modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 12:28:27
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 12:28:17
card
stringlengths
11
1.01M
ali2066/finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27
ali2066
2022-02-16T19:47:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_0.0002_all_16_02_2022-20_45_27 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1500 - Precision: 0.4739 - Recall: 0.5250 - F1: 0.4981 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3183 | 0.2024 | 0.2909 | 0.2387 | 0.8499 | | No log | 2.0 | 76 | 0.3092 | 0.2909 | 0.4181 | 0.3431 | 0.8548 | | No log | 3.0 | 114 | 0.2928 | 0.2923 | 0.4855 | 0.3650 | 0.8647 | | No log | 4.0 | 152 | 0.3098 | 0.2832 | 0.4605 | 0.3507 | 0.8641 | | No log | 5.0 | 190 | 0.3120 | 0.2470 | 0.4374 | 0.3157 | 0.8654 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
arampacha/wav2vec2-xls-r-300m-hy-cv
arampacha
2022-02-16T19:45:37Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hy-AM license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hy datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Wer: 0.6569 **Note**: If you aim for best performance use [this model](https://huggingface.co/arampacha/wav2vec2-xls-r-300m-hy). It is trained using noizy student procedure and achieves considerably better results. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.167 | 16.67 | 100 | 3.5599 | 1.0 | | 3.2645 | 33.33 | 200 | 3.1771 | 1.0 | | 3.1509 | 50.0 | 300 | 3.1321 | 1.0 | | 3.0757 | 66.67 | 400 | 2.8594 | 1.0 | | 2.5274 | 83.33 | 500 | 1.5286 | 0.9797 | | 1.6826 | 100.0 | 600 | 0.8058 | 0.7974 | | 1.2868 | 116.67 | 700 | 0.6713 | 0.7279 | | 1.1262 | 133.33 | 800 | 0.6308 | 0.7034 | | 1.0408 | 150.0 | 900 | 0.6056 | 0.6745 | | 0.9617 | 166.67 | 1000 | 0.5891 | 0.6569 | | 0.9196 | 183.33 | 1100 | 0.5913 | 0.6432 | | 0.8853 | 200.0 | 1200 | 0.5924 | 0.6347 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00
ali2066
2022-02-16T19:45:21Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-20_43_00 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - Precision: 0.3811 - Recall: 0.3865 - F1: 0.3838 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3697 | 0.0933 | 0.2235 | 0.1317 | 0.8259 | | No log | 2.0 | 76 | 0.3193 | 0.1266 | 0.2948 | 0.1771 | 0.8494 | | No log | 3.0 | 114 | 0.3025 | 0.1606 | 0.3160 | 0.2130 | 0.8540 | | No log | 4.0 | 152 | 0.2978 | 0.1867 | 0.3449 | 0.2422 | 0.8605 | | No log | 5.0 | 190 | 0.2984 | 0.1706 | 0.3507 | 0.2295 | 0.8551 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28
ali2066
2022-02-16T19:42:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_40_28 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1736 - Precision: 0.3358 - Recall: 0.3447 - F1: 0.3402 - Accuracy: 0.9452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3058 | 0.1200 | 0.2102 | 0.1528 | 0.8629 | | No log | 2.0 | 76 | 0.2488 | 0.1605 | 0.2774 | 0.2034 | 0.9003 | | No log | 3.0 | 114 | 0.2296 | 0.1947 | 0.2880 | 0.2324 | 0.9057 | | No log | 4.0 | 152 | 0.2208 | 0.2201 | 0.2986 | 0.2534 | 0.9113 | | No log | 5.0 | 190 | 0.2235 | 0.2110 | 0.3039 | 0.2491 | 0.9101 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06
ali2066
2022-02-16T19:27:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_25_06 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 - Precision: 0.3270 - Recall: 0.3348 - F1: 0.3309 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.4023 | 0.1050 | 0.2331 | 0.1448 | 0.8121 | | No log | 2.0 | 76 | 0.3629 | 0.1856 | 0.3414 | 0.2405 | 0.8368 | | No log | 3.0 | 114 | 0.3329 | 0.1794 | 0.3594 | 0.2394 | 0.8504 | | No log | 4.0 | 152 | 0.3261 | 0.1786 | 0.3684 | 0.2405 | 0.8503 | | No log | 5.0 | 190 | 0.3244 | 0.1872 | 0.3684 | 0.2482 | 0.8534 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04
ali2066
2022-02-16T19:14:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_3e-05_all_16_02_2022-20_12_04 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1620 - Precision: 0.3509 - Recall: 0.3793 - F1: 0.3646 - Accuracy: 0.9468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2997 | 0.1125 | 0.2057 | 0.1454 | 0.8669 | | No log | 2.0 | 76 | 0.2620 | 0.1928 | 0.2849 | 0.2300 | 0.8899 | | No log | 3.0 | 114 | 0.2497 | 0.1923 | 0.2906 | 0.2314 | 0.8918 | | No log | 4.0 | 152 | 0.2474 | 0.1819 | 0.3377 | 0.2365 | 0.8905 | | No log | 5.0 | 190 | 0.2418 | 0.2128 | 0.3264 | 0.2576 | 0.8997 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36
ali2066
2022-02-16T19:11:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-20_09_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1743 - Precision: 0.3429 - Recall: 0.3430 - F1: 0.3430 - Accuracy: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3322 | 0.0703 | 0.1790 | 0.1010 | 0.8318 | | No log | 2.0 | 76 | 0.2644 | 0.1180 | 0.2343 | 0.1570 | 0.8909 | | No log | 3.0 | 114 | 0.2457 | 0.1624 | 0.2583 | 0.1994 | 0.8980 | | No log | 4.0 | 152 | 0.2487 | 0.1486 | 0.2583 | 0.1887 | 0.8931 | | No log | 5.0 | 190 | 0.2395 | 0.1670 | 0.2694 | 0.2062 | 0.8988 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
joe5campbell/BERT_Tweet_Sentiment_50k_2eps
joe5campbell
2022-02-16T17:04:00Z
9
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_50k_2eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_50k_2eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1131 - Train Accuracy: 0.9596 - Validation Loss: 0.6972 - Validation Accuracy: 0.8229 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3420 | 0.8511 | 0.4293 | 0.8299 | 0 | | 0.1131 | 0.9596 | 0.6972 | 0.8229 | 1 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
Harveenchadha/model-entailment
Harveenchadha
2022-02-16T16:10:23Z
0
0
keras
[ "keras", "tf-keras", "nlp", "region:us" ]
null
2022-03-02T23:29:04Z
--- tags: - nlp library_name: keras --- ## Multimodal entailment Author: Sayak Paul Date created: 2021/08/08 Last modified: 2021/08/15 Description: Training a multimodal model for predicting entailment. ### What is multimodal entailment? On social media platforms, to audit and moderate content we may want to find answers to the following questions in near real-time: Does a given piece of information contradict the other? Does a given piece of information imply the other? In NLP, this task is called analyzing textual entailment. However, that's only when the information comes from text content. In practice, it's often the case the information available comes not just from text content, but from a multimodal combination of text, images, audio, video, etc. Multimodal entailment is simply the extension of textual entailment to a variety of new input modalities.
chaitanya97/wav2vec2-large-xls-r-3
chaitanya97
2022-02-16T16:03:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_29_13
ali2066
2022-02-16T15:32:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_29_13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_29_13 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_25_56
ali2066
2022-02-16T15:29:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_25_56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_25_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_19_24
ali2066
2022-02-16T15:22:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_19_24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_19_24 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_16_08
ali2066
2022-02-16T15:19:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_16_08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_16_08 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_3e-05_all_16_02_2022-16_09_36
ali2066
2022-02-16T15:12:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_3e-05_all_16_02_2022-16_09_36 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_3e-05_all_16_02_2022-16_09_36 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 - Precision: 0.3684 - Recall: 0.3714 - F1: 0.3699 - Accuracy: 0.9482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3339 | 0.1075 | 0.2324 | 0.1470 | 0.8379 | | No log | 2.0 | 76 | 0.3074 | 0.1589 | 0.2926 | 0.2060 | 0.8489 | | No log | 3.0 | 114 | 0.2914 | 0.2142 | 0.3278 | 0.2591 | 0.8591 | | No log | 4.0 | 152 | 0.2983 | 0.1951 | 0.3595 | 0.2529 | 0.8454 | | No log | 5.0 | 190 | 0.2997 | 0.1851 | 0.3528 | 0.2428 | 0.8487 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_all_16_02_2022-15_59_50
ali2066
2022-02-16T15:03:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_all_16_02_2022-15_59_50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_59_50 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_all_16_02_2022-15_56_33
ali2066
2022-02-16T14:59:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_all_16_02_2022-15_56_33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_56_33 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
philschmid/distilbert-onnx
philschmid
2022-02-16T14:51:05Z
57,058
2
transformers
[ "transformers", "onnx", "distilbert", "question-answering", "en", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: "en" datasets: - squad metrics: - squad license: apache-2.0 --- # ONNX Conversion of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) # DistilBERT base cased distilled SQuAD This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1. This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
ali2066/finetuned_token_2e-05_all_16_02_2022-15_48_32
ali2066
2022-02-16T14:50:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_all_16_02_2022-15_48_32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_48_32 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_all_16_02_2022-15_41_15
ali2066
2022-02-16T14:43:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_all_16_02_2022-15_41_15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_41_15 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - Precision: 0.3447 - Recall: 0.3410 - F1: 0.3428 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3692 | 0.0868 | 0.2030 | 0.1216 | 0.8238 | | No log | 2.0 | 76 | 0.3198 | 0.1674 | 0.3029 | 0.2157 | 0.8567 | | No log | 3.0 | 114 | 0.3156 | 0.1520 | 0.3096 | 0.2039 | 0.8510 | | No log | 4.0 | 152 | 0.3129 | 0.1753 | 0.3266 | 0.2281 | 0.8500 | | No log | 5.0 | 190 | 0.3038 | 0.1716 | 0.3401 | 0.2281 | 0.8595 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
marcopost-it/biobert-it
marcopost-it
2022-02-16T14:15:27Z
153
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Hi! This model has been trained on Italian biomedical data. For further information, do not hesitate to send me a message! ;) [email protected] (Marco Postiglione)
ali2066/finetuned_token_2e-05_16_02_2022-14_32_56
ali2066
2022-02-16T13:35:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_32_56 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_32_56 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_25_47
ali2066
2022-02-16T13:28:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_25_47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_25_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_23_23
ali2066
2022-02-16T13:25:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_23_23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_23_23 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_18_19
ali2066
2022-02-16T13:20:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_18_19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_18_19 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_15_41
ali2066
2022-02-16T13:18:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_15_41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_15_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1746 - Precision: 0.3191 - Recall: 0.3382 - F1: 0.3284 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2908 | 0.1104 | 0.1905 | 0.1398 | 0.8731 | | No log | 2.0 | 76 | 0.2253 | 0.1682 | 0.3206 | 0.2206 | 0.9114 | | No log | 3.0 | 114 | 0.2041 | 0.2069 | 0.3444 | 0.2585 | 0.9249 | | No log | 4.0 | 152 | 0.1974 | 0.2417 | 0.3603 | 0.2894 | 0.9269 | | No log | 5.0 | 190 | 0.1958 | 0.2707 | 0.3683 | 0.3120 | 0.9299 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
chaitanya97/wav2vec2-large-xls-r-300m-turkish-colab
chaitanya97
2022-02-16T10:38:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 33.1265 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 21.4247 | 4.0 | 4 | 33.1265 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
joe5campbell/BERT_Tweet_Sentiment_100_2epochs
joe5campbell
2022-02-16T10:34:00Z
7
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_100_2epochs results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_100_2epochs This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6279 - Train Accuracy: 0.6824 - Validation Loss: 0.7791 - Validation Accuracy: 0.2667 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7045 | 0.4882 | 0.7236 | 0.2667 | 0 | | 0.6279 | 0.6824 | 0.7791 | 0.2667 | 1 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
premrawat/en_ner_model
premrawat
2022-02-16T09:23:12Z
6
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_ner_model results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.3624161074 - name: NER Recall type: recall value: 0.384341637 - name: NER F Score type: f_score value: 0.3730569948 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_model` | | **Version** | `0.1.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `SKILL` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 37.31 | | `ENTS_P` | 36.24 | | `ENTS_R` | 38.43 | | `TOK2VEC_LOSS` | 305790.85 | | `NER_LOSS` | 801195.82 |
premrawat/en_ner_skills
premrawat
2022-02-16T09:14:23Z
6
5
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_ner_skills results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.3980582524 - name: NER Recall type: recall value: 0.3404507711 - name: NER F Score type: f_score value: 0.3670076726 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_skills` | | **Version** | `0.1.0` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `SKILL` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 36.70 | | `ENTS_P` | 39.81 | | `ENTS_R` | 34.05 | | `TOK2VEC_LOSS` | 607659.90 | | `NER_LOSS` | 491709.76 |
jatinshah/bert-finetuned-ner
jatinshah
2022-02-16T03:50:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9330024813895782 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9410194377242012 - name: Accuracy type: accuracy value: 0.9861511744275033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Precision: 0.9330 - Recall: 0.9492 - F1: 0.9410 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0647 | 0.9147 | 0.9345 | 0.9245 | 0.9826 | | 0.0305 | 2.0 | 3512 | 0.0599 | 0.9333 | 0.9463 | 0.9398 | 0.9858 | | 0.0212 | 3.0 | 5268 | 0.0599 | 0.9330 | 0.9492 | 0.9410 | 0.9862 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
jkang/espnet2_librispeech_100_conformer
jkang
2022-02-16T01:05:55Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:librispeech_100", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - librispeech_100 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `jkang/espnet2_librispeech_100_conformer` - This model was trained by jaekookang using librispeech_100 recipe in [espnet](https://github.com/espnet/espnet/). - Gradio Demo: [🤗 ESPNet2 ASR Librispeech Conformer](https://huggingface.co/spaces/jkang/espnet2_asr_librispeech_100h) ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 140704c146f8beeed74973f5258379f6133dcdfb pip install -e . cd egs2/librispeech_100/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model jkang/espnet2_librispeech_100_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Feb 11 01:42:52 KST 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `140704c146f8beeed74973f5258379f6133dcdfb` - Commit date: `Tue Feb 8 16:06:02 2022 -0500` - GPU: NVIDIA GeForce RTX 3090 (single GPU took: 13h) ## asr_conformer_lr2e-3_warmup15k_amp_nondeterministic ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|54402|94.5|5.1|0.4|0.7|6.3|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|50948|84.8|13.7|1.5|2.1|17.3|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|52576|94.2|5.3|0.5|0.8|6.6|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|52343|84.7|13.8|1.5|2.0|17.3|81.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|288456|98.2|1.1|0.8|0.7|2.5|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|265951|93.3|4.1|2.6|2.0|8.7|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|281530|98.0|1.1|0.9|0.7|2.7|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|272758|93.5|4.0|2.5|1.9|8.4|81.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|69558|92.0|5.0|3.0|0.7|8.7|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|64524|81.3|13.2|5.4|2.4|21.1|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|66983|91.8|5.1|3.1|0.6|8.8|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|66650|81.2|13.1|5.7|2.1|20.9|81.5| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_conformer_lr2e-3_warmup15k_amp_nondeterministic ngpu: 1 seed: 2022 num_workers: 4 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 70 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 400 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_clean_100_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_clean_100_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ED - ▁I - ▁HE - ▁WAS - ▁THAT - ING - ▁IT - '''' - ▁HIS - ▁HAD - ▁WITH - ▁YOU - ▁FOR - T - ▁AS - ▁HER - LY - ▁NOT - ▁BUT - ▁SHE - ▁BE - D - E - ▁IS - ▁AT - ▁ON - ▁HIM - ▁THEY - ▁BY - ▁HAVE - Y - ▁MY - ▁SO - ▁ALL - ▁THIS - ▁WERE - ▁WHICH - ▁ME - ▁FROM - ▁ONE - ▁SAID - ▁WE - N - ER - ▁NO - ▁THERE - ▁WHEN - ▁AN - ▁THEIR - ▁OR - ▁WOULD - ▁WHO - ▁THEM - R - ▁IF - ▁WHAT - ▁ARE - ▁BEEN - ▁OUT - ▁UP - M - ▁WILL - ▁DO - ▁MAN - ▁COULD - C - ▁THEN - ▁INTO - ▁MORE - ▁SOME - ES - P - ▁VERY - ▁NOW - ▁YOUR - ▁LITTLE - ▁TIME - ▁ABOUT - ▁DID - ▁THAN - ▁LIKE - ▁HAS - L - G - AL - IN - ▁UPON - ▁CAN - ▁WELL - ▁OTHER - ▁OVER - US - ▁TWO - ▁ONLY - ▁ANY - ▁OUR - O - EN - RE - ▁MADE - U - ▁AFTER - ▁SEE - ▁S - ▁DOWN - ▁BEFORE - LL - ST - B - ▁OLD - ▁DAY - ▁MISS - ▁GREAT - ▁US - ▁KNOW - OR - ▁SUCH - ▁GOOD - ▁WAY - A - ▁THESE - ▁CAME - ▁UN - ▁SHOULD - ▁HOW - ▁MISTER - ▁GO - ▁MUCH - ▁WHERE - ▁MUST - ▁NEVER - ▁COME - ▁BACK - ION - 'ON' - ▁LONG - F - ▁AGAIN - ▁FIRST - LE - ▁MEN - ▁EVEN - NESS - ▁MIGHT - ▁OWN - ▁MAY - K - ▁HIMSELF - ▁SAY - ▁JUST - ▁THROUGH - ▁RE - ▁AM - ▁ITS - ▁WENT - ▁THOUGHT - ▁ - ▁DE - ▁MAKE - I - ▁HAND - ▁THINK - ▁HOUSE - ▁HERE - IC - H - ATION - ▁LIFE - IT - ▁EYES - ▁MOST - ▁WITHOUT - ▁TOO - ▁THOSE - ABLE - ▁EVERY - ▁DON - ▁MANY - ▁AWAY - ITY - VE - W - ▁STILL - ▁BEING - ▁C - ▁LAST - ▁NIGHT - ▁O - ▁HEAD - AN - ▁FOUND - ▁NOTHING - ▁YOUNG - ▁WHILE - ▁TAKE - ▁GET - ▁PEOPLE - RO - ▁OFF - ▁THOUGH - EST - ▁YET - ▁THREE - TH - ▁RIGHT - ▁UNDER - AR - ▁FACE - IES - ▁ROOM - ▁NEW - ▁SAW - RA - V - ▁ASKED - ▁TELL - ERS - ▁SAME - MENT - ▁HEART - LESS - ▁WORK - ▁PLACE - ▁ANOTHER - ▁EVER - ▁LEFT - ▁SHALL - ▁FATHER - ▁PUT - ▁ONCE - ▁TOOK - ▁LET - ▁ALWAYS - ▁SEEMED - ▁PART - IL - UR - ▁WHY - ▁TOLD - ▁GIVE - ▁LOVE - CE - ▁MIND - ▁LOOKED - ▁HEARD - ▁SOON - ▁LOOK - ▁MOTHER - ▁FAR - IVE - ▁BECAUSE - ▁HOME - OUS - ▁T - EL - ▁D - ▁SOMETHING - ▁SIDE - ▁KING - IS - ATE - ▁MOMENT - ENT - RY - ▁THINGS - ▁ST - ▁LIGHT - ▁FIND - ▁GOING - ▁THING - ▁WORLD - IR - AT - ▁WATER - ▁END - ▁DOOR - ISH - ▁KNEW - ▁WOMAN - ▁SIR - ▁EACH - RI - ▁HAVING - ▁AGAINST - ▁FEW - ▁E - ▁BEGAN - ▁BETTER - ▁YES - ▁NAME - ▁ENOUGH - ET - ▁HARD - ▁VOICE - ▁YEARS - ▁GOT - ▁WHOLE - ▁WHITE - ▁WANT - ▁GIRL - ▁DONE - ▁SEEN - ▁HUNDRED - ▁CALLED - ▁BETWEEN - ▁MORNING - FUL - AS - ▁FELT - TER - ▁KIND - X - CH - ▁HERSELF - ANT - ▁TOWARD - ▁HALF - ▁OH - ▁AMONG - ▁HOWEVER - ▁TURNED - ▁ALSO - ▁BOTH - ▁POOR - ▁PERHAPS - ▁REPLIED - ▁COURSE - UL - ▁QUITE - ▁REST - ▁DOES - ▁MYSELF - NG - LO - ANCE - ▁MA - ▁SET - ▁SMALL - ▁B - ▁SURE - ▁F - ▁GAVE - ▁PRESENT - ▁HIGH - ▁ALMO - ▁R - CK - ▁WHOM - ▁NEAR - ▁CARE - ▁WAR - ▁GOD - ▁TOGETHER - ▁SAT - ▁SHOW - TE - NE - ▁BEST - ▁UNTIL - ▁OPEN - ▁W - ▁FOUR - ▁DEAR - ▁HANDS - ▁WORDS - ▁SINCE - ▁LAND - ▁DIS - MAN - ▁ANYTHING - ▁FEET - ▁NEXT - ▁GENERAL - LING - ▁LAY - ▁NOR - ▁STOOD - ▁BLACK - ▁POWER - ▁BROUGHT - Z - IE - ▁ROUND - ▁BELIEVE - ▁LARGE - ▁ALONG - ▁HELP - ▁DAYS - ▁FIVE - ▁K - ▁HOPE - AM - ▁CO - ▁KEEP - ▁FULL - ▁WALK - ▁MASTER - ATED - ▁NATURE - ▁JOHN - ▁POINT - ▁DUR - ▁MATTER - ▁MONEY - ▁CHILD - ▁LOOKING - ▁RATHER - ▁AIR - IA - ▁P - ▁TWENTY - ▁FIRE - OL - ▁LESS - ▁SHORT - ▁PASSED - ▁INDEED - TY - ▁CASE - ▁WORD - ▁WISH - ▁COUNTRY - LED - ID - ▁BOY - ▁SOUND - ▁FORM - ▁CRIED - LA - ▁FRIEND - TON - ▁FACT - ▁UNCLE - ▁TAKEN - ▁AL - ▁TEN - IAN - ▁GONE - ▁SEA - ▁REASON - TING - ▁WHOSE - ▁OTHERS - AC - ▁LI - ▁DEATH - ▁CERTAIN - ▁ANSWERED - ▁THEMSELVES - ▁LADY - ▁STATE - ▁CAR - ▁WIFE - ▁THOUSAND - ▁TRUE - ▁BEHIND - AGE - ▁DOCTOR - ▁FEAR - ▁OFTEN - OM - ▁TILL - ▁HA - IOUS - ▁AROUND - IST - ▁SENT - ▁SPEAK - ▁WOMEN - ▁GROUND - VER - ENCE - NA - ▁TALK - ▁CHILDREN - TION - CO - MO - ▁HEAR - ▁ORDER - ▁LEAVE - ▁PRO - ▁ALREADY - ▁LA - ▁FINE - SE - ▁BA - PP - ▁THUS - AD - ▁NEED - ▁SIGHT - ▁CALL - ▁FELL - ▁MANNER - MP - ▁BECAME - UM - ▁WATCH - OW - ▁FOOT - ▁CANNOT - ▁BODY - ▁TOWN - ▁LIVE - INE - ▁RETURNED - ▁WONDER - MA - ▁G - UT - ▁CLOSE - UN - IM - ▁ALONE - ▁DIDN - ▁LORD - ▁RED - ARY - ▁GIVEN - ▁SIX - ▁EVERYTHING - ▁DARK - ▁DEAD - ▁STRONG - ▁SON - ▁COMING - URE - ▁HELD - ▁ABOVE - ▁REALLY - ▁BEAUTIFUL - ▁SECOND - ARD - ▁EVENING - ▁CON - ▁HOUR - ▁FELLOW - ▁ROSE - ▁PERSON - ▁EX - ▁CH - ▁FORCE - ▁MO - ▁ARM - ▁CAUSE - ▁TURN - ▁CITY - ▁DOUBT - ▁QUESTION - TIC - ▁DEEP - ▁HAIR - ICAL - ▁MEAN - ▁DI - ▁CLEAR - ▁SOMETIMES - ▁STRANGE - ▁FEEL - ▁HO - ▁IMP - WARD - AUGHT - ▁CAPTAIN - ▁USE - ▁UNDERSTAND - ▁KEPT - ▁BR - ▁WOOD - ▁PRE - ▁YEAR - ▁TI - ▁LEAST - ▁BED - ▁SA - ▁TABLE - ▁BECOME - ▁FREE - ▁FAMILY - ME - ▁EYE - ▁WHETHER - ▁MAKING - ▁WITHIN - ▁SORT - ▁ANSWER - ▁PO - ▁SAYS - ▁EARTH - ▁RETURN - ▁SUDDENLY - ▁FRIENDS - ▁GREEN - ▁SUN - ▁FAIR - ▁TH - ▁FALL - ▁EITHER - ▁BO - ▁PRINCE - ▁THOU - ▁ITSELF - ▁CHURCH - ▁BIG - ▁ABLE - ▁DIFFERENT - ▁SEVERAL - ▁DAUGHTER - ▁WON - ▁WIND - ▁BAD - ▁LOST - ▁READ - ▁STORY - ▁APPEARED - DE - ▁NUMBER - ▁SP - ▁LOW - ▁ROAD - ▁POSSIBLE - ▁HUMAN - ▁RIVER - ▁STREET - ▁GA - ▁COLD - ▁MET - ▁ACT - ▁BROTHER - ▁AGE - ▁KNOWN - ▁CONTINUED - ▁BRING - ▁ILL - ▁RUN - ▁LAW - ▁SUBJECT - ▁CUT - J - PER - ▁PA - ▁TROUBLE - ▁GLAD - HE - ▁SLEEP - MEN - ▁LATE - ▁MEANS - ▁ASK - ▁REACHED - ▁RAN - AK - ▁HORSE - ▁USED - WAY - OP - ▁WINDOW - ▁SNOW - ▁PAST - ▁OBJECT - ▁THEREFORE - IONS - ▁TREE - ▁COMP - ▁BLUE - CA - ▁VI - ▁SIGN - ▁EIGHTEEN - ▁GARDEN - ▁BUSINESS - ▁PETER - ▁FOLLOWED - ▁SEEM - ▁HOLD - ▁HAPPY - ▁LONGER - ▁ACROSS - ▁BU - BE - ▁ELSE - ▁PLAY - ▁SOUL - ▁STAND - ▁ARMS - ▁SCHOOL - ▁PRINCESS - ▁CERTAINLY - LT - ▁ENGLISH - ▁SEVEN - ▁PER - ▁IDEA - ▁LE - ▁BOOK - ▁FEELING - ▁HUSBAND - ▁LINE - PT - THOUGH - ▁OUGHT - ▁RICH - IP - ▁VIEW - ▁DREAM - ▁SENSE - ▁LO - ▁READY - ▁CARRIED - ▁M - ▁REGARD - ▁CHANCE - ▁WANTED - ▁LIVED - ▁LATER - ▁INTEREST - ▁EN - ▁EFFECT - ▁CLA - ▁CHANGE - ▁CA - ▁REAL - ▁SUPPOSE - LES - ▁ART - ▁TIMES - ▁MAR - IF - ▁WILD - ▁ADDED - ▁LETTER - IAL - ▁THANK - ▁PARTY - LAND - ▁PAY - ▁BREATH - ▁TAKING - ▁COURT - ▁COUNT - ILY - ▁COMMON - ▁PUBLIC - ▁PURPOSE - ▁PRETTY - ▁TRUTH - ▁STAY - ▁EM - NT - ▁SH - ▁REMEMBER - ▁ENTERED - ▁RECEIVED - RED - ▁SPOKE - ▁USUAL - ▁THY - ▁FIGURE - ▁LED - ▁TREES - ▁TRIED - ▁FORWARD - NED - ▁HAT - ▁BLOOD - ▁BEYOND - ▁BANK - ▁LIVING - ▁JOY - ▁HOURS - ▁ENGLAND - ▁STONE - VI - GE - ▁SWEET - ▁POSITION - ▁FRONT - ▁GIRLS - ▁VISIT - ▁CHARACTER - ▁SPIRIT - ▁TA - BO - QUE - QUI - ▁OPENED - ▁OCCASION - ▁MEET - ▁EIGHT - ▁REMAIN - ▁PASS - TO - ▁NORTH - ▁SERVICE - ▁SISTER - ▁SE - ▁BEAR - ▁PLEASURE - ▁CHIEF - ▁FOREST - ▁BELL - ▁EXPERIENCE - ▁STRUCK - ▁CARRY - ORY - ▁WARM - 'NO' - ▁WORTH - ▁SAYING - ▁SILENCE - ▁CROSS - ▁JE - ▁H - ▁BEAUTY - PH - ▁DEAL - KE - ▁SECRET - DY - ▁MILES - ▁LU - ▁DOING - ▁BOYS - ▁CROWD - ▁ACCOUNT - REW - ISM - TI - ▁FE - ▁NONE - ▁RO - ▁NEARLY - ▁CHA - ▁YOUTH - ▁CAP - HA - ▁BIT - ▁LIE - ▁ATTENTION - ▁STANDING - ▁STAR - ▁RESPECT - ▁FURTHER - ATIONS - ▁ROCK - ▁BOW - EM - ▁EARLY - ▁MOUTH - ▁BOAT - UB - ▁IMMEDIATELY - ▁EXCEPT - SHIP - ▁PICTURE - ▁BRIGHT - ▁WA - ▁GREW - ▁LEAD - ▁CUR - ▁TONE - RRY - RS - ▁WIDE - CHE - ▁FORTH - IG - OS - ▁NEITHER - ▁YOURSELF - ▁SMILE - ▁DRESS - ▁OPINION - ▁HAPPENED - ▁WAIT - ▁SIT - ▁SHIP - ▁AH - ▁DESIRE - ▁THICK - ▁THIRD - ▁GRAND - ▁FOLLOW - ▁GATHER - ▁HILL - ALLY - ▁COMPANY - ▁CHAIR - DER - ▁TOP - ▁PAR - ▁LENGTH - ▁THIRTY - ▁MINE - ▁MI - ▁EAT - ▁EQUAL - ▁AFRAID - ▁FRESH - ▁TAIL - ▁FILLED - ▁SU - ▁MINUTES - ▁FAST - BU - ▁ENTER - ▁QUEEN - ▁UTTER - AG - ▁FLOOR - ▁SHA - DI - ▁HEAVEN - ▁STOPPED - ▁GUARD - ▁HALL - ▁BAR - ▁COMPLETE - ▁NINE - ▁WEEK - ▁GOLD - VA - ▁FIFTY - ▁BEAT - ▁PRESS - ▁ATTEMPT - ▁EXCLAIMED - DO - ▁CONF - ▁SEEMS - ▁STARTED - ▁EL - ▁HAR - ▁EXPRESSION - ▁TRA - ▁WONDERFUL - ▁SAINT - ▁APPEARANCE - ▁GRAVE - ▁OFFICE - ▁INSTEAD - ▁SILENT - ▁SOUTH - ▁AGO - ▁CAMP - ▁LOVED - ▁PATH - ▁LEARN - ▁PLAN - ▁GOVERNMENT - OUR - PPED - ▁SITTING - ▁SEAT - TEN - RESS - SIDE - ▁MOVED - ▁DIE - ▁RESULT - ▁SPRING - ▁PLEASE - ▁RI - ▁NATURAL - ▁ANNE - ▁STA - ▁CORNER - ▁WALL - ▁IMPOSSIBLE - ▁BROWN - ▁SUIT - ▁MUSIC - PI - ▁TRY - ▁DIED - ▁TEARS - ▁JU - ▁COMFORT - ▁DANGER - ▁MEASURE - ▁PROPERTY - ▁BORN - CON - ▁CR - ▁BROKEN - ▁MASS - EVER - IER - ▁EXPRESS - ▁POCKET - ▁SCARCE - ▁SELF - NY - ▁MADAME - ▁LAUGHED - ▁TOUCH - ▁APPEAR - ▁LONDON - ▁SAFE - ▁SHARP - ▁ATTACK - ▁JANE - ▁COVERED - ▁OUTSIDE - ▁WHATEVER - ▁PLACED - ▁RACE - ▁SHORE - ▁LAID - ▁ROMAN - ▁PERSONAL - UP - AU - ▁REMAINED - ▁HAPPINESS - ▁AFTERNOON - ▁DISTANCE - ▁STORM - ▁MARRIED - ▁FRANK - ▁VALLEY - ▁BOUND - ▁TALKING - ▁JO - ▁QUICK - ▁STEP - AND - ▁ARMY - ▁EFFORT - ▁FRENCH - ▁V - LEY - ▁PARTICULAR - ▁START - ATING - OO - LU - ▁TRANS - ▁HAPPEN - ▁HABIT - ▁VILLAGE - ▁BELOW - ▁GENTLEMAN - BLE - ▁BILL - ▁SAVE - ACT - ▁SOCIETY - ▁MAJOR - ▁QUARTER - ▁SKY - ▁GUESS - CY - ▁SAD - ILE - ▁SL - ▁PLEASANT - ▁STRAIGHT - ▁STRENGTH - ▁FORTUNE - ▁WRONG - ▁COMMAND - ▁BOX - ▁QUIET - ISE - ▁JA - IBLE - ▁TREAT - ▁GLANCE - ▁NECESSARY - ▁FORGET - ▁MOUNTAIN - ▁WINTER - ▁DREW - ▁WAV - ▁PLAIN - ▁ENTIRELY - ▁TEA - ▁SOFT - ▁QUICKLY - ▁INFLUENCE - ▁DINNER - ▁FOOD - ▁CHAPTER - ▁YE - ▁REACH - ▁GETT - ▁PAPER - ▁GIVING - ▁BEGINNING - ▁SEND - ▁FIGHT - ▁SCENE - ▁RUSH - ▁PI - ▁MARK - ▁NA - ▁BROKE - ▁CLASS - ▁BATTLE - ▁EASY - ▁GROUP - BY - ▁STOP - ▁DIRECTION - ▁BESIDE - ▁MOR - HAM - UFF - ▁WEST - ▁OBLIG - ▁COLOR - ▁SINGLE - ▁EASILY - ▁PALE - ▁ACTION - ▁INTER - ▁STRANGER - ▁WI - ▁CONVERSATION - ▁BLOW - ▁MARY - ▁MU - ▁TERRIBLE - ▁THINKING - ▁PULL - ▁MOON - AB - ▁REP - ▁ESPECIALLY - ▁HEAVY - ▁SICK - ▁LUCK - ▁TRAIN - ▁GUN - ▁GU - ▁WAITING - ▁TURNING - ITIES - ▁BREAD - ▁BELONG - ▁LOUD - ▁REPORT - ▁AMERICAN - ▁JOURNEY - ▁ANXIOUS - ▁LIPS - ▁KILLED - IGHT - GO - ▁CONSIDER - ▁PROBABLY - ▁PALACE - ▁HISTORY - ▁LAKE - ▁SHUT - ▁SIMPLY - WA - ▁PAIN - ▁HORSES - ▁SEEING - FULLY - ▁EXPECTED - ▁EVIL - ▁BURN - ▁SIMPLE - ▁DIRECT - IFIED - HER - ▁SLOWLY - ▁LEG - UGH - ▁SAIL - RIC - ▁WISHED - ▁RULE - ▁LAD - ▁MORAL - ▁MOVE - ▁FOLLOWING - ▁SILVER - ▁SEARCH - ▁CHANGED - ▁HANDSOME - ▁COULDN - ▁PASSION - ▁HU - ▁SMILED - ▁STREAM - ▁CONCERN - ▁PRESENCE - STER - ▁CONTENT - ▁BOARD - ▁SHAPE - ▁DECIDED - ▁MARRY - ▁PERFECT - ▁STEPS - ▁CLOSED - ABLY - DEN - ▁WEAK - ▁SUFFICIENT - ▁SHADOW - ▁EXPECT - ▁SPOT - ▁DUTY - ▁SPEAKING - ▁BESIDES - ▁FIELD - ▁ROLL - ▁TRYING - ▁EAR - ▁VER - ▁MARRIAGE - ▁SHOT - ▁SLAVE - ▁MILL - ▁NATION - ▁NECK - ▁ARRIVED - ▁TALL - ▁GRACE - LIN - ▁FORTY - ▁BROAD - ▁SUMMER - ▁COUSIN - ▁BEGIN - ▁CATCH - ▁FO - ▁PE - ▁MEANT - ▁THIN - IO - ▁GROW - ▁TRO - ▁NOTICE - ▁CRY - ▁FISH - ▁COM - ▁DEGREE - ▁HONOUR - ▁UNDERSTOOD - ▁SHOP - ▁TRUST - ▁CONDITION - ▁FARM - IZ - ▁SUDDEN - ▁SUCCESS - ▁SURPRISE - ORS - ▁THOUGHTS - UND - ▁ALLOWED - ITE - ▁NARROW - ▁GLASS - ▁SERIOUS - ▁STICK - ▁GAME - ▁SPENT - ▁SELL - ▁GRA - ▁LOWER - ▁RAISED - ▁PIN - ▁ALLOW - ▁CALM - FT - ▁L - ▁PU - ▁FIT - ACH - ▁SUFFER - ▁LEGS - ▁SUPPORT - ▁FRANCE - ▁LATTER - OV - ▁TASTE - ▁GATE - ▁INSTANT - ▁MINUTE - ▁OFFER - ▁GREATER - ▁PORT - ILL - ▁INDIVIDUAL - ▁AUNT - ▁EAST - ▁ADVANTAGE - ▁FASHION - ▁SWORD - ▁TWELVE - ▁HONOR - ▁MOVEMENT - ▁ISLAND - ACK - ▁WOODS - NCH - ▁PLEASED - ▁ENEMY - ▁RAIN - ▁VARIOUS - ▁OBSERVED - ▁LADIES - ▁BELIEVED - ▁CAST - ▁RISE - ▁BALL - ▁MONTHS - ICE - ▁MURDER - ▁CONDUCT - ▁SOCIAL - ▁TENDER - ▁LEARNED - ▁FRA - ▁FIRM - CLOCK - ▁PREVENT - ▁RING - LIE - ▁GOLDEN - ▁DECLARED - ▁BUILDING - ▁WRITE - ▁ATTEND - ▁CARRIAGE - ▁SITUATION - IDE - ▁NOBLE - ▁HUNG - ▁RUNN - ▁YELLOW - ▁KNOWLEDGE - ▁YORK - ▁PUSH - ▁LEAVING - ▁POST - ▁CIRCUMSTANCES - ▁SEEK - ▁FINALLY - ▁MAIN - ▁LETTERS - ▁POL - ▁ADD - FE - ▁ANCIENT - ▁MARCH - ▁WINE - ▁STATES - ▁WALLS - ▁PRISONER - ▁ISABEL - ▁TEMPER - ▁JUDGE - ▁FAINT - ▁POND - ▁GRASS - ▁FAM - OUT - ▁LAUGH - ▁GRAY - IGN - ▁ESCAPE - ▁KILL - ▁PRAY - ▁COMES - ▁ABSOLUTE - ▁BLIND - ▁WIN - ▁HOST - ▁MERELY - ▁RID - ▁EVERYBODY - ▁MATERIAL - ▁STRETCH - ▁DUE - ▁ROW - ▁TIN - ▁PROMISE - ▁LISTEN - ▁WALKING - ▁COMPANION - ▁INDIAN - ▁BREAK - ▁BENEATH - ▁RUIN - ▁EDGE - ▁WOR - ▁FORMER - ▁WORSE - ▁EVIDENTLY - ▁HARM - ▁CENT - ▁PIECE - ▁LOT - ▁PRESIDENT - ▁SPECIAL - ▁LABOR - ▁HEALTH - GA - ▁PLACES - ▁BEN - ▁SOMEWHAT - ▁DROPPED - ▁AFFECTION - ▁EXACTLY - ▁DARKNESS - ▁FALLEN - ▁DRESSED - ▁BILLY - ▁ACCEPT - ▁FL - ▁HOT - ▁REPEATED - ▁MEETING - PA - ▁PERIOD - ▁HONEST - ▁INSTANCE - ▁FLA - ▁PASSAGE - ▁NE - ▁POSSESSION - ▁WEAR - ▁PEACE - ▁COAT - ▁HOUSES - ▁MOUNTAINS - ▁FIFTEEN - ▁WELCOME - ▁YARD - ▁PROPER - ▁MUS - ADE - ▁RECEIVE - ▁SKIN - ▁GROWN - ▁AFTERWARDS - ANG - ▁DA - ▁DIFFICULT - ▁PERSONS - ▁ACCORDING - ▁FARMER - ▁SPEECH - ▁IMPORTANT - PAR - ▁PERFECTLY - ▁MIN - ▁CONSIDERED - ▁NU - ▁DEPEND - ▁MORROW - ▁MOUNT - ▁KISS - ▁LYING - ▁SUFFERING - ▁EXIST - ERY - OOK - BA - ▁PAINT - AH - ▁CAT - ▁PURE - ▁WISE - ▁PRIVATE - ▁REBECCA - ▁VESSEL - ▁CLEAN - ▁GENTLEMEN - ▁IRON - ▁STORE - ▁FUR - ▁INDIANS - ▁LOSE - ▁BATH - ▁NEWS - ▁CHI - ▁FA - ▁CHARGE - ▁PRIEST - ▁WRITTEN - ▁FORGOTTEN - ▁TRAIL - ▁CLOTHES - ▁ALIVE - ▁SUB - ▁REPLY - ▁THROW - ▁AB - ▁SOLDIERS - ▁ISN - ▁COTTAGE - ▁COURAGE - ▁CONTAIN - ▁BUILT - ▁PAID - ▁HUNT - ▁CASTLE - HOOK - ▁MERE - GGED - ▁NI - ▁UNC - ▁PREPARED - ▁BARE - ▁SMILING - ▁SPREAD - ▁WEATHER - ▁EDWARD - ▁GERMAN - ▁CURIOUS - ▁SERVANT - ▁DISCOVERED - ▁TRAVEL - EY - ▁DANCE - ▁PEN - BR - GEN - ▁BREAKFAST - ▁CHAMBER - ▁WILLIAM - ▁TERROR - ▁SPITE - ▁TIRED - ▁LOCK - ▁CONSIDERABLE - TLE - ▁MANAG - ▁DRY - ▁FINISHED - ▁MILLION - ▁FRE - ▁MIS - ▁PASSING - ▁DRAW - ▁BON - ▁VA - ▁VEN - ▁MAKES - ▁VAIN - ▁BOTTOM - ▁DRINK - ▁FUTURE - ▁RACHEL - ▁SORROW - ▁SIXTEEN - ▁KNIT - ▁PROUD - WI - ▁TOBY - ▁NOISE - ▁SLIGHT - ▁PROCEED - ▁FER - ▁COVER - ▁DRAWING - ▁FAVOR - ▁CATHERINE - ▁NEWSPAPER - ▁NOBODY - ▁ROOF - ▁WEALTH - ▁PROVE - ▁DRAWN - TTED - OKE - ▁DETERMINED - ▁DOG - ▁REMEMBERED - ▁OPENING - ▁FLOWERS - ▁GENTLE - ▁KNIGHT - ▁RECOVER - ▁DESERT - ▁MOTION - ▁NICE - ▁INTENTION - ▁GROWING - ▁CLOUD - ▁MONTH - HOOD - ▁POT - UDE - ▁PLANT - ▁MAD - ▁ENJOY - ▁FAT - ▁COR - ▁KNOWING - ▁IDEAS - IZED - ▁CHEEK - ▁EUROPE - ▁KNOCK - ▁ALARM - ▁TONGUE - ▁SPACE - ▁PATSY - ▁MISTRESS - ▁HENRY - ▁JERRY - ▁LIKED - ▁PLAYED - ▁BOOKS - ▁MODER - ▁CORN - ▁ELIZABETH - ▁CLUB - ▁BRAIN - ▁TROOP - ▁COOK - ▁DU - ▁FUN - DAY - ▁QUA - ▁FLOW - ▁DARE - ▁DELIGHT - ▁WOUND - ▁DESCEND - ▁EVERYWHERE - ▁FRIGHTENED - ▁GEORGE - ▁PECULIAR - ▁MACHINE - ▁PATIENT - ▁MEADOW - ▁PEASANT - ▁BURST - ▁ORDINAR - ▁SONG - ▁BRAVE - ▁EXISTENCE - ▁LUCY - ▁J - ▁CAREFULLY - ▁PRESENTLY - ▁GEN - ▁COW - LLY - ▁PROMISED - UOUS - ▁LIFTED - ▁MEANING - ALL - ▁FAIL - NER - ▁REGULAR - ▁VIRTUE - ▁STUDY - ▁PROTECT - ▁FOND - ▁FANCY - ▁STOCK - ▁KEY - ▁JUSTICE - ▁PACK - LET - ▁AFFAIRS - ▁DIFFICULTY - ▁WORE - ▁COST - ▁HEAT - ▁SHOULDER - ▁OFFERED - ▁MISTAKE - ▁DOLLARS - ▁LOOKS - QUA - ▁BREAST - ▁PRINCIPLE - ▁CHARLES - ▁TEETH - ▁OCCUPIED - ▁DROP - ▁PAPA - ▁SHEEP - ▁KNOWS - ▁DECK - ▁BORE - ▁EXC - ▁SURPRISED - ▁STATION - ▁PL - ▁PR - ▁OURSELVES - ▁SYMPATHY - ▁RUTH - ▁EXCITED - ▁CONTROL - ▁ANGRY - ▁IMAGINATION - ▁WITNESS - ▁HOLDING - THER - DA - ▁TRADE - ▁CREATURE - ▁SISTERS - ▁JOIN - LAS - ▁ALTOGETHER - ▁CIVIL - ▁EMPTY - ▁LEAP - ▁HURT - ▁BOLD - ▁TASK - ▁POLICE - ▁DRAGON - ▁MAID - ▁CLAIM - ▁SHAME - ▁PHYSICAL - ▁CONC - ▁SEIZED - ▁OB - ▁LIVES - ▁HEIGHT - ▁GI - ▁PAL - ▁CHARMING - ▁FEELINGS - ▁SERVANTS - ▁DELIVER - ▁FRUIT - ▁SATISFIED - ▁STRUGGLE - ▁WROTE - ▁CONCEAL - ▁MOVING - ▁FLASH - ▁OPPOSITE - ▁HURRY - ▁ROUGH - ▁PRICE - ▁AWFUL - ▁SAND - ▁SLIPP - ▁SHOWN - ▁SPRA - ▁AGREED - ▁FIXED - ▁PERCEIVED - ▁UPPER - ▁FINGER - ▁FINGERS - ▁EAGER - LF - ▁EARS - LIGHT - ▁IMAGINE - ▁LIKELY - ▁COAST - ▁UNITED - ▁VAN - ▁EXPLAINED - ▁TELLING - ▁DANGEROUS - ▁DICK - ▁COOL - ▁CAL - ▁INSIST - BI - ▁SECURE - ▁HILLS - ▁SAN - ▁CHEER - ▁FILL - ▁BUY - ZA - HI - ▁CLOTH - ▁POSSESSED - ▁ADVANCE - ▁METHOD - ATIVE - ▁GREATLY - ▁SMOKE - ▁HIGHER - ▁COMPANIONS - ▁ANIMALS - ▁GALL - ▁QUIETLY - ▁TRAVELL - ▁RESOLVED - ▁FLEW - ▁CARLYLE - ▁MEMORY - ▁RESIST - ▁GRAHAM - ▁LAUGHING - ▁FAITH - ▁BIRD - CRI - ▁LEAVES - ▁AMERICA - ▁DEMAND - BOARD - ▁AWAKE - ▁CURIOSITY - ▁LANGUAGE - ▁VIOLENT - ▁AWARE - ▁DOUBLE - ▁LOOSE - LIKE - ▁ADAM - ▁RISING - ▁HOTEL - ▁BAND - ▁ENGAGED - ▁HEADS - ▁LOG - ▁FORMED - ▁WINDOWS - ▁PREFER - RUS - ▁THROWN - ▁ARCH - ▁PAUSE - ▁SERVE - KIN - ▁FALLING - ▁VO - ▁WHISPERED - ▁POWERFUL - ▁ER - ▁DEPART - ▁CRUEL - ▁EXAMPLE - ▁SMOOTH - ▁INTRODUC - ▁RELIGION - ▁SEVENTEEN - ▁ABSENCE - ▁PRINT - ▁SHINING - ▁ICE - ▁POET - ▁DREADFUL - ▁REQUIRED - ▁ORIGINAL - ▁POINTED - ▁INSIDE - ▁BROTHERS - ▁PRODUCED - ▁SPOKEN - ▁CREATURES - ▁FLY - ▁TOM - ▁PURSU - ▁SYSTEM - ▁EXCELLENT - ▁EXCITEMENT - ▁MIDDLE - ▁FALSE - ▁REGRET - ▁RAY - ▁PHYSICIAN - ▁COP - ▁VALUE - ▁TOUCHED - ▁FLAT - ▁OAK - ▁SUM - ▁LOSS - ▁PAPERS - ▁STEPP - ▁REVER - ▁SHADE - SOME - ▁LISTENED - ▁N - ▁DISCOVER - ▁BITTER - TERN - ▁HOLE - ▁ADVANCED - ▁PICK - ARTAGNAN - ▁CORPORAL - ▁ASLEEP - ▁TEMPLE - ▁INDICAT - IUM - ▁FARTHER - ▁EXCUSE - ▁FLU - ▁NOSE - ▁SIXTY - ▁SUPPOSED - ▁PROVED - ▁RATE - ▁SHOULDERS - ▁AFFAIR - ▁FIELDS - ▁REMARKED - AVE - ▁WEEKS - ▁ESTABLISH - ▁PARIS - ▁ADMIT - ▁NEIGHBOR - ▁ATTRACT - ▁CUSTOM - ▁DISTINGUISH - ▁SURFACE - ▁COUPLE - ▁DEVIL - ▁LIMIT - ▁ROYAL - ▁FOOL - ▁RARE - ▁PRIDE - ▁PROFESSOR - ▁SAKE - ▁DALE - ▁VAST - ▁REFUSED - ▁FAILED - ▁BAG - ▁ROB - ▁WASH - ▁FAIRY - ▁FREQUENT - ▁MARILLA - ▁PROGRESS - ▁RELIEF - ▁DROVE - ▁DOZEN - ▁AHEAD - ▁ADVENTURE - ▁GRANT - ▁PRIM - ▁MENTAL - ▁PAIR - ▁IMPRESSION - ▁WOUNDED - ▁FULLY - ▁DISAPPEARED - ▁MILE - ▁DRIVE - ▁MUD - ▁SIZE - ▁ANIMAL - ZE - ▁GRE - ▁REPRESENT - ▁ACQUAINTANCE - ▁INSTRUMENT - ▁SPLENDID - ▁UNKNOWN - ▁CORONEL - ▁EMPEROR - ▁EARNEST - ▁EXTEND - ▁BRIEF - ▁RENDER - ▁PARENTS - ▁GENTLY - ▁CALLING - ▁TRIBE - ▁CHRISTIAN - ▁INTERESTING - ▁LAMP - ▁JIMM - ▁DIV - ▁LOVER - UCH - ▁HID - ▁NEEDED - ▁ORDERED - ▁MEAL - ▁SLOW - ▁DAM - ▁CLOUDS - ▁DAN - ▁GAR - ▁EXPLAIN - ▁QUI - ▁CLIMB - ▁HURRIED - ▁MURMUR - ▁SWIFT - ▁ARTHUR - ▁JEFF - ▁KINGDOM - ▁MESSAGE - ▁PROTEST - ▁ORGAN - ▁RISK - ▁FORGIVE - ▁OCCURRED - ▁PEARL - ▁ODD - ▁INFORMATION - ▁BUSY - ▁TRI - ▁LACK - ▁BAY - ▁FLEET - ▁CROWN - ▁WAITED - ▁BIRDS - ▁PITY - ▁SUCCEEDED - ▁INFORMED - ▁WISHES - ▁DIRECTLY - ▁CABIN - ▁AUGUST - ▁COUNTENANCE - ▁HORROR - ▁PHILIP - ▁POPULAR - ▁PREVIOUS - ▁CONTRARY - ▁ARTICLE - ▁DIFFERENCE - ▁HIDDEN - ▁HUGE - ▁AUTHORITY - ▁POUND - ▁JUMP - ▁SPI - ▁SHAKE - ▁EVENTS - ▁FRO - ▁LEAN - ▁CRO - ▁TRIM - ▁SHARE - ▁FISHER - ▁SETTLED - ▁QUESTIONS - ▁SI - ▁VAL - ▁APPROACHED - ▁SUGGESTED - ▁CONTINU - ▁PERFORM - ▁ACKNOWLEDG - ▁CLIFF - ▁COLONEL - ▁GHOST - ▁MAJESTY - ▁EMOTION - ▁SUPPER - ▁DISTANT - ▁INTERESTED - ▁JACK - ▁HUM - ▁TRAMP - ▁BRI - ▁POUR - ▁SHIPS - ▁CHAIN - ▁DY - ▁RANK - ▁MATTERS - ▁LOVELY - AW - ▁PAT - ▁WORKING - ▁CONSEIL - ▁EVIDENCE - ▁MERCHANT - ▁SOLEMN - ▁CONSTANT - ▁MINISTER - ▁OFFICIAL - ▁SENTIMENT - ▁CENTURY - ▁DELAY - ▁JAMES - ▁MATCH - ▁FOREIGN - ▁AROSE - ▁BEAST - ▁BAB - ▁WIT - ▁REMARKABLE - ▁THOR - ▁COMPAR - ▁MAL - ▁NEARER - ▁FOURTH - ▁GREY - ▁MENTION - ▁RUBB - ▁CHARM - ▁BARON - ▁DESIRED - SCAR - ▁HOPED - ▁TEACHER - ▁MON - ITCH - BEL - ▁PARTS - ▁EIGHTY - LAC - GGING - ▁REFLECT - ▁COLLECT - ▁BULL - ▁CONSCIOUS - ▁MOMENTS - ▁DISTURB - ▁COLLEGE - ▁EGGS - ▁STUPID - ▁YESTERDAY - ▁EXAMINE - ▁FAULT - ▁DEPTH - ▁ROOT - ▁MOUSE - ▁SOUGHT - ▁TURTLE - ▁NATIVE - ▁CRACK - ▁SOLD - ▁INVIT - ▁PICKED - ▁CEASED - ▁HEARING - ▁MIDS - ▁PLAYING - ▁STAGE - ▁UNTO - ▁GAIN - ▁MIST - ▁ORDERS - ▁KNEES - ▁TALE - ▁DISTINCT - ▁BENT - ▁DESPAIR - ▁TRIUMPH - ▁SQUARE - ▁THROAT - ▁BOUGHT - ▁PERMIT - ▁SPEND - ▁TRIP - ▁THREATEN - ▁ROME - INESS - ▁EXPOS - GON - ▁WRITING - ▁INCREASED - ▁PORTION - ▁TENT - IUS - ▁YO - ▁INTENDED - ▁NAMED - RATION - ▁NOTIC - ▁PIPE - ▁WILLING - ▁INSTANTLY - ▁SERVED - ▁BAL - ▁POSSESS - ▁CRE - ▁ADMIRATION - ▁LIBERTY - ▁OPPORTUNITY - ▁SELDOM - ▁BIRTH - ▁GLOW - ▁INCLUD - ▁REQUEST - ▁TYPE - ▁SLEPT - ▁CRIME - ▁MOTIVE - ▁ELSIE - ▁BEGUN - ▁CONSENT - ▁ADMITTED - ▁AVOID - ▁ADDRESS - ▁HATE - ▁DEMANDED - ▁APPARENTLY - ▁SUGGESTION - ▁CONSIDERATION - ▁BLESS - ▁PROCEEDED - NCY - ▁PRISON - ▁CONT - ▁SHOUTED - ▁FACES - ▁SPIRITS - ▁DEVELOP - ▁ACCIDENT - ▁ADVICE - ▁INNOCENT - ▁INSTINCT - ▁UNCONSCIOUS - ▁MYSTERIOUS - ▁PRETEND - ▁PEEP - ▁ANYONE - ▁DUKE - ▁PLUM - VILLE - ▁SEVERE - ▁ALAS - ▁DELIGHTED - ▁ISSUE - ▁ASKING - ▁CROW - ▁ACCEPTED - ▁RIDE - ▁DOORS - ▁TAR - ▁PREPAR - ▁SUGGEST - WOOD - ▁CITIZEN - ▁ENTRANCE - ▁LINCOLN - ▁POLITICAL - ▁PRACTICAL - ▁STIFF - ▁WIDOW - ▁CAPITAL - ▁CLEVER - ▁MAMMA - ▁CREDIT - ▁OBEY - ▁STRING - ▁DAILY - ▁ARGUMENT - ▁HEAP - ▁APARTMENT - ▁FLIGHT - ▁ELDER - ▁PUR - ▁PAGE - ▁DUST - ▁GAZE - ▁NATIONAL - ▁BABY - DDING - ISTS - ▁TEACH - ▁STREETS - CAL - ▁GE - AFF - ▁GOES - ▁POSSIBL - UNG - ▁LINES - GUE - ▁VOTE - ▁HUNTING - ▁QUO - ▁RESEMBL - ▁BASKET - ▁CIRCLE - ▁CONSEQUENCE - ▁KITCHEN - ▁TREASURE - ▁NEVERTHELESS - ▁FANCI - ▁ASSEMBL - ▁GRIEF - ▁VEIL - ▁SEASON - ▁INVENT - ▁VIRGINIA - ▁HUT - ▁GUEST - ▁ROAR - ▁BEHOLD - ▁VICTORY - ▁CAPABLE - ▁DULL - ▁SHOE - ▁FLOAT - ▁MERRY - ▁IMMEDIATE - ETH - ▁ELEANOR - ▁EXPLANATION - ▁PARLIAMENT - ▁PRINCIPAL - ▁PROPORTION - ▁RESOLUTION - ▁UNUSUAL - ▁BLUFF - ▁NINETEEN - ▁SENSATION - ▁VISIBLE - ▁INCOME - ▁FATE - ▁SUPER - ▁LAUGHTER - ▁EASE - ▁LOAD - ▁JEW - ▁ZE - ▁FEVER - ▁WEDDING - ▁JOINED - ▁TRACE - ▁LEADER - ▁CLEARLY - ▁FLOWER - ▁TERMS - ▁EMPLOYED - OCK - ▁PARTICULARLY - ▁MEMBERS - ▁CONFESS - ▁GRO - ▁ADDRESSED - ▁CHRIST - ▁ACCOMPANI - ▁AFFORD - ▁AMOUNT - ▁BRILLIANT - ▁COMMUNICAT - ▁FIERCE - ▁RECORD - ▁SACRIFICE - ▁TEMPT - ▁CORDIAL - ▁COLOUR - ▁PROOF - ▁ESTATE - ▁PARDON - ▁ADVIS - ▁ATTITUDE - ▁IMPORTANCE - ▁BOOT - ▁SHOCK - ▁FIR - ▁PLENT - ▁HIT - ▁MEMBER - ▁SUR - ▁SEATED - ▁MAG - AVING - ▁FAVOUR - ▁REMARK - ▁DIM - ▁FAITHFUL - ▁SAVED - CHI - ▁SIN - THE - ▁CONFIDENCE - ▁EXTRAORDINARY - ▁FORTUNATE - ▁MISFORTUNE - ▁PATIENCE - ▁RELIGIOUS - ▁SATISFACTION - ▁POSITIVE - ▁SIMILAR - ▁EXCHANG - ▁RETREAT - ▁FLESH - ▁ADMIRE - ▁SPIRITUAL - ▁DAWN - ▁BURIED - ▁URGE - ▁SUNDAY - ▁FOX - ▁EMMA - ▁NURSE - ▁SNAPP - ▁PARK - ▁OBTAIN - ▁RECOGNIZED - ▁SPEED - ▁MAGIC - ▁LAWS - ▁REMOVED - ▁HAM - ▁PRESERV - ▁AID - HOUSE - ▁MENTIONED - ▁CONSCIENCE - ▁CONTEMPT - ▁DETAIL - ▁IMMENSE - ▁NERVOUS - ▁PRISCILLA - ▁UNFORTUNATE - ▁UNHAPPY - ▁COMPLAIN - ▁TWICE - ▁WHISTL - ▁SNAKE - ▁WASHINGTON - ▁PIRATE - ▁WICKED - ▁BODIES - ▁DESIGN - ▁JASON - ▁VAGUE - ▁CONSIST - ▁GIFT - ▁ANGEL - ▁RODE - ▁FOLD - ▁BRIDE - ▁ANGER - ▁BASE - ITUDE - ▁CONCLUDED - ▁ALTER - ▁FRI - ▁PANT - ▁BID - ▁HIGHEST - ▁SAILOR - MPLE - ▁OBSERV - ▁CHEERFUL - IFICATION - RID - ▁DESCRIBED - ▁BIN - ▁JEWEL - ▁ARTIST - ▁PEER - ▁NORA - ▁SKI - ▁DIAMOND - ▁ENCOURAGE - ▁PRIVILEGE - ▁PROJECT - ▁ANYBODY - ▁ENCOUNTER - ▁HOLLOW - ▁YIELD - ▁BOBBY - ▁SAVAGE - ▁SOMEBODY - ▁OTHERWISE - ▁PRAISE - ▁PROBLEM - ▁DISTRESS - ▁UGLY - ▁WARRIOR - ▁MOURN - ▁RELIEV - ▁DESK - ▁FOOLISH - ▁STARTLED - ▁SKILL - SHONE - ▁LONE - ▁OBSERVATION - ▁DENI - ▁NEST - ▁SOLDIER - ▁RELATION - ▁TRULY - ▁VISITOR - ▁OFFICERS - ERSON - ▁YA - ▁EVIDENT - ▁DREAMS - ▁KEEPING - ▁PLAINLY - ▁DRUNK - ▁EMBRAC - ▁INTELLIGENCE - ▁LIEUTENANT - ▁PERSUADE - ▁SURROUNDING - ▁UNIVERSAL - ▁GLEAM - ▁SUPERIOR - ▁WHEEL - ▁JEALOUS - ▁QUEER - ▁PIERRE - ▁MILK - ▁RAIL - ▁FLUSH - ▁STAIRS - ▁JESUS - ▁HORN - ▁REGION - ▁SAFETY - ▁KA - ▁GUIDE - ▁CAKE - ▁CUP - ▁INQUIRED - ▁DEFI - ▁LESSON - ▁WRETCHED - ▁PACE - ▁TEST - ▁READING - ▁ENTIRE - ▁NET - ▁DOGS - ▁COMMANDER - ▁PRODUCE - ▁GAINED - ▁ARRIVAL - ▁FAMILIAR - ▁MEANWHILE - ▁SUSPICION - ▁CHOICE - ▁IMPULSE - ▁THRUST - ▁PROCESS - ▁SUMMON - ▁SHEPHERD - ▁HASTILY - ▁GRASP - ▁COUNTESS - ▁STYLE - ▁DWELL - ▁MERIT - ▁PITCH - ▁HUNGRY - ▁SPORT - ▁LOUISE - ▁STERN - ▁PROVIDED - ▁ASSUME - ▁EARLIE - ▁RAGE - ▁U - ▁RAPIDLY - PORT - ▁SUCCESSFUL - ▁FLED - ▁AGREE - ▁CONDITIONS - ▁RELATIONS - ▁DREAD - ▁NATURALLY - ▁EARL - ▁GAY - ▁HYPNOTI - ▁PUTT - ▁GAZ - ▁JIM - ▁PAUS - ▁PROPOS - ▁ADMINISTRATION - ▁ELEVEN - ▁HOSPITAL - ▁MAGISTRATE - ▁STRIKE - ▁DIGNITY - ▁GLORY - ▁BOTTLE - ▁THRONE - ▁RECKON - ▁COSETTE - ▁MOREOVER - ▁APPLI - ▁HIND - ▁PRODUCT - ▁POOL - ▁TRIAL - HAN - ▁ERIC - ▁CUB - ▁PIECES - ▁EXCEPTION - ▁ENJOYED - ▁DARED - ▁TRU - ▁CLOSELY - ▁RAPID - ▁AFFECTED - ▁REQUIRE - ▁SOFTLY - ▁BROW - UCK - ▁MARKED - ▁SEVENT - ▁ELECT - ▁FORGOT - ▁CORRECT - ▁FRANCS - ▁MARGUERITE - ▁SCIENCE - ▁UNEXPECTED - ▁FOUGHT - ▁MILITA - ▁THUNDER - ▁VOYAGE - ▁GANEM - ▁FREEDOM - ▁NODDED - ▁CAPTURE - ▁MORTAL - ▁OWNER - ▁POLITE - ▁VISION - ▁EDUCATION - ▁GOVERNOR - ▁RAV - ▁REWARD - ▁HASTE - ▁REPEAT - ▁DETERMIN - ▁PITI - ▁KNEE - LINE - ▁DEVOTED - ▁INTERRUPTED - ▁FOLKS - ▁EXTREME - ▁APPROACH - ▁CONTINUE - ▁BEARING - ▁CHAP - ▁ACQUAINTED - ▁GLIMPSE - ▁GRADUALLY - ▁SUNSHINE - ▁PRACTICE - ▁SUPPLI - ▁DAVID - ▁DRIFT - ▁SHOWING - ▁LEVEL - ▁PROMPT - ▁QUARREL - ▁REPRESENTATIVE - ▁PLUNG - ▁GIANT - FALL - ▁STOUT - CHA - WEPT - ▁GLANC - ▁SALT - ▁CHOSEN - ▁BUCK - ▁REALIZED - ▁REALITY - ▁TUR - ▁DRIVEN - ▁CARD - ▁PRAYER - ▁TERM - AID - ▁HOLY - ▁ENDURE - ▁RANGE - ▁HANG - ▁SAM - LAN - ▁CAVE - INA - ▁GRI - ▁SIGH - ▁NEIGHBOUR - ▁COUNCIL - ▁EXERCISE - ▁NAUTILUS - ▁SOMEWHERE - ▁SYLVIA - ▁THOROUGH - ▁VICTIM - ▁BRIDGE - ▁COMPELLED - ▁INCLINED - ▁OVERCOME - ▁RESERVE - ▁ARREST - ▁PRECIOUS - ▁DUTCH - ▁OCEAN - ▁ACQUIR - ▁RECALL - ▁DESTIN - ▁ATTACH - ▁SLIM - ▁WEEP - ▁CONSCIOUSNESS - ▁TIGHT - ▁WAKE - ▁COMFORTABLE - ▁ACTIVE - ▁WINGS - ▁GRIN - ▁AFFECT - ▁WHIT - ▁IDEAL - ▁EASTER - ▁APPROACHING - ▁CREATED - ▁PLANS - ▁INCREASE - ▁FLYING - ▁SHOUT - OES - MISSION - ▁ARMED - ABILITY - ▁BLUSH - ▁CONNECTION - ▁MATTHEW - ▁MEDICINE - ▁REMIND - ▁EXHIBIT - ▁BLOCK - ▁DESERVE - ▁LISTENING - ▁TITLE - ▁FLOUR - ▁FLAME - ▁AGENT - ▁USEFUL - ▁BRIG - ▁BOIL - ▁ASSURED - ▁REFLECTION - ▁PINE - ▁WAG - ▁YOUNGER - ▁BEARD - ▁KINDNESS - CTUALLY - ▁ACTUAL - ▁WEIGHT - ▁LILY - ▁IMPRESS - ▁DESCRIBE - ▁BEHELD - ▁COMMUNITY - ▁DESPERATE - ▁DISPLAY - ▁ENEMIES - ▁MELANCHOLY - ▁MIRROR - ▁RECOMMEND - ▁SPANISH - ▁BLAME - ▁VOLUME - ▁SHOOT - ▁COMBIN - ▁SHAKING - ▁SOUTHERN - ▁MYSTERY - ▁EVERYONE - ▁COMMISSION - ▁COMPOSED - ▁UDO - ▁IMAGE - ▁DECEIV - ▁FAILURE - ▁PATTY - ▁ALICE - ▁FRAME - ▁MODEST - ▁MAGNIFICENT - ▁BRANCHES - ▁REIGN - ▁RAG - ▁PARISH - ▁KATE - ▁AMID - ▁SLEEPING - ▁ANNOUNCED - ▁EAGERLY - ▁WIRE - ▁LAP - ▁ARAB - ▁EATING - ▁RUM - ▁CAREFUL - ▁DISCUSS - WORTH - ▁DISTRICT - ▁FOREHEAD - ▁FRANCIS - ▁INCIDENT - ▁APPEAL - ▁EMBARRASS - ▁MAINTAIN - ▁PRONOUNC - ▁FURNISH - ▁STRAIN - ▁ELEMENT - ▁SILK - ▁FEAST - ▁RECENT - ▁DANCING - ▁LODGE - ▁ASHAMED - ▁TRICK - ▁BOBO - ▁STUFF - ▁ET - ▁ASSERT - ▁SANK - ▁TREATMENT - ECI - ▁SWIM - ▁BECOMING - ▁SINGING - ▁PLATE - ▁SCATTERED - ▁EXTREMELY - ▁GRIM - ▁SANG - ▁FIGHTING - ▁FACTOR - ▁PAINFUL - ▁HIDE - ▁FUNN - ▁AFTERWARD - ▁FROG - ▁VENTURE - ▁DISAPPOINT - ▁COMRADE - ▁MONSIEUR - ▁OBVIOUS - ▁PASSENGER - ▁PROFOUND - ▁PUBLISH - ▁ACCUSTOM - ▁BLOOM - ▁SMITH - ▁RELATIVE - ▁ACCUSE - ▁MANIFEST - ▁SOLID - ▁MONSTER - ▁MARIUS - ▁CANDLE - ▁PROCUR - ▁INTERFERE - ▁HOUSEHOLD - ▁DEVELOPMENT - ▁AGREEABLE - ▁HALT - ▁NECESSITY - FOLD - ▁CITIES - ▁REGI - ▁GLOOMY - BBL - ▁SEPARATED - ▁CHEST - ▁STRIP - ▁SPAR - ▁DUN - ▁SETTLE - ▁STARED - ▁HANGING - ▁FEATURES - ▁PILE - ▁ORIGIN - ARIES - ▁LION - ▁ALI - ▁ASTONISHMENT - ▁COMPLIMENT - ▁DELICATE - ▁COUNSEL - ▁FIFTH - ▁SUPPRESS - ▁BURDEN - ▁COMPLEX - ▁ADDITION - ▁CRUSH - ▁TWIST - ▁PIANO - ▁BRUSH - ▁CHECK - ▁ANNIE - ▁SHELTER - ▁IMPROV - ▁WESTERN - ▁LOCAL - ▁APPLE - ▁GREET - ▁MASK - ▁RUSSIAN - ▁TOWER - ▁CREW - ▁TIP - ▁WANDERING - ▁READER - ▁WANDERED - ▁DESTROY - ▁OBSERVE - MORE - ▁ESCAPED - ▁PET - ▁BUILD - ▁REAR - ▁DESTROYED - HIN - ▁OWE - ▁RANG - ▁TEAR - ▁NED - ▁OFFICER - ▁TRAP - ▁OCCUR - ▁APPOINTED - ▁ATMOSPHERE - ▁CHOOSE - ▁CONCLUSION - ▁CULTIVAT - ▁DESCRIPTION - ▁ENORMOUS - ▁EXHAUSTED - ▁LANDSCAPE - ▁NATASHA - ▁PROSPECT - ▁REFRESH - ▁SPECIES - ▁SURROUNDED - ▁WEAPON - ▁BLANK - ▁DEFEND - ▁EDITH - ▁HORRIBL - ▁BETRAY - ▁FERKO - ▁LABOUR - ▁NEGRO - ▁RESUMED - ▁LEAF - ▁MUSKET - ▁INTENSE - ▁MERCY - ▁ADOPT - ▁SCORE - ▁DASH - ▁LAWYER - ▁SLOPE - ▁CHUCK - ▁ASSISTANCE - ▁BROOK - ▁BREAKING - ▁ASSIST - ▁GROAN - ▁HELEN - ▁BEHAV - ▁MAIDEN - ▁CRIS - ▁SHOUTING - ▁NAY - ▁PIG - ▁ACCORDINGLY - ETTE - ▁DESIR - ▁RUB - ▁GRU - ▁PIT - ▁HEAVI - ▁OBTAINED - ▁SPARE - ▁BRANCH - ▁COUNTER - ▁APART - ▁AMBITION - ▁ASTONISHED - ▁CORRESPOND - ▁DRIVING - ▁ENERGY - ▁HISTORIAN - ▁REVOLUTION - ▁SWEEP - ▁TREMBLING - ▁CRAFT - ▁FAMILIES - ▁LITERATURE - SBURG - ▁FEMALE - ▁TILNEY - ▁GENEROUS - ▁SUBMIT - ▁INTELLECTUAL - ▁ORCHARD - ▁STORIES - ▁DIANA - ▁VEIN - ▁TRIFL - ▁TWIN - ▁WORSHIP - ▁MARBLE - ▁GALLANT - ▁SENSIBLE - ▁NEAT - ▁BROWNIE - ▁JUNE - ▁SHAW - ▁WORST - ▁USELESS - ▁FISHING - ▁CRYING - ▁MAYBE - ▁VARI - ▁PRESERVE - ▁VOL - ▁EMPLOY - ▁INTERRUPT - ▁SLIGHTLY - ▁ACCOMPLISHED - NEY - ▁STEAM - ▁BALANC - ▁LEANING - ▁SIGHED - ▁REFUSE - ▁IMAGINED - ▁DATE - GROUND - ▁ENTERTAIN - ▁PERCEIVE - ▁ABROAD - ▁CHEESE - ▁DESTRUCTION - ▁ESSENTIAL - ▁EXPEDITION - ▁GRANDFATHER - ▁INFINITE - ▁LIBRARY - ▁MULTITUDE - ▁NEGLECT - ▁SWALLOW - ▁VILLEFORT - ▁BELOVED - ▁COMMITTEE - ▁CONFIDENT - ▁PURPLE - ▁PURCHAS - ▁SCRAP - ▁SPOIL - ▁LIKEWISE - ▁EXTRA - ▁STRAW - ▁SALUT - ▁SOURCE - ▁HASTENED - ▁RESENT - ▁FLOCK - ▁LOFT - ▁FLO - ▁CLO - ▁CONVINCED - ▁GOODNESS - ▁HYPNOTIZ - ▁SETTING - ▁HAIL - ▁PHI - ▁GROVE - ▁DISCOVERY - ▁DAMP - ▁WHISPER - ▁LIFT - ▁HOP - ▁SUSPECTED - ▁SCR - OLI - ▁FAC - ▁BUSH - ▁FOREVER - ▁BARRICADE - ▁CONSTITUTION - ▁ENDEAVOR - ▁ENTHUSIASM - ▁EXECUTION - ▁HYACINTH - ▁PERCEVAL - ▁PSYCHE - ▁REPROACH - ▁THIRTEEN - ▁ABSORB - ▁GRATITUDE - ▁MERCER - ▁REPUTATION - ▁SCREAM - ▁PUPIL - ▁RETIRED - ▁STEEP - ▁SUMMIT - ▁MISERABLE - ▁STRICT - ▁MINGLED - ▁DEFEAT - ▁REVEAL - ▁LOVING - ▁GOOSE - ▁ECHO - ▁AWAIT - ▁MOOD - ▁CRAWLEY - ▁CELL - ▁ENGAGEMENT - ▁PRECED - ▁SOMEONE - ▁ARRANGEMENT - ▁PICKET - ▁GASP - ▁HUMOR - ▁INVITATION - ▁JOB - WITHSTAND - ▁LAMENT - ▁CLASSES - ▁HUNGER - ▁DISPOSED - ▁STEAMER - ▁FEARFUL - ▁GER - ▁FINAL - ▁FLAG - ▁JULY - ▁DIG - WORK - ▁OPPOS - ▁ANXIETY - ▁AUDIENCE - ▁BACHELOR - ▁COLUMN - ▁HANDKERCHIEF - ▁IMPATIENT - ▁JUDGMENT - ▁KNIFE - ▁SOVEREIGN - ▁STRIKING - ▁THOMPSON - ▁EMPIRE - ▁FULFIL - ▁CONSULT - ▁JENNY - ▁THENARDIER - ▁POYSER - ▁FOURTEEN - ▁JAPANESE - ▁INDULG - ▁MARTIAN - ▁COUNTRIES - ▁FETCH - ▁CRITIC - ▁ROBBER - ▁CROOK - ▁DEPARTURE - ▁MABEL - ▁PREACH - ESCENT - ▁WHIP - ▁NAIL - ▁DELIGHTFUL - ▁DISCUSSION - ▁SENTENCE - ▁LANE - ▁ENGINEER - ▁ARRANGED - MMY - ▁LEST - ▁RENT - MMED - ▁LIST - ▁ROBE - ▁MISSION - ▁GRACEFUL - ▁LIGHTN - STONE - COURT - ▁CONCEPTION - ▁CONTRACT - ▁DROWN - ▁EXPERIMENT - ▁HITHERTO - ▁PLAGUE - ▁PORTHOS - ▁SHRIEK - ▁DETECT - ▁ACCENT - ▁ERECT - ▁SAZEN - ▁PROFIT - ▁VIVID - ▁SQUIRE - ▁OPERATION - ▁SMELL - ▁SIMON - ▁EXTENT - ▁KEEN - ▁EMERG - ▁REVIV - ▁REGIMENT - ▁DISAPPOINTMENT - ▁STOLE - ▁DIVINE - ▁GUILTY - ▁COWARD - ▁EXPECTATION - ▁SIGNOR - ▁MODE - ▁CENTRE - ▁FIL - HOW - ▁WEARI - ▁TOTAL - ▁VICTOR - ▁GOVERN - ▁RAISE - ▁ABANDON - ▁ABSURD - ▁ASPECT - ▁CRIMINAL - ▁DEFINITE - ▁DELIBERAT - ▁FEATHER - ▁FLORINA - ▁MIDNIGHT - ▁RICHMOND - ▁SATISFY - ▁SINGULAR - ▁STEADILY - ▁SUPREME - ▁TIMBER - ▁PSYCHOLOG - ▁GESTURE - ▁VALUABLE - ▁INTERVAL - ▁CONFUSION - ▁FLUTTER - ▁SACRED - ▁DISEASE - ▁UNDERTAKE - ▁PENETRAT - ▁MARVEL - ▁NORTHERN - ▁GRIEV - ▁GENIUS - ▁SADDLE - ▁NOVEL - ▁MISERY - ▁CONVICTION - ▁SINK - ▁WAGON - ▁ARISE - ▁COMMENT - ▁BARN - UPON - ▁FENCE - ▁ASSOCIATION - ▁BONES - ▁IDLE - ▁DOUBTFUL - ▁PREPARATION - IZZ - ▁RAIS - ▁BITTERLY - ▁JOE - ▁RELI - ADI - ▁METAL - ▁EXACT - ▁GLOOM - FIELD - ▁DANGLARS - ▁DISGRACE - ▁EXAMINATION - ▁FASCINAT - ▁GLITTER - ▁INCREASING - ▁MESSENGER - ▁PATRIOT - ▁PLATFORM - ▁PROVISION - ▁QUALITIES - ▁SELECT - ▁STEADY - ▁POVERTY - ▁POWDER - ▁PROPHET - ▁HOLLAND - ▁TRUNK - ▁VARIETY - ▁PLANCHET - ▁CONQUER - ▁CONCEIVE - ▁COMBAT - ▁STOOP - ▁SHIRT - ▁GENERATION - ▁COMMITTED - ▁INSULT - ▁CONFUSED - ▁RADIAN - ▁DEBT - ▁IMITAT - ▁DART - ▁CAROLINE - ▁SWAM - ▁WREN - ▁CHILDHOOD - ▁BRAND - ▁JOKE - ▁FRIENDSHIP - ▁DIRT - ▁JOLL - ▁BUSHES - ▁MINK - ▁ROUT - ▁EQUALITY - ▁HESITATED - ▁BARK - ▁ANTI - ▁STATEMENT - PHER - ▁SUNK - ▁DAT - ▁BACKWARD - ▁SUSPECT - ▁OBJECTION - ▁RAP - ▁CHIN - ▁MATE - ▁REDUC - ▁GREGG - ▁ACCOMPANY - ▁ANYWHERE - ▁BENEFIT - ▁CLERK - ▁EXPENSE - ▁FETNAH - ▁INTERPRET - ▁LUKASHKA - ▁NUMEROUS - ▁SURGEON - ▁PUZZL - ▁RESCUE - ▁GRATEFUL - ▁APPROV - ▁RIVAL - ▁NIECE - ▁FLOOD - ▁VANISHED - ▁ERROR - ▁BLAZ - ▁TUMBL - ▁WENDY - ▁PERSIST - ▁CONSOL - ▁SOAP - ▁HUMOUR - ▁FITTED - ▁HOUSEKEEPER - ▁ENABL - ▁OCCASIONALLY - ▁HATRED - ▁SWELL - ▁WORRY - ▁RUST - ▁PURSUIT - ▁INTIMATE - ▁SEAL - ▁COLLECTION - ▁TREMBLED - ▁DENY - ▁HUMANITY - ▁FATAL - ▁COCK - ▁DRIVER - ▁HOPELESS - ▁MISTAKEN - ▁LUC - ▁ACCOMPLISH - ▁COAL - ▁ACCORD - ▁PURSE - ▁SEPARATE - ▁ARRIVE - ▁SMOK - ▁MADAM - ▁ASSOCIAT - ▁INSTRUCT - ▁CELEBR - ▁CHANNEL - ▁CIVILIZATION - ▁DOCTRINE - ▁ENDEAVOUR - ▁GLACIER - ▁INTELLIGENT - ▁INVOLVE - ▁LEATHER - ▁MUTTERED - ▁OLENIN - ▁PENCROFT - ▁PERPLEX - ▁SPECTATOR - ▁UNIVERSITY - ▁ATTAIN - ▁INEVITABL - ▁YONDER - ▁ENCHANT - ▁REPAIR - ▁CURRENT - ▁ASCEND - ▁CREEK - ▁SPARKL - ▁RUE - ▁BEAVER - ▁INFANT - ▁CONTINUALLY - ▁CLASP - ▁IRISH - ▁ROLLIN - ▁PUNISHMENT - ▁LUNCH - ▁AGONY - ▁RUDE - ▁DRAGG - ▁INQUIRI - ▁SEX - ▁TERRIFI - ▁ROBIN - ▁PROFESSIONAL - ▁SPUR - ▁GRAIN - ▁VINE - ▁PENN - ▁ROC - ▁CHASE - ▁INFORM - ▁WRITER - ▁AVO - ▁TAP - ▁CREAT - ▁WHIL - ▁BARR - ▁ASSURE - ▁CIRCUMSTANCE - ▁OIL - ▁ROUSE - ▁COLUMB - ▁CUNNING - ▁DOMESTIC - ▁GLORIOUS - ▁INDIGNATION - ▁PRECISELY - ▁PRUDENCE - ▁RAILROAD - ▁SATURDAY - ▁UTMOST - ▁VIOLENCE - ▁WHIRL - ▁CALCULAT - ▁OVERWHELM - ▁PERPETUAL - ▁QUARLES - ▁SLENDER - ▁TELEGRAPH - ▁ALOUD - ▁OPPRESS - ▁CROPPER - ▁CANADIAN - ▁HERBERT - ▁TIMID - ▁SUPPLY - ▁STROLL - ▁CREEP - ▁OATH - ▁DUSK - ▁EXCESS - ▁HUMBLE - ▁FURIOUS - ▁RIDGE - ▁BULLET - ▁PONY - ▁STATU - ▁ENJOYMENT - ▁CONWAY - ▁DIFFICULTIES - ▁PATCH - ▁JOYCE - ▁CLOCK - ▁RESTORED - ▁ARGU - ▁WIG - ▁CHATT - ▁PLAC - ▁REMOVE - ▁TORN - ▁DISAPPEAR - TIME - WELL - ▁RECOGNIZE - ▁FISHE - ▁DECLARE - ISTIC - ▁AUTHOR - ▁WHISK - ▁COFFEE - ▁COMPREHEND - ▁DISGUISE - ▁ELZEVIR - ▁ENTERPRISE - ▁HOLIDAY - ▁HORIZON - ▁IGNORANT - ▁INTERVIEW - ▁OLIVER - ▁RONICKY - ▁CAPACITY - ▁DISPOSITION - ▁EXTERNAL - ▁OPPOSITION - ▁REPUBLIC - ▁WHEAT - ▁CORPSE - ▁DARLING - ▁THRILL - ▁INHABITANTS - ▁ORNAMENT - ▁SHIFT - ▁RECOGNISE - ▁SHIVER - ▁BOAST - ▁HINT - ▁BOSTON - ▁MULTI - IFYING - ▁STEAL - ▁INSTRUCTIONS - ▁ELECTRIC - ▁SWING - ▁SOOTH - ▁SCALE - ▁MORLAND - ▁DISLIKE - ▁FLATTER - ▁COACH - ▁LEIF - ▁STAMP - ▁ANYHOW - ▁MOTIONLESS - ▁ANDREA - ▁LOSING - ▁PAUL - ▁CAROL - ▁ADVANC - ▁IMAGIN - ▁CENTER - ▁JAR - ▁SUCCEED - ▁DISMISS - CTOR - ▁RECEIV - ▁DRAG - ▁INTENT - ▁BARBAR - ▁PUNISH - ▁ABRUPTLY - ▁BERNARD - ▁DECISION - ▁INDEPENDENT - ▁PROVINCE - ▁SLEEVE - ▁TREMENDOUS - ▁UNPLEASANT - ▁LEISURE - ▁THRONG - ▁THUMB - ▁BANNER - ▁CONTRADICT - ▁RESTRAIN - ▁DIVIDED - ▁WRAPPED - ▁HAUNT - ▁SNEER - CHESTER - ▁JULIA - ▁MILD - ▁CONTACT - ▁MEANTIME - ▁NEEDLE - ▁BLOT - ▁BARREL - ▁ISABELLA - ▁THEATRE - ▁ESTABLISHMENT - ▁MARKET - ▁CHINA - ▁FORBID - ▁PERISH - ▁DOORWAY - ▁CARLING - ▁PERIL - ▁PRIZE - ▁HATCH - ▁CURL - ▁REFER - ▁DEVOT - EMBER - MONT - ▁CANOE - ▁PROFESSION - ▁CONVICT - ▁CRAWL - ▁ACTIVITY - ▁BEWILDER - ▁BREEZE - ▁CONTEMPLAT - ▁DISGUST - ▁FATIGUE - ▁MERRICK - ▁PRAIRIE - ▁REFORM - ▁SPECTACLE - ▁STUDENT - ▁TUMULT - ▁UNIFORM - ▁VIGOROUS - ▁CONDEMN - ▁GENUINE - ▁THOMAS - ▁ARROW - ▁PILLOW - ▁FEEBLE - ▁RALPH - ▁SCHEME - ▁COLLAR - ▁JUSTINIAN - ▁NERVE - ▁OYSTER - ▁BENNET - ▁DUTIES - ▁BINGLEY - ▁CHRISTMAS - ▁CONVEY - ▁DESPIS - ▁RATTL - ▁GARMENTS - ▁GOWN - ▁BERYL - ▁BARRIER - ▁CHARACTERISTIC - ▁MEDITAT - ▁DISCOURSE - ▁STAFF - ▁KARA - ▁MONTE - ▁READILY - ▁VENTUR - ▁HENCE - ▁ROPE - ▁CRIES - ▁ANGLE - ▁RESPECTABLE - ▁MOAN - ▁OUTLINE - BORN - ▁FIX - ▁INTEND - LIA - ▁CHILL - ▁CREP - ▁CHOSE - ▁SPECULAT - ▁ATTRIBUT - ▁BUFFALO - ▁ENTREAT - ▁ENVELOP - ▁FREDERICK - ▁IMPATIENCE - ▁INDIFFERENCE - ▁INDUSTRY - ▁INSTITUTION - ▁LYNDE - ▁RETAIN - ▁TROUTINA - ▁UNCOMFORTABL - ▁VENGEANCE - ▁JENKS - ▁CONGRESS - ▁SMART - ▁THITHER - ▁DISAGREE - ▁IMPROVEMENT - ▁PISTOL - ▁GOSSIP - ▁ETERNAL - ▁BELIEF - ▁SLEDGE - ▁AROUSED - ▁ORANGE - ▁FASTENED - ▁MONKEY - ▁WITHDREW - ▁OFFEND - ▁PIERC - ▁MOONLIGHT - ▁OARS - ▁GROOM - ▁FIDDLER - ▁BARBARA - SHIRE - ▁ATTENDANT - ▁DIVERS - ▁DUCK - ▁PROPOSAL - ▁GROWTH - ▁CURATE - ▁STEWAR - ▁MOCK - ▁SUCCESSION - ▁CREATION - ▁PARTIAL - ▁SWU - ▁FROST - ▁EIGHTH - ▁AWE - ▁PERCH - ▁LACE - SPOON - ▁ARRANGE - SERIES - ▁FOG - ▁SCU - ▁ABRAHAM - ▁ADMIRAL - ▁BARBICANE - ▁CAMPAIGN - ▁CONSEQUENTLY - ▁CULTURE - ▁GRAMMONT - ▁GWYNPLAINE - ▁HAPPILY - ▁HOOPDRIVER - ▁INDEPENDENCE - ▁LEOPOLD - ▁MISCHIEF - ▁MONTGOMERY - ▁NECESSARILY - ▁PSYCHIC - ▁RABBIT - ▁REFUGE - ▁RESPONSIBILIT - ▁SENATOR - ▁UNCERTAIN - ▁MENSTRUA - ▁FANNY - ▁SUBSTANCE - ▁APRIL - ▁ELBOW - ▁QUALITY - ▁BORDER - ▁BRUTAL - ▁CARPET - ▁SOLITAR - ▁FROWN - ▁SCENT - ▁ANNOY - ▁NAKED - ▁BOSOM - ▁CONSUM - ▁TIGER - ▁ITALIAN - ▁PARSON - ▁DECLIN - ▁NEIGHBORHOOD - ▁GREGGORY - ▁EXCEED - ▁SILLY - ▁ICELAND - ▁HIDEOUS - ▁STRU - ▁ALTERNAT - ▁CABINET - ▁ABILITY - ▁BEECH - ▁SECRETARY - ▁CONTEST - ▁MONK - ▁PADD - ▁EVA - ▁CREST - ▁FINISH - ▁APPARENT - ▁MIX - ▁SLIP - ▁LUXURI - ▁AUTUMN - ▁CIRCULAR - ▁COMPOSITION - ▁DISPLEAS - ▁EXCELLENC - ▁FURNITURE - ▁GRADUATE - ▁INDIFFERENT - ▁JOSEPH - ▁OCCUPATION - ▁POSSIBILITY - ▁RENEWED - ▁RESPONDED - ▁PREVAIL - ▁HOARSE - ▁PRACTIS - ▁FAREWELL - ▁JULIET - ▁OVERHEAD - ▁THREAD - ▁APPLICATION - ▁SOLITUDE - ▁ADAPT - ▁FALK - ▁LARK - ▁COARSE - ▁MANKIND - ▁KICK - ▁BATTER - ▁SOLICIT - ▁RESIGN - ▁MOTOR - ▁STEEL - ▁CONTRIV - ▁AUTHORITIES - ▁HARSH - ▁FAVORITE - ▁TALENT - ▁FLEECE - ▁AGITATION - ▁ABBE - ▁STUCK - ▁HEDGE - ▁BIBLE - ▁RECOLLECTION - ▁PARTNER - ▁DAMON - ▁SHINE - ▁HOOK - ▁CONFESSION - ▁ASSENT - ▁ELDE - ▁BIGGE - ▁PEACEFUL - SCRIBED - ▁WEIGH - CARLET - ▁DECIDE - ▁RECOLLECT - ▁BOHEMIA - ▁CALIFORNIA - ▁CONSTRUCT - ▁DEMONSTRAT - ▁DISTRIBUT - ▁FRIGHTFUL - ▁GNOME - ▁IGNORANCE - ▁JANUARY - ▁JULIUS - ▁MEMORIES - ▁OCCUPY - ▁PHRASE - ▁WHIRLWIND - ▁WILMINGTON - ▁CARLINI - ▁CHAUVELIN - ▁ESTEEM - ▁GENZABURO - ▁GLOBE - ▁LECOQ - ▁MARGARET - ▁MONARCH - ▁NAPOLEON - ▁SCORN - ▁STAGGER - ▁SUSTAIN - ▁TRADITION - ▁ADJUST - ▁FROZEN - ▁IMPRISON - ▁LANTERN - ▁MICHEL - ▁STOMACH - ▁TORRENT - ▁WITHDRAW - ▁FRANZ - ▁POISON - ▁SURVEY - ▁BRITISH - ▁ELEVAT - ▁AWOKE - ▁ESTHER - ▁INHERIT - ▁TRAVERS - ▁STOPPING - ▁IRELAND - ▁COMPARATIVE - ▁SOBB - ▁FAVOURITE - ▁CANVAS - ▁CLOAK - ▁GLAR - ▁ASSISTANT - ▁DAMAGE - ▁PEAK - ▁DISTINCTION - FARE - ▁DOLLAR - ▁BEGGAR - LUSIVE - ▁MODEL - ▁SECUR - ▁DISPOS - ▁SLID - ▁PEA - ▁SPEEDI - HOLD - ▁SNAP - ▁CIGAR - ▁AFFLICT - ▁AMAZEMENT - ▁LAUNCELOT - ▁LEAGUE - ▁MARIPOSA - ▁POPULATION - ▁UNEASY - ▁BLOSSOM - ▁CATERPILLAR - ▁INCLINATION - ▁SUSPEND - ▁SYNDIC - ▁TAYLOR - ▁WILSON - ▁CONTRAST - ▁PORTRAIT - ▁CORONER - ▁GREEK - ▁BUNDLE - ▁BLEW - ▁THORPE - ▁ORPHAN - ▁MUSCLE - ▁DEAF - ▁SURVIV - ▁EXCEEDINGLY - ▁TENDENC - ▁ISRAEL - ▁QUANTIT - ▁PENSION - ▁DRIED - TEXT - ▁REFERENCE - ▁REPOSE - ▁FOLLY - ▁REPLACE - ▁TERR - ▁ANKLE - ▁SUNLIGHT - ▁SECURITY - ▁SHOV - ▁RAW - CULAR - ▁JACKET - ▁TUNE - ▁HOBB - ▁MARTIN - DUCED - ▁FIST - ▁BEGG - ▁CHOK - ▁INQUIRE - ▁INTELLECT - ▁AMUSEMENT - ▁APPROPRIATE - ▁CONGRATULAT - ▁CONVENTION - ▁DISCOURAG - ▁EXQUISITE - ▁FOUNTAIN - ▁JUNIOR - ▁NONSENSE - ▁OBSTACLE - ▁SPECIMEN - ▁SWEAR - ▁TRANQUIL - ▁VEHICLE - ▁WISDOM - ▁ASCERTAIN - ▁CAUTIOUS - ▁CENTURIES - ▁CORRUPT - ▁EXPLOR - ▁TURKEY - ▁BARGAIN - ▁CONFOUND - ▁FUNCTION - ▁GRACIOUS - ▁MONICA - ▁ILLUSTRAT - ▁CRUMB - ▁REMEDY - ▁REMOTE - ▁REVENGE - ▁BABYLON - ▁CAUTION - ▁INTERIOR - ▁CRISTEL - ▁BRAZ - ▁THIRST - ▁PROBABLE - ▁HARMONY - ▁CHARITY - ▁DECAY - ▁COLONI - ▁AVAIL - ▁REPULS - ▁ABSENT - ▁PULSE - ▁PRESUM - ▁CRANE - ▁NEIGHBOURHOOD - ▁SUNSET - ▁CANNON - ▁GRAPE - ▁SOFA - ▁DRANK - MINOUS - ▁DECLARATION - ▁CLOSING - ▁MEEK - ▁STARV - ▁BUNCH - ▁PERFORMANCE - ▁ENTERTAINMENT - ▁STRIV - ▁EMILY - ▁VALET - MPOSED - ▁INTIMA - ▁POLISH - ▁HIRE - POST - ▁TREMBLE - ▁CEASE - ▁VIRGIN - ▁RUSSIA - COURSE - ▁EDUCAT - BOUND - ▁INHABIT - ▁SUPERINTEND - ▁BISCUIT - ▁CHICAGO - ▁CHOKICHI - ▁CONFLICT - ▁ENCLOS - ▁EXCLUSION - ▁EXECUTIVE - ▁GRANDMOTHER - ▁HEADQUARTERS - ▁INFERIOR - ▁INVISIBLE - ▁MUTUAL - ▁OPPONENT - ▁SENSITIVE - ▁STUDIED - ▁TEMPORARY - ▁UNWILLING - ▁PERMANENT - ▁BEDROOM - ▁NOVEMBER - ▁COMPLICAT - ▁DEVOUR - ▁SCRAMBL - ▁SECTION - ▁PROPOSITION - ▁DEPRIV - ▁RYNCH - ▁PLEAD - ▁TORTURE - ▁SCOUT - ▁PILOT - ▁CHERISH - ▁SPEAR - ▁SUGAR - ▁JASPER - ▁STRAY - ▁RIFLE - ▁NORMAL - ▁JERK - ▁HONEY - ▁AWAKENED - ▁QUIVER - ▁PYE - ▁APPLY - LICK - JA - ▁ANNOUNC - FORE - ▁ENGINE - ▁HESITATE - ▁PROVIDE - ▁REALIZE - ▁SEIZE - ▁RESTORE - MOUTH - FOOT - ▁DIFFER - ▁ULTIMATE - ▁ABUNDANCE - ▁APPRECIATE - ▁APPREHENSION - ▁AVENUE - ▁AWKWARD - ▁CETERA - ▁CHIMNEY - ▁CLUTCH - ▁CONVENIENT - ▁CORRIDOR - ▁DISTRACT - ▁ELEGANT - ▁ELSEWHERE - ▁ENTHUSIASTIC - ▁EXECUTE - ▁EXTREMIT - ▁JERUSALEM - ▁MIRACLE - ▁MONSTROUS - ▁OBEDIENCE - ▁OBSCURE - ▁PHENOMENA - ▁RESIDENCE - ▁RESOURCE - ▁REVOLT - ▁SCIENTIFIC - ▁SHIELD - ▁SIMPSON - ▁UNIVERSE - VOLUNTARY - ▁ATTENTIVE - ▁BRENDA - ▁DEPOSIT - ▁MAXIM - ▁REJECT - ▁STIRRED - ▁DISORDER - ▁SERENE - ▁TOBACCO - ▁MILTON - ▁BALLOON - ▁STEPHEN - ▁STRAIT - ▁CHINESE - ▁COURTEOUS - ▁RELEASE - ▁RECESS - ▁COTTON - ▁STUMP - ▁TANK - ▁PROMOTE - ▁DERIVE - ▁LOYAL - ▁GRANIT - ▁DISMAL - ▁CATTLE - ▁DOONE - ▁CUPID - DIGNIFIED - ▁RIPE - ▁EXILE - ▁ANTIQU - UMINAT - ▁SUPPOS - ▁WRETCH - ▁IDENTI - ▁EASI - ▁SERV - ▁QUEST - TOWN - ▁ACHIEVEMENT - ▁APPETITE - ▁BUCCANEER - ▁COMMENCED - ▁DELAWARE - ▁DISCERN - ▁IMMORTAL - ▁INDIGNANT - ▁JOSIANA - ▁MECHANICAL - ▁MUSKRAT - ▁REVIEW - ▁ROBARTS - ▁SIGNIFICANT - ▁SUBSEQUENT - ▁YOURSELVES - ▁ANGRILY - ▁BORROW - ▁SUBLIME - ▁AFRICA - ▁CHICKEN - ▁DEGRAD - ▁GEORGI - ▁HUMILIAT - ▁LODGING - ▁REDCOAT - ▁VIOLET - ▁HOPKINS - ▁RAWDON - ▁PRICK - ▁WHALE - ▁FUNERAL - ▁GUINEA - ▁DISMAY - ▁PORCH - ▁HARVEST - ▁PARCEL - ▁SUBDU - ▁SYRIA - ▁PANIC - ▁BOUGHS - ▁CIGARETTE - ▁CHRON - ▁INQUIRY - ▁CRYSTAL - ▁SPELL - ▁PLUCK - ▁PATTERN - ▁DARING - ▁CRITICISM - ▁DAINT - ▁DISTURBANCE - ▁BUTCHER - ▁LITERA - ▁ABUSE - IXTURE - ▁ANIMAT - ▁WRIT - ▁BELIEV - ▁INDUCE - COMING - ▁DRAMA - ▁AGITAT - SHAW - ▁IMPERFECT - ▁MANUFACTURE - ▁AFFIRM - ▁ANGUISH - ▁ARTIFICIAL - ▁BIBBS - ▁CHARLOTTE - ▁CIRCUS - ▁CONNISTON - ▁CONSTITUTE - ▁DAZZL - ▁DEFECT - ▁DISCHARG - ▁ESCORT - ▁EXAGGERAT - ▁GWENDOLEN - ▁IRRESISTIBL - ▁PHILOSOPHY - ▁PHOTOGRAPH - ▁PILGRIM - ▁PLEASING - ▁QUIXOTE - ▁RESPONSE - ▁SCRATCH - ▁SERGEANT - ▁SHERIFF - ▁SHUDDER - ▁STRUCTURE - ▁SUFFRAGE - ▁SURRENDER - ▁SWORE - ▁VILLAIN - ▁HESITATING - ▁FLORENCE - ▁IRRITAT - ▁RIGID - ▁SINISTER - ▁STUDIO - ▁RAFT - ▁CHAMPION - ▁PAVEMENT - ▁WOLF - ▁DEVICE - ▁WRECK - ▁HESITATION - ▁LAZY - ▁ADJO - ▁DECENT - ▁INTERVEN - ▁WOOL - ▁ILLUSION - ▁HAWK - ▁IMPART - ▁LUNGS - ▁WINNING - ▁VITAL - ▁CONSPI - ▁SUBTLE - ▁CONSTANC - ▁HURL - ▁AMIABL - ▁FOLK - GGY - ▁NECESSIT - ▁PROFESS - WASH - ▁ADMIRING - ▁AMBITIOUS - ▁ANTHONY - ▁CEREMONY - ▁CONTRIBUTE - ▁CRAGGS - ▁DETAIN - ▁DISCLOS - ▁DWELT - ▁EGYPT - ▁FELIX - ▁JOURNAL - ▁KWAIRYO - ▁LIBERAL - ▁LUMBER - ▁OCTOBER - ▁ORGANIZATION - ▁POPULACE - ▁PRECAUTION - ▁PREJUDICE - ▁PROCLAIM - ▁PROPRIETOR - ▁RESPONSIBLE - ▁RHYTHM - ▁RIDICULOUS - ▁SCHOLAR - ▁SQUEEZ - ▁SUBSTITUTE - ▁SURPASS - ▁THRESHOLD - ▁WHARTON - ▁FLICKER - ▁AMAZED - ▁BRONZE - ▁COSSACK - ▁SPILETT - ▁CASUAL - ▁DARCY - ▁PARLOUR - ▁SEXUAL - ▁INSECT - ▁NATHAN - ▁EMINENT - ▁PENCIL - ▁PETITION - ▁ROTTEN - ▁VIGIL - ▁CAESAR - ▁EAGLE - ▁TREAD - ▁REACTION - ▁TACIT - ▁PARLOR - ▁SPAIN - ▁WILDERNESS - ▁DICTAT - ▁GRATIFY - ▁STOVE - ▁SKIRT - ▁UTILI - ▁CONCERT - ▁GORGE - ▁DECORAT - ▁LATIN - ▁ANCHOR - ▁KNOT - ▁MONDAY - ▁GABLES - ▁TOLERABL - ▁ROGER - BERRIES - ▁INVAD - IMMER - OMETER - ▁PRODUC - OBIL - ▁PERMISSI - FICIENCY - ▁WANDER - RREL - PIECE - HORN - ▁COMMIT - ▁ACCUMULAT - ▁JAPAN - ▁ABUNDANT - ▁ACADEMY - ▁ALBERT - ▁BANQUET - ▁DELICIOUS - ▁DOCUMENT - ▁EXCLAMATION - ▁FEBRUARY - ▁GROTESQUE - ▁HEATHERSTONE - ▁HUMPHREY - ▁HURSTWOOD - ▁MOHAMMED - ▁MOSCOW - ▁NICHOLAS - ▁OBSTINATE - ▁PHANTOM - ▁PHILOSOPHER - ▁RECEPTION - ▁SPANIARD - ▁SWOLLEN - ▁TELEPHONE - ▁TRIBUTE - ▁TUNNEL - ▁UNREASONABL - ▁WIGWAM - ▁BUTTERFLY - ▁COLLINS - ▁DISPATCH - ▁EDITOR - ▁CONTINENT - ▁DIMINISH - ▁HORRID - ▁KEATS - ▁PROVIDENCE - ▁BEHALF - ▁CHARLEY - ▁DRAKE - ▁LAUNCH - ▁SALOON - ▁GIGANT - ▁DISPUTE - ▁HYSTERI - ▁DEFENCE - ▁SCREEN - ▁VAULT - ▁NINTH - ▁HARBOR - ▁FLANK - ▁SPECK - ▁UPRIGHT - ▁KEMP - ▁CANADA - ▁STALK - ▁OWL - ▁BRUTE - ▁FERRIS - ▁DECREE - ▁HABITUAL - ▁BRISK - ▁INSPIRE - ▁HUSH - ▁CROUCH - ▁FRIDAY - ▁MOUNTAINEER - ▁HISTORIC - ▁BATES - ▁RUSK - ▁SEMI - DICTION - ▁BUSI - ▁REMOV - MMI - ▁SUFFIC - ▁FLEE - ▁LOUIS - NLEA - ▁IMPORT - OLOGY - ▁CLERGY - ▁ADVERTISEMENT - ▁BENEVOLEN - ▁BORODINO - ▁CATHOLIC - ▁COMMERCIAL - ▁CONJECTURE - ▁CURTAIN - ▁CUTHBERT - ▁DEMOCRACY - ▁GUARANTEE - ▁HYPNOSIS - ▁INDEFINITE - ▁INVESTIGATION - ▁IRREGULAR - ▁KOYO - ▁MERRIWIG - ▁MIRANDA - ▁NICHOLL - ▁ONLOOKER - ▁PERSECUT - ▁RECOGNITION - ▁REJOICE - ▁REMEMBRANCE - ▁REVELATION - ▁SCOLD - ▁SENIOR - ▁SQUIRREL - ▁SYMPATHETIC - ▁TEMPEST - ▁TREACHER - ▁UNDERNEATH - ▁UNEASINESS - ▁UNNECESSARY - ▁UPSTAIRS - ▁VEXATION - ▁ACCESS - ▁CHEAP - ▁ESTIMATE - ▁HAZARD - ▁HORSEBACK - ▁PLUNDER - ▁RASCAL - ▁ROSTOV - ▁ACCUR - ▁GRAVITY - ▁SITUATED - ▁INVARIABL - ▁PLENTIFUL - ▁SPENCER - ▁WALLACE - ▁POLICY - ▁WARRANT - ▁ENVY - ▁LAMB - ▁EXTRACT - ▁CORRAL - ▁PANEL - ▁LINK - ▁LILIES - ▁BECKON - ▁SENOR - ▁BORG - ▁DEBATE - ▁STEER - COGNI - COMB - ▁SETTL - ▁VENERA - ▁FEATURE - ▁TERRIBL - CAPABLE - OLOGICAL - ▁INCESSANT - ▁RESOLUTE - SHAUGHNESSY - ▁ABOLITION - ▁ASSASSIN - ▁BEHAVIOUR - ▁BLUNT - ▁COMMERCE - ▁CONSTANTINOPLE - ▁CRICKET - ▁DISCIPLINE - ▁DROUET - ▁DWARF - ▁INJUSTICE - ▁LUXURY - ▁MANUSCRIPT - ▁MISUNDERSTAND - ▁POLITICIAN - ▁REDOUBT - ▁SALVATION - ▁SERMON - ▁STRUGGLING - ▁SURPRISING - ▁TRIGGER - ▁TUESDAY - ▁TWILIGHT - ▁UNDOUBTEDLY - ▁VEGETABLE - ▁VULGAR - ▁WAISTCOAT - ▁WRINKLE - ▁ALEXANDER - ▁CEILING - ▁ECONOMIC - ▁EVERLASTING - ▁INFLICT - ▁LEVISON - ▁LOBSTER - ▁OVERFLOW - ▁SNATCH - ▁TRAGEDY - ▁DEASEY - ▁ENLIGHTEN - ▁FRIGATE - ▁INSPECT - ▁MARVELLOUS - ▁ATLANTIC - ▁LUFTON - ▁BLADE - ▁CRASH - ▁SLAUGHTER - ▁ANNUAL - ▁CONFERENCE - ▁TWIG - ▁REASSUR - ▁UNIQUE - ▁WRATH - ▁CRADLE - ▁HULLO - ▁LIQUID - ▁MIRTH - ▁EXPERT - ▁HARVEY - ▁RESTORATION - ▁PRETTI - ▁APOLOGY - ▁SLAIN - ▁BARBER - ▁UPROAR - ▁SCANT - ▁BADGER - ▁GROCER - ▁ACRES - ▁BRIDLE - ▁SPECIFI - ▁TANGLE - ▁FERTIL - ▁PATRON - WIXT - LAMOUR - ▁DARN - ▁POPE - ▁PERCEIV - ▁CONCLUDE - ▁SIMPL - ▁GUILT - ▁CARRIE - EFFICIENT - SGIVING - ▁APPOINTMENT - ▁APPRECIATION - ▁CARTRIDGE - ▁CHALLENGE - ▁CRAYFISH - ▁CRIMSON - ▁CUCUMETTO - ▁ENERGETIC - ▁EPOCH - ▁EXAMINING - ▁EXTENSIVE - ▁EXTINGUISH - ▁GLOODY - ▁INSIGNIFICANT - ▁LANDLORD - ▁LANGUID - ▁LEGISLATURE - ▁MAJESTIC - ▁PACIFIC - ▁PASTRINI - ▁PHRONSIE - ▁RECONCIL - ▁SIMULTANEOUS - ▁SKELETON - ▁SKETCH - ▁TRANSFORM - ▁UNJUST - ▁VEXED - ▁ASYLUM - ▁CLUSTER - ▁ERRAND - ▁EXPEND - ▁NEGATIVE - ▁NORHALA - ▁SCANDAL - ▁STIMULAT - ▁SWEAT - ▁COMPOUND - ▁DECEMBER - ▁EXPAND - ▁PROLONG - ▁PURITAN - ▁CONQUEST - ▁MAGUA - ▁SANCHO - ▁TRENCH - ▁ENTITLE - ▁PEPPER - ▁DISASTER - ▁REGAIN - ▁SHREWD - ▁SULLEN - ▁CLAVIER - ▁COLOSS - ▁SHILLING - ▁ETHEL - ▁MYSTERIES - ▁BULK - ▁GRANDEUR - ▁AGNES - ▁CONVERT - ▁WRIST - ▁GLID - ▁TERRACE - ▁SONYA - ▁DANTES - ▁MOULD - ▁MAGNET - ▁PLOT - RANK - ▁CAVIT - ▁SUBSID - ▁SLAP - TURNED - ▁THREAT - BREAK - ▁ANCESTORS - ▁ANTICIPATED - ▁APPLAUSE - ▁ASSAULT - ▁ATTORNEY - ▁AUTOMATIC - ▁CARAVAN - ▁CATASTROPHE - ▁CAVALCANTI - ▁CROMWELL - ▁ENVOY - ▁EXHAUSTION - ▁FIEND - ▁GENEROSITY - ▁GIMBLET - ▁HARDQUANONNE - ▁HOUARN - ▁INJURY - ▁MACKINSON - ▁OGLETHORPE - ▁PETTICOAT - ▁RASPBERR - ▁REHNHJELM - ▁REJOICING - ▁REMNANT - ▁SCOTLAND - ▁SHRINK - ▁STANDPOINT - ▁TESTIMONY - ▁THEREAFTER - ▁THIRTIETH - ▁TWENTIETH - ▁TYRANT - ▁VENTNOR - ▁VETERAN - ▁WHITTAKER - ▁ZVERKOV - ▁ARCHITECTUR - ▁BLUNDER - ▁DENSHER - ▁FORTNIGHT - ▁JUDITH - ▁MARIANNE - ▁MEMORABLE - ▁REFINED - ▁REVOLV - ▁UNDERTAKING - ▁CLUMP - ▁GRUMBLE - ▁SYMPATHI - ▁TICKET - ▁TWITCH - ▁EDITION - ▁FALANDER - ▁CARTHAGE - ▁ORLEANS - ▁POSSUM - ▁SWITCH - ▁CLUNG - ▁CARDINAL - ▁GNAW - ▁LOCATED - ▁HARROW - ▁RASH - ▁SIEGE - ▁LOAF - ▁BRUISE - ▁REGULAT - ▁RESORT - ▁SARAH - ▁LEVIN - ▁NAVY - ▁MOOSE - ▁STOOL - ▁CHANCELLOR - ▁INGENIOUS - ▁CHALK - ▁PRETENCE - ▁REPAY - ▁ROAST - ▁PLUTO - ▁BAFFL - ▁STUMBL - ▁SPHERE - ▁PLEDGE - ▁SPRAWL - ▁WRAP - ▁FRINGE - ▁DREAR - ARRINGTON - ▁FEDERA - KEEPER - ▁PHYSIC - ▁ADVENT - HUMAN - OLOGIST - ▁ALEXANDR - ▁APPARITION - ▁BARTHOLEMY - ▁CITOYEN - ▁CLIMATE - ▁CONTEMPORAR - ▁DESOLATE - ▁DISCONTENT - ▁ELEPHANT - ▁FERNANDO - ▁FERRALTI - ▁FOLIAGE - ▁FUGITIVE - ▁GAMBLING - ▁INVOLUNTARILY - ▁LABYRINTH - ▁LEGITIMATE - ▁MILLIONAIRE - ▁PERCEPTION - ▁PROPRIETY - ▁REBELLION - ▁REFRAIN - ▁RUGGLES - ▁SCRIPTURE - ▁SPLENDOR - ▁SQUADRON - ▁STRICKEN - ▁SWARM - ▁THEODORA - ▁TOMORROW - ▁VELVET - ▁WOLVES - ▁DISREGARD - ▁GLIMMER - ▁SHROUD - ▁TWINKLING - ▁UNEQUAL - ▁CHANNING - ▁CLUMS - ▁ENIGMA - ▁NAVIGAT - ▁TARKAS - ▁TEMPERATURE - ▁DIVISION - ▁GRATIFICATION - ▁MONUMENT - ▁SQUEAK - ▁KAVIN - ▁INTERPOSE - ▁THORNTON - ▁SOLUTION - ▁STREAK - ▁SHRILL - ▁APRON - ▁PITEOUS - ▁HAUGHTY - ▁RECKLESS - ▁EMPTI - ▁WADMAN - ▁BONNET - ▁MARTHA - ▁DUMB - ▁SHATTER - ▁ACUTE - ▁BRINK - ▁CAPRICE - ▁HURON - ▁INFERN - ▁FOWL - ▁ENRAGE - ▁ADORN - ▁CRUIS - ▁PROBABILIT - ▁EXPIR - ▁IMPETU - ▁OVERHEAR - BURTON - ▁TRANSLAT - ▁ENGAGE - ▁CONVINCE - ▁ABNORMAL - ▁GESTICULAT - ▁ABOMINABL - ▁ADVERSARY - ▁ADVERTISER - ▁ADVERTISING - ▁ANNIHILAT - ▁ARTILLERY - ▁CATHEDRAL - ▁COMPETITOR - ▁COULSON - ▁CREVICE - ▁CUSHION - ▁DEBRAY - ▁DEJECT - ▁DIETRICH - ▁DISADVANTAGE - ▁ELLISON - ▁EMPHASIS - ▁EXCURSION - ▁FANTASTIC - ▁HYPOTHES - ▁INCONVENIENCE - ▁INDESCRIBABLE - ▁INDUSTRI - ▁INVALID - ▁MERCILESS - ▁MESOPOTAMIA - ▁MOSQUITO - ▁NARRATIVE - ▁NOWADAYS - ▁OPPORTUNITIES - ▁PROMISING - ▁RECTANGLE - ▁REMONSTRANCE - ▁RESTAURANT - ▁RIBBON - ▁SCIENTIST - ▁SHALMANESER - ▁SKULL - ▁SPRUCE - ▁SUBSTANTIAL - ▁SYMBOL - ▁TEAPOT - ▁TERRITORY - ▁TRAFFIC - ▁TREASON - ▁TRUMPET - ▁TYRANN - ▁UNANIMOUS - ▁UNAWARE - ▁VICINITY - ▁WREATH - ▁ZADIG - ▁CHATEAU - ▁CONFRONT - ▁DUCHESS - ▁EMBODI - ▁FEMININ - ▁FURNACE - ▁MONTONI - ▁RENOWN - ▁SMASH - ▁HARVARD - ▁NEWBERRY - ▁PERFUME - ▁SIGNATURE - ▁SPLASH - ▁SUPPOSITION - ▁HARBOUR - ▁ASSURANCE - ▁BRISTOL - ▁BUCKINGHAM - ▁DUDLEY - ▁INTENSITY - ▁CHOPIN - ▁ENLIST - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ncats/EpiExtract4GARD-v2
ncats
2022-02-16T00:08:16Z
24
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ncats", "en", "dataset:ncats/EpiSet4NER", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en widget: - text: "27 patients have been diagnosed with PKU in Iceland since 1947. Incidence 1972-2008 is 1/8400 living births." example_title: "Named Entity Recognition Ex. 1" - text: "A retrospective epidemiological study of MPSs in Estonia was undertaken, and live-birth prevalence of MPS patients born between 1985 and 2006 was estimated. The live-birth prevalence for all MPS subtypes was found to be 4.05 per 100,000 live births, which is consistent with most other European studies. MPS II had the highest calculated incidence, with 2.16 per 100,000 live births (4.2 per 100,000 male live births)" example_title: "Named Entity Recognition Ex. 2" - text: "A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence." example_title: "Named Entity Recognition Ex. 3" tags: - token-classification - ncats model-index: - name: EpiExtract4GARD-v2 results: - task: name: NER type: token-classification metrics: - name: Token-Level Precision type: precision value: - name: Token-Level Recall type: recall value: - name: Token-Level F1 Score type: f_score value: - name: Token-Level Precision type: precision value: - name: Token-Level Recall type: recall value: - name: Token-Level F1 Score type: f_score value: datasets: - ncats/EpiSet4NER license: other --- ## DOCUMENTATION UPDATES IN PROGRESS ## Model description **EpiExtract4GARD-v2** is a fine-tuned [BioBERT-base-cased](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) model that is ready to use for **Named Entity Recognition** of locations (LOC), epidemiologic types (EPI), and epidemiologic rates (STAT). This model was fine-tuned on EpiSet4NER-v2 for epidemiological information from rare disease abstracts. See dataset documentation for details on the weakly supervised teaching methods and dataset biases and limitations. See [EpiExtract4GARD on GitHub](https://github.com/ncats/epi4GARD/tree/master/EpiExtract4GARD#epiextract4gard) for details on the entire pipeline. #### How to use You can use this model with the Hosted inference API to the right with this [test sentence](https://pubmed.ncbi.nlm.nih.gov/21659675/): "27 patients have been diagnosed with PKU in Iceland since 1947. Incidence 1972-2008 is 1/8400 living births." See code below for use with Transformers *pipeline* for NER.: ~~~ from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("ncats/EpiExtract4GARD") tokenizer = AutoTokenizer.from_pretrained("ncats/EpiExtract4GARD") NER_pipeline = pipeline('ner', model=model, tokenizer=tokenizer,aggregation_strategy='simple') sample = "The live-birth prevalence of mucopolysaccharidoses in Estonia. Previous studies on the prevalence of mucopolysaccharidoses (MPS) in different populations have shown considerable variations. There are, however, few data with regard to the prevalence of MPSs in Fenno-Ugric populations or in north-eastern Europe, except for a report about Scandinavian countries. A retrospective epidemiological study of MPSs in Estonia was undertaken, and live-birth prevalence of MPS patients born between 1985 and 2006 was estimated. The live-birth prevalence for all MPS subtypes was found to be 4.05 per 100,000 live births, which is consistent with most other European studies. MPS II had the highest calculated incidence, with 2.16 per 100,000 live births (4.2 per 100,000 male live births), forming 53% of all diagnosed MPS cases, and was twice as high as in other studied European populations. The second most common subtype was MPS IIIA, with a live-birth prevalence of 1.62 in 100,000 live births. With 0.27 out of 100,000 live births, MPS VI had the third-highest live-birth prevalence. No cases of MPS I were diagnosed in Estonia, making the prevalence of MPS I in Estonia much lower than in other European populations. MPSs are the third most frequent inborn error of metabolism in Estonia after phenylketonuria and galactosemia." sample2 = "Early Diagnosis of Classic Homocystinuria in Kuwait through Newborn Screening: A 6-Year Experience. Kuwait is a small Arabian Gulf country with a high rate of consanguinity and where a national newborn screening program was expanded in October 2014 to include a wide range of endocrine and metabolic disorders. A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence. Molecular testing for five of them has revealed three previously reported pathogenic variants in the <i>CBS</i> gene, c.969G>A, p.(Trp323Ter); c.982G>A, p.(Asp328Asn); and the Qatari founder variant c.1006C>T, p.(Arg336Cys). This is the first study to review the screening of newborns in Kuwait for classic homocystinuria, starting with the detection of elevated blood methionine and providing a follow-up strategy for positive results, including plasma total homocysteine and amino acid analyses. Further, we have demonstrated an increase in the specificity of the current newborn screening test for classic homocystinuria by including the methionine to phenylalanine ratio along with the elevated methionine blood levels in first-tier testing. Here, we provide evidence that the newborn screening in Kuwait has led to the early detection of classic homocystinuria cases and enabled the affected individuals to lead active and productive lives." #Sample 1 is from: Krabbi K, Joost K, Zordania R, Talvik I, Rein R, Huijmans JG, Verheijen FV, Õunap K. The live-birth prevalence of mucopolysaccharidoses in Estonia. Genet Test Mol Biomarkers. 2012 Aug;16(8):846-9. doi: 10.1089/gtmb.2011.0307. Epub 2012 Apr 5. PMID: 22480138; PMCID: PMC3422553. #Sample 2 is from: Alsharhan H, Ahmed AA, Ali NM, Alahmad A, Albash B, Elshafie RM, Alkanderi S, Elkazzaz UM, Cyril PX, Abdelrahman RM, Elmonairy AA, Ibrahim SM, Elfeky YME, Sadik DI, Al-Enezi SD, Salloum AM, Girish Y, Al-Ali M, Ramadan DG, Alsafi R, Al-Rushood M, Bastaki L. Early Diagnosis of Classic Homocystinuria in Kuwait through Newborn Screening: A 6-Year Experience. Int J Neonatal Screen. 2021 Aug 17;7(3):56. doi: 10.3390/ijns7030056. PMID: 34449519; PMCID: PMC8395821. NER_pipeline(sample) NER_pipeline(sample2) ~~~ Or if you download [*classify_abs.py*](https://github.com/ncats/epi4GARD/blob/master/EpiExtract4GARD/classify_abs.py), [*extract_abs.py*](https://github.com/ncats/epi4GARD/blob/master/EpiExtract4GARD/extract_abs.py), and [*gard-id-name-synonyms.json*](https://github.com/ncats/epi4GARD/blob/master/EpiExtract4GARD/gard-id-name-synonyms.json) from GitHub then you can test with this [*additional* code](https://github.com/ncats/epi4GARD/blob/master/EpiExtract4GARD/Case%20Study.ipynb): ~~~ import pandas as pd import extract_abs import classify_abs pd.set_option('display.max_colwidth', None) NER_pipeline = extract_abs.init_NER_pipeline() GARD_dict, max_length = extract_abs.load_GARD_diseases() nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_abs.init_classify_model() def search(term,num_results = 50): return extract_abs.search_term_extraction(term, num_results, NER_pipeline, GARD_dict, max_length,nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer) a = search(7058) a b = search('Santos Mateus Leal syndrome') b c = search('Fellman syndrome') c d = search('GARD:0009941') d e = search('Homocystinuria') e ~~~ #### Limitations and bias ## Training data It was trained on [EpiSet4NER](https://huggingface.co/datasets/ncats/EpiSet4NER). See dataset documentation for details on the weakly supervised teaching methods and dataset biases and limitations. The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description ---------|-------------- O |Outside of a named entity B-LOC | Beginning of a location I-LOC | Inside of a location B-EPI | Beginning of an epidemiologic type (e.g. "incidence", "prevalence", "occurrence") I-EPI | Epidemiologic type that is not the beginning token. B-STAT | Beginning of an epidemiologic rate I-STAT | Inside of an epidemiologic rate +More | Description pending ### EpiSet Statistics Beyond any limitations due to the EpiSet4NER dataset, this model is limited in numeracy due to BERT-based model's use of subword embeddings, which is crucial for epidemiologic rate identification and limits the entity-level results. Recent techniques in numeracy could be used to improve the performance of the model without improving the underlying dataset. ## Training procedure This model was trained on a [AWS EC2 p3.2xlarge](https://aws.amazon.com/ec2/instance-types/), which utilized a single Tesla V100 GPU, with these hyperparameters: 4 epochs of training (AdamW weight decay = 0.05) with a batch size of 16. Maximum sequence length = 192. Model was fed one sentence at a time. <!--- Full config [here](https://wandb.ai/wzkariampuzha/huggingface/runs/353prhts/files/config.yaml). ---> <!--- THIS IS NOT THE UPDATED RESULTS ---> <!--- ## Hold-out validation results ---> <!--- metric| entity-level result ---> <!--- -|- ---> <!--- f1 | 83.8 ---> <!--- precision | 83.2 ---> <!--- recall | 84.5 ---> <!--- ## Test results ---> <!--- | Dataset for Model Training | Evaluation Level | Entity | Precision | Recall | F1 | ---> <!--- |:--------------------------:|:----------------:|:------------------:|:---------:|:------:|:-----:| ---> <!--- | EpiSet | Entity-Level | Overall | 0.556 | 0.662 | 0.605 | ---> <!--- | | | Location | 0.661 | 0.696 | 0.678 | ---> <!--- | | | Epidemiologic Type | 0.854 | 0.911 | 0.882 | ---> <!--- | | | Epidemiologic Rate | 0.143 | 0.218 | 0.173 | ---> <!--- | | Token-Level | Overall | 0.811 | 0.713 | 0.759 | ---> <!--- | | | Location | 0.949 | 0.742 | 0.833 | ---> <!--- | | | Epidemiologic Type | 0.9 | 0.917 | 0.908 | ---> <!--- | | | Epidemiologic Rate | 0.724 | 0.636 | 0.677 | ---> Thanks to [@William Kariampuzha](https://github.com/wzkariampuzha) at Axle Informatics/NCATS for contributing this model.
explosion/en_healthsea
explosion
2022-02-15T23:40:53Z
14
5
spacy
[ "spacy", "token-classification", "text-classification", "en", "model-index", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification - text-classification language: - en model-index: - name: en_healthsea results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 80.77 - name: NER Recall type: recall value: 79.92 - name: NER F Score type: f_score value: 80.34 --- # Welcome to Healthsea ✨ Create better access to health with machine learning and natural language processing. This is the trained healthsea pipeline for analyzing user reviews to supplements by extracting their effects on health. This pipeline features a trained NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities. > Read more in the [blog post](https://explosion.ai/blog/healthsea) and visit the [healthsea repository](https://github.com/explosion/healthsea) for all training workflows, custom components and training data. | Feature | Description | | --- | --- | | **Name** | `en_healthsea` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.0,<3.3.0` | | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | MIT | | **Author** | [Explosion](explosion.ai) | ### Label Scheme <details> <summary>View label scheme (6 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `BENEFIT`, `CONDITION` | | **`clausecat`** | `POSITIVE`, `NEUTRAL`, `NEGATIVE`, `ANAMNESIS` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 80.34 | | `ENTS_P` | 80.77 | | `ENTS_R` | 79.92 | | `CATS_SCORE` | 74.87 | | `CATS_MICRO_P` | 82.17 | | `CATS_MICRO_R` | 80.85 | | `CATS_MICRO_F` | 81.51 | | `CATS_MACRO_P` | 78.01 | | `CATS_MACRO_R` | 72.41 | | `CATS_MACRO_F` | 74.87 | | `CATS_MACRO_AUC` | 92.76 | | `CATS_LOSS` | 297.22 |
premrawat/en_model_ner_skills
premrawat
2022-02-15T19:50:15Z
6
4
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_model_ner_skills results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.3125 - name: NER Recall type: recall value: 0.243902439 - name: NER F Score type: f_score value: 0.2739726027 --- | Feature | Description | | --- | --- | | **Name** | `en_model_ner_skills` | | **Version** | `0.0.2` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `SKILL` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 27.40 | | `ENTS_P` | 31.25 | | `ENTS_R` | 24.39 | | `TOK2VEC_LOSS` | 129837.25 | | `NER_LOSS` | 1056832.41 |
AI-Nordics/bert-large-swedish-cased
AI-Nordics
2022-02-15T16:52:53Z
162
11
transformers
[ "transformers", "pytorch", "megatron-bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: sv --- # A Swedish Bert model ## Model description This model follows the Bert Large model architecture as implemented in [Megatron-LM framework](https://github.com/NVIDIA/Megatron-LM). It was trained with a batch size of 512 in 600k steps. The model contains following parameters: <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 340M | | \\(n_{layers}\\) | 24 | | \\(n_{heads}\\) | 16 | | \\(n_{ctx}\\) | 1024 | | \\(n_{vocab}\\) | 30592 | ## Training data The model is pretrained on a Swedish text corpus of around 85 GB from a variety of sources as shown below. <figure> | Dataset | Genre | Size(GB)| |----------------------|------|------| | Anföranden | Politics |0.9| |DCEP|Politics|0.6| |DGT|Politics|0.7| |Fass|Medical|0.6| |Författningar|Legal|0.1| |Web data|Misc|45.0| |JRC|Legal|0.4| |Litteraturbanken|Books|0.3O| |SCAR|Misc|28.0| |SOU|Politics|5.3| |Subtitles|Drama|1.3| |Wikipedia|Facts|1.8| ## Intended uses & limitations The raw model can be used for the usual tasks of masked language modeling or next sentence prediction. It is also often fine-tuned on a downstream task to improve its performance in a specific domain/task. <br> <br> ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("AI-Nordics/bert-large-swedish-cased") model = AutoModelForMaskedLM.from_pretrained("AI-Nordics/bert-large-swedish-cased")
Xibanya/sunset_city
Xibanya
2022-02-15T16:31:37Z
0
3
null
[ "PyTorch", "Transformers", "text-to-image", "ru", "en", "license:cc-by-sa-4.0", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 language: - ru - en pipeline_tag: text-to-image tags: - PyTorch - Transformers --- # Sunset Cities This is the [Malevich](https://huggingface.co/sberbank-ai/rudalle-Malevich) ruDALL-E model finetuned on anime screenshots of big cities at sunset. <img style="text-align:center; display:block;" src="https://huggingface.co/Xibanya/sunset_city/resolve/main/citysunset.png" width="256"> ### installation ``` pip install rudalle ``` ### How to use Basic implementation to get a list of image data objects. ```python from translate import Translator from rudalle import get_rudalle_model, get_tokenizer, get_vae from rudalle.pipelines import generate_images model = get_rudalle_model('Malevich', pretrained=True, fp16=True, device='cuda') model.load_state_dict(torch.load(CHECKPOINT_PATH)) vae = get_vae().to('cuda') tokenizer = get_tokenizer() input_text = Translator(to_lang='ru').translate('city at sunset') images, _ = generate_images( text=input_text, tokenizer=tokenizer, dalle=model, vae=vae, images_num=1, top_k=2048, top_p=0.95, temperature=1.0 ) ``` the Malevich model only recognizes input in Russian. If you're going to paste Cyrillic directly into the code rather than filter an English prompt through the translate API, you will need to put this at the top of the file: ```python #!/usr/bin/env python3 # -*- coding: utf-8 -*- ```
xxr/bert-base-uncased-issues-128
xxr
2022-02-15T14:09:11Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-issues-128 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.9845 | 1.0 | 1163 | 1.6403 | | 1.5695 | 2.0 | 2326 | 1.4212 | | 1.4221 | 3.0 | 3489 | 1.3714 | | 1.3302 | 4.0 | 4652 | 1.3592 | | 1.2734 | 5.0 | 5815 | 1.2781 | | 1.2143 | 6.0 | 6978 | 1.2286 | | 1.1704 | 7.0 | 8141 | 1.2492 | | 1.1261 | 8.0 | 9304 | 1.2044 | | 1.0812 | 9.0 | 10467 | 1.1878 | | 1.0657 | 10.0 | 11630 | 1.2177 | | 1.0319 | 11.0 | 12793 | 1.1428 | | 1.0063 | 12.0 | 13956 | 1.0910 | | 0.9731 | 13.0 | 15119 | 1.1111 | | 0.9674 | 14.0 | 16282 | 1.1699 | | 0.9391 | 15.0 | 17445 | 1.0805 | | 0.9381 | 16.0 | 18608 | 1.2109 | ### Framework versions - Transformers 4.8.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
ali2066/finetuned-token-argumentative
ali2066
2022-02-15T13:46:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-token-argumentative results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-token-argumentative This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1573 - Precision: 0.3777 - Recall: 0.3919 - F1: 0.3847 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 75 | 0.3241 | 0.1109 | 0.2178 | 0.1470 | 0.8488 | | No log | 2.0 | 150 | 0.3145 | 0.1615 | 0.2462 | 0.1950 | 0.8606 | | No log | 3.0 | 225 | 0.3035 | 0.1913 | 0.3258 | 0.2411 | 0.8590 | | No log | 4.0 | 300 | 0.3080 | 0.2199 | 0.3220 | 0.2613 | 0.8612 | | No log | 5.0 | 375 | 0.3038 | 0.2209 | 0.3277 | 0.2639 | 0.8630 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
joe5campbell/BERT_Tweet_Sentiment_10k
joe5campbell
2022-02-15T12:42:41Z
9
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_10k results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_10k This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3891 - Train Accuracy: 0.8273 - Validation Loss: 0.4749 - Validation Accuracy: 0.8073 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3891 | 0.8273 | 0.4749 | 0.8073 | 0 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
CLAck/vi-en
CLAck
2022-02-15T11:33:16Z
47
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "vi", "dataset:ALT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - en - vi tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This is a finetuning of a MarianMT pretrained on Chinese-English. The target language pair is Vietnamese-English. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/vi-en") tokenizer = AutoTokenizer.from_pretrained("CLAck/vi-en") sentence = your_vietnamese_sentence # This token is needed to identify the source language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 21.3180 | | 2.0 | 26.8012 | | 3.0 | 29.3578 | | 4.0 | 31.5178 | | 5.0 | 32.8740 |
CLAck/en-vi
CLAck
2022-02-15T11:28:50Z
79
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "vi", "dataset:ALT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - en - vi tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This is a finetuning of a MarianMT pretrained on English-Chinese. The target language pair is English-Vietnamese. The first phase of training (mixed) is performed on a dataset containing both English-Chinese and English-Vietnamese sentences. The second phase of training (pure) is performed on a dataset containing only English-Vietnamese sentences. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-vi") tokenizer = AutoTokenizer.from_pretrained("CLAck/en-vi") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2vi>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 26.2407 | | 2.0 | 32.6016 | | 3.0 | 35.4060 | | 4.0 | 36.6737 | | 5.0 | 37.3774 | PURE | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 37.3169 | | 2.0 | 37.4407 | | 3.0 | 37.6696 | | 4.0 | 37.8765 | | 5.0 | 38.0105 |
CLAck/indo-mixed
CLAck
2022-02-15T11:25:18Z
18
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "id", "dataset:ALT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - en - id tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This model is pretrained on Chinese and Indonesian languages, and fine-tuned on Indonesian language. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-mixed") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-mixed") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 24.2579 | | 2.0 | 30.6287 | | 3.0 | 34.4417 | | 4.0 | 36.2577 | | 5.0 | 37.3488 | FINETUNING | Epoch | Bleu | |:-----:|:-------:| | 6.0 | 34.1676 | | 7.0 | 35.2320 | | 8.0 | 36.7110 | | 9.0 | 37.3195 | | 10.0 | 37.9461 |
CLAck/indo-pure
CLAck
2022-02-15T11:24:33Z
28
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "id", "dataset:ALT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - en - id tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- Pure fine-tuning version of MarianMT en-zh on Indonesian Language ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-pure") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-pure") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 15.9336 | | 2.0 | 28.0175 | | 3.0 | 31.6603 | | 4.0 | 33.9151 | | 5.0 | 35.0472 | | 6.0 | 35.8469 | | 7.0 | 36.1180 | | 8.0 | 36.6018 | | 9.0 | 37.1973 | | 10.0 | 37.2738 |
msintaha/bert-base-uncased-finetuned-copa-data-new
msintaha
2022-02-15T08:41:46Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-copa-data-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-copa-data-new This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5995 - Accuracy: 0.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6564 | 0.6600 | | No log | 2.0 | 50 | 0.5995 | 0.7000 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jatinshah/bert-finetuned-squad
jatinshah
2022-02-15T02:37:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+0aef44c - Datasets 1.18.3 - Tokenizers 0.11.0
speech-seq2seq/wav2vec2-2-bert-large-no-adapter-frozen-enc
speech-seq2seq
2022-02-15T00:30:50Z
15
2
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 11.7664 - Wer: 2.0133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.171 | 0.28 | 500 | 8.6956 | 2.0055 | | 5.307 | 0.56 | 1000 | 8.5958 | 2.0096 | | 5.1449 | 0.84 | 1500 | 10.4208 | 2.0115 | | 6.1351 | 1.12 | 2000 | 10.2950 | 2.0059 | | 6.2997 | 1.4 | 2500 | 10.6762 | 2.0115 | | 6.1394 | 1.68 | 3000 | 10.9190 | 2.0110 | | 6.1868 | 1.96 | 3500 | 11.0166 | 2.0112 | | 5.9647 | 2.24 | 4000 | 11.4154 | 2.0141 | | 6.2202 | 2.52 | 4500 | 11.5837 | 2.0152 | | 5.9612 | 2.8 | 5000 | 11.7664 | 2.0133 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
Arnold
2022-02-14T23:42:35Z
9
3
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hausa2-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hausa2-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2993 - Wer: 0.4826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.6e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 3 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.1549 | 12.5 | 400 | 2.7289 | 1.0 | | 2.0566 | 25.0 | 800 | 0.4582 | 0.6768 | | 0.4423 | 37.5 | 1200 | 0.3037 | 0.5138 | | 0.2991 | 50.0 | 1600 | 0.2993 | 0.4826 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
hark99/distilbert-base-uncased-finetuned-squad
hark99
2022-02-14T23:05:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1707 | | 0.9554 | 2.0 | 11066 | 1.1211 | | 0.7645 | 3.0 | 16599 | 1.1642 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_50_Epochs
jfarray
2022-02-14T21:41:05Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NicoGrageda/wav2vec2-base-timit-demo-colab
NicoGrageda
2022-02-14T21:18:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4519 - Wer: 0.3375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4351 | 4.0 | 500 | 1.2740 | 0.8259 | | 0.5828 | 8.0 | 1000 | 0.4276 | 0.4403 | | 0.2274 | 12.0 | 1500 | 0.4646 | 0.3739 | | 0.135 | 16.0 | 2000 | 0.4320 | 0.3662 | | 0.0962 | 20.0 | 2500 | 0.4831 | 0.3607 | | 0.0719 | 24.0 | 3000 | 0.4506 | 0.3463 | | 0.0556 | 28.0 | 3500 | 0.4519 | 0.3375 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_10_Epochs
jfarray
2022-02-14T21:06:23Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_100_Epochs
jfarray
2022-02-14T20:23:54Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NewT5SharedHeadsSharedKeyValues/t5-efficient-small-sh
NewT5SharedHeadsSharedKeyValues
2022-02-14T16:23:08Z
6
0
transformers
[ "transformers", "t5", "text2text-generation", "t5-new-failed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - t5-new-failed --- # Test Hf T5: -146.39734268188477 MTF T5: -72.12132263183594
NewT5SharedHeadsSharedKeyValues/t5-efficient-base-sh
NewT5SharedHeadsSharedKeyValues
2022-02-14T16:22:41Z
4
0
transformers
[ "transformers", "t5", "text2text-generation", "t5-new-failed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - t5-new-failed --- # Test Hf T5: -95.86687088012695 MTF T5: -67.8558578491211
huggingtweets/dojacat
huggingtweets
2022-02-14T15:30:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dojacat/1644852645931/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487993727918374915/aN2YUrbc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jean-Emmanuel De La Martinière</div> <div style="text-align: center; font-size: 14px;">@dojacat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jean-Emmanuel De La Martinière. | Data | Jean-Emmanuel De La Martinière | | --- | --- | | Tweets downloaded | 1569 | | Retweets | 124 | | Short tweets | 322 | | Tweets kept | 1123 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mc5ryte/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dojacat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dojacat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
leonadase/distilbert-base-uncased-finetuned-ner
leonadase
2022-02-14T13:51:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9210439378923027 - name: Recall type: recall value: 0.9356751314464705 - name: F1 type: f1 value: 0.9283018867924528 - name: Accuracy type: accuracy value: 0.983176322938345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9210 - Recall: 0.9357 - F1: 0.9283 - Accuracy: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2341 | 1.0 | 878 | 0.0734 | 0.9118 | 0.9206 | 0.9162 | 0.9799 | | 0.0546 | 2.0 | 1756 | 0.0591 | 0.9210 | 0.9350 | 0.9279 | 0.9829 | | 0.0297 | 3.0 | 2634 | 0.0611 | 0.9210 | 0.9357 | 0.9283 | 0.9832 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner
akshaychaudhary
2022-02-14T13:30:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-cloud1-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Precision: 0.9714 - Recall: 0.9855 - F1: 0.9784 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.0160 | 0.9653 | 0.9420 | 0.9535 | 0.9945 | | No log | 2.0 | 332 | 0.0089 | 0.9623 | 0.9855 | 0.9737 | 0.9965 | | No log | 3.0 | 498 | 0.0074 | 0.9714 | 0.9855 | 0.9784 | 0.9972 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ASCCCCCCCC/distilbert-base-uncased-finetuned-clinc
ASCCCCCCCC
2022-02-14T08:54:32Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
sshasnain/wav2vec2-xls-r-300m-bangla-command-synthetic
sshasnain
2022-02-14T08:39:07Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-synthetic This model is a fine-tuned version of [sshasnain/wav2vec2-xls-r-300m-bangla-command](https://huggingface.co/sshasnain/wav2vec2-xls-r-300m-bangla-command) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0254 - eval_wer: 0.4311 - eval_runtime: 2.5036 - eval_samples_per_second: 76.689 - eval_steps_per_second: 9.586 - epoch: 35.71 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
reatiny/distilbert-base-uncased-finetuned-emotion
reatiny
2022-02-14T07:44:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9217811693486851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Accuracy: 0.9215 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8235 | 1.0 | 250 | 0.3190 | 0.901 | 0.8979 | | 0.2497 | 2.0 | 500 | 0.2226 | 0.9215 | 0.9218 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.11.0
jatinshah/marian-finetuned-kde4-en-to-fr
jatinshah
2022-02-14T05:47:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8815 - Score: 52.2204 - Counts: [166010, 120787, 91973, 70929] - Totals: [228361, 207343, 189354, 173335] - Precisions: [72.69630103213771, 58.254679444205976, 48.57198686058916, 40.92018345977443] - Bp: 0.9695 - Sys Len: 228361 - Ref Len: 235434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+0aef44c - Datasets 1.18.3 - Tokenizers 0.11.0
fastai/fastbook_06_multicat_Biwi_Kinect_Head_Pose
fastai
2022-02-14T05:21:20Z
6
2
fastai
[ "fastai", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - fastai --- # Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
jfarray/Model_bert-base-multilingual-uncased_30_Epochs
jfarray
2022-02-13T23:54:47Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_1_Epochs
jfarray
2022-02-13T22:49:37Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
groar/gpt-neo-1.3B-finetuned-escape2
groar
2022-02-13T20:59:30Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-1.3B-finetuned-escape2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape2 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jfarray/Model_all-distilroberta-v1_100_Epochs
jfarray
2022-02-13T20:50:24Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_50_Epochs
jfarray
2022-02-13T20:18:37Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingartists/egor-letov
huggingartists
2022-02-13T20:16:48Z
8
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/egor-letov", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/egor-letov tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/faa3dae99bf1fe365927608fd55c745a.330x330x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Егор Летов (Egor Letov)</div> <a href="https://genius.com/artists/egor-letov"> <div style="text-align: center; font-size: 14px;">@egor-letov</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Егор Летов (Egor Letov). Dataset is available [here](https://huggingface.co/datasets/huggingartists/egor-letov). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-letov") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1omrcegx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Егор Летов (Egor Letov)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3lk60u9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/egor-letov') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/egor-letov") model = AutoModelWithLMHead.from_pretrained("huggingartists/egor-letov") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
jfarray/Model_all-distilroberta-v1_30_Epochs
jfarray
2022-02-13T20:00:26Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_10_Epochs
jfarray
2022-02-13T19:47:38Z
10
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_1_Epochs
jfarray
2022-02-13T19:34:14Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
castorini/dkrr-dpr-nq-retriever
castorini
2022-02-13T17:46:38Z
22
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2012.04584", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is converted from the original DKRR [repo](https://github.com/facebookresearch/FiD) and ported into Pyserini: ``` @misc{izacard2020distilling, title={Distilling Knowledge from Reader to Retriever for Question Answering}, author={Gautier Izacard and Edouard Grave}, year={2020}, eprint={2012.04584}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cscottp27/distilbert-base-uncased-finetuned-emotion
cscottp27
2022-02-13T13:19:16Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232542847906783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8352 | 1.0 | 250 | 0.3079 | 0.91 | 0.9086 | | 0.247 | 2.0 | 500 | 0.2175 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
turing1729/gpt-neo-1.3B-news
turing1729
2022-02-13T10:21:51Z
4
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 --- Fine-tuned on short news articles for summarization with GPT-neo 1.3B parameters
timtarusov/distilbert-base-uncased-finetuned-emotion
timtarusov
2022-02-13T08:48:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9211076096482195 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2274 - Accuracy: 0.921 - F1: 0.9211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8308 | 1.0 | 250 | 0.3319 | 0.8955 | 0.8897 | | 0.2516 | 2.0 | 500 | 0.2274 | 0.921 | 0.9211 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mujeensung/roberta-base_mnli_bc
mujeensung
2022-02-13T05:13:00Z
23
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base_mnli_bc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9583768461882739 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_mnli_bc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2125 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2015 | 1.0 | 16363 | 0.1820 | 0.9470 | | 0.1463 | 2.0 | 32726 | 0.1909 | 0.9559 | | 0.0768 | 3.0 | 49089 | 0.2117 | 0.9585 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_50_Epochs
jfarray
2022-02-12T23:39:31Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_30_Epochs
jfarray
2022-02-12T23:02:17Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jiobiala24/wav2vec2-base-checkpoint-12
jiobiala24
2022-02-12T23:02:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-checkpoint-12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-checkpoint-12 This model is a fine-tuned version of [jiobiala24/wav2vec2-base-checkpoint-11.1](https://huggingface.co/jiobiala24/wav2vec2-base-checkpoint-11.1) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0795 - Wer: 0.3452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2793 | 1.64 | 1000 | 0.5692 | 0.3518 | | 0.2206 | 3.28 | 2000 | 0.6127 | 0.3460 | | 0.1733 | 4.93 | 3000 | 0.6622 | 0.3580 | | 0.1391 | 6.57 | 4000 | 0.6768 | 0.3519 | | 0.1193 | 8.21 | 5000 | 0.7559 | 0.3540 | | 0.1053 | 9.85 | 6000 | 0.7873 | 0.3562 | | 0.093 | 11.49 | 7000 | 0.8170 | 0.3612 | | 0.0833 | 13.14 | 8000 | 0.8682 | 0.3579 | | 0.0753 | 14.78 | 9000 | 0.8317 | 0.3573 | | 0.0698 | 16.42 | 10000 | 0.9213 | 0.3525 | | 0.0623 | 18.06 | 11000 | 0.9746 | 0.3531 | | 0.0594 | 19.7 | 12000 | 1.0027 | 0.3502 | | 0.0538 | 21.35 | 13000 | 1.0045 | 0.3545 | | 0.0504 | 22.99 | 14000 | 0.9821 | 0.3523 | | 0.0461 | 24.63 | 15000 | 1.0818 | 0.3462 | | 0.0439 | 26.27 | 16000 | 1.0995 | 0.3495 | | 0.0421 | 27.91 | 17000 | 1.0533 | 0.3430 | | 0.0415 | 29.56 | 18000 | 1.0795 | 0.3452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_10_Epochs
jfarray
2022-02-12T22:32:17Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_5_Epochs
jfarray
2022-02-12T22:09:20Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_50_Epochs
jfarray
2022-02-12T21:16:09Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_30_Epochs
jfarray
2022-02-12T21:00:41Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_10_Epochs
jfarray
2022-02-12T20:47:55Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_5_Epochs
jfarray
2022-02-12T20:37:59Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ArBert/roberta-base-finetuned-ner-kmeans
ArBert
2022-02-12T16:54:18Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-kmeans results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.955868544600939 - name: Recall type: recall value: 0.9614658103513412 - name: F1 type: f1 value: 0.9586590074394953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9559 - Recall: 0.9615 - F1: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0248 | 1.0 | 878 | 0.0609 | 0.9507 | 0.9561 | 0.9534 | | 0.0163 | 2.0 | 1756 | 0.0640 | 0.9515 | 0.9578 | 0.9546 | | 0.0089 | 3.0 | 2634 | 0.0592 | 0.9559 | 0.9615 | 0.9587 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jfarray/Model_distiluse-base-multilingual-cased-v1_50_Epochs
jfarray
2022-02-12T14:26:35Z
132
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jgammack/multi-qa-MTL-distilbert-base-uncased-40k
jgammack
2022-02-12T14:14:47Z
144
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jgammack/multi-qa-MTL-distilbert-base-uncased-40k This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jgammack/multi-qa-MTL-distilbert-base-uncased-40k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jgammack/multi-qa-MTL-distilbert-base-uncased-40k') model = AutoModel.from_pretrained('jgammack/multi-qa-MTL-distilbert-base-uncased-40k') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jgammack/multi-qa-MTL-distilbert-base-uncased-40k) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_30_Epochs
jfarray
2022-02-12T14:08:36Z
142
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_10_Epochs
jfarray
2022-02-12T13:53:59Z
140
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ArBert/roberta-base-finetuned-ner-agglo-twitter
ArBert
2022-02-12T11:40:08Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-agglo-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-agglo-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingartists/death-grips
huggingartists
2022-02-12T08:56:17Z
4
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/death-grips", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/death-grips tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de4ca387303c4b46007ca1072c2e57d0.600x600x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Grips</div> <a href="https://genius.com/artists/death-grips"> <div style="text-align: center; font-size: 14px;">@death-grips</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Death Grips. Dataset is available [here](https://huggingface.co/datasets/huggingartists/death-grips). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/death-grips") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2hmeenl7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Death Grips's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/226ak5bw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/death-grips') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/death-grips") model = AutoModelWithLMHead.from_pretrained("huggingartists/death-grips") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
HHousen/household-rooms
HHousen
2022-02-12T06:21:05Z
77
5
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:04Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: household-rooms results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8482142686843872 --- # household-rooms Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bathroom ![bathroom](images/bathroom.jpg) #### bedroom ![bedroom](images/bedroom.jpg) #### dining room ![dining room](images/dining_room.jpg) #### kitchen ![kitchen](images/kitchen.jpg) #### living room ![living room](images/living_room.jpg)
jgammack/multi-qa-distilbert-base-uncased
jgammack
2022-02-11T23:40:41Z
141
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jgammack/multi-qa-distilbert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jgammack/multi-qa-distilbert-base-uncased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jgammack/multi-qa-distilbert-base-uncased') model = AutoModel.from_pretrained('jgammack/multi-qa-distilbert-base-uncased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jgammack/multi-qa-distilbert-base-uncased) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jimypbr/bert-base-uncased-squad
jimypbr
2022-02-11T22:28:31Z
17
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 --- # BERT-Base Uncased SQuADv1 `bert-base-uncased` trained on question answering with `squad`. Evalulation scores: ``` ***** eval metrics ***** epoch = 3.0 eval_exact_match = 80.6906 eval_f1 = 88.1129 eval_samples = 10784 ```
speech-seq2seq/wav2vec2-2-gpt2-medium
speech-seq2seq
2022-02-11T22:26:54Z
13
1
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 3.5264 - Wer: 1.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4032 | 0.28 | 500 | 4.6724 | 1.9406 | | 4.6417 | 0.56 | 1000 | 4.7143 | 1.8874 | | 4.5725 | 0.84 | 1500 | 4.6413 | 1.9451 | | 4.0178 | 1.12 | 2000 | 4.5470 | 1.8861 | | 3.9084 | 1.4 | 2500 | 4.4360 | 1.8881 | | 3.9297 | 1.68 | 3000 | 4.2814 | 1.8652 | | 3.707 | 1.96 | 3500 | 4.1035 | 1.8320 | | 3.1373 | 2.24 | 4000 | 3.9557 | 1.7762 | | 3.3152 | 2.52 | 4500 | 3.7737 | 1.7454 | | 2.9501 | 2.8 | 5000 | 3.5264 | 1.7073 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingtweets/sauce__world
huggingtweets
2022-02-11T22:14:53Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/sauce__world/1644617665459/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488960307305218049/nAFuBERK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">poolboy sauce world</div> <div style="text-align: center; font-size: 14px;">@sauce__world</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from poolboy sauce world. | Data | poolboy sauce world | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 323 | | Short tweets | 513 | | Tweets kept | 2356 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20dtxww4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sauce__world's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vh9fgsnx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vh9fgsnx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sauce__world') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ibombonato/swin-age-classifier
ibombonato
2022-02-11T21:42:47Z
272
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: swin-age-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8174999952316284 --- # swin-age-classifier Trained on 80 epochs - Data from: Ai Crowd - Blitz ai-blitz-xiii - Age Prediction https://www.aicrowd.com/challenges/ai-blitz-xiii/problems/age-prediction/ Notebook based on HuggingPics Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
microsoft/codebert-base
microsoft
2022-02-11T19:59:44Z
574,944
236
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "roberta", "feature-extraction", "arxiv:2002.08155", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## CodeBERT-base Pretrained weights for [CodeBERT: A Pre-Trained Model for Programming and Natural Languages](https://arxiv.org/abs/2002.08155). ### Training Data The model is trained on bi-modal data (documents & code) of [CodeSearchNet](https://github.com/github/CodeSearchNet) ### Training Objective This model is initialized with Roberta-base and trained with MLM+RTD objective (cf. the paper). ### Usage Please see [the official repository](https://github.com/microsoft/CodeBERT) for scripts that support "code search" and "code-to-document generation". ### Reference 1. [CodeBERT trained with Masked LM objective](https://huggingface.co/microsoft/codebert-base-mlm) (suitable for code completion) 2. 🤗 [Hugging Face's CodeBERTa](https://huggingface.co/huggingface/CodeBERTa-small-v1) (small size, 6 layers) ### Citation ```bibtex @misc{feng2020codebert, title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages}, author={Zhangyin Feng and Daya Guo and Duyu Tang and Nan Duan and Xiaocheng Feng and Ming Gong and Linjun Shou and Bing Qin and Ting Liu and Daxin Jiang and Ming Zhou}, year={2020}, eprint={2002.08155}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```