modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 12:28:27
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 12:28:17
card
stringlengths
11
1.01M
huggingtweets/ezeojeda_97
huggingtweets
2022-02-11T18:26:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ezeojeda_97/1644604009323/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491399079779352581/L0_MeHf1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Easy</div> <div style="text-align: center; font-size: 14px;">@ezeojeda_97</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Easy. | Data | Easy | | --- | --- | | Tweets downloaded | 348 | | Retweets | 25 | | Short tweets | 58 | | Tweets kept | 265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mcrv516/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ezeojeda_97's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12ymakai) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12ymakai/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ezeojeda_97') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nguyenvulebinh/spoken-norm
nguyenvulebinh
2022-02-11T17:21:36Z
7
5
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, id, ...). It also supports formatting "out of vocab" by using external vocabulary. Some of examples: ```text input : tám giờ chín phút ngày mười tám tháng năm năm hai nghìn không trăm hai mươi hai output : 8h9 18/5/2022 input : mã số quy đê tê tê đê hai tám chéo hai không không ba output : mã số qdttd28/2003 input : thể tích tám mét khối trọng lượng năm mươi ki lô gam output : thể tích 8 m3 trọng lượng 50 kg input : ngày hai tám tháng tư cô vít bùng phát ở sờ cốt lờn chiếm tám mươi phần trăm là biến chủng đen ta và bê ta ex_vocab : ['scotland', 'covid', 'delta', 'beta'] output : 28/4 covid bùng phát ở scotland chiếm 80 % là biến chủng delta và beta ``` ## Model architecture ![Model](https://raw.githubusercontent.com/nguyenvulebinh/spoken-norm/main/spoken_norm_model.svg) # Infer model - Play around at [Huggingface Space](https://huggingface.co/spaces/nguyenvulebinh/spoken-norm) ```python import torch import model_handling from data_handling import DataCollatorForNormSeq2Seq from model_handling import EncoderDecoderSpokenNorm import os os.environ["CUDA_VISIBLE_DEVICES"] = "" ``` ## Init tokenizer and model ```python tokenizer = model_handling.init_tokenizer() model = EncoderDecoderSpokenNorm.from_pretrained('nguyenvulebinh/spoken-norm', cache_dir=model_handling.cache_dir) data_collator = DataCollatorForNormSeq2Seq(tokenizer) ``` ## Infer sample ```python bias_list = ['scotland', 'covid', 'delta', 'beta'] input_str = 'ngày hai tám tháng tư cô vít bùng phát ở sờ cốt lờn chiếm tám mươi phần trăm là biến chủng đen ta và bê ta' ``` ```python inputs = tokenizer([input_str]) input_ids = inputs['input_ids'] attention_mask = inputs['attention_mask'] if len(bias_list) > 0: bias = data_collator.encode_list_string(bias_list) bias_input_ids = bias['input_ids'] bias_attention_mask = bias['attention_mask'] else: bias_input_ids = None bias_attention_mask = None inputs = { "input_ids": torch.tensor(input_ids), "attention_mask": torch.tensor(attention_mask), "bias_input_ids": bias_input_ids, "bias_attention_mask": bias_attention_mask, } ``` ## Format input text **with** bias phrases ```python outputs = model.generate(**inputs, output_attentions=True, num_beams=1, num_return_sequences=1) for output in outputs.cpu().detach().numpy().tolist(): # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n') print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split())) ``` 28/4 covid bùng phát ở scotland chiếm 80 % là biến chủng delta và beta ## Format input text **without** bias phrases ```python outputs = model.generate(**{ "input_ids": torch.tensor(input_ids), "attention_mask": torch.tensor(attention_mask), "bias_input_ids": None, "bias_attention_mask": None, }, output_attentions=True, num_beams=1, num_return_sequences=1) for output in outputs.cpu().detach().numpy().tolist(): # print('\n', tokenizer.decode(output, skip_special_tokens=True).split(), '\n') print(tokenizer.sp_model.DecodePieces(tokenizer.decode(output, skip_special_tokens=True).split())) ``` 28/4 cô vít bùng phát ở sờ cốt lờn chiếm 80 % là biến chủng đen ta và bê ta ## Contact [email protected] [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
sshasnain/wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic
sshasnain
2022-02-11T13:25:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Wer: 0.4111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2982 | 17.86 | 500 | 2.4580 | 1.1089 | | 0.9644 | 35.71 | 1000 | 0.1250 | 0.5156 | | 0.1767 | 53.57 | 1500 | 0.0310 | 0.4267 | | 0.0912 | 71.43 | 2000 | 0.0149 | 0.4178 | | 0.0505 | 89.29 | 2500 | 0.0068 | 0.4111 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
mvip/wav2vec2-large-xls-r-300m-tr
mvip
2022-02-11T10:58:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4074 - Wer: 0.4227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9399 | 4.21 | 400 | 0.7252 | 0.7387 | | 0.4147 | 8.42 | 800 | 0.4693 | 0.5201 | | 0.1855 | 12.63 | 1200 | 0.4584 | 0.4848 | | 0.1256 | 16.84 | 1600 | 0.4464 | 0.4708 | | 0.0948 | 21.05 | 2000 | 0.4261 | 0.4389 | | 0.0714 | 25.26 | 2400 | 0.4331 | 0.4349 | | 0.0532 | 29.47 | 2800 | 0.4074 | 0.4227 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
edbeeching/test-trainer-to-hub
edbeeching
2022-02-11T10:36:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-trainer-to-hub results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.893760539629005 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer-to-hub This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7352 - Accuracy: 0.8456 - F1: 0.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4489 | 0.8235 | 0.8792 | | 0.5651 | 2.0 | 918 | 0.4885 | 0.8260 | 0.8811 | | 0.3525 | 3.0 | 1377 | 0.7352 | 0.8456 | 0.8938 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
mbateman/distilbert-base-uncased-finetuned-squad-d5716d28
mbateman
2022-02-11T09:26:12Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
shahukareem/wav2vec2-xls-r-1b-dv
shahukareem
2022-02-11T08:15:25Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dv", "robust-speech-event", "model_for_talk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - dv - robust-speech-event - model_for_talk datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.32 - name: Test CER type: cer value: 3.43 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1702 - Wer: 0.2123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.8412 | 0.66 | 400 | 0.7160 | 0.7913 | | 0.6832 | 1.33 | 800 | 0.3401 | 0.5268 | | 0.4624 | 1.99 | 1200 | 0.2671 | 0.4683 | | 0.3832 | 2.65 | 1600 | 0.2395 | 0.4410 | | 0.3443 | 3.32 | 2000 | 0.2410 | 0.4296 | | 0.324 | 3.98 | 2400 | 0.2302 | 0.4143 | | 0.2934 | 4.64 | 2800 | 0.2402 | 0.4136 | | 0.2773 | 5.31 | 3200 | 0.2134 | 0.4088 | | 0.2638 | 5.97 | 3600 | 0.2072 | 0.4037 | | 0.2479 | 6.63 | 4000 | 0.2036 | 0.3876 | | 0.2424 | 7.3 | 4400 | 0.2037 | 0.3767 | | 0.2249 | 7.96 | 4800 | 0.1959 | 0.3802 | | 0.2169 | 8.62 | 5200 | 0.1943 | 0.3813 | | 0.2109 | 9.29 | 5600 | 0.1944 | 0.3691 | | 0.1991 | 9.95 | 6000 | 0.1870 | 0.3589 | | 0.1917 | 10.61 | 6400 | 0.1834 | 0.3485 | | 0.1862 | 11.28 | 6800 | 0.1857 | 0.3486 | | 0.1744 | 11.94 | 7200 | 0.1812 | 0.3330 | | 0.171 | 12.6 | 7600 | 0.1797 | 0.3436 | | 0.1599 | 13.27 | 8000 | 0.1839 | 0.3319 | | 0.1597 | 13.93 | 8400 | 0.1737 | 0.3385 | | 0.1494 | 14.59 | 8800 | 0.1807 | 0.3239 | | 0.1444 | 15.26 | 9200 | 0.1750 | 0.3155 | | 0.1382 | 15.92 | 9600 | 0.1705 | 0.3084 | | 0.1299 | 16.58 | 10000 | 0.1777 | 0.2999 | | 0.1306 | 17.25 | 10400 | 0.1765 | 0.3056 | | 0.1239 | 17.91 | 10800 | 0.1676 | 0.2864 | | 0.1149 | 18.57 | 11200 | 0.1774 | 0.2861 | | 0.1134 | 19.24 | 11600 | 0.1654 | 0.2699 | | 0.1101 | 19.9 | 12000 | 0.1621 | 0.2651 | | 0.1038 | 20.56 | 12400 | 0.1686 | 0.2610 | | 0.1038 | 21.23 | 12800 | 0.1722 | 0.2559 | | 0.0988 | 21.89 | 13200 | 0.1708 | 0.2486 | | 0.0949 | 22.55 | 13600 | 0.1696 | 0.2453 | | 0.0913 | 23.22 | 14000 | 0.1677 | 0.2424 | | 0.0879 | 23.88 | 14400 | 0.1640 | 0.2359 | | 0.0888 | 24.54 | 14800 | 0.1697 | 0.2347 | | 0.0826 | 25.21 | 15200 | 0.1709 | 0.2314 | | 0.0819 | 25.87 | 15600 | 0.1679 | 0.2256 | | 0.0793 | 26.53 | 16000 | 0.1701 | 0.2214 | | 0.0773 | 27.2 | 16400 | 0.1682 | 0.2176 | | 0.0783 | 27.86 | 16800 | 0.1685 | 0.2165 | | 0.074 | 28.52 | 17200 | 0.1688 | 0.2155 | | 0.0753 | 29.19 | 17600 | 0.1695 | 0.2110 | | 0.0699 | 29.85 | 18000 | 0.1702 | 0.2123 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
lgris/WavLM-large-CORAA-pt
lgris
2022-02-10T23:21:45Z
12
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "generated_from_trainer", "pt", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - pt model-index: - name: WavLM-large-CORAA-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # WavLM-large-CORAA-pt This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 0.6144 - Wer: 0.3840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.04 | 1000 | 1.9230 | 0.9960 | | 5.153 | 0.08 | 2000 | 1.3733 | 0.8444 | | 5.153 | 0.13 | 3000 | 1.1992 | 0.7362 | | 1.367 | 0.17 | 4000 | 1.1289 | 0.6957 | | 1.367 | 0.21 | 5000 | 1.0357 | 0.6470 | | 1.1824 | 0.25 | 6000 | 1.0216 | 0.6201 | | 1.1824 | 0.29 | 7000 | 0.9338 | 0.6036 | | 1.097 | 0.33 | 8000 | 0.9149 | 0.5760 | | 1.097 | 0.38 | 9000 | 0.8885 | 0.5541 | | 1.0254 | 0.42 | 10000 | 0.8678 | 0.5366 | | 1.0254 | 0.46 | 11000 | 0.8349 | 0.5323 | | 0.9782 | 0.5 | 12000 | 0.8230 | 0.5155 | | 0.9782 | 0.54 | 13000 | 0.8245 | 0.5049 | | 0.9448 | 0.59 | 14000 | 0.7802 | 0.4990 | | 0.9448 | 0.63 | 15000 | 0.7650 | 0.4900 | | 0.9092 | 0.67 | 16000 | 0.7665 | 0.4796 | | 0.9092 | 0.71 | 17000 | 0.7568 | 0.4795 | | 0.8764 | 0.75 | 18000 | 0.7403 | 0.4615 | | 0.8764 | 0.8 | 19000 | 0.7219 | 0.4644 | | 0.8498 | 0.84 | 20000 | 0.7180 | 0.4502 | | 0.8498 | 0.88 | 21000 | 0.7017 | 0.4436 | | 0.8278 | 0.92 | 22000 | 0.6992 | 0.4395 | | 0.8278 | 0.96 | 23000 | 0.7021 | 0.4329 | | 0.8077 | 1.0 | 24000 | 0.6892 | 0.4265 | | 0.8077 | 1.05 | 25000 | 0.6940 | 0.4248 | | 0.7486 | 1.09 | 26000 | 0.6767 | 0.4202 | | 0.7486 | 1.13 | 27000 | 0.6734 | 0.4150 | | 0.7459 | 1.17 | 28000 | 0.6650 | 0.4152 | | 0.7459 | 1.21 | 29000 | 0.6559 | 0.4078 | | 0.7304 | 1.26 | 30000 | 0.6536 | 0.4088 | | 0.7304 | 1.3 | 31000 | 0.6537 | 0.4025 | | 0.7183 | 1.34 | 32000 | 0.6462 | 0.4008 | | 0.7183 | 1.38 | 33000 | 0.6381 | 0.3973 | | 0.7059 | 1.42 | 34000 | 0.6266 | 0.3930 | | 0.7059 | 1.46 | 35000 | 0.6280 | 0.3921 | | 0.6983 | 1.51 | 36000 | 0.6248 | 0.3897 | | 0.6983 | 1.55 | 37000 | 0.6275 | 0.3872 | | 0.6892 | 1.59 | 38000 | 0.6199 | 0.3852 | | 0.6892 | 1.63 | 39000 | 0.6180 | 0.3842 | | 0.691 | 1.67 | 40000 | 0.6144 | 0.3840 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8
emre
2022-02-10T22:57:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Tr-med-CommonVoice8-Tr-med-CommonVoice8 This model is a fine-tuned version of [emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8](https://huggingface.co/emre/wav2vec2-xls-r-300m-Tr-med-CommonVoice8) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Wer: 0.5010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0402 | 0.67 | 500 | 0.3354 | 0.5681 | | 0.7265 | 1.33 | 1000 | 0.3181 | 0.5444 | | 0.6858 | 2.0 | 1500 | 0.3044 | 0.5322 | | 0.6537 | 2.66 | 2000 | 0.2911 | 0.5217 | | 0.6337 | 3.33 | 2500 | 0.2874 | 0.5164 | | 0.6111 | 3.99 | 3000 | 0.2758 | 0.5059 | | 0.5815 | 4.66 | 3500 | 0.2708 | 0.5010 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
emre
2022-02-10T22:57:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4813 - Wer: 0.7207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2 | 0.53 | 400 | 3.1949 | 0.9964 | | 2.9387 | 1.07 | 800 | 2.5015 | 1.0337 | | 1.5975 | 1.6 | 1200 | 1.0928 | 0.9945 | | 1.0688 | 2.13 | 1600 | 0.8388 | 0.9390 | | 0.8977 | 2.66 | 2000 | 0.7106 | 0.8889 | | 0.789 | 3.2 | 2400 | 0.6051 | 0.8273 | | 0.7116 | 3.73 | 2800 | 0.5580 | 0.7855 | | 0.6576 | 4.26 | 3200 | 0.5033 | 0.7433 | | 0.6002 | 4.79 | 3600 | 0.4813 | 0.7207 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Turkish-Tr-med
emre
2022-02-10T22:56:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-med results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-med This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4727 - Wer: 0.4677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8093 | 4.21 | 400 | 2.7831 | 1.0 | | 0.9881 | 8.42 | 800 | 0.5088 | 0.6681 | | 0.3519 | 12.63 | 1200 | 0.4496 | 0.6007 | | 0.2436 | 16.84 | 1600 | 0.4993 | 0.5654 | | 0.1874 | 21.05 | 2000 | 0.4793 | 0.5530 | | 0.1561 | 25.26 | 2400 | 0.5187 | 0.5589 | | 0.1336 | 29.47 | 2800 | 0.5135 | 0.5311 | | 0.1163 | 33.68 | 3200 | 0.4960 | 0.5143 | | 0.1056 | 37.89 | 3600 | 0.4795 | 0.5045 | | 0.0959 | 42.11 | 4000 | 0.4883 | 0.4987 | | 0.0819 | 46.32 | 4400 | 0.4799 | 0.4903 | | 0.0756 | 50.53 | 4800 | 0.4822 | 0.4831 | | 0.0692 | 54.74 | 5200 | 0.4621 | 0.4762 | | 0.062 | 58.95 | 5600 | 0.4727 | 0.4677 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
ibombonato/vit-age-classifier
ibombonato
2022-02-10T22:06:51Z
76
6
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit-age-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8364999890327454 --- # vit-age-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
squish/BertHarmon
squish
2022-02-10T21:28:51Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- thumbnail: "https://en.memesrandom.com/wp-content/uploads/2020/11/juega-ajedrez.jpeg" widget: - text: "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]" - example_title: Empty Board - text: "6Q1/5k2/3P4/1R3p2/P4P2/7Q/6RK/8 b - - 2 60 Black <MOVE_SEP> [MASK]" - example_title: Late Game Board --- # BertHarmon Research done at Johns Hopkins University by Michael DeLeo Contact: [email protected] ![iu-13](logo.png) ## Introduction BertHarmon is a BERT model trained for the task of Chess. ![IMG_0145](chess-example.GIF) ## Sample Usage ```python from transformers import pipeline task = pipeline('fill-mask', model='squish/BertHarmon') task("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]") ``` The base string consists of the FEN_position followed by the player color and a move seperator. Finally with the [MASK] token. The mask token is the algebraic notation for a chess move to be taken givent the current board state in FEN Notation ## Links [Github](https://github.com/deleomike/NLP-Chess) [HuggingFace](https://huggingface.co/squish/BertHarmon)
huggingtweets/realsophiarobot
huggingtweets
2022-02-10T20:03:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/realsophiarobot/1644523350998/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1489664916508524545/ePAeH8lT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sophia the Robot</div> <div style="text-align: center; font-size: 14px;">@realsophiarobot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sophia the Robot. | Data | Sophia the Robot | | --- | --- | | Tweets downloaded | 2341 | | Retweets | 313 | | Short tweets | 99 | | Tweets kept | 1929 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/rfk5yso3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realsophiarobot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32n5oiz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32n5oiz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/realsophiarobot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jpbrammer
huggingtweets
2022-02-10T15:50:29Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/jpbrammer/1644508224660/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190049285842329600/qwCL5mdU_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">JP</div> <div style="text-align: center; font-size: 14px;">@jpbrammer</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from JP. | Data | JP | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 938 | | Short tweets | 345 | | Tweets kept | 1923 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13lk57y6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jpbrammer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3umvc7qg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3umvc7qg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jpbrammer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
satyaalmasian/temporal_tagger_German_GELECTRA
satyaalmasian
2022-02-10T15:23:51Z
61
1
transformers
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# BERT based temporal tagged Token classifier for temporal tagging of plain text using German Gelectra model. # Model description GELECTRA is a transformer (ELECTRA) model pretrained on a large corpus of German data in a self-supervised fashion. We use GELECTRA for token classification to tag the tokens in text with classes (tags are from english timex3 format): ``` O -- outside of a tag I-TIME -- inside tag of time B-TIME -- beginning tag of time I-DATE -- inside tag of date B-DATE -- beginning tag of date I-DURATION -- inside tag of duration B-DURATION -- beginning tag of duration I-SET -- inside tag of the set B-SET -- beginning tag of the set ``` # Intended uses & limitations This model is best used accompanied with code from the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). Especially for inference, the direct output might be noisy and hard to decipher, in the repository we provide alignment functions and voting strategies for the final output. The repo examples the english models, the german model can be used the same way. # How to use you can load the model as follows: ``` tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA", use_fast=False) model = BertForTokenClassification.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA") ``` for inference use: ``` processed_text = tokenizer(input_text, return_tensors="pt") result = model(**processed_text) classification= result[0] ``` for an example with post-processing, refer to the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). We provide a function `merge_tokens` to decipher the output. to further fine-tune, use the `Trainer` from hugginface. An example of a similar fine-tuning can be found [here](https://github.com/satya77/Transformer_Temporal_Tagger/blob/master/run_token_classifier.py). # Training data For pre-training we use a large corpus of automatically annotated news articles with heideltime. We use 2 data sources for fine-tunning. : [Tempeval-3](https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html),automatically translated to gemran, [KRAUTS dataset](https://github.com/JannikStroetgen/KRAUTS). # Training procedure The model is trained from publicly available checkpoints on huggingface (`deepset/gelectra-large`), with a batch size of 192. We use a learning rate of 1e-07 with an Adam optimizer and linear weight decay for pretraining. For fine-tuning we use a batch size of 16. We use a learning rate of 5e-05 with an Adam optimizer and linear weight decay. We fine-tune with 3 different random seeds, this version of the model is the only seed=7. For training, we use 2 NVIDIA A100 GPUs with 40GB of memory.
junnyu/roformer_base_wwm_cluecorpussmall
junnyu
2022-02-10T12:26:39Z
6
2
transformers
[ "transformers", "pytorch", "roformer", "fill-mask", "tf2.0", "paddlepaddle", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh tags: - roformer - pytorch - tf2.0 - paddlepaddle widget: - text: "今天[MASK]很好,我想去公园玩!" --- ## 介绍 Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了`Whole Mask LM` 和 `SOP` 任务 训练逻辑参考了这里。https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/ernie-1.0 ## 训练细节: - paddlepaddle+paddlenlp - V100 x 4 - batch size 256 - max_seq_len 512 - max_lr 0.0001 - min_lr 0.00001 - weight_decay 0.01 - grad_clip 1.0 - 总共训练的句子```128*30w + 256*15w + 256*14.5w + 256*46.5w + 256*17w = 27648w``` - 约等于512 batch size, 100w步条件下的54% 最终loss: ```python [2022-02-05 16:05:59,067] [ INFO] - global step 170100, loss: 2.651634932, lm_loss: 2.603405, sop_loss: 0.048229, speed: 1.06 steps/s, ips: 271.68 seqs/s, learning rate: 6.66465e-05, loss_scaling: 137438.96875, num_good_steps: 356, num_bad_steps: 0 [2022-02-05 16:07:28,227] [ INFO] - global step 170200, loss: 2.822231531, lm_loss: 2.662831, sop_loss: 0.159401, speed: 1.12 steps/s, ips: 287.13 seqs/s, learning rate: 6.66263e-05, loss_scaling: 137438.96875, num_good_steps: 59, num_bad_steps: 0 [2022-02-05 16:08:57,346] [ INFO] - global step 170300, loss: 2.710968971, lm_loss: 2.673646, sop_loss: 0.037323, speed: 1.12 steps/s, ips: 287.26 seqs/s, learning rate: 6.66061e-05, loss_scaling: 137438.96875, num_good_steps: 159, num_bad_steps: 0 [2022-02-05 16:10:26,698] [ INFO] - global step 170400, loss: 2.867662907, lm_loss: 2.619032, sop_loss: 0.248631, speed: 1.12 steps/s, ips: 286.51 seqs/s, learning rate: 6.65859e-05, loss_scaling: 137438.96875, num_good_steps: 259, num_bad_steps: 0 [2022-02-05 16:11:55,714] [ INFO] - global step 170500, loss: 3.158756495, lm_loss: 2.953678, sop_loss: 0.205079, speed: 1.12 steps/s, ips: 287.59 seqs/s, learning rate: 6.65657e-05, loss_scaling: 137438.96875, num_good_steps: 359, num_bad_steps: 0 [2022-02-05 16:13:24,869] [ INFO] - global step 170600, loss: 2.860815048, lm_loss: 2.754750, sop_loss: 0.106064, speed: 1.12 steps/s, ips: 287.14 seqs/s, learning rate: 6.65455e-05, loss_scaling: 137438.96875, num_good_steps: 33, num_bad_steps: 0 ``` ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, BertTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||人||气||阳||雨]很好,我[想||就||要||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
SetFit/deberta-v3-large__sst2__train-16-8
SetFit
2022-02-10T11:15:56Z
5
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.6579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7129 | 1.0 | 7 | 0.7309 | 0.2857 | | 0.6549 | 2.0 | 14 | 0.7316 | 0.4286 | | 0.621 | 3.0 | 21 | 0.7131 | 0.5714 | | 0.3472 | 4.0 | 28 | 0.5703 | 0.4286 | | 0.2041 | 5.0 | 35 | 0.6675 | 0.5714 | | 0.031 | 6.0 | 42 | 1.6750 | 0.5714 | | 0.0141 | 7.0 | 49 | 1.8743 | 0.5714 | | 0.0055 | 8.0 | 56 | 1.1778 | 0.5714 | | 0.0024 | 9.0 | 63 | 1.0699 | 0.5714 | | 0.0019 | 10.0 | 70 | 1.0933 | 0.5714 | | 0.0012 | 11.0 | 77 | 1.1218 | 0.7143 | | 0.0007 | 12.0 | 84 | 1.1468 | 0.7143 | | 0.0006 | 13.0 | 91 | 1.1584 | 0.7143 | | 0.0006 | 14.0 | 98 | 1.3092 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-8
SetFit
2022-02-10T09:59:57Z
5
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6597 | 1.0 | 3 | 0.7716 | 0.25 | | 0.6376 | 2.0 | 6 | 0.7802 | 0.25 | | 0.5857 | 3.0 | 9 | 0.6625 | 0.75 | | 0.4024 | 4.0 | 12 | 0.5195 | 0.75 | | 0.2635 | 5.0 | 15 | 0.4222 | 1.0 | | 0.1714 | 6.0 | 18 | 0.4410 | 0.5 | | 0.1267 | 7.0 | 21 | 0.7773 | 0.75 | | 0.0582 | 8.0 | 24 | 0.9070 | 0.75 | | 0.0374 | 9.0 | 27 | 0.9539 | 0.75 | | 0.0204 | 10.0 | 30 | 1.0507 | 0.75 | | 0.012 | 11.0 | 33 | 1.2802 | 0.5 | | 0.0086 | 12.0 | 36 | 1.4272 | 0.5 | | 0.0049 | 13.0 | 39 | 1.4803 | 0.5 | | 0.0039 | 14.0 | 42 | 1.4912 | 0.5 | | 0.0031 | 15.0 | 45 | 1.5231 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-7
SetFit
2022-02-10T09:52:48Z
5
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7037 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6864 | 1.0 | 3 | 0.7800 | 0.25 | | 0.6483 | 2.0 | 6 | 0.8067 | 0.25 | | 0.6028 | 3.0 | 9 | 0.8500 | 0.25 | | 0.4086 | 4.0 | 12 | 1.0661 | 0.25 | | 0.2923 | 5.0 | 15 | 1.2302 | 0.25 | | 0.2059 | 6.0 | 18 | 1.0312 | 0.5 | | 0.1238 | 7.0 | 21 | 1.1271 | 0.5 | | 0.0711 | 8.0 | 24 | 1.3100 | 0.5 | | 0.0453 | 9.0 | 27 | 1.4208 | 0.5 | | 0.0198 | 10.0 | 30 | 1.5988 | 0.5 | | 0.0135 | 11.0 | 33 | 1.9174 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-2
SetFit
2022-02-10T08:35:53Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6794 - Accuracy: 0.6063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6942 | 1.0 | 3 | 0.7940 | 0.25 | | 0.6068 | 2.0 | 6 | 0.9326 | 0.25 | | 0.6553 | 3.0 | 9 | 0.7979 | 0.25 | | 0.475 | 4.0 | 12 | 0.7775 | 0.25 | | 0.377 | 5.0 | 15 | 0.7477 | 0.25 | | 0.3176 | 6.0 | 18 | 0.6856 | 0.75 | | 0.2708 | 7.0 | 21 | 0.6554 | 0.75 | | 0.2855 | 8.0 | 24 | 0.8129 | 0.5 | | 0.148 | 9.0 | 27 | 0.7074 | 0.75 | | 0.0947 | 10.0 | 30 | 0.7090 | 0.75 | | 0.049 | 11.0 | 33 | 0.7885 | 0.75 | | 0.0252 | 12.0 | 36 | 0.9203 | 0.75 | | 0.0165 | 13.0 | 39 | 1.0937 | 0.75 | | 0.0084 | 14.0 | 42 | 1.2502 | 0.75 | | 0.0059 | 15.0 | 45 | 1.3726 | 0.75 | | 0.0037 | 16.0 | 48 | 1.4784 | 0.75 | | 0.003 | 17.0 | 51 | 1.5615 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-1
SetFit
2022-02-10T08:28:12Z
6
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7020 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6773 | 1.0 | 3 | 0.7822 | 0.25 | | 0.6587 | 2.0 | 6 | 0.8033 | 0.25 | | 0.693 | 3.0 | 9 | 0.8101 | 0.25 | | 0.5979 | 4.0 | 12 | 1.1235 | 0.25 | | 0.4095 | 5.0 | 15 | 1.3563 | 0.25 | | 0.2836 | 6.0 | 18 | 1.5325 | 0.5 | | 0.1627 | 7.0 | 21 | 1.7786 | 0.25 | | 0.0956 | 8.0 | 24 | 2.0067 | 0.5 | | 0.0535 | 9.0 | 27 | 2.3351 | 0.5 | | 0.0315 | 10.0 | 30 | 2.6204 | 0.5 | | 0.0182 | 11.0 | 33 | 2.8483 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
SetFit
2022-02-10T08:11:34Z
5
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1054 | 1.0 | 19 | 1.0938 | 0.35 | | 1.0338 | 2.0 | 38 | 1.0563 | 0.65 | | 0.8622 | 3.0 | 57 | 0.9372 | 0.6 | | 0.5919 | 4.0 | 76 | 0.8461 | 0.6 | | 0.3357 | 5.0 | 95 | 1.0206 | 0.45 | | 0.1621 | 6.0 | 114 | 0.9802 | 0.7 | | 0.0637 | 7.0 | 133 | 1.2434 | 0.65 | | 0.0261 | 8.0 | 152 | 1.3865 | 0.65 | | 0.0156 | 9.0 | 171 | 1.4414 | 0.7 | | 0.01 | 10.0 | 190 | 1.5502 | 0.7 | | 0.0079 | 11.0 | 209 | 1.6102 | 0.7 | | 0.0062 | 12.0 | 228 | 1.6525 | 0.7 | | 0.0058 | 13.0 | 247 | 1.6884 | 0.7 | | 0.0046 | 14.0 | 266 | 1.7479 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
SetFit
2022-02-10T08:09:09Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8210 - Accuracy: 0.6305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 19 | 1.0655 | 0.4 | | 1.0102 | 2.0 | 38 | 0.9927 | 0.6 | | 0.8063 | 3.0 | 57 | 0.9117 | 0.5 | | 0.5284 | 4.0 | 76 | 0.8058 | 0.55 | | 0.2447 | 5.0 | 95 | 0.8393 | 0.45 | | 0.098 | 6.0 | 114 | 0.8438 | 0.6 | | 0.0388 | 7.0 | 133 | 1.1901 | 0.45 | | 0.0188 | 8.0 | 152 | 1.4429 | 0.45 | | 0.0121 | 9.0 | 171 | 1.3648 | 0.4 | | 0.0082 | 10.0 | 190 | 1.4768 | 0.4 | | 0.0066 | 11.0 | 209 | 1.4830 | 0.45 | | 0.0057 | 12.0 | 228 | 1.4936 | 0.45 | | 0.0053 | 13.0 | 247 | 1.5649 | 0.4 | | 0.0041 | 14.0 | 266 | 1.6306 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
SetFit
2022-02-10T08:05:22Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1013 | 1.0 | 19 | 1.0733 | 0.55 | | 1.0226 | 2.0 | 38 | 1.0064 | 0.65 | | 0.8539 | 3.0 | 57 | 0.8758 | 0.75 | | 0.584 | 4.0 | 76 | 0.6941 | 0.7 | | 0.2813 | 5.0 | 95 | 0.5151 | 0.7 | | 0.1122 | 6.0 | 114 | 0.4351 | 0.8 | | 0.0432 | 7.0 | 133 | 0.4896 | 0.85 | | 0.0199 | 8.0 | 152 | 0.5391 | 0.85 | | 0.0126 | 9.0 | 171 | 0.5200 | 0.85 | | 0.0085 | 10.0 | 190 | 0.5622 | 0.85 | | 0.0069 | 11.0 | 209 | 0.5950 | 0.85 | | 0.0058 | 12.0 | 228 | 0.6015 | 0.85 | | 0.0053 | 13.0 | 247 | 0.6120 | 0.85 | | 0.0042 | 14.0 | 266 | 0.6347 | 0.85 | | 0.0039 | 15.0 | 285 | 0.6453 | 0.85 | | 0.0034 | 16.0 | 304 | 0.6660 | 0.85 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
SetFit
2022-02-10T08:04:08Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1041 | 1.0 | 19 | 1.0658 | 0.5 | | 1.009 | 2.0 | 38 | 0.9892 | 0.7 | | 0.7925 | 3.0 | 57 | 0.8516 | 0.7 | | 0.5279 | 4.0 | 76 | 0.7877 | 0.65 | | 0.2932 | 5.0 | 95 | 0.7592 | 0.65 | | 0.1166 | 6.0 | 114 | 0.9437 | 0.65 | | 0.044 | 7.0 | 133 | 1.0315 | 0.75 | | 0.0197 | 8.0 | 152 | 1.3513 | 0.55 | | 0.0126 | 9.0 | 171 | 1.1702 | 0.7 | | 0.0083 | 10.0 | 190 | 1.2272 | 0.7 | | 0.0068 | 11.0 | 209 | 1.2889 | 0.7 | | 0.0059 | 12.0 | 228 | 1.3073 | 0.7 | | 0.0052 | 13.0 | 247 | 1.3595 | 0.7 | | 0.0041 | 14.0 | 266 | 1.4443 | 0.7 | | 0.0038 | 15.0 | 285 | 1.4709 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
SetFit
2022-02-10T08:02:54Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1052 | 1.0 | 19 | 1.0726 | 0.45 | | 1.0421 | 2.0 | 38 | 1.0225 | 0.5 | | 0.9173 | 3.0 | 57 | 0.9164 | 0.6 | | 0.6822 | 4.0 | 76 | 0.8251 | 0.7 | | 0.4407 | 5.0 | 95 | 0.8908 | 0.5 | | 0.2367 | 6.0 | 114 | 0.6772 | 0.75 | | 0.1145 | 7.0 | 133 | 0.7792 | 0.65 | | 0.0479 | 8.0 | 152 | 1.0657 | 0.6 | | 0.0186 | 9.0 | 171 | 1.2228 | 0.65 | | 0.0111 | 10.0 | 190 | 1.1100 | 0.6 | | 0.0083 | 11.0 | 209 | 1.1991 | 0.65 | | 0.0067 | 12.0 | 228 | 1.2654 | 0.65 | | 0.0061 | 13.0 | 247 | 1.2837 | 0.65 | | 0.0046 | 14.0 | 266 | 1.2860 | 0.6 | | 0.0043 | 15.0 | 285 | 1.3160 | 0.65 | | 0.0037 | 16.0 | 304 | 1.3323 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
SetFit
2022-02-10T08:01:40Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0606 - Accuracy: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 19 | 1.1045 | 0.2 | | 0.9967 | 2.0 | 38 | 1.1164 | 0.35 | | 0.8164 | 3.0 | 57 | 1.1570 | 0.4 | | 0.5884 | 4.0 | 76 | 1.2403 | 0.35 | | 0.3322 | 5.0 | 95 | 1.3815 | 0.35 | | 0.156 | 6.0 | 114 | 1.8102 | 0.3 | | 0.0576 | 7.0 | 133 | 2.1439 | 0.4 | | 0.0227 | 8.0 | 152 | 2.4368 | 0.3 | | 0.0133 | 9.0 | 171 | 2.5994 | 0.4 | | 0.009 | 10.0 | 190 | 2.7388 | 0.35 | | 0.0072 | 11.0 | 209 | 2.8287 | 0.35 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
SetFit
2022-02-10T07:58:12Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1031 | 1.0 | 10 | 1.1286 | 0.1 | | 1.0648 | 2.0 | 20 | 1.1157 | 0.3 | | 0.9982 | 3.0 | 30 | 1.1412 | 0.2 | | 0.9283 | 4.0 | 40 | 1.2053 | 0.2 | | 0.7958 | 5.0 | 50 | 1.1466 | 0.2 | | 0.6668 | 6.0 | 60 | 1.1783 | 0.3 | | 0.5068 | 7.0 | 70 | 1.2992 | 0.3 | | 0.3741 | 8.0 | 80 | 1.3483 | 0.3 | | 0.1653 | 9.0 | 90 | 1.4533 | 0.2 | | 0.0946 | 10.0 | 100 | 1.6292 | 0.2 | | 0.0569 | 11.0 | 110 | 1.8381 | 0.2 | | 0.0346 | 12.0 | 120 | 2.0781 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
SetFit
2022-02-10T07:57:08Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9011 - Accuracy: 0.578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0968 | 1.0 | 10 | 1.1309 | 0.0 | | 1.0709 | 2.0 | 20 | 1.1237 | 0.1 | | 0.9929 | 3.0 | 30 | 1.1254 | 0.1 | | 0.878 | 4.0 | 40 | 1.1206 | 0.5 | | 0.7409 | 5.0 | 50 | 1.0831 | 0.1 | | 0.5663 | 6.0 | 60 | 0.9830 | 0.6 | | 0.4105 | 7.0 | 70 | 0.9919 | 0.5 | | 0.2912 | 8.0 | 80 | 1.0472 | 0.6 | | 0.1013 | 9.0 | 90 | 1.1617 | 0.4 | | 0.0611 | 10.0 | 100 | 1.2789 | 0.6 | | 0.039 | 11.0 | 110 | 1.4091 | 0.4 | | 0.0272 | 12.0 | 120 | 1.4974 | 0.4 | | 0.0189 | 13.0 | 130 | 1.4845 | 0.5 | | 0.018 | 14.0 | 140 | 1.4924 | 0.5 | | 0.0131 | 15.0 | 150 | 1.5206 | 0.6 | | 0.0116 | 16.0 | 160 | 1.5858 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
SetFit
2022-02-10T07:55:56Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 10 | 1.1248 | 0.1 | | 1.0586 | 2.0 | 20 | 1.1162 | 0.2 | | 0.9834 | 3.0 | 30 | 1.1199 | 0.3 | | 0.9271 | 4.0 | 40 | 1.0740 | 0.3 | | 0.7663 | 5.0 | 50 | 1.0183 | 0.5 | | 0.6042 | 6.0 | 60 | 1.0259 | 0.5 | | 0.4482 | 7.0 | 70 | 0.8699 | 0.7 | | 0.3072 | 8.0 | 80 | 1.0615 | 0.5 | | 0.1458 | 9.0 | 90 | 1.0164 | 0.5 | | 0.0838 | 10.0 | 100 | 1.0620 | 0.5 | | 0.055 | 11.0 | 110 | 1.1829 | 0.5 | | 0.0347 | 12.0 | 120 | 1.2815 | 0.4 | | 0.0244 | 13.0 | 130 | 1.2607 | 0.6 | | 0.0213 | 14.0 | 140 | 1.3695 | 0.5 | | 0.0169 | 15.0 | 150 | 1.4397 | 0.5 | | 0.0141 | 16.0 | 160 | 1.4388 | 0.6 | | 0.0122 | 17.0 | 170 | 1.4242 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
SetFit
2022-02-10T07:54:46Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9907 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 10 | 1.1287 | 0.2 | | 1.0481 | 2.0 | 20 | 1.1136 | 0.2 | | 0.9498 | 3.0 | 30 | 1.1200 | 0.2 | | 0.8157 | 4.0 | 40 | 1.0771 | 0.2 | | 0.65 | 5.0 | 50 | 0.9733 | 0.4 | | 0.5021 | 6.0 | 60 | 1.0626 | 0.4 | | 0.3358 | 7.0 | 70 | 1.0787 | 0.4 | | 0.2017 | 8.0 | 80 | 1.3183 | 0.4 | | 0.088 | 9.0 | 90 | 1.2204 | 0.5 | | 0.0527 | 10.0 | 100 | 1.6892 | 0.4 | | 0.0337 | 11.0 | 110 | 1.6967 | 0.5 | | 0.0238 | 12.0 | 120 | 1.5436 | 0.5 | | 0.0183 | 13.0 | 130 | 1.7447 | 0.4 | | 0.0159 | 14.0 | 140 | 1.8999 | 0.4 | | 0.014 | 15.0 | 150 | 1.9004 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
SetFit
2022-02-10T07:53:38Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0903 - Accuracy: 0.4805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0974 | 1.0 | 10 | 1.1139 | 0.1 | | 1.0637 | 2.0 | 20 | 1.0988 | 0.1 | | 0.9758 | 3.0 | 30 | 1.1013 | 0.1 | | 0.9012 | 4.0 | 40 | 1.0769 | 0.3 | | 0.6993 | 5.0 | 50 | 1.0484 | 0.6 | | 0.5676 | 6.0 | 60 | 1.0223 | 0.6 | | 0.4069 | 7.0 | 70 | 0.9190 | 0.6 | | 0.3192 | 8.0 | 80 | 1.1370 | 0.6 | | 0.1112 | 9.0 | 90 | 1.1728 | 0.6 | | 0.07 | 10.0 | 100 | 1.1998 | 0.6 | | 0.0397 | 11.0 | 110 | 1.3700 | 0.6 | | 0.027 | 12.0 | 120 | 1.3329 | 0.6 | | 0.021 | 13.0 | 130 | 1.2697 | 0.6 | | 0.0177 | 14.0 | 140 | 1.4195 | 0.6 | | 0.0142 | 15.0 | 150 | 1.5342 | 0.6 | | 0.0118 | 16.0 | 160 | 1.5999 | 0.6 | | 0.0108 | 17.0 | 170 | 1.6327 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
akshaychaudhary
2022-02-10T07:47:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-hypertuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hypertuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5683 - Precision: 0.3398 - Recall: 0.6481 - F1: 0.4459 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.3566 | 0.2913 | 0.5556 | 0.3822 | 0.8585 | | No log | 2.0 | 168 | 0.4698 | 0.3366 | 0.6296 | 0.4387 | 0.8730 | | No log | 3.0 | 252 | 0.5683 | 0.3398 | 0.6481 | 0.4459 | 0.8762 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
SetFit
2022-02-10T07:46:54Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1029 | 1.0 | 5 | 1.1295 | 0.0 | | 1.0472 | 2.0 | 10 | 1.1531 | 0.0 | | 1.054 | 3.0 | 15 | 1.1475 | 0.0 | | 0.9366 | 4.0 | 20 | 1.1515 | 0.0 | | 0.8698 | 5.0 | 25 | 1.1236 | 0.4 | | 0.8148 | 6.0 | 30 | 1.0716 | 0.6 | | 0.6884 | 7.0 | 35 | 1.0662 | 0.6 | | 0.5641 | 8.0 | 40 | 1.0671 | 0.6 | | 0.5 | 9.0 | 45 | 1.0282 | 0.6 | | 0.3882 | 10.0 | 50 | 1.0500 | 0.6 | | 0.3522 | 11.0 | 55 | 1.1381 | 0.6 | | 0.2492 | 12.0 | 60 | 1.1278 | 0.6 | | 0.2063 | 13.0 | 65 | 1.0731 | 0.6 | | 0.1608 | 14.0 | 70 | 1.1339 | 0.6 | | 0.1448 | 15.0 | 75 | 1.1892 | 0.6 | | 0.0925 | 16.0 | 80 | 1.1840 | 0.6 | | 0.0768 | 17.0 | 85 | 1.0608 | 0.6 | | 0.0585 | 18.0 | 90 | 1.1073 | 0.6 | | 0.0592 | 19.0 | 95 | 1.3134 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
SetFit
2022-02-10T07:41:07Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1019 - Accuracy: 0.139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1082 | 1.0 | 5 | 1.1432 | 0.0 | | 1.0524 | 2.0 | 10 | 1.1613 | 0.0 | | 1.0641 | 3.0 | 15 | 1.1547 | 0.0 | | 0.9592 | 4.0 | 20 | 1.1680 | 0.0 | | 0.9085 | 5.0 | 25 | 1.1762 | 0.0 | | 0.8508 | 6.0 | 30 | 1.1809 | 0.2 | | 0.7263 | 7.0 | 35 | 1.1912 | 0.2 | | 0.6448 | 8.0 | 40 | 1.2100 | 0.2 | | 0.5378 | 9.0 | 45 | 1.2037 | 0.2 | | 0.5031 | 10.0 | 50 | 1.2096 | 0.2 | | 0.4041 | 11.0 | 55 | 1.2203 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
SetFit
2022-02-10T07:40:19Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1013 - Accuracy: 0.0915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0866 | 1.0 | 5 | 1.1363 | 0.0 | | 1.0439 | 2.0 | 10 | 1.1803 | 0.0 | | 1.0227 | 3.0 | 15 | 1.2162 | 0.2 | | 0.9111 | 4.0 | 20 | 1.2619 | 0.0 | | 0.8243 | 5.0 | 25 | 1.2929 | 0.2 | | 0.7488 | 6.0 | 30 | 1.3010 | 0.2 | | 0.62 | 7.0 | 35 | 1.3011 | 0.2 | | 0.5054 | 8.0 | 40 | 1.2931 | 0.4 | | 0.4191 | 9.0 | 45 | 1.3274 | 0.4 | | 0.4107 | 10.0 | 50 | 1.3259 | 0.4 | | 0.3376 | 11.0 | 55 | 1.2800 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-7
SetFit
2022-02-10T07:34:38Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6736 - Accuracy: 0.5931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7094 | 1.0 | 13 | 0.6887 | 0.5385 | | 0.651 | 2.0 | 26 | 0.6682 | 0.6923 | | 0.6084 | 3.0 | 39 | 0.6412 | 0.6923 | | 0.4547 | 4.0 | 52 | 0.6095 | 0.6923 | | 0.2903 | 5.0 | 65 | 0.6621 | 0.6923 | | 0.1407 | 6.0 | 78 | 0.7130 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.9007 | 0.6923 | | 0.0176 | 8.0 | 104 | 0.9525 | 0.7692 | | 0.0098 | 9.0 | 117 | 1.0289 | 0.7692 | | 0.0071 | 10.0 | 130 | 1.0876 | 0.7692 | | 0.0052 | 11.0 | 143 | 1.1431 | 0.6923 | | 0.0038 | 12.0 | 156 | 1.1687 | 0.7692 | | 0.0034 | 13.0 | 169 | 1.1792 | 0.7692 | | 0.0031 | 14.0 | 182 | 1.2033 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-5
SetFit
2022-02-10T07:32:51Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6248 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 13 | 0.6850 | 0.5385 | | 0.6496 | 2.0 | 26 | 0.6670 | 0.6154 | | 0.5895 | 3.0 | 39 | 0.6464 | 0.7692 | | 0.4271 | 4.0 | 52 | 0.6478 | 0.7692 | | 0.2182 | 5.0 | 65 | 0.6809 | 0.6923 | | 0.103 | 6.0 | 78 | 0.9119 | 0.6923 | | 0.0326 | 7.0 | 91 | 1.0718 | 0.6923 | | 0.0154 | 8.0 | 104 | 1.0721 | 0.7692 | | 0.0087 | 9.0 | 117 | 1.1416 | 0.7692 | | 0.0067 | 10.0 | 130 | 1.2088 | 0.7692 | | 0.005 | 11.0 | 143 | 1.2656 | 0.7692 | | 0.0037 | 12.0 | 156 | 1.3104 | 0.7692 | | 0.0032 | 13.0 | 169 | 1.3428 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-4
SetFit
2022-02-10T07:32:01Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5001 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7175 | 1.0 | 13 | 0.6822 | 0.5385 | | 0.6559 | 2.0 | 26 | 0.6533 | 0.6154 | | 0.6052 | 3.0 | 39 | 0.5762 | 0.7692 | | 0.4587 | 4.0 | 52 | 0.4477 | 0.8462 | | 0.2459 | 5.0 | 65 | 0.4288 | 0.7692 | | 0.1001 | 6.0 | 78 | 0.5219 | 0.7692 | | 0.0308 | 7.0 | 91 | 0.8540 | 0.7692 | | 0.014 | 8.0 | 104 | 0.7789 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.7996 | 0.7692 | | 0.0064 | 10.0 | 130 | 0.8342 | 0.7692 | | 0.0049 | 11.0 | 143 | 0.8612 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.8834 | 0.7692 | | 0.0032 | 13.0 | 169 | 0.9067 | 0.7692 | | 0.003 | 14.0 | 182 | 0.9332 | 0.7692 | | 0.0028 | 15.0 | 195 | 0.9511 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-2
SetFit
2022-02-10T07:30:14Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Accuracy: 0.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7124 | 1.0 | 13 | 0.6882 | 0.5385 | | 0.6502 | 2.0 | 26 | 0.6715 | 0.5385 | | 0.6001 | 3.0 | 39 | 0.6342 | 0.6154 | | 0.455 | 4.0 | 52 | 0.5713 | 0.7692 | | 0.2605 | 5.0 | 65 | 0.5562 | 0.7692 | | 0.1258 | 6.0 | 78 | 0.6799 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.8096 | 0.7692 | | 0.0175 | 8.0 | 104 | 0.9281 | 0.6923 | | 0.0106 | 9.0 | 117 | 0.9826 | 0.6923 | | 0.0077 | 10.0 | 130 | 1.0254 | 0.7692 | | 0.0056 | 11.0 | 143 | 1.0667 | 0.7692 | | 0.0042 | 12.0 | 156 | 1.1003 | 0.7692 | | 0.0036 | 13.0 | 169 | 1.1299 | 0.7692 | | 0.0034 | 14.0 | 182 | 1.1623 | 0.6923 | | 0.003 | 15.0 | 195 | 1.1938 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-9
SetFit
2022-02-10T07:27:19Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 7 | 0.7121 | 0.1429 | | 0.6755 | 2.0 | 14 | 0.7234 | 0.1429 | | 0.6389 | 3.0 | 21 | 0.7384 | 0.2857 | | 0.5575 | 4.0 | 28 | 0.7884 | 0.2857 | | 0.4972 | 5.0 | 35 | 0.7767 | 0.4286 | | 0.2821 | 6.0 | 42 | 0.8275 | 0.4286 | | 0.1859 | 7.0 | 49 | 0.9283 | 0.2857 | | 0.1388 | 8.0 | 56 | 0.9384 | 0.4286 | | 0.078 | 9.0 | 63 | 1.1973 | 0.4286 | | 0.0462 | 10.0 | 70 | 1.4016 | 0.4286 | | 0.0319 | 11.0 | 77 | 1.4087 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-8
SetFit
2022-02-10T07:26:26Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6899 | 1.0 | 7 | 0.7055 | 0.2857 | | 0.6793 | 2.0 | 14 | 0.7205 | 0.2857 | | 0.6291 | 3.0 | 21 | 0.7460 | 0.2857 | | 0.5659 | 4.0 | 28 | 0.8041 | 0.2857 | | 0.5607 | 5.0 | 35 | 0.7785 | 0.4286 | | 0.3349 | 6.0 | 42 | 0.8163 | 0.4286 | | 0.2436 | 7.0 | 49 | 0.9101 | 0.2857 | | 0.1734 | 8.0 | 56 | 0.8632 | 0.5714 | | 0.1122 | 9.0 | 63 | 0.9851 | 0.5714 | | 0.0661 | 10.0 | 70 | 1.0835 | 0.5714 | | 0.0407 | 11.0 | 77 | 1.1656 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-6
SetFit
2022-02-10T07:24:39Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8356 - Accuracy: 0.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6978 | 1.0 | 7 | 0.6807 | 0.4286 | | 0.6482 | 2.0 | 14 | 0.6775 | 0.4286 | | 0.6051 | 3.0 | 21 | 0.6623 | 0.5714 | | 0.486 | 4.0 | 28 | 0.6710 | 0.5714 | | 0.4612 | 5.0 | 35 | 0.5325 | 0.7143 | | 0.2233 | 6.0 | 42 | 0.4992 | 0.7143 | | 0.1328 | 7.0 | 49 | 0.4753 | 0.7143 | | 0.0905 | 8.0 | 56 | 0.2416 | 1.0 | | 0.0413 | 9.0 | 63 | 0.2079 | 1.0 | | 0.0356 | 10.0 | 70 | 0.2234 | 0.8571 | | 0.0217 | 11.0 | 77 | 0.2639 | 0.8571 | | 0.0121 | 12.0 | 84 | 0.2977 | 0.8571 | | 0.0105 | 13.0 | 91 | 0.3468 | 0.8571 | | 0.0085 | 14.0 | 98 | 0.3912 | 0.8571 | | 0.0077 | 15.0 | 105 | 0.4000 | 0.8571 | | 0.0071 | 16.0 | 112 | 0.4015 | 0.8571 | | 0.0078 | 17.0 | 119 | 0.3865 | 0.8571 | | 0.0059 | 18.0 | 126 | 0.3603 | 0.8571 | | 0.0051 | 19.0 | 133 | 0.3231 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-5
SetFit
2022-02-10T07:23:42Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6925 | 1.0 | 7 | 0.6966 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7045 | 0.2857 | | 0.6404 | 3.0 | 21 | 0.7205 | 0.2857 | | 0.555 | 4.0 | 28 | 0.7548 | 0.2857 | | 0.5179 | 5.0 | 35 | 0.6745 | 0.5714 | | 0.3038 | 6.0 | 42 | 0.7260 | 0.5714 | | 0.2089 | 7.0 | 49 | 0.8016 | 0.5714 | | 0.1303 | 8.0 | 56 | 0.8202 | 0.5714 | | 0.0899 | 9.0 | 63 | 0.9966 | 0.5714 | | 0.0552 | 10.0 | 70 | 1.1887 | 0.5714 | | 0.0333 | 11.0 | 77 | 1.2163 | 0.5714 | | 0.0169 | 12.0 | 84 | 1.2874 | 0.5714 | | 0.0136 | 13.0 | 91 | 1.3598 | 0.5714 | | 0.0103 | 14.0 | 98 | 1.4237 | 0.5714 | | 0.0089 | 15.0 | 105 | 1.4758 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-3
SetFit
2022-02-10T07:21:36Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Accuracy: 0.6458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 1.0 | 7 | 0.6973 | 0.4286 | | 0.675 | 2.0 | 14 | 0.7001 | 0.4286 | | 0.6513 | 3.0 | 21 | 0.6959 | 0.4286 | | 0.5702 | 4.0 | 28 | 0.6993 | 0.4286 | | 0.5389 | 5.0 | 35 | 0.6020 | 0.7143 | | 0.3386 | 6.0 | 42 | 0.5326 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.4943 | 0.7143 | | 0.1633 | 8.0 | 56 | 0.3589 | 0.8571 | | 0.1086 | 9.0 | 63 | 0.2924 | 0.8571 | | 0.0641 | 10.0 | 70 | 0.2687 | 0.8571 | | 0.0409 | 11.0 | 77 | 0.2202 | 0.8571 | | 0.0181 | 12.0 | 84 | 0.2445 | 0.8571 | | 0.0141 | 13.0 | 91 | 0.2885 | 0.8571 | | 0.0108 | 14.0 | 98 | 0.3069 | 0.8571 | | 0.009 | 15.0 | 105 | 0.3006 | 0.8571 | | 0.0084 | 16.0 | 112 | 0.2834 | 0.8571 | | 0.0088 | 17.0 | 119 | 0.2736 | 0.8571 | | 0.0062 | 18.0 | 126 | 0.2579 | 0.8571 | | 0.0058 | 19.0 | 133 | 0.2609 | 0.8571 | | 0.0057 | 20.0 | 140 | 0.2563 | 0.8571 | | 0.0049 | 21.0 | 147 | 0.2582 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-0
SetFit
2022-02-10T07:18:41Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.5091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 | | 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 | | 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 | | 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 | | 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 | | 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 | | 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 | | 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 | | 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 | | 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-8
SetFit
2022-02-10T07:16:33Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7061 | 1.0 | 3 | 0.6899 | 0.75 | | 0.6627 | 2.0 | 6 | 0.7026 | 0.25 | | 0.644 | 3.0 | 9 | 0.7158 | 0.25 | | 0.6087 | 4.0 | 12 | 0.7325 | 0.25 | | 0.5602 | 5.0 | 15 | 0.7555 | 0.25 | | 0.5034 | 6.0 | 18 | 0.7725 | 0.25 | | 0.4672 | 7.0 | 21 | 0.7983 | 0.25 | | 0.403 | 8.0 | 24 | 0.8314 | 0.25 | | 0.3571 | 9.0 | 27 | 0.8555 | 0.25 | | 0.2792 | 10.0 | 30 | 0.9065 | 0.25 | | 0.2373 | 11.0 | 33 | 0.9286 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-3
SetFit
2022-02-10T07:10:59Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6914 - Accuracy: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 3 | 0.7039 | 0.25 | | 0.6615 | 2.0 | 6 | 0.7186 | 0.25 | | 0.653 | 3.0 | 9 | 0.7334 | 0.25 | | 0.601 | 4.0 | 12 | 0.7592 | 0.25 | | 0.5555 | 5.0 | 15 | 0.7922 | 0.25 | | 0.4832 | 6.0 | 18 | 0.8179 | 0.25 | | 0.4565 | 7.0 | 21 | 0.8285 | 0.25 | | 0.3996 | 8.0 | 24 | 0.8559 | 0.25 | | 0.3681 | 9.0 | 27 | 0.8586 | 0.5 | | 0.2901 | 10.0 | 30 | 0.8646 | 0.5 | | 0.241 | 11.0 | 33 | 0.8524 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-1
SetFit
2022-02-10T07:09:19Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6930 - Accuracy: 0.5047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7082 | 1.0 | 3 | 0.7048 | 0.25 | | 0.6761 | 2.0 | 6 | 0.7249 | 0.25 | | 0.6653 | 3.0 | 9 | 0.7423 | 0.25 | | 0.6212 | 4.0 | 12 | 0.7727 | 0.25 | | 0.5932 | 5.0 | 15 | 0.8098 | 0.25 | | 0.5427 | 6.0 | 18 | 0.8496 | 0.25 | | 0.5146 | 7.0 | 21 | 0.8992 | 0.25 | | 0.4356 | 8.0 | 24 | 0.9494 | 0.25 | | 0.4275 | 9.0 | 27 | 0.9694 | 0.25 | | 0.3351 | 10.0 | 30 | 0.9968 | 0.25 | | 0.2812 | 11.0 | 33 | 1.0056 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
shoubhik/wav2vec2-xls-r-300m-hindi-lm
shoubhik
2022-02-10T06:24:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
wav2vec2-xls-r-300m-hindi-lm This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the 'Openslr Multilingual and code-switching ASR challenge' dataset and 'mozilla-foundation/common_voice_7_0' dataset. It achieves the following results on the evaluation set: With language model: WER: 0.3421149821494522 CER: 0.12281403517543969 With out language model: WER: 0.4642989043456851 CER: 0.15765197064963313 - robust-speech-event
speech-seq2seq/wav2vec2-2-bert-large
speech-seq2seq
2022-02-10T06:06:24Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "dataset:librispeech_asr", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 6.9670 - Wer: 1.9878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.7599 | 0.28 | 500 | 6.8755 | 1.2551 | | 6.5943 | 0.56 | 1000 | 6.7702 | 1.5878 | | 6.3146 | 0.84 | 1500 | 6.6981 | 1.6627 | | 6.6112 | 1.12 | 2000 | 6.6760 | 1.9853 | | 6.6894 | 1.4 | 2500 | 6.6323 | 1.9376 | | 6.5525 | 1.68 | 3000 | 6.6185 | 1.9383 | | 6.571 | 1.96 | 3500 | 6.6126 | 1.9580 | | 6.3363 | 2.24 | 4000 | 6.7869 | 1.9818 | | 6.5832 | 2.52 | 4500 | 6.9096 | 2.0025 | | 6.3523 | 2.8 | 5000 | 6.9670 | 1.9878 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
fznmhmmd/distilbert-base-uncased-finetuned-cola
fznmhmmd
2022-02-10T04:00:35Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5543972545286807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8273 - Matthews Correlation: 0.5544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5256 | 1.0 | 535 | 0.5419 | 0.4248 | | 0.3486 | 2.0 | 1070 | 0.5187 | 0.4999 | | 0.2406 | 3.0 | 1605 | 0.6580 | 0.5054 | | 0.1692 | 4.0 | 2140 | 0.7455 | 0.5403 | | 0.1343 | 5.0 | 2675 | 0.8273 | 0.5544 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
fznmhmmd/bert-base-cased-wikitext2
fznmhmmd
2022-02-10T00:37:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0964 | 1.0 | 2346 | 7.0532 | | 6.9055 | 2.0 | 4692 | 6.8710 | | 6.8574 | 3.0 | 7038 | 6.8917 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Crives/distilbert-base-uncased-finetuned-emotion
Crives
2022-02-09T22:08:11Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215538311282218 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7814 | 1.0 | 250 | 0.3105 | 0.907 | 0.9046 | | 0.2401 | 2.0 | 500 | 0.2175 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-9
SetFit
2022-02-09T20:34:07Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4865 - Accuracy: 0.778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7024 | 1.0 | 3 | 0.6843 | 0.75 | | 0.67 | 2.0 | 6 | 0.6807 | 0.5 | | 0.6371 | 3.0 | 9 | 0.6677 | 0.5 | | 0.585 | 4.0 | 12 | 0.6649 | 0.5 | | 0.5122 | 5.0 | 15 | 0.6707 | 0.5 | | 0.4379 | 6.0 | 18 | 0.6660 | 0.5 | | 0.4035 | 7.0 | 21 | 0.6666 | 0.5 | | 0.323 | 8.0 | 24 | 0.6672 | 0.5 | | 0.2841 | 9.0 | 27 | 0.6534 | 0.5 | | 0.21 | 10.0 | 30 | 0.6456 | 0.5 | | 0.1735 | 11.0 | 33 | 0.6325 | 0.5 | | 0.133 | 12.0 | 36 | 0.6214 | 0.5 | | 0.0986 | 13.0 | 39 | 0.6351 | 0.5 | | 0.081 | 14.0 | 42 | 0.6495 | 0.5 | | 0.0638 | 15.0 | 45 | 0.6671 | 0.5 | | 0.0449 | 16.0 | 48 | 0.7156 | 0.5 | | 0.0399 | 17.0 | 51 | 0.7608 | 0.5 | | 0.0314 | 18.0 | 54 | 0.7796 | 0.5 | | 0.0243 | 19.0 | 57 | 0.7789 | 0.5 | | 0.0227 | 20.0 | 60 | 0.7684 | 0.5 | | 0.0221 | 21.0 | 63 | 0.7628 | 0.5 | | 0.0192 | 22.0 | 66 | 0.7728 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-7
SetFit
2022-02-09T20:30:48Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7044 | 1.0 | 3 | 0.6909 | 0.5 | | 0.6678 | 2.0 | 6 | 0.6901 | 0.5 | | 0.6336 | 3.0 | 9 | 0.6807 | 0.5 | | 0.5926 | 4.0 | 12 | 0.6726 | 0.5 | | 0.5221 | 5.0 | 15 | 0.6648 | 0.5 | | 0.4573 | 6.0 | 18 | 0.6470 | 0.5 | | 0.4177 | 7.0 | 21 | 0.6251 | 0.5 | | 0.3252 | 8.0 | 24 | 0.5994 | 0.5 | | 0.2831 | 9.0 | 27 | 0.5529 | 0.5 | | 0.213 | 10.0 | 30 | 0.5078 | 0.75 | | 0.1808 | 11.0 | 33 | 0.4521 | 1.0 | | 0.1355 | 12.0 | 36 | 0.3996 | 1.0 | | 0.1027 | 13.0 | 39 | 0.3557 | 1.0 | | 0.0862 | 14.0 | 42 | 0.3121 | 1.0 | | 0.0682 | 15.0 | 45 | 0.2828 | 1.0 | | 0.0517 | 16.0 | 48 | 0.2603 | 1.0 | | 0.0466 | 17.0 | 51 | 0.2412 | 1.0 | | 0.038 | 18.0 | 54 | 0.2241 | 1.0 | | 0.0276 | 19.0 | 57 | 0.2096 | 1.0 | | 0.0246 | 20.0 | 60 | 0.1969 | 1.0 | | 0.0249 | 21.0 | 63 | 0.1859 | 1.0 | | 0.0201 | 22.0 | 66 | 0.1770 | 1.0 | | 0.018 | 23.0 | 69 | 0.1703 | 1.0 | | 0.0164 | 24.0 | 72 | 0.1670 | 1.0 | | 0.0172 | 25.0 | 75 | 0.1639 | 1.0 | | 0.0135 | 26.0 | 78 | 0.1604 | 1.0 | | 0.014 | 27.0 | 81 | 0.1585 | 1.0 | | 0.0108 | 28.0 | 84 | 0.1569 | 1.0 | | 0.0116 | 29.0 | 87 | 0.1549 | 1.0 | | 0.0111 | 30.0 | 90 | 0.1532 | 1.0 | | 0.0113 | 31.0 | 93 | 0.1513 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1503 | 1.0 | | 0.01 | 33.0 | 99 | 0.1490 | 1.0 | | 0.0079 | 34.0 | 102 | 0.1479 | 1.0 | | 0.0097 | 35.0 | 105 | 0.1466 | 1.0 | | 0.0112 | 36.0 | 108 | 0.1458 | 1.0 | | 0.0091 | 37.0 | 111 | 0.1457 | 1.0 | | 0.0098 | 38.0 | 114 | 0.1454 | 1.0 | | 0.0076 | 39.0 | 117 | 0.1451 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1448 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1445 | 1.0 | | 0.0096 | 42.0 | 126 | 0.1440 | 1.0 | | 0.0081 | 43.0 | 129 | 0.1430 | 1.0 | | 0.0083 | 44.0 | 132 | 0.1424 | 1.0 | | 0.0088 | 45.0 | 135 | 0.1418 | 1.0 | | 0.0077 | 46.0 | 138 | 0.1414 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1413 | 1.0 | | 0.0084 | 48.0 | 144 | 0.1412 | 1.0 | | 0.0072 | 49.0 | 147 | 0.1411 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1411 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-6
SetFit
2022-02-09T20:28:41Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 - Accuracy: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6923 | 0.5 | | 0.6648 | 2.0 | 6 | 0.6838 | 0.5 | | 0.6329 | 3.0 | 9 | 0.6747 | 0.75 | | 0.5836 | 4.0 | 12 | 0.6693 | 0.5 | | 0.5287 | 5.0 | 15 | 0.6670 | 0.25 | | 0.4585 | 6.0 | 18 | 0.6517 | 0.5 | | 0.415 | 7.0 | 21 | 0.6290 | 0.5 | | 0.3353 | 8.0 | 24 | 0.6019 | 0.5 | | 0.2841 | 9.0 | 27 | 0.5613 | 0.75 | | 0.2203 | 10.0 | 30 | 0.5222 | 1.0 | | 0.1743 | 11.0 | 33 | 0.4769 | 1.0 | | 0.1444 | 12.0 | 36 | 0.4597 | 1.0 | | 0.1079 | 13.0 | 39 | 0.4462 | 1.0 | | 0.0891 | 14.0 | 42 | 0.4216 | 1.0 | | 0.0704 | 15.0 | 45 | 0.3880 | 1.0 | | 0.0505 | 16.0 | 48 | 0.3663 | 1.0 | | 0.0428 | 17.0 | 51 | 0.3536 | 1.0 | | 0.0356 | 18.0 | 54 | 0.3490 | 1.0 | | 0.0283 | 19.0 | 57 | 0.3531 | 1.0 | | 0.025 | 20.0 | 60 | 0.3595 | 1.0 | | 0.0239 | 21.0 | 63 | 0.3594 | 1.0 | | 0.0202 | 22.0 | 66 | 0.3521 | 1.0 | | 0.0168 | 23.0 | 69 | 0.3475 | 1.0 | | 0.0159 | 24.0 | 72 | 0.3458 | 1.0 | | 0.0164 | 25.0 | 75 | 0.3409 | 1.0 | | 0.0132 | 26.0 | 78 | 0.3360 | 1.0 | | 0.0137 | 27.0 | 81 | 0.3302 | 1.0 | | 0.0112 | 28.0 | 84 | 0.3235 | 1.0 | | 0.0113 | 29.0 | 87 | 0.3178 | 1.0 | | 0.0111 | 30.0 | 90 | 0.3159 | 1.0 | | 0.0113 | 31.0 | 93 | 0.3108 | 1.0 | | 0.0107 | 32.0 | 96 | 0.3101 | 1.0 | | 0.0101 | 33.0 | 99 | 0.3100 | 1.0 | | 0.0083 | 34.0 | 102 | 0.3110 | 1.0 | | 0.0092 | 35.0 | 105 | 0.3117 | 1.0 | | 0.0102 | 36.0 | 108 | 0.3104 | 1.0 | | 0.0086 | 37.0 | 111 | 0.3086 | 1.0 | | 0.0092 | 38.0 | 114 | 0.3047 | 1.0 | | 0.0072 | 39.0 | 117 | 0.3024 | 1.0 | | 0.0079 | 40.0 | 120 | 0.3014 | 1.0 | | 0.0079 | 41.0 | 123 | 0.2983 | 1.0 | | 0.0091 | 42.0 | 126 | 0.2948 | 1.0 | | 0.0077 | 43.0 | 129 | 0.2915 | 1.0 | | 0.0085 | 44.0 | 132 | 0.2890 | 1.0 | | 0.009 | 45.0 | 135 | 0.2870 | 1.0 | | 0.0073 | 46.0 | 138 | 0.2856 | 1.0 | | 0.0073 | 47.0 | 141 | 0.2844 | 1.0 | | 0.0076 | 48.0 | 144 | 0.2841 | 1.0 | | 0.0065 | 49.0 | 147 | 0.2836 | 1.0 | | 0.0081 | 50.0 | 150 | 0.2835 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-2
SetFit
2022-02-09T20:21:28Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-1
SetFit
2022-02-09T20:19:28Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.703 | 1.0 | 3 | 0.6906 | 0.5 | | 0.666 | 2.0 | 6 | 0.6945 | 0.25 | | 0.63 | 3.0 | 9 | 0.6885 | 0.5 | | 0.588 | 4.0 | 12 | 0.6888 | 0.25 | | 0.5181 | 5.0 | 15 | 0.6899 | 0.25 | | 0.4508 | 6.0 | 18 | 0.6770 | 0.5 | | 0.4025 | 7.0 | 21 | 0.6579 | 0.5 | | 0.3361 | 8.0 | 24 | 0.6392 | 0.5 | | 0.2919 | 9.0 | 27 | 0.6113 | 0.5 | | 0.2151 | 10.0 | 30 | 0.5774 | 0.75 | | 0.1728 | 11.0 | 33 | 0.5248 | 0.75 | | 0.1313 | 12.0 | 36 | 0.4824 | 0.75 | | 0.1046 | 13.0 | 39 | 0.4456 | 0.75 | | 0.0858 | 14.0 | 42 | 0.4076 | 0.75 | | 0.0679 | 15.0 | 45 | 0.3755 | 0.75 | | 0.0485 | 16.0 | 48 | 0.3422 | 0.75 | | 0.0416 | 17.0 | 51 | 0.3055 | 0.75 | | 0.0358 | 18.0 | 54 | 0.2731 | 1.0 | | 0.0277 | 19.0 | 57 | 0.2443 | 1.0 | | 0.0234 | 20.0 | 60 | 0.2187 | 1.0 | | 0.0223 | 21.0 | 63 | 0.1960 | 1.0 | | 0.0187 | 22.0 | 66 | 0.1762 | 1.0 | | 0.017 | 23.0 | 69 | 0.1629 | 1.0 | | 0.0154 | 24.0 | 72 | 0.1543 | 1.0 | | 0.0164 | 25.0 | 75 | 0.1476 | 1.0 | | 0.0131 | 26.0 | 78 | 0.1423 | 1.0 | | 0.0139 | 27.0 | 81 | 0.1387 | 1.0 | | 0.0107 | 28.0 | 84 | 0.1360 | 1.0 | | 0.0108 | 29.0 | 87 | 0.1331 | 1.0 | | 0.0105 | 30.0 | 90 | 0.1308 | 1.0 | | 0.0106 | 31.0 | 93 | 0.1276 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1267 | 1.0 | | 0.0095 | 33.0 | 99 | 0.1255 | 1.0 | | 0.0076 | 34.0 | 102 | 0.1243 | 1.0 | | 0.0094 | 35.0 | 105 | 0.1235 | 1.0 | | 0.0103 | 36.0 | 108 | 0.1228 | 1.0 | | 0.0086 | 37.0 | 111 | 0.1231 | 1.0 | | 0.0094 | 38.0 | 114 | 0.1236 | 1.0 | | 0.0074 | 39.0 | 117 | 0.1240 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1246 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1253 | 1.0 | | 0.0088 | 42.0 | 126 | 0.1248 | 1.0 | | 0.0082 | 43.0 | 129 | 0.1244 | 1.0 | | 0.0082 | 44.0 | 132 | 0.1234 | 1.0 | | 0.0082 | 45.0 | 135 | 0.1223 | 1.0 | | 0.0071 | 46.0 | 138 | 0.1212 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1208 | 1.0 | | 0.0081 | 48.0 | 144 | 0.1205 | 1.0 | | 0.0067 | 49.0 | 147 | 0.1202 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1202 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Maunish/ecomm-sbert
Maunish
2022-02-09T17:47:29Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
justin871030/bert-base-uncased-goemotions-group-finetuned
justin871030
2022-02-09T17:22:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "go-emotion", "text-classification", "en", "dataset:go_emotions", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - go-emotion - text-classification - pytorch datasets: - go_emotions metrics: - f1 widget: - text: "Thanks for giving advice to the people who need it! 👌🙏" license: mit --- ## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of `Macro F1` - 70% ## Tutorial Link - [GitHub](https://github.com/justin871030/GoEmotions)
justin871030/bert-base-uncased-goemotions-original-finetuned
justin871030
2022-02-09T17:17:55Z
5
0
transformers
[ "transformers", "pytorch", "bert", "go-emotion", "text-classification", "en", "dataset:go_emotions", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - go-emotion - text-classification - pytorch datasets: - go_emotions metrics: - f1 widget: - text: "Thanks for giving advice to the people who need it! 👌🙏" license: mit --- ## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of `Macro F1` - 53% ## Tutorial Link - [GitHub](https://github.com/justin871030/GoEmotions)
huggingtweets/man24car
huggingtweets
2022-02-09T16:06:17Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/man24car/1644422772686/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475950695329275905/8MOXbfHE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FastCarMan24</div> <div style="text-align: center; font-size: 14px;">@man24car</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from FastCarMan24. | Data | FastCarMan24 | | --- | --- | | Tweets downloaded | 860 | | Retweets | 211 | | Short tweets | 159 | | Tweets kept | 490 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oq7rh5p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @man24car's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19d4nhfe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19d4nhfe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/man24car') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
am-shb/xlm-roberta-base-pretrained
am-shb
2022-02-09T15:53:08Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 4 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
fznmhmmd/gpt2-wikitext2
fznmhmmd
2022-02-09T15:44:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5571 | 1.0 | 2249 | 6.4684 | | 6.1921 | 2.0 | 4498 | 6.1984 | | 6.0016 | 3.0 | 6747 | 6.1112 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/SAE-bert-base-uncased
jgammack
2022-02-09T15:33:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SAE-bert-base-uncased results: [] widget: - text: "Wind [MASK] was detected coming from the car door closure system." example_title: "Closure system" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [jgammack/SAE-door-abstracts](https://huggingface.co/datasets/jgammack/SAE-door-abstracts) dataset. It achieves the following results on the evaluation set: - Loss: 2.1256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5967 | 1.0 | 80 | 2.3409 | | 2.4881 | 2.0 | 160 | 2.2707 | | 2.3567 | 3.0 | 240 | 2.3134 | | 2.3413 | 4.0 | 320 | 2.2592 | | 2.3006 | 5.0 | 400 | 2.2351 | | 2.2568 | 6.0 | 480 | 2.2556 | | 2.2303 | 7.0 | 560 | 2.2546 | | 2.1892 | 8.0 | 640 | 2.1868 | | 2.1851 | 9.0 | 720 | 2.2073 | | 2.1738 | 10.0 | 800 | 2.1344 | | 2.1673 | 11.0 | 880 | 2.1927 | | 2.1518 | 12.0 | 960 | 2.1844 | | 2.1142 | 13.0 | 1040 | 2.1466 | | 2.1343 | 14.0 | 1120 | 2.2024 | | 2.1332 | 15.0 | 1200 | 2.1035 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
victen/xlm-roberta-base-finetuned-panx-de
victen
2022-02-09T10:49:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ArBert/bert-base-uncased-finetuned-ner
ArBert
2022-02-09T10:46:38Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0905 - Precision: 0.9068 - Recall: 0.9200 - F1: 0.9133 - Accuracy: 0.9787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1266 | 1.0 | 1123 | 0.0952 | 0.8939 | 0.8869 | 0.8904 | 0.9742 | | 0.0741 | 2.0 | 2246 | 0.0866 | 0.8936 | 0.9247 | 0.9089 | 0.9774 | | 0.0496 | 3.0 | 3369 | 0.0905 | 0.9068 | 0.9200 | 0.9133 | 0.9787 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
youzanai/clip-product-title-chinese
youzanai
2022-02-09T08:59:51Z
12
9
transformers
[ "transformers", "pytorch", "clip_chinese_model", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
<!-- * @Description: * @Version: * @Author: Hardy * @Date: 2022-02-09 15:13:53 * @LastEditors: Hardy * @LastEditTime: 2022-02-09 16:59:01 --> <br /> <p align="center"> <h1 align="center">clip-product-title-chinese</h1> </p> ## 基于有赞商品图片和标题语料训练的clip模型。 ## Usage 使用模型前,请 git clone https://github.com/youzanai/trexpark.git ```python import torch from src.clip.clip import ClipProcesserChinese, ClipChineseModel import requests from PIL import Image clip_processor = ClipProcesserChinese.from_pretrained('youzanai/clip-product-title-chinese') model = ClipChineseModel.from_pretrained('youzanai/clip-product-title-chinese') url = 'http://img.yzcdn.cn/upload_files/2015/04/21/0140dac4657f874f2acff9294b28088c.jpg' img = Image.open(requests.get(url, stream=True).raw).convert('RGB') imgs = [img] texts = ['运动鞋', '红色连衣裙', '黑色连衣裙', '大衣', '文具'] f = clip_processor(texts, imgs, return_tensors='pt', truncation=True, padding=True) del f['token_type_ids'] with torch.no_grad(): out = model(**f) logits_per_image, logits_per_text = out['logits_per_image'], out['logits_per_text'] print(logits_per_image.softmax(dim=-1).cpu().detach().numpy()) # 结果: [[1.1700666e-07 9.9948394e-01 5.1582896e-04 4.7687358e-11 6.9604440e-08]] ```
Duael/RRHood
Duael
2022-02-09T04:54:18Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-02T23:29:04Z
--- license: artistic-2.0 ---
Sense-X/uniformer_video
Sense-X
2022-02-09T03:49:34Z
0
5
null
[ "vision", "video-classification", "dataset:kinetics-400", "dataset:kinetics-600", "dataset:something-something-v1", "dataset:something-something-v2", "arxiv:2201.04676", "license:mit", "region:us" ]
video-classification
2022-03-02T23:29:04Z
--- license: mit tags: - vision - video-classification datasets: - kinetics-400 - kinetics-600 - something-something-v1 - something-something-v2 --- # UniFormer (video model) UniFormer models are trained on [Kinetics](https://deepmind.com/research/open-source/kinetics) and [Something-Something](https://20bn.com/datasets/something-something) at resolution 224x224. It was introduced in the paper [UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning](https://arxiv.org/abs/2201.04676) by Li et al, and first released in [this repository](https://github.com/Sense-X/UniFormer). ## Model description The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format. It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation. Without any extra training data, UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600, and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks. It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task, **50.8** mIoU on ADE20K semantic segmentation task, and **77.4** AP on COCO pose estimation task. ![teaser](framework.png) [Source](https://paperswithcode.com/paper/uniformer-unified-transformer-for-efficient) ## Intended uses & limitations You can use the raw model for video classification. We now only upload the powerful models with **single clip**. More models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/video_classification). ### Kinetics | Model | #Frame | Sampling Stride | FLOPs | K400 Top-1 | K600 Top-1 | | ----------- | ------ | --------------- | ----- | ---------- | ---------- | | UniFormer-S | 16x1x1 | 8 | 41.8G | 78.4 | 80.8 | | UniFormer-B | 16x1x1 | 8 | 96.7G | 79.3 | 81.7 | | UniFormer-B | 32x1x1 | 4 | 259G | 80.9 | 82.4 | ### Something-Something | Model | #Frame | FLOPs | SSV1 Top-1 | SSV2 Top-1 | | ----------- | ------ | ----- | ---------- | ---------- | | UniFormer-S | 16x1x1 | 41.8G | 54.4 | 65.0 | | UniFormer-B | 32x1x1 | 259G | 58.0 | 67.5 | ### How to use You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_video_demo/tree/main) to use our models. ```python from uniformer import uniformer_small from kinetics_class_index import kinetics_classnames model = uniformer_small() # load state model_path = hf_hub_download(repo_id="Sense-X/uniformer_video", filename="uniformer_small_k400_16x8.pth") state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict) # set to eval mode model = model.to(device) model = model.eval() # please refer to the following url to process video of Kinetics: # https://huggingface.co/spaces/Sense-X/uniformer_video_demo/blob/main/app.py vid = load_video(video) # model predicts one of the 400 Kintics classes prediction = model(vid) predicted_class_idx = prediction.flatten().argmax(-1).item() print("Predicted class:", kinetics_classnames[str(predicted_class_idx)]) ``` ### BibTeX entry and citation info ```bibtex @misc{li2022uniformer, title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao}, year={2022}, eprint={2201.04676}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
thyagosme/gpt2-wikitext2
thyagosme
2022-02-09T03:17:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5576 | 1.0 | 2249 | 6.4681 | | 6.1905 | 2.0 | 4498 | 6.1976 | | 6.0005 | 3.0 | 6747 | 6.1095 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt
vuiseng9
2022-02-08T22:58:30Z
3
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 2. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.7001 eval_f1 = 87.9777 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt/raw/main/nncf_bert_squad_qat.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-26750 \ --nncf_config $MODELROOT/nncf_bert_squad_qat.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` ### tile-alignment to evaluate tile-alignment checkpoint, add ```--tile_alignment``` and point ```--qat_checkpoint``` to checkpoint with 'tilealigned' postfix. Use branch ```tld-poc``` with commit id ```c525c52cq```
jgammack/MTL-bert-base-uncased-ww-squad
jgammack
2022-02-08T22:16:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: MTL-bert-base-uncased-ww-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-bert-base-uncased-ww-squad This model is a fine-tuned version of [jgammack/MTL-bert-base-uncased-ww](https://huggingface.co/jgammack/MTL-bert-base-uncased-ww) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
kSaluja/autonlp-tele_new_5k-557515810
kSaluja
2022-02-08T20:58:51Z
4
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "en", "dataset:kSaluja/autonlp-data-tele_new_5k", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kSaluja/autonlp-data-tele_new_5k co2_eq_emissions: 2.96638567287195 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 557515810 - CO2 Emissions (in grams): 2.96638567287195 ## Validation Metrics - Loss: 0.12897901237010956 - Accuracy: 0.9713212700580403 - Precision: 0.9475614228089475 - Recall: 0.96274217585693 - F1: 0.9550914803178709 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_new_5k-557515810 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Mofe/speech-sprint-test
Mofe
2022-02-08T18:32:00Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 207.6065 - Wer: 1.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug
espnet
2022-02-08T18:13:51Z
2
1
espnet
[ "espnet", "audio", "speech-translation", "dataset:iwslt22_dialect", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - espnet - audio - speech-translation language: noinfo datasets: - iwslt22_dialect license: cc-by-4.0 --- ## ESPnet2 ST model ### `espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug` This model was trained by Brian Yan using iwslt22_dialect recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 77fce65312877a132bbae01917ad26b74f6e2e14 pip install -e . cd egs2/iwslt22_dialect/st1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_iwslt22_dialect_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug ``` <!-- Generated by scripts/utils/show_st_results.sh --> # RESULTS ## Environments - date: `Tue Feb 8 12:54:12 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1` - Git hash: `77fce65312877a132bbae01917ad26b74f6e2e14` - Commit date: `Tue Feb 8 10:48:10 2022 -0500` ## st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ### BLEU |dataset|bleu_score|verbose_score| |---|---|---| pen2_st_model_valid.acc.ave|13.9|44.0/21.8/11.4/6.2 (BP = 0.859 ratio = 0.868 hyp_len = 36614 ref_len = 42181) ## ST config <details><summary>expand</summary> ``` config: conf/tuning/train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/st_train_st_conformer_ctc0.3_lr2e-3_warmup15k_newspecaug_raw_bpe_tc1000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 80 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: true freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 25000000 valid_batch_bins: null train_shape_file: - exp/st_stats_raw_bpe1000_sp/train/speech_shape - exp/st_stats_raw_bpe1000_sp/train/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/train/src_text_shape.bpe valid_shape_file: - exp/st_stats_raw_bpe1000_sp/valid/speech_shape - exp/st_stats_raw_bpe1000_sp/valid/text_shape.bpe - exp/st_stats_raw_bpe1000_sp/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text.tc.en - text - text - - dump/raw/train_sp/text.tc.rm.ta - src_text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text.tc.en - text - text - - dump/raw/dev/text.tc.rm.ta - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - s - ▁ - apo - '&' - ; - ▁i - ▁you - t - ▁it - ▁the - ▁and - ▁to - ▁that - ▁a - n - a - ▁he - ▁me - m - d - ▁yes - ▁she - ▁no - ▁in - ▁what - ▁for - ▁we - ing - ll - ▁they - re - ▁are - ▁did - ▁god - ▁is - e - ed - ▁so - ▁her - ▁do - ▁have - ▁of - ▁with - ▁go - ▁know - ▁not - ▁was - ▁on - ▁don - y - ▁him - ▁one - ▁like - ▁there - '%' - ▁pw - ▁be - ▁at - ▁told - ▁good - ▁will - ▁my - ▁all - ▁or - c - er - p - ▁how - ▁ah - r - ▁but - ▁them - ▁see - ▁get - ▁can - i - ▁when - ▁going - ▁about - ▁mean - ▁this - k - ▁your - ▁by - ▁if - u - ▁come - ▁up - ▁tell - g - ▁said - ▁then - ▁now - ▁yeah - o - ▁out - al - ra - ▁because - ▁time - ▁well - ▁would - ▁p - ▁from - h - ar - f - ▁swear - ▁went - b - ▁really - or - ▁want - ri - ▁home - ▁work - ve - ▁take - ▁got - ▁just - l - ▁uh - ▁why - en - ▁even - ▁am - ▁who - ▁make - ▁day - '-' - in - ▁something - ▁some - ou - ▁us - ▁okay - ▁where - ▁does - ▁has - ▁thank - ▁c - ▁his - th - ▁back - ▁fine - ▁today - ly - ▁b - ▁oh - ▁doing - ▁everything - ▁here - le - ▁thing - ▁two - ▁anyway - li - ▁had - ▁still - ▁say - ro - ▁after - ce - ▁hello - ▁ma - ▁call - w - ▁listen - il - ▁should - ▁girl - ▁f - z - ▁too - ▁let - ▁understand - ▁may - ▁much - ▁think - ch - ir - ha - ▁other - ▁tomorrow - ▁were - ▁people - es - ▁year - di - ba - ▁right - el - ▁things - ▁house - v - ▁actually - un - ▁an - ▁give - ▁only - ▁better - pe - ▁need - ▁buy - ▁de - ne - ▁ha - ur - ion - ▁made - la - ▁willing - ▁nothing - ▁called - ▁night - ▁yesterday - se - ▁came - ▁lot - ter - ▁g - po - ▁find - ry - ▁car - ▁over - ic - ▁stay - ▁eat - ent - ▁always - ▁very - 'on' - ▁put - ▁ramadan - ▁those - ▁hear - is - ▁talk - ▁three - ▁anything - ▁mo - ▁little - ▁been - ▁already - fi - ation - ke - ▁first - ▁look - it - ▁won - ▁mom - ▁way - ▁before - ▁ok - ▁last - fa - ▁cook - vi - ▁hi - ▁same - ▁thought - ▁also - um - ate - ▁money - ▁start - ▁place - us - ▁morning - ▁could - ▁ask - ▁bring - ▁bit - ▁lo - ▁leave - ▁man - ▁left - ine - ▁days - ge - ▁la - ▁week - ▁friend - ▁problem - ▁sister - ▁allah - ▁feel - ▁every - ▁more - fe - ▁long - ▁hundred - ▁j - ▁eh - ho - ca - em - ▁talking - ▁exam - ▁next - ▁new - ▁fun - ▁took - ▁alright - co - ▁w - ▁um - ▁eid - ▁brother - ▁our - gh - ow - ▁o - ▁four - ni - wa - ▁else - ▁finish - bo - ▁sleep - ▁bless - ▁dear - ▁since - ▁play - ▁name - hi - ▁coming - ▁many - et - ▁usual - ▁con - ▁maybe - ▁off - bi - ▁than - ▁any - ▁mother - ▁son - om - ▁their - ▁keep - ▁dinner - ▁ten - ▁half - ▁help - ▁bad - and - ▁pass - ▁hot - ▁guy - ▁least - ▁down - ▁bought - ▁dinars - ▁working - ▁around - ▁normal - ▁poor - ▁stuff - ▁hope - ▁used - ▁again - ▁bro - ul - ▁phone - ▁ex - ▁done - ▁six - ▁na - ▁month - ▁tired - ▁check - ▁show - ▁together - oo - ▁later - ▁past - ▁five - ▁watch - ya - ▁coffee - ment - ut - ▁plan - ▁great - ▁daughter - j - ▁another - side - ▁change - ▁yet - ting - ▁until - ▁honestly - ▁whole - ol - ▁care - ▁sure - able - id - ▁big - ▁spend - ▁exactly - ▁boy - ▁course - ▁end - ▁please - ▁started - he - up - ▁found - ▁saw - ▁family - ▁asked - ▁enough - ▁during - ▁rest - ▁which - ▁gave - ▁true - ▁while - ▁job - ▁el - ▁each - ▁away - ▁kids - ▁goes - less - ▁twenty - ▁eight - ▁someone - ▁cha - ▁clothes - ah - ▁myself - ▁nice - ▁late - ▁old - ▁real - age - ant - ▁fast - ▁add - ▁hard - ▁these - ful - im - ▁close - ive - ▁dad - ▁pay - ies - ▁dude - ▁alone - ▁far - ance - ▁dis - ▁seven - ▁isn - ▁pro - our - ▁thousand - ▁break - ▁hour - ▁wait - ▁brought - ▁open - ▁un - ▁wedding - ▁walk - ▁father - ▁ka - ▁second - x - ▁saturday - ▁salad - ▁win - ▁everyone - ▁water - ▁tunis - ▁remember - ity - ▁wake - ▁minute - ▁school - ▁sunday - ▁own - ▁shop - ▁cold - ▁meet - ▁wear - ever - ▁send - ▁early - ▁gra - tic - ▁short - ▁use - ▁sometimes - hou - ▁love - ▁prepare - ▁sea - ▁study - ure - ▁com - qui - ▁hand - ▁both - ja - ▁summer - ▁wrong - ▁wanted - che - ▁miss - ▁try - ▁iftar - ▁yourself - q - ▁live - war - ▁expensive - ▁getting - ▁waiting - ▁once - ▁kh - ▁forgot - ▁nine - ▁anymore - ▁soup - ▁uncle - ▁beach - ▁saying - ▁into - ▁having - ▁brik - ▁room - ▁food - ▁visit - ▁matter - ▁thirty - ▁taking - ▁rain - ▁aunt - ▁never - ▁pick - ▁tunisia - ▁health - ▁head - ▁cut - ▁fasting - ▁sick - ▁friday - ▁forget - ▁monday - ▁become - ▁dress - ated - ▁most - wi - ▁hang - ▁life - ▁fish - ▁happy - ▁delicious - ▁deal - ▁finished - ble - ▁studying - ▁weather - ▁making - ▁cost - ▁bl - ▁stayed - ▁guess - ▁teach - ▁stop - ▁near - ▁watching - ▁without - ▁imagine - ▁seriously - fl - ▁speak - ▁idea - ▁must - ▁normally - ▁turn - ize - ▁clean - ▁tv - ▁meat - ▁woke - ▁example - ▁easy - ▁sent - ▁sell - over - ▁fifty - ▁amazing - ▁beautiful - ▁whatever - ▁enjoy - ▁talked - ▁believe - ▁thinking - ▁count - ▁almost - ▁longer - ▁afternoon - ▁hair - ▁front - ▁earlier - ▁mind - ▁kind - ▁tea - ▁best - ▁rent - ▁picture - ▁cooked - ▁price - ight - ▁soon - ▁woman - ▁otherwise - ▁happened - ▁story - ▁luck - ▁high - ▁happen - ▁arrive - ▁paper - ga - ▁quickly - ▁looking - ub - ▁number - ▁staying - ▁sit - man - ack - ▁important - ▁either - ▁person - ▁small - ▁free - ▁crazy - ▁playing - ▁kept - ▁part - ▁game - law - ▁till - uck - ▁ready - ▁might - ▁gone - ▁full - ▁fix - ▁subject - ▁laugh - ▁doctor - ▁welcome - ▁eleven - ▁sleeping - ▁heat - ▁probably - ▁such - ▁café - ▁fat - ▁sweet - ▁married - ▁drink - ▁move - ▁outside - ▁especially - ▁group - ji - ▁market - ▁through - ▁train - ▁protect - ▁turned - ▁red - ▁busy - ▁light - ▁noise - ▁street - ▁manage - ▁piece - ▁sitting - gue - ▁sake - ▁party - ish - ▁young - ▁case - ▁cool - huh - ▁marwa - ▁drive - ▁pray - clock - ▁couscous - ▁spent - ▁felt - ▁hopefully - ▁everybody - ▁living - ▁pain - line - ▁between - ▁match - ▁prayer - que - ian - ▁facebook - ▁spi - ▁eye - ▁children - ▁tonight - ▁mohamed - ▁understood - ▁black - ▁husband - ▁rid - ▁kitchen - ▁face - ▁swim - ▁kid - ▁invite - ▁cup - ▁grilled - ▁wife - ▁cousin - ▁drop - ▁wow - ▁table - ▁du - ▁bored - ▁neighborhood - ▁agree - ▁bread - ▁hamma - ▁straight - ▁tuesday - ▁anyone - ▁lunch - ade - ▁himself - ▁gather - ▁wish - ▁fifteen - ▁wednesday - ▁die - ▁thursday - ▁color - ▁asleep - ▁different - ▁whether - ▁ago - ▁middle - ▁class - ▁cake - shirt - ▁fight - ▁clear - ▁test - ▁plus - ▁sousse - ▁beginning - ▁result - ▁learn - ▁crowded - ▁slept - ▁shoes - ▁august - ▁pretty - ▁white - ▁apparently - ▁reach - ▁mariem - ▁return - ▁road - ▁million - ▁stand - ▁paid - ▁word - ious - ▁few - ▁breakfast - ▁post - ▁kilo - ▁chicken - ▁grade - ▁read - ▁accept - ▁birthday - ▁exhaust - ▁point - ▁july - ▁patience - ▁studies - ▁trouble - ▁along - ▁worry - ▁follow - ▁hurt - ▁afraid - ▁trip - ▁ahmed - ▁remain - ▁succeed - ▁mercy - ▁difficult - ▁weekend - ▁answer - ▁cheap - ▁repeat - ▁auntie - ▁sign - ▁hold - ▁under - ▁olive - ▁mahdi - ▁sfax - ▁annoy - ▁dishes - ▁message - ▁business - ▁french - ▁serious - ▁travel - ▁office - ▁wonder - ▁student - ▁internship - ▁pepper - ▁knew - ▁kill - ▁sauce - ▁herself - ▁hammamet - ▁damn - ▁mix - ▁suit - ▁medicine - ▁remove - ▁gonna - ▁company - ▁quarter - ▁shopping - ▁correct - ▁throw - ▁grow - ▁voice - ▁series - gotten - ▁taste - ▁driving - ▁hospital - ▁sorry - ▁aziz - ▁milk - ▁green - ▁baccalaureate - ▁running - ▁lord - ▁explain - ▁angry - ▁build - ▁fruit - ▁photo - é - ▁crying - ▁baby - ▁store - ▁project - ▁france - ▁twelve - ▁decide - ▁swimming - ▁world - ▁preparing - ▁special - ▁session - ▁behind - ▁vegetable - ▁strong - ▁fatma - ▁treat - ▁cream - ▁situation - ▁settle - ▁totally - ▁stopped - ▁book - ▁honest - ▁solution - ▁vacation - ▁cheese - ▁ahead - ▁sami - ▁focus - ▁scared - ▁club - ▁consider - ▁final - ▁naturally - ▁barely - ▁issue - ▁floor - ▁birth - ▁almighty - ▁engagement - ▁blue - ▁empty - ▁soccer - ▁prophet - ▁ticket - ▁indeed - ▁write - ▁present - ▁patient - ▁available - ▁holiday - ▁leaving - ▁became - ▁reason - ▁apart - ▁impossible - ▁shame - ▁worried - ▁body - ▁continue - ▁program - ▁stress - ▁arabic - ▁round - ▁taxi - ▁transport - ▁third - ▁certain - ▁downstairs - ▁neighbor - ▁directly - ▁giving - ▁june - ▁mini - ▁upstairs - ▁mistake - ▁period - ▁catch - ▁buddy - ▁success - ▁tajine - ▁excuse - ▁organize - ▁question - ▁suffer - ▁remind - ▁university - ▁downtown - ▁sugar - ▁twice - ▁women - ▁couple - ▁everyday - ▁condition - ▁obvious - ▁nobody - ▁complete - ▁stomach - ▁account - ▁september - ▁choose - ▁bottle - ▁figure - ▁instead - ▁salary - '0' - '1' - '3' - '2' - '5' - '7' - '4' - '9' - '8' - / - ° - '6' - è - $ - ï - <sos/eos> src_token_list: - <blank> - <unk> - ّ - ي - ا - ِ - ل - َ - و - ه - ة - م - ر - ك - ▁ما - ُ - ب - ش - د - ت - ▁في - َّ - ▁ن - ▁ي - ▁ت - ن - ▁لا - ح - ▁ه - س - وا - ▁م - ف - ▁إي - ع - ▁ب - ها - ط - ى - ق - ▁الل - ▁أ - ج - ▁والل - ▁و - ▁إيه - ▁ا - ▁يا - ز - ▁تو - ▁بش - ص - ▁أه - خ - ات - ▁إنت - ▁أنا - نا - ▁شن - ▁ق - ▁ش - ▁ك - يت - ين - ▁ف - ار - ▁قال - ▁باهي - ▁ع - ▁من - ▁ل - ▁مش - ▁كان - ▁حت - ▁ول - هم - ▁ر - ان - ▁س - ض - ني - ▁بال - ▁على - ▁متاع - ▁كي - ▁ال - ▁ح - ▁كل - ▁آنا - ▁الم - ▁خ - ▁الس - ▁وال - ون - ور - ▁أم - ▁هك - ▁آش - ▁الد - ▁عاد - ▁ج - ▁معناها - ▁مع - اش - ▁الص - ▁نهار - ▁لل - لها - ▁تي - ▁رب - ▁خاطر - ▁أكهو - غ - ▁شي - الل - ام - تها - ▁ون - ▁آك - ▁فهمت - وم - ▁موش - مشي - ▁ص - ▁اليوم - ▁مر - ست - ▁الب - ▁لاباس - تلي - ▁الكل - ▁عال - ذ - ▁فم - ▁الك - ▁حاجة - ▁شوي - اكا - ▁ياخي - ▁هاني - ▁صح - اس - ▁آه - ▁برشة - ▁الن - ▁وت - ▁الج - لك - ▁راهو - سم - ▁الح - مت - ▁الت - ▁بعد - اج - عد - ▁انشا - وش - لت - ▁وين - ث - ▁ولا - ▁باش - ▁فيها - نت - ▁إ - ▁الأ - ▁الف - ▁إم - ▁واحد - ▁ألو - ▁عندي - ▁أك - ▁خل - ▁وي - ▁تعمل - أ - ▁ريت - ▁وأ - ▁تعرف - بت - ▁الع - ▁مشيت - ▁وه - ▁حاصيلو - ▁بالل - ▁نعمل - ▁غ - ▁تجي - ▁يجي - ▁كيفاش - ▁عملت - ظ - اك - ▁هاو - ▁اش - ▁قد - ▁نق - ▁د - ▁زادا - ▁فيه - رة - ▁بر - ▁الش - ▁ز - ▁كيما - ▁الا - ند - عم - ▁نح - ▁بنتي - ▁نمشي - ▁عليك - ▁نعرفش - ▁كهو - ▁وم - ▁ط - تي - ▁خير - ▁آ - مش - ▁عليه - له - حت - ▁إيا - ▁أحنا - ▁تع - الا - عب - ▁ديما - ▁تت - ▁جو - ▁مالا - ▁أو - ▁قلتلك - ▁معنتها - لنا - ▁شكون - ▁تحب - بر - ▁الر - ▁وا - ▁الق - اء - ▁عل - ▁البارح - ▁وخ - ▁سافا - ▁هوما - ▁ولدي - ▁ - ▁نعرف - يف - رت - ▁وب - ▁روح - ▁علاش - ▁هاذاك - ▁رو - وس - ▁جا - ▁كيف - طر - ▁غادي - يكا - عمل - ▁نحب - ▁عندك - ▁وما - ▁فر - اني - ▁قلتله - ▁الط - فر - ▁دار - ▁عليها - ▁يعمل - ▁نت - ▁تح - باح - ▁ماهو - ▁وكل - ▁وع - قت - ▁فهمتك - عر - ▁وس - ▁تر - ▁سي - يلة - ▁قلت - ▁رمضان - صل - ▁آما - ▁الواحد - ▁بيه - ▁ثلاثة - ▁فهمتني - ▁ها - بط - ▁مازال - قل - ▁بالك - ▁معناتها - ▁ور - ▁قلتلها - ▁يس - رب - ▁ام - ▁وبعد - ▁الث - ▁وإنت - ▁بحذا - ▁لازم - ْ - ▁بن - قرا - سك - ▁يت - خل - ▁فه - عت - ▁هاك - ▁تق - ▁قبل - ▁وك - ▁نقول - ▁الز - حم - ▁عادش - حكي - وها - بة - نس - طل - ▁علاه - ذا - ▁سا - ▁طل - الي - ▁يق - ▁دو - حوا - حد - ▁نشوف - نة - ▁لي - ▁تك - ▁نا - ▁هاذ - ▁خويا - ▁المر - ▁وينك - ▁البر - ▁أتو - ينا - ▁حل - ولي - ▁ثم - ▁عم - ▁آي - ▁قر - از - ▁وح - كش - بعة - ▁كيفاه - ▁نع - ▁الحمدلله - ▁ياسر - ▁الخ - ▁معاك - ▁معاه - ▁تقول - دة - ▁حكاية - تش - ▁حس - ▁غدوا - ▁بالحق - روا - وز - ▁تخ - ▁العيد - رجع - ▁بالي - ▁جات - ▁وج - حة - ▁وش - ▁آخر - ▁طا - ▁مت - لقا - تك - ▁مس - ▁راني - كون - ▁صاحب - ▁هاكا - ▁قول - ▁عر - ▁عنده - ▁يلزم - ▁هاذا - ▁يخ - ▁وقتاش - ▁وقت - بع - ▁العش - ▁هاذي - هاش - ينة - ▁هاذاكا - عطي - ▁تنج - ▁باهية - نيا - فت - ▁يحب - ▁تف - ▁أهلا - وف - ▁غدوة - ▁بيك - ▁بد - عن - ▁در - ▁ننج - هار - ▁الحكاية - مون - وق - ▁نورمال - ▁عندها - خر - ▁بو - ▁حب - ▁آكا - ▁وف - ▁هاذيكا - ▁ديجا - ▁وق - ▁طي - لتل - بعث - ▁تص - رك - ▁مانيش - ▁العادة - ▁شوف - ضر - ▁يمشي - ▁نعملوا - ▁عرفت - ▁زال - ▁متع - ▁عمل - ▁بيها - ▁نحكي - اع - ▁نج - معة - ▁والكل - عناها - ▁يعي - ▁نجي - ستن - ▁هاذيك - ▁عام - ▁فلوس - قة - تين - ▁بالقدا - لهم - ▁تخدم - ▁ٱ - ▁شيء - ▁راهي - ▁جاب - ولاد - ابل - ▁ماك - عة - ▁نمشيوا - وني - شري - بار - انس - ▁وقتها - ▁جديد - ▁يز - ▁كر - ▁حاسيلو - ▁شق - ▁اه - ▁سايي - ▁انشالل - رج - مني - ▁بلا - ▁صحيح - ▁غير - ▁يخدم - مان - وكا - ▁عند - ▁قاعدة - ▁تس - ربة - ▁راس - ▁حط - ▁نكل - تني - ▁الو - سيون - ▁عندنا - ▁لو - ▁ست - صف - ▁ض - ▁كامل - ▁نخدم - ▁يبدا - ▁دونك - ▁أمور - رات - ▁تونس - بدا - ▁تحكي - ▁سو - ▁جاي - ▁وحدة - ▁ساعة - حنا - ▁بكري - ▁إل - ▁وبر - ▁كم - ▁تبدا - ارة - ادي - رق - لوا - ▁يمكن - ▁خاط - ▁وص - جين - ▁هاذاي - ▁هز - قد - ▁قل - ▁وكهو - ▁نص - ▁دي - لقى - ▁وأنا - سين - ▁يح - ▁ماشي - ▁شو - ▁خذيت - امات - ▁كنت - خرج - ▁لقيت - رتاح - كس - ▁حاجات - ▁مريق - ▁مل - ليفون - اوا - ▁شفت - ▁عاملة - ▁تن - ▁والا - سأل - ▁حد - ▁قاللك - ▁العباد - ▁عالاخ - ▁وآك - ▁ماني - ▁ناخذ - ▁حم - ▁الإ - ▁ماضي - ▁ث - الة - ▁أخرى - رين - ▁تشوف - ▁نخرج - ▁أربعة - ▁ألف - نيش - ▁هاي - آ - ▁فيك - رشة - ولة - فلة - ▁بابا - ▁أما - ▁روحي - ▁فيهم - ▁رج - ▁ليك - ونس - يرة - ▁وأكهو - ندي - ▁صار - شك - ▁نرو - ▁آكهو - ▁تش - ▁غاديكا - ▁معاها - ▁لب - ▁أذاكا - ▁آني - ▁يوم - عملوا - ▁نقعد - دوا - ▁عد - سمع - متني - ▁الخدمة - ▁مازلت - ▁قعدت - ايا - ▁برك - قعد - ▁خرجت - ضح - ▁قالل - ▁يقول - ▁وفي - ▁حق - ختي - ▁يعني - خدم - ▁جيت - ▁نرمال - طف - ▁عجب - ▁تقعد - ▁مشينا - اية - ▁خدمة - لدي - روف - ▁الفطر - ▁مشكل - ▁سل - ▁وآنا - الط - ▁بالس - ▁هانا - ▁أوه - ▁أذيكا - ▁وإ - ▁عليهم - ▁حالة - جت - قضي - ▁لق - ▁ونصف - سعة - عطيه - عاو - خانة - ▁مخ - ▁شبيك - بيعة - ▁أهوك - يني - ▁تعد - ▁خال - ▁قريب - ▁راك - ▁قالت - ▁لتو - ▁أكثر - اعة - ▁يظهرلي - ▁ماشية - سمعني - ▁نسيت - ▁ينج - ▁الحمدلل - هدي - ▁وشن - ▁تطي - ▁هنا - ▁نسمع - ▁إنتوما - ▁نحكيلك - ▁قاعد - ▁اسمعني - خرين - إ - ماعة - ▁بالر - ▁دا - ▁عمر - ▁نشري - ▁قهوة - ▁تبارك - ▁صب - ▁مشات - غر - ▁شريت - ▁عامل - ▁زوج - ثنين - ▁برب - ريق - ▁نكم - ▁لم - بيب - ▁مياة - ▁مالل - ▁قعد - ▁سخون - قس - ▁وحده - ▁اسمع - ▁خمسة - ▁غالي - ▁الأو - رلي - ▁العظيم - ▁ترو - تهم - كري - ▁نجيب - ▁جملة - قول - ▁قلتلي - ▁إيجا - ▁يقعد - ▁إيام - ▁يعطيك - ▁نخل - ▁دب - يمة - رهبة - ▁نهز - ▁محم - ▁بين - غار - ▁نحنا - ▁بون - ▁الغ - ▁شهر - ▁بار - رقة - ▁نطي - ئ - ترو - ▁ملا - ▁الكرهبة - ▁باه - ▁عالإخ - ▁عباد - ▁بلاصة - ▁مشى - بيع - ▁نفس - ▁عملنا - ▁واح - ▁أحلاه - ▁بحذاك - ▁لأ - ▁دخ - باب - ▁ودر - ▁غالب - ▁ناكل - ▁مثلا - ء - ▁راقد - ▁تفر - ▁الوقت - ▁تاخذ - حذا - نتر - ▁نبدا - ▁حال - ▁مريم - الم - ▁جمعة - رجول - ▁معايا - ▁تخرج - ▁باس - ▁ساعات - ▁عندهم - ▁نتفر - مسة - ▁الجمعة - بعين - ▁أكاهو - ▁ميش - مراة - ▁خذا - ▁ظ - ▁سيدي - ▁معاي - ▁شبيه - ▁حكا - ▁سف - ▁بعضنا - ▁بالض - ▁ليلة - ▁زعما - ▁الحق - مضان - ▁صعيب - ▁قالتلك - ً - ملة - ▁بق - عرف - لاطة - ▁خرج - ▁أخت - ▁تقوللي - ▁معانا - ▁صغير - ▁إسمه - ▁بعض - ▁العام - ▁علينا - ▁يتع - ▁فاش - ▁شع - ▁معاهم - ▁يسالش - ▁لهنا - ▁سمعت - ▁البار - ▁نتصو - ▁الاخ - ▁وكان - وبة - دمة - ▁كون - ▁مبعد - ▁تسمع - ▁بعيد - ▁تاكل - ▁نلقا - لامة - لاثة - ▁ذ - ▁تحس - ▁الواح - ▁لدار - ▁فاتت - ▁تاو - ▁أحوالك - ▁عاملين - ▁كبيرة - عجب - ▁بنت - ▁بيدي - ▁حكيت - ▁تحط - ▁مسكينة - ▁هاذوكم - ▁نزيد - لاث - ▁عشرة - ▁عيني - ▁تعب - ▁ياكل - ▁وزيد - ▁طول - ▁حمدلله - ▁وقتاه - ▁معناه - ▁وآش - ▁ووه - ▁وواحد - ▁نشوفوا - ▁عيد - ▁بصراحة - ▁بحذانا - ▁قاعدين - ▁راجل - ▁وحدي - ▁وعشرين - ▁لين - ▁خايب - ▁قالتله - ▁تهز - عيد - ▁كبير - ▁يعرف - ▁عارف - ▁الفلوس - ▁زايد - ▁خدمت - ▁هاذوما - ▁سلاطة - ▁فارغة - ▁ساعتين - ▁تبد - ▁راو - ▁مائة - ▁بعضهم - ▁ظاهرلي - ▁الفازة - كتب - ▁القهوة - سبوك - ▁زاد - ▁ضرب - حكيلي - ▁فوق - ▁عاود - ▁راي - ▁ومبعد - ▁حوايج - ▁دخلت - ▁يقوللك - ▁زيد - ▁زلت - لفزة - ▁وقال - ▁يهب - ▁يلزمني - ▁الحمد - ▁أذي - طبيعت - ▁دورة - ▁عالأقل - ▁آذاك - ▁وبال - ▁الجاي - عطيني - ▁ياخذ - ▁احكيلي - ▁نهبط - ▁رقدت - بلاصة - ▁عزيز - ▁صغار - ▁أقسم - ▁جيب - ▁وصلت - ▁أحوال - ▁جيست - ▁جماعة - سئل - ▁خوذ - ▁يهز - ▁الأخرى - ▁آلاف - ▁إسمع - ▁الحقيقة - ▁ناقص - ▁حاط - ▁موجود - عباد - ▁آذيك - ▁خارج - ▁الخير - ▁البنات - بقى - ▁طرف - ▁سينون - ▁ماذاب - ▁البحر - ▁نرقد - مدلله - ▁إيجى - ▁خالتي - ▁فازة - ▁بريك - ▁شريبتك - ▁تطلع - ؤ - ▁المشكلة - ▁طري - ▁مادام - ▁طلبت - ▁يلعب - ▁نعاود - ▁وحدك - ▁ظاهر - ٱ - ژ - ٍ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: asr_weight: 0.3 mt_weight: 0.0 mtlalpha: 1.0 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram1000/bpe.model src_bpemodel: data/token_list/src_bpe_unigram1000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/st_stats_raw_bpe1000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 extra_asr_decoder: transformer extra_asr_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 extra_mt_decoder: transformer extra_mt_decoder_conf: input_layer: embed num_blocks: 2 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - src_token_list - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
jgammack/MTL-bert-base-uncased-ww
jgammack
2022-02-08T17:50:13Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MTL-bert-base-uncased-ww results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-bert-base-uncased-ww This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2964 | 1.0 | 99 | 2.9560 | | 3.0419 | 2.0 | 198 | 2.8336 | | 2.8979 | 3.0 | 297 | 2.8009 | | 2.8815 | 4.0 | 396 | 2.7394 | | 2.8373 | 5.0 | 495 | 2.6813 | | 2.741 | 6.0 | 594 | 2.6270 | | 2.6877 | 7.0 | 693 | 2.5216 | | 2.6823 | 8.0 | 792 | 2.5485 | | 2.6326 | 9.0 | 891 | 2.5690 | | 2.5976 | 10.0 | 990 | 2.6336 | | 2.6009 | 11.0 | 1089 | 2.5919 | | 2.5615 | 12.0 | 1188 | 2.4264 | | 2.5826 | 13.0 | 1287 | 2.5562 | | 2.5693 | 14.0 | 1386 | 2.5529 | | 2.5494 | 15.0 | 1485 | 2.5300 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
tau/tavbert-he
tau
2022-02-08T16:38:50Z
60
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "language model", "he", "dataset:oscar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: he tags: - roberta - language model datasets: - oscar --- # TavBERT base model A Hebrew BERT-style masked language model operating over characters, pre-trained by masking spans of characters, similarly to SpanBERT (Joshi et al., 2020). ### How to use ```python import numpy as np import torch from transformers import AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("tau/tavbert-he") tokenizer = AutoTokenizer.from_pretrained("tau/tavbert-he") def mask_sentence(sent, span_len=5): start_pos = np.random.randint(0, len(sent) - span_len) masked_sent = sent[:start_pos] + '[MASK]' * span_len + sent[start_pos + span_len:] print("Masked sentence:", masked_sent) output = model(**tokenizer.encode_plus(masked_sent, return_tensors='pt'))['logits'][0][1:-1] preds = [int(x) for x in torch.argmax(torch.softmax(output, axis=1), axis=1)[start_pos:start_pos + span_len]] pred_sent = sent[:start_pos] + ''.join(tokenizer.convert_ids_to_tokens(preds)) + sent[start_pos + span_len:] print("Model's prediction:", pred_sent) ``` ## Training data OSCAR (Ortiz, 2019) Hebrew section (10 GB text, 20 million sentences).
jgammack/MTL-distilbert-base-uncased-squad
jgammack
2022-02-08T15:58:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: MTL-distilbert-base-uncased-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-distilbert-base-uncased-squad This model is a fine-tuned version of [jgammack/MTL-distilbert-base-uncased](https://huggingface.co/jgammack/MTL-distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
tesemnikov-av/rubert-ner-toxicity
tesemnikov-av
2022-02-08T12:52:32Z
80
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- widget: - text: "Ну ты и придурок!!" --- NER Toxic models Fine-tuning [cointegrated/rubert-tiny-toxicity](https://huggingface.co/cointegrated/rubert-tiny-toxicity) model on data from [toxic_dataset_ner](https://huggingface.co/datasets/tesemnikov-av/toxic_dataset_ner) language: RU ```python !pip install transformers > /dev/null from transformers import ( AutoModelForTokenClassification, AutoTokenizer, pipeline ) model = AutoModelForTokenClassification.from_pretrained('tesemnikov-av/rubert-ner-toxicity') tokenizer = AutoTokenizer.from_pretrained('tesemnikov-av/rubert-ner-toxicity') pipe = pipeline(model=model, tokenizer=tokenizer, task='ner', aggregation_strategy='average') text = "Они охриневшие там все придурки!!" print(text) print(pipe(text)) ```
jgammack/SAE-roberta-base-squad
jgammack
2022-02-08T11:17:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: SAE-roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-roberta-base-squad This model is a fine-tuned version of [jgammack/SAE-roberta-base](https://huggingface.co/jgammack/SAE-roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
HarrisDePerceptron/xls-r-300m-ur-cv8-hi
HarrisDePerceptron
2022-02-08T10:55:05Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3](https://huggingface.co/DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.5443 - Wer: 0.7030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000388 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.7052 | 1.96 | 100 | 3.4683 | 1.0 | | 3.2395 | 3.92 | 200 | 3.1489 | 1.0 | | 2.9951 | 5.88 | 300 | 2.9823 | 1.0007 | | 2.3574 | 7.84 | 400 | 1.2614 | 0.7598 | | 1.7287 | 9.8 | 500 | 1.1817 | 0.7421 | | 1.6144 | 11.76 | 600 | 1.1315 | 0.7321 | | 1.5598 | 13.73 | 700 | 1.2322 | 0.7550 | | 1.5418 | 15.69 | 800 | 1.2721 | 0.7819 | | 1.4578 | 17.65 | 900 | 1.1710 | 0.7531 | | 1.4311 | 19.61 | 1000 | 1.2042 | 0.7491 | | 1.3483 | 21.57 | 1100 | 1.1702 | 0.7465 | | 1.3078 | 23.53 | 1200 | 1.1963 | 0.7421 | | 1.2576 | 25.49 | 1300 | 1.1501 | 0.7280 | | 1.2173 | 27.45 | 1400 | 1.2526 | 0.7299 | | 1.2217 | 29.41 | 1500 | 1.2479 | 0.7310 | | 1.1536 | 31.37 | 1600 | 1.2567 | 0.7432 | | 1.0939 | 33.33 | 1700 | 1.2801 | 0.7247 | | 1.0745 | 35.29 | 1800 | 1.2340 | 0.7151 | | 1.0454 | 37.25 | 1900 | 1.2372 | 0.7151 | | 1.0101 | 39.22 | 2000 | 1.2461 | 0.7376 | | 0.9833 | 41.18 | 2100 | 1.2553 | 0.7269 | | 0.9314 | 43.14 | 2200 | 1.2372 | 0.7015 | | 0.9147 | 45.1 | 2300 | 1.3035 | 0.7358 | | 0.8758 | 47.06 | 2400 | 1.2598 | 0.7092 | | 0.8356 | 49.02 | 2500 | 1.2557 | 0.7144 | | 0.8105 | 50.98 | 2600 | 1.2619 | 0.7236 | | 0.7947 | 52.94 | 2700 | 1.3994 | 0.7491 | | 0.7623 | 54.9 | 2800 | 1.2932 | 0.7133 | | 0.7282 | 56.86 | 2900 | 1.2799 | 0.7089 | | 0.7108 | 58.82 | 3000 | 1.3615 | 0.7148 | | 0.6896 | 60.78 | 3100 | 1.3129 | 0.7041 | | 0.6496 | 62.75 | 3200 | 1.4050 | 0.6934 | | 0.6075 | 64.71 | 3300 | 1.3571 | 0.7026 | | 0.6242 | 66.67 | 3400 | 1.3369 | 0.7063 | | 0.5865 | 68.63 | 3500 | 1.4368 | 0.7140 | | 0.5721 | 70.59 | 3600 | 1.4224 | 0.7066 | | 0.5475 | 72.55 | 3700 | 1.4798 | 0.7118 | | 0.5086 | 74.51 | 3800 | 1.5107 | 0.7232 | | 0.4958 | 76.47 | 3900 | 1.4849 | 0.7089 | | 0.5046 | 78.43 | 4000 | 1.4451 | 0.7114 | | 0.4694 | 80.39 | 4100 | 1.4674 | 0.7089 | | 0.4386 | 82.35 | 4200 | 1.5245 | 0.7103 | | 0.4516 | 84.31 | 4300 | 1.5032 | 0.7103 | | 0.4113 | 86.27 | 4400 | 1.5246 | 0.7196 | | 0.3972 | 88.24 | 4500 | 1.5318 | 0.7114 | | 0.4006 | 90.2 | 4600 | 1.5543 | 0.6982 | | 0.4014 | 92.16 | 4700 | 1.5442 | 0.7048 | | 0.3672 | 94.12 | 4800 | 1.5542 | 0.7137 | | 0.3666 | 96.08 | 4900 | 1.5414 | 0.7018 | | 0.3574 | 98.04 | 5000 | 1.5465 | 0.7059 | | 0.3428 | 100.0 | 5100 | 1.5443 | 0.7030 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
imfiba1991/gpt2-wikitext2
imfiba1991
2022-02-08T10:53:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.2082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 13 | 8.1476 | | No log | 2.0 | 26 | 7.4435 | | No log | 3.0 | 39 | 7.2082 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jkang/espnet2_mini_librispeech_diar
jkang
2022-02-08T08:33:52Z
3
0
espnet
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - espnet - audio - diarization language: noinfo datasets: - mini_librispeech license: cc-by-4.0 --- ## ESPnet2 DIAR model ### `jkang/espnet2_mini_librispeech_diar` This model was trained by jaekookang using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout e08a89e0a43db7fc12bec835c62a000ad10bd417 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model jkang/espnet2_mini_librispeech_diar ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Tue Feb 8 16:41:16 KST 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1` - Git hash: `e08a89e0a43db7fc12bec835c62a000ad10bd417` - Commit date: `Sun Feb 6 18:54:20 2022 -0500` ## diar_train_diar_raw ### DER dev_clean_2_ns2_beta2_500 |threshold_median_collar|DER| |---|---| |result_th0.3_med11_collar0.0|31.39| |result_th0.3_med1_collar0.0|31.78| |result_th0.4_med11_collar0.0|29.99| |result_th0.4_med1_collar0.0|30.61| |result_th0.5_med11_collar0.0|29.28| |result_th0.5_med1_collar0.0|30.19| |result_th0.6_med11_collar0.0|29.50| |result_th0.6_med1_collar0.0|30.66| |result_th0.7_med11_collar0.0|30.90| |result_th0.7_med1_collar0.0|32.38| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: attractor_weight: 1.0 use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} attractor: null attractor_conf: {} required: - output_dir version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
woohyun/sdssd
woohyun
2022-02-08T08:03:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 ---
jgammack/roberta-base-squad
jgammack
2022-02-08T07:39:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
birgermoell/wav2vec2-speechdat
birgermoell
2022-02-08T06:44:20Z
66
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer model-index: - name: wav2vec2-speechdat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-speechdat This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.4578 - Wer: 0.2927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | No log | 0.01 | 100 | 3.6252 | 1.0 | | No log | 0.02 | 200 | 3.1906 | 1.0 | | No log | 0.03 | 300 | 3.1090 | 1.0 | | No log | 0.04 | 400 | 1.8796 | 0.9955 | | 6.2575 | 0.05 | 500 | 1.3515 | 0.9058 | | 6.2575 | 0.06 | 600 | 1.1209 | 0.8328 | | 6.2575 | 0.07 | 700 | 1.1404 | 0.8309 | | 6.2575 | 0.09 | 800 | 1.0599 | 0.8021 | | 6.2575 | 0.1 | 900 | 0.9901 | 0.8335 | | 0.7737 | 0.11 | 1000 | 0.8846 | 0.7400 | | 0.7737 | 0.12 | 1100 | 0.9971 | 0.7820 | | 0.7737 | 0.13 | 1200 | 0.8665 | 0.7123 | | 0.7737 | 0.14 | 1300 | 0.8490 | 0.7366 | | 0.7737 | 0.15 | 1400 | 0.8250 | 0.6765 | | 0.6183 | 0.16 | 1500 | 0.8291 | 0.6965 | | 0.6183 | 0.17 | 1600 | 0.7946 | 0.6823 | | 0.6183 | 0.18 | 1700 | 0.8239 | 0.6894 | | 0.6183 | 0.19 | 1800 | 0.8282 | 0.6796 | | 0.6183 | 0.2 | 1900 | 0.7645 | 0.6518 | | 0.561 | 0.21 | 2000 | 0.7530 | 0.6367 | | 0.561 | 0.22 | 2100 | 0.7296 | 0.6177 | | 0.561 | 0.24 | 2200 | 0.7527 | 0.6498 | | 0.561 | 0.25 | 2300 | 0.7210 | 0.6316 | | 0.561 | 0.26 | 2400 | 0.7938 | 0.6757 | | 0.5402 | 0.27 | 2500 | 0.7485 | 0.6372 | | 0.5402 | 0.28 | 2600 | 0.7146 | 0.6133 | | 0.5402 | 0.29 | 2700 | 0.7308 | 0.6626 | | 0.5402 | 0.3 | 2800 | 0.7078 | 0.5949 | | 0.5402 | 0.31 | 2900 | 0.7679 | 0.6373 | | 0.5303 | 0.32 | 3000 | 0.7263 | 0.6502 | | 0.5303 | 0.33 | 3100 | 0.6613 | 0.5846 | | 0.5303 | 0.34 | 3200 | 0.6784 | 0.5783 | | 0.5303 | 0.35 | 3300 | 0.6908 | 0.5833 | | 0.5303 | 0.36 | 3400 | 0.6595 | 0.5826 | | 0.503 | 0.37 | 3500 | 0.6717 | 0.5938 | | 0.503 | 0.39 | 3600 | 0.6938 | 0.5791 | | 0.503 | 0.4 | 3700 | 0.6677 | 0.6052 | | 0.503 | 0.41 | 3800 | 0.6544 | 0.5554 | | 0.503 | 0.42 | 3900 | 0.6514 | 0.5728 | | 0.4959 | 0.43 | 4000 | 0.6847 | 0.6188 | | 0.4959 | 0.44 | 4100 | 0.6626 | 0.5869 | | 0.4959 | 0.45 | 4200 | 0.6670 | 0.5700 | | 0.4959 | 0.46 | 4300 | 0.6596 | 0.5846 | | 0.4959 | 0.47 | 4400 | 0.6523 | 0.5468 | | 0.4824 | 0.48 | 4500 | 0.6392 | 0.5688 | | 0.4824 | 0.49 | 4600 | 0.6561 | 0.5687 | | 0.4824 | 0.5 | 4700 | 0.6697 | 0.5817 | | 0.4824 | 0.51 | 4800 | 0.6348 | 0.5608 | | 0.4824 | 0.52 | 4900 | 0.6561 | 0.5600 | | 0.4714 | 0.54 | 5000 | 0.6522 | 0.6181 | | 0.4714 | 0.55 | 5100 | 0.6858 | 0.5921 | | 0.4714 | 0.56 | 5200 | 0.6706 | 0.5497 | | 0.4714 | 0.57 | 5300 | 0.7123 | 0.5768 | | 0.4714 | 0.58 | 5400 | 0.6599 | 0.6100 | | 0.471 | 0.59 | 5500 | 0.6421 | 0.5626 | | 0.471 | 0.6 | 5600 | 0.6395 | 0.5753 | | 0.471 | 0.61 | 5700 | 0.6788 | 0.5481 | | 0.471 | 0.62 | 5800 | 0.6386 | 0.5516 | | 0.471 | 0.63 | 5900 | 0.6694 | 0.5913 | | 0.4707 | 0.64 | 6000 | 0.6251 | 0.5699 | | 0.4707 | 0.65 | 6100 | 0.6243 | 0.5567 | | 0.4707 | 0.66 | 6200 | 0.6645 | 0.5629 | | 0.4707 | 0.67 | 6300 | 0.6296 | 0.5895 | | 0.4707 | 0.69 | 6400 | 0.6078 | 0.5183 | | 0.4632 | 0.7 | 6500 | 0.6270 | 0.5619 | | 0.4632 | 0.71 | 6600 | 0.6050 | 0.5336 | | 0.4632 | 0.72 | 6700 | 0.6185 | 0.5449 | | 0.4632 | 0.73 | 6800 | 0.6281 | 0.5645 | | 0.4632 | 0.74 | 6900 | 0.5877 | 0.5084 | | 0.4514 | 0.75 | 7000 | 0.6199 | 0.5403 | | 0.4514 | 0.76 | 7100 | 0.6293 | 0.5275 | | 0.4514 | 0.77 | 7200 | 0.6290 | 0.5447 | | 0.4514 | 0.78 | 7300 | 0.6130 | 0.5373 | | 0.4514 | 0.79 | 7400 | 0.6138 | 0.5285 | | 0.4457 | 0.8 | 7500 | 0.6040 | 0.5259 | | 0.4457 | 0.81 | 7600 | 0.6220 | 0.5686 | | 0.4457 | 0.82 | 7700 | 0.5915 | 0.5164 | | 0.4457 | 0.84 | 7800 | 0.6270 | 0.5289 | | 0.4457 | 0.85 | 7900 | 0.6224 | 0.5515 | | 0.4458 | 0.86 | 8000 | 0.6161 | 0.5323 | | 0.4458 | 0.87 | 8100 | 0.5827 | 0.5122 | | 0.4458 | 0.88 | 8200 | 0.6067 | 0.5202 | | 0.4458 | 0.89 | 8300 | 0.6087 | 0.5192 | | 0.4458 | 0.9 | 8400 | 0.6859 | 0.5796 | | 0.4409 | 0.91 | 8500 | 0.6180 | 0.5131 | | 0.4409 | 0.92 | 8600 | 0.5945 | 0.4948 | | 0.4409 | 0.93 | 8700 | 0.5967 | 0.5532 | | 0.4409 | 0.94 | 8800 | 0.5770 | 0.4961 | | 0.4409 | 0.95 | 8900 | 0.5809 | 0.5203 | | 0.4305 | 0.96 | 9000 | 0.5805 | 0.5039 | | 0.4305 | 0.97 | 9100 | 0.5873 | 0.5188 | | 0.4305 | 0.98 | 9200 | 0.6277 | 0.5516 | | 0.4305 | 1.0 | 9300 | 0.5727 | 0.5052 | | 0.4305 | 1.01 | 9400 | 0.5858 | 0.5123 | | 0.4264 | 1.02 | 9500 | 0.5692 | 0.4968 | | 0.4264 | 1.03 | 9600 | 0.5954 | 0.5117 | | 0.4264 | 1.04 | 9700 | 0.5904 | 0.5076 | | 0.4264 | 1.05 | 9800 | 0.6046 | 0.5101 | | 0.4264 | 1.06 | 9900 | 0.5616 | 0.4926 | | 0.4176 | 1.07 | 10000 | 0.5971 | 0.5368 | | 0.4176 | 1.08 | 10100 | 0.5706 | 0.4940 | | 0.4176 | 1.09 | 10200 | 0.5612 | 0.5032 | | 0.4176 | 1.1 | 10300 | 0.5672 | 0.4944 | | 0.4176 | 1.11 | 10400 | 0.5915 | 0.5218 | | 0.4033 | 1.12 | 10500 | 0.5706 | 0.5051 | | 0.4033 | 1.13 | 10600 | 0.5661 | 0.4934 | | 0.4033 | 1.15 | 10700 | 0.5724 | 0.4903 | | 0.4033 | 1.16 | 10800 | 0.5792 | 0.4940 | | 0.4033 | 1.17 | 10900 | 0.5744 | 0.4911 | | 0.392 | 1.18 | 11000 | 0.5767 | 0.5162 | | 0.392 | 1.19 | 11100 | 0.5588 | 0.4835 | | 0.392 | 1.2 | 11200 | 0.5609 | 0.4922 | | 0.392 | 1.21 | 11300 | 0.5890 | 0.4914 | | 0.392 | 1.22 | 11400 | 0.5525 | 0.4897 | | 0.387 | 1.23 | 11500 | 0.5704 | 0.5051 | | 0.387 | 1.24 | 11600 | 0.5539 | 0.5014 | | 0.387 | 1.25 | 11700 | 0.5473 | 0.4882 | | 0.387 | 1.26 | 11800 | 0.5662 | 0.5004 | | 0.387 | 1.27 | 11900 | 0.5785 | 0.5220 | | 0.3956 | 1.28 | 12000 | 0.5990 | 0.5114 | | 0.3956 | 1.3 | 12100 | 0.5497 | 0.4895 | | 0.3956 | 1.31 | 12200 | 0.5538 | 0.4895 | | 0.3956 | 1.32 | 12300 | 0.5652 | 0.4913 | | 0.3956 | 1.33 | 12400 | 0.5682 | 0.5128 | | 0.4043 | 1.34 | 12500 | 0.5830 | 0.4999 | | 0.4043 | 1.35 | 12600 | 0.5686 | 0.4865 | | 0.4043 | 1.36 | 12700 | 0.5688 | 0.4937 | | 0.4043 | 1.37 | 12800 | 0.5753 | 0.5034 | | 0.4043 | 1.38 | 12900 | 0.5898 | 0.4865 | | 0.3997 | 1.39 | 13000 | 0.5723 | 0.4963 | | 0.3997 | 1.4 | 13100 | 0.5767 | 0.4986 | | 0.3997 | 1.41 | 13200 | 0.5960 | 0.5084 | | 0.3997 | 1.42 | 13300 | 0.5859 | 0.5096 | | 0.3997 | 1.43 | 13400 | 0.5491 | 0.4784 | | 0.3997 | 1.45 | 13500 | 0.5636 | 0.5049 | | 0.3997 | 1.46 | 13600 | 0.5667 | 0.4708 | | 0.3997 | 1.47 | 13700 | 0.5757 | 0.4862 | | 0.3997 | 1.48 | 13800 | 0.5444 | 0.4816 | | 0.3997 | 1.49 | 13900 | 0.5557 | 0.4792 | | 0.3954 | 1.5 | 14000 | 0.5437 | 0.4810 | | 0.3954 | 1.51 | 14100 | 0.5489 | 0.4674 | | 0.3954 | 1.52 | 14200 | 0.5415 | 0.4674 | | 0.3954 | 1.53 | 14300 | 0.5481 | 0.4902 | | 0.3954 | 1.54 | 14400 | 0.5474 | 0.4763 | | 0.3814 | 1.55 | 14500 | 0.5588 | 0.4731 | | 0.3814 | 1.56 | 14600 | 0.5746 | 0.4820 | | 0.3814 | 1.57 | 14700 | 0.5676 | 0.4884 | | 0.3814 | 1.58 | 14800 | 0.5495 | 0.4711 | | 0.3814 | 1.6 | 14900 | 0.5565 | 0.4782 | | 0.3877 | 1.61 | 15000 | 0.5671 | 0.5135 | | 0.3877 | 1.62 | 15100 | 0.5512 | 0.4868 | | 0.3877 | 1.63 | 15200 | 0.5683 | 0.4650 | | 0.3877 | 1.64 | 15300 | 0.5427 | 0.4717 | | 0.3877 | 1.65 | 15400 | 0.5519 | 0.4651 | | 0.387 | 1.66 | 15500 | 0.5327 | 0.4456 | | 0.387 | 1.67 | 15600 | 0.5371 | 0.4673 | | 0.387 | 1.68 | 15700 | 0.5337 | 0.4705 | | 0.387 | 1.69 | 15800 | 0.5606 | 0.4992 | | 0.387 | 1.7 | 15900 | 0.5254 | 0.4613 | | 0.3877 | 1.71 | 16000 | 0.5619 | 0.4882 | | 0.3877 | 1.72 | 16100 | 0.5212 | 0.4560 | | 0.3877 | 1.73 | 16200 | 0.5369 | 0.4696 | | 0.3877 | 1.75 | 16300 | 0.5392 | 0.4677 | | 0.3877 | 1.76 | 16400 | 0.5353 | 0.4768 | | 0.3739 | 1.77 | 16500 | 0.5435 | 0.4777 | | 0.3739 | 1.78 | 16600 | 0.5343 | 0.4884 | | 0.3739 | 1.79 | 16700 | 0.5309 | 0.4942 | | 0.3739 | 1.8 | 16800 | 0.5373 | 0.4727 | | 0.3739 | 1.81 | 16900 | 0.5550 | 0.4686 | | 0.3884 | 1.82 | 17000 | 0.5486 | 0.4826 | | 0.3884 | 1.83 | 17100 | 0.5508 | 0.4862 | | 0.3884 | 1.84 | 17200 | 0.5423 | 0.4855 | | 0.3884 | 1.85 | 17300 | 0.5478 | 0.4730 | | 0.3884 | 1.86 | 17400 | 0.5438 | 0.4938 | | 0.3842 | 1.87 | 17500 | 0.5571 | 0.4818 | | 0.3842 | 1.88 | 17600 | 0.5402 | 0.4753 | | 0.3842 | 1.9 | 17700 | 0.5679 | 0.4827 | | 0.3842 | 1.91 | 17800 | 0.5385 | 0.4642 | | 0.3842 | 1.92 | 17900 | 0.5519 | 0.4942 | | 0.3953 | 1.93 | 18000 | 0.5559 | 0.4745 | | 0.3953 | 1.94 | 18100 | 0.5657 | 0.4963 | | 0.3953 | 1.95 | 18200 | 0.5296 | 0.4642 | | 0.3953 | 1.96 | 18300 | 0.5529 | 0.4907 | | 0.3953 | 1.97 | 18400 | 0.5380 | 0.4536 | | 0.3745 | 1.98 | 18500 | 0.5276 | 0.4678 | | 0.3745 | 1.99 | 18600 | 0.5544 | 0.4854 | | 0.3745 | 2.0 | 18700 | 0.5195 | 0.4535 | | 0.3745 | 2.01 | 18800 | 0.5165 | 0.4635 | | 0.3745 | 2.02 | 18900 | 0.5062 | 0.4431 | | 0.3538 | 2.03 | 19000 | 0.5255 | 0.4509 | | 0.3538 | 2.04 | 19100 | 0.5125 | 0.4512 | | 0.3538 | 2.06 | 19200 | 0.5105 | 0.4504 | | 0.3538 | 2.07 | 19300 | 0.5000 | 0.4490 | | 0.3538 | 2.08 | 19400 | 0.5150 | 0.4520 | | 0.356 | 2.09 | 19500 | 0.5053 | 0.4383 | | 0.356 | 2.1 | 19600 | 0.5085 | 0.4417 | | 0.356 | 2.11 | 19700 | 0.5229 | 0.4490 | | 0.356 | 2.12 | 19800 | 0.5326 | 0.4492 | | 0.356 | 2.13 | 19900 | 0.5139 | 0.4491 | | 0.3474 | 2.14 | 20000 | 0.5134 | 0.4384 | | 0.3474 | 2.15 | 20100 | 0.5498 | 0.4606 | | 0.3474 | 2.16 | 20200 | 0.5324 | 0.4540 | | 0.3474 | 2.17 | 20300 | 0.5338 | 0.4548 | | 0.3474 | 2.18 | 20400 | 0.5076 | 0.4425 | | 0.345 | 2.19 | 20500 | 0.5253 | 0.4550 | | 0.345 | 2.21 | 20600 | 0.5125 | 0.4618 | | 0.345 | 2.22 | 20700 | 0.5171 | 0.4487 | | 0.345 | 2.23 | 20800 | 0.5232 | 0.4464 | | 0.345 | 2.24 | 20900 | 0.5298 | 0.4588 | | 0.341 | 2.25 | 21000 | 0.5342 | 0.4576 | | 0.341 | 2.26 | 21100 | 0.5515 | 0.4678 | | 0.341 | 2.27 | 21200 | 0.5041 | 0.4495 | | 0.341 | 2.28 | 21300 | 0.5169 | 0.4473 | | 0.341 | 2.29 | 21400 | 0.5227 | 0.4494 | | 0.354 | 2.3 | 21500 | 0.5214 | 0.4458 | | 0.354 | 2.31 | 21600 | 0.5303 | 0.4587 | | 0.354 | 2.32 | 21700 | 0.5237 | 0.4597 | | 0.354 | 2.33 | 21800 | 0.5067 | 0.4460 | | 0.354 | 2.34 | 21900 | 0.5117 | 0.4560 | | 0.3333 | 2.36 | 22000 | 0.5104 | 0.4359 | | 0.3333 | 2.37 | 22100 | 0.5326 | 0.4679 | | 0.3333 | 2.38 | 22200 | 0.5098 | 0.4510 | | 0.3333 | 2.39 | 22300 | 0.5044 | 0.4445 | | 0.3333 | 2.4 | 22400 | 0.5219 | 0.4489 | | 0.3514 | 2.41 | 22500 | 0.4987 | 0.4433 | | 0.3514 | 2.42 | 22600 | 0.5009 | 0.4338 | | 0.3514 | 2.43 | 22700 | 0.5252 | 0.4444 | | 0.3514 | 2.44 | 22800 | 0.4861 | 0.4269 | | 0.3514 | 2.45 | 22900 | 0.5157 | 0.4421 | | 0.3444 | 2.46 | 23000 | 0.5277 | 0.4426 | | 0.3444 | 2.47 | 23100 | 0.5213 | 0.4378 | | 0.3444 | 2.48 | 23200 | 0.5172 | 0.4482 | | 0.3444 | 2.49 | 23300 | 0.5142 | 0.4376 | | 0.3444 | 2.51 | 23400 | 0.5044 | 0.4231 | | 0.3536 | 2.52 | 23500 | 0.5268 | 0.4496 | | 0.3536 | 2.53 | 23600 | 0.5176 | 0.4326 | | 0.3536 | 2.54 | 23700 | 0.5032 | 0.4296 | | 0.3536 | 2.55 | 23800 | 0.5211 | 0.4460 | | 0.3536 | 2.56 | 23900 | 0.5093 | 0.4379 | | 0.337 | 2.57 | 24000 | 0.4990 | 0.4311 | | 0.337 | 2.58 | 24100 | 0.4962 | 0.4329 | | 0.337 | 2.59 | 24200 | 0.5033 | 0.4289 | | 0.337 | 2.6 | 24300 | 0.5260 | 0.4534 | | 0.337 | 2.61 | 24400 | 0.5309 | 0.4441 | | 0.3393 | 2.62 | 24500 | 0.5132 | 0.4346 | | 0.3393 | 2.63 | 24600 | 0.5189 | 0.4233 | | 0.3393 | 2.64 | 24700 | 0.5074 | 0.4326 | | 0.3393 | 2.66 | 24800 | 0.5111 | 0.4254 | | 0.3393 | 2.67 | 24900 | 0.4933 | 0.4254 | | 0.3334 | 2.68 | 25000 | 0.5046 | 0.4407 | | 0.3334 | 2.69 | 25100 | 0.5010 | 0.4404 | | 0.3334 | 2.7 | 25200 | 0.5045 | 0.4236 | | 0.3334 | 2.71 | 25300 | 0.4938 | 0.4305 | | 0.3334 | 2.72 | 25400 | 0.5021 | 0.4383 | | 0.3366 | 2.73 | 25500 | 0.4953 | 0.4202 | | 0.3366 | 2.74 | 25600 | 0.4985 | 0.4338 | | 0.3366 | 2.75 | 25700 | 0.4765 | 0.4161 | | 0.3366 | 2.76 | 25800 | 0.4873 | 0.4292 | | 0.3366 | 2.77 | 25900 | 0.4998 | 0.4189 | | 0.3359 | 2.78 | 26000 | 0.4991 | 0.4248 | | 0.3359 | 2.79 | 26100 | 0.5012 | 0.4307 | | 0.3359 | 2.81 | 26200 | 0.5081 | 0.4151 | | 0.3359 | 2.82 | 26300 | 0.4997 | 0.4305 | | 0.3359 | 2.83 | 26400 | 0.4969 | 0.4302 | | 0.3396 | 2.84 | 26500 | 0.4784 | 0.4271 | | 0.3396 | 2.85 | 26600 | 0.4804 | 0.4149 | | 0.3396 | 2.86 | 26700 | 0.4900 | 0.4192 | | 0.3396 | 2.87 | 26800 | 0.5044 | 0.4325 | | 0.3396 | 2.88 | 26900 | 0.4935 | 0.4376 | | 0.3356 | 2.89 | 27000 | 0.5007 | 0.4269 | | 0.3356 | 2.9 | 27100 | 0.4887 | 0.4178 | | 0.3356 | 2.91 | 27200 | 0.4770 | 0.4170 | | 0.3356 | 2.92 | 27300 | 0.4847 | 0.4167 | | 0.3356 | 2.93 | 27400 | 0.4861 | 0.4139 | | 0.3395 | 2.94 | 27500 | 0.4975 | 0.4291 | | 0.3395 | 2.95 | 27600 | 0.5056 | 0.4471 | | 0.3395 | 2.97 | 27700 | 0.5111 | 0.4375 | | 0.3395 | 2.98 | 27800 | 0.5327 | 0.4577 | | 0.3395 | 2.99 | 27900 | 0.5067 | 0.4393 | | 0.3332 | 3.0 | 28000 | 0.4898 | 0.4188 | | 0.3332 | 3.01 | 28100 | 0.4790 | 0.4093 | | 0.3332 | 3.02 | 28200 | 0.4828 | 0.4202 | | 0.3332 | 3.03 | 28300 | 0.4836 | 0.4146 | | 0.3332 | 3.04 | 28400 | 0.4901 | 0.4242 | | 0.2984 | 3.05 | 28500 | 0.4772 | 0.4118 | | 0.2984 | 3.06 | 28600 | 0.5055 | 0.4213 | | 0.2984 | 3.07 | 28700 | 0.4911 | 0.4100 | | 0.2984 | 3.08 | 28800 | 0.4737 | 0.4087 | | 0.2984 | 3.09 | 28900 | 0.4930 | 0.4216 | | 0.3056 | 3.1 | 29000 | 0.4736 | 0.4109 | | 0.3056 | 3.12 | 29100 | 0.4863 | 0.4058 | | 0.3056 | 3.13 | 29200 | 0.4784 | 0.4184 | | 0.3056 | 3.14 | 29300 | 0.4923 | 0.4240 | | 0.3056 | 3.15 | 29400 | 0.4846 | 0.4226 | | 0.2995 | 3.16 | 29500 | 0.4829 | 0.4086 | | 0.2995 | 3.17 | 29600 | 0.4934 | 0.4240 | | 0.2995 | 3.18 | 29700 | 0.4893 | 0.4152 | | 0.2995 | 3.19 | 29800 | 0.4730 | 0.4227 | | 0.2995 | 3.2 | 29900 | 0.5027 | 0.4330 | | 0.2926 | 3.21 | 30000 | 0.4903 | 0.4112 | | 0.2926 | 3.22 | 30100 | 0.4961 | 0.4157 | | 0.2926 | 3.23 | 30200 | 0.4980 | 0.4269 | | 0.2926 | 3.24 | 30300 | 0.4896 | 0.4126 | | 0.2926 | 3.25 | 30400 | 0.4726 | 0.4062 | | 0.301 | 3.27 | 30500 | 0.4733 | 0.3985 | | 0.301 | 3.28 | 30600 | 0.4772 | 0.4047 | | 0.301 | 3.29 | 30700 | 0.4806 | 0.4082 | | 0.301 | 3.3 | 30800 | 0.4683 | 0.4011 | | 0.301 | 3.31 | 30900 | 0.4775 | 0.4079 | | 0.2933 | 3.32 | 31000 | 0.4729 | 0.4083 | | 0.2933 | 3.33 | 31100 | 0.4628 | 0.4016 | | 0.2933 | 3.34 | 31200 | 0.4753 | 0.4192 | | 0.2933 | 3.35 | 31300 | 0.4687 | 0.4185 | | 0.2933 | 3.36 | 31400 | 0.4806 | 0.4106 | | 0.2957 | 3.37 | 31500 | 0.4889 | 0.4240 | | 0.2957 | 3.38 | 31600 | 0.4882 | 0.4182 | | 0.2957 | 3.39 | 31700 | 0.4798 | 0.4162 | | 0.2957 | 3.4 | 31800 | 0.4718 | 0.4108 | | 0.2957 | 3.42 | 31900 | 0.4685 | 0.4101 | | 0.3039 | 3.43 | 32000 | 0.4816 | 0.4188 | | 0.3039 | 3.44 | 32100 | 0.4874 | 0.4139 | | 0.3039 | 3.45 | 32200 | 0.4899 | 0.4115 | | 0.3039 | 3.46 | 32300 | 0.4852 | 0.4180 | | 0.3039 | 3.47 | 32400 | 0.5074 | 0.4129 | | 0.3006 | 3.48 | 32500 | 0.4837 | 0.4076 | | 0.3006 | 3.49 | 32600 | 0.4927 | 0.4098 | | 0.3006 | 3.5 | 32700 | 0.4999 | 0.4172 | | 0.3006 | 3.51 | 32800 | 0.4773 | 0.4194 | | 0.3006 | 3.52 | 32900 | 0.4859 | 0.4058 | | 0.3089 | 3.53 | 33000 | 0.4783 | 0.4104 | | 0.3089 | 3.54 | 33100 | 0.4622 | 0.4020 | | 0.3089 | 3.55 | 33200 | 0.4840 | 0.4065 | | 0.3089 | 3.57 | 33300 | 0.4756 | 0.4241 | | 0.3089 | 3.58 | 33400 | 0.4831 | 0.4170 | | 0.3061 | 3.59 | 33500 | 0.4794 | 0.4068 | | 0.3061 | 3.6 | 33600 | 0.4730 | 0.4037 | | 0.3061 | 3.61 | 33700 | 0.4808 | 0.4138 | | 0.3061 | 3.62 | 33800 | 0.4924 | 0.4248 | | 0.3061 | 3.63 | 33900 | 0.4749 | 0.4112 | | 0.3047 | 3.64 | 34000 | 0.4924 | 0.4326 | | 0.3047 | 3.65 | 34100 | 0.4745 | 0.4104 | | 0.3047 | 3.66 | 34200 | 0.4760 | 0.4123 | | 0.3047 | 3.67 | 34300 | 0.4788 | 0.4066 | | 0.3047 | 3.68 | 34400 | 0.4627 | 0.4158 | | 0.3042 | 3.69 | 34500 | 0.4974 | 0.4131 | | 0.3042 | 3.7 | 34600 | 0.4593 | 0.4063 | | 0.3042 | 3.72 | 34700 | 0.4549 | 0.3928 | | 0.3042 | 3.73 | 34800 | 0.4690 | 0.3898 | | 0.3042 | 3.74 | 34900 | 0.4560 | 0.4007 | | 0.2963 | 3.75 | 35000 | 0.4606 | 0.3959 | | 0.2963 | 3.76 | 35100 | 0.4762 | 0.4057 | | 0.2963 | 3.77 | 35200 | 0.4750 | 0.4034 | | 0.2963 | 3.78 | 35300 | 0.4772 | 0.4114 | | 0.2963 | 3.79 | 35400 | 0.4669 | 0.3995 | | 0.3012 | 3.8 | 35500 | 0.4709 | 0.4090 | | 0.3012 | 3.81 | 35600 | 0.4722 | 0.4123 | | 0.3012 | 3.82 | 35700 | 0.4913 | 0.4165 | | 0.3012 | 3.83 | 35800 | 0.4814 | 0.4063 | | 0.3012 | 3.84 | 35900 | 0.4869 | 0.4171 | | 0.3015 | 3.85 | 36000 | 0.4791 | 0.4059 | | 0.3015 | 3.87 | 36100 | 0.4535 | 0.3976 | | 0.3015 | 3.88 | 36200 | 0.4706 | 0.4009 | | 0.3015 | 3.89 | 36300 | 0.4679 | 0.4012 | | 0.3015 | 3.9 | 36400 | 0.4736 | 0.4096 | | 0.2965 | 3.91 | 36500 | 0.4756 | 0.4106 | | 0.2965 | 3.92 | 36600 | 0.4669 | 0.4085 | | 0.2965 | 3.93 | 36700 | 0.4796 | 0.4054 | | 0.2965 | 3.94 | 36800 | 0.4583 | 0.3932 | | 0.2965 | 3.95 | 36900 | 0.4430 | 0.3969 | | 0.2993 | 3.96 | 37000 | 0.4560 | 0.3914 | | 0.2993 | 3.97 | 37100 | 0.4739 | 0.4002 | | 0.2993 | 3.98 | 37200 | 0.4598 | 0.3912 | | 0.2993 | 3.99 | 37300 | 0.4607 | 0.3907 | | 0.2993 | 4.0 | 37400 | 0.4709 | 0.3986 | | 0.2886 | 4.01 | 37500 | 0.4642 | 0.4067 | | 0.2886 | 4.03 | 37600 | 0.4684 | 0.3984 | | 0.2886 | 4.04 | 37700 | 0.4690 | 0.3979 | | 0.2886 | 4.05 | 37800 | 0.4722 | 0.3980 | | 0.2886 | 4.06 | 37900 | 0.4734 | 0.3927 | | 0.2534 | 4.07 | 38000 | 0.4724 | 0.3988 | | 0.2534 | 4.08 | 38100 | 0.4665 | 0.3986 | | 0.2534 | 4.09 | 38200 | 0.4659 | 0.4036 | | 0.2534 | 4.1 | 38300 | 0.4694 | 0.3952 | | 0.2534 | 4.11 | 38400 | 0.4719 | 0.3891 | | 0.2596 | 4.12 | 38500 | 0.4687 | 0.3994 | | 0.2596 | 4.13 | 38600 | 0.4705 | 0.3903 | | 0.2596 | 4.14 | 38700 | 0.4601 | 0.3975 | | 0.2596 | 4.15 | 38800 | 0.4666 | 0.3971 | | 0.2596 | 4.16 | 38900 | 0.4772 | 0.3892 | | 0.2643 | 4.18 | 39000 | 0.4810 | 0.4071 | | 0.2643 | 4.19 | 39100 | 0.4980 | 0.4167 | | 0.2643 | 4.2 | 39200 | 0.4657 | 0.3996 | | 0.2643 | 4.21 | 39300 | 0.4869 | 0.4002 | | 0.2643 | 4.22 | 39400 | 0.4656 | 0.3913 | | 0.265 | 4.23 | 39500 | 0.4720 | 0.3947 | | 0.265 | 4.24 | 39600 | 0.4711 | 0.3970 | | 0.265 | 4.25 | 39700 | 0.4689 | 0.3933 | | 0.265 | 4.26 | 39800 | 0.4728 | 0.4017 | | 0.265 | 4.27 | 39900 | 0.4673 | 0.3847 | | 0.2644 | 4.28 | 40000 | 0.4636 | 0.3960 | | 0.2644 | 4.29 | 40100 | 0.4699 | 0.3864 | | 0.2644 | 4.3 | 40200 | 0.4580 | 0.3874 | | 0.2644 | 4.31 | 40300 | 0.4763 | 0.3951 | | 0.2644 | 4.33 | 40400 | 0.4752 | 0.4141 | | 0.2633 | 4.34 | 40500 | 0.4918 | 0.3994 | | 0.2633 | 4.35 | 40600 | 0.4783 | 0.4026 | | 0.2633 | 4.36 | 40700 | 0.4739 | 0.4034 | | 0.2633 | 4.37 | 40800 | 0.4750 | 0.4000 | | 0.2633 | 4.38 | 40900 | 0.4608 | 0.3943 | | 0.2679 | 4.39 | 41000 | 0.4615 | 0.3891 | | 0.2679 | 4.4 | 41100 | 0.4730 | 0.3984 | | 0.2679 | 4.41 | 41200 | 0.4728 | 0.4011 | | 0.2679 | 4.42 | 41300 | 0.4675 | 0.3932 | | 0.2679 | 4.43 | 41400 | 0.4662 | 0.3929 | | 0.2682 | 4.44 | 41500 | 0.4490 | 0.3837 | | 0.2682 | 4.45 | 41600 | 0.4611 | 0.3838 | | 0.2682 | 4.46 | 41700 | 0.4605 | 0.3945 | | 0.2682 | 4.48 | 41800 | 0.4730 | 0.3938 | | 0.2682 | 4.49 | 41900 | 0.4567 | 0.3874 | | 0.2658 | 4.5 | 42000 | 0.4715 | 0.3869 | | 0.2658 | 4.51 | 42100 | 0.4514 | 0.3833 | | 0.2658 | 4.52 | 42200 | 0.4602 | 0.3898 | | 0.2658 | 4.53 | 42300 | 0.4846 | 0.4022 | | 0.2658 | 4.54 | 42400 | 0.4474 | 0.3810 | | 0.2676 | 4.55 | 42500 | 0.4513 | 0.3820 | | 0.2676 | 4.56 | 42600 | 0.4588 | 0.3928 | | 0.2676 | 4.57 | 42700 | 0.4601 | 0.3894 | | 0.2676 | 4.58 | 42800 | 0.4516 | 0.3792 | | 0.2676 | 4.59 | 42900 | 0.4482 | 0.3848 | | 0.2693 | 4.6 | 43000 | 0.4695 | 0.4008 | | 0.2693 | 4.61 | 43100 | 0.4580 | 0.3871 | | 0.2693 | 4.63 | 43200 | 0.4419 | 0.3857 | | 0.2693 | 4.64 | 43300 | 0.4534 | 0.3796 | | 0.2693 | 4.65 | 43400 | 0.4532 | 0.3856 | | 0.2641 | 4.66 | 43500 | 0.4421 | 0.3809 | | 0.2641 | 4.67 | 43600 | 0.4400 | 0.3844 | | 0.2641 | 4.68 | 43700 | 0.4515 | 0.3833 | | 0.2641 | 4.69 | 43800 | 0.4462 | 0.3808 | | 0.2641 | 4.7 | 43900 | 0.4741 | 0.3926 | | 0.2626 | 4.71 | 44000 | 0.4542 | 0.3931 | | 0.2626 | 4.72 | 44100 | 0.4555 | 0.3885 | | 0.2626 | 4.73 | 44200 | 0.4505 | 0.3845 | | 0.2626 | 4.74 | 44300 | 0.4593 | 0.3871 | | 0.2626 | 4.75 | 44400 | 0.4359 | 0.3830 | | 0.2648 | 4.76 | 44500 | 0.4387 | 0.3736 | | 0.2648 | 4.78 | 44600 | 0.4529 | 0.3807 | | 0.2648 | 4.79 | 44700 | 0.4566 | 0.3837 | | 0.2648 | 4.8 | 44800 | 0.4557 | 0.4067 | | 0.2648 | 4.81 | 44900 | 0.4609 | 0.3852 | | 0.2603 | 4.82 | 45000 | 0.4667 | 0.4005 | | 0.2603 | 4.83 | 45100 | 0.4666 | 0.3836 | | 0.2603 | 4.84 | 45200 | 0.4775 | 0.3946 | | 0.2603 | 4.85 | 45300 | 0.4701 | 0.3925 | | 0.2603 | 4.86 | 45400 | 0.4579 | 0.3889 | | 0.2626 | 4.87 | 45500 | 0.4516 | 0.3884 | | 0.2626 | 4.88 | 45600 | 0.4605 | 0.3878 | | 0.2626 | 4.89 | 45700 | 0.4576 | 0.3802 | | 0.2626 | 4.9 | 45800 | 0.4553 | 0.3780 | | 0.2626 | 4.91 | 45900 | 0.4336 | 0.3752 | | 0.2602 | 4.93 | 46000 | 0.4419 | 0.3881 | | 0.2602 | 4.94 | 46100 | 0.4601 | 0.3843 | | 0.2602 | 4.95 | 46200 | 0.4437 | 0.3956 | | 0.2602 | 4.96 | 46300 | 0.4524 | 0.3844 | | 0.2602 | 4.97 | 46400 | 0.4709 | 0.4031 | | 0.2609 | 4.98 | 46500 | 0.4500 | 0.3872 | | 0.2609 | 4.99 | 46600 | 0.4366 | 0.3846 | | 0.2609 | 5.0 | 46700 | 0.4653 | 0.3884 | | 0.2609 | 5.01 | 46800 | 0.4602 | 0.3932 | | 0.2609 | 5.02 | 46900 | 0.4668 | 0.3854 | | 0.2472 | 5.03 | 47000 | 0.4616 | 0.3891 | | 0.2472 | 5.04 | 47100 | 0.4543 | 0.3836 | | 0.2472 | 5.05 | 47200 | 0.4526 | 0.3822 | | 0.2472 | 5.06 | 47300 | 0.4539 | 0.3741 | | 0.2472 | 5.07 | 47400 | 0.4776 | 0.3818 | | 0.2278 | 5.09 | 47500 | 0.4771 | 0.3794 | | 0.2278 | 5.1 | 47600 | 0.4662 | 0.3831 | | 0.2278 | 5.11 | 47700 | 0.4558 | 0.4032 | | 0.2278 | 5.12 | 47800 | 0.4904 | 0.3918 | | 0.2278 | 5.13 | 47900 | 0.4765 | 0.3890 | | 0.2311 | 5.14 | 48000 | 0.4674 | 0.3882 | | 0.2311 | 5.15 | 48100 | 0.4609 | 0.3947 | | 0.2311 | 5.16 | 48200 | 0.4588 | 0.3837 | | 0.2311 | 5.17 | 48300 | 0.4827 | 0.3845 | | 0.2311 | 5.18 | 48400 | 0.4711 | 0.3839 | | 0.229 | 5.19 | 48500 | 0.4583 | 0.3873 | | 0.229 | 5.2 | 48600 | 0.4800 | 0.3858 | | 0.229 | 5.21 | 48700 | 0.4611 | 0.3800 | | 0.229 | 5.22 | 48800 | 0.4504 | 0.3889 | | 0.229 | 5.24 | 48900 | 0.4569 | 0.3761 | | 0.2313 | 5.25 | 49000 | 0.4732 | 0.3915 | | 0.2313 | 5.26 | 49100 | 0.4728 | 0.3832 | | 0.2313 | 5.27 | 49200 | 0.4667 | 0.3815 | | 0.2313 | 5.28 | 49300 | 0.4912 | 0.3856 | | 0.2313 | 5.29 | 49400 | 0.4790 | 0.3946 | | 0.2266 | 5.3 | 49500 | 0.4597 | 0.3763 | | 0.2266 | 5.31 | 49600 | 0.4580 | 0.3778 | | 0.2266 | 5.32 | 49700 | 0.4439 | 0.3721 | | 0.2266 | 5.33 | 49800 | 0.4611 | 0.3704 | | 0.2266 | 5.34 | 49900 | 0.4599 | 0.3769 | | 0.235 | 5.35 | 50000 | 0.4543 | 0.3808 | | 0.235 | 5.36 | 50100 | 0.4555 | 0.3773 | | 0.235 | 5.37 | 50200 | 0.4525 | 0.3815 | | 0.235 | 5.39 | 50300 | 0.4557 | 0.3814 | | 0.235 | 5.4 | 50400 | 0.4604 | 0.3754 | | 0.2299 | 5.41 | 50500 | 0.4658 | 0.3770 | | 0.2299 | 5.42 | 50600 | 0.4658 | 0.3884 | | 0.2299 | 5.43 | 50700 | 0.4701 | 0.3919 | | 0.2299 | 5.44 | 50800 | 0.4495 | 0.3818 | | 0.2299 | 5.45 | 50900 | 0.4703 | 0.3886 | | 0.2307 | 5.46 | 51000 | 0.4395 | 0.3743 | | 0.2307 | 5.47 | 51100 | 0.4487 | 0.3751 | | 0.2307 | 5.48 | 51200 | 0.4355 | 0.3733 | | 0.2307 | 5.49 | 51300 | 0.4622 | 0.3811 | | 0.2307 | 5.5 | 51400 | 0.4443 | 0.3801 | | 0.2383 | 5.51 | 51500 | 0.4411 | 0.3743 | | 0.2383 | 5.52 | 51600 | 0.4438 | 0.3778 | | 0.2383 | 5.54 | 51700 | 0.4559 | 0.3784 | | 0.2383 | 5.55 | 51800 | 0.4309 | 0.3656 | | 0.2383 | 5.56 | 51900 | 0.4455 | 0.3660 | | 0.23 | 5.57 | 52000 | 0.4436 | 0.3598 | | 0.23 | 5.58 | 52100 | 0.4344 | 0.3685 | | 0.23 | 5.59 | 52200 | 0.4282 | 0.3690 | | 0.23 | 5.6 | 52300 | 0.4464 | 0.3800 | | 0.23 | 5.61 | 52400 | 0.4458 | 0.3909 | | 0.2305 | 5.62 | 52500 | 0.4483 | 0.3756 | | 0.2305 | 5.63 | 52600 | 0.4547 | 0.3785 | | 0.2305 | 5.64 | 52700 | 0.4671 | 0.3820 | | 0.2305 | 5.65 | 52800 | 0.4449 | 0.3658 | | 0.2305 | 5.66 | 52900 | 0.4596 | 0.3716 | | 0.2237 | 5.67 | 53000 | 0.4399 | 0.3669 | | 0.2237 | 5.69 | 53100 | 0.4410 | 0.3719 | | 0.2237 | 5.7 | 53200 | 0.4574 | 0.3619 | | 0.2237 | 5.71 | 53300 | 0.4443 | 0.3690 | | 0.2237 | 5.72 | 53400 | 0.4381 | 0.3678 | | 0.2337 | 5.73 | 53500 | 0.4490 | 0.3687 | | 0.2337 | 5.74 | 53600 | 0.4427 | 0.3752 | | 0.2337 | 5.75 | 53700 | 0.4423 | 0.3858 | | 0.2337 | 5.76 | 53800 | 0.4702 | 0.3825 | | 0.2337 | 5.77 | 53900 | 0.4724 | 0.3800 | | 0.23 | 5.78 | 54000 | 0.4476 | 0.3827 | | 0.23 | 5.79 | 54100 | 0.4508 | 0.3919 | | 0.23 | 5.8 | 54200 | 0.4564 | 0.3788 | | 0.23 | 5.81 | 54300 | 0.4602 | 0.3888 | | 0.23 | 5.82 | 54400 | 0.4538 | 0.3732 | | 0.2334 | 5.84 | 54500 | 0.4500 | 0.3808 | | 0.2334 | 5.85 | 54600 | 0.4475 | 0.3705 | | 0.2334 | 5.86 | 54700 | 0.4415 | 0.3772 | | 0.2334 | 5.87 | 54800 | 0.4515 | 0.3771 | | 0.2334 | 5.88 | 54900 | 0.4410 | 0.3677 | | 0.2259 | 5.89 | 55000 | 0.4555 | 0.3702 | | 0.2259 | 5.9 | 55100 | 0.4509 | 0.3894 | | 0.2259 | 5.91 | 55200 | 0.4472 | 0.3692 | | 0.2259 | 5.92 | 55300 | 0.4438 | 0.3754 | | 0.2259 | 5.93 | 55400 | 0.4399 | 0.3698 | | 0.2289 | 5.94 | 55500 | 0.4496 | 0.3753 | | 0.2289 | 5.95 | 55600 | 0.4506 | 0.3752 | | 0.2289 | 5.96 | 55700 | 0.4482 | 0.3766 | | 0.2289 | 5.97 | 55800 | 0.4415 | 0.3772 | | 0.2289 | 5.98 | 55900 | 0.4447 | 0.3750 | | 0.2281 | 6.0 | 56000 | 0.4566 | 0.3842 | | 0.2281 | 6.01 | 56100 | 0.4694 | 0.3774 | | 0.2281 | 6.02 | 56200 | 0.4454 | 0.3788 | | 0.2281 | 6.03 | 56300 | 0.4676 | 0.3718 | | 0.2281 | 6.04 | 56400 | 0.4650 | 0.3751 | | 0.1979 | 6.05 | 56500 | 0.4601 | 0.3765 | | 0.1979 | 6.06 | 56600 | 0.4647 | 0.3840 | | 0.1979 | 6.07 | 56700 | 0.4782 | 0.3756 | | 0.1979 | 6.08 | 56800 | 0.4709 | 0.3736 | | 0.1979 | 6.09 | 56900 | 0.4707 | 0.3734 | | 0.1923 | 6.1 | 57000 | 0.4704 | 0.3751 | | 0.1923 | 6.11 | 57100 | 0.4542 | 0.3721 | | 0.1923 | 6.12 | 57200 | 0.4542 | 0.3735 | | 0.1923 | 6.13 | 57300 | 0.4587 | 0.3804 | | 0.1923 | 6.15 | 57400 | 0.4428 | 0.3687 | | 0.2012 | 6.16 | 57500 | 0.4456 | 0.3748 | | 0.2012 | 6.17 | 57600 | 0.4578 | 0.3762 | | 0.2012 | 6.18 | 57700 | 0.4699 | 0.3722 | | 0.2012 | 6.19 | 57800 | 0.4499 | 0.3756 | | 0.2012 | 6.2 | 57900 | 0.4633 | 0.3680 | | 0.1951 | 6.21 | 58000 | 0.4548 | 0.3712 | | 0.1951 | 6.22 | 58100 | 0.4520 | 0.3759 | | 0.1951 | 6.23 | 58200 | 0.4458 | 0.3616 | | 0.1951 | 6.24 | 58300 | 0.4307 | 0.3637 | | 0.1951 | 6.25 | 58400 | 0.4546 | 0.3621 | | 0.1967 | 6.26 | 58500 | 0.4459 | 0.3623 | | 0.1967 | 6.27 | 58600 | 0.4535 | 0.3690 | | 0.1967 | 6.28 | 58700 | 0.4574 | 0.3771 | | 0.1967 | 6.3 | 58800 | 0.4493 | 0.3744 | | 0.1967 | 6.31 | 58900 | 0.4494 | 0.3769 | | 0.1998 | 6.32 | 59000 | 0.4529 | 0.3644 | | 0.1998 | 6.33 | 59100 | 0.4416 | 0.3662 | | 0.1998 | 6.34 | 59200 | 0.4468 | 0.3785 | | 0.1998 | 6.35 | 59300 | 0.4377 | 0.3664 | | 0.1998 | 6.36 | 59400 | 0.4647 | 0.3755 | | 0.2009 | 6.37 | 59500 | 0.4700 | 0.3824 | | 0.2009 | 6.38 | 59600 | 0.4488 | 0.3685 | | 0.2009 | 6.39 | 59700 | 0.4649 | 0.3804 | | 0.2009 | 6.4 | 59800 | 0.4389 | 0.3689 | | 0.2009 | 6.41 | 59900 | 0.4456 | 0.3531 | | 0.2007 | 6.42 | 60000 | 0.4572 | 0.3658 | | 0.2007 | 6.43 | 60100 | 0.4464 | 0.3669 | | 0.2007 | 6.45 | 60200 | 0.4666 | 0.3711 | | 0.2007 | 6.46 | 60300 | 0.4399 | 0.3660 | | 0.2007 | 6.47 | 60400 | 0.4445 | 0.3631 | | 0.2005 | 6.48 | 60500 | 0.4450 | 0.3621 | | 0.2005 | 6.49 | 60600 | 0.4346 | 0.3571 | | 0.2005 | 6.5 | 60700 | 0.4358 | 0.3581 | | 0.2005 | 6.51 | 60800 | 0.4344 | 0.3646 | | 0.2005 | 6.52 | 60900 | 0.4377 | 0.3621 | | 0.2038 | 6.53 | 61000 | 0.4262 | 0.3570 | | 0.2038 | 6.54 | 61100 | 0.4269 | 0.3614 | | 0.2038 | 6.55 | 61200 | 0.4297 | 0.3592 | | 0.2038 | 6.56 | 61300 | 0.4433 | 0.3682 | | 0.2038 | 6.57 | 61400 | 0.4474 | 0.3644 | | 0.199 | 6.58 | 61500 | 0.4464 | 0.3678 | | 0.199 | 6.6 | 61600 | 0.4397 | 0.3562 | | 0.199 | 6.61 | 61700 | 0.4415 | 0.3612 | | 0.199 | 6.62 | 61800 | 0.4362 | 0.3601 | | 0.199 | 6.63 | 61900 | 0.4442 | 0.3623 | | 0.1995 | 6.64 | 62000 | 0.4558 | 0.3662 | | 0.1995 | 6.65 | 62100 | 0.4477 | 0.3647 | | 0.1995 | 6.66 | 62200 | 0.4542 | 0.3699 | | 0.1995 | 6.67 | 62300 | 0.4411 | 0.3632 | | 0.1995 | 6.68 | 62400 | 0.4408 | 0.3658 | | 0.2014 | 6.69 | 62500 | 0.4426 | 0.3691 | | 0.2014 | 6.7 | 62600 | 0.4246 | 0.3645 | | 0.2014 | 6.71 | 62700 | 0.4466 | 0.3676 | | 0.2014 | 6.72 | 62800 | 0.4493 | 0.3566 | | 0.2014 | 6.73 | 62900 | 0.4336 | 0.3621 | | 0.2015 | 6.75 | 63000 | 0.4367 | 0.3604 | | 0.2015 | 6.76 | 63100 | 0.4424 | 0.3754 | | 0.2015 | 6.77 | 63200 | 0.4679 | 0.3733 | | 0.2015 | 6.78 | 63300 | 0.4483 | 0.3752 | | 0.2015 | 6.79 | 63400 | 0.4746 | 0.3822 | | 0.2048 | 6.8 | 63500 | 0.4340 | 0.3731 | | 0.2048 | 6.81 | 63600 | 0.4346 | 0.3631 | | 0.2048 | 6.82 | 63700 | 0.4525 | 0.3680 | | 0.2048 | 6.83 | 63800 | 0.4360 | 0.3641 | | 0.2048 | 6.84 | 63900 | 0.4299 | 0.3558 | | 0.2017 | 6.85 | 64000 | 0.4370 | 0.3533 | | 0.2017 | 6.86 | 64100 | 0.4293 | 0.3617 | | 0.2017 | 6.87 | 64200 | 0.4431 | 0.3660 | | 0.2017 | 6.88 | 64300 | 0.4362 | 0.3688 | | 0.2017 | 6.9 | 64400 | 0.4507 | 0.3648 | | 0.2045 | 6.91 | 64500 | 0.4439 | 0.3613 | | 0.2045 | 6.92 | 64600 | 0.4249 | 0.3493 | | 0.2045 | 6.93 | 64700 | 0.4362 | 0.3612 | | 0.2045 | 6.94 | 64800 | 0.4336 | 0.3585 | | 0.2045 | 6.95 | 64900 | 0.4387 | 0.3568 | | 0.1977 | 6.96 | 65000 | 0.4313 | 0.3542 | | 0.1977 | 6.97 | 65100 | 0.4287 | 0.3552 | | 0.1977 | 6.98 | 65200 | 0.4372 | 0.3586 | | 0.1977 | 6.99 | 65300 | 0.4378 | 0.3629 | | 0.1977 | 7.0 | 65400 | 0.4518 | 0.3640 | | 0.1971 | 7.01 | 65500 | 0.4480 | 0.3557 | | 0.1971 | 7.02 | 65600 | 0.4530 | 0.3560 | | 0.1971 | 7.03 | 65700 | 0.4581 | 0.3582 | | 0.1971 | 7.04 | 65800 | 0.4492 | 0.3543 | | 0.1971 | 7.06 | 65900 | 0.4448 | 0.3608 | | 0.1672 | 7.07 | 66000 | 0.4469 | 0.3543 | | 0.1672 | 7.08 | 66100 | 0.4262 | 0.3488 | | 0.1672 | 7.09 | 66200 | 0.4289 | 0.3570 | | 0.1672 | 7.1 | 66300 | 0.4455 | 0.3545 | | 0.1672 | 7.11 | 66400 | 0.4449 | 0.3563 | | 0.169 | 7.12 | 66500 | 0.4555 | 0.3565 | | 0.169 | 7.13 | 66600 | 0.4432 | 0.3656 | | 0.169 | 7.14 | 66700 | 0.4399 | 0.3610 | | 0.169 | 7.15 | 66800 | 0.4383 | 0.3554 | | 0.169 | 7.16 | 66900 | 0.4376 | 0.3536 | | 0.1724 | 7.17 | 67000 | 0.4383 | 0.3572 | | 0.1724 | 7.18 | 67100 | 0.4452 | 0.3535 | | 0.1724 | 7.19 | 67200 | 0.4610 | 0.3668 | | 0.1724 | 7.21 | 67300 | 0.4534 | 0.3546 | | 0.1724 | 7.22 | 67400 | 0.4506 | 0.3604 | | 0.1729 | 7.23 | 67500 | 0.4463 | 0.3507 | | 0.1729 | 7.24 | 67600 | 0.4440 | 0.3630 | | 0.1729 | 7.25 | 67700 | 0.4361 | 0.3550 | | 0.1729 | 7.26 | 67800 | 0.4397 | 0.3643 | | 0.1729 | 7.27 | 67900 | 0.4328 | 0.3548 | | 0.1736 | 7.28 | 68000 | 0.4546 | 0.3614 | | 0.1736 | 7.29 | 68100 | 0.4506 | 0.3558 | | 0.1736 | 7.3 | 68200 | 0.4361 | 0.3513 | | 0.1736 | 7.31 | 68300 | 0.4223 | 0.3500 | | 0.1736 | 7.32 | 68400 | 0.4474 | 0.3497 | | 0.1733 | 7.33 | 68500 | 0.4303 | 0.3549 | | 0.1733 | 7.34 | 68600 | 0.4265 | 0.3483 | | 0.1733 | 7.36 | 68700 | 0.4339 | 0.3558 | | 0.1733 | 7.37 | 68800 | 0.4266 | 0.3491 | | 0.1733 | 7.38 | 68900 | 0.4423 | 0.3565 | | 0.1764 | 7.39 | 69000 | 0.4410 | 0.3554 | | 0.1764 | 7.4 | 69100 | 0.4482 | 0.3703 | | 0.1764 | 7.41 | 69200 | 0.4480 | 0.3641 | | 0.1764 | 7.42 | 69300 | 0.4361 | 0.3500 | | 0.1764 | 7.43 | 69400 | 0.4399 | 0.3632 | | 0.1711 | 7.44 | 69500 | 0.4383 | 0.3591 | | 0.1711 | 7.45 | 69600 | 0.4523 | 0.3636 | | 0.1711 | 7.46 | 69700 | 0.4388 | 0.3502 | | 0.1711 | 7.47 | 69800 | 0.4305 | 0.3565 | | 0.1711 | 7.48 | 69900 | 0.4290 | 0.3538 | | 0.1748 | 7.49 | 70000 | 0.4359 | 0.3511 | | 0.1748 | 7.51 | 70100 | 0.4315 | 0.3460 | | 0.1748 | 7.52 | 70200 | 0.4268 | 0.3555 | | 0.1748 | 7.53 | 70300 | 0.4267 | 0.3455 | | 0.1748 | 7.54 | 70400 | 0.4359 | 0.3517 | | 0.1739 | 7.55 | 70500 | 0.4299 | 0.3491 | | 0.1739 | 7.56 | 70600 | 0.4423 | 0.3409 | | 0.1739 | 7.57 | 70700 | 0.4251 | 0.3420 | | 0.1739 | 7.58 | 70800 | 0.4300 | 0.3414 | | 0.1739 | 7.59 | 70900 | 0.4349 | 0.3422 | | 0.1763 | 7.6 | 71000 | 0.4328 | 0.3418 | | 0.1763 | 7.61 | 71100 | 0.4313 | 0.3452 | | 0.1763 | 7.62 | 71200 | 0.4240 | 0.3534 | | 0.1763 | 7.63 | 71300 | 0.4274 | 0.3474 | | 0.1763 | 7.64 | 71400 | 0.4304 | 0.3467 | | 0.171 | 7.66 | 71500 | 0.4331 | 0.3510 | | 0.171 | 7.67 | 71600 | 0.4263 | 0.3478 | | 0.171 | 7.68 | 71700 | 0.4301 | 0.3447 | | 0.171 | 7.69 | 71800 | 0.4046 | 0.3452 | | 0.171 | 7.7 | 71900 | 0.4300 | 0.3528 | | 0.1792 | 7.71 | 72000 | 0.4253 | 0.3492 | | 0.1792 | 7.72 | 72100 | 0.4296 | 0.3491 | | 0.1792 | 7.73 | 72200 | 0.4118 | 0.3451 | | 0.1792 | 7.74 | 72300 | 0.4348 | 0.3345 | | 0.1792 | 7.75 | 72400 | 0.4283 | 0.3447 | | 0.1801 | 7.76 | 72500 | 0.4232 | 0.3449 | | 0.1801 | 7.77 | 72600 | 0.4491 | 0.3486 | | 0.1801 | 7.78 | 72700 | 0.4261 | 0.3343 | | 0.1801 | 7.79 | 72800 | 0.4382 | 0.3455 | | 0.1801 | 7.81 | 72900 | 0.4301 | 0.3415 | | 0.1731 | 7.82 | 73000 | 0.4236 | 0.3438 | | 0.1731 | 7.83 | 73100 | 0.4257 | 0.3419 | | 0.1731 | 7.84 | 73200 | 0.4368 | 0.3410 | | 0.1731 | 7.85 | 73300 | 0.4207 | 0.3398 | | 0.1731 | 7.86 | 73400 | 0.4118 | 0.3418 | | 0.1748 | 7.87 | 73500 | 0.4357 | 0.3429 | | 0.1748 | 7.88 | 73600 | 0.4277 | 0.3452 | | 0.1748 | 7.89 | 73700 | 0.4173 | 0.3476 | | 0.1748 | 7.9 | 73800 | 0.4191 | 0.3478 | | 0.1748 | 7.91 | 73900 | 0.4197 | 0.3457 | | 0.1745 | 7.92 | 74000 | 0.4197 | 0.3436 | | 0.1745 | 7.93 | 74100 | 0.4253 | 0.3512 | | 0.1745 | 7.94 | 74200 | 0.4217 | 0.3463 | | 0.1745 | 7.95 | 74300 | 0.4305 | 0.3473 | | 0.1745 | 7.97 | 74400 | 0.4215 | 0.3507 | | 0.1743 | 7.98 | 74500 | 0.4127 | 0.3408 | | 0.1743 | 7.99 | 74600 | 0.4191 | 0.3468 | | 0.1743 | 8.0 | 74700 | 0.4381 | 0.3491 | | 0.1743 | 8.01 | 74800 | 0.4510 | 0.3477 | | 0.1743 | 8.02 | 74900 | 0.4482 | 0.3471 | | 0.1588 | 8.03 | 75000 | 0.4471 | 0.3430 | | 0.1588 | 8.04 | 75100 | 0.4296 | 0.3393 | | 0.1588 | 8.05 | 75200 | 0.4480 | 0.3398 | | 0.1588 | 8.06 | 75300 | 0.4302 | 0.3452 | | 0.1588 | 8.07 | 75400 | 0.4410 | 0.3431 | | 0.144 | 8.08 | 75500 | 0.4263 | 0.3455 | | 0.144 | 8.09 | 75600 | 0.4523 | 0.3495 | | 0.144 | 8.1 | 75700 | 0.4455 | 0.3511 | | 0.144 | 8.12 | 75800 | 0.4379 | 0.3445 | | 0.144 | 8.13 | 75900 | 0.4418 | 0.3411 | | 0.1483 | 8.14 | 76000 | 0.4491 | 0.3463 | | 0.1483 | 8.15 | 76100 | 0.4386 | 0.3467 | | 0.1483 | 8.16 | 76200 | 0.4327 | 0.3524 | | 0.1483 | 8.17 | 76300 | 0.4360 | 0.3613 | | 0.1483 | 8.18 | 76400 | 0.4352 | 0.3498 | | 0.1541 | 8.19 | 76500 | 0.4376 | 0.3414 | | 0.1541 | 8.2 | 76600 | 0.4408 | 0.3464 | | 0.1541 | 8.21 | 76700 | 0.4415 | 0.3445 | | 0.1541 | 8.22 | 76800 | 0.4455 | 0.3482 | | 0.1541 | 8.23 | 76900 | 0.4542 | 0.3415 | | 0.1479 | 8.24 | 77000 | 0.4462 | 0.3426 | | 0.1479 | 8.25 | 77100 | 0.4460 | 0.3413 | | 0.1479 | 8.27 | 77200 | 0.4434 | 0.3375 | | 0.1479 | 8.28 | 77300 | 0.4397 | 0.3473 | | 0.1479 | 8.29 | 77400 | 0.4379 | 0.3484 | | 0.1479 | 8.3 | 77500 | 0.4441 | 0.3494 | | 0.1479 | 8.31 | 77600 | 0.4301 | 0.3466 | | 0.1479 | 8.32 | 77700 | 0.4420 | 0.3474 | | 0.1479 | 8.33 | 77800 | 0.4520 | 0.3589 | | 0.1479 | 8.34 | 77900 | 0.4283 | 0.3482 | | 0.1531 | 8.35 | 78000 | 0.4325 | 0.3446 | | 0.1531 | 8.36 | 78100 | 0.4380 | 0.3469 | | 0.1531 | 8.37 | 78200 | 0.4463 | 0.3503 | | 0.1531 | 8.38 | 78300 | 0.4479 | 0.3499 | | 0.1531 | 8.39 | 78400 | 0.4477 | 0.3529 | | 0.1507 | 8.4 | 78500 | 0.4709 | 0.3551 | | 0.1507 | 8.42 | 78600 | 0.4533 | 0.3531 | | 0.1507 | 8.43 | 78700 | 0.4507 | 0.3522 | | 0.1507 | 8.44 | 78800 | 0.4562 | 0.3583 | | 0.1507 | 8.45 | 78900 | 0.4421 | 0.3577 | | 0.1545 | 8.46 | 79000 | 0.4485 | 0.3547 | | 0.1545 | 8.47 | 79100 | 0.4389 | 0.3465 | | 0.1545 | 8.48 | 79200 | 0.4397 | 0.3502 | | 0.1545 | 8.49 | 79300 | 0.4403 | 0.3471 | | 0.1545 | 8.5 | 79400 | 0.4394 | 0.3482 | | 0.153 | 8.51 | 79500 | 0.4393 | 0.3474 | | 0.153 | 8.52 | 79600 | 0.4343 | 0.3495 | | 0.153 | 8.53 | 79700 | 0.4395 | 0.3539 | | 0.153 | 8.54 | 79800 | 0.4497 | 0.3535 | | 0.153 | 8.55 | 79900 | 0.4443 | 0.3540 | | 0.1558 | 8.57 | 80000 | 0.4495 | 0.3554 | | 0.1558 | 8.58 | 80100 | 0.4387 | 0.3460 | | 0.1558 | 8.59 | 80200 | 0.4378 | 0.3520 | | 0.1558 | 8.6 | 80300 | 0.4446 | 0.3527 | | 0.1558 | 8.61 | 80400 | 0.4513 | 0.3508 | | 0.1527 | 8.62 | 80500 | 0.4396 | 0.3537 | | 0.1527 | 8.63 | 80600 | 0.4405 | 0.3507 | | 0.1527 | 8.64 | 80700 | 0.4398 | 0.3450 | | 0.1527 | 8.65 | 80800 | 0.4458 | 0.3508 | | 0.1527 | 8.66 | 80900 | 0.4380 | 0.3465 | | 0.1522 | 8.67 | 81000 | 0.4373 | 0.3482 | | 0.1522 | 8.68 | 81100 | 0.4363 | 0.3410 | | 0.1522 | 8.69 | 81200 | 0.4290 | 0.3447 | | 0.1522 | 8.7 | 81300 | 0.4409 | 0.3515 | | 0.1522 | 8.72 | 81400 | 0.4363 | 0.3433 | | 0.1502 | 8.73 | 81500 | 0.4313 | 0.3429 | | 0.1502 | 8.74 | 81600 | 0.4263 | 0.3451 | | 0.1502 | 8.75 | 81700 | 0.4297 | 0.3452 | | 0.1502 | 8.76 | 81800 | 0.4449 | 0.3411 | | 0.1502 | 8.77 | 81900 | 0.4465 | 0.3455 | | 0.151 | 8.78 | 82000 | 0.4274 | 0.3425 | | 0.151 | 8.79 | 82100 | 0.4525 | 0.3532 | | 0.151 | 8.8 | 82200 | 0.4282 | 0.3502 | | 0.151 | 8.81 | 82300 | 0.4189 | 0.3507 | | 0.151 | 8.82 | 82400 | 0.4379 | 0.3451 | | 0.1529 | 8.83 | 82500 | 0.4378 | 0.3419 | | 0.1529 | 8.84 | 82600 | 0.4283 | 0.3392 | | 0.1529 | 8.85 | 82700 | 0.4359 | 0.3399 | | 0.1529 | 8.87 | 82800 | 0.4308 | 0.3358 | | 0.1529 | 8.88 | 82900 | 0.4296 | 0.3335 | | 0.151 | 8.89 | 83000 | 0.4387 | 0.3372 | | 0.151 | 8.9 | 83100 | 0.4335 | 0.3420 | | 0.151 | 8.91 | 83200 | 0.4329 | 0.3374 | | 0.151 | 8.92 | 83300 | 0.4353 | 0.3404 | | 0.151 | 8.93 | 83400 | 0.4384 | 0.3447 | | 0.1522 | 8.94 | 83500 | 0.4444 | 0.3353 | | 0.1522 | 8.95 | 83600 | 0.4413 | 0.3481 | | 0.1522 | 8.96 | 83700 | 0.4247 | 0.3474 | | 0.1522 | 8.97 | 83800 | 0.4197 | 0.3386 | | 0.1522 | 8.98 | 83900 | 0.4216 | 0.3384 | | 0.1511 | 8.99 | 84000 | 0.4159 | 0.3396 | | 0.1511 | 9.0 | 84100 | 0.4213 | 0.3416 | | 0.1511 | 9.01 | 84200 | 0.4399 | 0.3379 | | 0.1511 | 9.03 | 84300 | 0.4318 | 0.3437 | | 0.1511 | 9.04 | 84400 | 0.4356 | 0.3371 | | 0.1336 | 9.05 | 84500 | 0.4403 | 0.3373 | | 0.1336 | 9.06 | 84600 | 0.4545 | 0.3381 | | 0.1336 | 9.07 | 84700 | 0.4313 | 0.3331 | | 0.1336 | 9.08 | 84800 | 0.4257 | 0.3360 | | 0.1336 | 9.09 | 84900 | 0.4285 | 0.3372 | | 0.1315 | 9.1 | 85000 | 0.4378 | 0.3332 | | 0.1315 | 9.11 | 85100 | 0.4352 | 0.3282 | | 0.1315 | 9.12 | 85200 | 0.4360 | 0.3339 | | 0.1315 | 9.13 | 85300 | 0.4404 | 0.3365 | | 0.1315 | 9.14 | 85400 | 0.4345 | 0.3356 | | 0.1272 | 9.15 | 85500 | 0.4468 | 0.3375 | | 0.1272 | 9.16 | 85600 | 0.4331 | 0.3363 | | 0.1272 | 9.18 | 85700 | 0.4330 | 0.3309 | | 0.1272 | 9.19 | 85800 | 0.4424 | 0.3301 | | 0.1272 | 9.2 | 85900 | 0.4520 | 0.3326 | | 0.1289 | 9.21 | 86000 | 0.4421 | 0.3326 | | 0.1289 | 9.22 | 86100 | 0.4480 | 0.3335 | | 0.1289 | 9.23 | 86200 | 0.4351 | 0.3380 | | 0.1289 | 9.24 | 86300 | 0.4350 | 0.3427 | | 0.1289 | 9.25 | 86400 | 0.4362 | 0.3320 | | 0.1333 | 9.26 | 86500 | 0.4260 | 0.3342 | | 0.1333 | 9.27 | 86600 | 0.4357 | 0.3360 | | 0.1333 | 9.28 | 86700 | 0.4505 | 0.3372 | | 0.1333 | 9.29 | 86800 | 0.4342 | 0.3359 | | 0.1333 | 9.3 | 86900 | 0.4295 | 0.3367 | | 0.1318 | 9.31 | 87000 | 0.4320 | 0.3335 | | 0.1318 | 9.33 | 87100 | 0.4332 | 0.3344 | | 0.1318 | 9.34 | 87200 | 0.4373 | 0.3330 | | 0.1318 | 9.35 | 87300 | 0.4490 | 0.3316 | | 0.1318 | 9.36 | 87400 | 0.4188 | 0.3429 | | 0.1275 | 9.37 | 87500 | 0.4502 | 0.3383 | | 0.1275 | 9.38 | 87600 | 0.4463 | 0.3387 | | 0.1275 | 9.39 | 87700 | 0.4385 | 0.3308 | | 0.1275 | 9.4 | 87800 | 0.4464 | 0.3414 | | 0.1275 | 9.41 | 87900 | 0.4563 | 0.3405 | | 0.1331 | 9.42 | 88000 | 0.4286 | 0.3374 | | 0.1331 | 9.43 | 88100 | 0.4389 | 0.3352 | | 0.1331 | 9.44 | 88200 | 0.4301 | 0.3340 | | 0.1331 | 9.45 | 88300 | 0.4417 | 0.3373 | | 0.1331 | 9.46 | 88400 | 0.4450 | 0.3425 | | 0.1266 | 9.48 | 88500 | 0.4456 | 0.3451 | | 0.1266 | 9.49 | 88600 | 0.4517 | 0.3403 | | 0.1266 | 9.5 | 88700 | 0.4447 | 0.3419 | | 0.1266 | 9.51 | 88800 | 0.4486 | 0.3428 | | 0.1266 | 9.52 | 88900 | 0.4591 | 0.3411 | | 0.1316 | 9.53 | 89000 | 0.4481 | 0.3387 | | 0.1316 | 9.54 | 89100 | 0.4308 | 0.3349 | | 0.1316 | 9.55 | 89200 | 0.4411 | 0.3405 | | 0.1316 | 9.56 | 89300 | 0.4378 | 0.3390 | | 0.1316 | 9.57 | 89400 | 0.4448 | 0.3365 | | 0.1325 | 9.58 | 89500 | 0.4575 | 0.3416 | | 0.1325 | 9.59 | 89600 | 0.4608 | 0.3422 | | 0.1325 | 9.6 | 89700 | 0.4396 | 0.3350 | | 0.1325 | 9.61 | 89800 | 0.4380 | 0.3398 | | 0.1325 | 9.63 | 89900 | 0.4337 | 0.3388 | | 0.1324 | 9.64 | 90000 | 0.4376 | 0.3388 | | 0.1324 | 9.65 | 90100 | 0.4185 | 0.3380 | | 0.1324 | 9.66 | 90200 | 0.4394 | 0.3384 | | 0.1324 | 9.67 | 90300 | 0.4472 | 0.3400 | | 0.1324 | 9.68 | 90400 | 0.4523 | 0.3390 | | 0.1361 | 9.69 | 90500 | 0.4466 | 0.3389 | | 0.1361 | 9.7 | 90600 | 0.4414 | 0.3383 | | 0.1361 | 9.71 | 90700 | 0.4288 | 0.3348 | | 0.1361 | 9.72 | 90800 | 0.4445 | 0.3374 | | 0.1361 | 9.73 | 90900 | 0.4252 | 0.3322 | | 0.1353 | 9.74 | 91000 | 0.4312 | 0.3338 | | 0.1353 | 9.75 | 91100 | 0.4326 | 0.3319 | | 0.1353 | 9.76 | 91200 | 0.4212 | 0.3400 | | 0.1353 | 9.78 | 91300 | 0.4191 | 0.3374 | | 0.1353 | 9.79 | 91400 | 0.4399 | 0.3332 | | 0.1308 | 9.8 | 91500 | 0.4340 | 0.3349 | | 0.1308 | 9.81 | 91600 | 0.4280 | 0.3379 | | 0.1308 | 9.82 | 91700 | 0.4419 | 0.3376 | | 0.1308 | 9.83 | 91800 | 0.4309 | 0.3333 | | 0.1308 | 9.84 | 91900 | 0.4274 | 0.3352 | | 0.1321 | 9.85 | 92000 | 0.4147 | 0.3337 | | 0.1321 | 9.86 | 92100 | 0.4252 | 0.3316 | | 0.1321 | 9.87 | 92200 | 0.4378 | 0.3381 | | 0.1321 | 9.88 | 92300 | 0.4265 | 0.3355 | | 0.1321 | 9.89 | 92400 | 0.4247 | 0.3331 | | 0.1358 | 9.9 | 92500 | 0.4099 | 0.3379 | | 0.1358 | 9.91 | 92600 | 0.4142 | 0.3356 | | 0.1358 | 9.93 | 92700 | 0.4220 | 0.3332 | | 0.1358 | 9.94 | 92800 | 0.4219 | 0.3369 | | 0.1358 | 9.95 | 92900 | 0.4178 | 0.3332 | | 0.1331 | 9.96 | 93000 | 0.4305 | 0.3353 | | 0.1331 | 9.97 | 93100 | 0.4324 | 0.3307 | | 0.1331 | 9.98 | 93200 | 0.4315 | 0.3344 | | 0.1331 | 9.99 | 93300 | 0.4212 | 0.3314 | | 0.1331 | 10.0 | 93400 | 0.4203 | 0.3332 | | 0.1304 | 10.01 | 93500 | 0.4424 | 0.3351 | | 0.1304 | 10.02 | 93600 | 0.4474 | 0.3341 | | 0.1304 | 10.03 | 93700 | 0.4466 | 0.3378 | | 0.1304 | 10.04 | 93800 | 0.4388 | 0.3327 | | 0.1304 | 10.05 | 93900 | 0.4312 | 0.3360 | | 0.1152 | 10.06 | 94000 | 0.4471 | 0.3307 | | 0.1152 | 10.07 | 94100 | 0.4472 | 0.3316 | | 0.1152 | 10.09 | 94200 | 0.4462 | 0.3324 | | 0.1152 | 10.1 | 94300 | 0.4383 | 0.3344 | | 0.1152 | 10.11 | 94400 | 0.4671 | 0.3365 | | 0.1097 | 10.12 | 94500 | 0.4596 | 0.3307 | | 0.1097 | 10.13 | 94600 | 0.4517 | 0.3382 | | 0.1097 | 10.14 | 94700 | 0.4285 | 0.3380 | | 0.1097 | 10.15 | 94800 | 0.4628 | 0.3363 | | 0.1097 | 10.16 | 94900 | 0.4478 | 0.3365 | | 0.1153 | 10.17 | 95000 | 0.4464 | 0.3346 | | 0.1153 | 10.18 | 95100 | 0.4432 | 0.3392 | | 0.1153 | 10.19 | 95200 | 0.4326 | 0.3330 | | 0.1153 | 10.2 | 95300 | 0.4480 | 0.3327 | | 0.1153 | 10.21 | 95400 | 0.4436 | 0.3260 | | 0.1149 | 10.22 | 95500 | 0.4549 | 0.3311 | | 0.1149 | 10.24 | 95600 | 0.4573 | 0.3353 | | 0.1149 | 10.25 | 95700 | 0.4373 | 0.3369 | | 0.1149 | 10.26 | 95800 | 0.4459 | 0.3358 | | 0.1149 | 10.27 | 95900 | 0.4288 | 0.3270 | | 0.1169 | 10.28 | 96000 | 0.4474 | 0.3330 | | 0.1169 | 10.29 | 96100 | 0.4524 | 0.3298 | | 0.1169 | 10.3 | 96200 | 0.4517 | 0.3258 | | 0.1169 | 10.31 | 96300 | 0.4366 | 0.3288 | | 0.1169 | 10.32 | 96400 | 0.4574 | 0.3324 | | 0.1137 | 10.33 | 96500 | 0.4507 | 0.3343 | | 0.1137 | 10.34 | 96600 | 0.4414 | 0.3301 | | 0.1137 | 10.35 | 96700 | 0.4524 | 0.3366 | | 0.1137 | 10.36 | 96800 | 0.4563 | 0.3435 | | 0.1137 | 10.37 | 96900 | 0.4315 | 0.3375 | | 0.1162 | 10.39 | 97000 | 0.4429 | 0.3365 | | 0.1162 | 10.4 | 97100 | 0.4489 | 0.3380 | | 0.1162 | 10.41 | 97200 | 0.4352 | 0.3357 | | 0.1162 | 10.42 | 97300 | 0.4390 | 0.3319 | | 0.1162 | 10.43 | 97400 | 0.4570 | 0.3303 | | 0.1151 | 10.44 | 97500 | 0.4692 | 0.3344 | | 0.1151 | 10.45 | 97600 | 0.4605 | 0.3332 | | 0.1151 | 10.46 | 97700 | 0.4457 | 0.3238 | | 0.1151 | 10.47 | 97800 | 0.4298 | 0.3304 | | 0.1151 | 10.48 | 97900 | 0.4619 | 0.3274 | | 0.1105 | 10.49 | 98000 | 0.4362 | 0.3244 | | 0.1105 | 10.5 | 98100 | 0.4568 | 0.3289 | | 0.1105 | 10.51 | 98200 | 0.4522 | 0.3336 | | 0.1105 | 10.52 | 98300 | 0.4302 | 0.3257 | | 0.1105 | 10.54 | 98400 | 0.4505 | 0.3238 | | 0.1164 | 10.55 | 98500 | 0.4430 | 0.3301 | | 0.1164 | 10.56 | 98600 | 0.4575 | 0.3283 | | 0.1164 | 10.57 | 98700 | 0.4447 | 0.3277 | | 0.1164 | 10.58 | 98800 | 0.4400 | 0.3301 | | 0.1164 | 10.59 | 98900 | 0.4427 | 0.3288 | | 0.1113 | 10.6 | 99000 | 0.4538 | 0.3248 | | 0.1113 | 10.61 | 99100 | 0.4519 | 0.3298 | | 0.1113 | 10.62 | 99200 | 0.4290 | 0.3249 | | 0.1113 | 10.63 | 99300 | 0.4501 | 0.3220 | | 0.1113 | 10.64 | 99400 | 0.4410 | 0.3218 | | 0.1159 | 10.65 | 99500 | 0.4478 | 0.3211 | | 0.1159 | 10.66 | 99600 | 0.4462 | 0.3250 | | 0.1159 | 10.67 | 99700 | 0.4543 | 0.3302 | | 0.1159 | 10.69 | 99800 | 0.4462 | 0.3301 | | 0.1159 | 10.7 | 99900 | 0.4468 | 0.3229 | | 0.1161 | 10.71 | 100000 | 0.4515 | 0.3241 | | 0.1161 | 10.72 | 100100 | 0.4404 | 0.3276 | | 0.1161 | 10.73 | 100200 | 0.4439 | 0.3222 | | 0.1161 | 10.74 | 100300 | 0.4392 | 0.3257 | | 0.1161 | 10.75 | 100400 | 0.4476 | 0.3314 | | 0.1199 | 10.76 | 100500 | 0.4493 | 0.3270 | | 0.1199 | 10.77 | 100600 | 0.4462 | 0.3224 | | 0.1199 | 10.78 | 100700 | 0.4467 | 0.3311 | | 0.1199 | 10.79 | 100800 | 0.4198 | 0.3228 | | 0.1199 | 10.8 | 100900 | 0.4349 | 0.3225 | | 0.1146 | 10.81 | 101000 | 0.4371 | 0.3272 | | 0.1146 | 10.82 | 101100 | 0.4525 | 0.3210 | | 0.1146 | 10.84 | 101200 | 0.4293 | 0.3219 | | 0.1146 | 10.85 | 101300 | 0.4238 | 0.3216 | | 0.1146 | 10.86 | 101400 | 0.4377 | 0.3252 | | 0.118 | 10.87 | 101500 | 0.4371 | 0.3208 | | 0.118 | 10.88 | 101600 | 0.4216 | 0.3174 | | 0.118 | 10.89 | 101700 | 0.4312 | 0.3189 | | 0.118 | 10.9 | 101800 | 0.4317 | 0.3204 | | 0.118 | 10.91 | 101900 | 0.4303 | 0.3235 | | 0.114 | 10.92 | 102000 | 0.4416 | 0.3158 | | 0.114 | 10.93 | 102100 | 0.4240 | 0.3195 | | 0.114 | 10.94 | 102200 | 0.4340 | 0.3149 | | 0.114 | 10.95 | 102300 | 0.4311 | 0.3215 | | 0.114 | 10.96 | 102400 | 0.4261 | 0.3238 | | 0.1152 | 10.97 | 102500 | 0.4263 | 0.3206 | | 0.1152 | 10.98 | 102600 | 0.4325 | 0.3294 | | 0.1152 | 11.0 | 102700 | 0.4327 | 0.3187 | | 0.1152 | 11.01 | 102800 | 0.4423 | 0.3195 | | 0.1152 | 11.02 | 102900 | 0.4341 | 0.3277 | | 0.1084 | 11.03 | 103000 | 0.4232 | 0.3243 | | 0.1084 | 11.04 | 103100 | 0.4355 | 0.3184 | | 0.1084 | 11.05 | 103200 | 0.4374 | 0.3274 | | 0.1084 | 11.06 | 103300 | 0.4484 | 0.3305 | | 0.1084 | 11.07 | 103400 | 0.4423 | 0.3226 | | 0.1003 | 11.08 | 103500 | 0.4518 | 0.3224 | | 0.1003 | 11.09 | 103600 | 0.4518 | 0.3243 | | 0.1003 | 11.1 | 103700 | 0.4282 | 0.3207 | | 0.1003 | 11.11 | 103800 | 0.4418 | 0.3220 | | 0.1003 | 11.12 | 103900 | 0.4411 | 0.3216 | | 0.1009 | 11.13 | 104000 | 0.4474 | 0.3238 | | 0.1009 | 11.15 | 104100 | 0.4406 | 0.3245 | | 0.1009 | 11.16 | 104200 | 0.4384 | 0.3242 | | 0.1009 | 11.17 | 104300 | 0.4702 | 0.3265 | | 0.1009 | 11.18 | 104400 | 0.4611 | 0.3266 | | 0.0992 | 11.19 | 104500 | 0.4425 | 0.3211 | | 0.0992 | 11.2 | 104600 | 0.4575 | 0.3222 | | 0.0992 | 11.21 | 104700 | 0.4449 | 0.3208 | | 0.0992 | 11.22 | 104800 | 0.4715 | 0.3208 | | 0.0992 | 11.23 | 104900 | 0.4469 | 0.3223 | | 0.1021 | 11.24 | 105000 | 0.4536 | 0.3225 | | 0.1021 | 11.25 | 105100 | 0.4629 | 0.3234 | | 0.1021 | 11.26 | 105200 | 0.4550 | 0.3205 | | 0.1021 | 11.27 | 105300 | 0.4598 | 0.3213 | | 0.1021 | 11.28 | 105400 | 0.4522 | 0.3179 | | 0.1021 | 11.3 | 105500 | 0.4658 | 0.3211 | | 0.1021 | 11.31 | 105600 | 0.4664 | 0.3196 | | 0.1021 | 11.32 | 105700 | 0.4736 | 0.3177 | | 0.1021 | 11.33 | 105800 | 0.4587 | 0.3158 | | 0.1021 | 11.34 | 105900 | 0.4589 | 0.3194 | | 0.1025 | 11.35 | 106000 | 0.4692 | 0.3214 | | 0.1025 | 11.36 | 106100 | 0.4382 | 0.3181 | | 0.1025 | 11.37 | 106200 | 0.4556 | 0.3185 | | 0.1025 | 11.38 | 106300 | 0.4445 | 0.3191 | | 0.1025 | 11.39 | 106400 | 0.4379 | 0.3163 | | 0.104 | 11.4 | 106500 | 0.4454 | 0.3220 | | 0.104 | 11.41 | 106600 | 0.4463 | 0.3201 | | 0.104 | 11.42 | 106700 | 0.4550 | 0.3173 | | 0.104 | 11.43 | 106800 | 0.4404 | 0.3168 | | 0.104 | 11.45 | 106900 | 0.4569 | 0.3170 | | 0.1016 | 11.46 | 107000 | 0.4529 | 0.3168 | | 0.1016 | 11.47 | 107100 | 0.4587 | 0.3173 | | 0.1016 | 11.48 | 107200 | 0.4505 | 0.3172 | | 0.1016 | 11.49 | 107300 | 0.4489 | 0.3159 | | 0.1016 | 11.5 | 107400 | 0.4528 | 0.3130 | | 0.1001 | 11.51 | 107500 | 0.4473 | 0.3181 | | 0.1001 | 11.52 | 107600 | 0.4434 | 0.3176 | | 0.1001 | 11.53 | 107700 | 0.4597 | 0.3186 | | 0.1001 | 11.54 | 107800 | 0.4351 | 0.3159 | | 0.1001 | 11.55 | 107900 | 0.4471 | 0.3185 | | 0.1005 | 11.56 | 108000 | 0.4457 | 0.3191 | | 0.1005 | 11.57 | 108100 | 0.4544 | 0.3293 | | 0.1005 | 11.58 | 108200 | 0.4436 | 0.3221 | | 0.1005 | 11.6 | 108300 | 0.4642 | 0.3270 | | 0.1005 | 11.61 | 108400 | 0.4474 | 0.3270 | | 0.1031 | 11.62 | 108500 | 0.4458 | 0.3196 | | 0.1031 | 11.63 | 108600 | 0.4723 | 0.3205 | | 0.1031 | 11.64 | 108700 | 0.4507 | 0.3226 | | 0.1031 | 11.65 | 108800 | 0.4424 | 0.3213 | | 0.1031 | 11.66 | 108900 | 0.4511 | 0.3213 | | 0.1014 | 11.67 | 109000 | 0.4422 | 0.3205 | | 0.1014 | 11.68 | 109100 | 0.4498 | 0.3180 | | 0.1014 | 11.69 | 109200 | 0.4303 | 0.3167 | | 0.1014 | 11.7 | 109300 | 0.4483 | 0.3108 | | 0.1014 | 11.71 | 109400 | 0.4548 | 0.3169 | | 0.0981 | 11.72 | 109500 | 0.4406 | 0.3122 | | 0.0981 | 11.73 | 109600 | 0.4293 | 0.3114 | | 0.0981 | 11.75 | 109700 | 0.4369 | 0.3159 | | 0.0981 | 11.76 | 109800 | 0.4364 | 0.3164 | | 0.0981 | 11.77 | 109900 | 0.4358 | 0.3189 | | 0.1023 | 11.78 | 110000 | 0.4281 | 0.3183 | | 0.1023 | 11.79 | 110100 | 0.4404 | 0.3159 | | 0.1023 | 11.8 | 110200 | 0.4471 | 0.3135 | | 0.1023 | 11.81 | 110300 | 0.4498 | 0.3201 | | 0.1023 | 11.82 | 110400 | 0.4527 | 0.3161 | | 0.0988 | 11.83 | 110500 | 0.4440 | 0.3173 | | 0.0988 | 11.84 | 110600 | 0.4356 | 0.3136 | | 0.0988 | 11.85 | 110700 | 0.4308 | 0.3135 | | 0.0988 | 11.86 | 110800 | 0.4294 | 0.3192 | | 0.0988 | 11.87 | 110900 | 0.4241 | 0.3168 | | 0.1022 | 11.88 | 111000 | 0.4420 | 0.3157 | | 0.1022 | 11.9 | 111100 | 0.4313 | 0.3125 | | 0.1022 | 11.91 | 111200 | 0.4213 | 0.3168 | | 0.1022 | 11.92 | 111300 | 0.4352 | 0.3135 | | 0.1022 | 11.93 | 111400 | 0.4297 | 0.3116 | | 0.1032 | 11.94 | 111500 | 0.4218 | 0.3137 | | 0.1032 | 11.95 | 111600 | 0.4334 | 0.3123 | | 0.1032 | 11.96 | 111700 | 0.4373 | 0.3175 | | 0.1032 | 11.97 | 111800 | 0.4299 | 0.3160 | | 0.1032 | 11.98 | 111900 | 0.4326 | 0.3189 | | 0.0969 | 11.99 | 112000 | 0.4208 | 0.3186 | | 0.0969 | 12.0 | 112100 | 0.4385 | 0.3169 | | 0.0969 | 12.01 | 112200 | 0.4453 | 0.3156 | | 0.0969 | 12.02 | 112300 | 0.4596 | 0.3133 | | 0.0969 | 12.03 | 112400 | 0.4509 | 0.3093 | | 0.0901 | 12.04 | 112500 | 0.4535 | 0.3138 | | 0.0901 | 12.06 | 112600 | 0.4371 | 0.3144 | | 0.0901 | 12.07 | 112700 | 0.4499 | 0.3154 | | 0.0901 | 12.08 | 112800 | 0.4615 | 0.3198 | | 0.0901 | 12.09 | 112900 | 0.4523 | 0.3177 | | 0.0889 | 12.1 | 113000 | 0.4412 | 0.3130 | | 0.0889 | 12.11 | 113100 | 0.4471 | 0.3181 | | 0.0889 | 12.12 | 113200 | 0.4530 | 0.3169 | | 0.0889 | 12.13 | 113300 | 0.4670 | 0.3149 | | 0.0889 | 12.14 | 113400 | 0.4594 | 0.3141 | | 0.0917 | 12.15 | 113500 | 0.4623 | 0.3127 | | 0.0917 | 12.16 | 113600 | 0.4460 | 0.3133 | | 0.0917 | 12.17 | 113700 | 0.4512 | 0.3191 | | 0.0917 | 12.18 | 113800 | 0.4681 | 0.3136 | | 0.0917 | 12.19 | 113900 | 0.4564 | 0.3129 | | 0.0906 | 12.21 | 114000 | 0.4482 | 0.3107 | | 0.0906 | 12.22 | 114100 | 0.4595 | 0.3133 | | 0.0906 | 12.23 | 114200 | 0.4510 | 0.3118 | | 0.0906 | 12.24 | 114300 | 0.4472 | 0.3131 | | 0.0906 | 12.25 | 114400 | 0.4499 | 0.3130 | | 0.0918 | 12.26 | 114500 | 0.4503 | 0.3138 | | 0.0918 | 12.27 | 114600 | 0.4518 | 0.3135 | | 0.0918 | 12.28 | 114700 | 0.4493 | 0.3114 | | 0.0918 | 12.29 | 114800 | 0.4574 | 0.3133 | | 0.0918 | 12.3 | 114900 | 0.4683 | 0.3200 | | 0.0869 | 12.31 | 115000 | 0.4608 | 0.3165 | | 0.0869 | 12.32 | 115100 | 0.4618 | 0.3183 | | 0.0869 | 12.33 | 115200 | 0.4689 | 0.3173 | | 0.0869 | 12.34 | 115300 | 0.4681 | 0.3224 | | 0.0869 | 12.36 | 115400 | 0.4576 | 0.3231 | | 0.0885 | 12.37 | 115500 | 0.4831 | 0.3176 | | 0.0885 | 12.38 | 115600 | 0.4602 | 0.3181 | | 0.0885 | 12.39 | 115700 | 0.4493 | 0.3168 | | 0.0885 | 12.4 | 115800 | 0.4564 | 0.3149 | | 0.0885 | 12.41 | 115900 | 0.4585 | 0.3158 | | 0.091 | 12.42 | 116000 | 0.4713 | 0.3193 | | 0.091 | 12.43 | 116100 | 0.4581 | 0.3139 | | 0.091 | 12.44 | 116200 | 0.4637 | 0.3131 | | 0.091 | 12.45 | 116300 | 0.4572 | 0.3124 | | 0.091 | 12.46 | 116400 | 0.4489 | 0.3163 | | 0.0886 | 12.47 | 116500 | 0.4679 | 0.3159 | | 0.0886 | 12.48 | 116600 | 0.4712 | 0.3151 | | 0.0886 | 12.49 | 116700 | 0.4750 | 0.3186 | | 0.0886 | 12.51 | 116800 | 0.4673 | 0.3176 | | 0.0886 | 12.52 | 116900 | 0.4601 | 0.3113 | | 0.0917 | 12.53 | 117000 | 0.4341 | 0.3125 | | 0.0917 | 12.54 | 117100 | 0.4462 | 0.3077 | | 0.0917 | 12.55 | 117200 | 0.4502 | 0.3099 | | 0.0917 | 12.56 | 117300 | 0.4482 | 0.3116 | | 0.0917 | 12.57 | 117400 | 0.4459 | 0.3131 | | 0.0881 | 12.58 | 117500 | 0.4464 | 0.3122 | | 0.0881 | 12.59 | 117600 | 0.4471 | 0.3125 | | 0.0881 | 12.6 | 117700 | 0.4319 | 0.3122 | | 0.0881 | 12.61 | 117800 | 0.4421 | 0.3103 | | 0.0881 | 12.62 | 117900 | 0.4326 | 0.3108 | | 0.0913 | 12.63 | 118000 | 0.4414 | 0.3068 | | 0.0913 | 12.64 | 118100 | 0.4421 | 0.3083 | | 0.0913 | 12.66 | 118200 | 0.4449 | 0.3103 | | 0.0913 | 12.67 | 118300 | 0.4380 | 0.3128 | | 0.0913 | 12.68 | 118400 | 0.4390 | 0.3136 | | 0.0921 | 12.69 | 118500 | 0.4452 | 0.3104 | | 0.0921 | 12.7 | 118600 | 0.4378 | 0.3122 | | 0.0921 | 12.71 | 118700 | 0.4459 | 0.3080 | | 0.0921 | 12.72 | 118800 | 0.4369 | 0.3051 | | 0.0921 | 12.73 | 118900 | 0.4474 | 0.3076 | | 0.0886 | 12.74 | 119000 | 0.4508 | 0.3066 | | 0.0886 | 12.75 | 119100 | 0.4456 | 0.3097 | | 0.0886 | 12.76 | 119200 | 0.4503 | 0.3078 | | 0.0886 | 12.77 | 119300 | 0.4460 | 0.3081 | | 0.0886 | 12.78 | 119400 | 0.4404 | 0.3080 | | 0.0897 | 12.79 | 119500 | 0.4351 | 0.3100 | | 0.0897 | 12.81 | 119600 | 0.4446 | 0.3120 | | 0.0897 | 12.82 | 119700 | 0.4407 | 0.3098 | | 0.0897 | 12.83 | 119800 | 0.4406 | 0.3084 | | 0.0897 | 12.84 | 119900 | 0.4492 | 0.3067 | | 0.09 | 12.85 | 120000 | 0.4546 | 0.3098 | | 0.09 | 12.86 | 120100 | 0.4547 | 0.3074 | | 0.09 | 12.87 | 120200 | 0.4517 | 0.3111 | | 0.09 | 12.88 | 120300 | 0.4320 | 0.3064 | | 0.09 | 12.89 | 120400 | 0.4294 | 0.3072 | | 0.0898 | 12.9 | 120500 | 0.4412 | 0.3050 | | 0.0898 | 12.91 | 120600 | 0.4254 | 0.3074 | | 0.0898 | 12.92 | 120700 | 0.4409 | 0.3071 | | 0.0898 | 12.93 | 120800 | 0.4362 | 0.3071 | | 0.0898 | 12.94 | 120900 | 0.4579 | 0.3090 | | 0.0892 | 12.95 | 121000 | 0.4492 | 0.3059 | | 0.0892 | 12.97 | 121100 | 0.4404 | 0.3105 | | 0.0892 | 12.98 | 121200 | 0.4365 | 0.3066 | | 0.0892 | 12.99 | 121300 | 0.4368 | 0.3048 | | 0.0892 | 13.0 | 121400 | 0.4410 | 0.3033 | | 0.085 | 13.01 | 121500 | 0.4450 | 0.3047 | | 0.085 | 13.02 | 121600 | 0.4633 | 0.3013 | | 0.085 | 13.03 | 121700 | 0.4600 | 0.3054 | | 0.085 | 13.04 | 121800 | 0.4541 | 0.3047 | | 0.085 | 13.05 | 121900 | 0.4546 | 0.3058 | | 0.0791 | 13.06 | 122000 | 0.4536 | 0.3045 | | 0.0791 | 13.07 | 122100 | 0.4589 | 0.3066 | | 0.0791 | 13.08 | 122200 | 0.4581 | 0.3057 | | 0.0791 | 13.09 | 122300 | 0.4546 | 0.3048 | | 0.0791 | 13.1 | 122400 | 0.4673 | 0.3006 | | 0.0789 | 13.12 | 122500 | 0.4551 | 0.3019 | | 0.0789 | 13.13 | 122600 | 0.4467 | 0.3025 | | 0.0789 | 13.14 | 122700 | 0.4593 | 0.3015 | | 0.0789 | 13.15 | 122800 | 0.4598 | 0.3037 | | 0.0789 | 13.16 | 122900 | 0.4532 | 0.3038 | | 0.077 | 13.17 | 123000 | 0.4607 | 0.3015 | | 0.077 | 13.18 | 123100 | 0.4385 | 0.3005 | | 0.077 | 13.19 | 123200 | 0.4590 | 0.3041 | | 0.077 | 13.2 | 123300 | 0.4359 | 0.3047 | | 0.077 | 13.21 | 123400 | 0.4458 | 0.3039 | | 0.0771 | 13.22 | 123500 | 0.4506 | 0.3075 | | 0.0771 | 13.23 | 123600 | 0.4457 | 0.3079 | | 0.0771 | 13.24 | 123700 | 0.4448 | 0.3048 | | 0.0771 | 13.25 | 123800 | 0.4398 | 0.3036 | | 0.0771 | 13.27 | 123900 | 0.4510 | 0.3055 | | 0.0804 | 13.28 | 124000 | 0.4507 | 0.3059 | | 0.0804 | 13.29 | 124100 | 0.4544 | 0.3076 | | 0.0804 | 13.3 | 124200 | 0.4534 | 0.3073 | | 0.0804 | 13.31 | 124300 | 0.4441 | 0.3061 | | 0.0804 | 13.32 | 124400 | 0.4391 | 0.3075 | | 0.0774 | 13.33 | 124500 | 0.4527 | 0.3063 | | 0.0774 | 13.34 | 124600 | 0.4638 | 0.3057 | | 0.0774 | 13.35 | 124700 | 0.4541 | 0.3064 | | 0.0774 | 13.36 | 124800 | 0.4617 | 0.3078 | | 0.0774 | 13.37 | 124900 | 0.4584 | 0.3041 | | 0.0795 | 13.38 | 125000 | 0.4663 | 0.3032 | | 0.0795 | 13.39 | 125100 | 0.4546 | 0.3025 | | 0.0795 | 13.4 | 125200 | 0.4616 | 0.3021 | | 0.0795 | 13.42 | 125300 | 0.4603 | 0.3016 | | 0.0795 | 13.43 | 125400 | 0.4616 | 0.3040 | | 0.0791 | 13.44 | 125500 | 0.4548 | 0.3021 | | 0.0791 | 13.45 | 125600 | 0.4560 | 0.3025 | | 0.0791 | 13.46 | 125700 | 0.4516 | 0.3037 | | 0.0791 | 13.47 | 125800 | 0.4500 | 0.3013 | | 0.0791 | 13.48 | 125900 | 0.4540 | 0.3009 | | 0.0776 | 13.49 | 126000 | 0.4581 | 0.3026 | | 0.0776 | 13.5 | 126100 | 0.4598 | 0.3028 | | 0.0776 | 13.51 | 126200 | 0.4587 | 0.3038 | | 0.0776 | 13.52 | 126300 | 0.4514 | 0.3024 | | 0.0776 | 13.53 | 126400 | 0.4495 | 0.3036 | | 0.0793 | 13.54 | 126500 | 0.4556 | 0.3016 | | 0.0793 | 13.55 | 126600 | 0.4603 | 0.3025 | | 0.0793 | 13.57 | 126700 | 0.4496 | 0.2995 | | 0.0793 | 13.58 | 126800 | 0.4483 | 0.2969 | | 0.0793 | 13.59 | 126900 | 0.4462 | 0.2980 | | 0.0816 | 13.6 | 127000 | 0.4521 | 0.2982 | | 0.0816 | 13.61 | 127100 | 0.4580 | 0.3019 | | 0.0816 | 13.62 | 127200 | 0.4669 | 0.3009 | | 0.0816 | 13.63 | 127300 | 0.4513 | 0.3017 | | 0.0816 | 13.64 | 127400 | 0.4602 | 0.3015 | | 0.0779 | 13.65 | 127500 | 0.4592 | 0.2998 | | 0.0779 | 13.66 | 127600 | 0.4700 | 0.2981 | | 0.0779 | 13.67 | 127700 | 0.4727 | 0.2978 | | 0.0779 | 13.68 | 127800 | 0.4600 | 0.2983 | | 0.0779 | 13.69 | 127900 | 0.4472 | 0.2978 | | 0.0779 | 13.7 | 128000 | 0.4483 | 0.2984 | | 0.0779 | 13.72 | 128100 | 0.4512 | 0.2968 | | 0.0779 | 13.73 | 128200 | 0.4549 | 0.2988 | | 0.0779 | 13.74 | 128300 | 0.4576 | 0.2992 | | 0.0779 | 13.75 | 128400 | 0.4400 | 0.2974 | | 0.0793 | 13.76 | 128500 | 0.4433 | 0.3009 | | 0.0793 | 13.77 | 128600 | 0.4456 | 0.2982 | | 0.0793 | 13.78 | 128700 | 0.4560 | 0.3019 | | 0.0793 | 13.79 | 128800 | 0.4551 | 0.3008 | | 0.0793 | 13.8 | 128900 | 0.4513 | 0.3007 | | 0.0769 | 13.81 | 129000 | 0.4518 | 0.3008 | | 0.0769 | 13.82 | 129100 | 0.4567 | 0.2981 | | 0.0769 | 13.83 | 129200 | 0.4437 | 0.2985 | | 0.0769 | 13.84 | 129300 | 0.4424 | 0.2970 | | 0.0769 | 13.85 | 129400 | 0.4423 | 0.3010 | | 0.0785 | 13.87 | 129500 | 0.4495 | 0.2999 | | 0.0785 | 13.88 | 129600 | 0.4483 | 0.2975 | | 0.0785 | 13.89 | 129700 | 0.4485 | 0.2982 | | 0.0785 | 13.9 | 129800 | 0.4429 | 0.2972 | | 0.0785 | 13.91 | 129900 | 0.4430 | 0.2958 | | 0.0792 | 13.92 | 130000 | 0.4495 | 0.2954 | | 0.0792 | 13.93 | 130100 | 0.4485 | 0.2947 | | 0.0792 | 13.94 | 130200 | 0.4395 | 0.2972 | | 0.0792 | 13.95 | 130300 | 0.4379 | 0.2973 | | 0.0792 | 13.96 | 130400 | 0.4428 | 0.2989 | | 0.0795 | 13.97 | 130500 | 0.4385 | 0.3000 | | 0.0795 | 13.98 | 130600 | 0.4490 | 0.2983 | | 0.0795 | 13.99 | 130700 | 0.4568 | 0.2970 | | 0.0795 | 14.0 | 130800 | 0.4482 | 0.2963 | | 0.0795 | 14.01 | 130900 | 0.4479 | 0.2962 | | 0.075 | 14.03 | 131000 | 0.4565 | 0.2968 | | 0.075 | 14.04 | 131100 | 0.4623 | 0.2962 | | 0.075 | 14.05 | 131200 | 0.4617 | 0.2965 | | 0.075 | 14.06 | 131300 | 0.4687 | 0.2949 | | 0.075 | 14.07 | 131400 | 0.4718 | 0.2929 | | 0.0709 | 14.08 | 131500 | 0.4720 | 0.2945 | | 0.0709 | 14.09 | 131600 | 0.4604 | 0.2953 | | 0.0709 | 14.1 | 131700 | 0.4655 | 0.2955 | | 0.0709 | 14.11 | 131800 | 0.4695 | 0.2958 | | 0.0709 | 14.12 | 131900 | 0.4666 | 0.2945 | | 0.0705 | 14.13 | 132000 | 0.4605 | 0.2959 | | 0.0705 | 14.14 | 132100 | 0.4581 | 0.2947 | | 0.0705 | 14.15 | 132200 | 0.4597 | 0.2948 | | 0.0705 | 14.16 | 132300 | 0.4612 | 0.2943 | | 0.0705 | 14.18 | 132400 | 0.4611 | 0.2959 | | 0.0727 | 14.19 | 132500 | 0.4569 | 0.2958 | | 0.0727 | 14.2 | 132600 | 0.4556 | 0.2951 | | 0.0727 | 14.21 | 132700 | 0.4597 | 0.2955 | | 0.0727 | 14.22 | 132800 | 0.4472 | 0.2935 | | 0.0727 | 14.23 | 132900 | 0.4573 | 0.2943 | | 0.0723 | 14.24 | 133000 | 0.4572 | 0.2943 | | 0.0723 | 14.25 | 133100 | 0.4582 | 0.2956 | | 0.0723 | 14.26 | 133200 | 0.4599 | 0.2968 | | 0.0723 | 14.27 | 133300 | 0.4633 | 0.2962 | | 0.0723 | 14.28 | 133400 | 0.4604 | 0.2972 | | 0.071 | 14.29 | 133500 | 0.4587 | 0.2971 | | 0.071 | 14.3 | 133600 | 0.4598 | 0.2973 | | 0.071 | 14.31 | 133700 | 0.4579 | 0.2976 | | 0.071 | 14.33 | 133800 | 0.4539 | 0.2969 | | 0.071 | 14.34 | 133900 | 0.4628 | 0.2961 | | 0.0703 | 14.35 | 134000 | 0.4627 | 0.2974 | | 0.0703 | 14.36 | 134100 | 0.4611 | 0.2974 | | 0.0703 | 14.37 | 134200 | 0.4607 | 0.2977 | | 0.0703 | 14.38 | 134300 | 0.4638 | 0.2983 | | 0.0703 | 14.39 | 134400 | 0.4628 | 0.2969 | | 0.0736 | 14.4 | 134500 | 0.4543 | 0.2965 | | 0.0736 | 14.41 | 134600 | 0.4585 | 0.2963 | | 0.0736 | 14.42 | 134700 | 0.4636 | 0.2950 | | 0.0736 | 14.43 | 134800 | 0.4636 | 0.2964 | | 0.0736 | 14.44 | 134900 | 0.4630 | 0.2958 | | 0.0715 | 14.45 | 135000 | 0.4611 | 0.2968 | | 0.0715 | 14.46 | 135100 | 0.4633 | 0.2966 | | 0.0715 | 14.48 | 135200 | 0.4664 | 0.2954 | | 0.0715 | 14.49 | 135300 | 0.4670 | 0.2945 | | 0.0715 | 14.5 | 135400 | 0.4638 | 0.2961 | | 0.073 | 14.51 | 135500 | 0.4635 | 0.2965 | | 0.073 | 14.52 | 135600 | 0.4639 | 0.2956 | | 0.073 | 14.53 | 135700 | 0.4617 | 0.2948 | | 0.073 | 14.54 | 135800 | 0.4609 | 0.2933 | | 0.073 | 14.55 | 135900 | 0.4614 | 0.2947 | | 0.0717 | 14.56 | 136000 | 0.4567 | 0.2958 | | 0.0717 | 14.57 | 136100 | 0.4615 | 0.2934 | | 0.0717 | 14.58 | 136200 | 0.4606 | 0.2929 | | 0.0717 | 14.59 | 136300 | 0.4652 | 0.2934 | | 0.0717 | 14.6 | 136400 | 0.4664 | 0.2934 | | 0.0717 | 14.61 | 136500 | 0.4657 | 0.2923 | | 0.0717 | 14.63 | 136600 | 0.4633 | 0.2931 | | 0.0717 | 14.64 | 136700 | 0.4624 | 0.2943 | | 0.0717 | 14.65 | 136800 | 0.4615 | 0.2949 | | 0.0717 | 14.66 | 136900 | 0.4619 | 0.2930 | | 0.0707 | 14.67 | 137000 | 0.4608 | 0.2936 | | 0.0707 | 14.68 | 137100 | 0.4615 | 0.2945 | | 0.0707 | 14.69 | 137200 | 0.4605 | 0.2941 | | 0.0707 | 14.7 | 137300 | 0.4598 | 0.2931 | | 0.0707 | 14.71 | 137400 | 0.4596 | 0.2943 | | 0.0694 | 14.72 | 137500 | 0.4624 | 0.2927 | | 0.0694 | 14.73 | 137600 | 0.4614 | 0.2931 | | 0.0694 | 14.74 | 137700 | 0.4621 | 0.2924 | | 0.0694 | 14.75 | 137800 | 0.4589 | 0.2920 | | 0.0694 | 14.76 | 137900 | 0.4590 | 0.2926 | | 0.0706 | 14.78 | 138000 | 0.4588 | 0.2931 | | 0.0706 | 14.79 | 138100 | 0.4583 | 0.2928 | | 0.0706 | 14.8 | 138200 | 0.4552 | 0.2934 | | 0.0706 | 14.81 | 138300 | 0.4551 | 0.2923 | | 0.0706 | 14.82 | 138400 | 0.4555 | 0.2927 | | 0.0717 | 14.83 | 138500 | 0.4547 | 0.2930 | | 0.0717 | 14.84 | 138600 | 0.4546 | 0.2930 | | 0.0717 | 14.85 | 138700 | 0.4553 | 0.2934 | | 0.0717 | 14.86 | 138800 | 0.4554 | 0.2924 | | 0.0717 | 14.87 | 138900 | 0.4573 | 0.2924 | | 0.0722 | 14.88 | 139000 | 0.4582 | 0.2927 | | 0.0722 | 14.89 | 139100 | 0.4586 | 0.2926 | | 0.0722 | 14.9 | 139200 | 0.4570 | 0.2926 | | 0.0722 | 14.91 | 139300 | 0.4571 | 0.2923 | | 0.0722 | 14.93 | 139400 | 0.4564 | 0.2925 | | 0.0698 | 14.94 | 139500 | 0.4573 | 0.2927 | | 0.0698 | 14.95 | 139600 | 0.4574 | 0.2927 | | 0.0698 | 14.96 | 139700 | 0.4573 | 0.2927 | | 0.0698 | 14.97 | 139800 | 0.4576 | 0.2921 | | 0.0698 | 14.98 | 139900 | 0.4578 | 0.2923 | | 0.0705 | 14.99 | 140000 | 0.4579 | 0.2928 | | 0.0705 | 15.0 | 140100 | 0.4578 | 0.2927 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hyesunyun/NonsenseUpdateDiffStringBart
hyesunyun
2022-02-08T04:10:12Z
13
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "diff generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - summarization - diff generation datasets: - nonsense corpus metrics: - rouge --- hello! this is the pretrained BART. The dataset used for pretraining is nonsense summary corpus with output as diff.
shields/wav2vec2-base-dementiabank
shields
2022-02-08T02:53:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-dementiabank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-dementiabank This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 11.0473 - eval_wer: 1.0 - eval_runtime: 3.3353 - eval_samples_per_second: 2.399 - eval_steps_per_second: 0.3 - epoch: 3.12 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.5 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
softcatala/wav2vec2-large-100k-voxpopuli-catala
softcatala
2022-02-08T02:20:32Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "speech-to-text", "ca", "dataset:common_voice", "dataset:parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - speech-to-text license: apache-2.0 model-index: - name: Catalan VoxPopuli Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 5.98 - name: Google Crowsourced Corpus WER type: wer value: 12.14 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 12.02 --- # Wav2Vec2-Large-100k-VoxPopuli-Català Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv)) | 5.98% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.14% | | Audiobook “La llegenda de Sant Jordi” | 12.02% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
jgammack/distilbert-base-uncased-squad
jgammack
2022-02-08T01:36:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ccoreilly/wav2vec2-large-100k-voxpopuli-catala
ccoreilly
2022-02-08T00:59:52Z
14
2
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "speech-to-text", "ca", "dataset:common_voice", "dataset:parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - speech-to-text license: apache-2.0 model-index: - name: Catalan VoxPopuli Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 5.98 - name: Google Crowsourced Corpus WER type: wer value: 12.14 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 12.02 --- # Wav2Vec2-Large-100k-VoxPopuli-Català **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL:** https://huggingface.co/softcatala/wav2vec2-large-100k-voxpopuli-catala Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test-filtered.csv)) | 5.98% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.14% | | Audiobook “La llegenda de Sant Jordi” | 12.02% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
softcatala/wav2vec2-large-xlsr-catala
softcatala
2022-02-08T00:23:02Z
82,658
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ca", "dataset:common_voice", "dataset:parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ca datasets: - common_voice - parlament_parla metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Catalan XLSR Wav2Vec2 Large results: - task: name: Speech Recognition type: automatic-speech-recognition datasets: - name: Common Voice ca type: common_voice args: ca - name: ParlamentParla url: https://www.openslr.org/59/ metrics: - name: Test WER type: wer value: 6.92 - name: Google Crowsourced Corpus WER type: wer value: 12.99 - name: Audiobook “La llegenda de Sant Jordi” WER type: wer value: 13.23 --- # Wav2Vec2-Large-XLSR-Català Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Catalan language using the [Common Voice](https://huggingface.co/datasets/common_voice) and [ParlamentParla](https://www.openslr.org/59/) datasets. **Attention:** The split train/dev/test used does not fully map with the CommonVoice 6.1 dataset. A custom split was used combining both the CommonVoice and ParlamentParla dataset and can be found [here](https://github.com/ccoreilly/wav2vec2-catala). Evaluating on the CV test dataset will produce a biased WER as 1144 audio files of that dataset were used in training/evaluation of this model. WER was calculated using this [test.csv](https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv) which was not seen by the model during training/evaluation. You can find training and evaluation scripts in the github repository [ccoreilly/wav2vec2-catala](https://github.com/ccoreilly/wav2vec2-catala) When using this model, make sure that your speech input is sampled at 16kHz. ## Results Word error rate was evaluated on the following datasets unseen by the model: | Dataset | WER | | ------- | --- | | [Test split CV+ParlamentParla]((https://github.com/ccoreilly/wav2vec2-catala/blob/master/test.csv)) | 6.92% | | [Google Crowsourced Corpus](https://www.openslr.org/69/) | 12.99% | | Audiobook “La llegenda de Sant Jordi” | 13.23% | ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") model = Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-xlsr-catala") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```
jgammack/MTL-distilbert-base-uncased
jgammack
2022-02-07T23:23:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MTL-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5593 | 1.0 | 99 | 2.3163 | | 2.4346 | 2.0 | 198 | 2.2918 | | 2.3377 | 3.0 | 297 | 2.2345 | | 2.2953 | 4.0 | 396 | 2.1463 | | 2.2296 | 5.0 | 495 | 2.1761 | | 2.2235 | 6.0 | 594 | 2.0721 | | 2.1878 | 7.0 | 693 | 2.1460 | | 2.1569 | 8.0 | 792 | 2.0856 | | 2.1455 | 9.0 | 891 | 2.1039 | | 2.1391 | 10.0 | 990 | 2.1112 | | 2.1056 | 11.0 | 1089 | 2.0694 | | 2.1076 | 12.0 | 1188 | 2.0501 | | 2.0919 | 13.0 | 1287 | 2.0484 | | 2.0669 | 14.0 | 1386 | 2.0342 | | 2.0595 | 15.0 | 1485 | 2.0802 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
microsoft/cocolm-large
microsoft
2022-02-07T22:49:54Z
9
7
transformers
[ "transformers", "pytorch", "arxiv:2102.08473", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining This model card contains the COCO-LM model (**large++** version) proposed in [this paper](https://arxiv.org/abs/2102.08473). The official GitHub repository can be found [here](https://github.com/microsoft/COCO-LM). # Citation If you find this model card useful for your research, please cite the following paper: ``` @inproceedings{meng2021coco, title={{COCO-LM}: Correcting and contrasting text sequences for language model pretraining}, author={Meng, Yu and Xiong, Chenyan and Bajaj, Payal and Tiwary, Saurabh and Bennett, Paul and Han, Jiawei and Song, Xia}, booktitle={NeurIPS}, year={2021} } ```
jgammack/MTL-roberta-base
jgammack
2022-02-07T22:45:49Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: MTL-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MTL-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8338 | 1.0 | 98 | 1.6750 | | 1.7732 | 2.0 | 196 | 1.6229 | | 1.7208 | 3.0 | 294 | 1.6131 | | 1.6917 | 4.0 | 392 | 1.5936 | | 1.6579 | 5.0 | 490 | 1.6183 | | 1.6246 | 6.0 | 588 | 1.6015 | | 1.6215 | 7.0 | 686 | 1.5248 | | 1.5743 | 8.0 | 784 | 1.5454 | | 1.5621 | 9.0 | 882 | 1.5925 | | 1.5652 | 10.0 | 980 | 1.5213 | | 1.5615 | 11.0 | 1078 | 1.4845 | | 1.5349 | 12.0 | 1176 | 1.5443 | | 1.5165 | 13.0 | 1274 | 1.5304 | | 1.5164 | 14.0 | 1372 | 1.4773 | | 1.5293 | 15.0 | 1470 | 1.5537 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/SAE-roberta-base
jgammack
2022-02-07T22:14:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: SAE-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SAE-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9847 | 1.0 | 79 | 1.8238 | | 1.9142 | 2.0 | 158 | 1.8299 | | 1.8613 | 3.0 | 237 | 1.7636 | | 1.8384 | 4.0 | 316 | 1.8048 | | 1.8193 | 5.0 | 395 | 1.7734 | | 1.7985 | 6.0 | 474 | 1.7271 | | 1.7758 | 7.0 | 553 | 1.8525 | | 1.7611 | 8.0 | 632 | 1.7716 | | 1.7599 | 9.0 | 711 | 1.7913 | | 1.7118 | 10.0 | 790 | 1.7578 | | 1.7003 | 11.0 | 869 | 1.7598 | | 1.7072 | 12.0 | 948 | 1.6942 | | 1.6511 | 13.0 | 1027 | 1.6955 | | 1.6802 | 14.0 | 1106 | 1.7837 | | 1.7048 | 15.0 | 1185 | 1.7377 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
robot-test/old-clip-tokenizer
robot-test
2022-02-07T21:44:19Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Old version of the CLIP fast tokenizer cf [this issue](https://github.com/huggingface/transformers/issues/12648) on transformers