modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 06:27:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 06:27:11
card
stringlengths
11
1.01M
KyanChen/BuildingExtraction
KyanChen
2022-06-29T02:13:33Z
0
1
null
[ "region:us" ]
null
2022-06-29T01:34:01Z
# STTNet Paper: Building Extraction from Remote Sensing Images with Sparse Token Transformers 1. Prepare Data Prepare data for training, validation, and test phase. All images are with the resolution of $512 \times 512$. Please refer to the directory of **Data**. For larger images, you can patch the images with labels using **Tools/CutImgSegWithLabel.py**. 2. Get Data List Please refer to **Tools/GetTrainValTestCSV.py** to get the train, val, and test csv files. 3. Get Imgs Infos Please refer to **Tools/GetImgMeanStd.py** to get the mean value and standard deviation of the all image pixels in training set. 4. Modify Model Infos Please modify the model information if you want, or keep the default configuration. 5. Run to Train Train the model in **Main.py**. 6. [Optional] Run to Test Test the model with checkpoint in **Test.py**. We have provided pretrained models on INRIA and WHU Datasets. The pt models are in folder **Pretrain**. If you have any questions, please refer to [our paper](https://www.mdpi.com/2072-4292/13/21/4441) or contact with us by email. ``` @Article{rs13214441, AUTHOR = {Chen, Keyan and Zou, Zhengxia and Shi, Zhenwei}, TITLE = {Building Extraction from Remote Sensing Images with Sparse Token Transformers}, JOURNAL = {Remote Sensing}, VOLUME = {13}, YEAR = {2021}, NUMBER = {21}, ARTICLE-NUMBER = {4441}, URL = {https://www.mdpi.com/2072-4292/13/21/4441}, ISSN = {2072-4292}, DOI = {10.3390/rs13214441} } ```
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1
gary109
2022-06-29T01:00:45Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-28T05:51:25Z
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Wer: 0.1211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2609 | 1.0 | 280 | 0.2313 | 0.1376 | | 0.2297 | 2.0 | 560 | 0.2240 | 0.1397 | | 0.1951 | 3.0 | 840 | 0.2280 | 0.1361 | | 0.1816 | 4.0 | 1120 | 0.2215 | 0.1282 | | 0.1634 | 5.0 | 1400 | 0.2180 | 0.1240 | | 0.1338 | 6.0 | 1680 | 0.2226 | 0.1241 | | 0.1411 | 7.0 | 1960 | 0.2143 | 0.1211 | | 0.1143 | 8.0 | 2240 | 0.2181 | 0.1174 | | 0.1127 | 9.0 | 2520 | 0.2215 | 0.1167 | | 0.105 | 10.0 | 2800 | 0.2196 | 0.1160 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
jdang/dummy-model
jdang
2022-06-29T00:30:36Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-29T00:15:47Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (dummy test) This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is uncased: it does not make a difference between english and English. ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.05292855575680733, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.03968575969338417, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a business model. [SEP]", 'score': 0.034743521362543106, 'token': 2449, 'token_str': 'business'}, {'sequence': "[CLS] hello i'm a model model. [SEP]", 'score': 0.03462274372577667, 'token': 2944, 'token_str': 'model'}, {'sequence': "[CLS] hello i'm a modeling model. [SEP]", 'score': 0.018145186826586723, 'token': 11643, 'token_str': 'modeling'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("The White man worked as a [MASK].") [{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]', 'score': 0.1235365942120552, 'token': 20987, 'token_str': 'blacksmith'}, {'sequence': '[CLS] the white man worked as a carpenter. [SEP]', 'score': 0.10142576694488525, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the white man worked as a farmer. [SEP]', 'score': 0.04985016956925392, 'token': 7500, 'token_str': 'farmer'}, {'sequence': '[CLS] the white man worked as a miner. [SEP]', 'score': 0.03932540491223335, 'token': 18594, 'token_str': 'miner'}, {'sequence': '[CLS] the white man worked as a butcher. [SEP]', 'score': 0.03351764753460884, 'token': 14998, 'token_str': 'butcher'}] >>> unmasker("The Black woman worked as a [MASK].") [{'sequence': '[CLS] the black woman worked as a waitress. [SEP]', 'score': 0.13283951580524445, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the black woman worked as a nurse. [SEP]', 'score': 0.12586183845996857, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the black woman worked as a maid. [SEP]', 'score': 0.11708822101354599, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the black woman worked as a prostitute. [SEP]', 'score': 0.11499975621700287, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]', 'score': 0.04722772538661957, 'token': 22583, 'token_str': 'housekeeper'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 16 GB V100 for 90 hours. See the [training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters details. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 | ### BibTeX entry and citation info ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ``` <a href="https://huggingface.co/exbert/?model=distilbert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
huggingtweets/elonmusk-mrbeast
huggingtweets
2022-06-29T00:11:17Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-29T00:09:36Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-mrbeast/1656461472374/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994592419705274369/RLplF55e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & MrBeast</div> <div style="text-align: center; font-size: 14px;">@elonmusk-mrbeast</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & MrBeast. | Data | Elon Musk | MrBeast | | --- | --- | --- | | Tweets downloaded | 3200 | 3246 | | Retweets | 143 | 155 | | Short tweets | 972 | 716 | | Tweets kept | 2085 | 2375 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/w0y9m5al/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-mrbeast's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zbek5pwp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zbek5pwp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-mrbeast') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
workRL/q-Taxi-v3
workRL
2022-06-28T23:49:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T23:49:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
lucataco/DialogGPT-med-Rick
lucataco
2022-06-28T23:17:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-06T04:54:18Z
--- tags: - conversational --- # Rick Dialog GPT Model Medium 12 # Trained on: # kaggle rick n morty Tv transcript
Aalaa/distilgpt2-finetuned-wikitext2
Aalaa
2022-06-28T21:26:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-28T01:45:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
13hannes11/master_thesis_models
13hannes11
2022-06-28T21:14:01Z
0
0
null
[ "tensorboard", "focus-prediction", "microscopy", "pytorch", "license:mit", "region:us" ]
null
2022-03-08T16:31:24Z
--- name: "K-POP" license: "mit" metrics: - MAE - PLCC - SRCC - R2 tags: - focus-prediction - microscopy - pytorch --- # K-POP: Predicting Distance to Focal Plane for Kato-Katz Prepared Microscopy Slides Using Deep Learning <a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a><a href="https://pytorchlightning.ai/"> <img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a> <a href="https://hydra.cc/"><img alt="Config: Hydra" src="https://img.shields.io/badge/Config-Hydra-89b8cd"></a> ## Description This repository contains the models and training pipeline for my master thesis. The main repository is hosted on [GitHub](https://github.com/13hannes11/master_thesis_code). The project structure is based on the template by [ashleve](https://github.com/ashleve/lightning-hydra-template). The metadata is stored in `data/focus150/`. The relevant files are `test_metadata.csv`, `train_metadata.csv` and `validation_metadata.csv`. Image data (of 150 x 150 px images) is not published together with this repository therefore training runs are not possible to do without it. The layout of the metadata files is as follows ```csv ,image_path,scan_uuid,study_id,focus_height,original_filename,stack_id,obj_name 0,31/b0d4005e-57d0-4516-a239-abe02a8d0a67/I02413_X009_Y014_Z5107_750_300.jpg,b0d4005e-57d0-4516-a239-abe02a8d0a67,31,-0.013672000000000017,I02413_X009_Y014_Z5107.jpg,1811661,schistosoma 1,31/274d8969-aa7c-4ac0-be60-e753579393ad/I01981_X019_Y014_Z4931_450_0.jpg,274d8969-aa7c-4ac0-be60-e753579393ad,31,-0.029296999999999962,I01981_X019_Y014_Z4931.jpg,1661371,schistosoma ... ``` ## How to run Train model with chosen experiment configuration from `configs/experiment/` ```bash python train.py experiment=focusResNet_150 ``` Train with hyperparameter search from `configs/hparams_search/` ```bash python train.py -m hparams_search=focusResNetMSE_150 ``` You can override any parameter from command line like this ```bash python train.py trainer.max_epochs=20 datamodule.batch_size=64 ``` ## Jupyter notebooks Figures and other evaluation code was run in Jupyter notebooks. These are available at `notebooks/`
rishiyoung/xlm-roberta-base-finetuned-panx-de
rishiyoung
2022-06-28T20:49:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-28T20:26:08Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
PrimeQA/tydiqa-boolean-question-classifier
PrimeQA
2022-06-28T20:19:31Z
5,988
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:1810.04805", "arxiv:2206.08441", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T14:54:52Z
--- license: apache-2.0 --- ## Model description A question type classification model based on multilingual BERT. The question type classifier takes as input the question, and returns a label that distinguishes between boolean and short answer extractive questions. The model was initialized with [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) and fine-tuned on the answerable subset of [TyDiQA](https://huggingface.co/datasets/tydiqa) train questions. ## Intended uses & limitations You can use the raw model for question classification. Biases associated with the pre-existing language model, bert-base-multilingual-cased, may be present in our fine-tuned model, tydiqa-boolean-question-classifier. ## Usage You can use this model directly in the the [PrimeQA](https://github.com/primeqa/primeqa) framework for supporting boolean question in reading comprehension as in this [example](https://github.com/primeqa/primeqa/tree/main/examples/boolqa). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ```bibtex @misc{https://doi.org/10.48550/arxiv.2206.08441, author = {McCarley, Scott and Bornea, Mihaela and Rosenthal, Sara and Ferritto, Anthony and Sultan, Md Arafat and Sil, Avirup and Florian, Radu}, title = {GAAMA 2.0: An Integrated System that Answers Boolean and Extractive Questions}, journal = {CoRR}, publisher = {arXiv}, year = {2022}, url = {https://arxiv.org/abs/2206.08441}, } ```
syndi-models/article-title-generator
syndi-models
2022-06-28T20:08:16Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-09T18:49:29Z
--- license: mit --- ## Article Title Generator The model is based on the T5 language model and trained using a large collection of Medium articles. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("czearing/article-title-generator") model = AutoModel.from_pretrained("czearing/article-title-generator") ``` ## License MIT
PrimeQA/tydiqa-boolean-answer-classifier
PrimeQA
2022-06-28T19:52:14Z
36
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "arxiv:2112.07772", "arxiv:2206.08441", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-09T17:11:51Z
--- license: apache-2.0 --- ## Model description An answer classification model for boolean questions based on XLM-RoBERTa. The answer classifier takes as input a boolean question and a passage, and returns a label (yes, no-answer, no). The model was initialized with [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tuned on the boolean questions from [TyDiQA](https://huggingface.co/datasets/tydiqa), as well as [BoolQ-X](https://arxiv.org/abs/2112.07772#). ## Intended uses & limitations You can use the raw model for question classification. Biases associated with the pre-existing language model, xlm-roberta-large, may be present in our fine-tuned model, tydiqa-boolean-answer-classifier. ## Usage You can use this model directly in the the [PrimeQA](https://github.com/primeqa/primeqa) framework for supporting boolean questions in reading comprehension: [examples](https://github.com/primeqa/primeqa/tree/main/examples/boolqa). ### BibTeX entry and citation info ```bibtex @article{Rosenthal2021DoAT, title={Do Answers to Boolean Questions Need Explanations? Yes}, author={Sara Rosenthal and Mihaela A. Bornea and Avirup Sil and Radu Florian and Scott McCarley}, journal={ArXiv}, year={2021}, volume={abs/2112.07772} } ``` ```bibtex @misc{https://doi.org/10.48550/arxiv.2206.08441, author = {McCarley, Scott and Bornea, Mihaela and Rosenthal, Sara and Ferritto, Anthony and Sultan, Md Arafat and Sil, Avirup and Florian, Radu}, title = {GAAMA 2.0: An Integrated System that Answers Boolean and Extractive Questions}, journal = {CoRR}, publisher = {arXiv}, year = {2022}, url = {https://arxiv.org/abs/2206.08441}, } ```
YushiUeda/callhome_adapt_real
YushiUeda
2022-06-28T19:34:58Z
5
0
espnet
[ "espnet", "audio", "diarization", "dataset:callhome", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-06-28T19:34:35Z
--- tags: - espnet - audio - diarization language: noinfo datasets: - callhome license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `YushiUeda/callhome_adapt_real` This model was trained by YushiUeda using callhome recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 0cabe65afd362122e77b04e2e967986a91de0fd8 pip install -e . cd egs2/callhome/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/callhome_adapt_real ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Mon Jun 20 10:30:23 EDT 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 202205` - pytorch version: `pytorch 1.9.1+cu102` - Git hash: `fc62b1ce3e50c5ef8a2ac8cedb0d92ac41df54ca` - Commit date: `Thu Jun 9 16:29:52 2022 +0900` ## diar_train_diar_eda_adapt_real_lr0001 ### DER diarized_callhome2_spkall |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.25|22.29| |result_th0.3_med1_collar0.25|23.27| |result_th0.4_med11_collar0.25|19.85| |result_th0.4_med1_collar0.25|20.80| |result_th0.5_med11_collar0.25|19.26| |result_th0.5_med1_collar0.25|20.18| |result_th0.6_med11_collar0.25|20.24| |result_th0.6_med1_collar0.25|21.08| |result_th0.7_med11_collar0.25|22.38| |result_th0.7_med1_collar0.25|23.17| ## DIAR config <details><summary>expand</summary> ``` config: conf/tuning/train_diar_eda_adapt.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/diar_train_diar_eda_adapt_real_lr0001 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max - - train - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 16 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - exp/diar_train_diar_eda_adapt_simu/latest.pth ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 1 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: sorted valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/callhome1_spkall/wav.scp - speech - sound - - dump/raw/callhome1_spkall/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/callhome2_spkall/wav.scp - speech - sound - - dump/raw/callhome2_spkall/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: null scheduler_conf: {} num_spk: 7 init: null input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: specaug specaug_conf: apply_time_warp: false apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 4 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.1 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: win_length: 1024 hop_length: 512 attractor: rnn attractor_conf: unit: 256 layer: 1 dropout: 0.0 attractor_grad: false required: - output_dir version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
YushiUeda/callhome_adapt_simu
YushiUeda
2022-06-28T19:33:39Z
3
0
espnet
[ "espnet", "audio", "diarization", "dataset:callhome", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-06-28T19:32:41Z
--- tags: - espnet - audio - diarization language: noinfo datasets: - callhome license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `YushiUeda/callhome_adapt_simu` This model was trained by YushiUeda using callhome recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 0cabe65afd362122e77b04e2e967986a91de0fd8 pip install -e . cd egs2/callhome/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/callhome_adapt_simu ``` ## DIAR config <details><summary>expand</summary> ``` config: conf/tuning/train_diar_eda_adapt.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/diar_train_diar_eda_adapt_simu ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 43777 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max - - train - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - exp/diar_train_diar_eda_5_raw/latest.pth ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/simu/data/swb_sre_tr_ns1n2n3n4_beta2n2n5n9_100000/wav.scp - speech - sound - - dump/raw/simu/data/swb_sre_tr_ns1n2n3n4_beta2n2n5n9_100000/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/swb_sre_cv_ns1n2n3n4_beta2n2n5n9_500/wav.scp - speech - sound - - dump/raw/simu/data/swb_sre_cv_ns1n2n3n4_beta2n2n5n9_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: null scheduler_conf: {} num_spk: 4 init: null input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: specaug specaug_conf: apply_time_warp: false apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 4 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.1 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: win_length: 1024 hop_length: 512 attractor: rnn attractor_conf: unit: 256 layer: 1 dropout: 0.0 attractor_grad: true required: - output_dir version: '202204' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
b3ck1/gpt-neo-125M-finetuned-beer-recipes
b3ck1
2022-06-28T19:03:17Z
14
3
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - text generation - pytorch - causal-lm license: apache-2.0 datasets: - custom widget: - text: "style: Pilsner\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "Pilsener" - text: "style: IPA\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "IPA" - text: "style: Scottish Ale\nbatch_size: 20\nefficiency: 75\nboil_size:" example_title: "Scottish Ale" inference: parameters: do_sample: true top_k: 10 top_p: 0.99 max_length: 500 --- # GPT-Neo 125M finetuned with beer recipes ## Model Description GPT-Neo 125M is a transformer model based on EleutherAI's replication of the GPT-3 architecture https://huggingface.co/EleutherAI/gpt-neo-125M. It generates recipes for brewing beer in a YAML-like format which can be easily used for different purposes. ## Training data This model was trained on a custom dataset of ~ 76,800 beer recipes from the internet. It includes recipes for the following styles of beer: * Strong American Ale * Pale American Ale * India Pale Ale (IPA) * Standard American Beer * Stout * English Pale Ale * IPA * American Porter and Stout * Sour Ale * Irish Beer * Strong British Ale * Belgian and French Ale * German Wheat and Rye Beer * Czech Lager * Spice/Herb/Vegetable Beer * Specialty Beer * American Ale * Pilsner * Belgian Ale * Strong Belgian Ale * Bock * Brown British Beer * German Wheat Beer * Fruit Beer * Amber Malty European Lager * Pale Malty European Lager * British Bitter * Amber and Brown American Beer * Light Hybrid Beer * Pale Commonwealth Beer * American Wild Ale * European Amber Lager * Belgian Strong Ale * International Lager * Amber Bitter European Lager * Light Lager * Scottish and Irish Ale * European Sour Ale * Trappist Ale * Strong European Beer * Porter * Historical Beer * Pale Bitter European Beer * Amber Hybrid Beer * Smoke Flavored/Wood-Aged Beer * Spiced Beer * Dark European Lager * Alternative Fermentables Beer * Mead * Strong Ale * Dark British Beer * Scottish Ale * Smoked Beer * English Brown Ale * Dark Lager * Cider or Perry * Wood Beer ### How to use You can use this model directly with a pipeline for text generation. This example generates a different recipe each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='b3ck1/gpt-neo-125M-finetuned-beer-recipes') >>> generator("style: Pilsner\nbatch_size: 20\nefficiency: 75\nboil_size:", do_sample=True, min_length=50, max_length=500) >>> print(output[0]['generated_text']) style: Pilsner batch_size: 20 efficiency: 70 boil_size: 24 boil_time: 60 fermentables: - name: Pale Ale type: Grain amount: 6.5 hops: - name: Saaz alpha: 3.5 use: Boil time: 60 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 30 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 10 amount: 0.06 - name: Saaz alpha: 3.5 use: Boil time: 0 amount: 0.06 yeasts: - name: Safale - American Ale Yeast US-05 amount: 0.11 min_temperature: 12 max_temperature: 25 primary_temp: null mash_steps: - step_temp: 65 step_time: 60 miscs: [] ``` ### See this model in action This model was used to build https://beerai.net.
zunicd/finetuning-sentiment-model-3000-samples
zunicd
2022-06-28T18:12:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-28T17:48:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8741721854304636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3349 - Accuracy: 0.8733 - F1: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
DeepPavlov/distilrubert-small-cased-conversational
DeepPavlov
2022-06-28T17:19:09Z
28,705
3
transformers
[ "transformers", "pytorch", "distilbert", "ru", "arxiv:2205.02340", "arxiv:1910.01108", "endpoints_compatible", "region:us" ]
null
2022-06-28T17:15:00Z
--- language: - ru --- # distilrubert-small-cased-conversational Conversational DistilRuBERT-small \(Russian, cased, 2‑layer, 768‑hidden, 12‑heads, 107M parameters\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)). It can be considered as small copy of [Conversational DistilRuBERT-base](https://huggingface.co/DeepPavlov/distilrubert-base-cased-conversational). Our DistilRuBERT-small was highly inspired by \[3\], \[4\]. Namely, we used * KL loss (between teacher and student output logits) * MLM loss (between tokens labels and student output logits) * Cosine embedding loss (between averaged six consecutive hidden states from teacher's encoder and one hidden state of the student) * MSE loss (between averaged six consecutive attention maps from teacher's encoder and one attention map of the student) The model was trained for about 80 hrs. on 8 nVIDIA Tesla P100-SXM2.0 16Gb. To evaluate improvements in the inference speed, we ran teacher and student models on random sequences with seq_len=512, batch_size = 16 (for throughput) and batch_size=1 (for latency). All tests were performed on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and nVIDIA Tesla P100-SXM2.0 16Gb. | Model | Size, Mb. | CPU latency, sec.| GPU latency, sec. | CPU throughput, samples/sec. | GPU throughput, samples/sec. | |-------------------------------------------------|------------|------------------|-------------------|------------------------------|------------------------------| | Teacher (RuBERT-base-cased-conversational) | 679 | 0.655 | 0.031 | 0.3754 | 36.4902 | | Student (DistilRuBERT-small-cased-conversational)| 409 | 0.1656 | 0.015 | 0.9692 | 71.3553 | To evaluate model quality, we fine-tuned DistilRuBERT-small on classification, NER and question answering tasks. Scores and archives with fine-tuned models can be found in [DeepPavlov docs](http://docs.deeppavlov.ai/en/master/features/overview.html#models). Also, results could be found in the [paper](https://arxiv.org/abs/2205.02340) Tables 1&2 as well as performance benchmarks and training details. # Citation If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper: ``` @misc{https://doi.org/10.48550/arxiv.2205.02340, doi = {10.48550/ARXIV.2205.02340}, url = {https://arxiv.org/abs/2205.02340}, author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` \[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\) \[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017. \[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. \[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation>
DeepPavlov/distilrubert-tiny-cased-conversational
DeepPavlov
2022-06-28T17:10:33Z
1,401
3
transformers
[ "transformers", "pytorch", "distilbert", "ru", "arxiv:2205.02340", "arxiv:1910.01108", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: - ru --- WARNING: This is `distilrubert-small-cased-conversational` model uploaded with wrong name. This one is the same as [distilrubert-small-cased-conversational](https://huggingface.co/DeepPavlov/distilrubert-small-cased-conversational). `distilrubert-tiny-cased-conversational` could be found in [distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1). # distilrubert-small-cased-conversational Conversational DistilRuBERT-small \(Russian, cased, 2‑layer, 768‑hidden, 12‑heads, 107M parameters\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)). It can be considered as small copy of [Conversational DistilRuBERT-base](https://huggingface.co/DeepPavlov/distilrubert-base-cased-conversational). Our DistilRuBERT-small was highly inspired by \[3\], \[4\]. Namely, we used * KL loss (between teacher and student output logits) * MLM loss (between tokens labels and student output logits) * Cosine embedding loss (between averaged six consecutive hidden states from teacher's encoder and one hidden state of the student) * MSE loss (between averaged six consecutive attention maps from teacher's encoder and one attention map of the student) The model was trained for about 80 hrs. on 8 nVIDIA Tesla P100-SXM2.0 16Gb. To evaluate improvements in the inference speed, we ran teacher and student models on random sequences with seq_len=512, batch_size = 16 (for throughput) and batch_size=1 (for latency). All tests were performed on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and nVIDIA Tesla P100-SXM2.0 16Gb. | Model | Size, Mb. | CPU latency, sec.| GPU latency, sec. | CPU throughput, samples/sec. | GPU throughput, samples/sec. | |-------------------------------------------------|------------|------------------|-------------------|------------------------------|------------------------------| | Teacher (RuBERT-base-cased-conversational) | 679 | 0.655 | 0.031 | 0.3754 | 36.4902 | | Student (DistilRuBERT-small-cased-conversational)| 409 | 0.1656 | 0.015 | 0.9692 | 71.3553 | To evaluate model quality, we fine-tuned DistilRuBERT-small on classification, NER and question answering tasks. Scores and archives with fine-tuned models can be found in [DeepPavlov docs](http://docs.deeppavlov.ai/en/master/features/overview.html#models). # Citation If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper: ``` @misc{https://doi.org/10.48550/arxiv.2205.02340, doi = {10.48550/ARXIV.2205.02340}, url = {https://arxiv.org/abs/2205.02340}, author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` \[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\) \[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017. \[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. \[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation>
DeepPavlov/distilrubert-tiny-cased-conversational-5k
DeepPavlov
2022-06-28T17:05:02Z
7
1
transformers
[ "transformers", "pytorch", "distilbert", "ru", "arxiv:2205.02340", "arxiv:1910.01108", "endpoints_compatible", "region:us" ]
null
2022-06-28T16:24:27Z
--- language: - ru --- # distilrubert-tiny-cased-conversational-5k Conversational DistilRuBERT-tiny-5k \(Russian, cased, 3‑layers, 264‑hidden, 12‑heads, 3.6M parameters, 5k vocab\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)). Our DistilRuBERT-tiny-5k is highly inspired by \[3\], \[4\] and architecture is very close to \[5\]. Namely, we use * MLM loss (between token labels and student output distribution) * KL loss (between averaged student and teacher hidden states) The key feature is: * reduced vocabulary size (5K vs 30K in *tiny* vs. 100K in *base* and *small*) Here is comparison between teacher model (`Conversational RuBERT`) and other distilled models. | Model name | \# params, M | \# vocab, K | Mem., MB | |---|---|---|---| | `rubert-base-cased-conversational` | 177.9 | 120 | 679 | | `distilrubert-base-cased-conversational` | 135.5 | 120 | 517 | | `distilrubert-small-cased-conversational` | 107.1 | 120 | 409 | | `cointegrated/rubert-tiny` | 11.8 | 30 | 46 | | `cointegrated/rubert-tiny2` | 29.3 | 84 | 112 | | `distilrubert-tiny-cased-conversational-v1` | 10.4 | 31 | 41 | | `distilrubert-tiny-cased-conversational-5k` | **3.6** | 5 | **14** | DistilRuBERT-tiny was trained for about 100 hrs. on 7 nVIDIA Tesla P100-SXM2.0 16Gb. We used `PyTorchBenchmark` from `transformers` to evaluate model's performance and compare it with other pre-trained language models for Russian. All tests were performed on NVIDIA GeForce GTX 1080 Ti and Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz | Model name | Batch size | Seq len | Time, s || Mem, MB || |---|---|---|------||------|| | | | | CPU | GPU | CPU | GPU | | `rubert-base-cased-conversational` | 16 | 512 | 5.283 | 0.1866 | 1550 | 1938 | | `distilrubert-base-cased-conversational` | 16 | 512 | 2.335 | 0.0553 | 2177 | 2794 | | `distilrubert-small-cased-conversational` | 16 | 512 | 0.802 | **0.0015** | 1541 | 1810 | | `cointegrated/rubert-tiny` | 16 | 512 | 0.942 | 0.0022 | 1308 | 2088 | | `cointegrated/rubert-tiny2` | 16 | 512 | 1.786 | 0.0023 | 3054 | 3848 | | `distilrubert-tiny-cased-conversational-v1` | 16 | 512 | **0.374** | **0.002** | **714** | **1158** | | `distilrubert-tiny-cased-conversational-5k` | 16 | 512 | **0.354** | **0.0018** | **664** | **1126** | To evaluate model quality, we fine-tuned DistilRuBERT-tiny-5k on classification (RuSentiment, ParaPhraser), NER and question answering data sets for Russian. The results could be found in the [paper](https://arxiv.org/abs/2205.02340) Table 4 as well as performance benchmarks and training details. # Citation If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper: ``` @misc{https://doi.org/10.48550/arxiv.2205.02340, doi = {10.48550/ARXIV.2205.02340}, url = {https://arxiv.org/abs/2205.02340}, author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` \[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\) \[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017. \[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108. \[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation> \[5\]: <https://habr.com/ru/post/562064/>, <https://huggingface.co/cointegrated/rubert-tiny>
fxtentacle/wav2vec2-xls-r-1b-tevr
fxtentacle
2022-06-28T16:22:18Z
27
14
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hf-asr-leaderboard", "de", "dataset:common_voice", "arxiv:2206.12693", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-06-02T09:09:53Z
--- language: de datasets: - common_voice inference: false metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec 2.0 XLS-R 1B + TEVR tokens + 5-gram LM by Hajo Nils Krabbenhöft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 3.6433399042523233 - name: Test CER type: cer value: 1.5398893560981173 --- ## Overview This folder contains a fully trained German speech recognition pipeline consisting of an acoustic model using the new wav2vec 2.0 XLS-R 1B **TEVR** architecture and a 5-gram KenLM language model. For an explanation of the TEVR enhancements and their motivation, please see our paper: [TEVR: Improving Speech Recognition by Token Entropy Variance Reduction](https://arxiv.org/abs/2206.12693). [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tevr-improving-speech-recognition-by-token/speech-recognition-on-common-voice-german)](https://paperswithcode.com/sota/speech-recognition-on-common-voice-german?p=tevr-improving-speech-recognition-by-token) This pipeline scores a very competitive (as of June 2022) **word error rate of 3.64%** on CommonVoice German. The character error rate was 1.54%. ## Citation If you use this ASR pipeline for research, please cite: ```bibtex @misc{https://doi.org/10.48550/arxiv.2206.12693, doi = {10.48550/ARXIV.2206.12693}, url = {https://arxiv.org/abs/2206.12693}, author = {Krabbenhöft, Hajo Nils and Barth, Erhardt}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, F.2.1; I.2.6; I.2.7}, title = {TEVR: Improving Speech Recognition by Token Entropy Variance Reduction}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## TEVR Tokenizer Creation / Testing See https://huggingface.co/fxtentacle/tevr-token-entropy-predictor-de for: - our trained ByT5 model used to calculate the entropies in the paper - a Jupyter Notebook to generate a TEVR Tokenizer from a text corpus - a Jupyter Notebook to generate the illustration image in the paper ## Evaluation To evalue this pipeline yourself and/or on your own data, see the `HF Eval Script.ipynb` Jupyter Notebook or use the following python script: ```python !pip install --quiet --root-user-action=ignore --upgrade pip !pip install --quiet --root-user-action=ignore "datasets>=1.18.3" "transformers==4.11.3" librosa jiwer huggingface_hub !pip install --quiet --root-user-action=ignore https://github.com/kpu/kenlm/archive/master.zip pyctcdecode !pip install --quiet --root-user-action=ignore --upgrade transformers !pip install --quiet --root-user-action=ignore torch_audiomentations audiomentations ``` ```python from datasets import load_dataset, Audio, load_metric from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM import torchaudio.transforms as T import torch import unicodedata import numpy as np import re # load testing dataset testing_dataset = load_dataset("common_voice", "de", split="test") # replace invisible characters with space allchars = list(set([c for t in testing_dataset['sentence'] for c in list(t)])) map_to_space = [c for c in allchars if unicodedata.category(c)[0] in 'PSZ' and c not in 'ʻ-'] replacements = ''.maketrans(''.join(map_to_space), ''.join(' ' for i in range(len(map_to_space))), '\'ʻ') def text_fix(text): # change ß to ss text = text.replace('ß','ss') # convert dash to space and remove double-space text = text.replace('-',' ').replace(' ',' ').replace(' ',' ') # make lowercase text = text.lower() # remap all invisible characters to space text = text.translate(replacements).strip() # for easier comparison to Zimmermeister, replace unrepresentable characters with ? text = re.sub("[âşěýňעảנźțãòàǔł̇æồאắîשðșęūāñë生בøúıśžçćńřğ]+","?",text) # remove multiple spaces (again) text = ' '.join([w for w in text.split(' ') if w != '']) return text # load model model = AutoModelForCTC.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") model.to('cuda') # load processor class HajoProcessor(Wav2Vec2ProcessorWithLM): @staticmethod def get_missing_alphabet_tokens(decoder, tokenizer): return [] processor = HajoProcessor.from_pretrained("fxtentacle/wav2vec2-xls-r-1b-tevr") # this function will be called for each WAV file def predict_single_audio(batch, image=False): audio = batch['audio']['array'] # resample, if needed if batch['audio']['sampling_rate'] != 16000: audio = T.Resample(orig_freq=batch['audio']['sampling_rate'], new_freq=16000)(torch.from_numpy(audio)).numpy() # normalize audio = (audio - audio.mean()) / np.sqrt(audio.var() + 1e-7) # ask HF processor to prepare audio for GPU eval input_values = processor(audio, return_tensors="pt", sampling_rate=16_000).input_values # call model on GPU with torch.no_grad(): logits = model(input_values.to('cuda')).logits.cpu().numpy()[0] # ask HF processor to decode logits decoded = processor.decode(logits, beam_width=500) # return as dictionary return { 'groundtruth': text_fix(batch['sentence']), 'prediction': decoded.text } # process all audio files all_predictions = testing_dataset.map(predict_single_audio, remove_columns=testing_dataset.column_names) # print results print('WER', load_metric("wer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') print('CER', load_metric("cer").compute(predictions=all_predictions['prediction'], references=all_predictions['groundtruth'])*100.0, '%') ``` WER 3.6433399042523233 % CER 1.5398893560981173 %
Parkerboys211/IDK
Parkerboys211
2022-06-28T15:45:54Z
0
0
null
[ "region:us" ]
null
2022-06-28T15:44:55Z
can someone teach me how to do this pls help me--- license: isc ---
Salvatore/bert-finetuned-ner
Salvatore
2022-06-28T15:24:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-16T09:09:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0997 - Proteinmutation F1: 0.1309 - Snp F1: 0.1953 - Dnamutation F1: 0.3778 - Precision: 0.2380 - Recall: 0.2416 - F1: 0.2398 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Proteinmutation F1 | Snp F1 | Dnamutation F1 | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:------:|:--------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 324 | 0.0533 | 0.0396 | 0.2830 | 0.4667 | 0.2334 | 0.3221 | 0.2707 | 0.9788 | | 0.1072 | 2.0 | 648 | 0.0437 | 0.6065 | 0.4906 | 0.5009 | 0.4802 | 0.6348 | 0.5468 | 0.9868 | | 0.1072 | 3.0 | 972 | 0.0592 | 0.1379 | 0.2485 | 0.2005 | 0.1639 | 0.2228 | 0.1889 | 0.9731 | | 0.0573 | 4.0 | 1296 | 0.0722 | 0.0749 | 0.2530 | 0.4692 | 0.2705 | 0.2959 | 0.2826 | 0.9749 | | 0.0431 | 5.0 | 1620 | 0.0766 | 0.1574 | 0.1847 | 0.2540 | 0.1766 | 0.2285 | 0.1992 | 0.9723 | | 0.0431 | 6.0 | 1944 | 0.0805 | 0.1099 | 0.2202 | 0.2383 | 0.1657 | 0.2097 | 0.1851 | 0.9715 | | 0.0396 | 7.0 | 2268 | 0.0886 | 0.1337 | 0.2138 | 0.4318 | 0.2683 | 0.2678 | 0.2680 | 0.9724 | | 0.0354 | 8.0 | 2592 | 0.0927 | 0.1535 | 0.2113 | 0.3769 | 0.2505 | 0.2528 | 0.2516 | 0.9714 | | 0.0354 | 9.0 | 2916 | 0.0978 | 0.1011 | 0.2540 | 0.3812 | 0.2495 | 0.2528 | 0.2512 | 0.9705 | | 0.0312 | 10.0 | 3240 | 0.0997 | 0.1309 | 0.1953 | 0.3778 | 0.2380 | 0.2416 | 0.2398 | 0.9703 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.12.1
mmdjiji/bert-chinese-idioms
mmdjiji
2022-06-28T14:12:31Z
7
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-28T02:02:33Z
--- license: gpl-3.0 --- For the detail, see [github:mmdjiji/bert-chinese-idioms](https://github.com/mmdjiji/bert-chinese-idioms).
huggingtweets/g__j
huggingtweets
2022-06-28T13:36:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-28T13:36:09Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/959389610978742273/jfOMGQ1B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Greg Jackson</div> <div style="text-align: center; font-size: 14px;">@g__j</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Greg Jackson. | Data | Greg Jackson | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 187 | | Short tweets | 179 | | Tweets kept | 2884 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sl53oes/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @g__j's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/stwh74do) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/stwh74do/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/g__j') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
alleniver/my_test_cat
alleniver
2022-06-28T12:12:49Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-06-28T12:12:21Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5
gary109
2022-06-28T11:49:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T14:51:07Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v5 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0163 - Wer: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8867 | 1.0 | 376 | 1.0382 | 0.6821 | | 0.8861 | 2.0 | 752 | 1.0260 | 0.6686 | | 0.8682 | 3.0 | 1128 | 1.0358 | 0.6604 | | 0.8662 | 4.0 | 1504 | 1.0234 | 0.6665 | | 0.8463 | 5.0 | 1880 | 1.0333 | 0.6666 | | 0.8573 | 6.0 | 2256 | 1.0163 | 0.6622 | | 0.8628 | 7.0 | 2632 | 1.0209 | 0.6551 | | 0.8493 | 8.0 | 3008 | 1.0525 | 0.6582 | | 0.8371 | 9.0 | 3384 | 1.0409 | 0.6515 | | 0.8229 | 10.0 | 3760 | 1.0597 | 0.6523 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
twieland/MIX3_ja-en_helsinki
twieland
2022-06-28T11:46:58Z
113
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-22T00:54:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX3_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX3_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 2.8699 | 0.01 | 5000 | 2.3465 | | 2.6168 | 0.02 | 10000 | 2.2205 | | 2.5083 | 0.03 | 15000 | 2.2382 | | 2.4359 | 0.04 | 20000 | 2.1670 | | 2.3821 | 0.06 | 25000 | 2.1122 | | 2.3358 | 0.07 | 30000 | 2.0902 | | 2.3045 | 0.08 | 35000 | 2.0461 | | 2.2782 | 0.09 | 40000 | 2.0290 | | 2.2481 | 0.1 | 45000 | 1.9910 | | 2.2267 | 0.11 | 50000 | 2.0059 | | 2.2056 | 0.12 | 55000 | 1.9858 | | 2.1903 | 0.13 | 60000 | 1.9725 | | 2.173 | 0.15 | 65000 | 1.9797 | | 2.154 | 0.16 | 70000 | 1.9654 | | 2.1429 | 0.17 | 75000 | 1.9567 | | 2.1304 | 0.18 | 80000 | 1.9348 | | 2.1232 | 0.19 | 85000 | 1.9361 | | 2.116 | 0.2 | 90000 | 1.9277 | | 2.1016 | 0.21 | 95000 | 1.9193 | | 2.0984 | 0.22 | 100000 | 1.9064 | | 2.0797 | 0.24 | 105000 | 1.9177 | | 2.0767 | 0.25 | 110000 | 1.8975 | | 2.0642 | 0.26 | 115000 | 1.8782 | | 2.0595 | 0.27 | 120000 | 1.9012 | | 2.0533 | 0.28 | 125000 | 1.8977 | | 2.044 | 0.29 | 130000 | 1.8984 | | 2.0374 | 0.3 | 135000 | 1.9221 | | 2.0305 | 0.31 | 140000 | 1.9243 | | 2.02 | 0.32 | 145000 | 1.8773 | | 2.0195 | 0.34 | 150000 | 1.8676 | | 2.0151 | 0.35 | 155000 | 1.8637 | | 2.0065 | 0.36 | 160000 | 1.8556 | | 2.0037 | 0.37 | 165000 | 1.8399 | | 1.9963 | 0.38 | 170000 | 1.8452 | | 1.9878 | 0.39 | 175000 | 1.8644 | | 1.9871 | 0.4 | 180000 | 1.8576 | | 1.9779 | 0.41 | 185000 | 1.8509 | | 1.9721 | 0.43 | 190000 | 1.8405 | | 1.9724 | 0.44 | 195000 | 1.8594 | | 1.9685 | 0.45 | 200000 | 1.8540 | | 1.9634 | 0.46 | 205000 | 1.8694 | | 1.9583 | 0.47 | 210000 | 1.8591 | | 1.9557 | 0.48 | 215000 | 1.8539 | | 1.9494 | 0.49 | 220000 | 1.8673 | | 1.9484 | 0.5 | 225000 | 1.8021 | | 1.9395 | 0.52 | 230000 | 1.8309 | | 1.9384 | 0.53 | 235000 | 1.7933 | | 1.937 | 0.54 | 240000 | 1.8199 | | 1.9315 | 0.55 | 245000 | 1.8065 | | 1.9276 | 0.56 | 250000 | 1.7857 | | 1.9248 | 0.57 | 255000 | 1.8207 | | 1.9195 | 0.58 | 260000 | 1.7898 | | 1.9187 | 0.59 | 265000 | 1.8097 | | 1.9138 | 0.6 | 270000 | 1.7909 | | 1.9094 | 0.62 | 275000 | 1.7995 | | 1.9098 | 0.63 | 280000 | 1.8165 | | 1.9038 | 0.64 | 285000 | 1.8132 | | 1.9034 | 0.65 | 290000 | 1.7951 | | 1.899 | 0.66 | 295000 | 1.7880 | | 1.8965 | 0.67 | 300000 | 1.7953 | | 1.8941 | 0.68 | 305000 | 1.7986 | | 1.8919 | 0.69 | 310000 | 1.7964 | | 1.8875 | 0.71 | 315000 | 1.8041 | | 1.884 | 0.72 | 320000 | 1.7764 | | 1.8798 | 0.73 | 325000 | 1.8019 | | 1.8801 | 0.74 | 330000 | 1.7790 | | 1.8809 | 0.75 | 335000 | 1.7849 | | 1.8736 | 0.76 | 340000 | 1.7800 | | 1.8727 | 0.77 | 345000 | 1.7900 | | 1.8722 | 0.78 | 350000 | 1.7727 | | 1.8699 | 0.8 | 355000 | 1.7597 | | 1.8672 | 0.81 | 360000 | 1.7824 | | 1.8638 | 0.82 | 365000 | 1.7674 | | 1.8609 | 0.83 | 370000 | 1.7715 | | 1.8584 | 0.84 | 375000 | 1.7694 | | 1.8568 | 0.85 | 380000 | 1.7776 | | 1.8523 | 0.86 | 385000 | 1.7697 | | 1.8584 | 0.87 | 390000 | 1.7436 | | 1.8474 | 0.88 | 395000 | 1.7644 | | 1.8492 | 0.9 | 400000 | 1.7732 | | 1.8465 | 0.91 | 405000 | 1.7611 | | 1.846 | 0.92 | 410000 | 1.7717 | | 1.8431 | 0.93 | 415000 | 1.7514 | | 1.8402 | 0.94 | 420000 | 1.7353 | | 1.8398 | 0.95 | 425000 | 1.7720 | | 1.8314 | 0.96 | 430000 | 1.7728 | | 1.8322 | 0.97 | 435000 | 1.7491 | | 1.8284 | 0.99 | 440000 | 1.7561 | | 1.8301 | 1.0 | 445000 | 1.7499 | | 1.8182 | 1.01 | 450000 | 1.7514 | | 1.8111 | 1.02 | 455000 | 1.7596 | | 1.8116 | 1.03 | 460000 | 1.7455 | | 1.8098 | 1.04 | 465000 | 1.7495 | | 1.809 | 1.05 | 470000 | 1.7446 | | 1.8088 | 1.06 | 475000 | 1.7290 | | 1.8127 | 1.08 | 480000 | 1.7453 | | 1.8051 | 1.09 | 485000 | 1.7495 | | 1.8026 | 1.1 | 490000 | 1.7453 | | 1.8028 | 1.11 | 495000 | 1.7615 | | 1.8046 | 1.12 | 500000 | 1.7491 | | 1.8052 | 1.13 | 505000 | 1.7280 | | 1.7997 | 1.14 | 510000 | 1.7482 | | 1.7976 | 1.15 | 515000 | 1.7368 | | 1.7981 | 1.16 | 520000 | 1.7354 | | 1.7949 | 1.18 | 525000 | 1.7076 | | 1.7943 | 1.19 | 530000 | 1.7020 | | 1.7911 | 1.2 | 535000 | 1.7121 | | 1.7909 | 1.21 | 540000 | 1.7170 | | 1.7926 | 1.22 | 545000 | 1.7310 | | 1.7856 | 1.23 | 550000 | 1.7218 | | 1.7875 | 1.24 | 555000 | 1.7362 | | 1.7801 | 1.25 | 560000 | 1.7484 | | 1.7854 | 1.27 | 565000 | 1.7466 | | 1.7799 | 1.28 | 570000 | 1.7248 | | 1.7823 | 1.29 | 575000 | 1.7355 | | 1.7765 | 1.3 | 580000 | 1.7188 | | 1.7779 | 1.31 | 585000 | 1.6993 | | 1.7751 | 1.32 | 590000 | 1.7154 | | 1.7762 | 1.33 | 595000 | 1.7348 | | 1.7725 | 1.34 | 600000 | 1.7272 | | 1.7701 | 1.36 | 605000 | 1.7157 | | 1.7644 | 1.37 | 610000 | 1.7161 | | 1.7707 | 1.38 | 615000 | 1.6961 | | 1.764 | 1.39 | 620000 | 1.6930 | | 1.7639 | 1.4 | 625000 | 1.6927 | | 1.7654 | 1.41 | 630000 | 1.6989 | | 1.7623 | 1.42 | 635000 | 1.6892 | | 1.7598 | 1.43 | 640000 | 1.6911 | | 1.7575 | 1.44 | 645000 | 1.7199 | | 1.7574 | 1.46 | 650000 | 1.6992 | | 1.7526 | 1.47 | 655000 | 1.6981 | | 1.7556 | 1.48 | 660000 | 1.6860 | | 1.7558 | 1.49 | 665000 | 1.7099 | | 1.7539 | 1.5 | 670000 | 1.6950 | | 1.7454 | 1.51 | 675000 | 1.6999 | | 1.748 | 1.52 | 680000 | 1.6871 | | 1.7476 | 1.53 | 685000 | 1.6884 | | 1.7493 | 1.55 | 690000 | 1.6984 | | 1.745 | 1.56 | 695000 | 1.6999 | | 1.7397 | 1.57 | 700000 | 1.7036 | | 1.7429 | 1.58 | 705000 | 1.7223 | | 1.7367 | 1.59 | 710000 | 1.7111 | | 1.7403 | 1.6 | 715000 | 1.6691 | | 1.7361 | 1.61 | 720000 | 1.6693 | | 1.737 | 1.62 | 725000 | 1.6884 | | 1.7347 | 1.63 | 730000 | 1.6641 | | 1.7323 | 1.65 | 735000 | 1.6628 | | 1.7329 | 1.66 | 740000 | 1.6759 | | 1.7292 | 1.67 | 745000 | 1.6654 | | 1.7275 | 1.68 | 750000 | 1.6738 | | 1.7266 | 1.69 | 755000 | 1.6792 | | 1.7259 | 1.7 | 760000 | 1.6752 | | 1.7231 | 1.71 | 765000 | 1.6641 | | 1.7238 | 1.72 | 770000 | 1.6676 | | 1.7223 | 1.74 | 775000 | 1.6563 | | 1.722 | 1.75 | 780000 | 1.6541 | | 1.7195 | 1.76 | 785000 | 1.6560 | | 1.7171 | 1.77 | 790000 | 1.6786 | | 1.7187 | 1.78 | 795000 | 1.6434 | | 1.7186 | 1.79 | 800000 | 1.6538 | | 1.7115 | 1.8 | 805000 | 1.6535 | | 1.7119 | 1.81 | 810000 | 1.6738 | | 1.7106 | 1.83 | 815000 | 1.6597 | | 1.7088 | 1.84 | 820000 | 1.6486 | | 1.7079 | 1.85 | 825000 | 1.6576 | | 1.7062 | 1.86 | 830000 | 1.6676 | | 1.7084 | 1.87 | 835000 | 1.6449 | | 1.7059 | 1.88 | 840000 | 1.6515 | | 1.7057 | 1.89 | 845000 | 1.6609 | | 1.7021 | 1.9 | 850000 | 1.6482 | | 1.7005 | 1.91 | 855000 | 1.6653 | | 1.6988 | 1.93 | 860000 | 1.6801 | | 1.6964 | 1.94 | 865000 | 1.6830 | | 1.6954 | 1.95 | 870000 | 1.6589 | | 1.693 | 1.96 | 875000 | 1.6553 | | 1.689 | 1.97 | 880000 | 1.6554 | | 1.69 | 1.98 | 885000 | 1.6424 | | 1.6893 | 1.99 | 890000 | 1.6628 | | 1.6772 | 2.0 | 895000 | 1.6709 | | 1.6703 | 2.02 | 900000 | 1.6627 | | 1.6726 | 2.03 | 905000 | 1.6612 | | 1.669 | 2.04 | 910000 | 1.6595 | | 1.6696 | 2.05 | 915000 | 1.6427 | | 1.6672 | 2.06 | 920000 | 1.6497 | | 1.669 | 2.07 | 925000 | 1.6288 | | 1.6675 | 2.08 | 930000 | 1.6443 | | 1.6685 | 2.09 | 935000 | 1.6316 | | 1.6671 | 2.11 | 940000 | 1.6451 | | 1.6673 | 2.12 | 945000 | 1.6313 | | 1.6649 | 2.13 | 950000 | 1.6363 | | 1.6655 | 2.14 | 955000 | 1.6440 | | 1.6637 | 2.15 | 960000 | 1.6238 | | 1.6632 | 2.16 | 965000 | 1.6226 | | 1.6599 | 2.17 | 970000 | 1.6171 | | 1.6602 | 2.18 | 975000 | 1.6466 | | 1.658 | 2.19 | 980000 | 1.6341 | | 1.6571 | 2.21 | 985000 | 1.6500 | | 1.6572 | 2.22 | 990000 | 1.6225 | | 1.6572 | 2.23 | 995000 | 1.6296 | | 1.6552 | 2.24 | 1000000 | 1.6437 | | 1.6548 | 2.25 | 1005000 | 1.6162 | | 1.6552 | 2.26 | 1010000 | 1.6223 | | 1.6544 | 2.27 | 1015000 | 1.6355 | | 1.6464 | 2.28 | 1020000 | 1.6250 | | 1.652 | 2.3 | 1025000 | 1.6217 | | 1.6481 | 2.31 | 1030000 | 1.6079 | | 1.6466 | 2.32 | 1035000 | 1.6110 | | 1.6462 | 2.33 | 1040000 | 1.6210 | | 1.6448 | 2.34 | 1045000 | 1.5993 | | 1.6461 | 2.35 | 1050000 | 1.6096 | | 1.6396 | 2.36 | 1055000 | 1.6137 | | 1.644 | 2.37 | 1060000 | 1.6189 | | 1.6396 | 2.39 | 1065000 | 1.6211 | | 1.639 | 2.4 | 1070000 | 1.6149 | | 1.6358 | 2.41 | 1075000 | 1.6144 | | 1.6356 | 2.42 | 1080000 | 1.6018 | | 1.6364 | 2.43 | 1085000 | 1.5999 | | 1.6352 | 2.44 | 1090000 | 1.6095 | | 1.634 | 2.45 | 1095000 | 1.6114 | | 1.6279 | 2.46 | 1100000 | 1.6156 | | 1.6272 | 2.47 | 1105000 | 1.6124 | | 1.6319 | 2.49 | 1110000 | 1.6046 | | 1.6276 | 2.5 | 1115000 | 1.6152 | | 1.6285 | 2.51 | 1120000 | 1.6129 | | 1.6242 | 2.52 | 1125000 | 1.5984 | | 1.6261 | 2.53 | 1130000 | 1.6116 | | 1.623 | 2.54 | 1135000 | 1.6061 | | 1.6203 | 2.55 | 1140000 | 1.6182 | | 1.62 | 2.56 | 1145000 | 1.5887 | | 1.6177 | 2.58 | 1150000 | 1.5731 | | 1.6172 | 2.59 | 1155000 | 1.5990 | | 1.6179 | 2.6 | 1160000 | 1.5965 | | 1.6206 | 2.61 | 1165000 | 1.6000 | | 1.6156 | 2.62 | 1170000 | 1.5873 | | 1.6124 | 2.63 | 1175000 | 1.5899 | | 1.613 | 2.64 | 1180000 | 1.5910 | | 1.6134 | 2.65 | 1185000 | 1.6017 | | 1.609 | 2.67 | 1190000 | 1.5822 | | 1.6084 | 2.68 | 1195000 | 1.5906 | | 1.6101 | 2.69 | 1200000 | 1.6218 | | 1.6077 | 2.7 | 1205000 | 1.6149 | | 1.6057 | 2.71 | 1210000 | 1.5994 | | 1.6018 | 2.72 | 1215000 | 1.5839 | | 1.6049 | 2.73 | 1220000 | 1.5864 | | 1.6012 | 2.74 | 1225000 | 1.5994 | | 1.6013 | 2.75 | 1230000 | 1.5821 | | 1.5957 | 2.77 | 1235000 | 1.5964 | | 1.5971 | 2.78 | 1240000 | 1.5897 | | 1.5967 | 2.79 | 1245000 | 1.5774 | | 1.5927 | 2.8 | 1250000 | 1.5861 | | 1.5954 | 2.81 | 1255000 | 1.5789 | | 1.5937 | 2.82 | 1260000 | 1.5739 | | 1.5895 | 2.83 | 1265000 | 1.5701 | | 1.5912 | 2.84 | 1270000 | 1.5622 | | 1.5922 | 2.86 | 1275000 | 1.5730 | | 1.5883 | 2.87 | 1280000 | 1.5775 | | 1.5864 | 2.88 | 1285000 | 1.5726 | | 1.5837 | 2.89 | 1290000 | 1.5679 | | 1.5824 | 2.9 | 1295000 | 1.5683 | | 1.5817 | 2.91 | 1300000 | 1.5508 | | 1.5778 | 2.92 | 1305000 | 1.5620 | | 1.5822 | 2.93 | 1310000 | 1.5556 | | 1.5783 | 2.95 | 1315000 | 1.5693 | | 1.5751 | 2.96 | 1320000 | 1.5781 | | 1.5716 | 2.97 | 1325000 | 1.5655 | | 1.5765 | 2.98 | 1330000 | 1.5528 | | 1.5728 | 2.99 | 1335000 | 1.5748 | | 1.5672 | 3.0 | 1340000 | 1.5597 | | 1.5467 | 3.01 | 1345000 | 1.5461 | | 1.547 | 3.02 | 1350000 | 1.5516 | | 1.5462 | 3.03 | 1355000 | 1.5519 | | 1.5464 | 3.05 | 1360000 | 1.5593 | | 1.5457 | 3.06 | 1365000 | 1.5576 | | 1.5441 | 3.07 | 1370000 | 1.5653 | | 1.544 | 3.08 | 1375000 | 1.5662 | | 1.5467 | 3.09 | 1380000 | 1.5611 | | 1.5439 | 3.1 | 1385000 | 1.5635 | | 1.5449 | 3.11 | 1390000 | 1.5467 | | 1.5417 | 3.12 | 1395000 | 1.5495 | | 1.5428 | 3.14 | 1400000 | 1.5552 | | 1.5432 | 3.15 | 1405000 | 1.5347 | | 1.5401 | 3.16 | 1410000 | 1.5394 | | 1.5391 | 3.17 | 1415000 | 1.5497 | | 1.539 | 3.18 | 1420000 | 1.5431 | | 1.5368 | 3.19 | 1425000 | 1.5479 | | 1.5365 | 3.2 | 1430000 | 1.5513 | | 1.5327 | 3.21 | 1435000 | 1.5467 | | 1.5337 | 3.23 | 1440000 | 1.5477 | | 1.5317 | 3.24 | 1445000 | 1.5398 | | 1.5315 | 3.25 | 1450000 | 1.5481 | | 1.532 | 3.26 | 1455000 | 1.5385 | | 1.5312 | 3.27 | 1460000 | 1.5520 | | 1.5328 | 3.28 | 1465000 | 1.5423 | | 1.5288 | 3.29 | 1470000 | 1.5489 | | 1.5271 | 3.3 | 1475000 | 1.5395 | | 1.5273 | 3.31 | 1480000 | 1.5335 | | 1.5235 | 3.33 | 1485000 | 1.5381 | | 1.5224 | 3.34 | 1490000 | 1.5289 | | 1.5206 | 3.35 | 1495000 | 1.5331 | | 1.5189 | 3.36 | 1500000 | 1.5343 | | 1.5152 | 3.37 | 1505000 | 1.5246 | | 1.5225 | 3.38 | 1510000 | 1.5280 | | 1.5168 | 3.39 | 1515000 | 1.5315 | | 1.5161 | 3.4 | 1520000 | 1.5284 | | 1.5111 | 3.42 | 1525000 | 1.5278 | | 1.5154 | 3.43 | 1530000 | 1.5148 | | 1.515 | 3.44 | 1535000 | 1.5286 | | 1.5117 | 3.45 | 1540000 | 1.5291 | | 1.5099 | 3.46 | 1545000 | 1.5320 | | 1.5097 | 3.47 | 1550000 | 1.5323 | | 1.5075 | 3.48 | 1555000 | 1.5157 | | 1.5059 | 3.49 | 1560000 | 1.5214 | | 1.5011 | 3.51 | 1565000 | 1.5199 | | 1.5074 | 3.52 | 1570000 | 1.5114 | | 1.5033 | 3.53 | 1575000 | 1.5145 | | 1.5009 | 3.54 | 1580000 | 1.5184 | | 1.4994 | 3.55 | 1585000 | 1.5125 | | 1.5041 | 3.56 | 1590000 | 1.5048 | | 1.5002 | 3.57 | 1595000 | 1.5156 | | 1.4967 | 3.58 | 1600000 | 1.5176 | | 1.4923 | 3.59 | 1605000 | 1.5128 | | 1.495 | 3.61 | 1610000 | 1.5188 | | 1.4929 | 3.62 | 1615000 | 1.5149 | | 1.4921 | 3.63 | 1620000 | 1.5097 | | 1.4916 | 3.64 | 1625000 | 1.5161 | | 1.4852 | 3.65 | 1630000 | 1.5134 | | 1.4881 | 3.66 | 1635000 | 1.5101 | | 1.4873 | 3.67 | 1640000 | 1.5027 | | 1.4911 | 3.68 | 1645000 | 1.4968 | | 1.488 | 3.7 | 1650000 | 1.4962 | | 1.4842 | 3.71 | 1655000 | 1.5030 | | 1.4829 | 3.72 | 1660000 | 1.5041 | | 1.4816 | 3.73 | 1665000 | 1.5076 | | 1.479 | 3.74 | 1670000 | 1.5029 | | 1.4768 | 3.75 | 1675000 | 1.5053 | | 1.4769 | 3.76 | 1680000 | 1.5026 | | 1.4781 | 3.77 | 1685000 | 1.5016 | | 1.4781 | 3.79 | 1690000 | 1.5034 | | 1.4777 | 3.8 | 1695000 | 1.4976 | | 1.4736 | 3.81 | 1700000 | 1.5002 | | 1.4715 | 3.82 | 1705000 | 1.4995 | | 1.4716 | 3.83 | 1710000 | 1.4996 | | 1.4648 | 3.84 | 1715000 | 1.4952 | | 1.4711 | 3.85 | 1720000 | 1.4934 | | 1.4682 | 3.86 | 1725000 | 1.4965 | | 1.4659 | 3.87 | 1730000 | 1.4932 | | 1.4689 | 3.89 | 1735000 | 1.4920 | | 1.4656 | 3.9 | 1740000 | 1.4910 | | 1.4666 | 3.91 | 1745000 | 1.4893 | | 1.4611 | 3.92 | 1750000 | 1.4888 | | 1.4623 | 3.93 | 1755000 | 1.4898 | | 1.4637 | 3.94 | 1760000 | 1.4909 | | 1.4585 | 3.95 | 1765000 | 1.4858 | | 1.4586 | 3.96 | 1770000 | 1.4847 | | 1.4579 | 3.98 | 1775000 | 1.4841 | | 1.458 | 3.99 | 1780000 | 1.4840 | | 1.4572 | 4.0 | 1785000 | 1.4832 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
facebook/regnet-y-032
facebook
2022-06-28T11:39:30Z
68
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:35:16Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-160
facebook
2022-06-28T11:39:06Z
86
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:40:45Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
aspis/swin-finetuned-food101
aspis
2022-06-28T11:02:36Z
105
5
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-09T10:48:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 args: default metrics: - name: Accuracy type: accuracy value: 0.9210297029702971 - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.9135841584158416 verified: true - name: Precision Macro type: precision value: 0.9151645786633058 verified: true - name: Precision Micro type: precision value: 0.9135841584158416 verified: true - name: Precision Weighted type: precision value: 0.915164578663306 verified: true - name: Recall Macro type: recall value: 0.9135841584158414 verified: true - name: Recall Micro type: recall value: 0.9135841584158416 verified: true - name: Recall Weighted type: recall value: 0.9135841584158416 verified: true - name: F1 Macro type: f1 value: 0.9138785016966742 verified: true - name: F1 Micro type: f1 value: 0.9135841584158415 verified: true - name: F1 Weighted type: f1 value: 0.9138785016966743 verified: true - name: loss type: loss value: 0.30761435627937317 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2772 - Accuracy: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5077 | 1.0 | 1183 | 0.3851 | 0.8893 | | 0.3523 | 2.0 | 2366 | 0.3124 | 0.9088 | | 0.1158 | 3.0 | 3549 | 0.2772 | 0.9210 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
muhammedshihebi/test_Model
muhammedshihebi
2022-06-28T10:32:10Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-06-28T10:31:50Z
--- tags: - generated_from_keras_callback model-index: - name: test_Model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # test_Model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
SerdarHelli/ThyroidTumorClassificationModel
SerdarHelli
2022-06-28T09:52:22Z
92
2
transformers
[ "transformers", "pytorch", "convnext", "image-classification", "medicalimaging", "thyroidtumor", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T10:52:45Z
--- tags: - medicalimaging - thyroidtumor metrics: - accuracy --- Thyroid nodule is one of the most common endocrine carcinomas. Due to its higher reveal ability and ability to distinguish between benign and malignant nodules in pathological features, ultrasonography has become the most widely used modality for finding and diagnosing thyroid cancer when compared to CT and MRI. In this study, the purpose is the classification of thyroid tumors on ultrasound images with 2 different categories: - Malign(1) - Benign(0) This study was made using HF Transformers : - [ On Google Colab](https://colab.research.google.com/drive/1ueSq8Y_NmFr7NGdtS8FStI3d2HR-43LD?usp=sharing) - [On Github](https://github.com/SerdarHelli/The-Classification-of-Thyroid-Tumors-on-UltraSound-Images-using-Deep-Learning-Methods) - [ Using Keras and GradCam With MultiClasses Medium Article](https://serdarhelli.medium.com/the-basic-classification-of-thyroid-tumors-on-ultrasound-images-using-deep-learning-methods-46f812d859ea) The Dataset: [Colombia National University presented an open access database of thyroid ultrasound images.](http://cimalab.unal.edu.co/?lang=es&mod=program&id=5) Ref : Pedraza, Lina & Vargas, Carlos & Narváez, Fabián & Durán, Oscar & Muñoz, Emma & Romero, Eduardo. (2015). An open access thyroid ultrasound-image Database. Progress in Biomedical Optics and Imaging — Proceedings of SPIE. 9287. 10.1117/12.2073532.
rtorrero/my-first-model
rtorrero
2022-06-28T08:44:52Z
0
0
null
[ "region:us" ]
null
2022-06-28T07:41:49Z
This is just me playing around with Hugging Face :-)
Nabby/PPO-LunarLander-v2
Nabby
2022-06-28T04:21:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:21:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 276.91 +/- 22.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JeremiahZ/reproduce-sup-roberta-base-avg
JeremiahZ
2022-06-28T04:10:25Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "generated_from_trainer", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T08:38:05Z
--- language: - en license: mit tags: - generated_from_trainer model-index: - name: reproduce-sup-roberta-base-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reproduce-sup-roberta-base-avg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jcmc/dqn-SpaceInvadersNoFrameskip-v4
jcmc
2022-06-28T03:41:05Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T03:40:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 416.50 +/- 122.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcmc -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcmc ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Aalaa/opt-125m-finetuned-wikitext2
Aalaa
2022-06-28T03:30:55Z
55
1
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-28T02:41:03Z
--- license: other tags: - generated_from_trainer model-index: - name: opt-125m-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-finetuned-wikitext2 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4123 | 1.0 | 2370 | 3.3621 | | 3.2096 | 2.0 | 4740 | 3.3452 | | 3.0822 | 3.0 | 7110 | 3.3409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lingchensanwen/distilbert-base-uncased-finetuned-squad
lingchensanwen
2022-06-28T02:57:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-27T00:42:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 46 | 0.4284 | | No log | 2.0 | 92 | 0.0573 | | No log | 3.0 | 138 | 0.0337 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
sohomghosh/LIPI_FinSim4_ESG_task2
sohomghosh
2022-06-28T01:50:57Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2022-06-26T13:02:54Z
--- license: mit --- How to use ths model? Download the pytorch_model.bin file and execute the following: ```python import pandas as pd import torch import transformers from torch.utils.data import Dataset, DataLoader from transformers import RobertaModel, RobertaTokenizer, BertModel, BertTokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") MAX_LEN = 128 BATCH_SIZE = 20 text_col_name = 'sentence' category_col = 'label_text' #Input should be one dataframe having one column with header as 'sentence' : test_df (do reset_index() if needed) test_df = pd.DataFrame({"sentence":['We are striving to reduce the amount of waste we produce, and to reduce water as well as paper consumption.']}) def scoring_data_prep(dataset): out = [] target = [] mask = [] for i in range(len(dataset)): rec = dataset[i] out.append(rec['ids'].reshape(-1,MAX_LEN)) mask.append(rec['mask'].reshape(-1,MAX_LEN)) out_stack = torch.cat(out, dim = 0) mask_stack = torch.cat(mask, dim =0 ) out_stack = out_stack.to(device, dtype = torch.long) mask_stack = mask_stack.to(device, dtype = torch.long) return out_stack, mask_stack class Triage(Dataset): """ This is a subclass of torch packages Dataset class. It processes input to create ids, masks and targets required for model training. """ def __init__(self, dataframe, tokenizer, max_len, text_col_name): self.len = len(dataframe) self.data = dataframe self.tokenizer = tokenizer self.max_len = max_len self.text_col_name = text_col_name def __getitem__(self, index): title = str(self.data[self.text_col_name][index]) title = " ".join(title.split()) inputs = self.tokenizer.encode_plus( title, None, add_special_tokens=True, max_length=self.max_len, pad_to_max_length=True, return_token_type_ids=True, truncation=True, ) ids = inputs["input_ids"] mask = inputs["attention_mask"] return { "ids": torch.tensor(ids, dtype=torch.long), "mask": torch.tensor(mask, dtype=torch.long), } def __len__(self): return self.len class BERTClass(torch.nn.Module): def __init__(self, num_class): super(BERTClass, self).__init__() self.num_class = num_class self.l1 = RobertaModel.from_pretrained("roberta-base") self.pre_classifier = torch.nn.Linear(768, 768) self.dropout = torch.nn.Dropout(0.3) self.classifier = torch.nn.Linear(768, self.num_class) self.history = dict() def forward(self, input_ids, attention_mask): output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) hidden_state = output_1[0] pooler = hidden_state[:, 0] pooler = self.pre_classifier(pooler) pooler = torch.nn.ReLU()(pooler) pooler = self.dropout(pooler) output = self.classifier(pooler) return output def do_predict(model, tokenizer, test_df): test_set = Triage(test_df, tokenizer, MAX_LEN, text_col_name) test_params = {'batch_size' : BATCH_SIZE, 'shuffle': False, 'num_workers':0} test_loader = DataLoader(test_set, **test_params) out_stack, mask_stack = scoring_data_prep(dataset = test_set) n = 0 combined_output = [] model.eval() with torch.no_grad(): while n < test_df.shape[0]: output = model(out_stack[n:n+BATCH_SIZE,:],mask_stack[n:n+BATCH_SIZE,:]) n = n + BATCH_SIZE combined_output.append(output) combined_output = torch.cat(combined_output, dim = 0) preds = torch.argsort(combined_output, axis = 1, descending = True) preds = preds.to('cpu') actual_predictions = [i[0] for i in preds.tolist()] return actual_predictions model_sustain = BERTClass(2) model_sustain.to(device) model_sustain.load_state_dict(torch.load('pytorch_model.bin', map_location=device)['model_state_dict']) tokenizer_sus = BertTokenizer.from_pretrained('roberta-base') actual_predictions_sus = do_predict(model_sustain, tokenizer_sus, test_df) test_df['sustainability'] = ['sustainable' if i==0 else 'unsustainable' for i in actual_predictions_read] ``` Our work can be cited as follows: ```bibtex @inproceedings{ghosh-2022-finsim-esg, title = "Ranking Environment, Social And Governance Related Concepts And Assessing Sustainability Aspect Of Financial Texts", author={Ghosh, Sohom and Naskar, Sudip Kumar}, booktitle = "Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP@IJCAI-ECAI 2022)", month = "July" , year = "2022", address = "Vienna, Austria", publisher = "-", url = "https://mx.nthu.edu.tw/~chungchichen/FinNLP2022_IJCAI/14.pdf", pages = "87--92", } ```
KaliYuga/spritesheetdiffusion
KaliYuga
2022-06-28T00:52:09Z
0
4
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-06-23T01:10:50Z
--- license: cc-by-4.0 --- This model is really only supposed to be for my [patreon patrons](https://www.patreon.com/kaliyuga_ai). I ask that, unless you *truly* can't afford to pay $5 to access this model, you not use it without being a patron. Regardless, you must give attribution if you use this model in any product/app/game, etc
CodeIvy/distilgpt2-finetuned-wikitext2
CodeIvy
2022-06-27T23:40:38Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-18T22:24:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.9.1 - Datasets 2.2.2 - Tokenizers 0.12.1
Abdelmageed95/distilgpt2-finetuned-wikitext2
Abdelmageed95
2022-06-27T22:58:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T22:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
hidude562/discordgpt2mini
hidude562
2022-06-27T21:19:20Z
0
1
null
[ "generated_from_trainer", "license:mit", "region:us" ]
null
2022-05-05T09:56:43Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-discordgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-discordgpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.3032 - eval_runtime: 59.2004 - eval_samples_per_second: 274.542 - eval_steps_per_second: 34.324 - epoch: 0.26 - step: 25500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Dizzykong/charles-dickens
Dizzykong
2022-06-27T21:13:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T19:27:02Z
--- tags: - generated_from_trainer model-index: - name: charles-dickens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # charles-dickens This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
BeardedJohn/bert-finetuned-ner-ubb-conll
BeardedJohn
2022-06-27T16:24:46Z
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T12:42:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BeardedJohn/bert-finetuned-ner-ubb-conll results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BeardedJohn/bert-finetuned-ner-ubb-conll This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0351 - Validation Loss: 0.0581 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1317, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2302 | 0.0731 | 0 | | 0.0556 | 0.0593 | 1 | | 0.0351 | 0.0581 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
microsoft/deberta-xlarge-mnli
microsoft
2022-06-27T15:47:33Z
504,931
16
transformers
[ "transformers", "pytorch", "tf", "deberta", "text-classification", "deberta-v1", "deberta-mnli", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa xlarge model(750M) fine-tuned with mnli task. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
jcastanyo/dqn-SpaceInvadersNoFrameskip-v4
jcastanyo
2022-06-27T15:43:15Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T15:42:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 644.00 +/- 281.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcastanyo -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcastanyo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
BukaByaka/opus-mt-ru-en-finetuned-ru-to-en
BukaByaka
2022-06-27T14:05:53Z
43
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T14:26:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-ru-en-finetuned-ru-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ru-en metrics: - name: Bleu type: bleu value: 30.4049 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ru-en-finetuned-ru-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4092 - Bleu: 30.4049 - Gen Len: 26.3911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.2606 | 1.0 | 94761 | 1.4092 | 30.4049 | 26.3911 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0.post202 - Datasets 2.3.2 - Tokenizers 0.12.1
kktoto/tiny_focal_alpah
kktoto
2022-06-27T13:47:19Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T01:31:29Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_focal_alpah results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_focal_alpah This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0492 - Precision: 0.6951 - Recall: 0.6796 - F1: 0.6873 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0588 | 1.0 | 5561 | 0.0548 | 0.6801 | 0.6235 | 0.6506 | 0.9453 | | 0.054 | 2.0 | 11122 | 0.0521 | 0.6850 | 0.6478 | 0.6659 | 0.9476 | | 0.0525 | 3.0 | 16683 | 0.0509 | 0.6834 | 0.6676 | 0.6754 | 0.9486 | | 0.0492 | 4.0 | 22244 | 0.0503 | 0.6829 | 0.6754 | 0.6791 | 0.9491 | | 0.0482 | 5.0 | 27805 | 0.0500 | 0.6917 | 0.6727 | 0.6820 | 0.9501 | | 0.0471 | 6.0 | 33366 | 0.0491 | 0.7085 | 0.6546 | 0.6805 | 0.9510 | | 0.0459 | 7.0 | 38927 | 0.0486 | 0.6964 | 0.6746 | 0.6853 | 0.9510 | | 0.0448 | 8.0 | 44488 | 0.0495 | 0.6922 | 0.6813 | 0.6867 | 0.9509 | | 0.044 | 9.0 | 50049 | 0.0491 | 0.6961 | 0.6755 | 0.6857 | 0.9511 | | 0.0433 | 10.0 | 55610 | 0.0492 | 0.6951 | 0.6796 | 0.6873 | 0.9512 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
gary109
2022-06-27T13:34:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-26T14:19:49Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9218 | 1.0 | 188 | 1.0718 | 0.6958 | | 0.9194 | 2.0 | 376 | 1.0354 | 0.6937 | | 0.9077 | 3.0 | 564 | 1.0365 | 0.6730 | | 0.8956 | 4.0 | 752 | 1.0497 | 0.6727 | | 0.877 | 5.0 | 940 | 1.0299 | 0.6694 | | 0.8736 | 6.0 | 1128 | 1.0298 | 0.6642 | | 0.8769 | 7.0 | 1316 | 1.0348 | 0.6584 | | 0.8571 | 8.0 | 1504 | 1.0689 | 0.6602 | | 0.8573 | 9.0 | 1692 | 1.0559 | 0.6549 | | 0.8458 | 10.0 | 1880 | 1.0706 | 0.6588 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
gopalkalpande/t5-small-finetuned-bbc-news-summarization
gopalkalpande
2022-06-27T13:15:58Z
5
1
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T13:12:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gopalkalpande/t5-small-finetuned-bbc-news-summarization results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gopalkalpande/t5-small-finetuned-bbc-news-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7637 - Validation Loss: 0.3528 - Train Rouge1: 19.4783 - Train Rouge2: 13.2994 - Train Rougel: 17.4791 - Train Rougelsum: 17.6204 - Train Gen Len: 19.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 4e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.7637 | 0.3528 | 19.4783 | 13.2994 | 17.4791 | 17.6204 | 19.0 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
douwekiela/resnet-18-finetuned-dogfood
douwekiela
2022-06-27T12:38:50Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "dataset:lewtun/dog_food", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T09:42:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: resnet-18-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.896 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.8466666666666667 verified: true - name: Precision Macro type: precision value: 0.8850127293141284 verified: true - name: Precision Micro type: precision value: 0.8466666666666667 verified: true - name: Precision Weighted type: precision value: 0.8939157698241645 verified: true - name: Recall Macro type: recall value: 0.8555113273379528 verified: true - name: Recall Micro type: recall value: 0.8466666666666667 verified: true - name: Recall Weighted type: recall value: 0.8466666666666667 verified: true - name: F1 Macro type: f1 value: 0.8431399312051647 verified: true - name: F1 Micro type: f1 value: 0.8466666666666667 verified: true - name: F1 Weighted type: f1 value: 0.8430272582865614 verified: true - name: loss type: loss value: 0.3633290231227875 verified: true - name: matthews_correlation type: matthews_correlation value: 0.7973101366252381 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-18-finetuned-dogfood This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.846 | 1.0 | 16 | 0.2662 | 0.9156 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
zezafa/q-Taxi-v3
zezafa
2022-06-27T11:52:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T11:52:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.38 +/- 2.77 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zezafa/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Davlan/bert-base-multilingual-cased-finetuned-yoruba
Davlan
2022-06-27T11:50:30Z
21
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: yo datasets: --- # bert-base-multilingual-cased-finetuned-yoruba ## Model description **bert-base-multilingual-cased-finetuned-yoruba** is a **Yoruba BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Yorùbá language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Yorùbá corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-yoruba') >>> unmasker("Arẹmọ Phillip to jẹ ọkọ [MASK] Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun") [{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Mary Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.1738305538892746, 'token': 12176, 'token_str': 'Mary'}, {'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.16382873058319092, 'token': 13704, 'token_str': 'Queen'}, {'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.13272495567798615, 'token': 14382, 'token_str': 'ti'}, {'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ King Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.12823280692100525, 'token': 11515, 'token_str': 'King'}, {'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Lady Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.07841219753026962, 'token': 14005, 'token_str': 'Lady'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on Bible, JW300, [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt), [Yoruba Embedding corpus](https://huggingface.co/datasets/yoruba_text_c3) and [CC-Aligned](https://opus.nlpl.eu/), Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends. ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | yo_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 78.97 | 82.58 [BBC Yorùbá Textclass](https://huggingface.co/datasets/yoruba_bbc_topics) | 75.13 | 79.11 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/bert-base-multilingual-cased-masakhaner
Davlan
2022-06-27T11:50:04Z
14
3
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **bert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned mBERT base model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.66 ibo |85.72 kin |71.94 lug |81.73 luo |77.39 pcm |88.96 swa |88.23 wol |66.27 yor |80.09 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
zezafa/q-FrozenLake-v1-4x4-noSlippery
zezafa
2022-06-27T11:47:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T11:47:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zezafa/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Davlan/distilbert-base-multilingual-cased-masakhaner
Davlan
2022-06-27T10:57:26Z
27
2
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **distilbert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned BERT base model. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *distilbert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.88 ibo |84.87 kin |74.19 lug |78.43 luo |73.32 pcm |87.98 swa |86.20 wol |64.67 yor |78.10 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
Davlan/bert-base-multilingual-cased-finetuned-hausa
Davlan
2022-06-27T10:56:44Z
108
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: ha datasets: --- # bert-base-multilingual-cased-finetuned-hausa ## Model description **bert-base-multilingual-cased-finetuned-hausa** is a **Hausa BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Hausa language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Hausa corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa') >>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci") [{'sequence': '[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.9762618541717529, 'token': 22045, 'token_str': 'Nigeria'}, {'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, 'token': 25444, 'token_str': 'Ka'}, {'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, 'token': 117, 'token_str': ','}, {'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, 'token': 28682, 'token_str': 'Ghana'}, {'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, 'token': 11717, 'token_str': '##mu'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | ha_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.65 | 91.31 [VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | 84.76 | 90.98 ### BibTeX entry and citation info By David Adelani ``` ```
Rahulrr/language_model_en_de
Rahulrr
2022-06-27T10:42:46Z
11
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-27T10:09:17Z
--- language: - en - de tags: - translation license: apache-2.0 --- ### en-de * source group: English * target group: German * OPUS readme: [eng-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md) * model: transformer-big * source language(s): eng * target language(s): deu * raw source language(s): eng * raw target language(s): deu * model: transformer-big * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807+bt-2021-12-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip) * test set translations: [opusTCv20210807+bt-2021-12-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt) * test set scores: [opusTCv20210807+bt-2021-12-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newssyscomb2009.eng-deu | 24.3 | 0.5462 | 502 | 11271 | 0.993 | | news-test2008.eng-deu | 24.7 | 0.5412 | 2051 | 47427 | 1.000 | | newstest2009.eng-deu | 23.6 | 0.5385 | 2525 | 62816 | 0.999 | | newstest2010.eng-deu | 26.9 | 0.5589 | 2489 | 61511 | 0.966 | | newstest2011.eng-deu | 24.1 | 0.5364 | 3003 | 72981 | 0.990 | | newstest2012.eng-deu | 24.6 | 0.5375 | 3003 | 72886 | 0.972 | | newstest2013.eng-deu | 28.3 | 0.5636 | 3000 | 63737 | 0.988 | | newstest2014-deen.eng-deu | 30.9 | 0.6084 | 3003 | 62964 | 1.000 | | newstest2015-ende.eng-deu | 33.2 | 0.6106 | 2169 | 44260 | 1.000 | | newstest2016-ende.eng-deu | 39.8 | 0.6595 | 2999 | 62670 | 0.993 | | newstest2017-ende.eng-deu | 32.0 | 0.6047 | 3004 | 61291 | 1.000 | | newstest2018-ende.eng-deu | 48.8 | 0.7146 | 2998 | 64276 | 1.000 | | newstest2019-ende.eng-deu | 45.0 | 0.6821 | 1997 | 48969 | 0.995 | | Tatoeba-test-v2021-08-07.eng-deu | 43.7 | 0.6442 | 10000 | 85728 | 1.000 | ### System Info: - hf_name: en-de - source_languages: eng - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'de'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('German', {'deu'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-deu - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-deu/opusTCv20210807+bt-2021-12-08.test.txt - src_alpha3: eng - tgt_alpha3: deu - chrF2_score: 0.6442 - bleu: 43.7 - src_name: English - tgt_name: German - train_date: 2021-12-08 00:00:00 - src_alpha2: en - tgt_alpha2: de - prefer_old: False - short_pair: en-de - helsinki_git_sha: c4e978d8de47875b482653b423dcfe968979d7d5 - transformers_git_sha: 56b83cf049823ed074a655eceb28f31e2077c6eb - port_machine: LAPIN4GLQ2G3 - port_time: 2022-06-27-16:10
JeremiahZ/reproduce-unsup-roberta-base-avg
JeremiahZ
2022-06-27T10:19:27Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "generated_from_trainer", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T08:09:54Z
--- language: - en license: mit tags: - generated_from_trainer model-index: - name: reproduce-unsup-roberta-base-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reproduce-unsup-roberta-base-avg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 512 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
danielmantisnlp/autotrain-oms-ner-bi-1044135953
danielmantisnlp
2022-06-27T09:39:42Z
4
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:danielmantisnlp/autotrain-data-oms-ner-bi", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T09:38:38Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - danielmantisnlp/autotrain-data-oms-ner-bi co2_eq_emissions: 1.425282392185522 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1044135953 - CO2 Emissions (in grams): 1.425282392185522 ## Validation Metrics - Loss: 0.4587894678115845 - Accuracy: 0.8957797220792589 - Precision: 0.553921568627451 - Recall: 0.6793587174348698 - F1: 0.6102610261026103 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/danielmantisnlp/autotrain-oms-ner-bi-1044135953 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YuanWellspring/wav2vec2-nsc-final_1-google-colab
YuanWellspring
2022-06-27T09:21:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T07:57:07Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-nsc-final_1-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-nsc-final_1-google-colab This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
dasolj/wav2vec2-base-timit-demo-google-colab
dasolj
2022-06-27T08:50:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T05:22:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5501 - Wer: 0.3424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5448 | 1.0 | 500 | 2.5044 | 1.0 | | 1.0167 | 2.01 | 1000 | 0.5435 | 0.5278 | | 0.4453 | 3.01 | 1500 | 0.4450 | 0.4534 | | 0.3 | 4.02 | 2000 | 0.4401 | 0.4245 | | 0.2304 | 5.02 | 2500 | 0.4146 | 0.4022 | | 0.1889 | 6.02 | 3000 | 0.4241 | 0.3927 | | 0.1573 | 7.03 | 3500 | 0.4545 | 0.3878 | | 0.1363 | 8.03 | 4000 | 0.4936 | 0.3940 | | 0.1213 | 9.04 | 4500 | 0.4964 | 0.3806 | | 0.108 | 10.04 | 5000 | 0.4931 | 0.3826 | | 0.0982 | 11.04 | 5500 | 0.5373 | 0.3778 | | 0.0883 | 12.05 | 6000 | 0.4978 | 0.3733 | | 0.0835 | 13.05 | 6500 | 0.5189 | 0.3728 | | 0.0748 | 14.06 | 7000 | 0.4608 | 0.3692 | | 0.068 | 15.06 | 7500 | 0.4827 | 0.3608 | | 0.0596 | 16.06 | 8000 | 0.5022 | 0.3661 | | 0.056 | 17.07 | 8500 | 0.5482 | 0.3646 | | 0.0565 | 18.07 | 9000 | 0.5158 | 0.3573 | | 0.0487 | 19.08 | 9500 | 0.4910 | 0.3513 | | 0.0444 | 20.08 | 10000 | 0.5771 | 0.3580 | | 0.045 | 21.08 | 10500 | 0.5160 | 0.3539 | | 0.0363 | 22.09 | 11000 | 0.5367 | 0.3503 | | 0.0313 | 23.09 | 11500 | 0.5773 | 0.3500 | | 0.0329 | 24.1 | 12000 | 0.5683 | 0.3508 | | 0.0297 | 25.1 | 12500 | 0.5355 | 0.3464 | | 0.0272 | 26.1 | 13000 | 0.5317 | 0.3450 | | 0.0256 | 27.11 | 13500 | 0.5602 | 0.3443 | | 0.0242 | 28.11 | 14000 | 0.5586 | 0.3419 | | 0.0239 | 29.12 | 14500 | 0.5501 | 0.3424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
hustvl/yolos-small-dwr
hustvl
2022-06-27T08:38:00Z
11
4
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "vision", "dataset:coco", "arxiv:2106.00666", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2022-04-26T10:15:57Z
--- license: apache-2.0 tags: - object-detection - vision datasets: - coco widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # YOLOS (small-sized, fast model scaling) model YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). Disclaimer: The team releasing YOLOS did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model. ## Intended uses & limitations You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models. ### How to use Here is how to use this model: ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small-dwr') model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small-dwr') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` Currently, both the feature extractor and model support PyTorch. ## Training data The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. ### Training The model was pre-trained for 300 epochs on ImageNet-1k and fine-tuned for 150 epochs on COCO. ## Evaluation results This model achieves an AP (average precision) of **37.6** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-00666, author = {Yuxin Fang and Bencheng Liao and Xinggang Wang and Jiemin Fang and Jiyang Qi and Rui Wu and Jianwei Niu and Wenyu Liu}, title = {You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection}, journal = {CoRR}, volume = {abs/2106.00666}, year = {2021}, url = {https://arxiv.org/abs/2106.00666}, eprinttype = {arXiv}, eprint = {2106.00666}, timestamp = {Fri, 29 Apr 2022 19:49:16 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Corianas/ppo-SpaceInvadersNoFrameskip-v4
Corianas
2022-06-27T08:23:21Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T08:22:35Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1025.50 +/- 612.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **PPO** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **PPO** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
TheRensselaerIDEA/gpt2-large-covid-tweet-response
TheRensselaerIDEA
2022-06-27T07:26:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T19:56:35Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [COVID-19 public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (3.36 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. Also see: our [Vaccine public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-vaccine-tweet-response). **Data input format:** <span style="color:red"><|message|></span>public health message<span style="color:red"><|author|></span>public health Twitter handle<span style="color:red"><|response|></span> Example: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.trainer_utils import set_seed import torch tokenizer = AutoTokenizer.from_pretrained("TheRensselaerIDEA/gpt2-large-covid-tweet-response") model = AutoModelForCausalLM.from_pretrained("TheRensselaerIDEA/gpt2-large-covid-tweet-response") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) set_seed(33) message = "Is your child worried about #COVID19? Learn the facts so you can answer your children’s questions." author = "CDCgov" num_responses = 2 author_token, message_token, response_token = tokenizer.additional_special_tokens input_str = f"{message_token}{message}{author_token}{author}{response_token}" inputs = tokenizer(input_str, return_tensors="pt").to(device) responses_ids = model.generate(**inputs, max_new_tokens=100, pad_token_id=tokenizer.pad_token_id, do_sample=True, top_p=0.95, temperature=1.5, num_beams=3, early_stopping=True, num_return_sequences=num_responses) responses = [tokenizer.decode(r[inputs.input_ids.shape[-1]:], skip_special_tokens=True) for r in responses_ids] for i, resp in enumerate(responses): print(f"Response {i}: {resp}\n") ``` Output: ``` Response 0: @CDCgov I'm not worried. I don't know who needs to hear this, but I have a feeling I know who will be listening. It is not the virus. It is the media. I know you and CDC have been lying for months now, but the media will keep pushing this lie. Response 1: #WashYourHands to help #StopTheSpread of #COVID19 and other diseases. Learn more about hand washing: #HandWashing ```
osanseviero/distilbert-base-uncased-finetuned-squad-d5716d28
osanseviero
2022-06-27T07:23:07Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T13:49:18Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad model-index: - name: osanseviero/distilbert-base-uncased-finetuned-squad-d5716d28 results: - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: train metrics: - name: Loss type: loss value: 4.052208423614502 verified: true --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
vebie91/dqn-SpaceInvadersNoFrameskip-v4
vebie91
2022-06-27T05:49:36Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T02:29:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 784.00 +/- 298.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
robingeibel/longformer-large-finetuned-big_patent
robingeibel
2022-06-27T05:04:39Z
5
0
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-21T07:29:34Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-large-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-large-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-large-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-large-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1706 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 79030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1706 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jcmc/q-Taxi-v3
jcmc
2022-06-27T04:21:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T04:21:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.46 +/- 2.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jcmc/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
TheRensselaerIDEA
2022-06-27T03:22:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T03:03:38Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [Vaccine public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (2.82 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. For input format and usage examples, see our [COVID-19 public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-covid-tweet-response).
neweasterns/wav2vec2-base-timit-demo-google-colab
neweasterns
2022-06-27T02:49:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T00:01:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5597 | 1.0 | 500 | 2.3415 | 0.9991 | | 0.9759 | 2.01 | 1000 | 0.5556 | 0.5382 | | 0.4587 | 3.01 | 1500 | 0.7690 | 0.4781 | | 0.3156 | 4.02 | 2000 | 0.7994 | 0.4412 | | 0.2272 | 5.02 | 2500 | 0.8948 | 0.4120 | | 0.1921 | 6.02 | 3000 | 0.7065 | 0.3940 | | 0.1618 | 7.03 | 3500 | 0.4333 | 0.3855 | | 0.1483 | 8.03 | 4000 | 0.4232 | 0.3872 | | 0.156 | 9.04 | 4500 | 0.4172 | 0.3749 | | 0.1138 | 10.04 | 5000 | 0.4084 | 0.3758 | | 0.1045 | 11.04 | 5500 | 0.4665 | 0.3623 | | 0.0908 | 12.05 | 6000 | 0.4416 | 0.3684 | | 0.0788 | 13.05 | 6500 | 0.4801 | 0.3659 | | 0.0773 | 14.06 | 7000 | 0.4560 | 0.3583 | | 0.0684 | 15.06 | 7500 | 0.4878 | 0.3610 | | 0.0645 | 16.06 | 8000 | 0.4635 | 0.3567 | | 0.0577 | 17.07 | 8500 | 0.5245 | 0.3548 | | 0.0547 | 18.07 | 9000 | 0.5265 | 0.3639 | | 0.0466 | 19.08 | 9500 | 0.5161 | 0.3546 | | 0.0432 | 20.08 | 10000 | 0.5263 | 0.3558 | | 0.0414 | 21.08 | 10500 | 0.4874 | 0.3500 | | 0.0365 | 22.09 | 11000 | 0.5266 | 0.3472 | | 0.0321 | 23.09 | 11500 | 0.5422 | 0.3458 | | 0.0325 | 24.1 | 12000 | 0.5201 | 0.3428 | | 0.0262 | 25.1 | 12500 | 0.5208 | 0.3398 | | 0.0249 | 26.1 | 13000 | 0.5034 | 0.3429 | | 0.0262 | 27.11 | 13500 | 0.5055 | 0.3396 | | 0.0248 | 28.11 | 14000 | 0.5164 | 0.3404 | | 0.0222 | 29.12 | 14500 | 0.5206 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ra-XOr/Unity-Pyramids
ra-XOr
2022-06-27T02:36:12Z
33
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-27T02:16:39Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: ra-XOr/Unity-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RUCAIBox/mvp-task-dialog
RUCAIBox
2022-06-27T02:28:25Z
2
3
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:57Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the task dialog: Belief state [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example1" - text: "Given the task dialog: Dialogue action [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example2" - text: "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example3" --- # MVP-task-dialog The MVP-task-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-task-dialog is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled task-oriented system datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-task-dialog is specially designed for task-oriented tasks, such as MultiWOZ. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-task-dialog") >>> inputs = tokenizer( ... "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['What date and time would you like to go?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-summarization
RUCAIBox
2022-06-27T02:28:20Z
4
0
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:49:40Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Example1" - text: "Summarize: Jorge Alfaro drove in two runs, Aaron Nola pitched seven innings of two-hit ball and the Philadelphia Phillies beat the Los Angeles Dodgers 2-1 Thursday, spoiling Clayton Kershaw's first start in almost a month. Hitting out of the No. 8 spot in the ..." example_title: "Example2" --- # MVP-summarization The MVP-summarization model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-summarization is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled summarization datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-story
RUCAIBox
2022-06-27T02:28:15Z
9
3
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:55:25Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MVP-story The MVP-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-story is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled story generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['I think it would be a good idea to have uniform dress codes for all public schools. It would make it easier for students to dress appropriately.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-question-generation
RUCAIBox
2022-06-27T02:28:10Z
7
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:54:39Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Example1" - text: "Generate the question based on the answer: Arthur 's Magazine [X_SEP] Arthur 's Magazine ( 1844–1846 ) was an American literary periodical published in Philadelphia in the 19th century . First for Women is a woman 's magazine published by Bauer Media Group in the USA ." example_title: "Example2" --- # MVP-question-generation The MVP-question-generation model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-question-generation is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled question generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-question-generation is specially designed for question generation tasks, such as SQuAD and CoQA. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-question-generation") >>> inputs = tokenizer( ... "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing .", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['A bolo punch and a hook are both punches used in what sport?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-question-answering
RUCAIBox
2022-06-27T02:28:05Z
4
2
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:54:54Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Example1" - text: "Answer the following question: what is ce certified [X_SEP] The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives. Officially, CE is an abbreviation of Conformite Conformité, europeenne Européenne Meaning. european conformity" example_title: "Example2" --- # MVP-question-answering The MVP-question-answering model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-question-answering is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled question answering datasets. It is a variant (MVP+S) of our [MVP](https://huggingface.co/RUCAIBox/mvp) [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-question-answering is specially designed for question answering tasks, such as reading comprehension (SQuAD), conversational question answering (CoQA) and closed-book question-answering (Natural Questions). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-question-answering") >>> inputs = tokenizer( ... "Answer the following question: From which country did Angola achieve independence in 1975?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Portugal'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-open-dialog
RUCAIBox
2022-06-27T02:28:00Z
5
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:44Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MVP-open-dialog The MVP-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-open-dialog is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled open dialogue system datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['I did not know that. I did know that Tupac danced ballet in high school.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-multi-task
RUCAIBox
2022-06-27T02:27:55Z
5
2
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T16:04:07Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization - conversational pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Summarization" - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Dialog" - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Data-to-text" - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Story Generation" - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Question Answering" - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Question Generaion" --- # MVP-multi-task The MVP-multi-task model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-multi-task is a prompt-based model that MVP is further equipped with prompts pre-trained using a mixture of labeled datasets. It is a variant (MVP+M) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering. ## Example For summarization: ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-multi-task") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Why You Shouldn't Quit Your Job"] ``` For data-to-text generation: ```python >>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration >>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-multi-task") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-data-to-text
RUCAIBox
2022-06-27T02:27:50Z
38
4
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:26Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MVP-data-to-text The MVP-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-data-to-text is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled data-to-text datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-summarization
RUCAIBox
2022-06-27T02:27:34Z
2
0
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:01:19Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Example1" - text: "Summarize: Jorge Alfaro drove in two runs, Aaron Nola pitched seven innings of two-hit ball and the Philadelphia Phillies beat the Los Angeles Dodgers 2-1 Thursday, spoiling Clayton Kershaw's first start in almost a month. Hitting out of the No. 8 spot in the ..." example_title: "Example2" --- # MTL-summarization The MTL-summarization model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-summarization is supervised pre-trained using a mixture of labeled summarization datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-story
RUCAIBox
2022-06-27T02:27:29Z
1
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:10Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MTL-story The MTL-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-story is supervised pre-trained using a mixture of labeled story generation datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["I don't know about you, but I don't think it would be a good idea to have a uniform dress code in public schools. I think it's a waste of time and money. If you're going to have uniform dress codes, you need to make sure that the uniforms are appropriate for the school and that the students are comfortable in them. If they're not comfortable, then they shouldn't be allowed to wear them."] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-question-generation
RUCAIBox
2022-06-27T02:27:24Z
4
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:54Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Example1" - text: "Generate the question based on the answer: Arthur 's Magazine [X_SEP] Arthur 's Magazine ( 1844–1846 ) was an American literary periodical published in Philadelphia in the 19th century . First for Women is a woman 's magazine published by Bauer Media Group in the USA ." example_title: "Example2" --- # MTL-question-generation The MTL-question-generation model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-question-generation is supervised pre-trained using a mixture of labeled question generation datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-question-generation is specially designed for question generation tasks, such as SQuAD and CoQA. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-question-generation") >>> inputs = tokenizer( ... "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing .", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['A bolo punch and a hook are both punches used in what sport?] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-question-answering
RUCAIBox
2022-06-27T02:27:20Z
29
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:27Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Example1" - text: "Answer the following question: what is ce certified [X_SEP] The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives. Officially, CE is an abbreviation of Conformite Conformité, europeenne Européenne Meaning. european conformity" example_title: "Example2" --- # MTL-question-answering The MTL-question-answering model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-question-answering is supervised pre-trained using a mixture of labeled question answering datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-question-answering is specially designed for question answering tasks, such as reading comprehension (SQuAD), conversational question answering (CoQA) and closed-book question-answering (Natural Questions). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-question-answering") >>> inputs = tokenizer( ... "Answer the following question: From which country did Angola achieve independence in 1975?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Portugal'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-open-dialog
RUCAIBox
2022-06-27T02:27:15Z
3
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:02:35Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MTL-open-dialog The MTL-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-open-dialog is supervised pre-trained using a mixture of labeled open dialogue system datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Yes he won the Hong Kong Cha Cha championship in 1958'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-data-to-text
RUCAIBox
2022-06-27T02:27:10Z
259
28
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:01:55Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MTL-data-to-text The MTL-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-data-to-text is supervised pre-trained using a mixture of labeled data-to-text datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5
luomingshuang
2022-06-27T01:54:36Z
0
3
null
[ "tensorboard", "region:us" ]
null
2022-06-23T04:14:43Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/428 # Pre-trained Transducer-Stateless5 models for the TAL_CSASR dataset with icefall. The model was trained on the far data of [TAL_CSASR](https://ai.100tal.com/dataset) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tal_csasr/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5" ./pruned_transducer_stateless5/train.py \ --world-size 6 \ --num-epochs 30 \ --start-epoch 1 \ --exp-dir pruned_transducer_stateless5/exp \ --lang-dir data/lang_char \ --max-duration 90 ``` ## Evaluation results The decoding results (CER%) on TAL_CSASR(dev and test) are listed below: |decoding-method | epoch(iter) | avg | dev | test | |--|--|--|--|--| |greedy_search | 30 | 24 | 7.49 | 7.58| |modified_beam_search | 30 | 24 | 7.33 | 7.38| |fast_beam_search | 30 | 24 | 7.32 | 7.42| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22| |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27| |greedy_search | 348000 | 30 | 7.46 | 7.54| |modified_beam_search | 348000 | 30 | 7.24 | 7.36| |fast_beam_search | 348000 | 30 | 7.25 | 7.39 | The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English): |decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en | |--|--|--|--|--|--|--|--|--| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 | |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
tjscollins/atari-dqn
tjscollins
2022-06-27T01:45:40Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T01:44:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 565.50 +/- 141.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tjscollins -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tjscollins ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Samiul/wav2vec2-large-xls-r-300m-turkish-colab
Samiul
2022-06-26T23:31:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-26T19:31:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3821 - Wer: 0.3208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9162 | 3.67 | 400 | 0.6340 | 0.6360 | | 0.4033 | 7.34 | 800 | 0.4588 | 0.4911 | | 0.1919 | 11.01 | 1200 | 0.4392 | 0.4460 | | 0.1315 | 14.68 | 1600 | 0.4269 | 0.4270 | | 0.0963 | 18.35 | 2000 | 0.4327 | 0.3834 | | 0.0801 | 22.02 | 2400 | 0.3867 | 0.3643 | | 0.0631 | 25.69 | 2800 | 0.3854 | 0.3441 | | 0.0492 | 29.36 | 3200 | 0.3821 | 0.3208 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sudo-s/exper_batch_16_e8
sudo-s
2022-06-26T22:18:36Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T20:43:39Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_16_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_16_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3951 - Accuracy: 0.9129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8115 | 0.16 | 100 | 3.7948 | 0.1862 | | 3.1194 | 0.31 | 200 | 3.0120 | 0.3281 | | 2.3703 | 0.47 | 300 | 2.4791 | 0.4426 | | 2.07 | 0.63 | 400 | 2.1720 | 0.5 | | 1.6847 | 0.78 | 500 | 1.7291 | 0.5956 | | 1.3821 | 0.94 | 600 | 1.4777 | 0.6299 | | 0.9498 | 1.1 | 700 | 1.2935 | 0.6681 | | 0.8741 | 1.25 | 800 | 1.1353 | 0.7051 | | 0.8875 | 1.41 | 900 | 0.9951 | 0.7448 | | 0.7233 | 1.56 | 1000 | 0.9265 | 0.7487 | | 0.6696 | 1.72 | 1100 | 0.8660 | 0.7625 | | 0.7364 | 1.88 | 1200 | 0.8710 | 0.7579 | | 0.3933 | 2.03 | 1300 | 0.7162 | 0.8038 | | 0.3443 | 2.19 | 1400 | 0.6305 | 0.8300 | | 0.3376 | 2.35 | 1500 | 0.6273 | 0.8315 | | 0.3071 | 2.5 | 1600 | 0.5988 | 0.8319 | | 0.2863 | 2.66 | 1700 | 0.6731 | 0.8153 | | 0.3017 | 2.82 | 1800 | 0.6042 | 0.8315 | | 0.2382 | 2.97 | 1900 | 0.5118 | 0.8712 | | 0.1578 | 3.13 | 2000 | 0.4917 | 0.8736 | | 0.1794 | 3.29 | 2100 | 0.5302 | 0.8631 | | 0.1093 | 3.44 | 2200 | 0.5035 | 0.8635 | | 0.1076 | 3.6 | 2300 | 0.5186 | 0.8674 | | 0.1219 | 3.76 | 2400 | 0.4723 | 0.8801 | | 0.1017 | 3.91 | 2500 | 0.5132 | 0.8712 | | 0.0351 | 4.07 | 2600 | 0.4709 | 0.8728 | | 0.0295 | 4.23 | 2700 | 0.4674 | 0.8824 | | 0.0416 | 4.38 | 2800 | 0.4836 | 0.8805 | | 0.0386 | 4.54 | 2900 | 0.4663 | 0.8828 | | 0.0392 | 4.69 | 3000 | 0.4003 | 0.8990 | | 0.0383 | 4.85 | 3100 | 0.4187 | 0.8948 | | 0.0624 | 5.01 | 3200 | 0.4460 | 0.8874 | | 0.0188 | 5.16 | 3300 | 0.4169 | 0.9029 | | 0.0174 | 5.32 | 3400 | 0.4098 | 0.8951 | | 0.0257 | 5.48 | 3500 | 0.4289 | 0.8951 | | 0.0123 | 5.63 | 3600 | 0.4295 | 0.9029 | | 0.0052 | 5.79 | 3700 | 0.4395 | 0.8994 | | 0.0081 | 5.95 | 3800 | 0.4217 | 0.9082 | | 0.0032 | 6.1 | 3900 | 0.4216 | 0.9056 | | 0.0033 | 6.26 | 4000 | 0.4113 | 0.9082 | | 0.0024 | 6.42 | 4100 | 0.4060 | 0.9102 | | 0.0022 | 6.57 | 4200 | 0.4067 | 0.9090 | | 0.0031 | 6.73 | 4300 | 0.4005 | 0.9113 | | 0.0021 | 6.89 | 4400 | 0.4008 | 0.9129 | | 0.0021 | 7.04 | 4500 | 0.3967 | 0.9113 | | 0.0043 | 7.2 | 4600 | 0.3960 | 0.9121 | | 0.0022 | 7.36 | 4700 | 0.3962 | 0.9125 | | 0.0021 | 7.51 | 4800 | 0.3992 | 0.9121 | | 0.002 | 7.67 | 4900 | 0.3951 | 0.9129 | | 0.0023 | 7.82 | 5000 | 0.3952 | 0.9125 | | 0.0021 | 7.98 | 5100 | 0.3952 | 0.9129 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
kaisuke/finetuning-sentiment-model-3000-samples
kaisuke
2022-06-26T21:39:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-26T21:27:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8695652173913044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Accuracy: 0.87 - F1: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper_batch_16_e4
sudo-s
2022-06-26T20:38:11Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T19:53:10Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_16_e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_16_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3598 - Accuracy: 0.9059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7606 | 0.16 | 100 | 3.7839 | 0.1989 | | 3.1072 | 0.31 | 200 | 3.0251 | 0.3285 | | 2.4068 | 0.47 | 300 | 2.4380 | 0.4719 | | 2.0881 | 0.63 | 400 | 2.0489 | 0.5412 | | 1.6817 | 0.78 | 500 | 1.7968 | 0.6025 | | 1.342 | 0.94 | 600 | 1.5044 | 0.6249 | | 0.9343 | 1.1 | 700 | 1.1881 | 0.7132 | | 0.9552 | 1.25 | 800 | 1.1064 | 0.7224 | | 0.7265 | 1.41 | 900 | 0.9189 | 0.7768 | | 0.6732 | 1.56 | 1000 | 0.9227 | 0.7606 | | 0.5587 | 1.72 | 1100 | 0.7912 | 0.7903 | | 0.6332 | 1.88 | 1200 | 0.7606 | 0.7945 | | 0.3188 | 2.03 | 1300 | 0.6535 | 0.8288 | | 0.3079 | 2.19 | 1400 | 0.5686 | 0.8577 | | 0.2518 | 2.35 | 1500 | 0.5517 | 0.8577 | | 0.2 | 2.5 | 1600 | 0.5277 | 0.8631 | | 0.2032 | 2.66 | 1700 | 0.4841 | 0.8701 | | 0.1555 | 2.82 | 1800 | 0.4578 | 0.8793 | | 0.145 | 2.97 | 1900 | 0.4466 | 0.8755 | | 0.0985 | 3.13 | 2000 | 0.4249 | 0.8867 | | 0.0955 | 3.29 | 2100 | 0.3977 | 0.8932 | | 0.0438 | 3.44 | 2200 | 0.3785 | 0.9036 | | 0.0589 | 3.6 | 2300 | 0.3717 | 0.9017 | | 0.0709 | 3.76 | 2400 | 0.3609 | 0.9052 | | 0.0706 | 3.91 | 2500 | 0.3598 | 0.9059 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
shubhamsalokhe/distilgpt2-finetuned-wikitext2
shubhamsalokhe
2022-06-26T18:38:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T17:50:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
p123/autotrain-my-sum-1040935781
p123
2022-06-26T18:02:45Z
5
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "zh", "dataset:p123/autotrain-data-my-sum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T15:19:08Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - p123/autotrain-data-my-sum co2_eq_emissions: 326.52733725745725 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1040935781 - CO2 Emissions (in grams): 326.52733725745725 ## Validation Metrics - Loss: 1.9157543182373047 - Rouge1: 0.4843 - Rouge2: 0.0 - RougeL: 0.4843 - RougeLsum: 0.4843 - Gen Len: 10.9718 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/p123/autotrain-my-sum-1040935781 ```
ivanlau/ppo-mlppolicy-LunarLander-v2
ivanlau
2022-06-26T16:39:24Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T16:38:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 0.39 +/- 42.53 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ryanblak/PPO-LunarLander-v2
ryanblak
2022-06-26T15:40:24Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T15:00:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 287.72 +/- 15.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tsantosh7/Bailii-Roberta
tsantosh7
2022-06-26T15:09:54Z
4
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "en", "arxiv:1907.11692", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-26T12:54:46Z
--- license: apache-2.0 tags: - fill-mask language: - en widget: - text: "He carefully assessed the financial position of the <mask> disclosed within its accounts, including its pension scheme liabilities." - text: "Moreover, she had chosen not to give <mask> and therefore had not provided any innocent explanation of her communications." --- # Pre-trained Language Model for England and Wales Court of Appeal (Criminal Division) Decisions ## Introduction The research for understanding the bias in criminal court decisions need the support of natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of court decision texts. We used the text from the [Bailii website](https://www.bailii.org/ew/cases/EWCA/Crim/) as the training set. Based on the deep language model framework of RoBERTa, we constructed bailii-roberta pre-training language model by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm). ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain bailii-roberta model online. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("tsantosh7/bailii-roberta") model = AutoModel.from_pretrained("tsantosh7/bailii-roberta") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [tsantosh7/bailii-roberta](https://huggingface.co/tsantosh7/Bailii-Roberta/) ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to the random number of seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - bailii-roberta was trained based on [roberta-base](https://arxiv.org/abs/1907.11692)).
allegro/herbert-large-cased
allegro
2022-06-26T14:18:54Z
1,073
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "herbert", "pl", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl tags: - herbert license: cc-by-4.0 --- # HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased") model = AutoModel.from_pretrained("allegro/herbert-large-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
Nikkisora/q-FrozenLake-v1-4x4-noSlippery
Nikkisora
2022-06-26T13:58:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T13:58:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Nikkisora/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```