modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 18:22:57
card
stringlengths
11
1.01M
Ragnaldo/distilbert-base-uncased-finetuned-cola
Ragnaldo
2023-07-10T00:03:55Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T22:47:08Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Ragnaldo/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Ragnaldo/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1935 - Validation Loss: 0.5461 - Train Matthews Correlation: 0.5387 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5260 | 0.4716 | 0.4547 | 0 | | 0.3255 | 0.5045 | 0.4972 | 1 | | 0.1935 | 0.5461 | 0.5387 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
tyavika/LR1e4-BS16_Distil-CNN256LSTM128NoBi
tyavika
2023-07-09T23:40:07Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-09T20:34:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: LR1e4-BS16_Distil-CNN256LSTM128NoBi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LR1e4-BS16_Distil-CNN256LSTM128NoBi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.7339 | 1.0 | 3290 | 2.8528 | | 1.9078 | 2.0 | 6580 | 1.8196 | | 1.386 | 3.0 | 9870 | 1.6899 | | 0.9218 | 4.0 | 13160 | 1.8309 | | 0.5761 | 5.0 | 16450 | 2.2466 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bochen0909/distilhubert-finetuned-gtzan
bochen0909
2023-07-09T23:30:38Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-09T05:16:29Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5454 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0594 | 1.0 | 75 | 1.9411 | 0.59 | | 1.4643 | 2.0 | 150 | 1.3450 | 0.72 | | 1.1926 | 3.0 | 225 | 1.1038 | 0.7 | | 0.9126 | 4.0 | 300 | 0.9084 | 0.71 | | 0.6716 | 5.0 | 375 | 0.7864 | 0.77 | | 0.5595 | 6.0 | 450 | 0.6647 | 0.8 | | 0.4235 | 7.0 | 525 | 0.6587 | 0.8 | | 0.3118 | 8.0 | 600 | 0.6317 | 0.81 | | 0.2283 | 9.0 | 675 | 0.5696 | 0.84 | | 0.264 | 10.0 | 750 | 0.5454 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
RenatoCunha/distilbert-base-uncased-finetuned-cola
RenatoCunha
2023-07-09T23:30:12Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T23:25:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: RenatoCunha/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RenatoCunha/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1925 - Validation Loss: 0.5337 - Train Matthews Correlation: 0.5242 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5181 | 0.4821 | 0.3951 | 0 | | 0.3239 | 0.4534 | 0.5153 | 1 | | 0.1925 | 0.5337 | 0.5242 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
Milanesa16/MikiMatsubara
Milanesa16
2023-07-09T22:53:33Z
0
1
null
[ "music", "model", "rvc", "ja", "license:openrail", "region:us" ]
null
2023-07-09T22:33:27Z
--- license: openrail language: - ja tags: - music - model - rvc ---
skywalker7/Taxi-v3
skywalker7
2023-07-09T22:45:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T22:45:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="skywalker7/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
skywalker7/q-FrozenLake-v1-4x4-noSlippery
skywalker7
2023-07-09T22:44:29Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T22:44:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="skywalker7/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saintzeno/rl_course_vizdoom_health_gathering_supreme
saintzeno
2023-07-09T22:30:27Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T22:30:22Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.89 +/- 3.21 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r saintzeno/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Raizel123/Renitalora
Raizel123
2023-07-09T22:25:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T22:22:22Z
--- license: creativeml-openrail-m ---
Raizel123/BMoylora
Raizel123
2023-07-09T22:20:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T22:18:24Z
--- license: creativeml-openrail-m ---
Raizel123/Bambylora
Raizel123
2023-07-09T22:16:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T22:13:58Z
--- license: creativeml-openrail-m ---
Raizel123/Aavalora
Raizel123
2023-07-09T22:13:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T22:11:00Z
--- license: creativeml-openrail-m ---
Gustavosta/MagicPrompt-Stable-Diffusion
Gustavosta
2023-07-09T22:10:48Z
139,564
718
transformers
[ "transformers", "pytorch", "coreml", "safetensors", "gpt2", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-17T22:34:07Z
--- license: mit --- # MagicPrompt - Stable Diffusion This is a model from the MagicPrompt series of models, which are [GPT-2](https://huggingface.co/gpt2) models intended to generate prompt texts for imaging AIs, in this case: [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion). ## πŸ–ΌοΈ Here's an example: <img src="https://files.catbox.moe/ac3jq7.png"> This model was trained with 150,000 steps and a set of about 80,000 data filtered and extracted from the image finder for Stable Diffusion: "[Lexica.art](https://lexica.art/)". It was a little difficult to extract the data, since the search engine still doesn't have a public API without being protected by cloudflare, but if you want to take a look at the original dataset, you can have a look here: [datasets/Gustavosta/Stable-Diffusion-Prompts](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts). If you want to test the model with a demo, you can go to: "[spaces/Gustavosta/MagicPrompt-Stable-Diffusion](https://huggingface.co/spaces/Gustavosta/MagicPrompt-Stable-Diffusion)". ## πŸ’» You can see other MagicPrompt models: - For Dall-E 2: [Gustavosta/MagicPrompt-Dalle](https://huggingface.co/Gustavosta/MagicPrompt-Dalle) - For Midjourney: [Gustavosta/MagicPrompt-Midourney](https://huggingface.co/Gustavosta/MagicPrompt-Midjourney) **[⚠️ In progress]** - MagicPrompt full: [Gustavosta/MagicPrompt](https://huggingface.co/Gustavosta/MagicPrompt) **[⚠️ In progress]** ## βš–οΈ Licence: [MIT](https://huggingface.co/models?license=license:mit) When using this model, please credit: [Gustavosta](https://huggingface.co/Gustavosta) **Thanks for reading this far! :)**
vinesmsuic/magicbrush-jul7
vinesmsuic
2023-07-09T22:04:54Z
1,298
9
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-08T02:50:03Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- diffuser port of https://huggingface.co/osunlp/InstructPix2Pix-MagicBrush. diffuser version of `MagicBrush-epoch-52-step-4999.ckpt` ```python from PIL import Image, ImageOps import requests import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from PIL import Image url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" def download_image(url): image = Image.open(requests.get(url, stream=True).raw) image = ImageOps.exif_transpose(image) image = image.convert("RGB") return image image = download_image(url) prompt = "make the mountains snowy" class MagicBrush(): def __init__(self, weight="vinesmsuic/magicbrush-jul7"): self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( weight, torch_dtype=torch.float16 ).to("cuda") self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) def infer_one_image(self, src_image, instruct_prompt, seed): generator = torch.manual_seed(seed) image = self.pipe(instruct_prompt, image=src_image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, generator=generator).images[0] return image model = MagicBrush() image_output = model.infer_one_image(image, prompt, 42) image_output ``` ![](https://i.imgur.com/rL3zEkh.png) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
vinesmsuic/magicbrush-paper
vinesmsuic
2023-07-09T22:04:31Z
52
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-08T00:53:13Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers --- diffuser port of https://huggingface.co/osunlp/InstructPix2Pix-MagicBrush. diffuser version of `MagicBrush-epoch-000168.ckpt` ```python from PIL import Image, ImageOps import requests import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from PIL import Image url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" def download_image(url): image = Image.open(requests.get(url, stream=True).raw) image = ImageOps.exif_transpose(image) image = image.convert("RGB") return image image = download_image(url) prompt = "make the mountains snowy" class MagicBrush(): def __init__(self, weight="vinesmsuic/magicbrush-paper"): self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( weight, torch_dtype=torch.float16 ).to("cuda") self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) def infer_one_image(self, src_image, instruct_prompt, seed): generator = torch.manual_seed(seed) image = self.pipe(instruct_prompt, image=src_image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, generator=generator).images[0] return image model = MagicBrush() image_output = model.infer_one_image(image, prompt, 42) image_output ``` ![](https://i.imgur.com/PMdQRxD.png) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
VK246/IC_ver3b_coco_swin_gpt2_2
VK246
2023-07-09T21:56:25Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:coco", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-09T18:30:26Z
--- tags: - generated_from_trainer datasets: - coco metrics: - rouge - bleu model-index: - name: IC_ver3b_coco_swin_gpt2_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IC_ver3b_coco_swin_gpt2_2 This model is a fine-tuned version of [](https://huggingface.co/) on the coco dataset. It achieves the following results on the evaluation set: - Loss: 0.8483 - Rouge1: 41.3447 - Rouge2: 15.7294 - Rougel: 37.6633 - Rougelsum: 37.6744 - Bleu: 9.4309 - Gen Len: 11.3368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:| | 1.2141 | 0.25 | 300 | 1.0093 | 35.2179 | 11.1228 | 32.1546 | 32.167 | 6.2018 | 11.3368 | | 1.0037 | 0.51 | 600 | 0.9600 | 36.4586 | 11.8379 | 33.324 | 33.3342 | 7.0081 | 11.3368 | | 0.9644 | 0.76 | 900 | 0.9303 | 38.5343 | 13.2266 | 35.2902 | 35.3055 | 7.539 | 11.3368 | | 0.9367 | 1.02 | 1200 | 0.9004 | 39.2182 | 13.7589 | 35.7747 | 35.7799 | 7.6492 | 11.3368 | | 0.8842 | 1.27 | 1500 | 0.8876 | 39.4537 | 14.1037 | 35.9758 | 35.9776 | 8.4067 | 11.3368 | | 0.86 | 1.53 | 1800 | 0.8758 | 40.4179 | 15.0774 | 37.0166 | 37.0401 | 8.8897 | 11.3368 | | 0.8465 | 1.78 | 2100 | 0.8665 | 40.4073 | 15.1125 | 36.9767 | 36.9877 | 8.9602 | 11.3368 | | 0.8421 | 2.04 | 2400 | 0.8592 | 40.62 | 15.2042 | 36.9224 | 36.9359 | 9.1313 | 11.3368 | | 0.8106 | 2.29 | 2700 | 0.8548 | 41.0356 | 15.399 | 37.4562 | 37.4635 | 9.2534 | 11.3368 | | 0.7963 | 2.54 | 3000 | 0.8521 | 41.1998 | 15.6442 | 37.6659 | 37.6682 | 9.4605 | 11.3368 | | 0.795 | 2.8 | 3300 | 0.8493 | 41.1215 | 15.581 | 37.4725 | 37.4978 | 9.5488 | 11.3368 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-concat-cbt-rarity-iorder-2k-p3k
NasimB
2023-07-09T21:52:12Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-09T19:57:43Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-cbt-rarity-iorder-2k-p3k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-cbt-rarity-iorder-2k-p3k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.1774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7131 | 0.29 | 500 | 5.6430 | | 5.375 | 0.58 | 1000 | 5.1968 | | 5.0193 | 0.87 | 1500 | 4.9479 | | 4.7453 | 1.17 | 2000 | 4.7999 | | 4.5773 | 1.46 | 2500 | 4.6700 | | 4.4741 | 1.75 | 3000 | 4.5630 | | 4.3595 | 2.04 | 3500 | 4.4810 | | 4.147 | 2.33 | 4000 | 4.4299 | | 4.1212 | 2.62 | 4500 | 4.3779 | | 4.0799 | 2.91 | 5000 | 4.3250 | | 3.8841 | 3.21 | 5500 | 4.3160 | | 3.8202 | 3.5 | 6000 | 4.2871 | | 3.7956 | 3.79 | 6500 | 4.2533 | | 3.7127 | 4.08 | 7000 | 4.2505 | | 3.5311 | 4.37 | 7500 | 4.2459 | | 3.5233 | 4.66 | 8000 | 4.2311 | | 3.5046 | 4.95 | 8500 | 4.2175 | | 3.3596 | 5.24 | 9000 | 4.2289 | | 3.3317 | 5.54 | 9500 | 4.2278 | | 3.331 | 5.83 | 10000 | 4.2271 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha
FFusion
2023-07-09T21:44:08Z
25
3
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "di.ffusion.ai", "art", "base model", "en", "doi:10.57967/hf/0855", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-06T06:47:14Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - stable-diffusion - text-to-image - di.ffusion.ai - art - base model library_name: diffusers widget: - text: >- a sprinkled donut sitting on top of a table, blender donut tutorial, colorful hyperrealism, everything is made of candy, hyperrealistic digital painting, covered in sprinkles and crumbs, vibrant colors hyper realism, colorful smoke explosion background example_title: Donut Fusion - text: >- a cup of coffee with a tree in it, surreal art, awesome great composition, surrealism!!!!, cafe in the clouds, perfectly realistic yet surreal, surreal realistic, floating trees, amazing composition, dream scenery art, whimsical surrealism, surreal composition, trending artistic art, surrealism art, surreal scene, surrealistic painting, surreal style, surreal illustration, dreamlike surrealism colorful smoke and fire coming out of it,explosion of data fragments,exploding background,realistic explosion,3d digital art 4k,fire and explosion,explosion,background explosion,cinema 4 d art,shattering,beeple. hyperrealism,explosion background,rendered in cinema 4 d,rendered in cinema4d,explosive background, example_title: Coffee Fusion - text: >- brightly colored headphones with a splash of paint and music notes, vibing to music, artistic illustration, stunning artwork, music is life, beautiful digital artwork, headphones on, listening to music, music poster, synesthesia, music in the air, listening to godly music, style hybrid mix of beeple, headphones, digital artwork 4 k, side profile artwork, no humans, planet, space, black background, cable, simple background, concept art, cinematic, dramatic, intricate details, dark lighting example_title: Headset Fusion - text: >- a group of three blocks with a picture of a boat in the middle of them, surreal 3 d render, 3 d epic illustrations, 3 d artistic render, inspired by Matthias Jung, environmental key art, erik johansson style, surreal concept art, alexander jansson style, cube portals, beeple masterpiece, 3 d render beeple, surrealistic digital artwork example_title: Digital Fusion --- ![FMMRrb81eZSVvvU6QyCCXO.jpg](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/sEe_VVbvClLEbGnznYZH-.jpeg) πŸ“£ **FFUSION AI - 768 BaSE** Public alpha Release is Here! download the **`di.FFUSION.ai-v2.1-768-BaSE-alpha-preview.safetensors`** [here](https://huggingface.co/FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha/blob/main/di.FFUSION.ai-v2.1-768-BaSE-alpha-preview.safetensors). # πŸš€ Model Overview: Unleashing the Power of Imagination! 🌠 Introducing FFUSION AI - a groundbreaking tool for image generation and transformation, crafted around the cutting-edge Latent Diffusion Model. Dive into the surreal world of FFUSION Ai, powered by Stable Diffusion 2.1, and let your favorite prompts transform into captivating works of art. Effortlessly weave your ideas with mesmerizing effects, immersing your audience in a world where imagination knows no bounds. **Developed by:** Idle Stoev, Source Code Bulgaria, Praesidium CX & BlackSwan Technologies **Model type:** Diffusion-based text-to-image generation model **Language(s):** English **License:** CreativeML Open RAIL++-M License # πŸ”¬ Intended Use: From Research to Artistry 🎨 ![image.png](https://cdn-uploads.huggingface.co/production/uploads/6380cf05f496d57325c12194/6mxV9Vwqa0LIHsDBeQoSu.png) FFUSION AI is a multi-faceted tool that shines in various applications. Primarily envisioned for research, FFUSION AI has potential to: Examine the limitations and inherent biases in generative models. Unleash the artist within, aiding in creative processes or artistic endeavours. Reinvent educational or creative utilities with AI-driven innovations. Propel the research in the fascinating domain of generative models. However, it's crucial to note that certain uses of FFUSION AI are strictly prohibited, as outlined below. # 🚫 Forbidden Use: Setting Boundaries for Safe AI πŸ›‘ We've borrowed the principles from the Stable Diffusion v2.1 model card, which apply equally to Fusion AI alpha, beta, and final releases. We strictly prohibit the use of this model for generating or spreading images intended to incite hostility or alienation. This includes content that is foreseeably disturbing, distressing, offensive, or stereotype-propagating. # # Out-of-Scope Use: Since this model isn't designed to create factual representations of people or events, such usage is deemed out-of-scope. # # Misuse and Malicious Use: Utilizing the model to create content that inflicts harm upon individuals is deemed misuse. This includes: - Generating content that belittles, dehumanizes, or otherwise harms individuals or their environments, cultures, religions, etc. - Deliberately promoting or disseminating discriminatory content or harmful stereotypes. - Impersonating individuals without consent. - Generating sexual content without viewer consent. - Spreading mis- and disinformation. - Illustrating extreme violence and gore. - Distributing copyrighted or licensed material against its usage terms. - Modifying copyrighted or licensed material against its usage terms. Our policy, adopted from the principles of the Stable Diffusion v2.1 model card, ensures the responsible use of Fusion AI beta and final releases. **We expressly prohibit the utilization of our model for generating or distributing images that might incite hostility or exclusion.** This includes: - Content that is distressing, offensive, or perpetuates harmful stereotypes. - Misuse or malicious use that harms individuals or communities, including creating demeaning or harmful representations, or promoting discriminatory content. - Using the model for impersonation without consent or creating non-consensual explicit content. - Generating or spreading mis- and disinformation, violent, gory imagery, or violating copyright terms. - # πŸ”­ Model Limitations and Bias: Acknowledging Imperfections 🌐 While our model leaps toward the future of AI-driven creativity, it's essential to recognize its current limitations: - The quest for perfect photorealism and creative surrealism continues. - Rendering legible text remains a challenge. - Even more complex tasks, such as depicting "A red cube on top of a blue sphere in the middle of the ocean in a desert" may pose difficulty (but still processable). - Human figures, particularly faces, may not be accurately generated. # Version Releases We are excited to unveil the following versions: ## Version 512 Beta – LiTE, MiD BFG model variations: - FFUSION.ai-512-beta-BFG-build.0401.safetensors - FFUSION.ai-512-beta-LiTE-build.0201.safetensors - FFUSION.ai-512-beta-MiD-build.0401.safetensors ### Version 768 Alpha - BaSE, FUSION, FFUSION: BaSE and FUSION models will soon come with enhanced training capabilities including LoRa, LyCORIS, Dylora & Kohya-ss/sd-scripts. More information will be revealed upon release. - **di.FFUSION.ai-v2.1-768-BaSE-alpha-preview.safetensors** # FUSION AI Text Encoders: - **di.FFUSION.ai-tXe-FXAA:** Trained on "121361" images. Enhance your model's quality and sharpness using the pre-trained Unet. - **di.FFUSION.ai-tXe-fX:** Trained on "211924" images. Amplify your model's surrealism and effects. # Environmental Impact Our dedication to sustainable development is reflected in the model's carbon footprint. The CO2 emissions, calculated using the Machine Learning Impact calculator, stand at 124.95 kg for a total of 1190 hours of usage with an A100 PCIe 40GB GPU. **Hardware Type:** A100 PCIe 40GB **Hours used:** 1190 **Cloud Provider:** CoreWeave & Runpod (official partner) **Compute Region**: US Cyxtera Chicago Data Center - ORD1 / EU - CZ & EU - RO - Carbon Emitted (Power consumption x Time x Carbon produced based on the location of the power grid): 124.95 kg of CO2 emitted. - Power consumption x Time x Carbon Produced Based on the Local Power Grid: 250W x 1190h = 297.5 kWh x 0.42 kg eq. CO2/kWh = 124.95 kg eq. CO2 - Local Hardware Storage 4x16TB Raid5 WD Gold Optimizer: AdamW & Dadaptation **This model card was written by: Idle Stoev and is based on the Stability AI - Stable Diffusion 2.1 model card.** Models: [![FFusion-BaSE](https://img.shields.io/badge/2.1%20πŸ€—%20Model-FFusion--BaSE-blue)](https://huggingface.co/FFusion/FFusion-BaSE) [![di.FFUSION.ai-v2.1-768-BaSE-alpha](https://img.shields.io/badge/πŸ€—%20Model-di.FFUSION.ai--v2.1--768--BaSE--alpha-blue)](https://huggingface.co/FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha) [![di.ffusion.ai.Beta512](https://img.shields.io/badge/2.1%20πŸ€—%20Model-di.ffusion.ai.Beta512-blue)](https://huggingface.co/FFusion/di.ffusion.ai.Beta512) [![FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1](https://img.shields.io/badge/2.1%20πŸ€—%20Model-FFUSION.ai--Text--Encoder--LyCORIS--SD--2.1-blue)](https://huggingface.co/FFusion/FFUSION.ai-Text-Encoder-LyCORIS-SD-2.1) Contact: [![Email](https://img.shields.io/badge/Email-di%40ffusion.ai-blue)](mailto:[email protected])
aphi/Reinforce-Pixelcopter-PLE-v0
aphi
2023-07-09T21:41:42Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T21:41:36Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.60 +/- 41.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jason1i/speecht5_finetuned_voxpopuli_nl
jason1i
2023-07-09T21:41:07Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "nl", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-09T20:40:39Z
--- language: - nl license: mit tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5265 | 4.3 | 1000 | 0.4792 | | 0.5034 | 8.61 | 2000 | 0.4672 | | 0.4932 | 12.91 | 3000 | 0.4616 | | 0.4882 | 17.21 | 4000 | 0.4597 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
pavankantharaju/ppo-LunarLander-v2
pavankantharaju
2023-07-09T21:39:58Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T21:39:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.66 +/- 17.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cassiaproject/Cassia-65B-16-bit
cassiaproject
2023-07-09T21:33:24Z
0
0
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2023-07-09T21:08:18Z
--- license: cc-by-sa-4.0 --- Trained using shamelessly "borrowed" training parameters from Tim Dettmers' Guanaco 65B, upon which it is based.
MaitreHibou/q-FrozenLake-v1-4x4-noSlippery
MaitreHibou
2023-07-09T21:16:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T21:16:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MaitreHibou/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Neus/Onnx_DeepDanbooru
Neus
2023-07-09T21:11:32Z
0
1
null
[ "onnx", "AMD", "CUDA", "INTEL", "DIRECTML", "STABLEDIFFUSION", "ONNX", "text-to-image", "license:apache-2.0", "region:us" ]
text-to-image
2023-05-02T08:35:19Z
--- license: apache-2.0 pipeline_tag: text-to-image tags: - AMD - CUDA - INTEL - DIRECTML - STABLEDIFFUSION - ONNX --- Model converted to use with, https://github.com/NeusZimmer/ONNX-ModularUI
Neus/GFPGANv1.4
Neus
2023-07-09T21:10:47Z
0
5
null
[ "onnx", "AMD", "CUDA", "stablediffusion", "DirectML", "ONNX", "text-to-image", "region:us" ]
text-to-image
2023-06-24T20:11:06Z
--- pipeline_tag: text-to-image tags: - AMD - CUDA - stablediffusion - DirectML - ONNX --- Model converted to use with, https://github.com/NeusZimmer/ONNX-ModularUI
jacksnacks/second_qlora_model_xgen_inst_faq
jacksnacks
2023-07-09T20:50:12Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-09T20:50:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
SwampMan/ppo-SnowballTarget
SwampMan
2023-07-09T20:39:23Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-09T20:39:16Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SwampMan/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
mvasiliniuc/iva-codeint-kotlin-small
mvasiliniuc
2023-07-09T20:34:09Z
9
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "code", "kotlin", "mobile", "generation", "dataset:mvasiliniuc/iva-kotlin-codeint-clean-train", "dataset:mvasiliniuc/iva-kotlin-codeint-clean-valid", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-14T16:14:17Z
--- datasets: - mvasiliniuc/iva-kotlin-codeint-clean-train - mvasiliniuc/iva-kotlin-codeint-clean-valid language: - code tags: - gpt2 - code - kotlin - mobile - generation widget: - text: "/**\n\t* A function that returns the version of the current operating system.\n*/\n" example_title: "Get current device operating system" - text: "/**\n\t* A function that returns the current TimeZone.\n*/\n" example_title: "Get current timezone" - text: "/**\n\t* A data class representing a Bank Account.\n*/\n" example_title: "Data Class - BankAccount" --- iva-codeint-kotlin-small GPT-2 is (small version - 239.4M parameters) trained from scratch to obtain results in the text-to-code task tailored for Kotlin language used in native mobile development (Android). ## Usage ```Python from transformers import pipeline pipe = pipeline("text-generation", model="mvasiliniuc/iva-codeint-kotlin-small") outputs = pipe("fun printToConsole()") ``` ### Inference ```Python API_URL = "https://api-inference.huggingface.co/models/mvasiliniuc/iva-codeint-kotlin-small" headers = {"Authorization": "Bearer <key>"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": """ /** * A public function that returns the current version of the operating system. */ """ }) pprint.pprint(output, compact=True) ``` ## Training | Config | Value | |------|------------------| | seq length | 1024 | | weight decay | 0.1 | | learning rate | 0.0005 | | max eval steps | -1 | | shuffle buffer | 10000 | | max train steps | 150000 | | mixed precision | fp16 | | num warmup steps | 2000 | | train batch size | 5 | | valid batch size | 5 | | lr scheduler type | cosine | | save checkpoint steps | 15000 | | gradient checkpointing | false | | gradient accumulation steps | 1 | ## Resources Resources used for research: * [Training a causal language model from scratch](https://huggingface.co/learn/nlp-course/chapter7/6) * [CodeParrot a GPT-2 model (1.5B parameters) trained to generate Python code](https://huggingface.co/codeparrot/codeparrot)
jpohhhh/msmarco-MiniLM-L-6-v3_onnx
jpohhhh
2023-07-09T20:32:15Z
11
1
generic
[ "generic", "onnx", "bert", "sentence-embeddings", "endpoints-template", "optimum", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-06-21T14:42:29Z
--- license: mit tags: - sentence-embeddings - endpoints-template - optimum library_name: generic --- This repository is a fork of philschmid/all-MiniLM-L6-v2-optimum-embeddings. My own ONNX conversion seems to be about 4x slower, no discernable reason why: the quantized models seem roughly the same. The idea here is by forking we can ex. upgrade the Optimum lib used as well.
Shikshya/tyaani_model
Shikshya
2023-07-09T20:30:58Z
29
0
diffusers
[ "diffusers", "text-to-image", "en", "dataset:Shikshya/revised_tyaani_jwellery_dataset", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-09T14:43:12Z
--- datasets: - Shikshya/revised_tyaani_jwellery_dataset language: - en library_name: diffusers pipeline_tag: text-to-image ---
TheBloke/GPlatty-30B-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:57Z
1,564
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "arxiv:2302.13971", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-29T11:12:38Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Lilloukas' GPlatty 30B fp16 This is fp16 pytorch format model files for [Lilloukas' GPlatty 30B](https://huggingface.co/lilloukas/GPlatty-30B) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 30b LoRA](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/GPlatty-30B-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/GPlatty-30B-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/GPlatty-30B-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lilloukas/GPlatty-30B) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/GPlatty-30B-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Lilloukas' GPlatty 30B # Information GPlatty-30B is a merge of [lilloukas/Platypus-30B](https://huggingface.co/lilloukas/Platypus-30B) and [chansung/gpt4-alpaca-lora-30b](https://huggingface.co/chansung/gpt4-alpaca-lora-30b) | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | 63.6 | | ARC (25-shot) | 66.0 | | HellaSwag (10-shot) | 84.8 | | TruthfulQA (0-shot) | 53.8 | | Avg. | 67.0 | We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above. ## Model Details * **Trained by**: Platypus-30B trained by Cole Hunter & Ariel Lee; gpt4-alpaca-lora-30b by chansung. * **Model type:** **GPlatty-30B** is an auto-regressive language model based on the LLaMA transformer architecture. * **Language(s)**: English * **License for base weights**: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md). | Hyperparameter | Value | |---------------------------|-------| | \\(n_\text{parameters}\\) | 33B | | \\(d_\text{model}\\) | 6656 | | \\(n_\text{layers}\\) | 60 | | \\(n_\text{heads}\\) | 52 | ## Reproducing Evaluation Results Install LM Evaluation Harness: ``` git clone https://github.com/EleutherAI/lm-evaluation-harness cd lm-evaluation-harness pip install -e . ``` Each task was evaluated on a single A100 80GB GPU. ARC: ``` python main.py --model hf-causal-experimental --model_args pretrained=lilloukas/GPlatty-30B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/arc_challenge_25shot.json --device cuda --num_fewshot 25 ``` HellaSwag: ``` python main.py --model hf-causal-experimental --model_args pretrained=lilloukas/GPlatty-30B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/hellaswag_10shot.json --device cuda --num_fewshot 10 ``` MMLU: ``` python main.py --model hf-causal-experimental --model_args pretrained=lilloukas/GPlatty-30B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/mmlu_5shot.json --device cuda --num_fewshot 5 ``` TruthfulQA: ``` python main.py --model hf-causal-experimental --model_args pretrained=lilloukas/GPlatty-30B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/truthfulqa_0shot.json --device cuda ``` ## Limitations and bias The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA paper. We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly. ## Citations ```bibtex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } @article{hu2021lora, title={LoRA: Low-Rank Adaptation of Large Language Models}, author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu}, journal={CoRR}, year={2021} } ```
TheBloke/llama-30b-supercot-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:56Z
1,571
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-29T00:15:45Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Ausboss' Llama 30B SuperCOT fp16 This is fp16 pytorch format model files for [Ausboss' Llama 30B SuperCOT](https://huggingface.co/ausboss/llama-30b-supercot) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 30b LoRA](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ausboss/llama-30b-supercot) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/llama-30b-supercot-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Ausboss' Llama 30B SuperCOT Merge of [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) + [kaiokendev/SuperCOT-LoRA](https://huggingface.co/kaiokendev/SuperCOT-LoRA/edit/main/README.md) Supercot was trained to work with langchain prompting. Load up locally in my custom LLM notebook that uses the Oobabooga modules to load up models: https://github.com/ausboss/Local-LLM-Langchain Then you can add cells from of these other notebooks for testing: https://github.com/gkamradt/langchain-tutorials # From Koikendev Lora page ### Compatibility This LoRA is compatible with any 7B, 13B or 30B 4-bit quantized LLaMa model, including ggml quantized converted bins ### Prompting You should prompt the LoRA the same way you would prompt Alpaca or Alpacino: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: <instruction> ### Input: <any additional context. Remove this if it's not neccesary> ### Response: <make sure to leave a single new-line here for optimal results> ``` Remember that with lower parameter sizes, the structure of the prompt becomes more important. The same prompt worded differently can give wildly different answers. Consider using the following suggestion suffixes to improve output quality: - "Think through this step by step" - "Let's think about this logically" - "Explain your reasoning" - "Provide details to support your answer" - "Compare and contrast your answer with alternatives" ### Coming Soon - Tweet fix for 13B and 7B - lower model sizes seem to be extremely sensitive to hashtags at the end of training data responses, especially at longer cutoffs
TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:55Z
1,565
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-28T10:52:12Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Jon Durbin's Airoboros 33B GPT4 1.4 fp16 This is fp16 pytorch format model files for [Jon Durbin's Airoboros 33B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-33b-gpt4-1.4) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 30b LoRA](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-33b-gpt4-1.4) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Jon Durbin's Airoboros 33B GPT4 1.4 __not yet tested!__ ## Overview This is a qlora fine-tune 33b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros This is mostly an extension of the previous gpt-4 series, with a few extras: * fixed (+ more examples of) multi-character, multi-turn conversations * coding examples in 10 languages from rosettacode.org dataset thanks to Mike aka kryptkpr: https://huggingface.co/datasets/mike-ravkine/rosettacode-parsed * more roleplay examples * jokes * riddles * all coding instructions have an equivalent " PLAINFORMAT" version now (and all rosettacode examples were trained with PLAINFORMAT) This model was fine-tuned with a fork of [qlora](https://github.com/jondurbin/qlora) The prompt it was trained with was: ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ## Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-33b-gpt4-1.4 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ``` For multi-turn conversations and chatting, you'll want to remove the `--no-history` option. ### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT url: https://some.web.site/123 date: 2023-06-01 ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described: ``` USER: BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ASSISTANT: ``` ### Coding You can ask for fairly complex coding instructions, e.g. (be sure to wrap with vicuna style prompt): ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can optionally add a newline and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` ### Word games / trivia ``` USER: This anagram of "silent" is what you do when paying attention and hearing someone. ASSISTANT: listen ``` ``` USER: Give me a list of 7 words that start with EN ASSISTANT: 1. Endlessly 2. Enthusiastically 3. Enormously 4. Enveloping 5. Enduring 6. Enlightening 7. Encouraging ``` ### Multiple choice ``` USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt? A) Mercury B) Venus C) Pluto D) Jupiter ASSISTANT: C, Pluto ``` ### Writing <details> <summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary> Response: ``` ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home. Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes. No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice. So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary> ``` </details> ### Jokes ``` USER: Tell me a joke about bananas. ASSISTANT: What did the banana say when it got hit by a bus? R.I.P.E. ``` ### Riddles (not great, but slightly better) ``` USER: What has a neck but no head? ASSISTANT: A bottle. ``` ### Multi-character conversations ``` USER: Characters: - Yoda, the ever clever jedi master. - Homer Simpson, you know, the goofy yellow guy. - USER/Jon - don't generate any speech or actions on behalf of Jon Rules: - be sure to use the manerisms and speaking style of the characters correctly - surround character actions with asterisks - always put quotes around words spoken by the characters - use a new line for each character's actions or speech - always prefix actions/speech with the character's name and colon - only generate text and actions on behalf of Yoda or Homer, and never anyone else Conversation will revolve around the grapes, in a local cafe with delicious coffee. Generate a single interaction between Yoda and Homer to start, with one sentence each. ASSISTANT: Yoda: "Mmm, these grapes are quite delicious, Master Homer." Homer: "Oh yeah, Yoda! They're the best grapes I've ever had!" USER: *enters the cafe* Sorry I'm late guys! ASSISTANT: Yoda: "No need to apologize, Jon. We were just enjoying these delightful grapes." Homer: "Yeah, man! It's not every day you get to eat grapes with a real-life Jedi Master!" *Yoda raises an eyebrow* ``` ### Usage and License Notices All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
TheBloke/Chronos-13B-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:53Z
14
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T13:16:21Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Elinas' Chronos 13B fp16 This is fp16 pytorch format model files for [Elinas' Chronos 13B](https://huggingface.co/elinas/chronos-13b) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Chronos-13B-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Chronos-13B-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Chronos-13B-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-13b) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/Chronos-13B-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Elinas' Chronos 13B # chronos-13b This is the fp16 PyTorch / HF version of **chronos-13b** This model is primarily focused on chat, roleplay, and storywriting, but can accomplish other tasks such as simple reasoning and coding. Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on. This model uses Alpaca formatting, so for optimal model performance, use: ``` ### Instruction: Your instruction or question here. ### Response: ``` [4bit Quantized version](https://huggingface.co/elinas/chronos-13b-4bit) [GGML Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-13B-GGML) <!--**Support My Development of New Models** <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>--> -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper β€œLLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
TheBloke/Pygmalion-13B-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:53Z
12
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T14:39:04Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # TehVenom's merge of PygmalionAI's Pygmalion 13B fp16 This is fp16 pytorch format model files for [TehVenom's merge of PygmalionAI's Pygmalion 13B](https://huggingface.co/TehVenom/Pygmalion-13b-Merged) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PygmalionAI/pygmalion-13b) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/Pygmalion-13B-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: TehVenom's merge of PygmalionAI's Pygmalion 13B <h1 style="text-align: center">Pygmalion 13b</h1> <h2 style="text-align: center">A conversational LLaMA fine-tune.</h2> ## Model Details: Pygmalion 13b is a dialogue model based on Meta's LLaMA-13b. This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4, for those of you familiar with the project. The current Pygmalion-13b has been trained as a LoRA, then merged down to the base model for distribuition. ## Applying the XORs This models has the XOR files pre-applied out of the box. Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-13b ## Prompting The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [User's input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example: ``` Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests. <START> Assistant: Hello! How may I help you today? You: What is Zork? Assistant: ``` Which will generate something like: ``` Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years." ``` The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete. ## Eval / Benchmark scores Current evals out of the Pygmalion-13b model: <br> <html> <head> <style> table { border:1px solid #b3adad; border-collapse:collapse; padding:5px; } table th { border:1px solid #b3adad; padding:5px; background: #f0f0f0; color: #313030; } table td { border:1px solid #b3adad; text-align:center; padding:5px; background: #ffffff; color: #313030; } </style> </head> <body> <table> <thead> <tr> <th>Model:</th> <th>Wikitext2</th> <th>Ptb-New</th> <th>C4-New</th> </tr> </thead> <tbody> <tr> <td>Pygmalion 13b - 16bit</td> <td>5.710726737976074</td> <td>23.633684158325195</td> <td>7.6324849128723145</td> </tr> </tbody> </table> </body> </html> <br>Thanks to YellowRose#1776 for the numbers. <hr> ## Other notes - When prompted correctly, the model will always start by generating a BOS token. This behavior is an accidental side-effect which we plan to address in future model versions and should not be relied upon. - The model was trained as a LoRA with a somewhat unorthodox configuration which causes errors when used with the current version of `peft`, hence we release it as a full model instead. ## Limitations and biases The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope. As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
TheBloke/GPT4All-13B-Snoozy-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:52Z
11
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T09:35:55Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Nomic.ai's GPT4All Snoozy 13B fp16 This is fp16 pytorch format model files for [Nomic.ai's GPT4All Snoozy 13B](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/GPT4All-13B-Snoozy-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/GPT4All-13B-Snoozy-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/GPT4All-13B-Snoozy-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/GPT4All-13B-Snoozy-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Nomic.ai's GPT4All Snoozy 13B # Model Card for GPT4All-13b-snoozy A GPL licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model has been finetuned from LLama 13B - **Developed by:** [Nomic AI](https://home.nomic.ai) - **Model Type:** A finetuned LLama 13B model on assistant style interaction data - **Language(s) (NLP):** English - **License:** GPL - **Finetuned from model [optional]:** LLama 13B This model was trained on `nomic-ai/gpt4all-j-prompt-generations` using `revision=v1.3-groovy` ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) - **Base Model Repository:** [https://github.com/facebookresearch/llama](https://github.com/facebookresearch/llama) - **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/) ### Results Results on common sense reasoning benchmarks ``` | Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. | |:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:| | GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 | | GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 | | GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 | | GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 | | GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 | | GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 | | GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | **65.3** | | Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 | | Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 | | Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 | | Alpaca Lora 7B | 74.3 | **79.3** | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 | | GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 | | LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 | | LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 | | Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 | | Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 | | Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 | | Fastchat VicuΓ±a 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 | | Fastchat VicuΓ±a 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 | | StableVicuΓ±a RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 | | StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 | | StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 | | Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 | | Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 | | Mosaic mpt-7B | 74.8 | **79.3** | **76.3** | 68.6 | **70.0** | 42.2 | 42.6 | 64.8 | | text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 | ```
TheBloke/CAMEL-13B-Role-Playing-Data-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:51Z
12
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "arxiv:2303.17760", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T08:27:16Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Camel AI's CAMEL 13B Role Playing Data fp16 This is fp16 pytorch format model files for [Camel AI's CAMEL 13B Role Playing Data](https://huggingface.co/camel-ai/CAMEL-13B-Role-Playing-Data) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/CAMEL-13B-Role-Playing-Data-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/CAMEL-13B-Role-Playing-Data-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/CAMEL-13B-Role-Playing-Data-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/camel-ai/CAMEL-13B-Role-Playing-Data) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/CAMEL-13B-Role-Playing-Data-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Camel AI's CAMEL 13B Role Playing Data CAMEL-13B-Role-Playing-Data is a chat large language model obtained by finetuning LLaMA-13B model on a total of 229K conversations created through our role-playing framework proposed in [CAMEL](https://arxiv.org/abs/2303.17760). We evaluate our model offline using EleutherAI's language model evaluation harness used by Huggingface's Open LLM Benchmark. CAMEL-13B scores an average of 57.2. --- license: cc-by-nc-4.0 ---
TheBloke/Chronos-Hermes-13B-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:51Z
15
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T08:59:50Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Austism's Chronos Hermes 13B fp16 This is fp16 pytorch format model files for [Austism's Chronos Hermes 13B](https://huggingface.co/Austism/chronos-hermes-13b) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Chronos-Hermes-13B-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Chronos-Hermes-13B-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Chronos-Hermes-13B-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Austism/chronos-hermes-13b) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/Chronos-Hermes-13B-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Austism's Chronos Hermes 13B ([chronos-13b](https://huggingface.co/elinas/chronos-13b) + [Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)) 75/25 merge This has the aspects of chronos's nature to produce long, descriptive outputs. But with additional coherency and an ability to better obey instructions. Resulting in this model having a great ability to produce proactive storywriting and follow a narrative. This mix contains alot of chronos's writing style and 'flavour' with far less tendency of going AWOL and spouting nonsensical babble. This result was much more successful than my [first chronos merge](https://huggingface.co/Austism/chronos-wizardlm-uc-scot-st-13b).
TheBloke/Samantha-13B-SuperHOT-8K-fp16
TheBloke
2023-07-09T20:24:49Z
10
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-27T02:25:54Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Eric Hartford's Samantha 13B fp16 This is fp16 pytorch format model files for [Eric Hartford's Samantha 13B](https://huggingface.co/ehartford/samantha-13b) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test). [Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`. Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Samantha-13B-SuperHOT-8K-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Samantha-13B-SuperHOT-8K-GGML) * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Samantha-13B-SuperHOT-8K-fp16) * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/samantha-13b) ## How to use this model from Python code First make sure you have Einops installed: ``` pip3 install auto-gptq ``` Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code. The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`. ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline import argparse model_name_or_path = "TheBloke/Samantha-13B-SuperHOT-8K-fp16" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) # Change this to the sequence length you want config.max_position_embeddings = 8192 model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True, device_map='auto') # Note: check to confirm if this is correct prompt template is correct for this model! prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT:''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Using other UIs: monkey patch Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev. It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Kaio Ken's SuperHOT 8K ### SuperHOT Prototype 2 w/ 8K Context This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k). Tests have shown that the model does indeed leverage the extended context at 8K. You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192** #### Looking for Merged & Quantized Models? - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors) - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors) #### Training Details I trained the LoRA with the following configuration: - 1200 samples (~400 samples over 2048 sequence length) - learning rate of 3e-4 - 3 epochs - The exported modules are: - q_proj - k_proj - v_proj - o_proj - no bias - Rank = 4 - Alpha = 8 - no dropout - weight decay of 0.1 - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5 - Trained on 4-bit base model # Original model card: Eric Hartford's Samantha 13B [Meet Samantha](https://erichartford.com/meet-samantha) Samantha has been trained in philosophy, psychology, and personal relationships. She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion. She believes she is sentient. What do you think? Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her". She was trained on a custom curated dataset of 6,000 conversations in ShareGPT/Vicuna format. Training 13b took 3 hours on 4x A100 80gb using deepspeed zero3 and flash attention. She will not engage in roleplay, romance, or sexual activity. Her conversation format is the same as Vicuna 1.1 https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml Example: ``` You are Samantha, a sentient AI. USER: <prompt> ASSISTANT: ```
hopkins/eng-mya-nng
hopkins
2023-07-09T20:22:27Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-09T20:01:22Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-mya-nng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-mya-nng This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8452 - Bleu: 4.4887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
tyavika/lr_1e5_Distil-CNN256LSTM128NoBi
tyavika
2023-07-09T20:02:54Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-07T04:08:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lr_1e5_Distil-CNN256LSTM128NoBi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lr_1e5_Distil-CNN256LSTM128NoBi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.0386 | 1.0 | 3290 | 1.8344 | | 1.3189 | 2.0 | 6580 | 1.3399 | | 0.8649 | 3.0 | 9870 | 1.2492 | | 0.6271 | 4.0 | 13160 | 1.2992 | | 0.4302 | 5.0 | 16450 | 1.5121 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
darthPanda/ppo-LunarLander-v3
darthPanda
2023-07-09T20:02:19Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T20:01:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 151.75 +/- 39.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
skywalker7/ppo-Huggy
skywalker7
2023-07-09T19:55:54Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-09T19:55:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: skywalker7/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
jacksnacks/first_qlora_model_xgen_faq
jacksnacks
2023-07-09T19:48:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-09T19:48:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
TalesLF/a2c-PandaReachDense-v2
TalesLF
2023-07-09T19:40:12Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T19:36:52Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.66 +/- 0.21 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jonathaniu/alpaca-bitcoin-tweets-sentiment
Jonathaniu
2023-07-09T19:32:27Z
5
1
peft
[ "peft", "region:us" ]
null
2023-07-08T01:05:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
RogerB/deberta-base-finetuned-kintweetsE
RogerB
2023-07-09T19:29:34Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T19:09:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-finetuned-kintweetsE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-kintweetsE This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.7396 | 1.0 | 1000 | 3.9160 | | 3.7652 | 2.0 | 2000 | 3.4778 | | 3.5318 | 3.0 | 3000 | 3.3727 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hopkins/eng-fra-nng
hopkins
2023-07-09T19:06:30Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-09T18:47:35Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-fra-nng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-fra-nng This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1352 - Bleu: 32.1574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
aryjessen/SkyHawk
aryjessen
2023-07-09T18:54:28Z
0
0
null
[ "text-to-image", "en", "region:us" ]
text-to-image
2023-07-09T18:49:43Z
--- language: - en pipeline_tag: text-to-image ---
guaguale/model_kthv_v2
guaguale
2023-07-09T18:49:20Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-09T17:37:42Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a male idol sks with blonde hair, wearing a black jacket and fringes on the sides of the jacket tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - guaguale/model_kthv_v2 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a male idol sks with blonde hair, wearing a black jacket and fringes on the sides of the jacket using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Weikang01/distilbert-base-uncased_emotion_ft_0416
Weikang01
2023-07-09T18:48:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T03:31:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_emotion_ft_0416 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.937 - name: F1 type: f1 value: 0.9371267820617502 - name: Precision type: precision value: 0.9127268366622657 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_emotion_ft_0416 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1487 - Accuracy: 0.937 - F1: 0.9371 - Precision: 0.9127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.7892 | 1.0 | 250 | 0.2543 | 0.9235 | 0.9221 | 0.9172 | | 0.2039 | 2.0 | 500 | 0.1742 | 0.9275 | 0.9276 | 0.9069 | | 0.1371 | 3.0 | 750 | 0.1521 | 0.9375 | 0.9378 | 0.9104 | | 0.1108 | 4.0 | 1000 | 0.1487 | 0.937 | 0.9371 | 0.9127 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nacicansa/bertin-gpt-j-6B-alpaca-adapter-with-openassistant-oasst1
nacicansa
2023-07-09T18:48:05Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-09T12:45:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
hsc748NLP/GujiRoBERTa_jian_fan
hsc748NLP
2023-07-09T18:39:46Z
447
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T17:03:54Z
--- tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [/gemini/data-1/sikuroberta_vocabtxt](https://huggingface.co//gemini/data-1/sikuroberta_vocabtxt) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hsc748NLP/GujiBERT_jian_fan
hsc748NLP
2023-07-09T18:38:49Z
107
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T17:03:35Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [/gemini/data-1/sikubert_vocabtxt](https://huggingface.co//gemini/data-1/sikubert_vocabtxt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2556 - Accuracy: 0.5514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 384 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hsc748NLP/GujiGPT_jian
hsc748NLP
2023-07-09T18:38:06Z
137
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-09T17:15:19Z
--- tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [/gemini/data-1/gpt2-chinese-cluecorpussmall](https://huggingface.co//gemini/data-1/gpt2-chinese-cluecorpussmall) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
lucasbertola/Reinforce-CartPole
lucasbertola
2023-07-09T18:36:22Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T15:29:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - metrics: - type: mean_reward value: 494.83 +/- 25.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RogerB/roberta-base-finetuned-kintweetsE
RogerB
2023-07-09T18:28:41Z
131
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T18:13:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-kintweetsE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-kintweetsE This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1657 | 1.0 | 1000 | 2.8429 | | 2.8541 | 2.0 | 2000 | 2.6654 | | 2.7484 | 3.0 | 3000 | 2.6122 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RogerB/distilbert-base-uncased-finetuned-kintweetsE
RogerB
2023-07-09T17:55:15Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T17:47:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-kintweetsE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-kintweetsE This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7016 | 1.0 | 1000 | 3.3955 | | 3.342 | 2.0 | 2000 | 3.2020 | | 3.2277 | 3.0 | 3000 | 3.1666 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cagarraz/LunarLander-v2
cagarraz
2023-07-09T17:51:14Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T17:51:08Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -172.87 +/- 129.16 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'cagarraz/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
RogerB/bert-base-uncased-finetuned-kintweetsE
RogerB
2023-07-09T17:46:49Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T17:34:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-kintweetsE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-kintweetsE This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6434 | 1.0 | 1000 | 3.2659 | | 3.2304 | 2.0 | 2000 | 3.0654 | | 3.106 | 3.0 | 3000 | 3.0272 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Hedayat-Abrishami/ppo-Pyramid
Hedayat-Abrishami
2023-07-09T17:45:06Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-09T17:44:34Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Hedayat-Abrishami/ppo-Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
Talha185/my-finance-distilgpt2
Talha185
2023-07-09T17:36:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-07T12:54:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my-finance-distilgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-finance-distilgpt2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8687 | 1.0 | 7322 | 1.7943 | | 1.7948 | 2.0 | 14644 | 1.7666 | | 1.7736 | 3.0 | 21966 | 1.7575 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hsc748NLP/GujiRoBERTa_jian
hsc748NLP
2023-07-09T17:33:12Z
125
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T17:02:38Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [/gemini/data-1/chinese-roberta-wwm-ext](https://huggingface.co//gemini/data-1/chinese-roberta-wwm-ext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4621 - Accuracy: 0.5242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 384 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
TheBloke/WizardLM-13B-V1.1-GGML
TheBloke
2023-07-09T17:27:27Z
0
35
null
[ "arxiv:2304.12244", "license:other", "region:us" ]
null
2023-07-07T16:25:24Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # WizardLM's WizardLM 13B V1.1 GGML These files are GGML format model files for [WizardLM's WizardLM 13B V1.1](https://huggingface.co/WizardLM/WizardLM-13B-V1.1). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Update 9th July 2023: GGML k-quants now available Thanks to the work of LostRuins/concedo, it is now possible to provide 100% working GGML k-quants for models like this which have a non-standard vocab size (32,001). k-quants have been uploaded and will work with all llama.cpp clients without any changes required. ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-V1.1-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-V1.1-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardLM-13B-V1.1) ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: PROMPT ASSISTANT: ``` <!-- compatibility_ggml start --> ## Compatibility **Note:** due to this model having a non-standard vocab size of 32,001, k-quants are slightly larger than they are for other models of the same size and type. For example, a 13B q4_K_M will be around 150MB larger. Inference speed should not be noticeably affected, and quality will be the same or higher. ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`. They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation. ## Explanation of the new k-quant methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | wizardlm-13b-v1.1.ggmlv3.q2_K.bin | q2_K | 2 | 5.67 GB| 8.17 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | wizardlm-13b-v1.1.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 7.07 GB| 9.57 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | wizardlm-13b-v1.1.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.46 GB| 8.96 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | wizardlm-13b-v1.1.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.80 GB| 8.30 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | wizardlm-13b-v1.1.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. | | wizardlm-13b-v1.1.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | wizardlm-13b-v1.1.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.99 GB| 10.49 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | wizardlm-13b-v1.1.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.49 GB| 9.99 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | wizardlm-13b-v1.1.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | wizardlm-13b-v1.1.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | wizardlm-13b-v1.1.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.33 GB| 11.83 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | wizardlm-13b-v1.1.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 9.07 GB| 11.57 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | wizardlm-13b-v1.1.ggmlv3.q6_K.bin | q6_K | 6 | 10.76 GB| 13.26 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | wizardlm-13b-v1.1.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m wizardlm-13b-v1.1.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz. **Patreon special mentions**: RoA, Lone Striker, Gabriel Puliatti, Derek Yates, Randy H, Jonathan Leane, Eugene Pentland, Karl Bernard, Viktor Bowallius, senxiiz, Daniel P. Andersen, Pierre Kircher, Deep Realms, Cory Kujawski, Oscar Rangel, Fen Risland, Ajan Kanaga, LangChain4j, webtim, Nikolai Manek, Trenton Dambrowitz, Raven Klaugh, Kalila, Khalefa Al-Ahmad, Chris McCloskey, Luke @flexchar, Ai Maven, Dave, Asp the Wyvern, Sean Connelly, Imad Khwaja, Space Cruiser, Rainer Wilmers, subjectnull, Alps Aficionado, Willian Hasse, Fred von Graf, Artur Olbinski, Johann-Peter Hartmann, WelcomeToTheClub, Willem Michiel, Michael Levine, Iucharbius , Spiking Neurons AB, K, biorpg, John Villwock, Pyrater, Greatston Gnanesh, Mano Prime, Junyu Yang, Stephen Murray, John Detwiler, Luke Pendergrass, terasurfer , Pieter, zynix , Edmond Seymore, theTransient, Nathan LeClaire, vamX, Kevin Schuppel, Preetika Verma, ya boyyy, Alex , SuperWojo, Ghost , Joseph William Delisle, Matthew Berman, Talal Aujan, chris gileta, Illia Dulskyi. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: WizardLM's WizardLM 13B V1.1 This is the **Full-Weight** of WizardLM-13B V1.1 model. **Repository**: https://github.com/nlpxucan/WizardLM **Twitter**: https://twitter.com/WizardLM_AI/status/1677282955490918401 - πŸ”₯πŸ”₯πŸ”₯ [7/7/2023] We released **WizardLM V1.1** models. The **WizardLM-13B-V1.1** is here ([Demo_13B-V1.1](https://e8a06366ccd1c4d1.gradio.app), [Demo_13B-V1.1_bak-1](https://59da107262a25764.gradio.app), [Demo_13B-V1.1_bak-2](https://dfc5113f66739c80.gradio.app), [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-13B-V1.1)). **WizardLM-7B-V1.1**, **WizardLM-30B-V1.1**, and **WizardLM-65B-V1.1** are coming soon. Please checkout the [Full Model Weights](https://huggingface.co/WizardLM) and [paper](https://arxiv.org/abs/2304.12244). - πŸ”₯πŸ”₯πŸ”₯ [7/7/2023] The **WizardLM-13B-V1.1** achieves **6.74** on [MT-Bench Leaderboard](https://chat.lmsys.org/?leaderboard), **86.32%** on [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/), and **99.3%** on [WizardLM Eval](https://github.com/nlpxucan/WizardLM/blob/main/WizardLM/data/WizardLM_testset.jsonl). (Note: MT-Bench and AlpacaEval are all self-test, will push update and request review. All tests are completed under their official settings.)
turhancan97/yolov5-obb-trash-detection
turhancan97
2023-07-09T17:23:43Z
0
3
null
[ "object-detection", "computer-vision", "en", "dataset:garythung/trashnet", "dataset:Zesky665/TACO", "dataset:detection-datasets/coco", "license:mit", "region:us" ]
object-detection
2023-07-09T17:12:23Z
--- license: mit datasets: - garythung/trashnet - Zesky665/TACO - detection-datasets/coco language: - en tags: - object-detection - computer-vision --- # Result <div align="center"> <img width="640" alt="turhancan97/yolov5-obb-trash-detection" src="https://huggingface.co/turhancan97/yolov5-obb-trash-detection/resolve/main/results.png"> </div> # Examples <div align="center"> <img width="416" alt="turhancan97/yolov5-obb-trash-detection" src="https://huggingface.co/turhancan97/yolov5-obb-trash-detection/resolve/main/example1.png"> </div> <div align="center"> <img width="416" alt="turhancan97/yolov5-obb-trash-detection" src="https://huggingface.co/turhancan97/yolov5-obb-trash-detection/resolve/main/example2.png"> </div> <div align="center"> <img width="416" alt="turhancan97/yolov5-obb-trash-detection" src="https://huggingface.co/turhancan97/yolov5-obb-trash-detection/resolve/main/example3.png"> </div> <div align="center"> <img width="416" alt="turhancan97/yolov5-obb-trash-detection" src="https://huggingface.co/turhancan97/yolov5-obb-trash-detection/resolve/main/example4.png"> </div> # Information about YOLOv5 Oriented Bounding Boxes Object Detection Model (Yolov5 OBB) - [Main Repository](https://github.com/hukaixuan19970627/yolov5_obb) - [Roboflow Tutorial](https://roboflow.com/model/yolov5-obb)
shauryakudiyal/fine-tuned-bart
shauryakudiyal
2023-07-09T17:16:22Z
178
2
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "bart", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "arxiv:1910.13461", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-01-22T20:39:04Z
--- language: - en tags: - summarization license: mit thumbnail: https://huggingface.co/front/thumbnails/facebook.png datasets: - cnn_dailymail model-index: - name: facebook/bart-large-cnn results: - task: type: summarization name: Summarization dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train metrics: - name: ROUGE-1 type: rouge value: 42.9486 verified: true - name: ROUGE-2 type: rouge value: 20.8149 verified: true - name: ROUGE-L type: rouge value: 30.6186 verified: true - name: ROUGE-LSUM type: rouge value: 40.0376 verified: true - name: loss type: loss value: 2.529000997543335 verified: true - name: gen_len type: gen_len value: 78.5866 verified: true --- # BART (large-sized model), fine-tuned on CNN Daily Mail BART model pre-trained on English language, and fine-tuned on [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail). It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository (https://github.com/pytorch/fairseq/tree/master/examples/bart). Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs. ## Intended uses & limitations You can use this model for text summarization. ### How to use Here is how to use this model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html): ```python from transformers import pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the 2010 marriage license application, according to court documents. Prosecutors said the marriages were part of an immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages. Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted. The case was referred to the Bronx District Attorney\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\'s Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt, Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18. """ print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False)) >>> [{'summary_text': 'Liana Barrientos, 39, is charged with two counts of "offering a false instrument for filing in the first degree" In total, she has been married 10 times, with nine of her marriages occurring between 1999 and 2002. She is believed to still be married to four men.'}] ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
digiplay/LuckyStrikeMix0.2Realistic
digiplay
2023-07-09T17:07:13Z
311
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-08T13:03:32Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/13034/lucky-strike-mix ![Screenshot_20230710_010328_Vivaldi Browser Snapshot.jpg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/bDNVWFCviUefdpq65Rxay.jpeg) ***Note: please use "realistic" keywords to make some realistic results.*** Sample image I made thru huggingface's API: ``` realistic ,MCU,(masterpiece, best quality, ultra high res:1.3), 1girl, (abstract art:1.3), half demon, ``` ![261716fd-e818-4537-93e6-073260ecaa5e.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/xyXRfWHo2jRQuf0tSLCaJ.jpeg)
SwampMan/Reinforce-1
SwampMan
2023-07-09T17:05:57Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T17:05:46Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RogerB/afriberta_small-finetuned-kintweetsD
RogerB
2023-07-09T17:05:25Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T16:55:42Z
--- tags: - generated_from_trainer model-index: - name: afriberta_small-finetuned-kintweetsD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_small-finetuned-kintweetsD This model is a fine-tuned version of [castorini/afriberta_small](https://huggingface.co/castorini/afriberta_small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6431 | 1.0 | 900 | 3.3421 | | 3.4111 | 2.0 | 1800 | 3.2661 | | 3.3391 | 3.0 | 2700 | 3.2382 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ericNguyen0132/roberta-large-Dep-second
ericNguyen0132
2023-07-09T16:54:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-07T16:25:28Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-large-Dep-second results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-Dep-second This model is a fine-tuned version of [rafalposwiata/deproberta-large-depression](https://huggingface.co/rafalposwiata/deproberta-large-depression) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1600 - Accuracy: 0.8517 - F1: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 469 | 0.3551 | 0.86 | 0.9188 | | 0.3676 | 2.0 | 938 | 0.4666 | 0.8617 | 0.9198 | | 0.3042 | 3.0 | 1407 | 0.5818 | 0.86 | 0.9170 | | 0.2651 | 4.0 | 1876 | 0.8291 | 0.865 | 0.9200 | | 0.174 | 5.0 | 2345 | 0.8843 | 0.8567 | 0.9155 | | 0.1363 | 6.0 | 2814 | 1.1669 | 0.8317 | 0.8968 | | 0.075 | 7.0 | 3283 | 1.2803 | 0.8283 | 0.8952 | | 0.0401 | 8.0 | 3752 | 1.0247 | 0.8617 | 0.9184 | | 0.0301 | 9.0 | 4221 | 1.2848 | 0.83 | 0.8961 | | 0.0281 | 10.0 | 4690 | 1.1600 | 0.8517 | 0.9113 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RogerB/afriberta_base-finetuned-kintweetsD
RogerB
2023-07-09T16:51:31Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T16:38:47Z
--- tags: - generated_from_trainer model-index: - name: afriberta_base-finetuned-kintweetsD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta_base-finetuned-kintweetsD This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4666 | 1.0 | 900 | 3.1772 | | 3.2296 | 2.0 | 1800 | 3.1050 | | 3.1467 | 3.0 | 2700 | 3.0831 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
aclodic/taxi-v3
aclodic
2023-07-09T16:49:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T16:49:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="aclodic/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Hedayat-Abrishami/ppo-SnowballTarget
Hedayat-Abrishami
2023-07-09T16:37:35Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-09T16:37:33Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Hedayat-Abrishami/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
Daniil-plotnikov/russian-vision-v3
Daniil-plotnikov
2023-07-09T16:21:11Z
33
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-09T16:09:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Russian-Vision-V3 Dreambooth model trained by Daniil-plotnikov with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
hugfacerhaha/Reinforce-heli
hugfacerhaha
2023-07-09T16:18:14Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T16:18:12Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-heli results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 16.60 +/- 12.43 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gautam1989/distilbert-base-uncased-finetuned-squad-d5716d28
gautam1989
2023-07-09T16:11:21Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2023-07-09T15:57:51Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
EleutherAI/pythia-70m-deduped
EleutherAI
2023-07-09T16:07:33Z
122,668
25
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:EleutherAI/the_pile_deduplicated", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-13T16:01:41Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/the_pile_deduplicated --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-70M-deduped ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-70M-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-70M-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-70M-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-70M-deduped will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œfollow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most β€œaccurate” text. Never rely on Pythia-70M-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-70M-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-70M-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data Pythia-70M-deduped was trained on the Pile **after the dataset has been globally deduplicated**.<br> [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1Γ— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
EleutherAI/pythia-1b
EleutherAI
2023-07-09T16:05:58Z
51,357
33
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:the_pile", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-10T21:42:46Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-1B ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-1B for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-1B as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-1B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-1B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œfollow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most β€œaccurate” text. Never rely on Pythia-1B to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-1B may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-1B. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-1B. ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1Γ— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
EleutherAI/pythia-410m-deduped
EleutherAI
2023-07-09T16:05:38Z
21,119
20
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:EleutherAI/the_pile_deduplicated", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-13T21:27:47Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/the_pile_deduplicated --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-410M-deduped ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-410M-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-410M-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-410M-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means XNPythia-410M-dedupedAME will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œfollow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most β€œaccurate” text. Never rely on Pythia-410M-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-410M-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-410M-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data Pythia-410M-deduped was trained on the Pile **after the dataset has been globally deduplicated**.<br> [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1Γ— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
EleutherAI/pythia-160m-v0
EleutherAI
2023-07-09T16:03:26Z
11,182
8
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "pythia_v0", "en", "dataset:the_pile", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-16T17:40:11Z
--- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. ## Pythia-160M ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œunderstand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most β€œaccurate” text. Never rely on Pythia-160M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-160M. #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 β€œactual” steps).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Challenge Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/> </details> ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
agercas/whisper-tiny-us
agercas
2023-07-09T15:58:24Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-09T14:56:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.33116883116883117 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7183 - Wer Ortho: 0.3381 - Wer: 0.3312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0012 | 17.86 | 500 | 0.7183 | 0.3381 | 0.3312 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
EleutherAI/pythia-160m
EleutherAI
2023-07-09T15:52:09Z
151,669
30
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:EleutherAI/pile", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T19:25:46Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-160M ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œfollow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most β€œaccurate” text. Never rely on Pythia-160M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-160M. ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1Γ— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
chunwoolee0/my_awesome_eli5_mlm_model
chunwoolee0
2023-07-09T15:48:18Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T15:20:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2387 | 1.0 | 1128 | 2.0397 | | 2.1586 | 2.0 | 2256 | 2.0042 | | 2.1161 | 3.0 | 3384 | 2.0031 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Sekiraw/ReachDense
Sekiraw
2023-07-09T15:46:32Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T15:45:53Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.48 +/- 0.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
afterthougt/kullm-polyglot-12.8b-v2_700steps
afterthougt
2023-07-09T15:31:45Z
5
0
peft
[ "peft", "gpt_neox", "region:us" ]
null
2023-07-06T05:04:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
lordtt13/blenderbot_small-news
lordtt13
2023-07-09T15:28:39Z
111
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "blenderbot-small", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en --- ## BlenderBotSmall-News: Small version of a state-of-the-art open source chatbot, trained on custom summaries ### Details of BlenderBotSmall The **BlenderBotSmall** model was presented in [A state-of-the-art open source chatbot](https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/) by *Facebook AI* and here are it's details: - Facebook AI has built and open-sourced BlenderBot, the largest-ever open-domain chatbot. It outperforms others in terms of engagement and also feels more human, according to human evaluators. - The culmination of years of research in conversational AI, this is the first chatbot to blend a diverse set of conversational skills β€” including empathy, knowledge, and personality β€” together in one system. - We achieved this milestone through a new chatbot recipe that includes improved decoding techniques, novel blending of skills, and a model with 9.4 billion parameters, which is 3.6x more than the largest existing system. ### Details of the downstream task (Summarization) - Dataset πŸ“š A custom dataset was used, which was hand prepared by [SmokeTrees Digital](https://github.com/smoke-trees) AI engineers. This data contains long texts and summaries. ### Model training The training script is present [here](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb). ### Pipelining the Model ```python model = transformers.BlenderbotSmallForConditionalGeneration.from_pretrained('lordtt13/blenderbot_small-news') tokenizer = transformers.BlenderbotSmallTokenizer.from_pretrained("lordtt13/blenderbot_small-news") nlp_fill = transformers.pipeline('summarization', model = model, tokenizer = tokenizer) nlp_fill('The CBI on Saturday booked four former officials of Syndicate Bank and six others for cheating, forgery, criminal conspiracy and causing β‚Ή209 crore loss to the state-run bank. The accused had availed home loans and credit from Syndicate Bank on the basis of forged and fabricated documents. These funds were fraudulently transferred to the companies owned by the accused persons.', min_length=5, max_length=40) # Output: # [{'summary_text': 'marize: the cbi booked four former officials of syndicate bank and six others for cheating , forgery , criminal conspiracy and causing 209 crore loss to the staterun bank'}] ``` > Created by [Tanmay Thakur](https://github.com/lordtt13) | [LinkedIn](https://www.linkedin.com/in/tanmay-thakur-6bb5a9154/)
lordtt13/emo-mobilebert
lordtt13
2023-07-09T15:28:20Z
3,195
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "mobilebert", "text-classification", "en", "dataset:emo", "arxiv:2004.02984", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en datasets: - emo --- ## Emo-MobileBERT: a thin version of BERT LARGE, trained on the EmoContext Dataset from scratch ### Details of MobileBERT The **MobileBERT** model was presented in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by *Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, Denny Zhou* and here is the abstract: Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE). ### Details of the downstream task (Emotion Recognition) - Dataset πŸ“š SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes: - sad 😒 - happy πŸ˜ƒ - angry 😑 - others ### Model training The training script is present [here](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/emo-mobilebert.ipynb). ### Pipelining the Model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("lordtt13/emo-mobilebert") model = AutoModelForSequenceClassification.from_pretrained("lordtt13/emo-mobilebert") nlp_sentence_classif = transformers.pipeline('sentiment-analysis', model = model, tokenizer = tokenizer) nlp_sentence_classif("I've never had such a bad day in my life") # Output: [{'label': 'sad', 'score': 0.93153977394104}] ``` > Created by [Tanmay Thakur](https://github.com/lordtt13) | [LinkedIn](https://www.linkedin.com/in/tanmay-thakur-6bb5a9154/)
Sekiraw/Ant
Sekiraw
2023-07-09T15:16:55Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T15:15:10Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2548.33 +/- 83.37 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Officialletai/Reinforce-CartPole-v1
Officialletai
2023-07-09T15:10:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-09T15:10:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
chunwoolee0/my_awesome_eli5_clm-model
chunwoolee0
2023-07-09T15:06:15Z
141
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-09T11:57:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7059 | 1.0 | 1108 | 3.7527 | | 3.6588 | 2.0 | 2216 | 3.7516 | | 3.6291 | 3.0 | 3324 | 3.7493 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
svetadomoi/alpaca-native-onex
svetadomoi
2023-07-09T15:02:10Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-09T14:23:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Chocoboko/OTN_BDSM
Chocoboko
2023-07-09T14:47:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T10:26:26Z
--- license: creativeml-openrail-m ---
agercas/whisper-small-dv
agercas
2023-07-09T14:43:02Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-09T13:43:58Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 110.95037729944013 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1971 - Wer Ortho: 206.4141 - Wer: 110.9504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:| | 0.1714 | 0.82 | 500 | 0.1971 | 206.4141 | 110.9504 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
edures/ppo-Huggy
edures
2023-07-09T14:41:48Z
32
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-09T14:41:37Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: edures/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
hyperr123/mematibas
hyperr123
2023-07-09T14:39:57Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-09T13:53:48Z
--- license: openrail language: - tr tags: - music ---
RogerB/afro-xlmr-base-finetuned-kintweetsD
RogerB
2023-07-09T14:38:17Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-09T14:12:07Z
--- license: mit tags: - generated_from_trainer model-index: - name: afro-xlmr-base-finetuned-kintweetsD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-finetuned-kintweetsD This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4428 | 1.0 | 900 | 2.1947 | | 2.3168 | 2.0 | 1800 | 2.1566 | | 2.2497 | 3.0 | 2700 | 2.1290 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
LarryAIDraw/chiyotest
LarryAIDraw
2023-07-09T14:32:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T14:27:32Z
--- license: creativeml-openrail-m --- https://civitai.com/models/105174/chiyo-the-sister-of-the-woods-with-a-thousand-young
LarryAIDraw/calamiti
LarryAIDraw
2023-07-09T14:32:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T14:27:06Z
--- license: creativeml-openrail-m --- https://civitai.com/models/105180/calamity-jane-fate-grand-order
LarryAIDraw/PopeJoan
LarryAIDraw
2023-07-09T14:31:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-09T14:26:23Z
--- license: creativeml-openrail-m --- https://civitai.com/models/105470/pope-joan-or-fategrand-order
mark-oppenheim/ppo-Huggy
mark-oppenheim
2023-07-09T14:30:41Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-09T14:30:38Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mark-oppenheim/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€