface.co/spaces/FFusion/FFusionAI-Streamlit-Playground ![ffusion.ai.preview.base2.jpg](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/MKpSOgIgVKZLJZiggrANn.jpeg) **Out-of-Scope Use and Prohibited Misuse:** - Generating factually inaccurate representations of people or events - Inflicting harm or spreading malicious content such as demeaning, dehumanizing, or offensive imagery - Creating harmful stereotypes or spreading discrimination - Impersonating individuals without their consent - Disseminating non-consensual explicit content or misinformation - Violating copyrights or usage terms of licensed material ## Model Limitations and Bias While our model brings us closer to the future of AI-driven creativity, there are several limitations: - Achieving perfect photorealism or surrealism is still an ongoing challenge. - Rendering legible text could be difficult without further ~30min training on your brand. - Accurate generation of human faces, especially far away faces, is not guaranteed (yet). ## Model Releases We are thrilled to announce: - **Version 512 Beta:** Featuring LiTE and MiD BFG model variations - **Version 768 Alpha:** BaSE, FUSION, and FFUSION models with enhanced training capabilities, including LoRa, LyCORIS, Dylora & Kohya-ss/sd-scripts. - **Version 768 BaSE:** A BaSE Ready model for easy applying more than 200 build op LoRA models trained along the way. ## Environmental Impact In line with our commitment to sustainability, FFUSION AI has been designed with carbon efficiency in mind: - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 1190 - **Cloud Provider:** CoreWeave & Runpod (official partner) - **Compute Region:** US Cyxtera Chicago Data Center - ORD1 / EU - CZ & EU - RO - **Carbon Emitted:** 124.95 kg of CO2 (calculated via Machine Learning Impact calculator) That said all LoRA and further models are based on initial training. ## Model Card Authors This model card was authored by Idle Stoev and is based on the Stability AI - Stable Diffusion 2.1 model card. ## Model Card Contact [![FFusion-BaSE](https://img.shields.io/badge/2.1%20🤗%20Model-FFusion--BaSE-blue)](https://huggingface.co/FFusion/FFusion-BaSE) [![di.FFUSION.ai-v2.1-768-BaSE-alpha](https://img.shields.io/badge/🤗%20Model-di.FFUSION.ai--v2.1--768--BaSE--alpha-blue)](https://huggingface.co/FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha) [![di.ffusion.ai.Beta512](https://img.shields.io/badge/2.1%20🤗%20Model-di.ffusion.ai.Beta512-blue)](https://huggingface.co/FFusion/di.ffusion.ai.Beta512) [![FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1](https://img.shields.io/badge/2.1%20🤗%20Model-FFUSION.ai--Text--Encoder--LyCORIS--SD--2.1-blue)](https://huggingface.co/FFusion/FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1) Contact: [![Email](https://img.shields.io/badge/Email-di%40ffusion.ai-blue)](mailto:[email protected]) _Download the [FFUSION AI - 768 BaSE Release here](https://huggingface.co/FFusion/FFusion-BaSE/blob/main/FFusion-BaSE.safetensors)._
taytun/llama2-qlora-qr-en
taytun
2023-07-24T23:05:29Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-24T23:05:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
cgallegoan/disasterBERT
cgallegoan
2023-07-24T22:36:57Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-24T22:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: disasterBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # disasterBERT This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4232 - Accuracy: 0.8372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 86 | 0.4058 | 0.8299 | | No log | 2.0 | 172 | 0.3936 | 0.8343 | | No log | 3.0 | 258 | 0.3999 | 0.8408 | | No log | 4.0 | 344 | 0.4123 | 0.8379 | | No log | 5.0 | 430 | 0.4232 | 0.8372 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
totally-not-an-llm/AlpacaCielo-13b
totally-not-an-llm
2023-07-24T22:31:51Z
0
23
null
[ "license:llama2", "region:us" ]
null
2023-07-22T23:01:32Z
--- license: llama2 --- # AlpacaCielo-13b <figure> <img src="https://huggingface.co/totally-not-an-llm/AlpacaCielo-13b/resolve/main/alpaca.png" alt="cute cloud alpaca"> <figcaption style="font-size: 1em;"><i>"super cute baby alpaca laying on a cloud", Model: epicrealism_pureEvolutionV3</i></figcaption> </figure> AlpacaCielo-13b is a llama-2 based model designed for creative tasks, such as storytelling and roleplay, while still doing well with other chatbot purposes. It is a triple model merge of Nous-Hermes + Guanaco + Storywriter. While it is mostly *"uncensored"*, it still inherits some alignment from Guanaco. [GPTQ quants](https://huggingface.co/TheBloke/AlpacaCielo-13B-GPTQ)<br> [GGML quants](https://huggingface.co/TheBloke/AlpacaCielo-13B-GGML)<br> (Courtesy of TheBloke) **Prompt format is this (Guanaco QLORA in oobabooga):** ``` ### Human: {prompt} ### Assistant: ``` *Thanks to previous similar models such as Alpacino, Alpasta, and AlpacaDente for inspiring the creation of this model. Thanks also to the creators of the models involved in the merge. Original models:* - [Nous-Hermes-Llama-2](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) - [Guanaco QLoRA](https://huggingface.co/Mikael110/llama-2-13b-guanaco-qlora) - [Storywriter LoRA](https://huggingface.co/Blackroot/Llama-2-13B-Storywriter-LORA)
allenwang117/Reinforce-1
allenwang117
2023-07-24T22:17:52Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-24T22:17:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
digiplay/helloRealisticMan_v1.0beta
digiplay
2023-07-24T22:16:05Z
307
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-24T22:01:31Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/115278/hellorealisticman Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/eabd781f-dc8e-4dab-a795-7500660cc30d/width=768/381087-579244821-_lora_more_details_0.3_,_lyco_GoodHands-beta2_1_,masterpiece,%20best%20quality_1.2,high%20detail,1%20male,handsome,%20%20Glasses,%20%20bare%20uppe.jpeg)
arpan-das-astrophysics/taxi-v3
arpan-das-astrophysics
2023-07-24T22:10:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-24T22:10:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="arpan-das-astrophysics/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kgwiazda/ppo-LunarLander-v2
kgwiazda
2023-07-24T21:59:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-24T21:59:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 224.12 +/- 27.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mskhattori/wav2vec2phone-large-xlsr-jp-jdrtfw07-demo3
mskhattori
2023-07-24T21:46:58Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "base_model:finetune:jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-24T17:25:00Z
--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-japanese tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2phone-large-xlsr-jp-jdrtfw07-demo3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2phone-large-xlsr-jp-jdrtfw07-demo3 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-japanese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-japanese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0451 - Wer: 0.025 - Cer: 0.0195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1640 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.0002 | 1.0 | 328 | 2.8482 | 0.9965 | 0.9980 | | 2.2134 | 2.0 | 656 | 2.0964 | 0.8864 | 0.9374 | | 1.6625 | 3.0 | 984 | 1.2925 | 0.7960 | 0.7917 | | 1.0846 | 4.0 | 1312 | 0.4955 | 0.3292 | 0.3089 | | 0.8593 | 5.0 | 1640 | 0.2443 | 0.1061 | 0.0839 | | 0.7502 | 6.0 | 1968 | 0.1552 | 0.0620 | 0.0504 | | 0.6342 | 7.0 | 2296 | 0.1202 | 0.0491 | 0.0422 | | 0.6012 | 8.0 | 2624 | 0.1008 | 0.0442 | 0.0379 | | 0.6214 | 9.0 | 2952 | 0.0846 | 0.0390 | 0.0333 | | 0.5486 | 10.0 | 3280 | 0.0756 | 0.0361 | 0.0309 | | 0.5633 | 11.0 | 3608 | 0.0669 | 0.0310 | 0.0261 | | 0.4977 | 12.0 | 3936 | 0.0609 | 0.0300 | 0.0251 | | 0.4863 | 13.0 | 4264 | 0.0556 | 0.0282 | 0.0233 | | 0.4416 | 14.0 | 4592 | 0.0533 | 0.0279 | 0.0234 | | 0.4713 | 15.0 | 4920 | 0.0499 | 0.0266 | 0.0214 | | 0.4715 | 16.0 | 5248 | 0.0489 | 0.0252 | 0.0197 | | 0.4724 | 17.0 | 5576 | 0.0472 | 0.0259 | 0.0205 | | 0.4835 | 18.0 | 5904 | 0.0463 | 0.0259 | 0.0204 | | 0.4589 | 19.0 | 6232 | 0.0454 | 0.0252 | 0.0199 | | 0.4207 | 20.0 | 6560 | 0.0451 | 0.025 | 0.0195 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/all-base-log-rarity
NasimB
2023-07-24T21:43:55Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-24T18:12:24Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-log-rarity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-log-rarity This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.4679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.488 | 0.31 | 500 | 5.6024 | | 5.1781 | 0.62 | 1000 | 5.3432 | | 4.832 | 0.94 | 1500 | 5.1744 | | 4.5773 | 1.25 | 2000 | 5.1710 | | 4.4585 | 1.56 | 2500 | 5.1043 | | 4.3631 | 1.87 | 3000 | 5.0802 | | 4.1959 | 2.19 | 3500 | 5.0614 | | 4.1063 | 2.5 | 4000 | 5.1289 | | 4.0747 | 2.81 | 4500 | 5.0496 | | 3.9482 | 3.12 | 5000 | 5.1552 | | 3.8193 | 3.44 | 5500 | 5.1364 | | 3.804 | 3.75 | 6000 | 5.1111 | | 3.7357 | 4.06 | 6500 | 5.2502 | | 3.5478 | 4.37 | 7000 | 5.2565 | | 3.5409 | 4.68 | 7500 | 5.3273 | | 3.5276 | 5.0 | 8000 | 5.3765 | | 3.3651 | 5.31 | 8500 | 5.4361 | | 3.359 | 5.62 | 9000 | 5.4664 | | 3.3559 | 5.93 | 9500 | 5.4678 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
benjamin/compoundpiece-stage1
benjamin
2023-07-24T21:32:13Z
112
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "af", "az", "be", "bg", "bn", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gl", "gu", "he", "hi", "hu", "hy", "id", "is", "it", "ka", "kk", "ky", "la", "lt", "lv", "mg", "mk", "ml", "mt", "nl", "pa", "pl", "pt", "ro", "ru", "sk", "sq", "sv", "ta", "te", "th", "tr", "uk", "yi", "yo", "dataset:benjamin/compoundpiece", "arxiv:2305.14214", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-13T12:02:23Z
--- license: mit language: - af - az - be - bg - bn - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gl - gu - he - hi - hu - hy - id - is - it - ka - kk - ky - la - lt - lv - mg - mk - ml - mt - nl - pa - pl - pt - ro - ru - sk - sq - sv - ta - te - th - tr - uk - yi - yo datasets: - benjamin/compoundpiece --- CompoundPiece model trained only on Stage 1 training data (self-supervised training on hyphenated and non-hyphenated words scraped from the web). See [CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models](https://arxiv.org/abs/2305.14214). # Citation ``` @article{minixhofer2023compoundpiece, title={CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models}, author={Minixhofer, Benjamin and Pfeiffer, Jonas and Vuli{\'c}, Ivan}, journal={arXiv preprint arXiv:2305.14214}, year={2023} } ``` # License MIT
snicolau/a2c-PandaReachDense-v2
snicolau
2023-07-24T21:30:26Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-24T21:27:42Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.93 +/- 0.43 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rovargasc/setfit-model_clasificadorEstudiantesV2
rovargasc
2023-07-24T21:16:53Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-24T21:16:27Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # rovargasc/setfit-model_clasificadorEstudiantesV2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("rovargasc/setfit-model_clasificadorEstudiantesV2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
anth0nyhak1m/CFGFP_ProductGroupCalssifier_v1
anth0nyhak1m
2023-07-24T21:08:37Z
18
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T16:48:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: CFGFP_ProductGroupCalssifier_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CFGFP_ProductGroupCalssifier_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1960 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2342 | 1.0 | 3804 | 0.1990 | 0.9464 | | 0.1457 | 2.0 | 7608 | 0.1844 | 0.9567 | | 0.1083 | 3.0 | 11412 | 0.1864 | 0.9602 | | 0.0675 | 4.0 | 15216 | 0.1943 | 0.9641 | | 0.0464 | 5.0 | 19020 | 0.1960 | 0.9644 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
HaroldB/LLama-2-7B
HaroldB
2023-07-24T21:07:07Z
0
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-07-24T20:43:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
eccadena/test_model
eccadena
2023-07-24T20:57:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-24T20:54:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
Gelmo/Halouf
Gelmo
2023-07-24T20:54:19Z
0
0
adapter-transformers
[ "adapter-transformers", "conversational", "en", "dataset:fka/awesome-chatgpt-prompts", "dataset:Open-Orca/OpenOrca", "dataset:ehartford/dolphin", "dataset:OpenAssistant/oasst1", "region:us" ]
text-generation
2023-07-24T20:52:28Z
--- datasets: - fka/awesome-chatgpt-prompts - Open-Orca/OpenOrca - ehartford/dolphin - OpenAssistant/oasst1 language: - en metrics: - code_eval - accuracy library_name: adapter-transformers pipeline_tag: conversational ---
snicolau/a2c-AntBulletEnv-v0
snicolau
2023-07-24T20:37:28Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-24T20:36:17Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1662.96 +/- 314.55 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/all-base-rarity
NasimB
2023-07-24T20:16:05Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-24T16:51:11Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-rarity results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-rarity This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.4936 | 0.31 | 500 | 5.4520 | | 5.1959 | 0.62 | 1000 | 5.1240 | | 4.8668 | 0.94 | 1500 | 4.9353 | | 4.6074 | 1.25 | 2000 | 4.8948 | | 4.4893 | 1.56 | 2500 | 4.8297 | | 4.3974 | 1.87 | 3000 | 4.7761 | | 4.2253 | 2.19 | 3500 | 4.7494 | | 4.1376 | 2.5 | 4000 | 4.7360 | | 4.1096 | 2.81 | 4500 | 4.7311 | | 3.9762 | 3.12 | 5000 | 4.7291 | | 3.8468 | 3.44 | 5500 | 4.7377 | | 3.8328 | 3.75 | 6000 | 4.7239 | | 3.7659 | 4.06 | 6500 | 4.7433 | | 3.5741 | 4.37 | 7000 | 4.7670 | | 3.5658 | 4.68 | 7500 | 4.7583 | | 3.5516 | 5.0 | 8000 | 4.7554 | | 3.385 | 5.31 | 8500 | 4.7837 | | 3.3829 | 5.62 | 9000 | 4.7885 | | 3.3787 | 5.93 | 9500 | 4.7913 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3