modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-27 00:47:30
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 533
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-27 00:47:21
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
marcolatella/emotion_trained
|
marcolatella
| 2021-12-10T23:23:20Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7377785764567545
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9362
- F1: 0.7378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.7468 | 0.6599 |
| No log | 2.0 | 408 | 0.6829 | 0.7369 |
| 0.5184 | 3.0 | 612 | 0.8089 | 0.7411 |
| 0.5184 | 4.0 | 816 | 0.9362 | 0.7378 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
explosion/ro_udv25_romaniannonstandard_trf
|
explosion
| 2021-12-10T23:04:41Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ro",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ro
license: cc-by-sa-4.0
model-index:
- name: ro_udv25_romaniannonstandard_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9385375334
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9765972953
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9364320998
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9399476397
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9256250793
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8749206752
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9699570815
---
UD v2.5 benchmarking pipeline for UD_Romanian-Nonstandard
| Feature | Description |
| --- | --- |
| **Name** | `ro_udv25_romaniannonstandard_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (7445 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `AdpType=Prep\|Case=Acc`, `Afp`, `Afpf--n`, `Afpfp-n`, `Afpfpon`, `Afpfpoy`, `Afpfprn`, `Afpfpry`, `Afpfson`, `Afpfsoy`, `Afpfsrn`, `Afpfsry`, `Afpmp-n`, `Afpmpoy`, `Afpmprn`, `Afpmpry`, `Afpmpvy`, `Afpms-n`, `Afpmsoy`, `Afpmsrn`, `Afpmsry`, `Afpmsvn`, `Afpmsvy`, `COLON`, `COMMA`, `Cccsp`, `Cccsz`, `Ccssp`, `Ccssz`, `Cscsp`, `Csssp`, `DASH`, `DBLQ`, `Dd3-po---e`, `Dd3-po---o`, `Dd3fpo`, `Dd3fpr`, `Dd3fpr---e`, `Dd3fpr---o`, `Dd3fso`, `Dd3fso---e`, `Dd3fso---o`, `Dd3fsr`, `Dd3fsr---e`, `Dd3fsr---o`, `Dd3mpo`, `Dd3mpr`, `Dd3mpr---e`, `Dd3mpr---o`, `Dd3mso`, `Dd3mso---e`, `Dd3mso---o`, `Dd3msr`, `Dd3msr---e`, `Dd3msr---o`, `Dh1mp`, `Dh1ms`, `Dh2mp`, `Dh2ms`, `Dh3fp`, `Dh3mp`, `Dh3ms`, `Di3--r`, `Di3-po`, `Di3-sr`, `Di3fp`, `Di3fpo`, `Di3fpr`, `Di3fso`, `Di3fsr`, `Di3mpr`, `Di3mso`, `Di3msr`, `Ds1fp-p`, `Ds1fp-s`, `Ds1fsop`, `Ds1fsos`, `Ds1fsrp`, `Ds1fsrs`, `Ds1mp-p`, `Ds1mp-s`, `Ds1ms-p`, `Ds1ms-s`, `Ds2fp-p`, `Ds2fp-s`, `Ds2fsop`, `Ds2fsos`, `Ds2fsrp`, `Ds2fsrs`, `Ds2mp-p`, `Ds2mp-s`, `Ds2ms-p`, `Ds2ms-s`, `Ds3fp-s`, `Ds3fsos`, `Ds3fsrs`, `Ds3mp-s`, `Ds3ms-s`, `Dw3--r`, `Dw3-po`, `Dw3fpr`, `Dw3fso`, `Dw3fsr`, `Dw3mpr`, `Dw3mso`, `Dw3msr`, `Dz3fpr`, `Dz3fsr`, `Dz3msr`, `EXCL`, `EXCLHELLIP`, `HELLIP`, `I`, `LPAR`, `M`, `Mc-p-l`, `Mcfp-l`, `Mcfpol`, `Mcfprln`, `Mcfsoln`, `Mcfsoly`, `Mcfsrln`, `Mcfsrly`, `Mcmp-l`, `Mcms-ln`, `Mcmsoly`, `Mcmsrl`, `Mcmsrly`, `Mffsrln`, `Ml-po`, `Mlfpr`, `Mlmpr`, `Mmfpr-n`, `Mmmpr-n`, `Mmmsr-n`, `Mo---l`, `Mo---ln`, `Mo-s-r`, `Mofprln`, `Mofprly`, `Mofs-l`, `Mofs-ly`, `Mofsrln`, `Mofsrly`, `Momp-ln`, `Moms-l`, `Moms-ln`, `Momsoly`, `Momsrly`, `Ncfpoy`, `Ncfprn`, `Ncfpry`, `Ncfpvy`, `Ncfson`, `Ncfsoy`, `Ncfsrn`, `Ncfsry`, `Ncfsvn`, `Ncfsvy`, `Ncmpoy`, `Ncmprn`, `Ncmpry`, `Ncmpvy`, `Ncmson`, `Ncmsoy`, `Ncmsrn`, `Ncmsry`, `Ncmsvn`, `Ncmsvy`, `Ncnsrn`, `Np`, `Npfpoy`, `Npfprn`, `Npfpry`, `Npfsoy`, `Npfsrn`, `Npfsry`, `Npfsvn`, `Npmpoy`, `Npmprn`, `Npmpry`, `Npmsoy`, `Npmsrn`, `Npmsry`, `Npmsvn`, `Npmsvy`, `PERIOD`, `Pd3-po`, `Pd3-po---o`, `Pd3fpo`, `Pd3fpr`, `Pd3fso`, `Pd3fsr`, `Pd3mpo`, `Pd3mpr`, `Pd3mso`, `Pd3msr`, `Ph1mp`, `Ph1ms`, `Ph2mp`, `Ph2ms`, `Ph3--r`, `Ph3fp`, `Ph3fsr`, `Ph3mp`, `Ph3mpo`, `Ph3mpr`, `Ph3ms`, `Ph3mso`, `Pi3--r`, `Pi3-po`, `Pi3-so`, `Pi3-sr`, `Pi3fpo`, `Pi3fpr`, `Pi3fso`, `Pi3fsr`, `Pi3mpo`, `Pi3mpr`, `Pi3mpry`, `Pi3mso`, `Pi3msr`, `Pi3msry`, `Pp1-pa--------s`, `Pp1-pa--------w`, `Pp1-pd--------s`, `Pp1-pd--------w`, `Pp1-pr`, `Pp1-sa--------s`, `Pp1-sa--------w`, `Pp1-sd--------s`, `Pp1-sd--------w`, `Pp1-sr`, `Pp2-pa--------s`, `Pp2-pa--------w`, `Pp2-pd--------s`, `Pp2-pd--------w`, `Pp2-po`, `Pp2-pr`, `Pp2-sa--------s`, `Pp2-sa--------w`, `Pp2-sd--------s`, `Pp2-sd--------w`, `Pp2-so`, `Pp2-sr`, `Pp3-pd--------s`, `Pp3-pd--------w`, `Pp3-po`, `Pp3-pr`, `Pp3-sd--------w`, `Pp3-so`, `Pp3fpa--------s`, `Pp3fpa--------w`, `Pp3fpr`, `Pp3fsa--------s`, `Pp3fsa--------w`, `Pp3fsd--------s`, `Pp3fso`, `Pp3fsoy`, `Pp3fsr`, `Pp3mpa--------s`, `Pp3mpa--------w`, `Pp3mpo`, `Pp3mpr`, `Pp3msa--------s`, `Pp3msa--------w`, `Pp3msd--------s`, `Pp3mso`, `Pp3msr`, `Pp3msry`, `Ps1fp-p`, `Ps1fp-s`, `Ps1fsrp`, `Ps1fsrs`, `Ps1mp-p`, `Ps1ms-p`, `Ps1ms-s`, `Ps2fp-p`, `Ps2fp-s`, `Ps2fsrp`, `Ps2fsrs`, `Ps2mp-s`, `Ps2ms-p`, `Ps2ms-s`, `Ps3fp-s`, `Ps3fsrs`, `Ps3mp-s`, `Ps3ms-s`, `Pw3--r`, `Pw3-po`, `Pw3-pr`, `Pw3-pry`, `Pw3-so`, `Pw3fpr`, `Pw3fpry`, `Pw3fso`, `Pw3fsr`, `Pw3fsry`, `Pw3mpr`, `Pw3mpry`, `Pw3mso`, `Pw3msr`, `Pw3msry`, `Px3--a--------s`, `Px3--a--------w`, `Px3--d--------s`, `Px3--d--------w`, `Px3--d-------w`, `Pz3-so`, `Pz3-sr`, `Pz3fsr`, `Pz3mso`, `Pz3msr`, `QUEST`, `QUOT`, `Qn`, `Qs`, `Qz`, `RPAR`, `Rg`, `Ri`, `Rw`, `Rz`, `SCOLON`, `Sp`, `Spca`, `Spcg`, `Spsa`, `Spsd`, `Spsg`, `TILDA`, `Td-po`, `Tdfpr`, `Tdfso`, `Tdfsr`, `Tdmpr`, `Tdmso`, `Tdmsr`, `Tf-so`, `Tffsr`, `Tfmso`, `Tfmsr`, `Ti-po`, `Ti-pr`, `Tifso`, `Tifsr`, `Timso`, `Timsr`, `Tsfpr`, `Tsfso`, `Tsfsr`, `Tsmpr`, `Tsmsr`, `Vag-----p`, `Vag-----z`, `Vaii1p`, `Vaii1s`, `Vaii2p`, `Vaii2s`, `Vaii3p`, `Vaii3s`, `Vail3s`, `Vaip1p`, `Vaip1s`, `Vaip2p`, `Vaip2s`, `Vaip3`, `Vaip3p`, `Vaip3s`, `Vais1p`, `Vais1s`, `Vais2p`, `Vais2s`, `Vais3p`, `Vais3s`, `Vam-2p`, `Vam-2p---l`, `Vam-2s--p`, `Vam-2s--z`, `Vam-2s-p`, `Vam-2s-z`, `Vamip3p`, `Vamip3s`, `Vamn`, `Vamsp3`, `Van`, `Van------l`, `Vap`, `Vap--sm-p`, `Vasp1p`, `Vasp1s`, `Vasp2p`, `Vasp2s`, `Vasp3`, `Vasp3s`, `Vmg-----p`, `Vmg-----z`, `Vmii1p`, `Vmii1s`, `Vmii2p`, `Vmii2s`, `Vmii3p`, `Vmii3s`, `Vmil1s`, `Vmil2p`, `Vmil2s`, `Vmil3p`, `Vmil3s`, `Vmip1p`, `Vmip1s`, `Vmip2p`, `Vmip2s`, `Vmip3`, `Vmip3p`, `Vmip3s`, `Vmis1p`, `Vmis1s`, `Vmis2p`, `Vmis2s`, `Vmis3p`, `Vmis3s`, `Vmm-2p`, `Vmm-2p---l`, `Vmm-2s--p`, `Vmm-2s--z`, `Vmn`, `Vmn------l`, `Vmp`, `Vmp--pf-p`, `Vmp--pf-z`, `Vmp--pm-p`, `Vmp--pm-z`, `Vmp--sf-p--o`, `Vmp--sf-p--r`, `Vmp--sf-z--r`, `Vmp--sm-p`, `Vmp--sm-z`, `Vmsp1p`, `Vmsp1s`, `Vmsp2p`, `Vmsp2s`, `Vmsp3`, `Vmsp3s`, `X`, `Y` |
| **`morphologizer`** | `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=ADV\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=CCONJ\|Polarity=Pos`, `Compound=Yes\|POS=SCONJ\|Polarity=Pos`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PART\|PartType=Sub`, `Mood=Sub\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|Polarity=Neg`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `POS=AUX\|Polarity=Pos\|VerbForm=Ger`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=INTJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ\|Polarity=Pos`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `AdpType=Prep\|Case=Acc\|Compound=Yes\|POS=ADP`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat,Gen\|Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|POS=DET\|Person=3\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Case=Voc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres`, `POS=AUX\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=PART\|PartType=Inf`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Art`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Sub\|POS=AUX\|Person=3\|Tense=Pres`, `Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `NumForm=Digit\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `POS=PROPN`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Compound=Yes\|POS=CCONJ\|Polarity=Neg`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `POS=AUX\|VerbForm=Inf`, `AdpType=Prep\|Case=Gen\|Compound=Yes\|POS=ADP`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=2\|PronType=Emp`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Polarity=Neg\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Emp`, `Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Variant=Long\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Voc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Compound=Yes\|POS=CCONJ\|Polarity=Pos`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Emp`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `POS=VERB\|Variant=Long\|VerbForm=Inf`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Compound=Yes\|POS=ADV\|Polarity=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Definite=Ind\|NumForm=Word\|NumType=Ord\|POS=NUM`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=AUX\|Variant=Long\|VerbForm=Inf`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `POS=X`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Emp`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Case=Acc,Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=AUX\|Polarity=Neg\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres`, `Case=Acc,Nom\|POS=DET\|Person=3\|PronType=Ind`, `Case=Voc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `POS=CCONJ\|Polarity=Neg`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Voc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Polite=Form\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past`, `Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Voc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|Polarity=Pos`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Emp`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=2\|PronType=Emp`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|Position=Postnom\|PronType=Dem`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Emp`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Compound=Yes\|POS=ADP\|Polarity=Pos`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADJ`, `Case=Voc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=ADV\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `POS=AUX\|Polarity=Pos`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres`, `NumForm=Roman\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Variant=Long\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Variant=Long`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Imp`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Emp`, `NumForm=Word\|NumType=Ord\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=1\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|PronType=Emp`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past`, `Case=Dat,Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pqp`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Weak`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Person=3\|Tense=Pres`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Strong`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|POS=ADJ`, `POS=DET`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADP`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumType=Mult\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|NumType=Mult\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Neg`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADJ`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Part`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Polite=Form\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advcl:tcl`, `advmod`, `advmod:tmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:pmod`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:impers`, `expl:pass`, `expl:poss`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:agent`, `nmod:pmod`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `4`, `6`, `8`, `12`, `14`, `16`, `19`, `23`, `29`, `30`, `32`, `35`, `37`, `39`, `40`, `45`, `46`, `47`, `51`, `53`, `54`, `57`, `61`, `63`, `65`, `66`, `69`, `33`, `71`, `73`, `76`, `79`, `80`, `84`, `86`, `87`, `88`, `89`, `92`, `95`, `97`, `100`, `103`, `105`, `107`, `110`, `112`, `113`, `115`, `117`, `120`, `121`, `123`, `125`, `126`, `128`, `130`, `132`, `133`, `136`, `140`, `143`, `145`, `147`, `58`, `148`, `151`, `154`, `157`, `159`, `163`, `165`, `167`, `171`, `174`, `176`, `178`, `180`, `182`, `184`, `185`, `187`, `188`, `190`, `192`, `196`, `197`, `199`, `200`, `202`, `206`, `208`, `210`, `211`, `213`, `215`, `216`, `219`, `221`, `223`, `225`, `226`, `228`, `230`, `232`, `236`, `238`, `241`, `242`, `244`, `246`, `248`, `251`, `253`, `255`, `258`, `260`, `264`, `265`, `267`, `272`, `275`, `278`, `280`, `281`, `284`, `286`, `287`, `290`, `291`, `292`, `295`, `296`, `298`, `300`, `301`, `302`, `305`, `306`, `307`, `309`, `310`, `312`, `314`, `315`, `317`, `319`, `321`, `323`, `324`, `327`, `330`, `332`, `334`, `335`, `337`, `339`, `340`, `343`, `344`, `345`, `346`, `350`, `351`, `353`, `355`, `357`, `360`, `362`, `366`, `368`, `369`, `370`, `371`, `224`, `374`, `376`, `378`, `379`, `381`, `384`, `385`, `386`, `388`, `389`, `391`, `392`, `393`, `396`, `398`, `399`, `403`, `406`, `408`, `411`, `413`, `415`, `418`, `422`, `423`, `426`, `427`, `431`, `433`, `436`, `438`, `440`, `442`, `445`, `448`, `449`, `450`, `451`, `452`, `454`, `455`, `457`, `459`, `460`, `462`, `464`, `466`, `468`, `471`, `472`, `473`, `474`, `475`, `478`, `481`, `482`, `485`, `486`, `488`, `490`, `492`, `494`, `495`, `497`, `498`, `499`, `501`, `503`, `504`, `506`, `508`, `510`, `513`, `514`, `515`, `516`, `518`, `519`, `521`, `523`, `524`, `526`, `527`, `528`, `530`, `533`, `96`, `537`, `538`, `539`, `542`, `544`, `545`, `547`, `548`, `553`, `555`, `556`, `558`, `559`, `561`, `562`, `563`, `565`, `566`, `570`, `572`, `573`, `575`, `577`, `578`, `579`, `581`, `583`, `584`, `586`, `588`, `589`, `592`, `594`, `595`, `596`, `598`, `599`, `600`, `601`, `604`, `606`, `607`, `608`, `612`, `613`, `616`, `619`, `621`, `623`, `625`, `628`, `629`, `630`, `632`, `635`, `636`, `173`, `639`, `641`, `643`, `647`, `649`, `651`, `654`, `656`, `658`, `659`, `661`, `662`, `663`, `666`, `668`, `669`, `670`, `672`, `673`, `676`, `677`, `679`, `681`, `683`, `685`, `687`, `689`, `690`, `691`, `693`, `694`, `695`, `696`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `708`, `712`, `713`, `716`, `718`, `720`, `722`, `724`, `725`, `729`, `732`, `734`, `735`, `736`, `739`, `742`, `745`, `747`, `750`, `753`, `755`, `758`, `759`, `761`, `763`, `764`, `766`, `768`, `769`, `771`, `772`, `774`, `777`, `778`, `781`, `784`, `785`, `787`, `790`, `794`, `797`, `800`, `801`, `802`, `804`, `807`, `809`, `814`, `817`, `820`, `821`, `822`, `824`, `827`, `828`, `829`, `832`, `834`, `836`, `837`, `839`, `840`, `841`, `843`, `844`, `846`, `847`, `848`, `850`, `851`, `852`, `855`, `116`, `856`, `860`, `861`, `863`, `866`, `868`, `869`, `871`, `874`, `875`, `877`, `879`, `881`, `884`, `886`, `888`, `890`, `891`, `892`, `894`, `897`, `898`, `900`, `901`, `902`, `904`, `905`, `908`, `913`, `914`, `916`, `917`, `918`, `921`, `922`, `924`, `927`, `929`, `932`, `934`, `935`, `937`, `939`, `941`, `943`, `946`, `948`, `949`, `951`, `952`, `954`, `955`, `956`, `958`, `960`, `963`, `965`, `968`, `971`, `972`, `974`, `978`, `981`, `983`, `984`, `986`, `988`, `989`, `991`, `992`, `994`, `997`, `998`, `1000`, `1001`, `1002`, `1004`, `1006`, `1007`, `1008`, `1010`, `1011`, `1013`, `1014`, `1015`, `1017`, `1019`, `1022`, `1024`, `1029`, `1030`, `1032`, `1034`, `767`, `1035`, `1036`, `1037`, `1038`, `1040`, `1041`, `1042`, `1044`, `1045`, `1046`, `1049`, `1050`, `1052`, `1053`, `1055`, `1058`, `1061`, `1065`, `1067`, `1068`, `1071`, `1072`, `1074`, `1076`, `1078`, `1080`, `1081`, `1083`, `1084`, `1086`, `1087`, `1090`, `1091`, `1093`, `1097`, `1098`, `1099`, `1100`, `1102`, `1105`, `1106`, `1107`, `1110`, `1111`, `1113`, `1116`, `1123`, `1126`, `1127`, `1128`, `1129`, `1131`, `1132`, `1133`, `1135`, `1137`, `1139`, `1141`, `1144`, `1145`, `1147`, `1149`, `1150`, `1152`, `1154`, `1155`, `1156`, `1157`, `1158`, `1115`, `1159`, `1160`, `1162`, `1163`, `1164`, `1165`, `1168`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1179`, `1181`, `1183`, `1184`, `1186`, `1187`, `1191`, `1195`, `1197`, `1198`, `1200`, `1201`, `1203`, `1205`, `1207`, `1209`, `1211`, `1212`, `1214`, `1215`, `1217`, `1219`, `1220`, `1223`, `1225`, `1227`, `183`, `1228`, `1231`, `1232`, `1234`, `1237`, `1239`, `1240`, `1242`, `1245`, `1247`, `1248`, `1249`, `1251`, `1252`, `1254`, `1255`, `1257`, `1259`, `1261`, `1263`, `1264`, `1266`, `1268`, `1272`, `1273`, `1277`, `1278`, `1280`, `1281`, `1282`, `1285`, `1286`, `1290`, `1291`, `1294`, `1296`, `1298`, `1300`, `1301`, `1303`, `1305`, `1308`, `1309`, `1310`, `1311`, `1312`, `1314`, `1316`, `1318`, `1320`, `1322`, `1324`, `1325`, `1327`, `1329`, `1331`, `1333`, `1335`, `1337`, `1338`, `1339`, `1341`, `1342`, `1343`, `1344`, `1346`, `1347`, `1350`, `142`, `1354`, `1355`, `1357`, `1358`, `1360`, `1362`, `1365`, `1366`, `1367`, `1368`, `1369`, `744`, `1370`, `1372`, `1373`, `1374`, `1375`, `1376`, `1377`, `1378`, `1380`, `1381`, `1382`, `1383`, `1386`, `1388`, `1389`, `1390`, `1394`, `1396`, `1399`, `1402`, `1405`, `1407`, `1409`, `1411`, `1412`, `1413`, `1414`, `1418`, `1419`, `1421`, `1422`, `1423`, `1424`, `1426`, `1427`, `1430`, `1432`, `1433`, `1434`, `1436`, `1438`, `1439`, `1440`, `1441`, `1442`, `1443`, `1446`, `1447`, `1448`, `1449`, `1450`, `1454`, `1456`, `1458`, `1459`, `1460`, `1464`, `1465`, `1467`, `1468`, `1469`, `1470`, `1472`, `1473`, `1475`, `1478`, `1479`, `1481`, `1483`, `1484`, `1486`, `1003`, `1489`, `1491`, `1493`, `1496`, `1498`, `1499`, `1501`, `1503`, `1506`, `1508`, `1511`, `1514`, `1515`, `1517`, `1518`, `1521`, `1522`, `1523`, `1524`, `1525`, `1528`, `1530`, `1531`, `1532`, `1533`, `1537`, `1539`, `1541`, `1542`, `1543`, `1545`, `1546`, `1547`, `1549`, `1550`, `1551`, `1552`, `1553`, `1555`, `1558`, `1559`, `1561`, `1562`, `1564`, `1566`, `1568`, `1570`, `1572`, `1576`, `1577`, `1579`, `1580`, `1582`, `1584`, `1585`, `1588`, `1590`, `1592`, `1593`, `1594`, `1596`, `1597`, `1599`, `1600`, `1601`, `1603`, `1605`, `1607`, `1609`, `1613`, `1615`, `1617`, `1619`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1633`, `1636`, `1638`, `1639`, `1640`, `1641`, `1643`, `1645`, `1647`, `1649`, `1652`, `1655`, `1656`, `1658`, `1660`, `1662`, `1665`, `1667`, `1669`, `1670`, `1671`, `1673`, `1674`, `1677`, `1678`, `1679`, `1680`, `1683`, `1686`, `1688`, `1689`, `1691`, `1693`, `1694`, `1696`, `1698`, `1699`, `1703`, `1704`, `1707`, `1708`, `1710`, `1712`, `1714`, `1716`, `1718`, `1720`, `1722`, `1724`, `1725`, `1726`, `1727`, `1729`, `1730`, `1731`, `1733`, `1734`, `1736`, `1737`, `1740`, `1741`, `1743`, `1744`, `1746`, `1747`, `1749`, `1750`, `1751`, `1752`, `1754`, `1755`, `1757`, `1758`, `1760`, `1762`, `1764`, `1766`, `1767`, `1769`, `1771`, `1774`, `1777`, `1779`, `1780`, `1781`, `1783`, `1785`, `1786`, `1789`, `1790`, `1793`, `1796`, `1799`, `1800`, `1802`, `1804`, `1805`, `1807`, `1809`, `1810`, `1813`, `1815`, `1817`, `1819`, `1822`, `1823`, `1825`, `1826`, `1827`, `1829`, `1830`, `1833`, `1835`, `1837`, `1840`, `1843`, `1844`, `1846`, `1848`, `1850`, `1853`, `1854`, `1855`, `1857`, `1859`, `1863`, `1865`, `1867`, `1870`, `1872`, `1873`, `1874`, `1875`, `1876`, `1878`, `1879`, `1880`, `1882`, `1884`, `1885`, `1888`, `1889`, `1892`, `1893`, `1895`, `1896`, `1897`, `1898`, `1899`, `1901`, `1903`, `1905`, `1907`, `1909`, `1911`, `1913`, `1915`, `1916`, `1918`, `1919`, `1921`, `1923`, `1925`, `1928`, `1931`, `1933`, `1935`, `1936`, `1938`, `1940`, `1943`, `1945`, `1946`, `1948`, `1951`, `1954`, `1956`, `1957`, `1958`, `1960`, `1962`, `1963`, `1965`, `1967`, `1969`, `1971`, `1973`, `1976`, `1977`, `1979`, `1981`, `1984`, `1986`, `1988`, `1989`, `1991`, `1994`, `1996`, `1999`, `2000`, `2001`, `2003`, `2004`, `2006`, `2008`, `2010`, `2011`, `2016`, `2017`, `2019`, `2020`, `2022`, `2023`, `2024`, `2025`, `2026`, `2027`, `2029`, `2031`, `2033`, `2034`, `2035`, `2036`, `2038`, `2041`, `2042`, `2043`, `2045`, `2047`, `2048`, `2049`, `2051`, `2053`, `2055`, `2057`, `2060`, `2063`, `2064`, `2066`, `2067`, `2068`, `2070`, `2071`, `2072`, `2073`, `2074`, `2075`, `2076`, `2079`, `2080`, `2082`, `2083`, `2084`, `2085`, `2086`, `2087`, `2089`, `2092`, `2094`, `2095`, `2098`, `2100`, `2102`, `2104`, `2105`, `2107`, `2109`, `2110`, `2112`, `2115`, `2117`, `2119`, `2120`, `2121`, `2123`, `2124`, `1482`, `2125`, `2127`, `2129`, `2132`, `2134`, `2137`, `2139`, `2140`, `2143`, `2146`, `2147`, `2148`, `2149`, `2150`, `2152`, `2154`, `2156`, `2157`, `2158`, `2159`, `2160`, `2161`, `2162`, `2164`, `2166`, `2168`, `2169`, `2170`, `2171`, `2173`, `2174`, `2177`, `2178`, `2180`, `2182`, `2183`, `2186`, `2188`, `2189`, `2191`, `2192`, `2193`, `2194`, `2195`, `2197`, `2198`, `2199`, `2200`, `2202`, `2206`, `2208`, `2209`, `2211`, `2214`, `2216`, `2217`, `2220`, `2221`, `2222`, `2223`, `2224`, `2225`, `2226`, `2228`, `2229`, `2230`, `2232`, `2234`, `2236`, `2237`, `2239`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2248`, `2249`, `2251`, `2252`, `2172`, `2254`, `2256`, `2257`, `2258`, `2259`, `2261`, `2262`, `2263`, `2265`, `2267`, `2268`, `2270`, `2274`, `2277`, `2279`, `2280`, `2281`, `2282`, `2284`, `2286`, `2287`, `2291`, `2293`, `2294`, `2296`, `2297`, `2298`, `2300`, `2303`, `2305`, `2307`, `2308`, `2310`, `2312`, `2314`, `2316`, `2317`, `2319`, `2321`, `2323`, `2325`, `2326`, `2328`, `2329`, `2330`, `2331`, `2332`, `2333`, `2334`, `2336`, `2338`, `2341`, `2343`, `2345`, `2348`, `2349`, `2351`, `2352`, `2353`, `2355`, `2356`, `2358`, `2359`, `2361`, `2362`, `2364`, `2366`, `2368`, `2369`, `2371`, `2373`, `2375`, `2377`, `2378`, `2379`, `2381`, `2382`, `2383`, `2384`, `2385`, `2387`, `2389`, `2392`, `2395`, `2396`, `2398`, `2399`, `2400`, `2404`, `2405`, `2406`, `2410`, `2411`, `2412`, `2413`, `2415`, `2418`, `2420`, `2421`, `2424`, `2425`, `2426`, `2429`, `2432`, `2434`, `2436`, `2437`, `2439`, `2440`, `2441`, `2443`, `2444`, `2446`, `2447`, `2450`, `2452`, `2454`, `2456`, `2459`, `2461`, `2464`, `2465`, `2467`, `2469`, `2471`, `2473`, `2474`, `2476`, `2478`, `2480`, `2481`, `2482`, `2483`, `2484`, `2486`, `2488`, `2489`, `2490`, `2491`, `2493`, `2495`, `2497`, `2499`, `2500`, `2502`, `2503`, `2505`, `2506`, `2507`, `2509`, `2511`, `2513`, `2514`, `2516`, `2518`, `2519`, `2521`, `2522`, `2524`, `2527`, `2528`, `2529`, `2531`, `2533`, `2534`, `2536`, `2537`, `2538`, `2540`, `2542`, `2543`, `2545`, `2546`, `2547`, `2549`, `2550`, `2552`, `2553`, `2556`, `2558`, `2560`, `2561`, `2562`, `2563`, `2564`, `2566`, `2567`, `2568`, `2572`, `2573`, `2574`, `2576`, `2577`, `2579`, `2580`, `2581`, `2583`, `2584`, `2585`, `2586`, `2587`, `2588`, `2589`, `2590`, `2591`, `2592`, `2594`, `2595`, `2598`, `2599`, `2603`, `2604`, `2606`, `2607`, `2608`, `2609`, `2612`, `2616`, `2619`, `2620`, `2622`, `2624`, `2625`, `2626`, `2627`, `2628`, `2631`, `2633`, `2635`, `2637`, `2638`, `2640`, `2641`, `2642`, `2643`, `2645`, `2646`, `2647`, `2649`, `2651`, `2654`, `2655`, `2658`, `2660`, `2661`, `2662`, `2663`, `2665`, `2666`, `1717`, `2667`, `2668`, `2669`, `2670`, `2671`, `2673`, `2674`, `2675`, `2676`, `2678`, `2680`, `2681`, `2684`, `2685`, `2687`, `2688`, `2690`, `2691`, `2692`, `2694`, `2695`, `2696`, `2697`, `2699`, `2701`, `2702`, `2705`, `2708`, `2709`, `2711`, `2714`, `2715`, `2716`, `2718`, `2721`, `2723`, `2724`, `2727`, `2728`, `2729`, `2732`, `2734`, `2737`, `2739`, `2740`, `2742`, `2743`, `2745`, `2748`, `2751`, `2754`, `2755`, `2756`, `2757`, `2758`, `2760`, `2762`, `2764`, `2765`, `2766`, `2428`, `2767`, `2768`, `2769`, `2770`, `2771`, `2774`, `2777`, `2779`, `2782`, `2783`, `2784`, `2786`, `2788`, `2789`, `2790`, `2791`, `2792`, `2794`, `2795`, `2796`, `2797`, `2799`, `2800`, `2801`, `2803`, `2807`, `2808`, `2809`, `2812`, `2816`, `2819`, `2822`, `2823`, `2824`, `2826`, `2827`, `2828`, `2830`, `2831`, `2832`, `2833`, `2834`, `2835`, `2837`, `2839`, `2840`, `2842`, `2843`, `2845`, `2846`, `2847`, `2848`, `2849`, `2851`, `2853`, `2854`, `2855`, `2856`, `2857`, `2858`, `2859`, `2860`, `2861`, `2862`, `2864`, `2865`, `2866`, `2868`, `2872`, `2875`, `2876`, `2878`, `2880`, `2881`, `2882`, `2883`, `2885`, `2886`, `2888`, `2889`, `2890`, `2891`, `2893`, `2894`, `2895`, `2896`, `2897`, `2898`, `2899`, `2902`, `2904`, `2906`, `2907`, `2908`, `2909`, `2912`, `2913`, `2915`, `2916`, `2917`, `2918`, `2921`, `2922`, `2923`, `2924`, `2925`, `2926`, `2928`, `2930`, `2931`, `2935`, `2936`, `2937`, `2938`, `2940`, `2233`, `2942`, `2944`, `2945`, `2947`, `2948`, `2949`, `2951`, `923`, `2952`, `2953`, `2954`, `2955`, `2957`, `2959`, `2962`, `2964`, `2966`, `2967`, `2969`, `2972`, `2973`, `2974`, `2976`, `1715`, `2977`, `2979`, `2980`, `36`, `2981`, `2983`, `2985`, `2986`, `2990`, `2991`, `2993`, `2995`, `2997`, `2998`, `3001`, `3002`, `3003`, `3005`, `3006`, `3007`, `3009`, `3012`, `3014`, `3015`, `3016`, `3018`, `3020`, `3021`, `3022`, `3023`, `3026`, `3028`, `3029`, `3030`, `3032`, `3035`, `3037`, `3039`, `3040`, `3042`, `3044`, `3047`, `3050`, `3052`, `3053`, `3041`, `3054`, `3055`, `3056`, `3057`, `3058`, `3059`, `3061`, `3062`, `3064`, `3066`, `3067`, `3068`, `3070`, `3071`, `3072`, `3073`, `3075`, `3078`, `3082`, `3084`, `3086`, `3087`, `3088`, `3090`, `3091`, `3092`, `3095`, `3096`, `3097`, `3099`, `3100`, `3102`, `3107`, `3109`, `3111`, `3112`, `3114`, `3116`, `3118`, `3120`, `3121`, `3123`, `3124`, `3126`, `3127`, `3129`, `3130`, `3133`, `3134`, `3135`, `3136`, `3137`, `3138`, `3139`, `3140`, `3142`, `3144`, `3145`, `3146`, `3147`, `3148`, `3149`, `3150`, `3151`, `3153`, `3155`, `3157`, `3158`, `3159`, `3160`, `3161`, `3163`, `3165`, `3167`, `3168`, `3170`, `3171`, `3172`, `3174`, `3176`, `3178`, `3180`, `3181`, `3184`, `3185`, `3186`, `3188`, `3189`, `3190`, `3192`, `3194`, `3195`, `3196`, `3197`, `3200`, `3201`, `3202`, `3203`, `3204`, `3205`, `3206`, `3207`, `3210`, `3211`, `3213`, `3214`, `3217`, `3218`, `3220`, `3222`, `3224`, `3227`, `3229`, `3230`, `3231`, `3233`, `3234`, `3235`, `3236`, `3237`, `3240`, `3241`, `3243`, `3245`, `3247`, `3250`, `3252`, `3253`, `3254`, `3255`, `3257`, `3259`, `3260`, `3262`, `3264`, `3266`, `3268`, `3269`, `3271`, `3273`, `3275`, `3277`, `3278`, `3141`, `3279`, `3280`, `3281`, `3282`, `3284`, `3285`, `3287`, `3288`, `3290`, `3291`, `3293`, `3294`, `3296`, `3297`, `3299`, `3300`, `3302`, `3304`, `3305`, `3306`, `3308`, `3309`, `3311`, `3313`, `3314`, `3315`, `3316`, `3317`, `3319`, `3321`, `3323`, `3324`, `3325`, `3327`, `3329`, `3332`, `3333`, `3334`, `3336`, `3337`, `3338`, `3340`, `3341`, `3342`, `3344`, `3346`, `3348`, `3351`, `3353`, `3355`, `3357`, `3360`, `3361`, `3364`, `3367`, `3369`, `3370`, `3372`, `3373`, `3374`, `3377`, `3379`, `3380`, `3382`, `3384`, `3385`, `3387`, `3389`, `3391`, `3392`, `3393`, `3394`, `3395`, `3397`, `3399`, `3400`, `3402`, `3403`, `3404`, `3405`, `3406`, `3407`, `3408`, `3412`, `3414`, `3416`, `3418`, `3420`, `3422`, `3423`, `3424`, `3425`, `3426`, `3428`, `3429`, `3431`, `3432`, `3435`, `3436`, `3438`, `3439`, `3441`, `3443`, `3445`, `3447`, `3450`, `3451`, `3453`, `3455`, `3456`, `3457`, `3458`, `3459`, `3461`, `3462`, `3464`, `3465`, `3467`, `3469`, `3471`, `3473`, `3474`, `3475`, `3476`, `3478`, `3479`, `3481`, `3482`, `3484`, `3487`, `3488`, `3489`, `3491`, `3492`, `3493`, `3494`, `3497`, `3500`, `3501`, `3502`, `3504`, `3506`, `3507`, `3508`, `3511`, `3515`, `3516`, `3518`, `3521`, `3524`, `3526`, `3528`, `3529`, `3532`, `3535`, `3537`, `3538`, `3539`, `3540`, `3541`, `3543`, `3545`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3553`, `3555`, `3556`, `3557`, `3559`, `3561`, `3563`, `3564`, `3565`, `3567`, `3570`, `3572`, `3574`, `3575`, `3577`, `3579`, `3581`, `3582`, `3584`, `3585`, `3587`, `3588`, `3590`, `3591`, `3592`, `3594`, `3596`, `3599`, `3600`, `3603`, `3605`, `3606`, `3607`, `3608`, `3610`, `3612`, `3615`, `3617`, `3618`, `3619`, `3620`, `3621`, `3623`, `3624`, `3625`, `3626`, `3628`, `3629`, `3630`, `3632`, `3633`, `3635`, `3637`, `3639`, `3642`, `3643`, `3645`, `3646`, `3649`, `3650`, `3652`, `3653`, `3655`, `3656`, `3657`, `3658`, `3659`, `3662`, `3664`, `3665`, `3666`, `3668`, `3671`, `3672`, `3674`, `3676`, `3678`, `3679`, `3680`, `3681`, `3683`, `3684`, `3685`, `3687`, `3688`, `3689`, `3690`, `3691`, `3693`, `3694`, `3695`, `3697`, `3698`, `3699`, `3700`, `3702`, `3703`, `3704`, `3706`, `3709`, `3712`, `3713`, `3714`, `3718`, `3719`, `3721`, `3722`, `3724`, `3725`, `3726`, `3727`, `3730`, `3731`, `3732`, `3734`, `3735`, `3737`, `3739`, `3742`, `3743`, `3744`, `3745`, `3746`, `3747`, `3748`, `3750`, `3752`, `3753`, `3755`, `3757`, `3759`, `3760`, `3762`, `3763`, `3764`, `3765`, `3766`, `3768`, `3770`, `3771`, `3774`, `3775`, `3776`, `3778`, `3779`, `3780`, `3782`, `3784`, `3785`, `3786`, `3789`, `3792`, `3794`, `3795`, `3796`, `3798`, `3799`, `3800`, `3802`, `3803`, `3805`, `3807`, `3808`, `3809`, `3812`, `3815`, `3817`, `3818`, `3819`, `3821`, `3823`, `3824`, `3826`, `3828`, `3829`, `3831`, `3833`, `3834`, `3836`, `3839`, `3840`, `3843`, `3846`, `3849`, `3851`, `3852`, `3853`, `3855`, `3856`, `3859`, `3860`, `3862`, `3864`, `3865`, `3866`, `3868`, `3870`, `3871`, `3872`, `3874`, `3875`, `3876`, `3878`, `3879`, `3880`, `3881`, `3882`, `3884`, `3886`, `3887`, `3890`, `3891`, `3892`, `3893`, `3894`, `3896`, `3897`, `3899`, `3900`, `3901`, `3903`, `3904`, `3905`, `3906`, `3907`, `3908`, `3909`, `3910`, `3911`, `3912`, `3913`, `3915`, `3916`, `3919`, `3921`, `3923`, `3924`, `3926`, `3927`, `3928`, `3930`, `3931`, `3932`, `3934`, `3936`, `3939`, `3941`, `3942`, `3943`, `3946`, `3948`, `3949`, `3950`, `3951`, `3952`, `3954`, `3956`, `3957`, `3958`, `3960`, `3961`, `3964`, `3967`, `3968`, `3971`, `3974`, `3975`, `3976`, `3979`, `3981`, `3983`, `3985`, `3986`, `3989`, `3990`, `3993`, `3994`, `3995`, `3996`, `3997`, `3998`, `3999`, `4001`, `4003`, `4004`, `4005`, `4007`, `4009`, `4010`, `4011`, `4013`, `4014`, `4015`, `4017`, `4019`, `4022`, `4023`, `4025`, `4026`, `4027`, `4028`, `4029`, `4030`, `4032`, `4035`, `4037`, `4040`, `4041`, `4042`, `4043`, `4045`, `4048`, `4051`, `4053`, `4055`, `4057`, `4058`, `4059`, `4060`, `4061`, `4062`, `4063`, `4065`, `4067`, `4068`, `4070`, `4072`, `4073`, `4074`, `4075`, `4077`, `4080`, `4081`, `4083`, `4085`, `4088`, `4089`, `4091`, `4093`, `4094`, `4095`, `4096`, `4098`, `4101`, `4102`, `4104`, `4105`, `4106`, `4108`, `4109`, `4111`, `4112`, `4113`, `4115`, `4117`, `4119`, `4122`, `4123`, `4124`, `4125`, `4126`, `4127`, `4128`, `4130`, `4131`, `4134`, `4135`, `4136`, `4137`, `4138`, `4139`, `4141`, `4143`, `4145`, `4147`, `4148`, `4150`, `4151`, `4154`, `4155`, `4157`, `4159`, `4160`, `4163`, `4164`, `4166`, `4169`, `4171`, `4172`, `4173`, `4175`, `4176`, `4177`, `4179`, `4180`, `4181`, `4183`, `4184`, `4185`, `4187`, `4188`, `4190`, `4191`, `4193`, `4194`, `4195`, `4198`, `4201`, `4204`, `4205`, `4206`, `4209`, `4210`, `4212`, `4215`, `4216`, `4218`, `4219`, `4224`, `4225`, `4227`, `4229`, `4230`, `4231`, `4232`, `4234`, `4236`, `4237`, `4238`, `4239`, `4242`, `4244`, `4246`, `4247`, `4250`, `4251`, `4253`, `4256`, `4260`, `4261`, `4263`, `4265`, `4267`, `4268`, `4269`, `4270`, `4272`, `4274`, `4277`, `4278`, `4279`, `4281`, `4282`, `4284`, `4286`, `4287`, `4288`, `4291`, `4293`, `4294`, `4295`, `4296`, `4298`, `4299`, `4301`, `4303`, `4305`, `4306`, `4307`, `4308`, `4309`, `4310`, `4313`, `4315`, `4317`, `4319`, `4320`, `4322`, `4324`, `4326`, `4328`, `4329`, `4331`, `4332`, `4333`, `4334`, `4335`, `4336`, `4338`, `4340`, `4343`, `4344`, `4346`, `4347`, `4348`, `4349`, `4351`, `4353`, `4355`, `4357`, `4358`, `4359`, `4360`, `4361`, `4362`, `4363`, `4365`, `4367`, `4369`, `4372`, `4373`, `4374`, `4375`, `4379`, `4381`, `4383`, `4385`, `4386`, `4388`, `4389`, `4391`, `4392`, `4393`, `4395`, `4396`, `4399`, `4400`, `4402`, `4404`, `4406`, `4407`, `4411`, `4412`, `4413`, `4414`, `4415`, `4418`, `4420`, `4422`, `4425`, `4426`, `4428`, `4429`, `4430`, `4432`, `4433`, `4435`, `4438`, `4440`, `4442`, `4444`, `4445`, `4446`, `4448`, `4450`, `4451`, `4452`, `4455`, `4457`, `4459`, `4461`, `4462`, `4464`, `4467`, `4468`, `4469`, `4470`, `4471`, `4473`, `4474`, `4475`, `4478`, `4480`, `4483`, `4485`, `4487`, `4488`, `4490`, `4491`, `4493`, `867`, `4494`, `4496`, `4497`, `4498`, `4499`, `4500`, `4501`, `4503`, `4505`, `4507`, `4508`, `4509`, `4510`, `4512`, `4515`, `4517`, `4518`, `4519`, `4521`, `1589`, `4522`, `4524`, `4525`, `4527`, `4529`, `4531`, `4533`, `4534`, `4535`, `4537`, `4538`, `4539`, `4540`, `4541`, `4542`, `4543`, `4544`, `4545`, `4546`, `4547`, `4549`, `4551`, `4552`, `4553`, `4554`, `4556`, `4557`, `4558`, `4559`, `4562`, `4563`, `4566`, `4567`, `4569`, `4570`, `4572`, `4574`, `4576`, `4577`, `4579`, `4580`, `4581`, `4583`, `4585`, `4586`, `4588`, `4591`, `4592`, `4594`, `4595`, `4596`, `4597`, `4598`, `4599`, `4600`, `4601`, `4603`, `4606`, `4608`, `4609`, `4610`, `4612`, `4614`, `4616`, `4617`, `4620`, `4621`, `4623`, `4624`, `4625`, `4626`, `4627`, `4629`, `4631`, `4633`, `4635`, `4636`, `4637`, `4638`, `4639`, `4640`, `4642`, `4644`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4653`, `4655`, `4657`, `4658`, `4659`, `4661`, `4662`, `4663`, `4664`, `4665`, `4667`, `4668`, `4669`, `4671`, `4673`, `4675`, `4676`, `4680`, `4681`, `4683`, `4684`, `4686`, `4687`, `4690`, `4693`, `4695`, `4696`, `4699`, `4700`, `4702`, `4703`, `4704`, `4707`, `4708`, `4709`, `4710`, `4711`, `4713`, `4715`, `4716`, `4718`, `4719`, `4721`, `4726`, `4727`, `4729`, `4731`, `4735`, `4737`, `4738`, `4739`, `4741`, `4743`, `4744`, `4748`, `4749`, `4753`, `4755`, `4756`, `4757`, `4758`, `4759`, `4761`, `4763`, `4764`, `4766`, `4768`, `4769`, `4770`, `4772`, `4774`, `4775`, `4777`, `4779`, `4780`, `4782`, `4783`, `4785`, `4787`, `4788`, `4791`, `4792`, `4793`, `4795`, `4797`, `4801`, `4802`, `4804`, `4806`, `4808`, `4809`, `4810`, `4811`, `4813`, `4815`, `4817`, `4818`, `4820`, `4821`, `4823`, `4826`, `4827`, `4828`, `4830`, `4831`, `4833`, `4834`, `4838`, `4840`, `4843`, `4845`, `4847`, `4848`, `4849`, `4850`, `4851`, `4854`, `4855`, `4856`, `4858`, `4860`, `4862`, `4863`, `4864`, `4866`, `4867`, `4869`, `4871`, `4872`, `4874`, `4875`, `4876`, `4878`, `4880`, `4881`, `4883`, `4885`, `4886`, `4889`, `4890`, `4892`, `4893`, `4894`, `4896`, `4897`, `4899`, `4900`, `4902`, `4903`, `4904`, `4905`, `4907`, `4908`, `4909`, `4911`, `4913`, `4914`, `4918`, `4920`, `4922`, `4924`, `4925`, `4926`, `4927`, `4928`, `4929`, `4931`, `4932`, `4933`, `4934`, `4935`, `4937`, `813`, `4941`, `4943`, `4945`, `4946`, `4947`, `4948`, `4950`, `4952`, `4954`, `4955`, `4956`, `4959`, `4962`, `4963`, `4964`, `4967`, `4969`, `4970`, `4972`, `4973`, `4974`, `4976`, `4977`, `4978`, `4980`, `4982`, `4984`, `4986`, `4989`, `4990`, `4991`, `4992`, `4994`, `4995`, `4997`, `4999`, `5002`, `5003`, `5004`, `5005`, `5007`, `5009`, `5010`, `5013`, `5014`, `5016`, `5017`, `5018`, `5019`, `5020`, `5021`, `5022`, `5024`, `5025`, `5026`, `5027`, `5029`, `5030`, `5032`, `5034`, `5035`, `5036`, `5037`, `5039`, `5042`, `5043`, `5045`, `5046`, `5049`, `5051`, `5053`, `5054`, `5056`, `5057`, `5058`, `5061`, `5063`, `5066`, `5068`, `5069`, `5070`, `5071`, `5072`, `5075`, `5077`, `5078`, `5080`, `5082`, `5084`, `5085`, `5087`, `5089`, `5090`, `5092`, `5094`, `5095`, `5096`, `5099`, `5100`, `5101`, `5102`, `5104`, `5105`, `5107`, `5109`, `5110`, `5112`, `5116`, `5120`, `5121`, `5122`, `5124`, `5125`, `5127`, `5128`, `5129`, `5132`, `5133`, `5135`, `5138`, `5141`, `5142`, `5143`, `5144`, `5145`, `5146`, `5148`, `5150`, `5151`, `5154`, `5155`, `5156`, `5159`, `5162`, `5163`, `5164`, `5165`, `5166`, `5168`, `5169`, `5170`, `5172`, `5173`, `5174`, `5176`, `5177`, `5179`, `5181`, `5182`, `957`, `5183`, `5184`, `5185`, `5188`, `5189`, `5191`, `5192`, `5195`, `5196`, `5198`, `5200`, `5201`, `5203`, `5204`, `5205`, `5207`, `5208`, `5210`, `5211`, `5214`, `5215`, `5216`, `5217`, `5218`, `5219`, `5220`, `5221`, `5222`, `5224`, `5225`, `5226`, `5227`, `5229`, `5231`, `5232`, `5234`, `5235`, `5237`, `5238`, `5240`, `5241`, `5242`, `5245`, `5246`, `5251`, `5253`, `5256`, `5257`, `2677`, `5259`, `5261`, `5263`, `5264`, `5266`, `5267`, `5271`, `5274`, `5275`, `5279`, `5280`, `5281`, `5283`, `5285`, `5287`, `5289`, `5290`, `5291`, `5293`, `5296`, `5297`, `5299`, `5300`, `5301`, `5302`, `5305`, `5307`, `5309`, `5311`, `5314`, `5315`, `5316`, `5317`, `5319`, `5320`, `5321`, `5323`, `5324`, `5326`, `5327`, `5329`, `5331`, `5332`, `5333`, `5334`, `5336`, `5337`, `5339`, `5340`, `5341`, `5343`, `5346`, `5347`, `5348`, `5349`, `5351`, `5352`, `5353`, `5354`, `5356`, `5357`, `1020`, `5358`, `5359`, `5360`, `5361`, `5362`, `5363`, `5364`, `5365`, `5367`, `5369`, `5370`, `5371`, `5373`, `5374`, `5377`, `5379`, `5382`, `5383`, `5384`, `5386`, `5387`, `5389`, `5390`, `5393`, `5394`, `5396`, `5397`, `5399`, `5400`, `5402`, `5403`, `5404`, `4463`, `5406`, `5409`, `5410`, `5412`, `5413`, `5415`, `5416`, `5417`, `5419`, `5420`, `5421`, `5422`, `5423`, `5425`, `5428`, `5429`, `5431`, `5432`, `5434`, `5435`, `5437`, `5439`, `5441`, `5446`, `5447`, `5450`, `5452`, `5453`, `5456`, `5458`, `5462`, `5464`, `5465`, `5467`, `5468`, `5469`, `5470`, `5471`, `5473`, `5475`, `5476`, `5477`, `5479`, `5480`, `5482`, `5484`, `5485`, `5487`, `5489`, `3877`, `5490`, `5492`, `5493`, `5494`, `5497`, `5498`, `5499`, `5500`, `5503`, `5505`, `5506`, `5509`, `5510`, `5511`, `5513`, `5514`, `5517`, `5520`, `5521`, `5522`, `5524`, `5526`, `5529`, `5530`, `5531`, `5532`, `5533`, `5534`, `5535`, `5536`, `5537`, `5539`, `5540`, `5542`, `5543`, `5545`, `5546`, `5548`, `5549`, `5550`, `5552`, `5554`, `5556`, `5557`, `5559`, `5560`, `3089`, `5563`, `5564`, `5565`, `5567`, `5569`, `5570`, `5572`, `5575`, `5576`, `5578`, `5579`, `5580`, `5582`, `5583`, `5584`, `5585`, `5587`, `5589`, `5590`, `5591`, `5595`, `5597`, `5598`, `5599`, `5602`, `5603`, `5606`, `5608`, `5611`, `5613`, `4981`, `5614`, `5616`, `5617`, `5622`, `5623`, `5624`, `5625`, `5626`, `5627`, `5630`, `5631`, `5633`, `5634`, `5635`, `5637`, `3169`, `5639`, `5641`, `5643`, `5645`, `5646`, `5649`, `5651`, `5654`, `5655`, `5657`, `5659`, `5660`, `5662`, `5663`, `5664`, `5665`, `5667`, `5668`, `5669`, `5670`, `5671`, `5672`, `5673`, `5676`, `5681`, `5682`, `5683`, `5684`, `5685`, `5687`, `5689`, `5691`, `5693`, `5694`, `5698`, `5700`, `5702`, `5703`, `5704`, `5706`, `5708`, `5709`, `5710`, `5713`, `5715`, `5717`, `5718`, `5719`, `5723`, `5724`, `5725`, `5726`, `5728`, `5730`, `5731`, `5733`, `5734`, `5736`, `5738`, `5741`, `5743`, `5744`, `5747`, `5748`, `5749`, `5751`, `5752`, `5754`, `5756`, `5757`, `5759`, `5760`, `5761`, `5762`, `5763`, `5764`, `5766`, `5768`, `5770`, `5771`, `5773`, `5775`, `5776`, `5777`, `5778`, `5780`, `5782`, `5784`, `5786`, `5787`, `5788`, `5790`, `5791`, `5792`, `5795`, `5796`, `5798`, `5799`, `5800`, `5801`, `5802`, `5805`, `5806`, `5811`, `5813`, `5814`, `5815`, `5816`, `5817`, `5818`, `5820`, `5821`, `5822`, `5823`, `5824`, `5827`, `5830`, `5832`, `5833`, `5834`, `5836`, `5837`, `5839`, `5840`, `5841`, `5842`, `5845`, `5847`, `5849`, `5851`, `5853`, `5856`, `5859`, `5862`, `5863`, `5865`, `5867`, `5868`, `5870`, `5872`, `5873`, `5875`, `5876`, `5877`, `5878`, `5879`, `5881`, `5883`, `5886`, `5887`, `5888`, `5889`, `5891`, `5892`, `5895`, `5896`, `5898`, `5900`, `5903`, `5904`, `5905`, `5906`, `5908`, `5909`, `5912`, `5915`, `5916`, `5917`, `5918`, `5919`, `5920`, `5922`, `5923`, `5925`, `5927`, `5928`, `5929`, `5931`, `5932`, `5933`, `5935`, `5939`, `5940`, `5941`, `5943`, `5945`, `5947`, `5948`, `5950`, `5951`, `5952`, `5955`, `5956`, `5957`, `5958`, `5959`, `5961`, `5962`, `5963`, `5964`, `5965`, `5967`, `5968`, `5969`, `5970`, `5971`, `5972`, `5974`, `5976`, `5977`, `5978`, `5980`, `5982`, `5983`, `5984`, `5986`, `5987`, `5988`, `5990`, `5991`, `5993`, `5995`, `5996`, `5999`, `6000`, `6003`, `6004`, `6006`, `6009`, `6010`, `6011`, `6012`, `6013`, `6015`, `6016`, `6019`, `6020`, `6022`, `6024`, `6025`, `6028`, `6031`, `6032`, `6036`, `6037`, `6039`, `6040`, `6041`, `6042`, `6044`, `6046`, `6047`, `6048`, `6049`, `6050`, `6051`, `6052`, `6054`, `6056`, `6057`, `6058`, `6059`, `6061`, `6062`, `6063`, `6065`, `6066`, `6068`, `6069`, `6071`, `6072`, `6073`, `6074`, `6075`, `6076`, `6078`, `6079`, `6080`, `6082`, `6083`, `6085`, `6087`, `6088`, `6090`, `6091`, `6092`, `6094`, `6095`, `6096`, `6097`, `6099`, `6100`, `6102`, `6104`, `6106`, `6108`, `6109`, `6110`, `6111`, `6112`, `6115`, `6118`, `6121`, `6123`, `6124`, `6125`, `6127`, `6128`, `6129`, `6130`, `6131`, `6132`, `6133`, `6134`, `6135`, `6136`, `6137`, `6138`, `6139`, `6140`, `6141`, `6142`, `6143`, `6144`, `6145`, `6147`, `6149`, `6151`, `6153`, `6154`, `6155`, `6156`, `6157`, `6158`, `6160`, `6161`, `6162`, `6163`, `6165`, `6166`, `6167`, `6168`, `6169`, `6170`, `6172`, `6174`, `6176`, `6177`, `6178`, `6180`, `6183`, `6185`, `6188`, `6190`, `6194`, `6196`, `6197`, `6198`, `6199`, `6201`, `6202`, `6203`, `6206`, `6207`, `6210`, `6211`, `6212`, `6214`, `6215`, `6218`, `6219`, `6220`, `6222`, `6223`, `6224`, `6225`, `6226`, `6228`, `6229`, `6230`, `6232`, `6236`, `6238`, `6240`, `6242`, `6243`, `6245`, `6246`, `6247`, `6249`, `6250`, `6252`, `6253`, `6255`, `6257`, `6258`, `6261`, `6262`, `6263`, `6264`, `6266`, `6268`, `6269`, `6270`, `6273`, `6274`, `6275`, `6276`, `6277`, `6278`, `6280`, `6282`, `6283`, `6284`, `6287`, `6289`, `6290`, `6291`, `6292`, `6293`, `6295`, `1732`, `6296`, `6299`, `6300`, `6302`, `6303`, `6305`, `6306`, `6307`, `6308`, `6309`, `6310`, `6311`, `6312`, `6315`, `6317`, `6319`, `6320`, `6322`, `6323`, `6324`, `6325`, `6328`, `6330`, `6331`, `6332`, `6333`, `6334`, `6336`, `6338`, `6339`, `6341`, `6343`, `6345`, `6347`, `6348`, `6349`, `6351`, `6352`, `6354`, `6357`, `6358`, `6360`, `6361`, `6362`, `6364`, `6365`, `6367`, `6369`, `6370`, `6371`, `111`, `6372`, `6373`, `2065`, `6374`, `6375`, `6377`, `6378`, `6380`, `6381`, `6382`, `6384`, `6385`, `6386`, `6387`, `6388`, `6391`, `6392`, `6393`, `6394`, `6396`, `6397`, `6399`, `6400`, `6401`, `6402`, `6404`, `6407`, `6408`, `6409`, `6411`, `6414`, `6416`, `6418`, `6419`, `6421`, `6422`, `6423`, `6425`, `6426`, `6428`, `6429`, `6430`, `6431`, `6432`, `6434`, `6435`, `6436`, `6437`, `6438`, `6440`, `6441`, `6442`, `6443`, `6444`, `6445`, `6447`, `6449`, `6451`, `6452`, `6455`, `6456`, `6457`, `6458`, `6459`, `6460`, `6462`, `6463`, `6464`, `6465`, `6466`, `6469`, `6470`, `6471`, `6473`, `6474`, `6475`, `6476`, `6478`, `6480`, `6481`, `6482`, `6485`, `6486`, `6487`, `6488`, `6489`, `6490`, `6491`, `6493`, `6494`, `6495`, `6497`, `6498`, `6499`, `5134`, `6500`, `6501`, `6502`, `6503`, `6504`, `6506`, `6508`, `6509`, `6510`, `6511`, `6512`, `6514`, `6515`, `6516`, `6517`, `6518`, `6519`, `6520`, `6521`, `6523`, `6526`, `6527`, `6529`, `6531`, `6533`, `6535`, `6536`, `6537`, `6538`, `6539`, `6540`, `6543`, `6544`, `6545`, `6547`, `6550`, `6551`, `6552`, `6553`, `6554`, `6555`, `6557`, `6559`, `6560`, `6561`, `6562`, `6564`, `6565`, `6567`, `6568`, `6569`, `6570`, `6571`, `6574`, `6575`, `6578`, `6579`, `6580`, `6581`, `6583`, `6584`, `6586`, `6588`, `6589`, `6591`, `6593`, `6595`, `6597`, `6599`, `6600`, `6601`, `6602`, `6604`, `6605`, `6607`, `6609`, `6611`, `6614`, `6615`, `6616`, `6618`, `6619`, `6620`, `6622`, `6623`, `1924`, `6626`, `6628`, `6629`, `6631`, `6633`, `6635`, `6637`, `6638`, `6639`, `6641`, `6643`, `6644`, `6647`, `6649`, `6650`, `6651`, `6652`, `6654`, `6655`, `6656`, `6658`, `6659`, `6661`, `6662`, `6663`, `6664`, `6665`, `6666`, `6667`, `6669`, `6670`, `6672`, `6673`, `6674`, `6675`, `6676`, `6678`, `6680`, `6681`, `6682`, `6684`, `6685`, `6689`, `6690`, `6691`, `6694`, `6696`, `6697`, `6698`, `6699`, `6701`, `6702`, `6703`, `6704`, `6706`, `6707`, `6709`, `6710`, `6712`, `6714`, `6715`, `6717`, `6718`, `6719`, `6720`, `6721`, `6724`, `6725`, `6727`, `6730`, `6732`, `6733`, `6736`, `6739`, `6740`, `6743`, `6745`, `6746`, `6747`, `6748`, `6749`, `6751`, `6754`, `6755`, `6756`, `6757`, `6758`, `6759`, `6761`, `6763`, `6765`, `6768`, `6770`, `6773`, `6774`, `6775`, `6777`, `6778`, `6780`, `6783`, `6784`, `6785`, `6787`, `6789`, `6790`, `6792`, `6796`, `6799`, `6800`, `6801`, `6802`, `6803`, `6805`, `6807`, `6808`, `6810`, `6812`, `6814`, `6817`, `6819`, `6821`, `6822`, `6824`, `6826`, `6828`, `6829`, `6830`, `6832`, `6834`, `6835`, `6836`, `6839`, `6841`, `6844`, `6846`, `6848`, `6850`, `6851`, `6852`, `6853`, `6854`, `6855`, `6856`, `6858`, `6859`, `6860`, `6862`, `6863`, `6864`, `6866`, `6868`, `6869`, `6871`, `6873`, `6877`, `6880`, `6884`, `6885`, `6887`, `6888`, `6889`, `6892`, `6893`, `6894`, `6895`, `6898`, `6900`, `6901`, `6902`, `6904`, `6905`, `6906`, `6907`, `6909`, `6911`, `6914`, `6915`, `6916`, `6918`, `6919`, `6921`, `6922`, `6923`, `6924`, `6925`, `6926`, `6929`, `6930`, `6931`, `6934`, `6935`, `6937`, `6939`, `6940`, `6941`, `6944`, `6946`, `6947`, `6948`, `6950`, `6952`, `6954`, `6956`, `6957`, `6959`, `6960`, `6961`, `6963`, `6964`, `6965`, `6966`, `6968`, `6969`, `6970`, `6971`, `6972`, `6973`, `6974`, `6975`, `6977`, `1222`, `6979`, `6980`, `6981`, `6982`, `6983`, `6984`, `6985`, `6987`, `6988`, `6989`, `6990`, `6991`, `6992`, `6993`, `6994`, `6997`, `6998`, `7000`, `7001`, `7002`, `7003`, `7004`, `7007`, `7009`, `7010`, `7011`, `7013`, `7014`, `7016`, `7017`, `7019`, `7020`, `7021`, `7023`, `7024`, `7026`, `2231`, `7027`, `7028`, `7029`, `7031`, `7032`, `7033`, `7034`, `7035`, `7037`, `7038`, `7039`, `7040`, `7042`, `7043`, `7044`, `7045`, `7046`, `7048`, `7049`, `7051`, `7053`, `7055`, `7059`, `7060`, `7061`, `7062`, `7064`, `7065`, `7067`, `7068`, `7071`, `7072`, `7073`, `7074`, `7076`, `7077`, `7081`, `7084`, `7085`, `7088`, `7090`, `7092`, `7093`, `7095`, `7096`, `7097`, `7098`, `7100`, `7101`, `7102`, `7104`, `7107`, `7108`, `7112`, `7113`, `7115`, `7116`, `7117`, `7120`, `7121`, `7122`, `7123`, `7124`, `7125`, `7126`, `7128`, `7131`, `7132`, `7133`, `7134`, `7135`, `7138`, `7140`, `7141`, `7142`, `7143`, `7145`, `7146`, `7148`, `7149`, `7152`, `7156`, `7158`, `7159`, `7160`, `7161`, `7162`, `7163`, `7166`, `7169`, `7170`, `7173`, `7174`, `7177`, `7178`, `7179`, `7180`, `7181`, `7183`, `7184`, `7185`, `7186`, `7188`, `7189`, `7191`, `7192`, `7195`, `7198`, `7199`, `7201`, `7203`, `7204`, `7205`, `7206`, `7208`, `7213`, `7215`, `7216`, `7219`, `7221`, `7224`, `7225`, `7227`, `7229`, `7231`, `7232`, `7235`, `7236`, `7237`, `7239`, `7240`, `7242`, `7243`, `7245`, `7246`, `7247`, `7248`, `7252`, `7253`, `7254`, `7256`, `7258`, `7259`, `7260`, `7262`, `7263`, `7264`, `7266`, `7268`, `7270`, `7271`, `7272`, `7273`, `7274`, `7276`, `7277`, `7278`, `7281`, `7282`, `7283`, `7286`, `7288`, `7290`, `1256`, `7291`, `7292`, `7293`, `7295`, `7298`, `7299`, `7301`, `7302`, `7303`, `7304`, `7306`, `7307`, `7308`, `7310`, `7312`, `7313`, `7316`, `7317`, `7318`, `7319`, `7320`, `7323`, `7324`, `7326`, `7328`, `7331`, `7332`, `7334`, `7336`, `7337`, `7338`, `7340`, `7342`, `7343`, `7344`, `7345`, `7346`, `7347`, `7348`, `7350`, `7352`, `7353`, `5131`, `7354`, `7356`, `7358`, `7360`, `7362`, `7363`, `7366`, `7367`, `7368`, `7369`, `7373`, `7374`, `7375`, `7376`, `7377`, `7378`, `7379`, `7382`, `7383`, `7384`, `7385`, `7386`, `7387`, `7388`, `7389`, `7392`, `7395`, `7397`, `7398`, `7400`, `7402`, `7405`, `7406`, `7408`, `7410`, `7411`, `7412`, `7414`, `7416`, `7417`, `7419`, `7421`, `7423`, `7425`, `7427`, `7428`, `7429`, `7430`, `7432`, `7434`, `7435`, `7436`, `7437`, `7439`, `7440`, `7443`, `7444`, `7445`, `7447`, `7448`, `7449`, `7451`, `7453`, `7454`, `7456`, `7458`, `7459`, `7460`, `7462`, `7463`, `7464`, `7465`, `7466`, `7467`, `7468`, `7469`, `7470`, `7471`, `7472`, `7475`, `7477`, `7478`, `7479`, `7481`, `7482`, `7483`, `7484`, `7485`, `7486`, `7487`, `7488`, `7490`, `7492`, `7496`, `7497`, `7498`, `7500`, `7501`, `7503`, `7505`, `7506`, `7509`, `7511`, `7512`, `7514`, `7515`, `7516`, `7518`, `7522`, `7523`, `7524`, `7255`, `7526`, `7527`, `7530`, `7532`, `7533`, `7535`, `7536`, `7539`, `7541`, `7544`, `7547`, `7548`, `7550`, `7552`, `7553`, `7555`, `7556`, `7558`, `7559`, `7560`, `7561`, `7563`, `7564`, `7565`, `7566`, `7567`, `7569`, `7571`, `7575`, `7577`, `7578`, `7580`, `7581`, `7585`, `7586`, `7588`, `7590`, `7593`, `7595`, `7597`, `7599`, `7600`, `7601`, `7603`, `7605`, `7607`, `7608`, `7609`, `7610`, `7611`, `7612`, `7613`, `7614`, `7615`, `7616`, `7617`, `7619`, `7620`, `7621`, `7622`, `7623`, `7625`, `7628`, `7630`, `7631`, `7632`, `7634`, `7635`, `3191`, `7636`, `7637`, `7639`, `7641`, `7642`, `7643`, `7644`, `7645`, `7646`, `7647`, `7648`, `7649`, `7650`, `7652`, `7653`, `7654`, `7655`, `7657`, `7658`, `7659`, `7660`, `7661`, `7662`, `7664`, `7665`, `7667`, `7668`, `7670`, `7672`, `7673`, `7674`, `7675`, `7677`, `7678`, `7679`, `7680`, `7681`, `7682`, `7684`, `7686`, `7687`, `7688`, `7690`, `7692`, `7693`, `7695`, `7696`, `7698`, `7700`, `7701`, `7703`, `7704`, `7707`, `7710`, `7711`, `7713`, `7714`, `7715`, `7717`, `7718`, `7719`, `7721`, `7722`, `7723`, `7725`, `7726`, `7728`, `7729`, `7730`, `7731`, `7732`, `7733`, `7734`, `7735`, `7737`, `7739`, `7741`, `7743`, `7744`, `7745`, `7748`, `7750`, `7752`, `7753`, `7755`, `7756`, `7757`, `7758`, `7759`, `7760`, `7761`, `7762`, `7763`, `7764`, `7765`, `7766`, `7767`, `7768`, `7769`, `7771`, `7772`, `7774`, `7775`, `7776`, `7778`, `7779`, `7781`, `7782`, `7784`, `7785`, `7788`, `7789`, `7790`, `7791`, `7793`, `7794`, `7796`, `7798`, `7800`, `7801`, `7803`, `7804`, `7806`, `7808`, `7810`, `7811`, `7813`, `7816`, `7817`, `7819`, `7822`, `7824`, `7826`, `7828`, `7831`, `7833`, `7834`, `7836`, `7838`, `7840`, `7841`, `7842`, `7844`, `7846`, `7848`, `7850`, `7851`, `7852`, `7853`, `7854`, `7855`, `7856`, `7857`, `7859`, `7860`, `7861`, `7862`, `7863`, `7866`, `7868`, `7871`, `7873`, `7875`, `7876`, `7878`, `7880`, `7883`, `7884`, `7885`, `7886`, `7888`, `7889`, `7891`, `7894`, `7895`, `7896`, `7898`, `7899`, `7900`, `7901`, `7902`, `7903`, `7905`, `7907`, `7909`, `7910`, `7912`, `7914`, `7915`, `7916`, `7917`, `7919`, `5472`, `7920`, `7921`, `7922`, `7923`, `7924`, `7926`, `7928`, `7930`, `7931`, `7933`, `7934`, `7935`, `7937`, `7938`, `7939`, `7941`, `7942`, `7945`, `7946`, `7947`, `7948`, `7951`, `7952`, `7953`, `7955`, `7956`, `7959`, `7960`, `7961`, `7962`, `7963`, `7964`, `7965`, `7966`, `7967`, `7969`, `7970`, `7971`, `7972`, `7974`, `7975`, `7976`, `7977`, `7978`, `7979`, `7982`, `7984`, `7985`, `7987`, `7988`, `7989`, `7990`, `7992`, `7993`, `7994`, `7995`, `7997`, `7998`, `7999`, `8000`, `8001`, `8002`, `8007`, `8008`, `8009`, `8011`, `8012`, `8014`, `8016`, `8019`, `8021`, `8023`, `8025`, `8027`, `8028`, `8030`, `8031`, `8032`, `8033`, `8035`, `8037`, `3820`, `8038`, `8040`, `8042`, `8044`, `8046`, `8047`, `8048`, `8049`, `2686`, `8050`, `8051`, `8053`, `8054`, `8055`, `8056`, `8058`, `8061`, `8062`, `8064`, `8065`, `8066`, `8067`, `8068`, `8069`, `8071`, `8072`, `8073`, `8074`, `8075`, `8076`, `8077`, `8078`, `8079`, `8080`, `8081`, `8083`, `8084`, `8085`, `8086`, `8087`, `8088`, `8090`, `8091`, `8093`, `8094`, `8095`, `8097`, `8098`, `8099`, `8101`, `8103`, `8104`, `8106`, `8108`, `8109`, `8110`, `8111`, `8112`, `8113`, `8115`, `8117`, `8118`, `8119`, `8120`, `8121`, `8124`, `8125`, `8127`, `8128`, `8129`, `8130`, `8131`, `8132`, `8133`, `8134`, `8136`, `8137`, `8139`, `8141`, `8142`, `8144`, `8145`, `8147`, `8151`, `8154`, `8155`, `8157`, `8158`, `8160`, `8161`, `8162`, `8164`, `8166`, `8167`, `8168`, `8169`, `8170`, `8171`, `8173`, `8174`, `8176`, `8177`, `8178`, `8179`, `8181`, `8182`, `8183`, `8185`, `8186`, `8187`, `8188`, `8189`, `8190`, `8191`, `8192`, `8193`, `8194`, `8195`, `8197`, `8199`, `8201`, `8202`, `8203`, `7736`, `8204`, `8205`, `8206`, `8207`, `8209`, `8210`, `8211`, `8213`, `8215`, `8216`, `8218`, `8219`, `8220`, `8221`, `8222`, `8223`, `7839`, `8224`, `8225`, `8227`, `2984`, `8229`, `8230`, `8231`, `8232`, `8235`, `8237`, `8239`, `8240`, `8241`, `8245`, `8246`, `8248`, `8249`, `8250`, `8253`, `8254`, `8256`, `8257`, `8259`, `8260`, `8261`, `8263`, `8264`, `8265`, `8266`, `8267`, `8268`, `8269`, `8271`, `8272`, `8273`, `8274`, `8275`, `8280`, `8281`, `8282`, `8284`, `8285`, `8286`, `8287`, `8288`, `8290`, `8291`, `8292`, `8293`, `8294`, `8295`, `8297`, `8299`, `8300`, `8301`, `8302`, `8303`, `8306`, `8308`, `8309`, `8310`, `8312`, `8313`, `8314`, `8316`, `8317`, `8319`, `8321`, `8323`, `8325`, `8326`, `8327`, `8329`, `8330`, `8331`, `8332`, `8333`, `8336`, `8338`, `8339`, `8296`, `8340`, `8342`, `8343`, `8344`, `8345`, `8347`, `8349`, `8350`, `8352`, `8357`, `8359`, `8360`, `8361`, `8362`, `8363`, `8365`, `8366`, `8367`, `8369`, `8370`, `8372`, `8373`, `8375`, `8377`, `8378`, `8379`, `8381`, `8382`, `8383`, `8385`, `8388`, `8389`, `8391`, `8392`, `8394`, `8396`, `8398`, `8270`, `8399`, `8402`, `8404`, `8405`, `8407`, `8409`, `8411`, `8412`, `8414`, `8415`, `8417`, `8419`, `8420`, `8423`, `8426`, `8427`, `8428`, `8431`, `8432`, `8433`, `8434`, `8435`, `8437`, `8438`, `8441`, `8443`, `8444`, `8445`, `8446`, `8447`, `8449`, `8453`, `8455`, `8457`, `8459`, `8460`, `8462`, `8463`, `8464`, `8466`, `8467`, `8468`, `8469`, `8470`, `8472`, `8473`, `8474`, `8475`, `8476`, `8478`, `8479`, `8481`, `8484`, `8485`, `8486`, `8488`, `8489`, `8491`, `8494`, `8495`, `8496`, `8497`, `8498`, `8499`, `8500`, `8503`, `8505`, `8506`, `8508`, `8509`, `8510`, `8511`, `8512`, `8513`, `8514`, `8515`, `8516`, `8517`, `8519`, `8521`, `8522`, `8523`, `8524`, `8525`, `8526`, `8527`, `8529`, `8530`, `8532`, `8535`, `8537`, `8538`, `8539`, `8541`, `8542`, `8543`, `8544`, `8549`, `8550`, `8551`, `8552`, `8553`, `8554`, `8555`, `8557`, `8558`, `8559`, `8562`, `8563`, `8564`, `8566`, `8569`, `8570`, `8571`, `8573`, `8575`, `8577`, `8578`, `8579`, `8580`, `8581`, `8584`, `8585`, `8586`, `8587`, `8589`, `8590`, `8592`, `8593`, `8594`, `8595`, `8597`, `8598`, `8600`, `8601`, `8602`, `8604`, `8605`, `8608`, `8610`, `8611`, `8612`, `8613`, `8614`, `8615`, `8616`, `8618`, `8619`, `8620`, `8621`, `8622`, `8625`, `8627`, `8629`, `8630`, `8632`, `8634`, `8636`, `8637`, `8638`, `8640`, `8642`, `8643`, `8644`, `8646`, `8647`, `8649`, `8650`, `8651`, `8653`, `8655`, `8656`, `8657`, `8658`, `8659`, `8660`, `8662`, `8664`, `8665`, `8666`, `8667`, `8669`, `8670`, `8671`, `8673`, `8674`, `8675`, `8676`, `8677`, `8678`, `8679`, `8680`, `8681`, `8683`, `8685`, `8687`, `8689`, `8691`, `8692`, `8693`, `8694`, `8696`, `8697`, `8698`, `8700`, `8701`, `8702`, `8703`, `8704`, `8705`, `8706`, `8707`, `8708`, `8709`, `8710`, `8712`, `8713`, `8715`, `8717`, `8719`, `8722`, `8723`, `8725`, `8726`, `8727`, `8729`, `8730`, `8732`, `8734`, `8736`, `8738`, `8739`, `8740`, `8741`, `8743`, `8744`, `8745`, `8747`, `8748`, `8752`, `8753`, `8754`, `8755`, `8756`, `8757`, `8758`, `8760`, `8761`, `8762`, `8763`, `8765`, `8766`, `8767`, `8768`, `8770`, `8771`, `8773`, `8774`, `8775`, `8776`, `8778`, `8779`, `8780`, `8781`, `8782`, `8785`, `8786`, `8787`, `8789`, `8790`, `8791`, `8793`, `8795`, `8798`, `8800`, `8801`, `8802`, `8804`, `8805`, `8807`, `8808`, `8809`, `8810`, `8813`, `8815`, `8816`, `8817`, `8819`, `8820`, `8821`, `8822`, `8823`, `401`, `8824`, `8826`, `8827`, `8829`, `8830`, `8831`, `8833`, `8835`, `8837`, `8839`, `8840`, `8841`, `8842`, `8844`, `8845`, `8847`, `8849`, `8851`, `8852`, `8853`, `8855`, `8857`, `8858`, `8859`, `8864`, `8865`, `8866`, `8867`, `8869`, `8870`, `8871`, `8874`, `8877`, `8879`, `8880`, `8881`, `8883`, `8884`, `8886`, `8887`, `8890`, `8891`, `8892`, `8893`, `8895`, `8897`, `8899`, `8900`, `8901`, `8903`, `8906`, `8907`, `8909`, `8911`, `8914`, `8916`, `8917`, `8919`, `8920`, `8921`, `8922`, `8923`, `8927`, `8928`, `8930`, `8931`, `8933`, `8934`, `8937`, `8939`, `8940`, `8941`, `8942`, `8944`, `8945`, `8947`, `8948`, `8949`, `8950`, `8951`, `8953`, `8954`, `8955`, `8958`, `8960`, `8962`, `8965`, `8966`, `8967`, `8968`, `8969`, `8970`, `8971`, `8972`, `8974`, `8976`, `8977`, `8978`, `8979`, `8980`, `8981`, `8982`, `8983`, `8984`, `8985`, `8987`, `8991`, `8992`, `8993`, `8994`, `8995`, `8996`, `8998`, `8999`, `9000`, `9002`, `9003`, `9004`, `9005`, `9007`, `9009`, `9010`, `9011`, `9014`, `9015`, `9016`, `9018`, `9019`, `9020`, `9022`, `9024`, `9025`, `9026`, `9028`, `9030`, `9031`, `9032`, `9034`, `9035`, `9037`, `9038`, `9039`, `9042`, `9043`, `9044`, `9046`, `9048`, `9050`, `9051`, `9053`, `9054`, `9055`, `9057`, `9058`, `8932`, `9059`, `9060`, `9061`, `9062`, `9064`, `9068`, `1932`, `9069`, `9070`, `9071`, `9072`, `9073`, `9074`, `9076`, `9079`, `9080`, `9083`, `9084`, `9087`, `9088`, `9090`, `9091`, `9093`, `9095`, `9096`, `9097`, `9098`, `9100`, `9103`, `9104`, `9105`, `9106`, `9107`, `9108`, `9109`, `9110`, `9111`, `9112`, `9113`, `9114`, `9116`, `9119`, `9120`, `9121`, `9122`, `9123`, `9124`, `9127`, `9128`, `9129`, `9130`, `9131`, `9132`, `9133`, `9134`, `9135`, `9136`, `9138`, `9139`, `9141`, `9142`, `9144`, `9145`, `9146`, `9148`, `9149`, `9150`, `9152`, `9153`, `9156`, `9158`, `9160`, `9162`, `9165`, `7986`, `9168`, `9170`, `9171`, `9172`, `9173`, `9175`, `9176`, `9177`, `9179`, `9180`, `9182`, `9183`, `9185`, `9188`, `9190`, `9191`, `9192`, `9194`, `9198`, `9200`, `9201`, `9202`, `9204`, `9206`, `9207`, `5871`, `9210`, `9211`, `9213`, `9214`, `9215`, `9217`, `9218`, `9220`, `9221`, `9222`, `9226`, `9228`, `9230`, `9231`, `9233`, `9234`, `9235`, `9238`, `9239`, `9241`, `9242`, `9244`, `9246`, `9249`, `9251`, `9252`, `9255`, `9256`, `9259`, `9260`, `9262`, `9263`, `9265`, `9269`, `9270`, `9273`, `9274`, `9277`, `3858`, `9279`, `9281`, `9282`, `9284`, `9287`, `7598`, `9289`, `9292`, `9294`, `9295`, `9296`, `9297`, `9298`, `9299`, `9301`, `9302`, `9304`, `9306`, `9308`, `9311`, `9312`, `9313`, `9314`, `9318`, `9320`, `9322`, `9325`, `9326`, `9327`, `9329`, `9331`, `9333`, `9334`, `9336`, `9338`, `9339`, `9340`, `9341`, `9342`, `9343`, `9344`, `9346`, `9347`, `9349`, `9350`, `9352`, `9353`, `9355`, `9358`, `9359`, `9360`, `9363`, `9365`, `9368`, `9369`, `9371`, `9373`, `9374`, `9375`, `9376`, `9377`, `9379`, `9382`, `9383`, `9384`, `9387`, `9388`, `9389`, `9390`, `9391`, `9392`, `9393`, `9395`, `9396`, `9398`, `9400`, `9401`, `9404`, `9406`, `9409`, `9410`, `9412`, `9414`, `9416`, `9417`, `9418`, `9420`, `9421`, `9424`, `9426`, `9428`, `9429`, `9431`, `9432`, `9433`, `9434`, `9435`, `9436`, `9438`, `9441`, `9443`, `9445`, `9446`, `9447`, `9448`, `9449`, `9450`, `9451`, `9453`, `9454`, `9455`, `9457`, `9458`, `9459`, `9460`, `9461`, `9462`, `9463`, `9464`, `9465`, `9467`, `9469`, `9471`, `9474`, `9476`, `9477`, `9478`, `9479`, `9480`, `973`, `9482`, `9483`, `9485`, `9486`, `9488`, `9489`, `9490`, `9492`, `9493`, `9495`, `9496`, `9498`, `9499`, `9501`, `9502`, `9504`, `9506`, `9507`, `9508`, `9511`, `9512`, `9514`, `9515`, `9518`, `9519`, `9521`, `9523`, `9524`, `9526`, `9528`, `9531`, `9533`, `9534`, `9535`, `9537`, `9539`, `9540`, `9541`, `9543`, `9545`, `9546`, `9548`, `9549`, `9550`, `9551`, `9554`, `9555`, `9556`, `9557`, `9559`, `9561`, `9562`, `9565`, `9567`, `9570`, `9571`, `9573`, `7877`, `9575`, `9578`, `9580`, `9582`, `9583`, `9586`, `9587`, `9588`, `9589`, `9591`, `9592`, `9593`, `9594`, `9595`, `9597`, `9599`, `9601`, `9603`, `9604`, `9605`, `9607`, `9610`, `5979`, `9611`, `9612`, `9613`, `9614`, `9616`, `9617`, `9618`, `9620`, `9621`, `9622`, `9624`, `9627`, `9629`, `9630`, `9632`, `9633`, `9636`, `9637`, `9638`, `9640`, `9641`, `9642`, `9644`, `9646`, `9647`, `9649`, `9650`, `9653`, `9656`, `9657`, `9658`, `9659`, `9660`, `9662`, `9663`, `9664`, `9665`, `9666`, `9667`, `9670`, `9673`, `9675`, `9677`, `9679`, `9681`, `9682`, `9683`, `9684`, `9686`, `9688`, `9689`, `9690`, `9692`, `9693`, `9695`, `9696`, `9697`, `9699`, `9701`, `9703`, `9705`, `9707`, `9710`, `9713`, `9714`, `9715`, `9717`, `9718`, `9721`, `9722`, `9724`, `9725`, `9726`, `9727`, `9729`, `9730`, `9731`, `9732`, `9733`, `9735`, `9737`, `9739`, `9740`, `9741`, `9744`, `9747`, `9748`, `9750`, `9751`, `9753`, `9754`, `9755`, `9756`, `9758`, `9759`, `9760`, `9761`, `9762`, `9764`, `9768`, `9770`, `9772`, `9774`, `9776`, `9777`, `9779`, `9780`, `9782`, `9783`, `9784`, `9787`, `9789`, `9790`, `9791`, `9793`, `9794`, `9795`, `9796`, `9797`, `9798`, `9799`, `9800`, `9803`, `9805`, `9807`, `9809`, `9810`, `9811`, `9813`, `9816`, `9817`, `9819`, `9820`, `9822`, `9823`, `9824`, `9825`, `9827`, `9828`, `9830`, `9831`, `9832`, `9834`, `9836`, `9837`, `9839`, `9840`, `9841`, `9842`, `9844`, `9845`, `9846`, `9847`, `9848`, `9850`, `9851`, `9853`, `9854`, `9855`, `9856`, `9857`, `2337`, `8520`, `9858`, `9861`, `9862`, `9757`, `9864`, `9865`, `9867`, `9868`, `9870`, `9871`, `9872`, `9873`, `9874`, `9877`, `9878`, `9879`, `9880`, `9882`, `9884`, `9885`, `9887`, `9889`, `9890`, `9892`, `9894`, `9895`, `9897`, `9899`, `9901`, `9903`, `9906`, `9907`, `9909`, `9911`, `9914`, `9916`, `9918`, `9919`, `9920`, `9922`, `9924`, `9927`, `9929`, `9930`, `9932`, `9935`, `9936`, `9938`, `9939`, `9940`, `9941`, `9942`, `9943`, `9944`, `9945`, `9946`, `9947`, `9948`, `9949`, `9950`, `9951`, `9952`, `9953`, `9955`, `9956`, `9957`, `9958`, `9960`, `9962`, `9963`, `9964`, `9965`, `9967`, `9968`, `9970`, `9971`, `9974`, `9977`, `9978`, `9980`, `9981`, `6878`, `9982`, `9984`, `9985`, `9987`, `9988`, `9989`, `9992`, `9993`, `9994`, `9995`, `9999`, `10001`, `10002`, `10003`, `10004`, `10006`, `10007`, `1912`, `10008`, `10011`, `10013`, `10014`, `10016`, `10017`, `10019`, `10020`, `10023`, `10025`, `10028`, `10029`, `10030`, `10033`, `10034`, `10036`, `10038`, `10039`, `10040`, `10041`, `10042`, `10044`, `10046`, `10048`, `10050`, `10051`, `10053`, `10055`, `10057`, `10058`, `10060`, `10061`, `10062`, `10063`, `10065`, `10066`, `10069`, `10070`, `10071`, `10073`, `10076`, `10078`, `10079`, `10081`, `10085`, `10086`, `10091`, `10092`, `10093`, `10094`, `10096`, `10098`, `10099`, `10100`, `10101`, `10104`, `10105`, `10106`, `10107`, `10110`, `10111`, `10112`, `10114`, `10115`, `10116`, `10118`, `10119`, `10120`, `10123`, `10124`, `10125`, `10127`, `10128`, `10129`, `10130`, `10131`, `10133`, `10134`, `10136`, `10138`, `10139`, `10142`, `10143`, `10146`, `10148`, `10149`, `10150`, `10152`, `10154`, `10156`, `10159`, `10161`, `10163`, `10164`, `10165`, `10167`, `10168`, `10169`, `10170`, `10171`, `10172`, `10175`, `10176`, `10177`, `10180`, `10183`, `10185`, `10186`, `10187`, `10189`, `10191`, `10193`, `10195`, `10196`, `10197`, `10198`, `10199`, `10200`, `10202`, `10203`, `10204`, `10207`, `10208`, `10210`, `10211`, `10213`, `10214`, `10215`, `10217`, `10218`, `10220`, `10222`, `10224`, `10225`, `10227`, `10228`, `10230`, `10232`, `10234`, `10235`, `10237`, `10238`, `10239`, `10241`, `10242`, `10243`, `10245`, `10248`, `10249`, `10251`, `10252`, `10253`, `10255`, `10258`, `10259`, `10260`, `10261`, `10262`, `10263`, `10265`, `10267`, `10268`, `10269`, `10270`, `10272`, `10273`, `10275`, `10276`, `10277`, `10278`, `10279`, `10280`, `10281`, `10284`, `10285`, `10287`, `10288`, `10291`, `10292`, `10294`, `10296`, `10297`, `10298`, `10300`, `10302`, `10303`, `10304`, `10306`, `10307`, `10308`, `10309`, `10312`, `10313`, `10314`, `10315`, `10316`, `10317`, `10318`, `10319`, `10320`, `10321`, `10323`, `10324`, `10327`, `10328`, `10329`, `10330`, `10332`, `10333`, `10335`, `10336`, `10337`, `10340`, `10341`, `10343`, `10344`, `10345`, `10346`, `10347`, `10348`, `10349`, `10350`, `10351`, `10352`, `10353`, `10354`, `10356`, `10357`, `10359`, `10360`, `10363`, `10365`, `10366`, `10368`, `10370`, `10371`, `10372`, `10373`, `10374`, `10375`, `10376`, `10377` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.06 |
| `TOKEN_P` | 99.06 |
| `TOKEN_R` | 99.06 |
| `TOKEN_ACC` | 99.77 |
| `SENTS_F` | 97.00 |
| `SENTS_P` | 97.32 |
| `SENTS_R` | 96.67 |
| `TAG_ACC` | 93.85 |
| `POS_ACC` | 97.66 |
| `MORPH_ACC` | 93.64 |
| `DEP_UAS` | 92.56 |
| `DEP_LAS` | 87.49 |
| `LEMMA_ACC` | 93.99 |
|
explosion/pl_udv25_polishlfg_trf
|
explosion
| 2021-12-10T22:19:07Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"pl",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- pl
license: gpl-3.0
model-index:
- name: pl_udv25_polishlfg_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9561865506
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9904587436
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9542019693
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9592490842
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9738866205
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9554648182
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9988538682
---
UD v2.5 benchmarking pipeline for UD_Polish-LFG
| Feature | Description |
| --- | --- |
| **Name** | `pl_udv25_polishlfg_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (4947 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `adj:pl:acc:f:com`, `adj:pl:acc:f:pos`, `adj:pl:acc:f:sup`, `adj:pl:acc:m1:com`, `adj:pl:acc:m1:pos`, `adj:pl:acc:m1:sup`, `adj:pl:acc:m2:pos`, `adj:pl:acc:m3:com`, `adj:pl:acc:m3:pos`, `adj:pl:acc:m3:sup`, `adj:pl:acc:n:com`, `adj:pl:acc:n:pos`, `adj:pl:acc:n:sup`, `adj:pl:dat:f:pos`, `adj:pl:dat:m1:com`, `adj:pl:dat:m1:pos`, `adj:pl:dat:m3:pos`, `adj:pl:dat:n:pos`, `adj:pl:gen:f:com`, `adj:pl:gen:f:pos`, `adj:pl:gen:f:sup`, `adj:pl:gen:m1:com`, `adj:pl:gen:m1:pos`, `adj:pl:gen:m1:sup`, `adj:pl:gen:m2:pos`, `adj:pl:gen:m2:sup`, `adj:pl:gen:m3:com`, `adj:pl:gen:m3:pos`, `adj:pl:gen:m3:sup`, `adj:pl:gen:n:com`, `adj:pl:gen:n:pos`, `adj:pl:inst:f:pos`, `adj:pl:inst:m1:pos`, `adj:pl:inst:m2:pos`, `adj:pl:inst:m3:pos`, `adj:pl:inst:n:pos`, `adj:pl:loc:f:pos`, `adj:pl:loc:f:sup`, `adj:pl:loc:m1:com`, `adj:pl:loc:m1:pos`, `adj:pl:loc:m3:pos`, `adj:pl:loc:m3:sup`, `adj:pl:loc:n:com`, `adj:pl:loc:n:pos`, `adj:pl:nom:f:com`, `adj:pl:nom:f:pos`, `adj:pl:nom:f:sup`, `adj:pl:nom:m1:com`, `adj:pl:nom:m1:pos`, `adj:pl:nom:m1:sup`, `adj:pl:nom:m2:pos`, `adj:pl:nom:m2:sup`, `adj:pl:nom:m3:com`, `adj:pl:nom:m3:pos`, `adj:pl:nom:m3:sup`, `adj:pl:nom:n:com`, `adj:pl:nom:n:pos`, `adj:sg:acc:f:com`, `adj:sg:acc:f:pos`, `adj:sg:acc:f:sup`, `adj:sg:acc:m1:com`, `adj:sg:acc:m1:pos`, `adj:sg:acc:m1:sup`, `adj:sg:acc:m2:pos`, `adj:sg:acc:m3:com`, `adj:sg:acc:m3:pos`, `adj:sg:acc:m3:sup`, `adj:sg:acc:n:com`, `adj:sg:acc:n:pos`, `adj:sg:acc:n:sup`, `adj:sg:dat:f:pos`, `adj:sg:dat:m1:com`, `adj:sg:dat:m1:pos`, `adj:sg:dat:m2:pos`, `adj:sg:dat:m3:pos`, `adj:sg:dat:n:com`, `adj:sg:dat:n:pos`, `adj:sg:gen:f:com`, `adj:sg:gen:f:pos`, `adj:sg:gen:f:sup`, `adj:sg:gen:m1:pos`, `adj:sg:gen:m2:pos`, `adj:sg:gen:m3:com`, `adj:sg:gen:m3:pos`, `adj:sg:gen:m3:sup`, `adj:sg:gen:n:com`, `adj:sg:gen:n:pos`, `adj:sg:inst:f:com`, `adj:sg:inst:f:pos`, `adj:sg:inst:f:sup`, `adj:sg:inst:m1:com`, `adj:sg:inst:m1:pos`, `adj:sg:inst:m1:sup`, `adj:sg:inst:m2:pos`, `adj:sg:inst:m2:sup`, `adj:sg:inst:m3:com`, `adj:sg:inst:m3:pos`, `adj:sg:inst:m3:sup`, `adj:sg:inst:n:com`, `adj:sg:inst:n:pos`, `adj:sg:loc:f:com`, `adj:sg:loc:f:pos`, `adj:sg:loc:f:sup`, `adj:sg:loc:m1:pos`, `adj:sg:loc:m2:pos`, `adj:sg:loc:m3:com`, `adj:sg:loc:m3:pos`, `adj:sg:loc:m3:sup`, `adj:sg:loc:n:com`, `adj:sg:loc:n:pos`, `adj:sg:loc:n:sup`, `adj:sg:nom:f:com`, `adj:sg:nom:f:pos`, `adj:sg:nom:f:sup`, `adj:sg:nom:m1:com`, `adj:sg:nom:m1:pos`, `adj:sg:nom:m1:sup`, `adj:sg:nom:m2:com`, `adj:sg:nom:m2:pos`, `adj:sg:nom:m3:com`, `adj:sg:nom:m3:pos`, `adj:sg:nom:m3:sup`, `adj:sg:nom:n:com`, `adj:sg:nom:n:pos`, `adj:sg:nom:n:sup`, `adj:sg:voc:f:sup`, `adj:sg:voc:m1:pos`, `adj:sg:voc:m3:pos`, `adja`, `adjc`, `adjp`, `adv`, `adv:com`, `adv:pos`, `adv:sup`, `aglt:pl:pri:imperf:nwok`, `aglt:pl:sec:imperf:nwok`, `aglt:sg:pri:imperf:nwok`, `aglt:sg:pri:imperf:wok`, `aglt:sg:sec:imperf:nwok`, `aglt:sg:sec:imperf:wok`, `bedzie:pl:pri:imperf`, `bedzie:pl:sec:imperf`, `bedzie:pl:ter:imperf`, `bedzie:sg:pri:imperf`, `bedzie:sg:sec:imperf`, `bedzie:sg:ter:imperf`, `comp`, `conj`, `depr:pl:nom:m2`, `depr:pl:voc:m2`, `fin:pl:pri:imperf`, `fin:pl:pri:perf`, `fin:pl:sec:imperf`, `fin:pl:sec:perf`, `fin:pl:ter:imperf`, `fin:pl:ter:perf`, `fin:sg:pri:imperf`, `fin:sg:pri:perf`, `fin:sg:sec:imperf`, `fin:sg:sec:perf`, `fin:sg:ter:imperf`, `fin:sg:ter:perf`, `ger:sg:acc:n:imperf:aff`, `ger:sg:acc:n:imperf:neg`, `ger:sg:acc:n:perf:aff`, `ger:sg:dat:n:imperf:aff`, `ger:sg:dat:n:perf:aff`, `ger:sg:gen:n:imperf:aff`, `ger:sg:gen:n:perf:aff`, `ger:sg:inst:n:imperf:aff`, `ger:sg:inst:n:perf:aff`, `ger:sg:loc:n:imperf:aff`, `ger:sg:loc:n:perf:aff`, `ger:sg:nom:n:imperf:aff`, `ger:sg:nom:n:perf:aff`, `imps:imperf`, `imps:perf`, `impt:pl:pri:imperf`, `impt:pl:pri:perf`, `impt:pl:sec:imperf`, `impt:pl:sec:perf`, `impt:sg:sec:imperf`, `impt:sg:sec:perf`, `inf:imperf`, `inf:perf`, `interj`, `interp`, `num:pl:acc:f:congr`, `num:pl:acc:f:rec`, `num:pl:acc:m1:rec`, `num:pl:acc:m2:congr`, `num:pl:acc:m2:rec`, `num:pl:acc:m3:congr`, `num:pl:acc:m3:rec`, `num:pl:acc:n:congr`, `num:pl:acc:n:rec`, `num:pl:dat:f:congr`, `num:pl:dat:m1:congr`, `num:pl:dat:n:congr`, `num:pl:gen:f:congr`, `num:pl:gen:m1:congr`, `num:pl:gen:m2:congr`, `num:pl:gen:m3:congr`, `num:pl:gen:m3:rec`, `num:pl:gen:n:congr`, `num:pl:inst:f:congr`, `num:pl:inst:m1:congr`, `num:pl:inst:m2:congr`, `num:pl:inst:m3:congr`, `num:pl:inst:n:congr`, `num:pl:loc:f:congr`, `num:pl:loc:m1:congr`, `num:pl:loc:m3:congr`, `num:pl:loc:n:congr`, `num:pl:nom:f:congr`, `num:pl:nom:m1:congr`, `num:pl:nom:m2:congr`, `num:pl:nom:m3:congr`, `num:pl:nom:n:congr`, `pact:pl:acc:f:imperf:aff`, `pact:pl:acc:m1:imperf:aff`, `pact:pl:acc:m2:imperf:aff`, `pact:pl:acc:m3:imperf:aff`, `pact:pl:acc:n:imperf:aff`, `pact:pl:dat:m1:imperf:aff`, `pact:pl:gen:f:imperf:aff`, `pact:pl:gen:m1:imperf:aff`, `pact:pl:gen:m1:imperf:neg`, `pact:pl:gen:m2:imperf:aff`, `pact:pl:gen:m3:imperf:aff`, `pact:pl:gen:n:imperf:aff`, `pact:pl:inst:m1:imperf:aff`, `pact:pl:inst:n:imperf:aff`, `pact:pl:loc:f:imperf:aff`, `pact:pl:loc:m3:imperf:aff`, `pact:pl:nom:f:imperf:aff`, `pact:pl:nom:m1:imperf:aff`, `pact:pl:nom:m2:imperf:aff`, `pact:pl:nom:m3:imperf:aff`, `pact:pl:nom:n:imperf:aff`, `pact:sg:acc:f:imperf:aff`, `pact:sg:acc:m1:imperf:aff`, `pact:sg:acc:m2:imperf:aff`, `pact:sg:acc:m3:imperf:aff`, `pact:sg:acc:n:imperf:aff`, `pact:sg:dat:f:imperf:aff`, `pact:sg:dat:m1:imperf:aff`, `pact:sg:gen:f:imperf:aff`, `pact:sg:gen:m1:imperf:aff`, `pact:sg:gen:m3:imperf:aff`, `pact:sg:gen:n:imperf:aff`, `pact:sg:inst:f:imperf:aff`, `pact:sg:inst:f:imperf:neg`, `pact:sg:inst:m1:imperf:aff`, `pact:sg:inst:m3:imperf:aff`, `pact:sg:inst:n:imperf:aff`, `pact:sg:loc:f:imperf:aff`, `pact:sg:loc:m1:imperf:aff`, `pact:sg:loc:m2:imperf:aff`, `pact:sg:loc:m3:imperf:aff`, `pact:sg:loc:n:imperf:aff`, `pact:sg:nom:f:imperf:aff`, `pact:sg:nom:m1:imperf:aff`, `pact:sg:nom:m2:imperf:aff`, `pact:sg:nom:m3:imperf:aff`, `pact:sg:nom:n:imperf:aff`, `pant:perf`, `pcon:imperf`, `ppas:pl:acc:f:imperf:aff`, `ppas:pl:acc:f:perf:aff`, `ppas:pl:acc:m1:perf:aff`, `ppas:pl:acc:m2:perf:aff`, `ppas:pl:acc:m3:imperf:aff`, `ppas:pl:acc:m3:perf:aff`, `ppas:pl:acc:m3:perf:neg`, `ppas:pl:acc:n:perf:aff`, `ppas:pl:dat:f:imperf:aff`, `ppas:pl:dat:f:perf:aff`, `ppas:pl:dat:m1:perf:aff`, `ppas:pl:dat:m3:perf:aff`, `ppas:pl:gen:f:imperf:aff`, `ppas:pl:gen:f:imperf:neg`, `ppas:pl:gen:f:perf:aff`, `ppas:pl:gen:m1:imperf:aff`, `ppas:pl:gen:m1:perf:aff`, `ppas:pl:gen:m2:perf:aff`, `ppas:pl:gen:m3:imperf:aff`, `ppas:pl:gen:m3:perf:aff`, `ppas:pl:gen:n:imperf:aff`, `ppas:pl:gen:n:perf:aff`, `ppas:pl:inst:f:perf:aff`, `ppas:pl:inst:m1:perf:aff`, `ppas:pl:inst:m3:perf:aff`, `ppas:pl:inst:n:perf:aff`, `ppas:pl:loc:f:imperf:neg`, `ppas:pl:loc:f:perf:aff`, `ppas:pl:loc:m1:imperf:aff`, `ppas:pl:loc:m3:imperf:aff`, `ppas:pl:loc:m3:perf:aff`, `ppas:pl:loc:n:imperf:aff`, `ppas:pl:loc:n:perf:aff`, `ppas:pl:nom:f:imperf:aff`, `ppas:pl:nom:f:imperf:neg`, `ppas:pl:nom:f:perf:aff`, `ppas:pl:nom:m1:imperf:aff`, `ppas:pl:nom:m1:perf:aff`, `ppas:pl:nom:m2:perf:aff`, `ppas:pl:nom:m3:imperf:aff`, `ppas:pl:nom:m3:perf:aff`, `ppas:pl:nom:n:imperf:aff`, `ppas:pl:nom:n:perf:aff`, `ppas:sg:acc:f:imperf:aff`, `ppas:sg:acc:f:perf:aff`, `ppas:sg:acc:m1:perf:aff`, `ppas:sg:acc:m2:perf:aff`, `ppas:sg:acc:m3:perf:aff`, `ppas:sg:acc:n:perf:aff`, `ppas:sg:dat:f:perf:aff`, `ppas:sg:dat:m1:perf:aff`, `ppas:sg:gen:f:imperf:aff`, `ppas:sg:gen:f:perf:aff`, `ppas:sg:gen:f:perf:neg`, `ppas:sg:gen:m1:imperf:aff`, `ppas:sg:gen:m1:perf:aff`, `ppas:sg:gen:m2:perf:aff`, `ppas:sg:gen:m3:imperf:aff`, `ppas:sg:gen:m3:perf:aff`, `ppas:sg:gen:n:imperf:aff`, `ppas:sg:gen:n:perf:aff`, `ppas:sg:inst:f:imperf:neg`, `ppas:sg:inst:f:perf:aff`, `ppas:sg:inst:m1:imperf:aff`, `ppas:sg:inst:m1:perf:aff`, `ppas:sg:inst:m3:perf:aff`, `ppas:sg:inst:n:perf:aff`, `ppas:sg:inst:n:perf:neg`, `ppas:sg:loc:f:imperf:aff`, `ppas:sg:loc:f:perf:aff`, `ppas:sg:loc:m3:imperf:aff`, `ppas:sg:loc:m3:perf:aff`, `ppas:sg:loc:n:imperf:aff`, `ppas:sg:loc:n:perf:aff`, `ppas:sg:nom:f:imperf:aff`, `ppas:sg:nom:f:imperf:neg`, `ppas:sg:nom:f:perf:aff`, `ppas:sg:nom:f:perf:neg`, `ppas:sg:nom:m1:imperf:aff`, `ppas:sg:nom:m1:perf:aff`, `ppas:sg:nom:m2:imperf:aff`, `ppas:sg:nom:m2:perf:aff`, `ppas:sg:nom:m3:imperf:aff`, `ppas:sg:nom:m3:perf:aff`, `ppas:sg:nom:m3:perf:neg`, `ppas:sg:nom:n:imperf:aff`, `ppas:sg:nom:n:perf:aff`, `ppron12:pl:acc:f:pri`, `ppron12:pl:acc:m1:pri`, `ppron12:pl:acc:m1:sec`, `ppron12:pl:acc:n:sec`, `ppron12:pl:dat:f:pri`, `ppron12:pl:dat:f:sec`, `ppron12:pl:dat:m1:pri`, `ppron12:pl:dat:m1:sec`, `ppron12:pl:gen:f:pri`, `ppron12:pl:gen:m1:pri`, `ppron12:pl:gen:m1:sec`, `ppron12:pl:inst:m1:pri`, `ppron12:pl:inst:m1:sec`, `ppron12:pl:loc:m1:pri`, `ppron12:pl:loc:m1:sec`, `ppron12:pl:nom:f:pri`, `ppron12:pl:nom:m1:pri`, `ppron12:pl:nom:m1:sec`, `ppron12:sg:acc:f:pri:akc`, `ppron12:sg:acc:f:sec:akc`, `ppron12:sg:acc:f:sec:nakc`, `ppron12:sg:acc:m1:pri:akc`, `ppron12:sg:acc:m1:pri:nakc`, `ppron12:sg:acc:m1:sec:akc`, `ppron12:sg:acc:m1:sec:nakc`, `ppron12:sg:acc:m2:pri:akc`, `ppron12:sg:acc:m2:sec:nakc`, `ppron12:sg:acc:m3:pri:akc`, `ppron12:sg:dat:f:pri:akc`, `ppron12:sg:dat:f:pri:nakc`, `ppron12:sg:dat:f:sec:akc`, `ppron12:sg:dat:f:sec:nakc`, `ppron12:sg:dat:m1:pri:akc`, `ppron12:sg:dat:m1:pri:nakc`, `ppron12:sg:dat:m1:sec:akc`, `ppron12:sg:dat:m1:sec:nakc`, `ppron12:sg:dat:m2:sec:nakc`, `ppron12:sg:dat:n:pri:nakc`, `ppron12:sg:gen:f:pri:akc`, `ppron12:sg:gen:f:sec:akc`, `ppron12:sg:gen:f:sec:nakc`, `ppron12:sg:gen:m1:pri:akc`, `ppron12:sg:gen:m1:sec:akc`, `ppron12:sg:gen:m1:sec:nakc`, `ppron12:sg:gen:m2:sec:akc`, `ppron12:sg:inst:f:pri`, `ppron12:sg:inst:f:sec`, `ppron12:sg:inst:m1:pri`, `ppron12:sg:inst:m1:sec`, `ppron12:sg:loc:f:pri`, `ppron12:sg:loc:f:sec`, `ppron12:sg:loc:m1:pri`, `ppron12:sg:loc:m1:sec`, `ppron12:sg:nom:f:pri`, `ppron12:sg:nom:f:sec`, `ppron12:sg:nom:m1:pri`, `ppron12:sg:nom:m1:sec`, `ppron12:sg:nom:m2:sec`, `ppron3:pl:acc:f:ter:akc:npraep`, `ppron3:pl:acc:f:ter:akc:praep`, `ppron3:pl:acc:m1:ter:akc:npraep`, `ppron3:pl:acc:m1:ter:akc:praep`, `ppron3:pl:acc:m2:ter:akc:npraep`, `ppron3:pl:acc:m3:ter:akc:npraep`, `ppron3:pl:acc:n:ter:akc:npraep`, `ppron3:pl:acc:n:ter:akc:praep`, `ppron3:pl:dat:f:ter:akc:npraep`, `ppron3:pl:dat:f:ter:akc:praep`, `ppron3:pl:dat:m1:ter:akc:npraep`, `ppron3:pl:dat:m3:ter:akc:praep`, `ppron3:pl:dat:n:ter:akc:npraep`, `ppron3:pl:gen:f:ter:akc:npraep`, `ppron3:pl:gen:f:ter:akc:praep`, `ppron3:pl:gen:m1:ter:akc:npraep`, `ppron3:pl:gen:m1:ter:akc:praep`, `ppron3:pl:gen:m2:ter:akc:npraep`, `ppron3:pl:gen:m3:ter:akc:npraep`, `ppron3:pl:gen:m3:ter:akc:praep`, `ppron3:pl:gen:n:ter:akc:npraep`, `ppron3:pl:gen:n:ter:akc:praep`, `ppron3:pl:inst:f:ter:akc:npraep`, `ppron3:pl:inst:f:ter:akc:praep`, `ppron3:pl:inst:m1:ter:akc:praep`, `ppron3:pl:inst:m2:ter:akc:praep`, `ppron3:pl:inst:n:ter:akc:praep`, `ppron3:pl:loc:f:ter:akc:praep`, `ppron3:pl:loc:m1:ter:akc:praep`, `ppron3:pl:loc:m3:ter:akc:praep`, `ppron3:pl:loc:n:ter:akc:praep`, `ppron3:pl:nom:f:ter:akc:npraep`, `ppron3:pl:nom:m1:ter:akc:npraep`, `ppron3:pl:nom:m3:ter:akc:npraep`, `ppron3:pl:nom:n:ter:akc:npraep`, `ppron3:sg:acc:f:ter:akc:npraep`, `ppron3:sg:acc:f:ter:akc:praep`, `ppron3:sg:acc:m1:ter:akc:npraep`, `ppron3:sg:acc:m1:ter:akc:praep`, `ppron3:sg:acc:m1:ter:nakc:npraep`, `ppron3:sg:acc:m1:ter:nakc:praep`, `ppron3:sg:acc:m2:ter:akc:praep`, `ppron3:sg:acc:m2:ter:nakc:npraep`, `ppron3:sg:acc:m3:ter:akc:praep`, `ppron3:sg:acc:m3:ter:nakc:npraep`, `ppron3:sg:acc:m3:ter:nakc:praep`, `ppron3:sg:acc:n:ter:akc:npraep`, `ppron3:sg:acc:n:ter:akc:praep`, `ppron3:sg:dat:f:ter:akc:npraep`, `ppron3:sg:dat:f:ter:akc:praep`, `ppron3:sg:dat:m1:ter:akc:npraep`, `ppron3:sg:dat:m1:ter:akc:praep`, `ppron3:sg:dat:m1:ter:nakc:npraep`, `ppron3:sg:dat:m2:ter:nakc:npraep`, `ppron3:sg:dat:m3:ter:nakc:npraep`, `ppron3:sg:dat:n:ter:nakc:npraep`, `ppron3:sg:gen:f:ter:akc:npraep`, `ppron3:sg:gen:f:ter:akc:praep`, `ppron3:sg:gen:m1:ter:akc:npraep`, `ppron3:sg:gen:m1:ter:akc:praep`, `ppron3:sg:gen:m1:ter:nakc:npraep`, `ppron3:sg:gen:m2:ter:akc:npraep`, `ppron3:sg:gen:m3:ter:akc:npraep`, `ppron3:sg:gen:m3:ter:akc:praep`, `ppron3:sg:gen:m3:ter:nakc:npraep`, `ppron3:sg:gen:n:ter:akc:npraep`, `ppron3:sg:gen:n:ter:akc:praep`, `ppron3:sg:gen:n:ter:nakc:npraep`, `ppron3:sg:inst:f:ter:akc:npraep`, `ppron3:sg:inst:f:ter:akc:praep`, `ppron3:sg:inst:m1:ter:akc:npraep`, `ppron3:sg:inst:m1:ter:akc:praep`, `ppron3:sg:inst:m2:ter:akc:npraep`, `ppron3:sg:inst:m2:ter:akc:praep`, `ppron3:sg:inst:m3:ter:akc:npraep`, `ppron3:sg:inst:m3:ter:akc:praep`, `ppron3:sg:inst:n:ter:akc:npraep`, `ppron3:sg:inst:n:ter:akc:praep`, `ppron3:sg:loc:f:ter:akc:praep`, `ppron3:sg:loc:m1:ter:akc:praep`, `ppron3:sg:loc:m2:ter:akc:praep`, `ppron3:sg:loc:m3:ter:akc:praep`, `ppron3:sg:loc:n:ter:akc:praep`, `ppron3:sg:nom:f:ter:akc:npraep`, `ppron3:sg:nom:m1:ter:akc:npraep`, `ppron3:sg:nom:m2:ter:akc:npraep`, `ppron3:sg:nom:m3:ter:akc:npraep`, `ppron3:sg:nom:n:ter:akc:npraep`, `praet:pl:f:imperf`, `praet:pl:f:perf`, `praet:pl:m1:imperf`, `praet:pl:m1:perf`, `praet:pl:m2:imperf`, `praet:pl:m2:perf`, `praet:pl:m3:imperf`, `praet:pl:m3:perf`, `praet:pl:n:imperf`, `praet:pl:n:perf`, `praet:sg:f:imperf`, `praet:sg:f:perf`, `praet:sg:m1:imperf`, `praet:sg:m1:imperf:agl`, `praet:sg:m1:imperf:nagl`, `praet:sg:m1:perf`, `praet:sg:m1:perf:agl`, `praet:sg:m1:perf:nagl`, `praet:sg:m2:imperf`, `praet:sg:m2:imperf:nagl`, `praet:sg:m2:perf`, `praet:sg:m2:perf:nagl`, `praet:sg:m3:imperf`, `praet:sg:m3:imperf:nagl`, `praet:sg:m3:perf`, `praet:sg:m3:perf:nagl`, `praet:sg:n:imperf`, `praet:sg:n:perf`, `pred`, `prep:acc`, `prep:acc:nwok`, `prep:acc:wok`, `prep:dat`, `prep:gen`, `prep:gen:nwok`, `prep:gen:wok`, `prep:inst`, `prep:inst:nwok`, `prep:inst:wok`, `prep:loc`, `prep:loc:nwok`, `prep:loc:wok`, `prep:nom`, `qub`, `qub:nwok`, `qub:wok`, `siebie:acc`, `siebie:dat`, `siebie:gen`, `siebie:inst`, `siebie:loc`, `subst:pl:acc:f`, `subst:pl:acc:m1`, `subst:pl:acc:m2`, `subst:pl:acc:m3`, `subst:pl:acc:n`, `subst:pl:dat:f`, `subst:pl:dat:m1`, `subst:pl:dat:m3`, `subst:pl:dat:n`, `subst:pl:gen:f`, `subst:pl:gen:m1`, `subst:pl:gen:m2`, `subst:pl:gen:m3`, `subst:pl:gen:n`, `subst:pl:inst:f`, `subst:pl:inst:m1`, `subst:pl:inst:m2`, `subst:pl:inst:m3`, `subst:pl:inst:n`, `subst:pl:loc:f`, `subst:pl:loc:m1`, `subst:pl:loc:m2`, `subst:pl:loc:m3`, `subst:pl:loc:n`, `subst:pl:nom:f`, `subst:pl:nom:m1`, `subst:pl:nom:m2`, `subst:pl:nom:m3`, `subst:pl:nom:n`, `subst:pl:voc:m1`, `subst:sg:acc:f`, `subst:sg:acc:m1`, `subst:sg:acc:m2`, `subst:sg:acc:m3`, `subst:sg:acc:n`, `subst:sg:dat:f`, `subst:sg:dat:m1`, `subst:sg:dat:m2`, `subst:sg:dat:m3`, `subst:sg:dat:n`, `subst:sg:gen:f`, `subst:sg:gen:m1`, `subst:sg:gen:m2`, `subst:sg:gen:m3`, `subst:sg:gen:n`, `subst:sg:inst:f`, `subst:sg:inst:m1`, `subst:sg:inst:m2`, `subst:sg:inst:m3`, `subst:sg:inst:n`, `subst:sg:loc:f`, `subst:sg:loc:m1`, `subst:sg:loc:m2`, `subst:sg:loc:m3`, `subst:sg:loc:n`, `subst:sg:nom:f`, `subst:sg:nom:m1`, `subst:sg:nom:m2`, `subst:sg:nom:m3`, `subst:sg:nom:n`, `subst:sg:voc:f`, `subst:sg:voc:m1`, `subst:sg:voc:m3`, `winien:pl:f:imperf`, `winien:pl:m1:imperf`, `winien:pl:m3:imperf`, `winien:sg:f:imperf`, `winien:sg:m1:imperf`, `winien:sg:m3:imperf`, `winien:sg:n:imperf` |
| **`morphologizer`** | `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Agglutination=Nagl\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `AdpType=Prep\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP\|Variant=Short`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `POS=SCONJ`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `AdpType=Post\|POS=ADP`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `POS=PUNCT`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PUNCT\|PunctType=Dash`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PUNCT\|PunctType=Excl`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `POS=CCONJ`, `Aspect=Imp\|Number=Sing\|POS=AUX\|Person=2\|Variant=Short`, `Degree=Pos\|POS=ADV`, `POS=PUNCT\|PunctType=Qest`, `Mood=Cnd\|POS=AUX`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|VerbType=Quasi`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Number=Plur\|POS=AUX\|Person=1\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Degree=Sup\|POS=ADV`, `POS=ADV\|PronType=Dem`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|VerbType=Quasi`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `POS=PART`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `POS=PART\|Polarity=Neg`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `POS=PART\|PartType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Number=Sing\|POS=AUX\|Person=1\|Variant=Short`, `AdpType=Prep\|POS=ADP\|Variant=Long`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Number=Sing\|POS=AUX\|Person=1\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `POS=ADV\|PronType=Neg`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `POS=ADJ\|PrepCase=Pre`, `Degree=Pos\|POS=ADV\|PronType=Int`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc2`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Aspect=Imp\|Number=Sing\|POS=AUX\|Person=2\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Short`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Nom\|Emphatic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Hyph=Yes\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Short`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind\|SubGender=Masc1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg\|SubGender=Masc1`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Quot`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg\|SubGender=Masc1`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|POS=AUX`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc2`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc3`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Polite=Depr\|SubGender=Masc2`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `POS=ADV\|PronType=Tot`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Agglutination=Nagl\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc2`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Number=Plur\|POS=AUX\|Person=2\|Variant=Short`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Short`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind\|SubGender=Masc1`, `Case=Acc\|Emphatic=Yes\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc2`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind\|SubGender=Masc1`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Agglutination=Agl\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Agglutination=Nagl\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Agglutination=Nagl\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Quot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc3`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc2`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc2`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `POS=SCONJ\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc2`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Ins\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc2`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg\|SubGender=Masc3`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Loc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Ins\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=ADJ\|Variant=Short`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Short`, `Case=Gen\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Ins\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc3`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc2`, `Case=Ins\|Emphatic=Yes\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Long`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int\|SubGender=Masc1`, `Emphatic=Yes\|POS=PART\|PartType=Int`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Nom\|Emphatic=Yes\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg\|SubGender=Masc1`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg\|SubGender=Masc1`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Voc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Aspect=Imp\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Ind\|SubGender=Masc3`, `Emphatic=Yes\|POS=ADV\|PronType=Int`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc2`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|SubGender=Masc3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|NumType=Frac\|Number=Plur\|POS=NUM\|SubGender=Masc3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot\|SubGender=Masc1`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg\|SubGender=Masc3`, `Agglutination=Nagl\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Short`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Emphatic=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Variant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `POS=PART\|Variant=Short`, `Case=Acc\|Gender=Fem\|NumType=Frac\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Agglutination=Agl\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Ins\|Emphatic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Emphatic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|SubGender=Masc2`, `Case=Ins\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Neg\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc2`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc3`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Neg`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Case=Ins\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc1`, `Case=Ins\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc2`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc2`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Ind\|SubGender=Masc3`, `Case=Ins\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Short`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc3`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc1`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc2`, `Case=Ins\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int`, `Case=Acc\|Emphatic=Yes\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc1`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc3`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc2`, `Case=Gen\|Gender=Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc3`, `Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg\|SubGender=Masc3`, `Agglutination=Nagl\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg\|SubGender=Masc1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|SubGender=Masc1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PART\|Variant=Long`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc2`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc2\|Variant=Short`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc2`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc3`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc3`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc3\|Variant=Short`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc1`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc3`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Polite=Depr\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind\|SubGender=Masc1`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|SubGender=Masc3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc3`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc1`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|SubGender=Masc2\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|SubGender=Masc2\|Variant=Long`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Neg\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc2`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc1\|Variant=Long`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Case=Loc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Neg\|VerbForm=Vnoun`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Emphatic=Yes\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc3`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|SubGender=Masc1`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc1`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Neg\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs\|SubGender=Masc3`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|SubGender=Masc3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc2`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem\|SubGender=Masc2`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN\|SubGender=Masc2`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel\|SubGender=Masc1`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc2\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Neg\|SubGender=Masc3\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|SubGender=Masc3\|Variant=Long`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|SubGender=Masc1`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc3\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Emphatic=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|SubGender=Masc2`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|SubGender=Masc1\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int\|SubGender=Masc2`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes\|SubGender=Masc1`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel\|SubGender=Masc1`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:aglt`, `aux:mood`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:obj`, `conj`, `cop`, `cop:locat`, `csubj`, `dep`, `det`, `discourse`, `expl:impers`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `punct`, `vocative`, `xcomp`, `xcomp:obj` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `5`, `6`, `7`, `9`, `11`, `13`, `15`, `17`, `19`, `21`, `23`, `25`, `26`, `30`, `32`, `34`, `38`, `39`, `41`, `43`, `46`, `48`, `51`, `53`, `55`, `57`, `60`, `62`, `63`, `66`, `68`, `70`, `72`, `75`, `77`, `79`, `81`, `82`, `84`, `86`, `88`, `91`, `93`, `94`, `96`, `98`, `99`, `101`, `104`, `107`, `109`, `111`, `113`, `117`, `119`, `122`, `124`, `126`, `127`, `128`, `130`, `131`, `133`, `134`, `136`, `137`, `139`, `141`, `143`, `144`, `146`, `148`, `150`, `152`, `154`, `156`, `158`, `160`, `162`, `165`, `167`, `169`, `171`, `172`, `173`, `174`, `175`, `177`, `179`, `180`, `183`, `185`, `187`, `189`, `191`, `193`, `195`, `197`, `198`, `200`, `204`, `206`, `207`, `209`, `210`, `211`, `213`, `215`, `217`, `219`, `221`, `223`, `226`, `228`, `230`, `232`, `235`, `236`, `238`, `240`, `242`, `243`, `245`, `246`, `248`, `250`, `252`, `254`, `256`, `259`, `261`, `263`, `264`, `266`, `268`, `270`, `272`, `273`, `275`, `277`, `279`, `280`, `282`, `284`, `286`, `288`, `289`, `291`, `293`, `295`, `297`, `300`, `302`, `303`, `305`, `306`, `307`, `309`, `311`, `313`, `315`, `318`, `320`, `321`, `323`, `325`, `327`, `328`, `331`, `333`, `335`, `340`, `342`, `344`, `345`, `347`, `350`, `352`, `353`, `355`, `356`, `358`, `361`, `363`, `365`, `290`, `367`, `369`, `371`, `373`, `375`, `377`, `379`, `381`, `383`, `385`, `387`, `389`, `392`, `394`, `396`, `398`, `400`, `403`, `405`, `407`, `410`, `411`, `413`, `415`, `417`, `418`, `422`, `424`, `426`, `428`, `430`, `432`, `434`, `436`, `438`, `440`, `442`, `444`, `447`, `449`, `451`, `453`, `455`, `457`, `459`, `463`, `465`, `467`, `471`, `473`, `475`, `477`, `479`, `481`, `482`, `484`, `486`, `488`, `490`, `492`, `493`, `495`, `497`, `498`, `499`, `501`, `502`, `504`, `507`, `509`, `511`, `513`, `515`, `517`, `519`, `521`, `522`, `524`, `526`, `527`, `529`, `531`, `534`, `536`, `539`, `541`, `542`, `543`, `545`, `547`, `549`, `551`, `552`, `555`, `557`, `558`, `560`, `561`, `563`, `565`, `567`, `568`, `570`, `572`, `574`, `576`, `578`, `580`, `582`, `584`, `586`, `589`, `591`, `592`, `594`, `596`, `597`, `599`, `601`, `602`, `603`, `605`, `607`, `609`, `610`, `612`, `614`, `616`, `620`, `622`, `624`, `626`, `628`, `631`, `633`, `635`, `637`, `639`, `641`, `643`, `648`, `650`, `652`, `654`, `656`, `658`, `660`, `662`, `663`, `665`, `667`, `669`, `671`, `673`, `677`, `679`, `681`, `683`, `685`, `688`, `690`, `692`, `694`, `696`, `698`, `700`, `704`, `706`, `708`, `712`, `714`, `716`, `718`, `719`, `721`, `722`, `724`, `726`, `729`, `731`, `733`, `734`, `736`, `738`, `740`, `742`, `744`, `746`, `748`, `750`, `752`, `753`, `755`, `757`, `759`, `761`, `763`, `766`, `768`, `770`, `772`, `774`, `776`, `778`, `780`, `783`, `785`, `787`, `790`, `792`, `794`, `796`, `798`, `801`, `803`, `805`, `807`, `809`, `811`, `813`, `815`, `817`, `818`, `820`, `822`, `824`, `826`, `828`, `829`, `830`, `834`, `837`, `839`, `841`, `843`, `844`, `845`, `849`, `851`, `853`, `855`, `857`, `859`, `861`, `863`, `866`, `867`, `869`, `870`, `872`, `874`, `875`, `879`, `881`, `883`, `884`, `887`, `889`, `891`, `892`, `893`, `894`, `895`, `897`, `898`, `900`, `901`, `903`, `904`, `906`, `907`, `908`, `909`, `913`, `915`, `917`, `919`, `920`, `922`, `924`, `926`, `928`, `930`, `931`, `933`, `934`, `935`, `937`, `938`, `939`, `940`, `942`, `944`, `948`, `952`, `953`, `954`, `955`, `957`, `961`, `963`, `966`, `968`, `969`, `970`, `973`, `974`, `976`, `977`, `979`, `981`, `982`, `984`, `986`, `988`, `989`, `991`, `993`, `995`, `997`, `999`, `1000`, `1002`, `1004`, `1006`, `1009`, `1010`, `1012`, `1016`, `1018`, `1020`, `1023`, `1026`, `1027`, `1028`, `1029`, `1032`, `1033`, `1034`, `1035`, `1036`, `1038`, `1040`, `1042`, `1043`, `1046`, `1048`, `1049`, `1051`, `1052`, `1054`, `1055`, `1056`, `1057`, `1059`, `1060`, `1061`, `1063`, `1064`, `1065`, `1067`, `1070`, `1072`, `1074`, `1075`, `1076`, `1077`, `1079`, `1080`, `1081`, `1083`, `1086`, `1088`, `1090`, `1092`, `1093`, `1095`, `1098`, `1103`, `1106`, `1108`, `1110`, `1112`, `1114`, `1116`, `1118`, `1121`, `1122`, `1124`, `1126`, `1128`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1142`, `1144`, `1148`, `1150`, `1151`, `1152`, `1154`, `1156`, `1157`, `1159`, `1160`, `1161`, `1162`, `1164`, `1167`, `1169`, `1170`, `1173`, `1174`, `1176`, `1177`, `1178`, `1180`, `1183`, `1185`, `1186`, `1188`, `1190`, `1191`, `1193`, `1196`, `1198`, `1199`, `1200`, `1202`, `1203`, `1204`, `1206`, `1208`, `1211`, `1212`, `1215`, `1216`, `1219`, `1220`, `1221`, `1222`, `1223`, `1224`, `1225`, `1227`, `1229`, `1231`, `1233`, `1235`, `1237`, `1239`, `1240`, `1241`, `1242`, `1244`, `1246`, `1248`, `1249`, `1250`, `1251`, `1254`, `1255`, `1258`, `1259`, `1262`, `1263`, `1267`, `1268`, `1269`, `1270`, `1272`, `1273`, `1275`, `1279`, `1281`, `1282`, `1284`, `1285`, `1287`, `1289`, `1290`, `1292`, `1294`, `1295`, `1296`, `1297`, `1299`, `1300`, `1302`, `1304`, `1308`, `1312`, `1314`, `1316`, `1318`, `1319`, `1320`, `1321`, `1323`, `1325`, `1326`, `1328`, `1330`, `1331`, `1333`, `1334`, `1336`, `1337`, `1339`, `1340`, `1341`, `1343`, `1344`, `1346`, `1348`, `1350`, `1351`, `1354`, `1356`, `1359`, `1361`, `1363`, `1365`, `1367`, `1368`, `1369`, `1370`, `1372`, `1374`, `1031`, `1376`, `1378`, `1380`, `1383`, `1385`, `1387`, `1389`, `1391`, `1394`, `1395`, `1397`, `1399`, `1401`, `1402`, `1404`, `1405`, `1407`, `1408`, `1410`, `1411`, `1412`, `1413`, `1415`, `1418`, `1419`, `1420`, `1421`, `1422`, `1425`, `1427`, `1430`, `1432`, `1433`, `1434`, `1436`, `1437`, `1439`, `1443`, `1445`, `1447`, `1449`, `1451`, `1453`, `1455`, `1457`, `1459`, `1463`, `1465`, `1466`, `1468`, `1469`, `1471`, `1473`, `1475`, `1476`, `1478`, `1480`, `1483`, `1486`, `1488`, `1489`, `1491`, `1493`, `1495`, `1496`, `1498`, `1500`, `1501`, `1503`, `1504`, `1505`, `1506`, `1507`, `1509`, `1510`, `1511`, `1512`, `1513`, `1514`, `827`, `1516`, `1518`, `1520`, `1522`, `1524`, `1526`, `1527`, `1528`, `1529`, `1531`, `1532`, `1534`, `1535`, `1537`, `1538`, `1539`, `1541`, `1543`, `1544`, `1546`, `1549`, `1550`, `1552`, `1554`, `1556`, `1559`, `1561`, `1563`, `1564`, `1565`, `1566`, `1568`, `1572`, `1573`, `1574`, `1576`, `1577`, `1578`, `1579`, `1580`, `1581`, `1584`, `1585`, `1587`, `1590`, `1591`, `1593`, `1595`, `1596`, `1597`, `1598`, `1600`, `1603`, `1604`, `1605`, `1607`, `1608`, `1609`, `1610`, `1612`, `1614`, `1616`, `1618`, `1620`, `1622`, `1624`, `1626`, `1628`, `1630`, `1631`, `1632`, `1634`, `1636`, `1638`, `1640`, `1642`, `1644`, `1646`, `1648`, `1650`, `1652`, `1654`, `1655`, `1657`, `1659`, `1660`, `1662`, `1664`, `1666`, `1668`, `1671`, `1673`, `1675`, `1676`, `1680`, `1681`, `1683`, `1684`, `1686`, `1688`, `1689`, `1691`, `1692`, `1693`, `1695`, `1696`, `1697`, `1698`, `1699`, `1701`, `1703`, `1705`, `1707`, `1709`, `1711`, `1713`, `1714`, `1717`, `1718`, `1719`, `1722`, `1723`, `1724`, `1726`, `1728`, `1730`, `1731`, `1733`, `1735`, `1737`, `1738`, `1739`, `1740`, `1741`, `1742`, `1744`, `1745`, `1749`, `1750`, `1751`, `1753`, `1754`, `1755`, `1757`, `1758`, `1760`, `1762`, `1763`, `1765`, `1769`, `1770`, `1772`, `1773`, `1775`, `1777`, `1778`, `1779`, `1782`, `1784`, `1787`, `1789`, `1791`, `1792`, `1794`, `1796`, `1797`, `1799`, `1801`, `1803`, `1805`, `1806`, `1807`, `1810`, `1812`, `1813`, `1817`, `1818`, `1820`, `1822`, `1825`, `1826`, `1829`, `1830`, `1831`, `1832`, `1834`, `1835`, `1838`, `1839`, `1840`, `1842`, `1844`, `1845`, `1846`, `1848`, `1850`, `1852`, `1853`, `1856`, `1857`, `1860`, `1862`, `1863`, `1865`, `1867`, `1869`, `1871`, `1873`, `1874`, `1875`, `1877`, `1879`, `1880`, `1882`, `1883`, `1885`, `1886`, `1887`, `1888`, `1889`, `1890`, `1891`, `1892`, `1894`, `1896`, `1898`, `1899`, `1900`, `1902`, `1904`, `1905`, `1725`, `1906`, `1911`, `1913`, `1915`, `1916`, `1017`, `1918`, `1920`, `1921`, `1922`, `1923`, `1924`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1935`, `1936`, `1937`, `1939`, `1940`, `1941`, `1942`, `1943`, `1944`, `1945`, `1947`, `1949`, `1950`, `1953`, `1954`, `1955`, `1957`, `1958`, `1960`, `1961`, `1963`, `1965`, `1967`, `1968`, `1969`, `1971`, `1972`, `1973`, `1975`, `1978`, `1979`, `1980`, `1981`, `1983`, `1984`, `1985`, `1987`, `1988`, `1989`, `1990`, `1991`, `1992`, `1994`, `1995`, `1996`, `1997`, `1999`, `2002`, `2005`, `2007`, `2008`, `2010`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2024`, `2025`, `2027`, `2028`, `2029`, `2031`, `2032`, `2034`, `2036`, `2038`, `2040`, `2041`, `2042`, `2044`, `2046`, `2047`, `2048`, `1450`, `2050`, `2052`, `2053`, `2054`, `2055`, `2057`, `2060`, `2062`, `2063`, `2065`, `2068`, `2070`, `2072`, `2073`, `2075`, `2076`, `2078`, `2079`, `2081`, `2082`, `2085`, `2087`, `2089`, `2090`, `2091`, `2093`, `2094`, `2095`, `2096`, `2097`, `2098`, `2100`, `2102`, `2103`, `2104`, `2105`, `2107`, `2108`, `2109`, `2111`, `2113`, `2114`, `2115`, `2116`, `2118`, `2120`, `2121`, `2122`, `2123`, `2124`, `2125`, `2126`, `2127`, `2130`, `2132`, `2134`, `2135`, `2136`, `2139`, `2140`, `2141`, `2143`, `2145`, `2147`, `2149`, `2151`, `2153`, `2155`, `2157`, `2159`, `2161`, `2163`, `2165`, `2167`, `2169`, `2170`, `2172`, `2174`, `2176`, `2177`, `2178`, `2179`, `2180`, `2181`, `2182`, `2184`, `2186`, `2188`, `2189`, `2190`, `2191`, `2193`, `2195`, `2198`, `2199`, `2200`, `2201`, `2202`, `2204`, `2206`, `2209`, `2211`, `2213`, `2214`, `2215`, `2217`, `2218`, `2219`, `2221`, `2222`, `2224`, `2227`, `2228`, `2229`, `2230`, `2231`, `2232`, `2233`, `2234`, `2235`, `2237`, `2239`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2248`, `2249`, `2251`, `2252`, `2253`, `2254`, `2255`, `2257`, `2259`, `2261`, `2262`, `2263`, `2265`, `2266`, `2267`, `2269`, `2271`, `2272`, `2273`, `2275`, `2276`, `2277`, `2279`, `2280`, `2283`, `2284`, `2285`, `2286`, `2287`, `2288`, `2291`, `2294`, `2296`, `2298`, `2300`, `2302`, `2303`, `2307`, `2309`, `2311`, `2312`, `2314`, `2316`, `2318`, `2320`, `2322`, `2324`, `2325`, `2328`, `2330`, `2331`, `2333`, `2335`, `2336`, `2337`, `2339`, `2341`, `2343`, `2345`, `2346`, `2348`, `2350`, `2351`, `2353`, `2354`, `2355`, `2356`, `2358`, `2360`, `2362`, `2363`, `2364`, `2366`, `2367`, `2368`, `2369`, `2372`, `2374`, `2376`, `2378`, `2379`, `2381`, `2384`, `2385`, `2386`, `2387`, `2388`, `2390`, `2391`, `2392`, `2394`, `2395`, `2396`, `2397`, `2399`, `2400`, `2402`, `2403`, `2404`, `2406`, `2407`, `2408`, `2409`, `2410`, `2412`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2421`, `2423`, `2424`, `2425`, `2427`, `2429`, `2430`, `2431`, `2433`, `2434`, `2435`, `2436`, `2437`, `2438`, `2439`, `2440`, `2441`, `2443`, `2444`, `2445`, `2446`, `2448`, `2450`, `2451`, `2453`, `2454`, `2455`, `2456`, `2457`, `2459`, `2460`, `2462`, `2464`, `2465`, `2466`, `2467`, `2468`, `2469`, `2471`, `2474`, `2475`, `2476`, `2479`, `2480`, `2482`, `2483`, `2484`, `2485`, `2486`, `2487`, `2488`, `2489`, `2490`, `2491`, `2492`, `2494`, `2495`, `2496`, `2497`, `2498`, `2499`, `2500`, `2502`, `2503`, `2505`, `2507`, `2508`, `2509`, `2510`, `2512`, `2513`, `2514`, `2515`, `2516`, `2518`, `2521`, `2522`, `2523`, `2524`, `2526`, `2527`, `2528`, `2529`, `2530`, `2531`, `2532`, `2533`, `2534`, `2535`, `2536`, `2537`, `2539`, `2541`, `2543`, `2545`, `2547`, `2549`, `2550`, `2552`, `2553`, `2555`, `2558`, `2559`, `2561`, `2563`, `2564`, `2566`, `2567`, `2568`, `2570`, `2571`, `2572`, `2573`, `2574`, `2576`, `2579`, `2581`, `2583`, `2584`, `2587`, `2589`, `2590`, `2591`, `2592`, `2594`, `2596`, `2597`, `2598`, `2599`, `2600`, `2602`, `2603`, `2604`, `2605`, `2607`, `2609`, `2610`, `2611`, `2612`, `2614`, `2615`, `2616`, `2618`, `2621`, `2622`, `2623`, `2625`, `2626`, `2628`, `2629`, `2631`, `2632`, `2633`, `2634`, `2635`, `2636`, `2638`, `2639`, `2640`, `1226`, `2641`, `2643`, `2644`, `2646`, `2647`, `2648`, `2649`, `2651`, `2653`, `2654`, `2655`, `2656`, `2657`, `2658`, `2659`, `2660`, `2661`, `2662`, `2663`, `2664`, `2665`, `2666`, `2667`, `2668`, `2669`, `2670`, `2671`, `2672`, `2673`, `2674`, `2675`, `2676`, `2677`, `2678`, `2679`, `2680`, `2681`, `2684`, `2686`, `2688`, `2689`, `2690`, `2693`, `2694`, `2695`, `2696`, `2698`, `2701`, `2703`, `2704`, `2706`, `2707`, `2708`, `2711`, `2712`, `2714`, `2715`, `2717`, `2719`, `2721`, `2724`, `2726`, `2728`, `2729`, `2730`, `2732`, `2735`, `2738`, `2740`, `2742`, `2743`, `2744`, `2746`, `2747`, `2748`, `2749`, `2751`, `2752`, `2753`, `2755`, `2757`, `2759`, `2760`, `2761`, `2762`, `2763`, `2764`, `2765`, `2766`, `2767`, `2768`, `2769`, `2770`, `2773`, `2774`, `2775`, `2776`, `2777`, `2779`, `2780`, `2782`, `2784`, `2787`, `2789`, `2790`, `2792`, `2794`, `2797`, `2798`, `2800`, `2802`, `2804`, `2808`, `2809`, `2810`, `2811`, `2812`, `2813`, `2815`, `2816`, `2817`, `2819`, `2821`, `2822`, `2823`, `2824`, `2825`, `2826`, `2827`, `2828`, `2831`, `2833`, `2834`, `2835`, `2836`, `2838`, `2839`, `2841`, `2842`, `2843`, `2844`, `2845`, `2846`, `2847`, `2848`, `2850`, `2852`, `2855`, `2856`, `2858`, `2861`, `2862`, `2863`, `2864`, `2866`, `2869`, `2872`, `2875`, `2876`, `2877`, `2878`, `2880`, `2881`, `2882`, `2883`, `2884`, `2885`, `2886`, `2887`, `2889`, `2890`, `2891`, `2893`, `2894`, `2895`, `2896`, `2898`, `2899`, `2900`, `2903`, `2904`, `2905`, `2906`, `2907`, `2908`, `2909`, `2910`, `2913`, `2915`, `2916`, `2917`, `2918`, `2920`, `2921`, `2922`, `2923`, `2924`, `2926`, `2928`, `2929`, `2930`, `2932`, `2934`, `2935`, `2936`, `2937`, `2938`, `2940`, `2942`, `2943`, `2944`, `2946`, `2948`, `2949`, `2950`, `2952`, `2953`, `2955`, `2956`, `2957`, `2958`, `2959`, `2961`, `2963`, `2965`, `2967`, `2969`, `2970`, `2972`, `2974`, `2976`, `2977`, `2979`, `2981`, `2982`, `2984`, `2985`, `2986`, `2988`, `2990`, `2992`, `2995`, `2996`, `2997`, `2999`, `3001`, `3002`, `3004`, `3005`, `3007`, `3011`, `3012`, `3013`, `3014`, `3017`, `3018`, `3019`, `3021`, `3022`, `3023`, `3024`, `3025`, `3027`, `3028`, `3030`, `3031`, `3032`, `3033`, `3035`, `3036`, `3037`, `3039`, `3040`, `3041`, `3042`, `3044`, `3046`, `3047`, `3048`, `3049`, `3051`, `3052`, `3053`, `3055`, `3057`, `3058`, `3060`, `3063`, `3064`, `3065`, `3067`, `3068`, `3070`, `3071`, `3073`, `3074`, `3075`, `3076`, `3078`, `3079`, `3080`, `3081`, `3082`, `3083`, `3084`, `3085`, `3086`, `3087`, `3088`, `3090`, `3091`, `3092`, `3093`, `3094`, `3095`, `3097`, `3099`, `3100`, `3101`, `3102`, `3103`, `3104`, `3105`, `3106`, `3107`, `3108`, `3109`, `3112`, `3113`, `3114`, `3116`, `3118`, `3120`, `3122`, `3123`, `3124`, `3126`, `3127`, `3129`, `3130`, `3131`, `3132`, `3133`, `3134`, `3135`, `3136`, `3137`, `3138`, `3139`, `3141`, `3142`, `3143`, `3144`, `3146`, `3147`, `3148`, `3149`, `3150`, `3153`, `3154`, `3155`, `3156`, `3158`, `3160`, `3161`, `3163`, `3164`, `3165`, `3167`, `3169`, `3171`, `3172`, `3174`, `3175`, `3177`, `3178`, `3180`, `3183`, `3185`, `3186`, `3187`, `3191`, `3192`, `3193`, `3194`, `3195`, `3196`, `3199`, `3201`, `3202`, `3205`, `3206`, `3207`, `3208`, `3210`, `3211`, `3212`, `3214`, `3215`, `3217`, `3218`, `3219`, `3220`, `3221`, `3222`, `3224`, `3225`, `3227`, `3228`, `3230`, `3232`, `3234`, `3235`, `3237`, `3239`, `3240`, `3241`, `3242`, `3244`, `3245`, `3246`, `3250`, `3253`, `3255`, `3257`, `3258`, `3259`, `3260`, `3261`, `3262`, `3263`, `3265`, `3267`, `3268`, `3269`, `3270`, `3271`, `3272`, `3273`, `3274`, `3275`, `3276`, `3277`, `3280`, `3281`, `3282`, `3283`, `3284`, `3285`, `3286`, `3287`, `3289`, `3290`, `3291`, `3292`, `3293`, `3294`, `3295`, `3296`, `3297`, `3298`, `3299`, `3300`, `3301`, `3302`, `3303`, `3306`, `3309`, `3310`, `3311`, `3312`, `3314`, `3315`, `3316`, `3317`, `3318`, `3319`, `3320`, `3321`, `3322`, `3324`, `3325`, `3328`, `3330`, `3333`, `3335`, `3337`, `3340`, `3343`, `3344`, `3346`, `3348`, `3350`, `3353`, `3357`, `3361`, `3362`, `3363`, `3365`, `3367`, `3370`, `3371`, `3372`, `3373`, `3374`, `3377`, `3378`, `3379`, `3380`, `3381`, `3382`, `3384`, `3386`, `3388`, `3390`, `3391`, `3393`, `3394`, `3395`, `3396`, `3397`, `3399`, `3400`, `3401`, `3402`, `3403`, `3404`, `3405`, `3406`, `3407`, `3408`, `3409`, `3411`, `3412`, `3413`, `3414`, `3418`, `3419`, `3421`, `3423`, `3424`, `3425`, `3427`, `3428`, `3431`, `3433`, `3434`, `3435`, `3437`, `3439`, `3440`, `3441`, `3442`, `3444`, `3445`, `3446`, `3447`, `3448`, `3449`, `3450`, `3451`, `3452`, `3454`, `3455`, `3456`, `3458`, `3459`, `3460`, `3462`, `3463`, `3464`, `3466`, `3467`, `3468`, `3470`, `3471`, `3472`, `3473`, `3475`, `3476`, `3477`, `3479`, `3481`, `3483`, `3485`, `3487`, `3488`, `3489`, `3490`, `3491`, `3492`, `3493`, `3494`, `3495`, `3496`, `3498`, `3499`, `3500`, `3501`, `3502`, `3503`, `3504`, `3505`, `3507`, `3508`, `3509`, `3510`, `3511`, `3513`, `3514`, `3515`, `3516`, `3517`, `3518`, `3519`, `3520`, `3521`, `3523`, `3524`, `3526`, `3529`, `3531`, `3532`, `3534`, `3536`, `3537`, `3539`, `3541`, `3542`, `3544`, `3546`, `3548`, `3550`, `3552`, `3553`, `3555`, `3556`, `3558`, `3559`, `3562`, `3564`, `3565`, `3567`, `3568`, `3569`, `3573`, `3575`, `3576`, `3577`, `3579`, `3580`, `3581`, `3582`, `3584`, `3585`, `3586`, `3588`, `3590`, `3591`, `3592`, `3594`, `3595`, `3597`, `3599`, `3601`, `3602`, `3603`, `3604`, `3605`, `3606`, `3607`, `3608`, `3609`, `3611`, `3613`, `3614`, `3616`, `3617`, `3618`, `3619`, `3621`, `3622`, `3624`, `3626`, `3628`, `3629`, `3630`, `3632`, `3633`, `3636`, `3637`, `3638`, `3639`, `3640`, `3642`, `3643`, `3645`, `3646`, `3647`, `3649`, `3651`, `3653`, `3655`, `3656`, `3657`, `3659`, `3661`, `3665`, `3666`, `3668`, `3672`, `3673`, `3675`, `3676`, `3678`, `3679`, `3681`, `3683`, `3685`, `3686`, `3688`, `3689`, `3690`, `3691`, `3692`, `3694`, `3696`, `3697`, `3698`, `3699`, `3700`, `3702`, `3704`, `3705`, `3706`, `3707`, `3708`, `3710`, `3711`, `3712`, `3713`, `3715`, `3716`, `3717`, `3719`, `3720`, `3721`, `3722`, `3723`, `3724`, `3725`, `3726`, `3727`, `3728`, `3729`, `3731`, `3732`, `3733`, `3735`, `3737`, `3741`, `3742`, `3743`, `3744`, `3745`, `3746`, `3748`, `3749`, `3750`, `3751`, `3752`, `3753`, `3754`, `3755`, `3756`, `3759`, `3760`, `3761`, `3762`, `3763`, `3764`, `3765`, `3766`, `3770`, `3771`, `3772`, `3773`, `3774`, `3776`, `3777`, `3778`, `3780`, `3781`, `3782`, `3784`, `3785`, `3786`, `3787`, `3788`, `3790`, `3791`, `3793`, `3794`, `3796`, `3797`, `3798`, `3799`, `3800`, `3801`, `3804`, `3805`, `3806`, `3807`, `3808`, `3809`, `3810`, `3811`, `3812`, `3813`, `3814`, `3815`, `3816`, `3817`, `3818`, `3820`, `3821`, `3822`, `3824`, `3825`, `3827`, `3828`, `3830`, `3831`, `3833`, `3834`, `3835`, `3836`, `3837`, `3839`, `3840`, `3841`, `3842`, `3845`, `3846`, `3847`, `3848`, `3849`, `3850`, `3851`, `3852`, `3855`, `3856`, `3859`, `3860`, `3861`, `3862`, `3863`, `3864`, `3867`, `3868`, `3870`, `3871`, `3872`, `3874`, `3876`, `3877`, `3880`, `3881`, `3882`, `3885`, `3887`, `3888`, `3889`, `3890`, `3891`, `3892`, `3895`, `3897`, `3898`, `3901`, `3903`, `3904`, `3905`, `3907`, `3909`, `3910`, `3912`, `3913`, `3914`, `3915`, `3916`, `3917`, `3919`, `3921`, `3922`, `3925`, `3926`, `3927`, `3929`, `3930`, `3932`, `3933`, `3939`, `3940`, `3941`, `3942`, `3943`, `3945`, `3946`, `3947`, `3948`, `3949`, `3951`, `3953`, `3954`, `3955`, `3957`, `3958`, `3959`, `3962`, `3964`, `3965`, `3968`, `3969`, `3971`, `3972`, `3974`, `3976`, `3978`, `3979`, `3980`, `3982`, `3983`, `3984`, `3985`, `3987`, `3989`, `3990`, `3991`, `3992`, `3993`, `3994`, `3995`, `3998`, `3999`, `4001`, `4003`, `4004`, `4007`, `4008`, `4009`, `4010`, `4012`, `4013`, `4014`, `4017`, `4019`, `4020`, `4021`, `4022`, `4023`, `4024`, `4025`, `4027`, `4028`, `4029`, `4030`, `4031`, `4033`, `4036`, `4037`, `4038`, `4039`, `4040`, `4041`, `4043`, `4045`, `4047`, `4048`, `4049`, `4051`, `4052`, `4054`, `4055`, `4056`, `4059`, `4060`, `4061`, `4063`, `4064`, `4067`, `4068`, `4069`, `4071`, `4074`, `4076`, `4077`, `4079`, `4081`, `4083`, `4084`, `4085`, `4086`, `4087`, `4088`, `4089`, `4090`, `4091`, `4092`, `4094`, `4095`, `4096`, `4097`, `4098`, `4101`, `4104`, `4105`, `4108`, `4109`, `4111`, `4112`, `4113`, `4114`, `4115`, `4116`, `4117`, `4118`, `4120`, `4121`, `4122`, `4123`, `4124`, `4125`, `4126`, `4127`, `4130`, `4131`, `4133`, `4134`, `4135`, `4136`, `4138`, `4139`, `4140`, `4141`, `4142`, `4143`, `4144`, `4146`, `4147`, `4148`, `4149`, `4151`, `4152`, `4153`, `4154`, `89`, `4155`, `4156`, `4157`, `4158`, `4159`, `4160`, `4161`, `4162`, `4163`, `4164`, `4165`, `4166`, `4167`, `4168`, `4170`, `4171`, `4172`, `4173`, `4174`, `4175`, `4176`, `4177`, `4178`, `4179`, `4180`, `4181`, `4182`, `4183`, `4184`, `4185`, `4186`, `4187`, `4188`, `4189`, `4190`, `4192`, `4193`, `4194`, `4195`, `4196`, `4197`, `4198`, `4199`, `4200`, `4201`, `4202`, `4204`, `4206`, `4207`, `4208`, `4210`, `4211`, `4212`, `4213`, `4214`, `4216`, `4217`, `4218`, `4219`, `4220`, `4221`, `4222`, `4223`, `4225`, `4226`, `4227`, `4228`, `4229`, `4230`, `4231`, `4232`, `4233`, `4236`, `4237`, `4238`, `4239`, `4240`, `4241`, `4243`, `4244`, `4247`, `4249`, `4250`, `4251`, `4252`, `4254`, `1454`, `4256`, `4258`, `4261`, `4262`, `4263`, `4265`, `4267`, `4269`, `4270`, `4271`, `4272`, `4274`, `4277`, `4279`, `4281`, `4282`, `4284`, `4287`, `4288`, `4290`, `4292`, `4293`, `4295`, `4296`, `4298`, `4299`, `4301`, `4303`, `4305`, `4307`, `4309`, `4310`, `4311`, `4312`, `4314`, `4316`, `4317`, `4318`, `4319`, `4321`, `4322`, `4324`, `4325`, `4326`, `4327`, `4328`, `4329`, `4330`, `4332`, `4333`, `4334`, `4335`, `4337`, `4339`, `4340`, `4342`, `4343`, `4344`, `4345`, `4347`, `4348`, `4349`, `4351`, `4353`, `4354`, `4356`, `4357`, `4358`, `4359`, `4360`, `4363`, `4364`, `4365`, `4366`, `4368`, `4369`, `4370`, `4371`, `4372`, `4373`, `4374`, `4375`, `4376`, `4377`, `4378`, `4380`, `4382`, `4384`, `4385`, `4387`, `4388`, `4389`, `4391`, `4392`, `4393`, `4394`, `4395`, `4396`, `4397`, `4398`, `4399`, `4400`, `4401`, `4402`, `4403`, `4404`, `4405`, `4406`, `4407`, `4408`, `4410`, `4411`, `4412`, `4413`, `4414`, `4415`, `4416`, `4418`, `4419`, `4420`, `4421`, `4422`, `4423`, `4424`, `4425`, `4427`, `4428`, `4429`, `4430`, `4433`, `4434`, `4436`, `4438`, `4441`, `4442`, `4444`, `4445`, `4447`, `4449`, `4450`, `4452`, `4453`, `4454`, `4457`, `4458`, `4460`, `4461`, `4463`, `4464`, `4465`, `4466`, `4467`, `4468`, `4469`, `4470`, `4471`, `4472`, `4473`, `4475`, `4476`, `4477`, `4478`, `4479`, `4480`, `4482`, `4484`, `4486`, `4487`, `4489`, `4490`, `4491`, `4493`, `4494`, `4495`, `4496`, `4497`, `4498`, `4500`, `4505`, `4506`, `4507`, `4508`, `4509`, `4510`, `4513`, `4514`, `4516`, `4517`, `4518`, `4519`, `4520`, `4521`, `4522`, `4523`, `4524`, `4525`, `4526`, `4527`, `4529`, `4530`, `4532`, `4533`, `4536`, `4538`, `4539`, `4540`, `4541`, `4542`, `4543`, `4544`, `4545`, `4546`, `4547`, `4548`, `4549`, `4550`, `4551`, `4553`, `4554`, `4555`, `4556`, `4557`, `4558`, `4559`, `4562`, `4563`, `4564`, `4565`, `4567`, `4569`, `4570`, `4571`, `4573`, `4574`, `4576`, `2037`, `4578`, `4579`, `4581`, `4584`, `4586`, `4588`, `4590`, `4591`, `4592`, `4593`, `4595`, `4596`, `4597`, `4599`, `4600`, `4601`, `4602`, `4603`, `4604`, `4605`, `4606`, `4607`, `4608`, `4609`, `4611`, `4612`, `4613`, `4614`, `4615`, `4616`, `4617`, `4618`, `4620`, `4622`, `4624`, `4625`, `4626`, `4627`, `4628`, `4629`, `4630`, `4631`, `4632`, `4633`, `4635`, `4636`, `4637`, `4638`, `4639`, `4640`, `4641`, `4644`, `4645`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4652`, `4653`, `4654`, `4655`, `4656`, `4657`, `4659`, `4660`, `4663`, `4664`, `4665`, `4666`, `4668`, `4670`, `4671`, `4672`, `4674`, `4675`, `4676`, `4678`, `4679`, `4681`, `4682`, `4683`, `4684`, `4686`, `4687`, `4688`, `4689`, `4691`, `4692`, `4693`, `4694`, `4695`, `4696`, `4697`, `4698`, `4699`, `4700`, `4702`, `4703`, `4704`, `4705`, `4706`, `4707`, `4708`, `4711`, `4714`, `4716`, `4717`, `4718`, `4720`, `4722`, `4723`, `4724`, `4726`, `4727`, `4728`, `4729`, `4730`, `4733`, `4734`, `4735`, `4736`, `4737`, `4738`, `4739`, `4740`, `4741`, `4743`, `4744`, `4745`, `4748`, `4750`, `4751`, `4753`, `4754`, `4755`, `4756`, `4757`, `4759`, `4761`, `4762`, `4763`, `4764`, `4765`, `4766`, `4768`, `4769`, `4770`, `4771`, `4772`, `4774`, `4776`, `4777`, `4778`, `4779`, `4780`, `4781`, `4782`, `4783`, `4784`, `4785`, `4786`, `4787`, `4788`, `4789`, `4790`, `4791`, `4793`, `4795`, `4796`, `4798`, `4799`, `4801`, `4803`, `4804`, `4805`, `4806`, `4807`, `4808`, `4809`, `4811`, `4813`, `4815`, `4816`, `4817`, `4818`, `4819`, `4820`, `4821`, `4822`, `4823`, `4824`, `4825`, `4826`, `4827`, `4828` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.89 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.90 |
| `TOKEN_ACC` | 99.98 |
| `SENTS_F` | 99.89 |
| `SENTS_P` | 99.89 |
| `SENTS_R` | 99.89 |
| `TAG_ACC` | 95.62 |
| `POS_ACC` | 99.05 |
| `MORPH_ACC` | 95.42 |
| `DEP_UAS` | 97.39 |
| `DEP_LAS` | 95.55 |
| `LEMMA_ACC` | 95.92 |
|
explosion/xx_udv25_oldfrenchsrcmf_trf
|
explosion
| 2021-12-10T21:31:33Z | 2 | 0 |
spacy
|
[
"spacy",
"token-classification",
"multilingual",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- multilingual
license: cc-by-sa-4.0
model-index:
- name: xx_udv25_oldfrenchsrcmf_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9640594402
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9652113812
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9773643589
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9034097454
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9021426103
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8542218638
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8110992529
---
UD v2.5 benchmarking pipeline for UD_Old_French-SRCMF
| Feature | Description |
| --- | --- |
| **Name** | `xx_udv25_oldfrenchsrcmf_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (16214 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJQUA`, `ADJcar`, `ADJind`, `ADJord`, `ADJpos`, `ADJqua`, `ADVgen`, `ADVgen.PROadv`, `ADVgen.PROper`, `ADVing`, `ADVint`, `ADVneg`, `ADVneg.PROper`, `ADVsub`, `CONcoo`, `CONsub`, `CONsub.PROper`, `CONsub_o`, `CONsub_pre`, `DETcar`, `DETdef`, `DETdem`, `DETind`, `DETint`, `DETndf`, `DETord`, `DETpos`, `DETrel`, `DETrel_o`, `ETR`, `INJ`, `NOMcom`, `NOMcom.PROper`, `NOMpro`, `PRE`, `PRE.DETdef`, `PRE.PROdem`, `PRE.PROper`, `PROadv`, `PROcar`, `PROdem`, `PROimp`, `PROind`, `PROint`, `PROint.PROper`, `PROint_adv`, `PROord`, `PROper`, `PROper.PROper`, `PROpos`, `PROrel`, `PROrel.ADVneg`, `PROrel.PROadv`, `PROrel.PROper`, `PROrel_adv`, `RED`, `VERcjg`, `VERinf`, `VERppa`, `VERppe` |
| **`morphologizer`** | `POS=CCONJ`, `Definite=Def\|POS=DET\|PronType=Art`, `POS=NOUN`, `POS=PRON\|PronType=Prs`, `POS=VERB\|VerbForm=Fin`, `POS=PROPN`, `POS=PRON\|PronType=Prs,Rel`, `POS=ADV`, `POS=ADP`, `POS=ADV\|PronType=Dem`, `POS=PRON\|PronType=Dem`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|VerbForm=Fin`, `POS=DET\|PronType=Int`, `POS=ADJ`, `POS=PRON\|PronType=Ind`, `POS=DET\|PronType=Ind`, `Morph=VPar\|POS=ADJ`, `POS=DET\|Poss=Yes`, `POS=ADV\|Polarity=Neg`, `Definite=Def\|POS=ADP\|PronType=Art`, `POS=PRON\|PronType=Int`, `POS=SCONJ`, `POS=VERB\|VerbForm=Inf`, `NumType=Card\|POS=PRON`, `POS=PRON`, `NumType=Card\|POS=DET`, `POS=PRON\|Polarity=Neg\|PronType=Prs`, `POS=ADJ\|Poss=Yes`, `POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=DET\|PronType=Dem`, `POS=AUX\|VerbForm=Inf`, `POS=ADJ\|PronType=Ind`, `Morph=VPar\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Morph=VPar\|POS=PROPN`, `Morph=VInf\|POS=NOUN`, `NumType=Ord\|POS=PRON`, `POS=INTJ`, `POS=SCONJ\|PronType=Prs`, `Morph=VFin\|POS=NOUN`, `POS=DET\|PronType=Rel`, `NumType=Card\|POS=ADJ`, `POS=ADJ\|PronType=Ord`, `Morph=VFin\|POS=ADV`, `Morph=VFin\|POS=PROPN`, `POS=DET`, `Morph=VPar\|POS=ADP`, `Morph=VPar\|POS=ADV`, `NumType=Ord\|POS=DET`, `Morph=VFin\|POS=ADP`, `Morph=VFin\|POS=CCONJ`, `Morph=VInf\|POS=ADJ`, `POS=ADP\|PronType=Dem`, `POS=ADV\|Polarity=Int`, `Morph=VFin\|POS=INTJ` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `case:det`, `cc`, `cc:nc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `dislocated`, `expl`, `flat`, `iobj`, `mark`, `mark:advmod`, `mark:obj`, `mark:obl`, `nmod`, `nsubj`, `nsubj:obj`, `nummod`, `obj`, `obj:advmod`, `obl`, `obl:advmod`, `parataxis`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, `10`, `11`, `12`, `13`, `14`, `15`, `16`, `17`, `18`, `19`, `20`, `21`, `22`, `23`, `24`, `25`, `26`, `27`, `28`, `29`, `30`, `31`, `32`, `33`, `34`, `35`, `36`, `37`, `38`, `39`, `40`, `41`, `42`, `43`, `44`, `45`, `46`, `47`, `48`, `49`, `50`, `51`, `52`, `53`, `54`, `55`, `56`, `57`, `58`, `59`, `60`, `61`, `62`, `63`, `64`, `65`, `66`, `67`, `68`, `69`, `70`, `71`, `72`, `73`, `74`, `75`, `76`, `77`, `78`, `79`, `80`, `81`, `82`, `83`, `84`, `85`, `86`, `87`, `88`, `89`, `90`, `91`, `92`, `93`, `94`, `95`, `96`, `97`, `98`, `99`, `100`, `101`, `102`, `103`, `104`, `105`, `106`, `107`, `108`, `109`, `110`, `111`, `112`, `113`, `114`, `115`, `116`, `117`, `118`, `119`, `120`, `121`, `122`, `123`, `124`, `125`, `126`, `127`, `128`, `129`, `130`, `131`, `132`, `133`, `134`, `135`, `136`, `137`, `138`, `139`, `140`, `141`, `142`, `143`, `144`, `145`, `146`, `147`, `148`, `149`, `150`, `151`, `152`, `153`, `154`, `155`, `156`, `157`, `158`, `159`, `160`, `161`, `162`, `163`, `164`, `165`, `166`, `167`, `168`, `169`, `170`, `171`, `172`, `173`, `174`, `175`, `176`, `177`, `178`, `179`, `180`, `181`, `182`, `183`, `184`, `185`, `186`, `187`, `188`, `189`, `190`, `191`, `192`, `193`, `194`, `195`, `196`, `197`, `198`, `199`, `200`, `201`, `202`, `203`, `204`, `205`, `206`, `207`, `208`, `209`, `210`, `211`, `212`, `213`, `214`, `215`, `216`, `217`, `218`, `219`, `220`, `221`, `222`, `223`, `224`, `225`, `226`, `227`, `228`, `229`, `230`, `231`, `232`, `233`, `234`, `235`, `236`, `237`, `238`, `239`, `240`, `241`, `242`, `243`, `244`, `245`, `246`, `247`, `248`, `249`, `250`, `251`, `252`, `253`, `254`, `255`, `256`, `257`, `258`, `259`, `260`, `261`, `262`, `263`, `264`, `265`, `266`, `267`, `268`, `269`, `270`, `271`, `272`, `273`, `274`, `275`, `276`, `277`, `278`, `279`, `280`, `281`, `282`, `283`, `284`, `285`, `286`, `287`, `288`, `289`, `290`, `291`, `292`, `293`, `294`, `295`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `304`, `305`, `306`, `307`, `308`, `309`, `310`, `311`, `312`, `313`, `314`, `315`, `316`, `317`, `318`, `319`, `320`, `321`, `322`, `323`, `324`, `325`, `326`, `327`, `328`, `329`, `330`, `331`, `332`, `333`, `334`, `335`, `336`, `337`, `338`, `339`, `340`, `341`, `342`, `343`, `344`, `345`, `346`, `347`, `348`, `349`, `350`, `351`, `352`, `353`, `354`, `355`, `356`, `357`, `358`, `359`, `360`, `361`, `362`, `363`, `364`, `365`, `366`, `367`, `368`, `369`, `370`, `371`, `372`, `373`, `374`, `375`, `376`, `377`, `378`, `379`, `380`, `381`, `382`, `383`, `384`, `385`, `386`, `387`, `388`, `389`, `390`, `391`, `392`, `393`, `394`, `395`, `396`, `397`, `398`, `399`, `400`, `401`, `402`, `403`, `404`, `405`, `406`, `407`, `408`, `409`, `410`, `411`, `412`, `413`, `414`, `415`, `416`, `417`, `418`, `419`, `420`, `421`, `422`, `423`, `424`, `425`, `426`, `427`, `428`, `429`, `430`, `431`, `432`, `433`, `434`, `435`, `436`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `444`, `445`, `446`, `447`, `448`, `449`, `450`, `451`, `452`, `453`, `454`, `455`, `456`, `457`, `458`, `459`, `460`, `461`, `462`, `463`, `464`, `465`, `466`, `467`, `468`, `469`, `470`, `471`, `472`, `473`, `474`, `475`, `476`, `477`, `478`, `479`, `480`, `481`, `482`, `483`, `484`, `485`, `486`, `487`, `488`, `489`, `490`, `491`, `492`, `493`, `494`, `495`, `496`, `497`, `498`, `499`, `500`, `501`, `502`, `503`, `504`, `505`, `506`, `507`, `508`, `509`, `510`, `511`, `512`, `513`, `514`, `515`, `516`, `517`, `518`, `519`, `520`, `521`, `522`, `523`, `524`, `525`, `526`, `527`, `528`, `529`, `530`, `531`, `532`, `533`, `534`, `535`, `536`, `537`, `538`, `539`, `540`, `541`, `542`, `543`, `544`, `545`, `546`, `547`, `548`, `549`, `550`, `551`, `552`, `553`, `554`, `555`, `556`, `557`, `558`, `559`, `560`, `561`, `562`, `563`, `564`, `565`, `566`, `567`, `568`, `569`, `570`, `571`, `572`, `573`, `574`, `575`, `576`, `577`, `578`, `579`, `580`, `581`, `582`, `583`, `584`, `585`, `586`, `587`, `588`, `589`, `590`, `591`, `592`, `593`, `594`, `595`, `596`, `597`, `598`, `599`, `600`, `601`, `602`, `603`, `604`, `605`, `606`, `607`, `608`, `609`, `610`, `611`, `612`, `613`, `614`, `615`, `616`, `617`, `618`, `619`, `620`, `621`, `622`, `623`, `624`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `632`, `633`, `634`, `635`, `636`, `637`, `638`, `639`, `640`, `641`, `642`, `643`, `644`, `645`, `646`, `647`, `648`, `649`, `650`, `651`, `652`, `653`, `654`, `655`, `656`, `657`, `658`, `659`, `660`, `661`, `662`, `663`, `664`, `665`, `666`, `667`, `668`, `669`, `670`, `671`, `672`, `673`, `674`, `675`, `676`, `677`, `678`, `679`, `680`, `681`, `682`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `691`, `692`, `693`, `694`, `695`, `696`, `697`, `698`, `699`, `700`, `701`, `702`, `703`, `704`, `705`, `706`, `707`, `708`, `709`, `710`, `711`, `712`, `713`, `714`, `715`, `716`, `717`, `718`, `719`, `720`, `721`, `722`, `723`, `724`, `725`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `735`, `736`, `737`, `738`, `739`, `740`, `741`, `742`, `743`, `744`, `745`, `746`, `747`, `748`, `749`, `750`, `751`, `752`, `753`, `754`, `755`, `756`, `757`, `758`, `759`, `760`, `761`, `762`, `763`, `764`, `765`, `766`, `767`, `768`, `769`, `770`, `771`, `772`, `773`, `774`, `775`, `776`, `777`, `778`, `779`, `780`, `781`, `782`, `783`, `784`, `785`, `786`, `787`, `788`, `789`, `790`, `791`, `792`, `793`, `794`, `795`, `796`, `797`, `798`, `799`, `800`, `801`, `802`, `803`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `815`, `816`, `817`, `818`, `819`, `820`, `821`, `822`, `823`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `831`, `832`, `833`, `834`, `835`, `836`, `837`, `838`, `839`, `840`, `841`, `842`, `843`, `844`, `845`, `846`, `847`, `848`, `849`, `850`, `851`, `852`, `853`, `854`, `855`, `856`, `857`, `858`, `859`, `860`, `861`, `862`, `863`, `864`, `865`, `866`, `867`, `868`, `869`, `870`, `871`, `872`, `873`, `874`, `875`, `876`, `877`, `878`, `879`, `880`, `881`, `882`, `883`, `884`, `885`, `886`, `887`, `888`, `889`, `890`, `891`, `892`, `893`, `894`, `895`, `896`, `897`, `898`, `899`, `900`, `901`, `902`, `903`, `904`, `905`, `906`, `907`, `908`, `909`, `910`, `911`, `912`, `913`, `914`, `915`, `916`, `917`, `918`, `919`, `920`, `921`, `922`, `923`, `924`, `925`, `926`, `927`, `928`, `929`, `930`, `931`, `932`, `933`, `934`, `935`, `936`, `937`, `938`, `939`, `940`, `941`, `942`, `943`, `944`, `945`, `946`, `947`, `948`, `949`, `950`, `951`, `952`, `953`, `954`, `955`, `956`, `957`, `958`, `959`, `960`, `961`, `962`, `963`, `964`, `965`, `966`, `967`, `968`, `969`, `970`, `971`, `972`, `973`, `974`, `975`, `976`, `977`, `978`, `979`, `980`, `981`, `982`, `983`, `984`, `985`, `986`, `987`, `988`, `989`, `990`, `991`, `992`, `993`, `994`, `995`, `996`, `997`, `998`, `999`, `1000`, `1001`, `1002`, `1003`, `1004`, `1005`, `1006`, `1007`, `1008`, `1009`, `1010`, `1011`, `1012`, `1013`, `1014`, `1015`, `1016`, `1017`, `1018`, `1019`, `1020`, `1021`, `1022`, `1023`, `1024`, `1025`, `1026`, `1027`, `1028`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1035`, `1036`, `1037`, `1038`, `1039`, `1040`, `1041`, `1042`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1050`, `1051`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1063`, `1064`, `1065`, `1066`, `1067`, `1068`, `1069`, `1070`, `1071`, `1072`, `1073`, `1074`, `1075`, `1076`, `1077`, `1078`, `1079`, `1080`, `1081`, `1082`, `1083`, `1084`, `1085`, `1086`, `1087`, `1088`, `1089`, `1090`, `1091`, `1092`, `1093`, `1094`, `1095`, `1096`, `1097`, `1098`, `1099`, `1100`, `1101`, `1102`, `1103`, `1104`, `1105`, `1106`, `1107`, `1108`, `1109`, `1110`, `1111`, `1112`, `1113`, `1114`, `1115`, `1116`, `1117`, `1118`, `1119`, `1120`, `1121`, `1122`, `1123`, `1124`, `1125`, `1126`, `1127`, `1128`, `1129`, `1130`, `1131`, `1132`, `1133`, `1134`, `1135`, `1136`, `1137`, `1138`, `1139`, `1140`, `1141`, `1142`, `1143`, `1144`, `1145`, `1146`, `1147`, `1148`, `1149`, `1150`, `1151`, `1152`, `1153`, `1154`, `1155`, `1156`, `1157`, `1158`, `1159`, `1160`, `1161`, `1162`, `1163`, `1164`, `1165`, `1166`, `1167`, `1168`, `1169`, `1170`, `1171`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1179`, `1180`, `1181`, `1182`, `1183`, `1184`, `1185`, `1186`, `1187`, `1188`, `1189`, `1190`, `1191`, `1192`, `1193`, `1194`, `1195`, `1196`, `1197`, `1198`, `1199`, `1200`, `1201`, `1202`, `1203`, `1204`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1214`, `1215`, `1216`, `1217`, `1218`, `1219`, `1220`, `1221`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1228`, `1229`, `1230`, `1231`, `1232`, `1233`, `1234`, `1235`, `1236`, `1237`, `1238`, `1239`, `1240`, `1241`, `1242`, `1243`, `1244`, `1245`, `1246`, `1247`, `1248`, `1249`, `1250`, `1251`, `1252`, `1253`, `1254`, `1255`, `1256`, `1257`, `1258`, `1259`, `1260`, `1261`, `1262`, `1263`, `1264`, `1265`, `1266`, `1267`, `1268`, `1269`, `1270`, `1271`, `1272`, `1273`, `1274`, `1275`, `1276`, `1277`, `1278`, `1279`, `1280`, `1281`, `1282`, `1283`, `1284`, `1285`, `1286`, `1287`, `1288`, `1289`, `1290`, `1291`, `1292`, `1293`, `1294`, `1295`, `1296`, `1297`, `1298`, `1299`, `1300`, `1301`, `1302`, `1303`, `1304`, `1305`, `1306`, `1307`, `1308`, `1309`, `1310`, `1311`, `1312`, `1313`, `1314`, `1315`, `1316`, `1317`, `1318`, `1319`, `1320`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1328`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1337`, `1338`, `1339`, `1340`, `1341`, `1342`, `1343`, `1344`, `1345`, `1346`, `1347`, `1348`, `1349`, `1350`, `1351`, `1352`, `1353`, `1354`, `1355`, `1356`, `1357`, `1358`, `1359`, `1360`, `1361`, `1362`, `1363`, `1364`, `1365`, `1366`, `1367`, `1368`, `1369`, `1370`, `1371`, `1372`, `1373`, `1374`, `1375`, `1376`, `1377`, `1378`, `1379`, `1380`, `1381`, `1382`, `1383`, `1384`, `1385`, `1386`, `1387`, `1388`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1398`, `1399`, `1400`, `1401`, `1402`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1411`, `1412`, `1413`, `1414`, `1415`, `1416`, `1417`, `1418`, `1419`, `1420`, `1421`, `1422`, `1423`, `1424`, `1425`, `1426`, `1427`, `1428`, `1429`, `1430`, `1431`, `1432`, `1433`, `1434`, `1435`, `1436`, `1437`, `1438`, `1439`, `1440`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1455`, `1456`, `1457`, `1458`, `1459`, `1460`, `1461`, `1462`, `1463`, `1464`, `1465`, `1466`, `1467`, `1468`, `1469`, `1470`, `1471`, `1472`, `1473`, `1474`, `1475`, `1476`, `1477`, `1478`, `1479`, `1480`, `1481`, `1482`, `1483`, `1484`, `1485`, `1486`, `1487`, `1488`, `1489`, `1490`, `1491`, `1492`, `1493`, `1494`, `1495`, `1496`, `1497`, `1498`, `1499`, `1500`, `1501`, `1502`, `1503`, `1504`, `1505`, `1506`, `1507`, `1508`, `1509`, `1510`, `1511`, `1512`, `1513`, `1514`, `1515`, `1516`, `1517`, `1518`, `1519`, `1520`, `1521`, `1522`, `1523`, `1524`, `1525`, `1526`, `1527`, `1528`, `1529`, `1530`, `1531`, `1532`, `1533`, `1534`, `1535`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `1542`, `1543`, `1544`, `1545`, `1546`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1553`, `1554`, `1555`, `1556`, `1557`, `1558`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1573`, `1574`, `1575`, `1576`, `1577`, `1578`, `1579`, `1580`, `1581`, `1582`, `1583`, `1584`, `1585`, `1586`, `1587`, `1588`, `1589`, `1590`, `1591`, `1592`, `1593`, `1594`, `1595`, `1596`, `1597`, `1598`, `1599`, `1600`, `1601`, `1602`, `1603`, `1604`, `1605`, `1606`, `1607`, `1608`, `1609`, `1610`, `1611`, `1612`, `1613`, `1614`, `1615`, `1616`, `1617`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1631`, `1632`, `1633`, `1634`, `1635`, `1636`, `1637`, `1638`, `1639`, `1640`, `1641`, `1642`, `1643`, `1644`, `1645`, `1646`, `1647`, `1648`, `1649`, `1650`, `1651`, `1652`, `1653`, `1654`, `1655`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1662`, `1663`, `1664`, `1665`, `1666`, `1667`, `1668`, `1669`, `1670`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1687`, `1688`, `1689`, `1690`, `1691`, `1692`, `1693`, `1694`, `1695`, `1696`, `1697`, `1698`, `1699`, `1700`, `1701`, `1702`, `1703`, `1704`, `1705`, `1706`, `1707`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1716`, `1717`, `1718`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1728`, `1729`, `1730`, `1731`, `1732`, `1733`, `1734`, `1735`, `1736`, `1737`, `1738`, `1739`, `1740`, `1741`, `1742`, `1743`, `1744`, `1745`, `1746`, `1747`, `1748`, `1749`, `1750`, `1751`, `1752`, `1753`, `1754`, `1755`, `1756`, `1757`, `1758`, `1759`, `1760`, `1761`, `1762`, `1763`, `1764`, `1765`, `1766`, `1767`, `1768`, `1769`, `1770`, `1771`, `1772`, `1773`, `1774`, `1775`, `1776`, `1777`, `1778`, `1779`, `1780`, `1781`, `1782`, `1783`, `1784`, `1785`, `1786`, `1787`, `1788`, `1789`, `1790`, `1791`, `1792`, `1793`, `1794`, `1795`, `1796`, `1797`, `1798`, `1799`, `1800`, `1801`, `1802`, `1803`, `1804`, `1805`, `1806`, `1807`, `1808`, `1809`, `1810`, `1811`, `1812`, `1813`, `1814`, `1815`, `1816`, `1817`, `1818`, `1819`, `1820`, `1821`, `1822`, `1823`, `1824`, `1825`, `1826`, `1827`, `1828`, `1829`, `1830`, `1831`, `1832`, `1833`, `1834`, `1835`, `1836`, `1837`, `1838`, `1839`, `1840`, `1841`, `1842`, `1843`, `1844`, `1845`, `1846`, `1847`, `1848`, `1849`, `1850`, `1851`, `1852`, `1853`, `1854`, `1855`, `1856`, `1857`, `1858`, `1859`, `1860`, `1861`, `1862`, `1863`, `1864`, `1865`, `1866`, `1867`, `1868`, `1869`, `1870`, `1871`, `1872`, `1873`, `1874`, `1875`, `1876`, `1877`, `1878`, `1879`, `1880`, `1881`, `1882`, `1883`, `1884`, `1885`, `1886`, `1887`, `1888`, `1889`, `1890`, `1891`, `1892`, `1893`, `1894`, `1895`, `1896`, `1897`, `1898`, `1899`, `1900`, `1901`, `1902`, `1903`, `1904`, `1905`, `1906`, `1907`, `1908`, `1909`, `1910`, `1911`, `1912`, `1913`, `1914`, `1915`, `1916`, `1917`, `1918`, `1919`, `1920`, `1921`, `1922`, `1923`, `1924`, `1925`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1934`, `1935`, `1936`, `1937`, `1938`, `1939`, `1940`, `1941`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1951`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1960`, `1961`, `1962`, `1963`, `1964`, `1965`, `1966`, `1967`, `1968`, `1969`, `1970`, `1971`, `1972`, `1973`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1980`, `1981`, `1982`, `1983`, `1984`, `1985`, `1986`, `1987`, `1988`, `1989`, `1990`, `1991`, `1992`, `1993`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2001`, `2002`, `2003`, `2004`, `2005`, `2006`, `2007`, `2008`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2018`, `2019`, `2020`, `2021`, `2022`, `2023`, `2024`, `2025`, `2026`, `2027`, `2028`, `2029`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2036`, `2037`, `2038`, `2039`, `2040`, `2041`, `2042`, `2043`, `2044`, `2045`, `2046`, `2047`, `2048`, `2049`, `2050`, `2051`, `2052`, `2053`, `2054`, `2055`, `2056`, `2057`, `2058`, `2059`, `2060`, `2061`, `2062`, `2063`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2070`, `2071`, `2072`, `2073`, `2074`, `2075`, `2076`, `2077`, `2078`, `2079`, `2080`, `2081`, `2082`, `2083`, `2084`, `2085`, `2086`, `2087`, `2088`, `2089`, `2090`, `2091`, `2092`, `2093`, `2094`, `2095`, `2096`, `2097`, `2098`, `2099`, `2100`, `2101`, `2102`, `2103`, `2104`, `2105`, `2106`, `2107`, `2108`, `2109`, `2110`, `2111`, `2112`, `2113`, `2114`, `2115`, `2116`, `2117`, `2118`, `2119`, `2120`, `2121`, `2122`, `2123`, `2124`, `2125`, `2126`, `2127`, `2128`, `2129`, `2130`, `2131`, `2132`, `2133`, `2134`, `2135`, `2136`, `2137`, `2138`, `2139`, `2140`, `2141`, `2142`, `2143`, `2144`, `2145`, `2146`, `2147`, `2148`, `2149`, `2150`, `2151`, `2152`, `2153`, `2154`, `2155`, `2156`, `2157`, `2158`, `2159`, `2160`, `2161`, `2162`, `2163`, `2164`, `2165`, `2166`, `2167`, `2168`, `2169`, `2170`, `2171`, `2172`, `2173`, `2174`, `2175`, `2176`, `2177`, `2178`, `2179`, `2180`, `2181`, `2182`, `2183`, `2184`, `2185`, `2186`, `2187`, `2188`, `2189`, `2190`, `2191`, `2192`, `2193`, `2194`, `2195`, `2196`, `2197`, `2198`, `2199`, `2200`, `2201`, `2202`, `2203`, `2204`, `2205`, `2206`, `2207`, `2208`, `2209`, `2210`, `2211`, `2212`, `2213`, `2214`, `2215`, `2216`, `2217`, `2218`, `2219`, `2220`, `2221`, `2222`, `2223`, `2224`, `2225`, `2226`, `2227`, `2228`, `2229`, `2230`, `2231`, `2232`, `2233`, `2234`, `2235`, `2236`, `2237`, `2238`, `2239`, `2240`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2247`, `2248`, `2249`, `2250`, `2251`, `2252`, `2253`, `2254`, `2255`, `2256`, `2257`, `2258`, `2259`, `2260`, `2261`, `2262`, `2263`, `2264`, `2265`, `2266`, `2267`, `2268`, `2269`, `2270`, `2271`, `2272`, `2273`, `2274`, `2275`, `2276`, `2277`, `2278`, `2279`, `2280`, `2281`, `2282`, `2283`, `2284`, `2285`, `2286`, `2287`, `2288`, `2289`, `2290`, `2291`, `2292`, `2293`, `2294`, `2295`, `2296`, `2297`, `2298`, `2299`, `2300`, `2301`, `2302`, `2303`, `2304`, `2305`, `2306`, `2307`, `2308`, `2309`, `2310`, `2311`, `2312`, `2313`, `2314`, `2315`, `2316`, `2317`, `2318`, `2319`, `2320`, `2321`, `2322`, `2323`, `2324`, `2325`, `2326`, `2327`, `2328`, `2329`, `2330`, `2331`, `2332`, `2333`, `2334`, `2335`, `2336`, `2337`, `2338`, `2339`, `2340`, `2341`, `2342`, `2343`, `2344`, `2345`, `2346`, `2347`, `2348`, `2349`, `2350`, `2351`, `2352`, `2353`, `2354`, `2355`, `2356`, `2357`, `2358`, `2359`, `2360`, `2361`, `2362`, `2363`, `2364`, `2365`, `2366`, `2367`, `2368`, `2369`, `2370`, `2371`, `2372`, `2373`, `2374`, `2375`, `2376`, `2377`, `2378`, `2379`, `2380`, `2381`, `2382`, `2383`, `2384`, `2385`, `2386`, `2387`, `2388`, `2389`, `2390`, `2391`, `2392`, `2393`, `2394`, `2395`, `2396`, `2397`, `2398`, `2399`, `2400`, `2401`, `2402`, `2403`, `2404`, `2405`, `2406`, `2407`, `2408`, `2409`, `2410`, `2411`, `2412`, `2413`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2421`, `2422`, `2423`, `2424`, `2425`, `2426`, `2427`, `2428`, `2429`, `2430`, `2431`, `2432`, `2433`, `2434`, `2435`, `2436`, `2437`, `2438`, `2439`, `2440`, `2441`, `2442`, `2443`, `2444`, `2445`, `2446`, `2447`, `2448`, `2449`, `2450`, `2451`, `2452`, `2453`, `2454`, `2455`, `2456`, `2457`, `2458`, `2459`, `2460`, `2461`, `2462`, `2463`, `2464`, `2465`, `2466`, `2467`, `2468`, `2469`, `2470`, `2471`, `2472`, `2473`, `2474`, `2475`, `2476`, `2477`, `2478`, `2479`, `2480`, `2481`, `2482`, `2483`, `2484`, `2485`, `2486`, `2487`, `2488`, `2489`, `2490`, `2491`, `2492`, `2493`, `2494`, `2495`, `2496`, `2497`, `2498`, `2499`, `2500`, `2501`, `2502`, `2503`, `2504`, `2505`, `2506`, `2507`, `2508`, `2509`, `2510`, `2511`, `2512`, `2513`, `2514`, `2515`, `2516`, `2517`, `2518`, `2519`, `2520`, `2521`, `2522`, `2523`, `2524`, `2525`, `2526`, `2527`, `2528`, `2529`, `2530`, `2531`, `2532`, `2533`, `2534`, `2535`, `2536`, `2537`, `2538`, `2539`, `2540`, `2541`, `2542`, `2543`, `2544`, `2545`, `2546`, `2547`, `2548`, `2549`, `2550`, `2551`, `2552`, `2553`, `2554`, `2555`, `2556`, `2557`, `2558`, `2559`, `2560`, `2561`, `2562`, `2563`, `2564`, `2565`, `2566`, `2567`, `2568`, `2569`, `2570`, `2571`, `2572`, `2573`, `2574`, `2575`, `2576`, `2577`, `2578`, `2579`, `2580`, `2581`, `2582`, `2583`, `2584`, `2585`, `2586`, `2587`, `2588`, `2589`, `2590`, `2591`, `2592`, `2593`, `2594`, `2595`, `2596`, `2597`, `2598`, `2599`, `2600`, `2601`, `2602`, `2603`, `2604`, `2605`, `2606`, `2607`, `2608`, `2609`, `2610`, `2611`, `2612`, `2613`, `2614`, `2615`, `2616`, `2617`, `2618`, `2619`, `2620`, `2621`, `2622`, `2623`, `2624`, `2625`, `2626`, `2627`, `2628`, `2629`, `2630`, `2631`, `2632`, `2633`, `2634`, `2635`, `2636`, `2637`, `2638`, `2639`, `2640`, `2641`, `2642`, `2643`, `2644`, `2645`, `2646`, `2647`, `2648`, `2649`, `2650`, `2651`, `2652`, `2653`, `2654`, `2655`, `2656`, `2657`, `2658`, `2659`, `2660`, `2661`, `2662`, `2663`, `2664`, `2665`, `2666`, `2667`, `2668`, `2669`, `2670`, `2671`, `2672`, `2673`, `2674`, `2675`, `2676`, `2677`, `2678`, `2679`, `2680`, `2681`, `2682`, `2683`, `2684`, `2685`, `2686`, `2687`, `2688`, `2689`, `2690`, `2691`, `2692`, `2693`, `2694`, `2695`, `2696`, `2697`, `2698`, `2699`, `2700`, `2701`, `2702`, `2703`, `2704`, `2705`, `2706`, `2707`, `2708`, `2709`, `2710`, `2711`, `2712`, `2713`, `2714`, `2715`, `2716`, `2717`, `2718`, `2719`, `2720`, `2721`, `2722`, `2723`, `2724`, `2725`, `2726`, `2727`, `2728`, `2729`, `2730`, `2731`, `2732`, `2733`, `2734`, `2735`, `2736`, `2737`, `2738`, `2739`, `2740`, `2741`, `2742`, `2743`, `2744`, `2745`, `2746`, `2747`, `2748`, `2749`, `2750`, `2751`, `2752`, `2753`, `2754`, `2755`, `2756`, `2757`, `2758`, `2759`, `2760`, `2761`, `2762`, `2763`, `2764`, `2765`, `2766`, `2767`, `2768`, `2769`, `2770`, `2771`, `2772`, `2773`, `2774`, `2775`, `2776`, `2777`, `2778`, `2779`, `2780`, `2781`, `2782`, `2783`, `2784`, `2785`, `2786`, `2787`, `2788`, `2789`, `2790`, `2791`, `2792`, `2793`, `2794`, `2795`, `2796`, `2797`, `2798`, `2799`, `2800`, `2801`, `2802`, `2803`, `2804`, `2805`, `2806`, `2807`, `2808`, `2809`, `2810`, `2811`, `2812`, `2813`, `2814`, `2815`, `2816`, `2817`, `2818`, `2819`, `2820`, `2821`, `2822`, `2823`, `2824`, `2825`, `2826`, `2827`, `2828`, `2829`, `2830`, `2831`, `2832`, `2833`, `2834`, `2835`, `2836`, `2837`, `2838`, `2839`, `2840`, `2841`, `2842`, `2843`, `2844`, `2845`, `2846`, `2847`, `2848`, `2849`, `2850`, `2851`, `2852`, `2853`, `2854`, `2855`, `2856`, `2857`, `2858`, `2859`, `2860`, `2861`, `2862`, `2863`, `2864`, `2865`, `2866`, `2867`, `2868`, `2869`, `2870`, `2871`, `2872`, `2873`, `2874`, `2875`, `2876`, `2877`, `2878`, `2879`, `2880`, `2881`, `2882`, `2883`, `2884`, `2885`, `2886`, `2887`, `2888`, `2889`, `2890`, `2891`, `2892`, `2893`, `2894`, `2895`, `2896`, `2897`, `2898`, `2899`, `2900`, `2901`, `2902`, `2903`, `2904`, `2905`, `2906`, `2907`, `2908`, `2909`, `2910`, `2911`, `2912`, `2913`, `2914`, `2915`, `2916`, `2917`, `2918`, `2919`, `2920`, `2921`, `2922`, `2923`, `2924`, `2925`, `2926`, `2927`, `2928`, `2929`, `2930`, `2931`, `2932`, `2933`, `2934`, `2935`, `2936`, `2937`, `2938`, `2939`, `2940`, `2941`, `2942`, `2943`, `2944`, `2945`, `2946`, `2947`, `2948`, `2949`, `2950`, `2951`, `2952`, `2953`, `2954`, `2955`, `2956`, `2957`, `2958`, `2959`, `2960`, `2961`, `2962`, `2963`, `2964`, `2965`, `2966`, `2967`, `2968`, `2969`, `2970`, `2971`, `2972`, `2973`, `2974`, `2975`, `2976`, `2977`, `2978`, `2979`, `2980`, `2981`, `2982`, `2983`, `2984`, `2985`, `2986`, `2987`, `2988`, `2989`, `2990`, `2991`, `2992`, `2993`, `2994`, `2995`, `2996`, `2997`, `2998`, `2999`, `3000`, `3001`, `3002`, `3003`, `3004`, `3005`, `3006`, `3007`, `3008`, `3009`, `3010`, `3011`, `3012`, `3013`, `3014`, `3015`, `3016`, `3017`, `3018`, `3019`, `3020`, `3021`, `3022`, `3023`, `3024`, `3025`, `3026`, `3027`, `3028`, `3029`, `3030`, `3031`, `3032`, `3033`, `3034`, `3035`, `3036`, `3037`, `3038`, `3039`, `3040`, `3041`, `3042`, `3043`, `3044`, `3045`, `3046`, `3047`, `3048`, `3049`, `3050`, `3051`, `3052`, `3053`, `3054`, `3055`, `3056`, `3057`, `3058`, `3059`, `3060`, `3061`, `3062`, `3063`, `3064`, `3065`, `3066`, `3067`, `3068`, `3069`, `3070`, `3071`, `3072`, `3073`, `3074`, `3075`, `3076`, `3077`, `3078`, `3079`, `3080`, `3081`, `3082`, `3083`, `3084`, `3085`, `3086`, `3087`, `3088`, `3089`, `3090`, `3091`, `3092`, `3093`, `3094`, `3095`, `3096`, `3097`, `3098`, `3099`, `3100`, `3101`, `3102`, `3103`, `3104`, `3105`, `3106`, `3107`, `3108`, `3109`, `3110`, `3111`, `3112`, `3113`, `3114`, `3115`, `3116`, `3117`, `3118`, `3119`, `3120`, `3121`, `3122`, `3123`, `3124`, `3125`, `3126`, `3127`, `3128`, `3129`, `3130`, `3131`, `3132`, `3133`, `3134`, `3135`, `3136`, `3137`, `3138`, `3139`, `3140`, `3141`, `3142`, `3143`, `3144`, `3145`, `3146`, `3147`, `3148`, `3149`, `3150`, `3151`, `3152`, `3153`, `3154`, `3155`, `3156`, `3157`, `3158`, `3159`, `3160`, `3161`, `3162`, `3163`, `3164`, `3165`, `3166`, `3167`, `3168`, `3169`, `3170`, `3171`, `3172`, `3173`, `3174`, `3175`, `3176`, `3177`, `3178`, `3179`, `3180`, `3181`, `3182`, `3183`, `3184`, `3185`, `3186`, `3187`, `3188`, `3189`, `3190`, `3191`, `3192`, `3193`, `3194`, `3195`, `3196`, `3197`, `3198`, `3199`, `3200`, `3201`, `3202`, `3203`, `3204`, `3205`, `3206`, `3207`, `3208`, `3209`, `3210`, `3211`, `3212`, `3213`, `3214`, `3215`, `3216`, `3217`, `3218`, `3219`, `3220`, `3221`, `3222`, `3223`, `3224`, `3225`, `3226`, `3227`, `3228`, `3229`, `3230`, `3231`, `3232`, `3233`, `3234`, `3235`, `3236`, `3237`, `3238`, `3239`, `3240`, `3241`, `3242`, `3243`, `3244`, `3245`, `3246`, `3247`, `3248`, `3249`, `3250`, `3251`, `3252`, `3253`, `3254`, `3255`, `3256`, `3257`, `3258`, `3259`, `3260`, `3261`, `3262`, `3263`, `3264`, `3265`, `3266`, `3267`, `3268`, `3269`, `3270`, `3271`, `3272`, `3273`, `3274`, `3275`, `3276`, `3277`, `3278`, `3279`, `3280`, `3281`, `3282`, `3283`, `3284`, `3285`, `3286`, `3287`, `3288`, `3289`, `3290`, `3291`, `3292`, `3293`, `3294`, `3295`, `3296`, `3297`, `3298`, `3299`, `3300`, `3301`, `3302`, `3303`, `3304`, `3305`, `3306`, `3307`, `3308`, `3309`, `3310`, `3311`, `3312`, `3313`, `3314`, `3315`, `3316`, `3317`, `3318`, `3319`, `3320`, `3321`, `3322`, `3323`, `3324`, `3325`, `3326`, `3327`, `3328`, `3329`, `3330`, `3331`, `3332`, `3333`, `3334`, `3335`, `3336`, `3337`, `3338`, `3339`, `3340`, `3341`, `3342`, `3343`, `3344`, `3345`, `3346`, `3347`, `3348`, `3349`, `3350`, `3351`, `3352`, `3353`, `3354`, `3355`, `3356`, `3357`, `3358`, `3359`, `3360`, `3361`, `3362`, `3363`, `3364`, `3365`, `3366`, `3367`, `3368`, `3369`, `3370`, `3371`, `3372`, `3373`, `3374`, `3375`, `3376`, `3377`, `3378`, `3379`, `3380`, `3381`, `3382`, `3383`, `3384`, `3385`, `3386`, `3387`, `3388`, `3389`, `3390`, `3391`, `3392`, `3393`, `3394`, `3395`, `3396`, `3397`, `3398`, `3399`, `3400`, `3401`, `3402`, `3403`, `3404`, `3405`, `3406`, `3407`, `3408`, `3409`, `3410`, `3411`, `3412`, `3413`, `3414`, `3415`, `3416`, `3417`, `3418`, `3419`, `3420`, `3421`, `3422`, `3423`, `3424`, `3425`, `3426`, `3427`, `3428`, `3429`, `3430`, `3431`, `3432`, `3433`, `3434`, `3435`, `3436`, `3437`, `3438`, `3439`, `3440`, `3441`, `3442`, `3443`, `3444`, `3445`, `3446`, `3447`, `3448`, `3449`, `3450`, `3451`, `3452`, `3453`, `3454`, `3455`, `3456`, `3457`, `3458`, `3459`, `3460`, `3461`, `3462`, `3463`, `3464`, `3465`, `3466`, `3467`, `3468`, `3469`, `3470`, `3471`, `3472`, `3473`, `3474`, `3475`, `3476`, `3477`, `3478`, `3479`, `3480`, `3481`, `3482`, `3483`, `3484`, `3485`, `3486`, `3487`, `3488`, `3489`, `3490`, `3491`, `3492`, `3493`, `3494`, `3495`, `3496`, `3497`, `3498`, `3499`, `3500`, `3501`, `3502`, `3503`, `3504`, `3505`, `3506`, `3507`, `3508`, `3509`, `3510`, `3511`, `3512`, `3513`, `3514`, `3515`, `3516`, `3517`, `3518`, `3519`, `3520`, `3521`, `3522`, `3523`, `3524`, `3525`, `3526`, `3527`, `3528`, `3529`, `3530`, `3531`, `3532`, `3533`, `3534`, `3535`, `3536`, `3537`, `3538`, `3539`, `3540`, `3541`, `3542`, `3543`, `3544`, `3545`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3552`, `3553`, `3554`, `3555`, `3556`, `3557`, `3558`, `3559`, `3560`, `3561`, `3562`, `3563`, `3564`, `3565`, `3566`, `3567`, `3568`, `3569`, `3570`, `3571`, `3572`, `3573`, `3574`, `3575`, `3576`, `3577`, `3578`, `3579`, `3580`, `3581`, `3582`, `3583`, `3584`, `3585`, `3586`, `3587`, `3588`, `3589`, `3590`, `3591`, `3592`, `3593`, `3594`, `3595`, `3596`, `3597`, `3598`, `3599`, `3600`, `3601`, `3602`, `3603`, `3604`, `3605`, `3606`, `3607`, `3608`, `3609`, `3610`, `3611`, `3612`, `3613`, `3614`, `3615`, `3616`, `3617`, `3618`, `3619`, `3620`, `3621`, `3622`, `3623`, `3624`, `3625`, `3626`, `3627`, `3628`, `3629`, `3630`, `3631`, `3632`, `3633`, `3634`, `3635`, `3636`, `3637`, `3638`, `3639`, `3640`, `3641`, `3642`, `3643`, `3644`, `3645`, `3646`, `3647`, `3648`, `3649`, `3650`, `3651`, `3652`, `3653`, `3654`, `3655`, `3656`, `3657`, `3658`, `3659`, `3660`, `3661`, `3662`, `3663`, `3664`, `3665`, `3666`, `3667`, `3668`, `3669`, `3670`, `3671`, `3672`, `3673`, `3674`, `3675`, `3676`, `3677`, `3678`, `3679`, `3680`, `3681`, `3682`, `3683`, `3684`, `3685`, `3686`, `3687`, `3688`, `3689`, `3690`, `3691`, `3692`, `3693`, `3694`, `3695`, `3696`, `3697`, `3698`, `3699`, `3700`, `3701`, `3702`, `3703`, `3704`, `3705`, `3706`, `3707`, `3708`, `3709`, `3710`, `3711`, `3712`, `3713`, `3714`, `3715`, `3716`, `3717`, `3718`, `3719`, `3720`, `3721`, `3722`, `3723`, `3724`, `3725`, `3726`, `3727`, `3728`, `3729`, `3730`, `3731`, `3732`, `3733`, `3734`, `3735`, `3736`, `3737`, `3738`, `3739`, `3740`, `3741`, `3742`, `3743`, `3744`, `3745`, `3746`, `3747`, `3748`, `3749`, `3750`, `3751`, `3752`, `3753`, `3754`, `3755`, `3756`, `3757`, `3758`, `3759`, `3760`, `3761`, `3762`, `3763`, `3764`, `3765`, `3766`, `3767`, `3768`, `3769`, `3770`, `3771`, `3772`, `3773`, `3774`, `3775`, `3776`, `3777`, `3778`, `3779`, `3780`, `3781`, `3782`, `3783`, `3784`, `3785`, `3786`, `3787`, `3788`, `3789`, `3790`, `3791`, `3792`, `3793`, `3794`, `3795`, `3796`, `3797`, `3798`, `3799`, `3800`, `3801`, `3802`, `3803`, `3804`, `3805`, `3806`, `3807`, `3808`, `3809`, `3810`, `3811`, `3812`, `3813`, `3814`, `3815`, `3816`, `3817`, `3818`, `3819`, `3820`, `3821`, `3822`, `3823`, `3824`, `3825`, `3826`, `3827`, `3828`, `3829`, `3830`, `3831`, `3832`, `3833`, `3834`, `3835`, `3836`, `3837`, `3838`, `3839`, `3840`, `3841`, `3842`, `3843`, `3844`, `3845`, `3846`, `3847`, `3848`, `3849`, `3850`, `3851`, `3852`, `3853`, `3854`, `3855`, `3856`, `3857`, `3858`, `3859`, `3860`, `3861`, `3862`, `3863`, `3864`, `3865`, `3866`, `3867`, `3868`, `3869`, `3870`, `3871`, `3872`, `3873`, `3874`, `3875`, `3876`, `3877`, `3878`, `3879`, `3880`, `3881`, `3882`, `3883`, `3884`, `3885`, `3886`, `3887`, `3888`, `3889`, `3890`, `3891`, `3892`, `3893`, `3894`, `3895`, `3896`, `3897`, `3898`, `3899`, `3900`, `3901`, `3902`, `3903`, `3904`, `3905`, `3906`, `3907`, `3908`, `3909`, `3910`, `3911`, `3912`, `3913`, `3914`, `3915`, `3916`, `3917`, `3918`, `3919`, `3920`, `3921`, `3922`, `3923`, `3924`, `3925`, `3926`, `3927`, `3928`, `3929`, `3930`, `3931`, `3932`, `3933`, `3934`, `3935`, `3936`, `3937`, `3938`, `3939`, `3940`, `3941`, `3942`, `3943`, `3944`, `3945`, `3946`, `3947`, `3948`, `3949`, `3950`, `3951`, `3952`, `3953`, `3954`, `3955`, `3956`, `3957`, `3958`, `3959`, `3960`, `3961`, `3962`, `3963`, `3964`, `3965`, `3966`, `3967`, `3968`, `3969`, `3970`, `3971`, `3972`, `3973`, `3974`, `3975`, `3976`, `3977`, `3978`, `3979`, `3980`, `3981`, `3982`, `3983`, `3984`, `3985`, `3986`, `3987`, `3988`, `3989`, `3990`, `3991`, `3992`, `3993`, `3994`, `3995`, `3996`, `3997`, `3998`, `3999`, `4000`, `4001`, `4002`, `4003`, `4004`, `4005`, `4006`, `4007`, `4008`, `4009`, `4010`, `4011`, `4012`, `4013`, `4014`, `4015`, `4016`, `4017`, `4018`, `4019`, `4020`, `4021`, `4022`, `4023`, `4024`, `4025`, `4026`, `4027`, `4028`, `4029`, `4030`, `4031`, `4032`, `4033`, `4034`, `4035`, `4036`, `4037`, `4038`, `4039`, `4040`, `4041`, `4042`, `4043`, `4044`, `4045`, `4046`, `4047`, `4048`, `4049`, `4050`, `4051`, `4052`, `4053`, `4054`, `4055`, `4056`, `4057`, `4058`, `4059`, `4060`, `4061`, `4062`, `4063`, `4064`, `4065`, `4066`, `4067`, `4068`, `4069`, `4070`, `4071`, `4072`, `4073`, `4074`, `4075`, `4076`, `4077`, `4078`, `4079`, `4080`, `4081`, `4082`, `4083`, `4084`, `4085`, `4086`, `4087`, `4088`, `4089`, `4090`, `4091`, `4092`, `4093`, `4094`, `4095`, `4096`, `4097`, `4098`, `4099`, `4100`, `4101`, `4102`, `4103`, `4104`, `4105`, `4106`, `4107`, `4108`, `4109`, `4110`, `4111`, `4112`, `4113`, `4114`, `4115`, `4116`, `4117`, `4118`, `4119`, `4120`, `4121`, `4122`, `4123`, `4124`, `4125`, `4126`, `4127`, `4128`, `4129`, `4130`, `4131`, `4132`, `4133`, `4134`, `4135`, `4136`, `4137`, `4138`, `4139`, `4140`, `4141`, `4142`, `4143`, `4144`, `4145`, `4146`, `4147`, `4148`, `4149`, `4150`, `4151`, `4152`, `4153`, `4154`, `4155`, `4156`, `4157`, `4158`, `4159`, `4160`, `4161`, `4162`, `4163`, `4164`, `4165`, `4166`, `4167`, `4168`, `4169`, `4170`, `4171`, `4172`, `4173`, `4174`, `4175`, `4176`, `4177`, `4178`, `4179`, `4180`, `4181`, `4182`, `4183`, `4184`, `4185`, `4186`, `4187`, `4188`, `4189`, `4190`, `4191`, `4192`, `4193`, `4194`, `4195`, `4196`, `4197`, `4198`, `4199`, `4200`, `4201`, `4202`, `4203`, `4204`, `4205`, `4206`, `4207`, `4208`, `4209`, `4210`, `4211`, `4212`, `4213`, `4214`, `4215`, `4216`, `4217`, `4218`, `4219`, `4220`, `4221`, `4222`, `4223`, `4224`, `4225`, `4226`, `4227`, `4228`, `4229`, `4230`, `4231`, `4232`, `4233`, `4234`, `4235`, `4236`, `4237`, `4238`, `4239`, `4240`, `4241`, `4242`, `4243`, `4244`, `4245`, `4246`, `4247`, `4248`, `4249`, `4250`, `4251`, `4252`, `4253`, `4254`, `4255`, `4256`, `4257`, `4258`, `4259`, `4260`, `4261`, `4262`, `4263`, `4264`, `4265`, `4266`, `4267`, `4268`, `4269`, `4270`, `4271`, `4272`, `4273`, `4274`, `4275`, `4276`, `4277`, `4278`, `4279`, `4280`, `4281`, `4282`, `4283`, `4284`, `4285`, `4286`, `4287`, `4288`, `4289`, `4290`, `4291`, `4292`, `4293`, `4294`, `4295`, `4296`, `4297`, `4298`, `4299`, `4300`, `4301`, `4302`, `4303`, `4304`, `4305`, `4306`, `4307`, `4308`, `4309`, `4310`, `4311`, `4312`, `4313`, `4314`, `4315`, `4316`, `4317`, `4318`, `4319`, `4320`, `4321`, `4322`, `4323`, `4324`, `4325`, `4326`, `4327`, `4328`, `4329`, `4330`, `4331`, `4332`, `4333`, `4334`, `4335`, `4336`, `4337`, `4338`, `4339`, `4340`, `4341`, `4342`, `4343`, `4344`, `4345`, `4346`, `4347`, `4348`, `4349`, `4350`, `4351`, `4352`, `4353`, `4354`, `4355`, `4356`, `4357`, `4358`, `4359`, `4360`, `4361`, `4362`, `4363`, `4364`, `4365`, `4366`, `4367`, `4368`, `4369`, `4370`, `4371`, `4372`, `4373`, `4374`, `4375`, `4376`, `4377`, `4378`, `4379`, `4380`, `4381`, `4382`, `4383`, `4384`, `4385`, `4386`, `4387`, `4388`, `4389`, `4390`, `4391`, `4392`, `4393`, `4394`, `4395`, `4396`, `4397`, `4398`, `4399`, `4400`, `4401`, `4402`, `4403`, `4404`, `4405`, `4406`, `4407`, `4408`, `4409`, `4410`, `4411`, `4412`, `4413`, `4414`, `4415`, `4416`, `4417`, `4418`, `4419`, `4420`, `4421`, `4422`, `4423`, `4424`, `4425`, `4426`, `4427`, `4428`, `4429`, `4430`, `4431`, `4432`, `4433`, `4434`, `4435`, `4436`, `4437`, `4438`, `4439`, `4440`, `4441`, `4442`, `4443`, `4444`, `4445`, `4446`, `4447`, `4448`, `4449`, `4450`, `4451`, `4452`, `4453`, `4454`, `4455`, `4456`, `4457`, `4458`, `4459`, `4460`, `4461`, `4462`, `4463`, `4464`, `4465`, `4466`, `4467`, `4468`, `4469`, `4470`, `4471`, `4472`, `4473`, `4474`, `4475`, `4476`, `4477`, `4478`, `4479`, `4480`, `4481`, `4482`, `4483`, `4484`, `4485`, `4486`, `4487`, `4488`, `4489`, `4490`, `4491`, `4492`, `4493`, `4494`, `4495`, `4496`, `4497`, `4498`, `4499`, `4500`, `4501`, `4502`, `4503`, `4504`, `4505`, `4506`, `4507`, `4508`, `4509`, `4510`, `4511`, `4512`, `4513`, `4514`, `4515`, `4516`, `4517`, `4518`, `4519`, `4520`, `4521`, `4522`, `4523`, `4524`, `4525`, `4526`, `4527`, `4528`, `4529`, `4530`, `4531`, `4532`, `4533`, `4534`, `4535`, `4536`, `4537`, `4538`, `4539`, `4540`, `4541`, `4542`, `4543`, `4544`, `4545`, `4546`, `4547`, `4548`, `4549`, `4550`, `4551`, `4552`, `4553`, `4554`, `4555`, `4556`, `4557`, `4558`, `4559`, `4560`, `4561`, `4562`, `4563`, `4564`, `4565`, `4566`, `4567`, `4568`, `4569`, `4570`, `4571`, `4572`, `4573`, `4574`, `4575`, `4576`, `4577`, `4578`, `4579`, `4580`, `4581`, `4582`, `4583`, `4584`, `4585`, `4586`, `4587`, `4588`, `4589`, `4590`, `4591`, `4592`, `4593`, `4594`, `4595`, `4596`, `4597`, `4598`, `4599`, `4600`, `4601`, `4602`, `4603`, `4604`, `4605`, `4606`, `4607`, `4608`, `4609`, `4610`, `4611`, `4612`, `4613`, `4614`, `4615`, `4616`, `4617`, `4618`, `4619`, `4620`, `4621`, `4622`, `4623`, `4624`, `4625`, `4626`, `4627`, `4628`, `4629`, `4630`, `4631`, `4632`, `4633`, `4634`, `4635`, `4636`, `4637`, `4638`, `4639`, `4640`, `4641`, `4642`, `4643`, `4644`, `4645`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4652`, `4653`, `4654`, `4655`, `4656`, `4657`, `4658`, `4659`, `4660`, `4661`, `4662`, `4663`, `4664`, `4665`, `4666`, `4667`, `4668`, `4669`, `4670`, `4671`, `4672`, `4673`, `4674`, `4675`, `4676`, `4677`, `4678`, `4679`, `4680`, `4681`, `4682`, `4683`, `4684`, `4685`, `4686`, `4687`, `4688`, `4689`, `4690`, `4691`, `4692`, `4693`, `4694`, `4695`, `4696`, `4697`, `4698`, `4699`, `4700`, `4701`, `4702`, `4703`, `4704`, `4705`, `4706`, `4707`, `4708`, `4709`, `4710`, `4711`, `4712`, `4713`, `4714`, `4715`, `4716`, `4717`, `4718`, `4719`, `4720`, `4721`, `4722`, `4723`, `4724`, `4725`, `4726`, `4727`, `4728`, `4729`, `4730`, `4731`, `4732`, `4733`, `4734`, `4735`, `4736`, `4737`, `4738`, `4739`, `4740`, `4741`, `4742`, `4743`, `4744`, `4745`, `4746`, `4747`, `4748`, `4749`, `4750`, `4751`, `4752`, `4753`, `4754`, `4755`, `4756`, `4757`, `4758`, `4759`, `4760`, `4761`, `4762`, `4763`, `4764`, `4765`, `4766`, `4767`, `4768`, `4769`, `4770`, `4771`, `4772`, `4773`, `4774`, `4775`, `4776`, `4777`, `4778`, `4779`, `4780`, `4781`, `4782`, `4783`, `4784`, `4785`, `4786`, `4787`, `4788`, `4789`, `4790`, `4791`, `4792`, `4793`, `4794`, `4795`, `4796`, `4797`, `4798`, `4799`, `4800`, `4801`, `4802`, `4803`, `4804`, `4805`, `4806`, `4807`, `4808`, `4809`, `4810`, `4811`, `4812`, `4813`, `4814`, `4815`, `4816`, `4817`, `4818`, `4819`, `4820`, `4821`, `4822`, `4823`, `4824`, `4825`, `4826`, `4827`, `4828`, `4829`, `4830`, `4831`, `4832`, `4833`, `4834`, `4835`, `4836`, `4837`, `4838`, `4839`, `4840`, `4841`, `4842`, `4843`, `4844`, `4845`, `4846`, `4847`, `4848`, `4849`, `4850`, `4851`, `4852`, `4853`, `4854`, `4855`, `4856`, `4857`, `4858`, `4859`, `4860`, `4861`, `4862`, `4863`, `4864`, `4865`, `4866`, `4867`, `4868`, `4869`, `4870`, `4871`, `4872`, `4873`, `4874`, `4875`, `4876`, `4877`, `4878`, `4879`, `4880`, `4881`, `4882`, `4883`, `4884`, `4885`, `4886`, `4887`, `4888`, `4889`, `4890`, `4891`, `4892`, `4893`, `4894`, `4895`, `4896`, `4897`, `4898`, `4899`, `4900`, `4901`, `4902`, `4903`, `4904`, `4905`, `4906`, `4907`, `4908`, `4909`, `4910`, `4911`, `4912`, `4913`, `4914`, `4915`, `4916`, `4917`, `4918`, `4919`, `4920`, `4921`, `4922`, `4923`, `4924`, `4925`, `4926`, `4927`, `4928`, `4929`, `4930`, `4931`, `4932`, `4933`, `4934`, `4935`, `4936`, `4937`, `4938`, `4939`, `4940`, `4941`, `4942`, `4943`, `4944`, `4945`, `4946`, `4947`, `4948`, `4949`, `4950`, `4951`, `4952`, `4953`, `4954`, `4955`, `4956`, `4957`, `4958`, `4959`, `4960`, `4961`, `4962`, `4963`, `4964`, `4965`, `4966`, `4967`, `4968`, `4969`, `4970`, `4971`, `4972`, `4973`, `4974`, `4975`, `4976`, `4977`, `4978`, `4979`, `4980`, `4981`, `4982`, `4983`, `4984`, `4985`, `4986`, `4987`, `4988`, `4989`, `4990`, `4991`, `4992`, `4993`, `4994`, `4995`, `4996`, `4997`, `4998`, `4999`, `5000`, `5001`, `5002`, `5003`, `5004`, `5005`, `5006`, `5007`, `5008`, `5009`, `5010`, `5011`, `5012`, `5013`, `5014`, `5015`, `5016`, `5017`, `5018`, `5019`, `5020`, `5021`, `5022`, `5023`, `5024`, `5025`, `5026`, `5027`, `5028`, `5029`, `5030`, `5031`, `5032`, `5033`, `5034`, `5035`, `5036`, `5037`, `5038`, `5039`, `5040`, `5041`, `5042`, `5043`, `5044`, `5045`, `5046`, `5047`, `5048`, `5049`, `5050`, `5051`, `5052`, `5053`, `5054`, `5055`, `5056`, `5057`, `5058`, `5059`, `5060`, `5061`, `5062`, `5063`, `5064`, `5065`, `5066`, `5067`, `5068`, `5069`, `5070`, `5071`, `5072`, `5073`, `5074`, `5075`, `5076`, `5077`, `5078`, `5079`, `5080`, `5081`, `5082`, `5083`, `5084`, `5085`, `5086`, `5087`, `5088`, `5089`, `5090`, `5091`, `5092`, `5093`, `5094`, `5095`, `5096`, `5097`, `5098`, `5099`, `5100`, `5101`, `5102`, `5103`, `5104`, `5105`, `5106`, `5107`, `5108`, `5109`, `5110`, `5111`, `5112`, `5113`, `5114`, `5115`, `5116`, `5117`, `5118`, `5119`, `5120`, `5121`, `5122`, `5123`, `5124`, `5125`, `5126`, `5127`, `5128`, `5129`, `5130`, `5131`, `5132`, `5133`, `5134`, `5135`, `5136`, `5137`, `5138`, `5139`, `5140`, `5141`, `5142`, `5143`, `5144`, `5145`, `5146`, `5147`, `5148`, `5149`, `5150`, `5151`, `5152`, `5153`, `5154`, `5155`, `5156`, `5157`, `5158`, `5159`, `5160`, `5161`, `5162`, `5163`, `5164`, `5165`, `5166`, `5167`, `5168`, `5169`, `5170`, `5171`, `5172`, `5173`, `5174`, `5175`, `5176`, `5177`, `5178`, `5179`, `5180`, `5181`, `5182`, `5183`, `5184`, `5185`, `5186`, `5187`, `5188`, `5189`, `5190`, `5191`, `5192`, `5193`, `5194`, `5195`, `5196`, `5197`, `5198`, `5199`, `5200`, `5201`, `5202`, `5203`, `5204`, `5205`, `5206`, `5207`, `5208`, `5209`, `5210`, `5211`, `5212`, `5213`, `5214`, `5215`, `5216`, `5217`, `5218`, `5219`, `5220`, `5221`, `5222`, `5223`, `5224`, `5225`, `5226`, `5227`, `5228`, `5229`, `5230`, `5231`, `5232`, `5233`, `5234`, `5235`, `5236`, `5237`, `5238`, `5239`, `5240`, `5241`, `5242`, `5243`, `5244`, `5245`, `5246`, `5247`, `5248`, `5249`, `5250`, `5251`, `5252`, `5253`, `5254`, `5255`, `5256`, `5257`, `5258`, `5259`, `5260`, `5261`, `5262`, `5263`, `5264`, `5265`, `5266`, `5267`, `5268`, `5269`, `5270`, `5271`, `5272`, `5273`, `5274`, `5275`, `5276`, `5277`, `5278`, `5279`, `5280`, `5281`, `5282`, `5283`, `5284`, `5285`, `5286`, `5287`, `5288`, `5289`, `5290`, `5291`, `5292`, `5293`, `5294`, `5295`, `5296`, `5297`, `5298`, `5299`, `5300`, `5301`, `5302`, `5303`, `5304`, `5305`, `5306`, `5307`, `5308`, `5309`, `5310`, `5311`, `5312`, `5313`, `5314`, `5315`, `5316`, `5317`, `5318`, `5319`, `5320`, `5321`, `5322`, `5323`, `5324`, `5325`, `5326`, `5327`, `5328`, `5329`, `5330`, `5331`, `5332`, `5333`, `5334`, `5335`, `5336`, `5337`, `5338`, `5339`, `5340`, `5341`, `5342`, `5343`, `5344`, `5345`, `5346`, `5347`, `5348`, `5349`, `5350`, `5351`, `5352`, `5353`, `5354`, `5355`, `5356`, `5357`, `5358`, `5359`, `5360`, `5361`, `5362`, `5363`, `5364`, `5365`, `5366`, `5367`, `5368`, `5369`, `5370`, `5371`, `5372`, `5373`, `5374`, `5375`, `5376`, `5377`, `5378`, `5379`, `5380`, `5381`, `5382`, `5383`, `5384`, `5385`, `5386`, `5387`, `5388`, `5389`, `5390`, `5391`, `5392`, `5393`, `5394`, `5395`, `5396`, `5397`, `5398`, `5399`, `5400`, `5401`, `5402`, `5403`, `5404`, `5405`, `5406`, `5407`, `5408`, `5409`, `5410`, `5411`, `5412`, `5413`, `5414`, `5415`, `5416`, `5417`, `5418`, `5419`, `5420`, `5421`, `5422`, `5423`, `5424`, `5425`, `5426`, `5427`, `5428`, `5429`, `5430`, `5431`, `5432`, `5433`, `5434`, `5435`, `5436`, `5437`, `5438`, `5439`, `5440`, `5441`, `5442`, `5443`, `5444`, `5445`, `5446`, `5447`, `5448`, `5449`, `5450`, `5451`, `5452`, `5453`, `5454`, `5455`, `5456`, `5457`, `5458`, `5459`, `5460`, `5461`, `5462`, `5463`, `5464`, `5465`, `5466`, `5467`, `5468`, `5469`, `5470`, `5471`, `5472`, `5473`, `5474`, `5475`, `5476`, `5477`, `5478`, `5479`, `5480`, `5481`, `5482`, `5483`, `5484`, `5485`, `5486`, `5487`, `5488`, `5489`, `5490`, `5491`, `5492`, `5493`, `5494`, `5495`, `5496`, `5497`, `5498`, `5499`, `5500`, `5501`, `5502`, `5503`, `5504`, `5505`, `5506`, `5507`, `5508`, `5509`, `5510`, `5511`, `5512`, `5513`, `5514`, `5515`, `5516`, `5517`, `5518`, `5519`, `5520`, `5521`, `5522`, `5523`, `5524`, `5525`, `5526`, `5527`, `5528`, `5529`, `5530`, `5531`, `5532`, `5533`, `5534`, `5535`, `5536`, `5537`, `5538`, `5539`, `5540`, `5541`, `5542`, `5543`, `5544`, `5545`, `5546`, `5547`, `5548`, `5549`, `5550`, `5551`, `5552`, `5553`, `5554`, `5555`, `5556`, `5557`, `5558`, `5559`, `5560`, `5561`, `5562`, `5563`, `5564`, `5565`, `5566`, `5567`, `5568`, `5569`, `5570`, `5571`, `5572`, `5573`, `5574`, `5575`, `5576`, `5577`, `5578`, `5579`, `5580`, `5581`, `5582`, `5583`, `5584`, `5585`, `5586`, `5587`, `5588`, `5589`, `5590`, `5591`, `5592`, `5593`, `5594`, `5595`, `5596`, `5597`, `5598`, `5599`, `5600`, `5601`, `5602`, `5603`, `5604`, `5605`, `5606`, `5607`, `5608`, `5609`, `5610`, `5611`, `5612`, `5613`, `5614`, `5615`, `5616`, `5617`, `5618`, `5619`, `5620`, `5621`, `5622`, `5623`, `5624`, `5625`, `5626`, `5627`, `5628`, `5629`, `5630`, `5631`, `5632`, `5633`, `5634`, `5635`, `5636`, `5637`, `5638`, `5639`, `5640`, `5641`, `5642`, `5643`, `5644`, `5645`, `5646`, `5647`, `5648`, `5649`, `5650`, `5651`, `5652`, `5653`, `5654`, `5655`, `5656`, `5657`, `5658`, `5659`, `5660`, `5661`, `5662`, `5663`, `5664`, `5665`, `5666`, `5667`, `5668`, `5669`, `5670`, `5671`, `5672`, `5673`, `5674`, `5675`, `5676`, `5677`, `5678`, `5679`, `5680`, `5681`, `5682`, `5683`, `5684`, `5685`, `5686`, `5687`, `5688`, `5689`, `5690`, `5691`, `5692`, `5693`, `5694`, `5695`, `5696`, `5697`, `5698`, `5699`, `5700`, `5701`, `5702`, `5703`, `5704`, `5705`, `5706`, `5707`, `5708`, `5709`, `5710`, `5711`, `5712`, `5713`, `5714`, `5715`, `5716`, `5717`, `5718`, `5719`, `5720`, `5721`, `5722`, `5723`, `5724`, `5725`, `5726`, `5727`, `5728`, `5729`, `5730`, `5731`, `5732`, `5733`, `5734`, `5735`, `5736`, `5737`, `5738`, `5739`, `5740`, `5741`, `5742`, `5743`, `5744`, `5745`, `5746`, `5747`, `5748`, `5749`, `5750`, `5751`, `5752`, `5753`, `5754`, `5755`, `5756`, `5757`, `5758`, `5759`, `5760`, `5763`, `5764`, `5765`, `5766`, `5767`, `5768`, `5769`, `5770`, `5771`, `5772`, `5773`, `5774`, `5775`, `5776`, `5777`, `5778`, `5779`, `5780`, `5781`, `5782`, `5783`, `5784`, `5785`, `5786`, `5787`, `5788`, `5789`, `5790`, `5791`, `5792`, `5793`, `5794`, `5795`, `5796`, `5797`, `5798`, `5799`, `5800`, `5801`, `5802`, `5803`, `5804`, `5805`, `5806`, `5807`, `5808`, `5809`, `5810`, `5811`, `5812`, `5813`, `5814`, `5815`, `5816`, `5817`, `5818`, `5819`, `5820`, `5821`, `5822`, `5823`, `5824`, `5825`, `5826`, `5827`, `5828`, `5829`, `5830`, `5831`, `5832`, `5833`, `5834`, `5835`, `5836`, `5837`, `5838`, `5839`, `5840`, `5841`, `5842`, `5843`, `5844`, `5845`, `5846`, `5847`, `5848`, `5849`, `5850`, `5851`, `5852`, `5853`, `5854`, `5855`, `5856`, `5857`, `5858`, `5859`, `5860`, `5861`, `5862`, `5863`, `5864`, `5865`, `5866`, `5867`, `5868`, `5869`, `5870`, `5871`, `5872`, `5873`, `5874`, `5875`, `5876`, `5877`, `5878`, `5879`, `5880`, `5881`, `5882`, `5883`, `5884`, `5885`, `5886`, `5887`, `5888`, `5889`, `5890`, `5891`, `5892`, `5893`, `5894`, `5895`, `5896`, `5897`, `5898`, `5899`, `5900`, `5901`, `5902`, `5903`, `5904`, `5905`, `5906`, `5907`, `5908`, `5909`, `5910`, `5911`, `5912`, `5913`, `5914`, `5915`, `5916`, `5917`, `5918`, `5919`, `5920`, `5921`, `5922`, `5923`, `5924`, `5925`, `5926`, `5927`, `5928`, `5929`, `5930`, `5931`, `5932`, `5933`, `5934`, `5935`, `5936`, `5937`, `5938`, `5939`, `5940`, `5941`, `5942`, `5943`, `5944`, `5945`, `5946`, `5947`, `5948`, `5949`, `5950`, `5951`, `5952`, `5953`, `5954`, `5955`, `5956`, `5957`, `5958`, `5959`, `5960`, `5961`, `5962`, `5963`, `5964`, `5965`, `5966`, `5967`, `5968`, `5969`, `5970`, `5971`, `5972`, `5973`, `5974`, `5975`, `5976`, `5977`, `5978`, `5979`, `5980`, `5981`, `5982`, `5983`, `5984`, `5985`, `5986`, `5987`, `5988`, `5989`, `5990`, `5991`, `5992`, `5993`, `5994`, `5995`, `5996`, `5997`, `5998`, `5999`, `6000`, `6001`, `6002`, `6003`, `6004`, `6005`, `6006`, `6007`, `6008`, `6009`, `6010`, `6011`, `6012`, `6013`, `6014`, `6015`, `6016`, `6017`, `6018`, `6019`, `6020`, `6021`, `6022`, `6023`, `6024`, `6025`, `6026`, `6027`, `6028`, `6029`, `6030`, `6031`, `6032`, `6033`, `6034`, `6035`, `6036`, `6037`, `6038`, `6039`, `6040`, `6041`, `6042`, `6043`, `6044`, `6045`, `6046`, `6047`, `6048`, `6049`, `6050`, `6051`, `6052`, `6053`, `6054`, `6055`, `6056`, `6057`, `6058`, `6059`, `6060`, `6061`, `6062`, `6063`, `6064`, `6065`, `6066`, `6067`, `6068`, `6069`, `6070`, `6071`, `6072`, `6073`, `6074`, `6075`, `6076`, `6077`, `6078`, `6079`, `6080`, `6081`, `6082`, `6083`, `6084`, `6085`, `6086`, `6087`, `6088`, `6089`, `6090`, `6091`, `6092`, `6093`, `6094`, `6095`, `6096`, `6097`, `6098`, `6099`, `6100`, `6101`, `6102`, `6103`, `6104`, `6105`, `6106`, `6107`, `6108`, `6109`, `6110`, `6111`, `6112`, `6113`, `6114`, `6115`, `6116`, `6117`, `6118`, `6119`, `6120`, `6121`, `6122`, `6123`, `6124`, `6125`, `6126`, `6127`, `6128`, `6129`, `6130`, `6131`, `6132`, `6133`, `6134`, `6135`, `6136`, `6137`, `6138`, `6139`, `6140`, `6141`, `6142`, `6143`, `6144`, `6145`, `6146`, `6147`, `6148`, `6149`, `6150`, `6151`, `6152`, `6153`, `6154`, `6155`, `6156`, `6157`, `6158`, `6159`, `6160`, `6161`, `6162`, `6163`, `6164`, `6165`, `6166`, `6167`, `6168`, `6169`, `6170`, `6171`, `6172`, `6173`, `6174`, `6175`, `6176`, `6177`, `6178`, `6179`, `6180`, `6181`, `6182`, `6183`, `6184`, `6185`, `6186`, `6187`, `6188`, `6189`, `6190`, `6191`, `6192`, `6193`, `6194`, `6195`, `6196`, `6197`, `6198`, `6199`, `6200`, `6201`, `6202`, `6203`, `6204`, `6205`, `6206`, `6207`, `6208`, `6209`, `6210`, `6211`, `6212`, `6213`, `6214`, `6215`, `6216`, `6217`, `6218`, `6219`, `6220`, `6221`, `6222`, `6223`, `6224`, `6225`, `6226`, `6227`, `6228`, `6229`, `6230`, `6231`, `6232`, `6233`, `6234`, `6235`, `6236`, `6237`, `6238`, `6239`, `6240`, `6241`, `6242`, `6243`, `6244`, `6245`, `6246`, `6247`, `6248`, `6249`, `6250`, `6251`, `6252`, `6253`, `6254`, `6255`, `6256`, `6257`, `6258`, `6259`, `6260`, `6261`, `6262`, `6263`, `6264`, `6265`, `6266`, `6267`, `6268`, `6269`, `6270`, `6271`, `6272`, `6273`, `6274`, `6275`, `6276`, `6277`, `6278`, `6279`, `6280`, `6281`, `6282`, `6283`, `6284`, `6285`, `6286`, `6287`, `6288`, `6289`, `6290`, `6291`, `6292`, `6293`, `6294`, `6295`, `6296`, `6297`, `6298`, `6299`, `6300`, `6301`, `6302`, `6303`, `6304`, `6305`, `6306`, `6307`, `6308`, `6309`, `6310`, `6311`, `6312`, `6313`, `6314`, `6315`, `6316`, `6317`, `6318`, `6319`, `6320`, `6321`, `6322`, `6323`, `6324`, `6325`, `6326`, `6327`, `6328`, `6329`, `6330`, `6331`, `6332`, `6333`, `6334`, `6335`, `6336`, `6337`, `6338`, `6339`, `6340`, `6341`, `6342`, `6343`, `6344`, `6345`, `6346`, `6347`, `6348`, `6349`, `6350`, `6351`, `6352`, `6353`, `6354`, `6355`, `6356`, `6357`, `6358`, `6359`, `6360`, `6361`, `6362`, `6363`, `6364`, `6365`, `6366`, `6367`, `6368`, `6369`, `6370`, `6371`, `6372`, `6373`, `6374`, `6375`, `6376`, `6377`, `6378`, `6379`, `6380`, `6381`, `6382`, `6383`, `6384`, `6385`, `6386`, `6387`, `6388`, `6389`, `6390`, `6391`, `6392`, `6393`, `6394`, `6395`, `6396`, `6397`, `6398`, `6399`, `6400`, `6401`, `6402`, `6403`, `6404`, `6405`, `6406`, `6407`, `6408`, `6409`, `6410`, `6411`, `6412`, `6413`, `6414`, `6415`, `6416`, `6417`, `6418`, `6419`, `6420`, `6421`, `6422`, `6423`, `6424`, `6425`, `6426`, `6427`, `6428`, `6429`, `6430`, `6431`, `6432`, `6433`, `6434`, `6435`, `6436`, `6437`, `6438`, `6439`, `6440`, `6441`, `6442`, `6443`, `6444`, `6445`, `6446`, `6447`, `6448`, `6449`, `6450`, `6451`, `6452`, `6453`, `6454`, `6455`, `6456`, `6457`, `6458`, `6459`, `6460`, `6461`, `6462`, `6463`, `6464`, `6465`, `6466`, `6467`, `6468`, `6469`, `6470`, `6471`, `6472`, `6473`, `6474`, `6475`, `6476`, `6477`, `6478`, `6479`, `6480`, `6481`, `6482`, `6483`, `6484`, `6485`, `6486`, `6487`, `6488`, `6489`, `6490`, `6491`, `6492`, `6493`, `6494`, `6495`, `6496`, `6497`, `6498`, `6499`, `6500`, `6501`, `6502`, `6503`, `6504`, `6505`, `6506`, `6507`, `6508`, `6509`, `6510`, `6511`, `6512`, `6513`, `6514`, `6515`, `6516`, `6517`, `6518`, `6519`, `6520`, `6521`, `6522`, `6523`, `6524`, `6525`, `6526`, `6527`, `6528`, `6529`, `6530`, `6531`, `6532`, `6533`, `6534`, `6535`, `6536`, `6537`, `6538`, `6539`, `6540`, `6541`, `6542`, `6543`, `6544`, `6545`, `6546`, `6547`, `6548`, `6549`, `6550`, `6551`, `6552`, `6553`, `6554`, `6555`, `6556`, `6557`, `6558`, `6559`, `6560`, `6561`, `6562`, `6563`, `6564`, `6565`, `6566`, `6567`, `6568`, `6569`, `6570`, `6571`, `6572`, `6573`, `6574`, `6575`, `6576`, `6577`, `6578`, `6579`, `6580`, `6581`, `6582`, `6583`, `6584`, `6585`, `6586`, `6587`, `6588`, `6589`, `6590`, `6591`, `6592`, `6593`, `6594`, `6595`, `6596`, `6597`, `6598`, `6599`, `6600`, `6601`, `6602`, `6603`, `6604`, `6605`, `6606`, `6607`, `6608`, `6609`, `6610`, `6611`, `6612`, `6613`, `6614`, `6615`, `6616`, `6617`, `6618`, `6619`, `6620`, `6621`, `6622`, `6623`, `6624`, `6625`, `6626`, `6627`, `6628`, `6629`, `6630`, `6631`, `6632`, `6633`, `6634`, `6635`, `6636`, `6637`, `6638`, `6639`, `6640`, `6641`, `6642`, `6643`, `6644`, `6645`, `6646`, `6647`, `6648`, `6649`, `6650`, `6651`, `6652`, `6653`, `6654`, `6655`, `6656`, `6657`, `6658`, `6659`, `6660`, `6661`, `6662`, `6663`, `6664`, `6665`, `6666`, `6667`, `6668`, `6669`, `6670`, `6671`, `6672`, `6673`, `6674`, `6675`, `6676`, `6677`, `6678`, `6679`, `6680`, `6681`, `6682`, `6683`, `6684`, `6685`, `6686`, `6687`, `6688`, `6689`, `6690`, `6691`, `6692`, `6693`, `6694`, `6695`, `6696`, `6697`, `6698`, `6699`, `6700`, `6701`, `6702`, `6703`, `6704`, `6705`, `6706`, `6707`, `6708`, `6709`, `6710`, `6711`, `6712`, `6713`, `6714`, `6715`, `6716`, `6717`, `6718`, `6719`, `6720`, `6721`, `6722`, `6723`, `6724`, `6725`, `6726`, `6727`, `6728`, `6729`, `6730`, `6731`, `6732`, `6733`, `6734`, `6735`, `6736`, `6737`, `6738`, `6739`, `6740`, `6741`, `6742`, `6743`, `6744`, `6745`, `6746`, `6747`, `6748`, `6749`, `6750`, `6751`, `6752`, `6753`, `6754`, `6755`, `6756`, `6757`, `6758`, `6759`, `6760`, `6761`, `6762`, `6763`, `6764`, `6765`, `6766`, `6767`, `6768`, `6769`, `6770`, `6771`, `6772`, `6773`, `6774`, `6775`, `6776`, `6777`, `6778`, `6779`, `6780`, `6781`, `6782`, `6783`, `6784`, `6785`, `6786`, `6787`, `6788`, `6789`, `6790`, `6791`, `6792`, `6793`, `6794`, `6795`, `6796`, `6797`, `6798`, `6799`, `6800`, `6801`, `6802`, `6803`, `6804`, `6805`, `6806`, `6807`, `6808`, `6809`, `6810`, `6811`, `6812`, `6813`, `6814`, `6815`, `6816`, `6817`, `6818`, `6819`, `6820`, `6821`, `6822`, `6823`, `6824`, `6825`, `6826`, `6827`, `6828`, `6829`, `6830`, `6831`, `6832`, `6833`, `6834`, `6835`, `6836`, `6837`, `6838`, `6839`, `6840`, `6841`, `6842`, `6843`, `6844`, `6845`, `6846`, `6847`, `6848`, `6849`, `6850`, `6851`, `6852`, `6853`, `6854`, `6855`, `6856`, `6857`, `6858`, `6859`, `6860`, `6861`, `6862`, `6863`, `6864`, `6865`, `6866`, `6867`, `6868`, `6869`, `6870`, `6871`, `6872`, `6873`, `6874`, `6875`, `6876`, `6877`, `6878`, `6879`, `6880`, `6881`, `6882`, `6883`, `6884`, `6885`, `6886`, `6887`, `6888`, `6889`, `6890`, `6891`, `6892`, `6893`, `6894`, `6895`, `6896`, `6897`, `6898`, `6899`, `6900`, `6901`, `6902`, `6903`, `6904`, `6905`, `6906`, `6907`, `6908`, `6909`, `6910`, `6911`, `6912`, `6913`, `6914`, `6915`, `6916`, `6917`, `6918`, `6919`, `6920`, `6921`, `6922`, `6923`, `6924`, `6925`, `6926`, `6927`, `6928`, `6929`, `6930`, `6931`, `6932`, `6933`, `6934`, `6935`, `6936`, `6937`, `6938`, `6939`, `6940`, `6941`, `6942`, `6943`, `6944`, `6945`, `6946`, `6947`, `6948`, `6949`, `6950`, `6951`, `6952`, `6953`, `6954`, `6955`, `6956`, `6957`, `6958`, `6959`, `6960`, `6961`, `6962`, `6963`, `6964`, `6965`, `6966`, `6967`, `6968`, `6969`, `6970`, `6971`, `6972`, `6973`, `6974`, `6975`, `6976`, `6977`, `6978`, `6979`, `6980`, `6981`, `6982`, `6983`, `6984`, `6985`, `6986`, `6987`, `6988`, `6989`, `6990`, `6991`, `6992`, `6993`, `6994`, `6995`, `6996`, `6997`, `6998`, `6999`, `7000`, `7001`, `7002`, `7003`, `7004`, `7005`, `7006`, `7007`, `7008`, `7009`, `7010`, `7011`, `7012`, `7013`, `7014`, `7015`, `7016`, `7017`, `7018`, `7019`, `7020`, `7021`, `7022`, `7023`, `7024`, `7025`, `7026`, `7027`, `7028`, `7029`, `7030`, `7031`, `7032`, `7033`, `7034`, `7035`, `7036`, `7037`, `7038`, `7039`, `7040`, `7041`, `7042`, `7043`, `7044`, `7045`, `7046`, `7047`, `7048`, `7049`, `7050`, `7051`, `7052`, `7053`, `7054`, `7055`, `7056`, `7057`, `7058`, `7059`, `7060`, `7061`, `7062`, `7063`, `7064`, `7065`, `7066`, `7067`, `7068`, `7069`, `7070`, `7071`, `7072`, `7073`, `7074`, `7075`, `7076`, `7077`, `7078`, `7079`, `7080`, `7081`, `7082`, `7083`, `7084`, `7085`, `7086`, `7087`, `7088`, `7089`, `7090`, `7091`, `7092`, `7093`, `7094`, `7095`, `7096`, `7097`, `7098`, `7099`, `7100`, `7101`, `7102`, `7103`, `7104`, `7105`, `7106`, `7107`, `7108`, `7109`, `7110`, `7111`, `7112`, `7113`, `7114`, `7115`, `7116`, `7117`, `7118`, `7119`, `7120`, `7121`, `7122`, `7123`, `7124`, `7125`, `7126`, `7127`, `7128`, `7129`, `7130`, `7131`, `7132`, `7133`, `7134`, `7135`, `7136`, `7137`, `7138`, `7139`, `7140`, `7141`, `7142`, `7143`, `7144`, `7145`, `7146`, `7147`, `7148`, `7149`, `7150`, `7151`, `7152`, `7153`, `7154`, `7155`, `7156`, `7157`, `7158`, `7159`, `7160`, `7161`, `7162`, `7163`, `7164`, `7165`, `7166`, `7167`, `7168`, `7169`, `7170`, `7171`, `7172`, `7173`, `7174`, `7175`, `7176`, `7177`, `7178`, `7179`, `7180`, `7181`, `7182`, `7183`, `7184`, `7185`, `7186`, `7187`, `7188`, `7189`, `7190`, `7191`, `7192`, `7193`, `7194`, `7195`, `7196`, `7197`, `7198`, `7199`, `7200`, `7201`, `7202`, `7203`, `7204`, `7205`, `7206`, `7207`, `7208`, `7209`, `7210`, `7211`, `7212`, `7213`, `7214`, `7215`, `7216`, `7217`, `7218`, `7219`, `7220`, `7221`, `7222`, `7223`, `7224`, `7225`, `7226`, `7227`, `7228`, `7229`, `7230`, `7231`, `7232`, `7233`, `7234`, `7235`, `7236`, `7237`, `7238`, `7239`, `7240`, `7241`, `7242`, `7243`, `7244`, `7245`, `7246`, `7247`, `7248`, `7249`, `7250`, `7251`, `7252`, `7253`, `7254`, `7255`, `7256`, `7257`, `7258`, `7259`, `7260`, `7261`, `7262`, `7263`, `7264`, `7265`, `7266`, `7267`, `7268`, `7269`, `7270`, `7271`, `7272`, `7273`, `7274`, `7275`, `7276`, `7277`, `7278`, `7279`, `7280`, `7281`, `7282`, `7283`, `7284`, `7285`, `7286`, `7287`, `7288`, `7289`, `7290`, `7291`, `7292`, `7293`, `7294`, `7295`, `7296`, `7297`, `7298`, `7299`, `7300`, `7301`, `7302`, `7303`, `7304`, `7305`, `7306`, `7307`, `7308`, `7309`, `7310`, `7311`, `7312`, `7313`, `7314`, `7315`, `7316`, `7317`, `7318`, `7319`, `7320`, `7321`, `7322`, `7323`, `7324`, `7325`, `7326`, `7327`, `7328`, `7329`, `7330`, `7331`, `7332`, `7333`, `7334`, `7335`, `7336`, `7337`, `7338`, `7339`, `7340`, `7341`, `7342`, `7343`, `7344`, `7345`, `7346`, `7347`, `7348`, `7349`, `7350`, `7351`, `7352`, `7353`, `7354`, `7355`, `7356`, `7357`, `7358`, `7359`, `7360`, `7361`, `7362`, `7363`, `7364`, `7365`, `7366`, `7367`, `7368`, `7369`, `7370`, `7371`, `7372`, `7373`, `7374`, `7375`, `7376`, `7377`, `7378`, `7379`, `7380`, `7381`, `7382`, `7383`, `7384`, `7385`, `7386`, `7387`, `7388`, `7389`, `7390`, `7391`, `7392`, `7393`, `7394`, `7395`, `7396`, `7397`, `7398`, `7399`, `7400`, `7401`, `7402`, `7403`, `7404`, `7405`, `7406`, `7407`, `7408`, `7409`, `7410`, `7411`, `7412`, `7413`, `7414`, `7415`, `7416`, `7417`, `7418`, `7419`, `7420`, `7421`, `7422`, `7423`, `7424`, `7425`, `7426`, `7427`, `7428`, `7429`, `7430`, `7431`, `7432`, `7433`, `7434`, `7435`, `7436`, `7437`, `7438`, `7439`, `7440`, `7441`, `7442`, `7443`, `7444`, `7445`, `7446`, `7447`, `7448`, `7449`, `7450`, `7451`, `7452`, `7453`, `7454`, `7455`, `7456`, `7457`, `7458`, `7459`, `7460`, `7461`, `7462`, `7463`, `7464`, `7465`, `7466`, `7467`, `7468`, `7469`, `7470`, `7471`, `7472`, `7473`, `7474`, `7475`, `7476`, `7477`, `7478`, `7479`, `7480`, `7481`, `7482`, `7483`, `7484`, `7485`, `7486`, `7487`, `7488`, `7489`, `7490`, `7491`, `7492`, `7493`, `7494`, `7495`, `7496`, `7497`, `7498`, `7499`, `7500`, `7501`, `7502`, `7503`, `7504`, `7505`, `7506`, `7507`, `7508`, `7509`, `7510`, `7511`, `7512`, `7513`, `7514`, `7515`, `7516`, `7517`, `7518`, `7519`, `7520`, `7521`, `7522`, `7523`, `7524`, `7525`, `7526`, `7527`, `7528`, `7529`, `7530`, `7531`, `7532`, `7533`, `7534`, `7535`, `7536`, `7537`, `7538`, `7539`, `7540`, `7541`, `7542`, `7543`, `7544`, `7545`, `7546`, `7547`, `7548`, `7549`, `7550`, `7551`, `7552`, `7553`, `7554`, `7555`, `7556`, `7557`, `7558`, `7559`, `7560`, `7561`, `7562`, `7563`, `7564`, `7565`, `7566`, `7567`, `7568`, `7569`, `7570`, `7571`, `7572`, `7573`, `7574`, `7575`, `7576`, `7577`, `7578`, `7579`, `7580`, `7581`, `7582`, `7583`, `7584`, `7585`, `7586`, `7587`, `7588`, `7589`, `7590`, `7591`, `7592`, `7593`, `7594`, `7595`, `7596`, `7597`, `7598`, `7599`, `7600`, `7601`, `7602`, `7603`, `7604`, `7605`, `7606`, `7607`, `7608`, `7609`, `7610`, `7611`, `7612`, `7613`, `7614`, `7615`, `7616`, `7617`, `7618`, `7619`, `7620`, `7621`, `7622`, `7623`, `7624`, `7625`, `7626`, `7627`, `7628`, `7629`, `7630`, `7631`, `7632`, `7633`, `7634`, `7635`, `7636`, `7637`, `7638`, `7639`, `7640`, `7641`, `7642`, `7643`, `7644`, `7645`, `7646`, `7647`, `7648`, `7649`, `7650`, `7651`, `7652`, `7653`, `7654`, `7655`, `7656`, `7657`, `7658`, `7659`, `7660`, `7661`, `7662`, `7663`, `7664`, `7665`, `7666`, `7667`, `7668`, `7669`, `7670`, `7671`, `7672`, `7673`, `7674`, `7675`, `7676`, `7677`, `7678`, `7679`, `7680`, `7681`, `7682`, `7683`, `7684`, `7685`, `7686`, `7687`, `7688`, `7689`, `7690`, `7691`, `7692`, `7693`, `7694`, `7695`, `7696`, `7697`, `7698`, `7699`, `7700`, `7701`, `7702`, `7703`, `7704`, `7705`, `7706`, `7707`, `7708`, `7709`, `7710`, `7711`, `7712`, `7713`, `7714`, `7715`, `7716`, `7717`, `7718`, `7719`, `7720`, `7721`, `7722`, `7723`, `7724`, `7725`, `7726`, `7727`, `7728`, `7729`, `7730`, `7731`, `7732`, `7733`, `7734`, `7735`, `7736`, `7737`, `7738`, `7739`, `7740`, `7741`, `7742`, `7743`, `7744`, `7745`, `7746`, `7747`, `7748`, `7749`, `7750`, `7751`, `7752`, `7753`, `7754`, `7755`, `7756`, `7757`, `7758`, `7759`, `7760`, `7761`, `7762`, `7763`, `7764`, `7765`, `7766`, `7767`, `7768`, `7769`, `7770`, `7771`, `7772`, `7773`, `7774`, `7775`, `7776`, `7777`, `7778`, `7779`, `7780`, `7781`, `7782`, `7783`, `7784`, `7785`, `7786`, `7787`, `7788`, `7789`, `7790`, `7791`, `7792`, `7793`, `7794`, `7795`, `7796`, `7797`, `7798`, `7799`, `7800`, `7801`, `7802`, `7803`, `7804`, `7805`, `7806`, `7807`, `7808`, `7809`, `7810`, `7811`, `7812`, `7813`, `7814`, `7815`, `7816`, `7817`, `7818`, `7819`, `7820`, `7821`, `7822`, `7823`, `7824`, `7825`, `7826`, `7827`, `7828`, `7829`, `7830`, `7831`, `7832`, `7833`, `7834`, `7835`, `7836`, `7837`, `7838`, `7839`, `7840`, `7841`, `7842`, `7843`, `7844`, `7845`, `7846`, `7847`, `7848`, `7849`, `7850`, `7851`, `7852`, `7853`, `7854`, `7855`, `7856`, `7857`, `7858`, `7859`, `7860`, `7861`, `7862`, `7863`, `7864`, `7865`, `7866`, `7867`, `7868`, `7869`, `7870`, `7871`, `7872`, `7873`, `7874`, `7875`, `7876`, `7877`, `7878`, `7879`, `7880`, `7881`, `7882`, `7883`, `7884`, `7885`, `7886`, `7887`, `7888`, `7889`, `7890`, `7891`, `7892`, `7893`, `7894`, `7895`, `7896`, `7897`, `7898`, `7899`, `7900`, `7901`, `7902`, `7903`, `7904`, `7905`, `7906`, `7907`, `7908`, `7909`, `7910`, `7911`, `7912`, `7913`, `7914`, `7915`, `7916`, `7917`, `7918`, `7919`, `7920`, `7921`, `7922`, `7923`, `7924`, `7925`, `7926`, `7927`, `7928`, `7929`, `7930`, `7931`, `7932`, `7933`, `7934`, `7935`, `7936`, `7937`, `7938`, `7939`, `7940`, `7941`, `7942`, `7943`, `7944`, `7945`, `7946`, `7947`, `7948`, `7949`, `7950`, `7951`, `7952`, `7953`, `7954`, `7955`, `7956`, `7957`, `7958`, `7959`, `7960`, `7961`, `7962`, `7963`, `7964`, `7965`, `7966`, `7967`, `7968`, `7969`, `7970`, `7971`, `7972`, `7973`, `7974`, `7975`, `7976`, `7977`, `7978`, `7979`, `7980`, `7981`, `7982`, `7983`, `7984`, `7985`, `7986`, `7987`, `7988`, `7989`, `7990`, `7991`, `7992`, `7993`, `7994`, `7995`, `7996`, `7997`, `7998`, `7999`, `8000`, `8001`, `8002`, `8003`, `8004`, `8005`, `8006`, `8007`, `8008`, `8009`, `8010`, `8011`, `8012`, `8013`, `8014`, `8015`, `8016`, `8017`, `8018`, `8019`, `8020`, `8021`, `8022`, `8023`, `8024`, `8025`, `8026`, `8027`, `8028`, `8029`, `8030`, `8031`, `8032`, `8033`, `8034`, `8035`, `8036`, `8037`, `8038`, `8039`, `8040`, `8041`, `8042`, `8043`, `8044`, `8045`, `8046`, `8047`, `8048`, `8049`, `8050`, `8051`, `8052`, `8053`, `8054`, `8055`, `8056`, `8057`, `8058`, `8059`, `8060`, `8061`, `8062`, `8063`, `8064`, `8065`, `8066`, `8067`, `8068`, `8069`, `8070`, `8071`, `8072`, `8073`, `8074`, `8075`, `8076`, `8077`, `8078`, `8079`, `8080`, `8081`, `8082`, `8083`, `8084`, `8085`, `8086`, `8087`, `8088`, `8089`, `8090`, `8091`, `8092`, `8093`, `8094`, `8095`, `8096`, `8097`, `8098`, `8099`, `8100`, `8101`, `8102`, `8103`, `8104`, `8105`, `8106`, `8107`, `8108`, `8109`, `8110`, `8111`, `8112`, `8113`, `8114`, `8115`, `8116`, `8117`, `8118`, `8119`, `8120`, `8121`, `8122`, `8123`, `8124`, `8125`, `8126`, `8127`, `8128`, `8129`, `8130`, `8131`, `8132`, `8133`, `8134`, `8135`, `8136`, `8137`, `8138`, `8139`, `8140`, `8141`, `8142`, `8143`, `8144`, `8145`, `8146`, `8147`, `8148`, `8149`, `8150`, `8151`, `8152`, `8153`, `8154`, `8155`, `8156`, `8157`, `8158`, `8159`, `8160`, `8161`, `8162`, `8163`, `8164`, `8165`, `8166`, `8167`, `8168`, `8169`, `8170`, `8171`, `8172`, `8173`, `8174`, `8175`, `8176`, `8177`, `8178`, `8179`, `8180`, `8181`, `8182`, `8183`, `8184`, `8185`, `8186`, `8187`, `8188`, `8189`, `8190`, `8191`, `8192`, `8193`, `8194`, `8195`, `8196`, `8197`, `8198`, `8199`, `8200`, `8201`, `8202`, `8203`, `8204`, `8205`, `8206`, `8207`, `8208`, `8209`, `8210`, `8211`, `8212`, `8213`, `8214`, `8215`, `8216`, `8217`, `8218`, `8219`, `8220`, `8221`, `8222`, `8223`, `8224`, `8225`, `8226`, `8227`, `8228`, `8229`, `8230`, `8231`, `8232`, `8233`, `8234`, `8235`, `8236`, `8237`, `8238`, `8239`, `8240`, `8241`, `8242`, `8243`, `8244`, `8245`, `8246`, `8247`, `8248`, `8249`, `8250`, `8251`, `8252`, `8253`, `8254`, `8255`, `8256`, `8257`, `8258`, `8259`, `8260`, `8261`, `8262`, `8263`, `8264`, `8265`, `8266`, `8267`, `8268`, `8269`, `8270`, `8271`, `8272`, `8273`, `8274`, `8275`, `8276`, `8277`, `8278`, `8279`, `8280`, `8281`, `8282`, `8283`, `8284`, `8285`, `8286`, `8287`, `8288`, `8289`, `8290`, `8291`, `8292`, `8293`, `8294`, `8295`, `8296`, `8297`, `8298`, `8299`, `8300`, `8301`, `8302`, `8303`, `8304`, `8305`, `8306`, `8307`, `8308`, `8309`, `8310`, `8311`, `8312`, `8313`, `8314`, `8315`, `8316`, `8317`, `8318`, `8319`, `8320`, `8321`, `8322`, `8323`, `8324`, `8325`, `8326`, `8327`, `8328`, `8329`, `8330`, `8331`, `8332`, `8333`, `8334`, `8335`, `8336`, `8337`, `8338`, `8339`, `8340`, `8341`, `8342`, `8343`, `8344`, `8345`, `8346`, `8347`, `8348`, `8349`, `8350`, `8351`, `8352`, `8353`, `8354`, `8355`, `8356`, `8357`, `8358`, `8359`, `8360`, `8361`, `8362`, `8363`, `8364`, `8365`, `8366`, `8367`, `8368`, `8369`, `8370`, `8371`, `8372`, `8373`, `8374`, `8375`, `8376`, `8377`, `8378`, `8379`, `8380`, `8381`, `8382`, `8383`, `8384`, `8385`, `8386`, `8387`, `8388`, `8389`, `8390`, `8391`, `8392`, `8393`, `8394`, `8395`, `8396`, `8397`, `8398`, `8399`, `8400`, `8401`, `8402`, `8403`, `8404`, `8405`, `8406`, `8407`, `8408`, `8409`, `8410`, `8411`, `8412`, `8413`, `8414`, `8415`, `8416`, `8417`, `8418`, `8419`, `8420`, `8421`, `8422`, `8423`, `8424`, `8425`, `8426`, `8427`, `8428`, `8429`, `8430`, `8431`, `8432`, `8433`, `8434`, `8435`, `8436`, `8437`, `8438`, `8439`, `8440`, `8441`, `8442`, `8443`, `8444`, `8445`, `8446`, `8447`, `8448`, `8449`, `8450`, `8451`, `8452`, `8453`, `8454`, `8455`, `8456`, `8457`, `8458`, `8459`, `8460`, `8461`, `8462`, `8463`, `8464`, `8465`, `8466`, `8467`, `8468`, `8469`, `8470`, `8471`, `8472`, `8473`, `8474`, `8475`, `8476`, `8477`, `8478`, `8479`, `8480`, `8481`, `8482`, `8483`, `8484`, `8485`, `8486`, `8487`, `8488`, `8489`, `8490`, `8491`, `8492`, `8493`, `8494`, `8495`, `8496`, `8497`, `8498`, `8499`, `8500`, `8501`, `8502`, `8503`, `8504`, `8505`, `8506`, `8507`, `8508`, `8509`, `8510`, `8511`, `8512`, `8513`, `8514`, `8515`, `8516`, `8517`, `8518`, `8519`, `8520`, `8521`, `8522`, `8523`, `8524`, `8525`, `8526`, `8527`, `8528`, `8529`, `8530`, `8531`, `8532`, `8533`, `8534`, `8535`, `8536`, `8537`, `8538`, `8539`, `8540`, `8541`, `8542`, `8543`, `8544`, `8545`, `8546`, `8547`, `8548`, `8549`, `8550`, `8551`, `8552`, `8553`, `8554`, `8555`, `8556`, `8557`, `8558`, `8559`, `8560`, `8561`, `8562`, `8563`, `8564`, `8565`, `8566`, `8567`, `8568`, `8569`, `8570`, `8571`, `8572`, `8573`, `8574`, `8575`, `8576`, `8577`, `8578`, `8579`, `8580`, `8581`, `8582`, `8583`, `8584`, `8585`, `8586`, `8587`, `8588`, `8589`, `8590`, `8591`, `8592`, `8593`, `8594`, `8595`, `8596`, `8597`, `8598`, `8599`, `8600`, `8601`, `8602`, `8603`, `8604`, `8605`, `8606`, `8607`, `8608`, `8609`, `8610`, `8611`, `8612`, `8613`, `8614`, `8615`, `8616`, `8617`, `8618`, `8619`, `8620`, `8621`, `8622`, `8623`, `8624`, `8625`, `8626`, `8627`, `8628`, `8629`, `8630`, `8631`, `8632`, `8633`, `8634`, `8635`, `8636`, `8637`, `8638`, `8639`, `8640`, `8641`, `8642`, `8643`, `8644`, `8645`, `8646`, `8647`, `8648`, `8649`, `8650`, `8651`, `8652`, `8653`, `8654`, `8655`, `8656`, `8657`, `8658`, `8659`, `8660`, `8661`, `8662`, `8663`, `8664`, `8665`, `8666`, `8667`, `8668`, `8669`, `8670`, `8671`, `8672`, `8673`, `8674`, `8675`, `8676`, `8677`, `8678`, `8679`, `8680`, `8681`, `8682`, `8683`, `8684`, `8685`, `8686`, `8687`, `8688`, `8689`, `8690`, `8691`, `8692`, `8693`, `8694`, `8695`, `8696`, `8697`, `8698`, `8699`, `8700`, `8701`, `8702`, `8703`, `8704`, `8705`, `8706`, `8707`, `8708`, `8709`, `8710`, `8711`, `8712`, `8713`, `8714`, `8715`, `8716`, `8717`, `8718`, `8719`, `8720`, `8721`, `8722`, `8723`, `8724`, `8725`, `8726`, `8727`, `8728`, `8729`, `8730`, `8731`, `8732`, `8733`, `8734`, `8735`, `8736`, `8737`, `8738`, `8739`, `8740`, `8741`, `8742`, `8743`, `8744`, `8745`, `8746`, `8747`, `8748`, `8749`, `8750`, `8751`, `8752`, `8753`, `8754`, `8755`, `8756`, `8757`, `8758`, `8759`, `8760`, `8761`, `8762`, `8763`, `8764`, `8765`, `8766`, `8767`, `8768`, `8769`, `8770`, `8771`, `8772`, `8773`, `8774`, `8775`, `8776`, `8777`, `8778`, `8779`, `8780`, `8781`, `8782`, `8783`, `8784`, `8785`, `8786`, `8787`, `8788`, `8789`, `8790`, `8791`, `8792`, `8793`, `8794`, `8795`, `8796`, `8797`, `8798`, `8799`, `8800`, `8801`, `8802`, `8803`, `8804`, `8805`, `8806`, `8807`, `8808`, `8809`, `8810`, `8811`, `8812`, `8813`, `8814`, `8815`, `8816`, `8817`, `8818`, `8819`, `8820`, `8821`, `8822`, `8823`, `8824`, `8825`, `8826`, `8827`, `8828`, `8829`, `8830`, `8831`, `8832`, `8833`, `8834`, `8835`, `8836`, `8837`, `8838`, `8839`, `8840`, `8841`, `8842`, `8843`, `8844`, `8845`, `8846`, `8847`, `8848`, `8849`, `8850`, `8851`, `8852`, `8853`, `8854`, `8855`, `8856`, `8857`, `8858`, `8859`, `8860`, `8861`, `8862`, `8863`, `8864`, `8865`, `8866`, `8867`, `8868`, `8869`, `8870`, `8871`, `8872`, `8873`, `8874`, `8875`, `8876`, `8877`, `8878`, `8879`, `8880`, `8881`, `8882`, `8883`, `8884`, `8885`, `8886`, `8887`, `8888`, `8889`, `8890`, `8891`, `8892`, `8893`, `8894`, `8895`, `8896`, `8897`, `8898`, `8899`, `8900`, `8901`, `8902`, `8903`, `8904`, `8905`, `8906`, `8907`, `8908`, `8909`, `8910`, `8911`, `8912`, `8913`, `8914`, `8915`, `8916`, `8917`, `8918`, `8919`, `8920`, `8921`, `8922`, `8923`, `8924`, `8925`, `8926`, `8927`, `8928`, `8929`, `8930`, `8931`, `8932`, `8933`, `8934`, `8935`, `8936`, `8937`, `8938`, `8939`, `8940`, `8941`, `8942`, `8943`, `8944`, `8945`, `8946`, `8947`, `8948`, `8949`, `8950`, `8951`, `8952`, `8953`, `8954`, `8955`, `8956`, `8957`, `8958`, `8959`, `8960`, `8961`, `8962`, `8963`, `8964`, `8965`, `8966`, `8967`, `8968`, `8969`, `8970`, `8971`, `8972`, `8973`, `8974`, `8975`, `8976`, `8977`, `8978`, `8979`, `8980`, `8981`, `8982`, `8983`, `8984`, `8985`, `8986`, `8987`, `8988`, `8989`, `8990`, `8991`, `8992`, `8993`, `8994`, `8995`, `8996`, `8997`, `8998`, `8999`, `9000`, `9001`, `9002`, `9003`, `9004`, `9005`, `9006`, `9007`, `9008`, `9009`, `9010`, `9011`, `9012`, `9013`, `9014`, `9015`, `9016`, `9017`, `9018`, `9019`, `9020`, `9021`, `9022`, `9023`, `9024`, `9025`, `9026`, `9027`, `9028`, `9029`, `9030`, `9031`, `9032`, `9033`, `9034`, `9035`, `9036`, `9037`, `9038`, `9039`, `9040`, `9041`, `9042`, `9043`, `9044`, `9045`, `9046`, `9047`, `9048`, `9049`, `9050`, `9051`, `9052`, `9053`, `9054`, `9055`, `9056`, `9057`, `9058`, `9059`, `9060`, `9061`, `9062`, `9063`, `9064`, `9065`, `9066`, `9067`, `9068`, `9069`, `9070`, `9071`, `9072`, `9073`, `9074`, `9075`, `9076`, `9077`, `9078`, `9079`, `9080`, `9081`, `9082`, `9083`, `9084`, `9085`, `9086`, `9087`, `9088`, `9089`, `9090`, `9091`, `9092`, `9093`, `9094`, `9095`, `9096`, `9097`, `9098`, `9099`, `9100`, `9101`, `9102`, `9103`, `9104`, `9105`, `9106`, `9107`, `9108`, `9109`, `9110`, `9111`, `9112`, `9113`, `9114`, `9115`, `9116`, `9117`, `9118`, `9119`, `9120`, `9121`, `9122`, `9123`, `9124`, `9125`, `9126`, `9127`, `9128`, `9129`, `9130`, `9131`, `9132`, `9133`, `9134`, `9135`, `9136`, `9137`, `9138`, `9139`, `9140`, `9141`, `9142`, `9143`, `9144`, `9145`, `9146`, `9147`, `9148`, `9149`, `9150`, `9151`, `9152`, `9153`, `9154`, `9155`, `9156`, `9157`, `9158`, `9159`, `9160`, `9161`, `9162`, `9163`, `9164`, `9165`, `9166`, `9167`, `9168`, `9169`, `9170`, `9171`, `9172`, `9173`, `9174`, `9175`, `9176`, `9177`, `9178`, `9179`, `9180`, `9181`, `9182`, `9183`, `9184`, `9185`, `9186`, `9187`, `9188`, `9189`, `9190`, `9191`, `9192`, `9193`, `9194`, `9195`, `9196`, `9197`, `9198`, `9199`, `9200`, `9201`, `9202`, `9203`, `9204`, `9205`, `9206`, `9207`, `9208`, `9209`, `9210`, `9211`, `9212`, `9213`, `9214`, `9215`, `9216`, `9217`, `9218`, `9219`, `9220`, `9221`, `9222`, `9223`, `9224`, `9225`, `9226`, `9227`, `9228`, `9229`, `9230`, `9231`, `9232`, `9233`, `9234`, `9235`, `9236`, `9237`, `9238`, `9239`, `9240`, `9241`, `9242`, `9243`, `9244`, `9245`, `9246`, `9247`, `9248`, `9249`, `9250`, `9251`, `9252`, `9253`, `9254`, `9255`, `9256`, `9257`, `9258`, `9259`, `9260`, `9261`, `9262`, `9263`, `9264`, `9265`, `9266`, `9267`, `9268`, `9269`, `9270`, `9271`, `9272`, `9273`, `9274`, `9275`, `9276`, `9277`, `9278`, `9279`, `9280`, `9281`, `9282`, `9283`, `9284`, `9285`, `9286`, `9287`, `9288`, `9289`, `9290`, `9291`, `9292`, `9293`, `9294`, `9295`, `9296`, `9297`, `9298`, `9299`, `9300`, `9301`, `9302`, `9303`, `9304`, `9305`, `9306`, `9307`, `9308`, `9309`, `9310`, `9311`, `9312`, `9313`, `9314`, `9315`, `9316`, `9317`, `9318`, `9319`, `9320`, `9321`, `9322`, `9323`, `9324`, `9325`, `9326`, `9327`, `9328`, `9329`, `9330`, `9331`, `9332`, `9333`, `9334`, `9335`, `9336`, `9337`, `9338`, `9339`, `9340`, `9341`, `9342`, `9343`, `9344`, `9345`, `9346`, `9347`, `9348`, `9349`, `9350`, `9351`, `9352`, `9353`, `9354`, `9355`, `9356`, `9357`, `9358`, `9359`, `9360`, `9361`, `9362`, `9363`, `9364`, `9365`, `9366`, `9367`, `9368`, `9369`, `9370`, `9371`, `9372`, `9373`, `9374`, `9375`, `9376`, `9377`, `9378`, `9379`, `9380`, `9381`, `9382`, `9383`, `9384`, `9385`, `9386`, `9387`, `9388`, `9389`, `9390`, `9391`, `9392`, `9393`, `9394`, `9395`, `9396`, `9397`, `9398`, `9399`, `9400`, `9401`, `9402`, `9403`, `9404`, `9405`, `9406`, `9407`, `9408`, `9409`, `9410`, `9411`, `9412`, `9413`, `9414`, `9415`, `9416`, `9417`, `9418`, `9419`, `9420`, `9421`, `9422`, `9423`, `9424`, `9425`, `9426`, `9427`, `9428`, `9429`, `9430`, `9431`, `9432`, `9433`, `9434`, `9435`, `9436`, `9437`, `9438`, `9439`, `9440`, `9441`, `9442`, `9443`, `9444`, `9445`, `9446`, `9447`, `9448`, `9449`, `9450`, `9451`, `9452`, `9453`, `9454`, `9455`, `9456`, `9457`, `9458`, `9459`, `9460`, `9461`, `9462`, `9463`, `9464`, `9465`, `9466`, `9467`, `9468`, `9469`, `9470`, `9471`, `9472`, `9473`, `9474`, `9475`, `9476`, `9477`, `9478`, `9479`, `9480`, `9481`, `9482`, `9483`, `9484`, `9485`, `9486`, `9487`, `9488`, `9489`, `9490`, `9491`, `9492`, `9493`, `9494`, `9495`, `9496`, `9497`, `9498`, `9499`, `9500`, `9501`, `9502`, `9503`, `9504`, `9505`, `9506`, `9507`, `9508`, `9509`, `9510`, `9511`, `9512`, `9513`, `9514`, `9515`, `9516`, `9517`, `9518`, `9519`, `9520`, `9521`, `9522`, `9523`, `9524`, `9525`, `9526`, `9527`, `9528`, `9529`, `9530`, `9531`, `9532`, `9533`, `9534`, `9535`, `9536`, `9537`, `9538`, `9539`, `9540`, `9541`, `9542`, `9543`, `9544`, `9545`, `9546`, `9547`, `9548`, `9549`, `9550`, `9551`, `9552`, `9553`, `9554`, `9555`, `9556`, `9557`, `9558`, `9559`, `9560`, `9561`, `9562`, `9563`, `9564`, `9565`, `9566`, `9567`, `9568`, `9569`, `9570`, `9571`, `9572`, `9573`, `9574`, `9575`, `9576`, `9577`, `9578`, `9579`, `9580`, `9581`, `9582`, `9583`, `9584`, `9585`, `9586`, `9587`, `9588`, `9589`, `9590`, `9591`, `9592`, `9593`, `9594`, `9595`, `9596`, `9597`, `9598`, `9599`, `9600`, `9601`, `9602`, `9603`, `9604`, `9605`, `9606`, `9607`, `9608`, `9609`, `9610`, `9611`, `9612`, `9613`, `9614`, `9615`, `9616`, `9617`, `9618`, `9619`, `9620`, `9621`, `9622`, `9623`, `9624`, `9625`, `9626`, `9627`, `9628`, `9629`, `9630`, `9631`, `9632`, `9633`, `9634`, `9635`, `9636`, `9637`, `9638`, `9639`, `9640`, `9641`, `9642`, `9643`, `9644`, `9645`, `9646`, `9647`, `9648`, `9649`, `9650`, `9651`, `9652`, `9653`, `9654`, `9655`, `9656`, `9657`, `9658`, `9659`, `9660`, `9661`, `9662`, `9663`, `9664`, `9665`, `9666`, `9667`, `9668`, `9669`, `9670`, `9671`, `9672`, `9673`, `9674`, `9675`, `9676`, `9677`, `9678`, `9679`, `9680`, `9681`, `9682`, `9683`, `9684`, `9685`, `9686`, `9687`, `9688`, `9689`, `9690`, `9691`, `9692`, `9693`, `9694`, `9695`, `9696`, `9697`, `9698`, `9699`, `9700`, `9701`, `9702`, `9703`, `9704`, `9705`, `9706`, `9707`, `9708`, `9709`, `9710`, `9711`, `9712`, `9713`, `9714`, `9715`, `9716`, `9717`, `9718`, `9719`, `9720`, `9721`, `9722`, `9723`, `9724`, `9725`, `9726`, `9727`, `9728`, `9729`, `9730`, `9731`, `9732`, `9733`, `9734`, `9735`, `9736`, `9737`, `9738`, `9739`, `9740`, `9741`, `9742`, `9743`, `9744`, `9745`, `9746`, `9747`, `9748`, `9749`, `9750`, `9751`, `9752`, `9753`, `9754`, `9755`, `9756`, `9757`, `9758`, `9759`, `9760`, `9761`, `9762`, `9763`, `9764`, `9765`, `9766`, `9767`, `9768`, `9769`, `9770`, `9771`, `9772`, `9773`, `9774`, `9775`, `9776`, `9777`, `9778`, `9779`, `9780`, `9781`, `9782`, `9783`, `9784`, `9785`, `9786`, `9787`, `9788`, `9789`, `9790`, `9791`, `9792`, `9793`, `9794`, `9795`, `9796`, `9797`, `9798`, `9799`, `9800`, `9801`, `9802`, `9803`, `9804`, `9805`, `9806`, `9807`, `9808`, `9809`, `9810`, `9811`, `9812`, `9813`, `9814`, `9815`, `9816`, `9817`, `9818`, `9819`, `9820`, `9821`, `9822`, `9823`, `9824`, `9825`, `9826`, `9827`, `9828`, `9829`, `9830`, `9831`, `9832`, `9833`, `9834`, `9835`, `9836`, `9837`, `9838`, `9839`, `9840`, `9841`, `9842`, `9843`, `9844`, `9845`, `9846`, `9847`, `9848`, `9849`, `9850`, `9851`, `9852`, `9853`, `9854`, `9855`, `9856`, `9857`, `9858`, `9859`, `9860`, `9861`, `9862`, `9863`, `9864`, `9865`, `9866`, `9867`, `9868`, `9869`, `9870`, `9871`, `9872`, `9873`, `9874`, `9875`, `9876`, `9877`, `9878`, `9879`, `9880`, `9881`, `9882`, `9883`, `9884`, `9885`, `9886`, `9887`, `9888`, `9889`, `9890`, `9891`, `9892`, `9893`, `9894`, `9895`, `9896`, `9897`, `9898`, `9899`, `9900`, `9901`, `9902`, `9903`, `9904`, `9905`, `9906`, `9907`, `9908`, `9909`, `9910`, `9911`, `9912`, `9913`, `9914`, `9915`, `9916`, `9917`, `9918`, `9919`, `9920`, `9921`, `9922`, `9923`, `9924`, `9925`, `9926`, `9927`, `9928`, `9929`, `9930`, `9931`, `9932`, `9933`, `9934`, `9935`, `9936`, `9937`, `9938`, `9939`, `9940`, `9941`, `9942`, `9943`, `9944`, `9945`, `9946`, `9947`, `9948`, `9949`, `9950`, `9951`, `9952`, `9953`, `9954`, `9955`, `9956`, `9957`, `9958`, `9959`, `9960`, `9961`, `9962`, `9963`, `9964`, `9965`, `9966`, `9967`, `9968`, `9971`, `9972`, `9973`, `9974`, `9975`, `9976`, `9977`, `9978`, `9979`, `9980`, `9981`, `9982`, `9983`, `9984`, `9985`, `9986`, `9987`, `9988`, `9989`, `9990`, `9991`, `9992`, `9993`, `9994`, `9995`, `9996`, `9997`, `9998`, `9999`, `10000`, `10001`, `10002`, `10003`, `10004`, `10005`, `10006`, `10007`, `10008`, `10009`, `10010`, `10011`, `10012`, `10013`, `10014`, `10015`, `10016`, `10017`, `10018`, `10019`, `10020`, `10021`, `10022`, `10023`, `10024`, `10025`, `10026`, `10027`, `10028`, `10029`, `10030`, `10031`, `10032`, `10033`, `10034`, `10035`, `10036`, `10037`, `10038`, `10039`, `10040`, `10041`, `10042`, `10043`, `10044`, `10045`, `10046`, `10047`, `10048`, `10049`, `10050`, `10051`, `10052`, `10053`, `10054`, `10055`, `10056`, `10057`, `10058`, `10059`, `10060`, `10061`, `10062`, `10063`, `10064`, `10065`, `10066`, `10067`, `10068`, `10069`, `10070`, `10071`, `10072`, `10073`, `10074`, `10075`, `10076`, `10077`, `10078`, `10079`, `10080`, `10081`, `10082`, `10083`, `10084`, `10085`, `10086`, `10087`, `10088`, `10089`, `10090`, `10091`, `10092`, `10093`, `10094`, `10095`, `10096`, `10097`, `10098`, `10099`, `10100`, `10101`, `10102`, `10103`, `10104`, `10105`, `10106`, `10107`, `10108`, `10109`, `10110`, `10111`, `10112`, `10113`, `10114`, `10115`, `10116`, `10117`, `10118`, `10119`, `10120`, `10121`, `10122`, `10123`, `10124`, `10125`, `10126`, `10127`, `10128`, `10129`, `10130`, `10131`, `10132`, `10133`, `10134`, `10135`, `10136`, `10137`, `10138`, `10139`, `10140`, `10141`, `10142`, `10143`, `10144`, `10145`, `10146`, `10147`, `10148`, `10149`, `10150`, `10151`, `10152`, `10153`, `10154`, `10155`, `10156`, `10157`, `10158`, `10159`, `10160`, `10161`, `10162`, `10163`, `10164`, `10165`, `10166`, `10167`, `10168`, `10169`, `10170`, `10171`, `10172`, `10173`, `10174`, `10175`, `10176`, `10177`, `10178`, `10179`, `10180`, `10181`, `10182`, `10183`, `10184`, `10185`, `10186`, `10187`, `10188`, `10189`, `10190`, `10191`, `10192`, `10193`, `10194`, `10195`, `10196`, `10197`, `10198`, `10199`, `10200`, `10201`, `10202`, `10203`, `10204`, `10205`, `10206`, `10207`, `10208`, `10209`, `10210`, `10211`, `10212`, `10213`, `10214`, `10215`, `10216`, `10217`, `10218`, `10219`, `10220`, `10221`, `10222`, `10223`, `10224`, `10225`, `10226`, `10227`, `10228`, `10229`, `10230`, `10231`, `10232`, `10233`, `10234`, `10235`, `10236`, `10237`, `10238`, `10239`, `10240`, `10241`, `10242`, `10243`, `10244`, `10245`, `10246`, `10247`, `10248`, `10249`, `10250`, `10251`, `10252`, `10253`, `10254`, `10255`, `10256`, `10257`, `10258`, `10259`, `10260`, `10261`, `10262`, `10263`, `10264`, `10265`, `10266`, `10267`, `10268`, `10269`, `10270`, `10271`, `10272`, `10273`, `10274`, `10275`, `10276`, `10277`, `10278`, `10279`, `10280`, `10281`, `10282`, `10283`, `10284`, `10285`, `10286`, `10287`, `10288`, `10289`, `10290`, `10291`, `10292`, `10293`, `10294`, `10295`, `10296`, `10297`, `10298`, `10299`, `10300`, `10301`, `10302`, `10303`, `10304`, `10305`, `10306`, `10307`, `10308`, `10309`, `10310`, `10311`, `10312`, `10313`, `10314`, `10315`, `10316`, `10317`, `10318`, `10319`, `10320`, `10321`, `10322`, `10323`, `10324`, `10325`, `10326`, `10327`, `10328`, `10329`, `10330`, `10331`, `10332`, `10333`, `10334`, `10335`, `10336`, `10337`, `10338`, `10339`, `10340`, `10341`, `10342`, `10343`, `10344`, `10345`, `10346`, `10347`, `10348`, `10349`, `10350`, `10351`, `10352`, `10353`, `10354`, `10355`, `10356`, `10357`, `10358`, `10359`, `10360`, `10361`, `10362`, `10363`, `10364`, `10365`, `10366`, `10367`, `10368`, `10369`, `10370`, `10371`, `10372`, `10373`, `10374`, `10375`, `10376`, `10377`, `10378`, `10379`, `10380`, `10381`, `10382`, `10383`, `10384`, `10385`, `10386`, `10387`, `10388`, `10389`, `10390`, `10391`, `10392`, `10393`, `10394`, `10395`, `10396`, `10397`, `10398`, `10399`, `10400`, `10401`, `10402`, `10403`, `10404`, `10405`, `10406`, `10407`, `10408`, `10409`, `10410`, `10411`, `10412`, `10413`, `10414`, `10415`, `10416`, `10417`, `10418`, `10419`, `10420`, `10421`, `10422`, `10423`, `10424`, `10425`, `10426`, `10427`, `10428`, `10429`, `10430`, `10431`, `10432`, `10433`, `10434`, `10435`, `10436`, `10437`, `10438`, `10439`, `10440`, `10441`, `10442`, `10443`, `10444`, `10445`, `10446`, `10447`, `10448`, `10449`, `10450`, `10451`, `10452`, `10453`, `10454`, `10455`, `10456`, `10457`, `10458`, `10459`, `10460`, `10461`, `10462`, `10463`, `10464`, `10465`, `10466`, `10467`, `10468`, `10469`, `10470`, `10471`, `10472`, `10473`, `10474`, `10475`, `10476`, `10477`, `10478`, `10479`, `10480`, `10481`, `10482`, `10483`, `10484`, `10485`, `10486`, `10487`, `10488`, `10489`, `10490`, `10491`, `10492`, `10493`, `10494`, `10495`, `10496`, `10497`, `10498`, `10499`, `10500`, `10501`, `10502`, `10503`, `10504`, `10505`, `10506`, `10507`, `10508`, `10509`, `10510`, `10511`, `10512`, `10513`, `10514`, `10515`, `10516`, `10517`, `10518`, `10519`, `10520`, `10521`, `10522`, `10523`, `10524`, `10525`, `10526`, `10527`, `10528`, `10529`, `10530`, `10531`, `10532`, `10533`, `10534`, `10535`, `10536`, `10537`, `10538`, `10539`, `10540`, `10541`, `10542`, `10543`, `10544`, `10545`, `10546`, `10547`, `10548`, `10549`, `10550`, `10551`, `10552`, `10553`, `10554`, `10555`, `10556`, `10557`, `10558`, `10559`, `10560`, `10561`, `10562`, `10563`, `10564`, `10565`, `10566`, `10567`, `10568`, `10569`, `10570`, `10571`, `10572`, `10573`, `10574`, `10575`, `10576`, `10577`, `10578`, `10579`, `10580`, `10581`, `10582`, `10583`, `10584`, `10585`, `10586`, `10587`, `10588`, `10589`, `10590`, `10591`, `10592`, `10593`, `10594`, `10595`, `10596`, `10597`, `10598`, `10599`, `10600`, `10601`, `10602`, `10603`, `10604`, `10605`, `10606`, `10607`, `10608`, `10609`, `10610`, `10611`, `10612`, `10613`, `10614`, `10615`, `10616`, `10617`, `10618`, `10619`, `10620`, `10621`, `10622`, `10623`, `10624`, `10625`, `10626`, `10627`, `10628`, `10629`, `10630`, `10631`, `10632`, `10633`, `10634`, `10635`, `10636`, `10637`, `10638`, `10639`, `10640`, `10641`, `10642`, `10643`, `10644`, `10645`, `10646`, `10647`, `10648`, `10649`, `10650`, `10651`, `10652`, `10653`, `10654`, `10655`, `10656`, `10657`, `10658`, `10659`, `10660`, `10661`, `10662`, `10663`, `10664`, `10665`, `10666`, `10667`, `10668`, `10669`, `10670`, `10671`, `10672`, `10673`, `10674`, `10675`, `10676`, `10677`, `10678`, `10679`, `10680`, `10681`, `10682`, `10683`, `10684`, `10685`, `10686`, `10687`, `10688`, `10689`, `10690`, `10691`, `10692`, `10693`, `10694`, `10695`, `10696`, `10697`, `10698`, `10699`, `10700`, `10701`, `10702`, `10703`, `10704`, `10705`, `10706`, `10707`, `10708`, `10709`, `10710`, `10711`, `10712`, `10713`, `10714`, `10715`, `10716`, `10717`, `10718`, `10719`, `10720`, `10721`, `10722`, `10723`, `10724`, `10725`, `10726`, `10727`, `10728`, `10729`, `10730`, `10731`, `10732`, `10733`, `10734`, `10735`, `10736`, `10737`, `10738`, `10739`, `10740`, `10741`, `10742`, `10743`, `10744`, `10745`, `10746`, `10747`, `10748`, `10749`, `10750`, `10751`, `10752`, `10753`, `10754`, `10755`, `10756`, `10757`, `10758`, `10759`, `10760`, `10761`, `10762`, `10763`, `10764`, `10765`, `10766`, `10767`, `10768`, `10769`, `10770`, `10771`, `10772`, `10773`, `10774`, `10775`, `10776`, `10777`, `10778`, `10779`, `10780`, `10781`, `10782`, `10783`, `10784`, `10785`, `10786`, `10787`, `10788`, `10789`, `10790`, `10791`, `10792`, `10793`, `10794`, `10795`, `10796`, `10797`, `10798`, `10799`, `10800`, `10801`, `10802`, `10803`, `10804`, `10805`, `10806`, `10807`, `10808`, `10809`, `10810`, `10811`, `10812`, `10813`, `10814`, `10815`, `10816`, `10817`, `10818`, `10819`, `10820`, `10821`, `10822`, `10823`, `10824`, `10825`, `10826`, `10827`, `10828`, `10829`, `10830`, `10831`, `10832`, `10833`, `10834`, `10835`, `10836`, `10837`, `10838`, `10839`, `10840`, `10841`, `10842`, `10843`, `10844`, `10845`, `10846`, `10847`, `10848`, `10849`, `10850`, `10851`, `10852`, `10853`, `10854`, `10855`, `10856`, `10857`, `10858`, `10859`, `10860`, `10861`, `10862`, `10863`, `10864`, `10865`, `10866`, `10867`, `10868`, `10869`, `10870`, `10871`, `10872`, `10873`, `10874`, `10875`, `10876`, `10877`, `10878`, `10879`, `10880`, `10881`, `10882`, `10883`, `10884`, `10885`, `10886`, `10887`, `10888`, `10889`, `10890`, `10891`, `10892`, `10893`, `10894`, `10895`, `10896`, `10897`, `10898`, `10899`, `10900`, `10901`, `10902`, `10903`, `10904`, `10905`, `10906`, `10907`, `10908`, `10909`, `10910`, `10911`, `10912`, `10913`, `10914`, `10915`, `10916`, `10917`, `10918`, `10919`, `10920`, `10921`, `10922`, `10923`, `10924`, `10925`, `10926`, `10927`, `10928`, `10929`, `10930`, `10931`, `10932`, `10933`, `10934`, `10935`, `10936`, `10937`, `10938`, `10939`, `10940`, `10941`, `10942`, `10943`, `10944`, `10945`, `10946`, `10947`, `10948`, `10949`, `10950`, `10951`, `10952`, `10953`, `10954`, `10955`, `10956`, `10957`, `10958`, `10959`, `10960`, `10961`, `10962`, `10963`, `10964`, `10965`, `10966`, `10967`, `10968`, `10969`, `10970`, `10971`, `10972`, `10973`, `10974`, `10975`, `10976`, `10977`, `10978`, `10979`, `10980`, `10981`, `10982`, `10983`, `10984`, `10985`, `10986`, `10987`, `10988`, `10989`, `10990`, `10991`, `10992`, `10993`, `10994`, `10995`, `10996`, `10997`, `10998`, `10999`, `11000`, `11001`, `11002`, `11003`, `11004`, `11005`, `11006`, `11007`, `11008`, `11009`, `11010`, `11011`, `11012`, `11013`, `11014`, `11015`, `11016`, `11017`, `11018`, `11019`, `11020`, `11021`, `11022`, `11023`, `11024`, `11025`, `11026`, `11027`, `11028`, `11029`, `11030`, `11031`, `11032`, `11033`, `11034`, `11035`, `11036`, `11037`, `11038`, `11039`, `11040`, `11041`, `11042`, `11043`, `11044`, `11045`, `11046`, `11047`, `11048`, `11049`, `11050`, `11051`, `11052`, `11053`, `11054`, `11055`, `11056`, `11057`, `11058`, `11059`, `11060`, `11061`, `11062`, `11063`, `11064`, `11065`, `11066`, `11067`, `11068`, `11069`, `11070`, `11071`, `11072`, `11073`, `11074`, `11075`, `11076`, `11077`, `11078`, `11079`, `11080`, `11081`, `11082`, `11083`, `11084`, `11085`, `11086`, `11087`, `11088`, `11089`, `11090`, `11091`, `11092`, `11093`, `11094`, `11095`, `11096`, `11097`, `11098`, `11099`, `11100`, `11101`, `11102`, `11103`, `11104`, `11105`, `11106`, `11107`, `11108`, `11109`, `11110`, `11111`, `11112`, `11113`, `11114`, `11115`, `11116`, `11117`, `11118`, `11119`, `11120`, `11121`, `11122`, `11123`, `11124`, `11125`, `11126`, `11127`, `11128`, `11129`, `11130`, `11131`, `11132`, `11133`, `11134`, `11135`, `11136`, `11137`, `11138`, `11139`, `11140`, `11141`, `11142`, `11143`, `11144`, `11145`, `11146`, `11147`, `11148`, `11149`, `11150`, `11151`, `11152`, `11153`, `11154`, `11155`, `11156`, `11157`, `11158`, `11159`, `11160`, `11161`, `11162`, `11163`, `11164`, `11165`, `11166`, `11167`, `11168`, `11169`, `11170`, `11171`, `11172`, `11173`, `11174`, `11175`, `11176`, `11177`, `11178`, `11179`, `11180`, `11181`, `11182`, `11183`, `11184`, `11185`, `11186`, `11187`, `11188`, `11189`, `11190`, `11191`, `11192`, `11193`, `11194`, `11195`, `11196`, `11197`, `11198`, `11199`, `11200`, `11201`, `11202`, `11203`, `11204`, `11205`, `11206`, `11207`, `11208`, `11209`, `11210`, `11211`, `11212`, `11213`, `11214`, `11215`, `11216`, `11217`, `11218`, `11219`, `11220`, `11221`, `11222`, `11223`, `11224`, `11225`, `11226`, `11227`, `11228`, `11229`, `11230`, `11231`, `11232`, `11233`, `11234`, `11235`, `11236`, `11237`, `11238`, `11239`, `11240`, `11241`, `11242`, `11243`, `11244`, `11245`, `11246`, `11247`, `11248`, `11249`, `11250`, `11251`, `11252`, `11253`, `11254`, `11255`, `11256`, `11257`, `11258`, `11259`, `11260`, `11261`, `11262`, `11263`, `11264`, `11265`, `11266`, `11267`, `11268`, `11269`, `11270`, `11271`, `11272`, `11273`, `11274`, `11275`, `11276`, `11277`, `11278`, `11279`, `11280`, `11281`, `11282`, `11283`, `11284`, `11285`, `11286`, `11287`, `11288`, `11289`, `11290`, `11291`, `11292`, `11293`, `11294`, `11295`, `11296`, `11297`, `11298`, `11299`, `11300`, `11301`, `11302`, `11303`, `11304`, `11305`, `11306`, `11307`, `11308`, `11309`, `11310`, `11311`, `11312`, `11313`, `11314`, `11315`, `11316`, `11317`, `11318`, `11319`, `11320`, `11321`, `11322`, `11323`, `11324`, `11325`, `11326`, `11327`, `11328`, `11329`, `11330`, `11331`, `11332`, `11333`, `11334`, `11335`, `11336`, `11337`, `11338`, `11339`, `11340`, `11341`, `11342`, `11343`, `11344`, `11345`, `11346`, `11347`, `11348`, `11349`, `11350`, `11351`, `11352`, `11353`, `11354`, `11355`, `11356`, `11357`, `11358`, `11359`, `11360`, `11361`, `11362`, `11363`, `11364`, `11365`, `11366`, `11367`, `11368`, `11369`, `11370`, `11371`, `11372`, `11373`, `11374`, `11375`, `11376`, `11377`, `11378`, `11379`, `11380`, `11381`, `11382`, `11383`, `11384`, `11385`, `11386`, `11387`, `11388`, `11389`, `11390`, `11391`, `11392`, `11393`, `11394`, `11395`, `11396`, `11397`, `11398`, `11399`, `11400`, `11401`, `11402`, `11403`, `11404`, `11405`, `11406`, `11407`, `11408`, `11409`, `11410`, `11411`, `11412`, `11413`, `11414`, `11415`, `11416`, `11417`, `11418`, `11419`, `11420`, `11421`, `11422`, `11423`, `11424`, `11425`, `11426`, `11427`, `11428`, `11429`, `11430`, `11431`, `11432`, `11433`, `11434`, `11435`, `11436`, `11437`, `11438`, `11439`, `11440`, `11441`, `11442`, `11443`, `11444`, `11445`, `11446`, `11447`, `11448`, `11449`, `11450`, `11451`, `11452`, `11453`, `11454`, `11455`, `11456`, `11457`, `11458`, `11459`, `11460`, `11461`, `11462`, `11463`, `11464`, `11465`, `11466`, `11467`, `11468`, `11469`, `11470`, `11471`, `11472`, `11473`, `11474`, `11475`, `11476`, `11477`, `11478`, `11479`, `11480`, `11481`, `11482`, `11483`, `11484`, `11485`, `11486`, `11487`, `11488`, `11489`, `11490`, `11491`, `11492`, `11493`, `11494`, `11495`, `11496`, `11497`, `11498`, `11499`, `11500`, `11501`, `11502`, `11503`, `11504`, `11505`, `11506`, `11507`, `11508`, `11509`, `11510`, `11511`, `11512`, `11513`, `11514`, `11515`, `11516`, `11517`, `11518`, `11519`, `11520`, `11521`, `11522`, `11523`, `11524`, `11525`, `11526`, `11527`, `11528`, `11529`, `11530`, `11531`, `11532`, `11533`, `11534`, `11535`, `11536`, `11537`, `11538`, `11539`, `11540`, `11541`, `11542`, `11543`, `11544`, `11545`, `11546`, `11547`, `11548`, `11549`, `11550`, `11551`, `11552`, `11553`, `11554`, `11555`, `11556`, `11557`, `11558`, `11559`, `11560`, `11561`, `11562`, `11563`, `11564`, `11565`, `11566`, `11567`, `11568`, `11569`, `11570`, `11571`, `11572`, `11573`, `11574`, `11575`, `11576`, `11577`, `11578`, `11579`, `11580`, `11581`, `11582`, `11583`, `11584`, `11585`, `11586`, `11587`, `11588`, `11589`, `11590`, `11591`, `11592`, `11593`, `11594`, `11595`, `11596`, `11597`, `11598`, `11599`, `11600`, `11601`, `11602`, `11603`, `11604`, `11605`, `11606`, `11607`, `11608`, `11609`, `11610`, `11611`, `11612`, `11613`, `11614`, `11615`, `11616`, `11617`, `11618`, `11619`, `11620`, `11621`, `11622`, `11623`, `11624`, `11625`, `11626`, `11627`, `11628`, `11629`, `11630`, `11631`, `11632`, `11633`, `11634`, `11635`, `11636`, `11637`, `11638`, `11639`, `11640`, `11641`, `11642`, `11643`, `11644`, `11645`, `11646`, `11647`, `11648`, `11649`, `11650`, `11651`, `11652`, `11653`, `11654`, `11655`, `11656`, `11657`, `11658`, `11659`, `11660`, `11661`, `11662`, `11663`, `11664`, `11665`, `11666`, `11667`, `11668`, `11669`, `11670`, `11671`, `11672`, `11673`, `11674`, `11675`, `11676`, `11677`, `11678`, `11679`, `11680`, `11681`, `11682`, `11683`, `11684`, `11685`, `11686`, `11687`, `11688`, `11689`, `11690`, `11691`, `11692`, `11693`, `11694`, `11695`, `11696`, `11697`, `11698`, `11699`, `11700`, `11701`, `11702`, `11703`, `11704`, `11705`, `11706`, `11707`, `11708`, `11709`, `11710`, `11711`, `11712`, `11713`, `11714`, `11715`, `11716`, `11717`, `11718`, `11719`, `11720`, `11721`, `11722`, `11723`, `11724`, `11725`, `11726`, `11727`, `11728`, `11729`, `11730`, `11731`, `11732`, `11733`, `11734`, `11735`, `11736`, `11737`, `11738`, `11739`, `11740`, `11741`, `11742`, `11743`, `11744`, `11745`, `11746`, `11747`, `11748`, `11749`, `11750`, `11751`, `11752`, `11753`, `11754`, `11755`, `11756`, `11757`, `11758`, `11759`, `11760`, `11761`, `11762`, `11763`, `11764`, `11765`, `11766`, `11767`, `11768`, `11769`, `11770`, `11771`, `11772`, `11773`, `11774`, `11775`, `11776`, `11777`, `11778`, `11779`, `11780`, `11781`, `11782`, `11783`, `11784`, `11785`, `11786`, `11787`, `11788`, `11789`, `11790`, `11791`, `11792`, `11793`, `11794`, `11795`, `11796`, `11797`, `11798`, `11799`, `11800`, `11801`, `11802`, `11803`, `11804`, `11805`, `11806`, `11807`, `11808`, `11809`, `11810`, `11811`, `11812`, `11813`, `11814`, `11815`, `11816`, `11817`, `11818`, `11819`, `11820`, `11821`, `11822`, `11823`, `11824`, `11825`, `11826`, `11827`, `11828`, `11829`, `11830`, `11831`, `11832`, `11833`, `11834`, `11835`, `11836`, `11837`, `11838`, `11839`, `11840`, `11841`, `11842`, `11843`, `11844`, `11845`, `11846`, `11847`, `11848`, `11849`, `11850`, `11851`, `11852`, `11853`, `11854`, `11855`, `11856`, `11857`, `11858`, `11859`, `11860`, `11861`, `11862`, `11863`, `11864`, `11865`, `11866`, `11867`, `11868`, `11869`, `11870`, `11871`, `11872`, `11873`, `11874`, `11875`, `11876`, `11877`, `11878`, `11879`, `11880`, `11881`, `11882`, `11883`, `11884`, `11885`, `11886`, `11887`, `11888`, `11889`, `11890`, `11891`, `11892`, `11893`, `11894`, `11895`, `11896`, `11897`, `11898`, `11899`, `11900`, `11901`, `11902`, `11903`, `11904`, `11905`, `11906`, `11907`, `11908`, `11909`, `11910`, `11911`, `11912`, `11913`, `11914`, `11915`, `11916`, `11917`, `11918`, `11919`, `11920`, `11921`, `11922`, `11923`, `11924`, `11925`, `11926`, `11927`, `11928`, `11929`, `11930`, `11931`, `11932`, `11933`, `11934`, `11935`, `11936`, `11937`, `11938`, `11939`, `11940`, `11941`, `11942`, `11943`, `11944`, `11945`, `11946`, `11947`, `11948`, `11949`, `11950`, `11951`, `11952`, `11953`, `11954`, `11955`, `11956`, `11957`, `11958`, `11959`, `11960`, `11961`, `11962`, `11963`, `11964`, `11965`, `11966`, `11967`, `11968`, `11969`, `11970`, `11971`, `11972`, `11973`, `11974`, `11975`, `11976`, `11977`, `11978`, `11979`, `11980`, `11981`, `11982`, `11983`, `11984`, `11985`, `11986`, `11987`, `11988`, `11989`, `11990`, `11991`, `11992`, `11993`, `11994`, `11995`, `11996`, `11997`, `11998`, `11999`, `12000`, `12001`, `12002`, `12003`, `12004`, `12005`, `12006`, `12007`, `12008`, `12009`, `12010`, `12011`, `12012`, `12013`, `12014`, `12015`, `12016`, `12017`, `12018`, `12019`, `12020`, `12021`, `12022`, `12023`, `12024`, `12025`, `12026`, `12027`, `12028`, `12029`, `12030`, `12031`, `12032`, `12033`, `12034`, `12035`, `12036`, `12037`, `12038`, `12039`, `12040`, `12041`, `12042`, `12043`, `12044`, `12045`, `12046`, `12047`, `12048`, `12049`, `12050`, `12051`, `12052`, `12053`, `12054`, `12055`, `12056`, `12057`, `12058`, `12059`, `12060`, `12061`, `12062`, `12063`, `12064`, `12065`, `12066`, `12067`, `12068`, `12069`, `12070`, `12071`, `12072`, `12073`, `12074`, `12075`, `12076`, `12077`, `12078`, `12079`, `12080`, `12081`, `12082`, `12083`, `12084`, `12085`, `12086`, `12087`, `12088`, `12089`, `12090`, `12091`, `12092`, `12093`, `12094`, `12095`, `12096`, `12097`, `12098`, `12099`, `12100`, `12101`, `12102`, `12103`, `12104`, `12105`, `12106`, `12107`, `12108`, `12109`, `12110`, `12111`, `12112`, `12113`, `12114`, `12115`, `12116`, `12117`, `12118`, `12119`, `12120`, `12121`, `12122`, `12123`, `12124`, `12125`, `12126`, `12127`, `12128`, `12129`, `12130`, `12131`, `12132`, `12133`, `12134`, `12135`, `12136`, `12137`, `12138`, `12139`, `12140`, `12141`, `12142`, `12143`, `12144`, `12145`, `12146`, `12147`, `12148`, `12149`, `12150`, `12151`, `12152`, `12153`, `12154`, `12155`, `12156`, `12157`, `12158`, `12159`, `12160`, `12161`, `12162`, `12163`, `12164`, `12165`, `12166`, `12167`, `12168`, `12169`, `12170`, `12171`, `12172`, `12173`, `12174`, `12175`, `12176`, `12177`, `12178`, `12179`, `12180`, `12181`, `12182`, `12183`, `12184`, `12185`, `12186`, `12187`, `12188`, `12189`, `12190`, `12191`, `12192`, `12193`, `12194`, `12195`, `12196`, `12197`, `12198`, `12199`, `12200`, `12201`, `12202`, `12203`, `12204`, `12205`, `12206`, `12207`, `12208`, `12209`, `12210`, `12211`, `12212`, `12213`, `12214`, `12215`, `12216`, `12217`, `12218`, `12219`, `12220`, `12221`, `12222`, `12223`, `12224`, `12225`, `12226`, `12227`, `12228`, `12229`, `12230`, `12231`, `12232`, `12233`, `12234`, `12235`, `12236`, `12237`, `12238`, `12239`, `12240`, `12241`, `12242`, `12243`, `12244`, `12245`, `12246`, `12247`, `12248`, `12249`, `12250`, `12251`, `12252`, `12253`, `12254`, `12255`, `12256`, `12257`, `12258`, `12259`, `12260`, `12261`, `12262`, `12263`, `12264`, `12265`, `12266`, `12267`, `12268`, `12269`, `12270`, `12271`, `12272`, `12273`, `12274`, `12275`, `12276`, `12277`, `12278`, `12279`, `12280`, `12281`, `12282`, `12283`, `12284`, `12285`, `12286`, `12287`, `12288`, `12289`, `12290`, `12291`, `12292`, `12293`, `12294`, `12295`, `12296`, `12297`, `12298`, `12299`, `12300`, `12301`, `12302`, `12303`, `12304`, `12305`, `12306`, `12307`, `12308`, `12309`, `12310`, `12311`, `12312`, `12313`, `12314`, `12315`, `12316`, `12317`, `12318`, `12319`, `12320`, `12321`, `12322`, `12323`, `12324`, `12325`, `12326`, `12327`, `12328`, `12329`, `12330`, `12331`, `12332`, `12333`, `12334`, `12335`, `12336`, `12337`, `12338`, `12339`, `12340`, `12341`, `12342`, `12343`, `12344`, `12345`, `12346`, `12347`, `12348`, `12349`, `12350`, `12351`, `12352`, `12353`, `12354`, `12355`, `12356`, `12357`, `12358`, `12359`, `12360`, `12361`, `12362`, `12363`, `12364`, `12365`, `12366`, `12367`, `12368`, `12369`, `12370`, `12371`, `12372`, `12373`, `12374`, `12375`, `12376`, `12377`, `12378`, `12379`, `12380`, `12381`, `12382`, `12383`, `12384`, `12385`, `12386`, `12387`, `12388`, `12389`, `12390`, `12391`, `12392`, `12393`, `12394`, `12395`, `12396`, `12397`, `12398`, `12399`, `12400`, `12401`, `12402`, `12403`, `12404`, `12405`, `12406`, `12407`, `12408`, `12409`, `12410`, `12411`, `12412`, `12413`, `12414`, `12415`, `12416`, `12417`, `12418`, `12419`, `12420`, `12421`, `12422`, `12423`, `12424`, `12425`, `12426`, `12427`, `12428`, `12429`, `12430`, `12431`, `12432`, `12433`, `12434`, `12435`, `12436`, `12437`, `12438`, `12439`, `12440`, `12441`, `12442`, `12443`, `12444`, `12445`, `12446`, `12447`, `12448`, `12449`, `12450`, `12451`, `12452`, `12453`, `12454`, `12455`, `12456`, `12457`, `12458`, `12459`, `12460`, `12461`, `12462`, `12463`, `12464`, `12465`, `12466`, `12467`, `12468`, `12469`, `12470`, `12471`, `12472`, `12473`, `12474`, `12475`, `12476`, `12477`, `12478`, `12479`, `12480`, `12481`, `12482`, `12483`, `12484`, `12485`, `12486`, `12487`, `12488`, `12489`, `12490`, `12491`, `12492`, `12493`, `12494`, `12495`, `12496`, `12497`, `12498`, `12499`, `12500`, `12501`, `12502`, `12503`, `12504`, `12505`, `12506`, `12507`, `12508`, `12509`, `12510`, `12511`, `12512`, `12513`, `12514`, `12515`, `12516`, `12517`, `12518`, `12519`, `12520`, `12521`, `12522`, `12523`, `12524`, `12525`, `12526`, `12527`, `12528`, `12529`, `12530`, `12531`, `12532`, `12533`, `12534`, `12535`, `12536`, `12537`, `12538`, `12539`, `12540`, `12541`, `12542`, `12543`, `12544`, `12545`, `12546`, `12547`, `12548`, `12549`, `12550`, `12551`, `12552`, `12553`, `12554`, `12555`, `12556`, `12557`, `12558`, `12559`, `12560`, `12561`, `12562`, `12563`, `12564`, `12565`, `12566`, `12567`, `12568`, `12569`, `12570`, `12571`, `12572`, `12573`, `12574`, `12575`, `12576`, `12577`, `12578`, `12579`, `12580`, `12581`, `12582`, `12583`, `12584`, `12585`, `12586`, `12587`, `12588`, `12589`, `12590`, `12591`, `12592`, `12593`, `12594`, `12595`, `12596`, `12597`, `12598`, `12599`, `12600`, `12601`, `12602`, `12603`, `12604`, `12605`, `12606`, `12607`, `12608`, `12609`, `12610`, `12611`, `12612`, `12613`, `12614`, `12615`, `12616`, `12617`, `12618`, `12619`, `12620`, `12621`, `12622`, `12623`, `12624`, `12625`, `12626`, `12627`, `12628`, `12629`, `12630`, `12631`, `12632`, `12633`, `12634`, `12635`, `12636`, `12637`, `12638`, `12639`, `12640`, `12641`, `12642`, `12643`, `12644`, `12645`, `12646`, `12647`, `12648`, `12649`, `12650`, `12651`, `12652`, `12653`, `12654`, `12655`, `12656`, `12657`, `12658`, `12659`, `12660`, `12661`, `12662`, `12663`, `12664`, `12665`, `12666`, `12667`, `12668`, `12669`, `12670`, `12671`, `12672`, `12673`, `12674`, `12675`, `12676`, `12677`, `12678`, `12679`, `12680`, `12681`, `12682`, `12683`, `12684`, `12685`, `12686`, `12687`, `12688`, `12689`, `12690`, `12691`, `12692`, `12693`, `12694`, `12695`, `12696`, `12697`, `12698`, `12699`, `12700`, `12701`, `12702`, `12703`, `12704`, `12705`, `12706`, `12707`, `12708`, `12709`, `12710`, `12711`, `12712`, `12713`, `12714`, `12715`, `12716`, `12717`, `12718`, `12719`, `12720`, `12721`, `12722`, `12723`, `12724`, `12725`, `12726`, `12727`, `12728`, `12729`, `12730`, `12731`, `12732`, `12733`, `12734`, `12735`, `12736`, `12737`, `12738`, `12739`, `12740`, `12741`, `12742`, `12743`, `12744`, `12745`, `12746`, `12747`, `12748`, `12749`, `12750`, `12751`, `12752`, `12753`, `12754`, `12755`, `12756`, `12757`, `12758`, `12759`, `12760`, `12761`, `12762`, `12763`, `12764`, `12765`, `12766`, `12767`, `12768`, `12769`, `12770`, `12771`, `12772`, `12773`, `12774`, `12775`, `12776`, `12777`, `12778`, `12779`, `12780`, `12781`, `12782`, `12783`, `12784`, `12785`, `12786`, `12787`, `12788`, `12789`, `12790`, `12791`, `12792`, `12793`, `12794`, `12795`, `12796`, `12797`, `12798`, `12799`, `12800`, `12801`, `12802`, `12803`, `12804`, `12805`, `12806`, `12807`, `12808`, `12809`, `12810`, `12811`, `12812`, `12813`, `12814`, `12815`, `12816`, `12817`, `12818`, `12819`, `12820`, `12821`, `12822`, `12823`, `12824`, `12825`, `12826`, `12827`, `12828`, `12829`, `12830`, `12831`, `12832`, `12833`, `12834`, `12835`, `12836`, `12837`, `12838`, `12839`, `12840`, `12841`, `12842`, `12843`, `12844`, `12845`, `12846`, `12847`, `12848`, `12849`, `12850`, `12851`, `12852`, `12853`, `12854`, `12855`, `12856`, `12857`, `12858`, `12859`, `12860`, `12861`, `12862`, `12863`, `12864`, `12865`, `12866`, `12867`, `12868`, `12869`, `12870`, `12871`, `12872`, `12873`, `12874`, `12875`, `12876`, `12877`, `12878`, `12879`, `12880`, `12881`, `12882`, `12883`, `12884`, `12885`, `12886`, `12887`, `12888`, `12889`, `12890`, `12891`, `12892`, `12893`, `12894`, `12895`, `12896`, `12897`, `12898`, `12899`, `12900`, `12901`, `12902`, `12903`, `12904`, `12905`, `12906`, `12907`, `12908`, `12909`, `12910`, `12911`, `12912`, `12913`, `12914`, `12915`, `12916`, `12917`, `12918`, `12919`, `12920`, `12921`, `12922`, `12923`, `12924`, `12925`, `12926`, `12927`, `12928`, `12929`, `12930`, `12931`, `12932`, `12933`, `12934`, `12935`, `12936`, `12937`, `12938`, `12939`, `12940`, `12941`, `12942`, `12943`, `12944`, `12945`, `12946`, `12947`, `12948`, `12949`, `12950`, `12951`, `12952`, `12953`, `12954`, `12955`, `12956`, `12957`, `12958`, `12959`, `12960`, `12961`, `12962`, `12963`, `12964`, `12965`, `12966`, `12967`, `12968`, `12969`, `12970`, `12971`, `12972`, `12973`, `12974`, `12975`, `12976`, `12977`, `12978`, `12979`, `12980`, `12981`, `12982`, `12983`, `12984`, `12985`, `12986`, `12987`, `12988`, `12989`, `12990`, `12991`, `12992`, `12993`, `12994`, `12995`, `12996`, `12997`, `12998`, `12999`, `13000`, `13001`, `13002`, `13003`, `13004`, `13005`, `13006`, `13007`, `13008`, `13009`, `13010`, `13011`, `13012`, `13013`, `13014`, `13015`, `13016`, `13017`, `13018`, `13019`, `13020`, `13021`, `13022`, `13023`, `13024`, `13025`, `13026`, `13027`, `13028`, `13029`, `13030`, `13031`, `13032`, `13033`, `13034`, `13035`, `13036`, `13037`, `13038`, `13039`, `13040`, `13041`, `13042`, `13043`, `13044`, `13045`, `13046`, `13047`, `13048`, `13049`, `13050`, `13051`, `13052`, `13053`, `13054`, `13055`, `13056`, `13057`, `13058`, `13059`, `13060`, `13061`, `13062`, `13063`, `13064`, `13065`, `13066`, `13067`, `13068`, `13069`, `13070`, `13071`, `13072`, `13073`, `13074`, `13075`, `13076`, `13077`, `13078`, `13079`, `13080`, `13081`, `13082`, `13083`, `13084`, `13085`, `13086`, `13087`, `13088`, `13089`, `13090`, `13091`, `13092`, `13093`, `13094`, `13095`, `13096`, `13097`, `13098`, `13099`, `13100`, `13101`, `13102`, `13103`, `13104`, `13105`, `13106`, `13107`, `13108`, `13109`, `13110`, `13111`, `13112`, `13113`, `13114`, `13115`, `13116`, `13117`, `13118`, `13119`, `13120`, `13121`, `13122`, `13123`, `13124`, `13125`, `13126`, `13127`, `13128`, `13129`, `13130`, `13131`, `13132`, `13133`, `13134`, `13135`, `13136`, `13137`, `13138`, `13139`, `13140`, `13141`, `13142`, `13143`, `13144`, `13145`, `13146`, `13147`, `13148`, `13149`, `13150`, `13151`, `13152`, `13153`, `13154`, `13155`, `13156`, `13157`, `13158`, `13159`, `13160`, `13161`, `13162`, `13163`, `13164`, `13165`, `13166`, `13167`, `13168`, `13169`, `13170`, `13171`, `13172`, `13173`, `13174`, `13175`, `13176`, `13177`, `13178`, `13179`, `13180`, `13181`, `13182`, `13183`, `13184`, `13185`, `13186`, `13187`, `13188`, `13189`, `13190`, `13191`, `13192`, `13193`, `13194`, `13195`, `13196`, `13197`, `13198`, `13199`, `13200`, `13201`, `13202`, `13203`, `13204`, `13205`, `13206`, `13207`, `13208`, `13209`, `13210`, `13211`, `13212`, `13213`, `13214`, `13215`, `13216`, `13217`, `13218`, `13219`, `13220`, `13221`, `13222`, `13223`, `13224`, `13225`, `13226`, `13227`, `13228`, `13229`, `13230`, `13231`, `13232`, `13233`, `13234`, `13235`, `13236`, `13237`, `13238`, `13239`, `13240`, `13241`, `13242`, `13243`, `13244`, `13245`, `13246`, `13247`, `13248`, `13249`, `13250`, `13251`, `13252`, `13253`, `13254`, `13255`, `13256`, `13257`, `13258`, `13259`, `13260`, `13261`, `13262`, `13263`, `13264`, `13265`, `13266`, `13267`, `13268`, `13269`, `13270`, `13271`, `13272`, `13273`, `13274`, `13275`, `13276`, `13277`, `13278`, `13279`, `13280`, `13281`, `13282`, `13283`, `13284`, `13285`, `13286`, `13287`, `13288`, `13289`, `13290`, `13291`, `13292`, `13293`, `13294`, `13295`, `13296`, `13297`, `13298`, `13299`, `13300`, `13301`, `13302`, `13303`, `13304`, `13305`, `13306`, `13307`, `13308`, `13309`, `13310`, `13311`, `13312`, `13313`, `13314`, `13315`, `13316`, `13317`, `13318`, `13319`, `13320`, `13321`, `13322`, `13323`, `13324`, `13325`, `13326`, `13327`, `13328`, `13329`, `13330`, `13331`, `13332`, `13333`, `13334`, `13335`, `13336`, `13337`, `13338`, `13339`, `13340`, `13341`, `13342`, `13343`, `13344`, `13345`, `13346`, `13347`, `13348`, `13349`, `13350`, `13351`, `13352`, `13353`, `13354`, `13355`, `13356`, `13357`, `13358`, `13359`, `13360`, `13361`, `13362`, `13363`, `13364`, `13365`, `13366`, `13367`, `13368`, `13369`, `13370`, `13371`, `13372`, `13373`, `13374`, `13375`, `13376`, `13377`, `13378`, `13379`, `13380`, `13381`, `13382`, `13383`, `13384`, `13385`, `13386`, `13387`, `13388`, `13389`, `13390`, `13391`, `13392`, `13393`, `13394`, `13395`, `13396`, `13397`, `13398`, `13399`, `13400`, `13401`, `13402`, `13403`, `13404`, `13405`, `13406`, `13407`, `13408`, `13409`, `13410`, `13411`, `13412`, `13413`, `13414`, `13415`, `13416`, `13417`, `13418`, `13419`, `13420`, `13421`, `13422`, `13423`, `13424`, `13425`, `13426`, `13427`, `13428`, `13429`, `13430`, `13431`, `13432`, `13433`, `13434`, `13435`, `13436`, `13437`, `13438`, `13439`, `13440`, `13441`, `13442`, `13443`, `13444`, `13445`, `13446`, `13447`, `13448`, `13449`, `13450`, `13451`, `13452`, `13453`, `13454`, `13455`, `13456`, `13457`, `13458`, `13459`, `13460`, `13461`, `13462`, `13463`, `13464`, `13465`, `13466`, `13467`, `13468`, `13469`, `13470`, `13471`, `13472`, `13473`, `13474`, `13475`, `13476`, `13477`, `13478`, `13479`, `13480`, `13481`, `13482`, `13483`, `13484`, `13485`, `13486`, `13487`, `13488`, `13489`, `13490`, `13491`, `13492`, `13493`, `13494`, `13495`, `13496`, `13497`, `13498`, `13499`, `13500`, `13501`, `13502`, `13503`, `13504`, `13505`, `13506`, `13507`, `13508`, `13509`, `13510`, `13511`, `13512`, `13513`, `13514`, `13515`, `13516`, `13517`, `13518`, `13519`, `13520`, `13521`, `13522`, `13523`, `13524`, `13525`, `13526`, `13527`, `13528`, `13529`, `13530`, `13531`, `13532`, `13533`, `13534`, `13535`, `13536`, `13537`, `13538`, `13539`, `13540`, `13541`, `13542`, `13543`, `13544`, `13545`, `13546`, `13547`, `13548`, `13549`, `13550`, `13551`, `13552`, `13553`, `13554`, `13555`, `13556`, `13557`, `13558`, `13559`, `13560`, `13561`, `13562`, `13563`, `13564`, `13565`, `13566`, `13567`, `13568`, `13569`, `13570`, `13571`, `13572`, `13573`, `13574`, `13575`, `13576`, `13577`, `13578`, `13579`, `13580`, `13581`, `13582`, `13583`, `13584`, `13585`, `13586`, `13587`, `13588`, `13589`, `13590`, `13591`, `13592`, `13593`, `13594`, `13595`, `13596`, `13597`, `13598`, `13599`, `13600`, `13601`, `13602`, `13603`, `13604`, `13605`, `13606`, `13607`, `13608`, `13609`, `13610`, `13611`, `13612`, `13613`, `13614`, `13615`, `13616`, `13617`, `13618`, `13619`, `13620`, `13621`, `13622`, `13623`, `13624`, `13625`, `13626`, `13627`, `13628`, `13629`, `13630`, `13631`, `13632`, `13633`, `13634`, `13635`, `13636`, `13637`, `13638`, `13639`, `13640`, `13641`, `13642`, `13643`, `13644`, `13645`, `13646`, `13647`, `13648`, `13649`, `13650`, `13651`, `13652`, `13653`, `13654`, `13655`, `13656`, `13657`, `13658`, `13659`, `13660`, `13661`, `13662`, `13663`, `13664`, `13665`, `13666`, `13667`, `13668`, `13669`, `13670`, `13671`, `13672`, `13673`, `13674`, `13675`, `13676`, `13677`, `13678`, `13679`, `13680`, `13681`, `13682`, `13683`, `13684`, `13685`, `13686`, `13687`, `13688`, `13689`, `13690`, `13691`, `13692`, `13693`, `13694`, `13695`, `13696`, `13697`, `13698`, `13699`, `13700`, `13701`, `13702`, `13703`, `13704`, `13705`, `13706`, `13707`, `13708`, `13709`, `13710`, `13711`, `13712`, `13713`, `13714`, `13715`, `13716`, `13717`, `13718`, `13719`, `13720`, `13721`, `13722`, `13723`, `13724`, `13725`, `13726`, `13727`, `13728`, `13729`, `13730`, `13731`, `13732`, `13733`, `13734`, `13735`, `13736`, `13737`, `13738`, `13739`, `13740`, `13741`, `13742`, `13743`, `13744`, `13745`, `13746`, `13747`, `13748`, `13749`, `13750`, `13751`, `13752`, `13753`, `13754`, `13755`, `13756`, `13757`, `13758`, `13759`, `13760`, `13761`, `13762`, `13763`, `13764`, `13765`, `13766`, `13767`, `13768`, `13769`, `13770`, `13771`, `13772`, `13773`, `13774`, `13775`, `13776`, `13777`, `13778`, `13779`, `13780`, `13781`, `13782`, `13783`, `13784`, `13785`, `13786`, `13787`, `13788`, `13789`, `13790`, `13791`, `13792`, `13793`, `13794`, `13795`, `13796`, `13797`, `13798`, `13799`, `13800`, `13801`, `13802`, `13803`, `13804`, `13805`, `13806`, `13807`, `13808`, `13809`, `13810`, `13811`, `13812`, `13813`, `13814`, `13815`, `13816`, `13817`, `13818`, `13819`, `13820`, `13821`, `13822`, `13823`, `13824`, `13825`, `13826`, `13827`, `13828`, `13829`, `13830`, `13831`, `13832`, `13833`, `13834`, `13835`, `13836`, `13837`, `13838`, `13839`, `13840`, `13841`, `13842`, `13843`, `13844`, `13845`, `13846`, `13847`, `13848`, `13849`, `13850`, `13851`, `13852`, `13853`, `13854`, `13855`, `13856`, `13857`, `13858`, `13859`, `13860`, `13861`, `13862`, `13863`, `13864`, `13865`, `13866`, `13867`, `13868`, `13869`, `13870`, `13871`, `13872`, `13873`, `13874`, `13875`, `13876`, `13877`, `13878`, `13879`, `13880`, `13881`, `13882`, `13883`, `13884`, `13885`, `13886`, `13887`, `13888`, `13889`, `13890`, `13891`, `13892`, `13893`, `13894`, `13895`, `13896`, `13897`, `13898`, `13899`, `13900`, `13901`, `13902`, `13903`, `13904`, `13905`, `13906`, `13907`, `13908`, `13909`, `13910`, `13911`, `13912`, `13913`, `13914`, `13915`, `13916`, `13917`, `13918`, `13919`, `13920`, `13921`, `13922`, `13923`, `13924`, `13925`, `13926`, `13927`, `13928`, `13929`, `13930`, `13931`, `13932`, `13933`, `13934`, `13935`, `13936`, `13937`, `13938`, `13939`, `13940`, `13941`, `13942`, `13943`, `13944`, `13945`, `13946`, `13947`, `13948`, `13949`, `13950`, `13951`, `13952`, `13953`, `13954`, `13955`, `13956`, `13957`, `13958`, `13959`, `13960`, `13961`, `13962`, `13963`, `13964`, `13965`, `13966`, `13967`, `13968`, `13969`, `13970`, `13971`, `13972`, `13973`, `13974`, `13975`, `13976`, `13977`, `13978`, `13979`, `13980`, `13981`, `13982`, `13983`, `13984`, `13985`, `13986`, `13987`, `13988`, `13989`, `13990`, `13991`, `13992`, `13993`, `13994`, `13995`, `13996`, `13997`, `13998`, `13999`, `14000`, `14001`, `14002`, `14003`, `14004`, `14005`, `14006`, `14007`, `14008`, `14009`, `14010`, `14011`, `14012`, `14013`, `14014`, `14015`, `14016`, `14017`, `14018`, `14019`, `14020`, `14021`, `14022`, `14023`, `14024`, `14025`, `14026`, `14027`, `14028`, `14029`, `14030`, `14031`, `14032`, `14033`, `14034`, `14035`, `14036`, `14037`, `14038`, `14039`, `14040`, `14041`, `14042`, `14043`, `14044`, `14045`, `14046`, `14047`, `14048`, `14049`, `14050`, `14051`, `14052`, `14053`, `14054`, `14055`, `14056`, `14057`, `14058`, `14059`, `14060`, `14061`, `14062`, `14063`, `14064`, `14065`, `14066`, `14067`, `14068`, `14069`, `14070`, `14071`, `14072`, `14073`, `14074`, `14075`, `14076`, `14077`, `14078`, `14079`, `14080`, `14081`, `14082`, `14083`, `14084`, `14085`, `14086`, `14087`, `14088`, `14089`, `14090`, `14091`, `14092`, `14093`, `14094`, `14095`, `14096`, `14097`, `14098`, `14099`, `14100`, `14101`, `14102`, `14103`, `14104`, `14105`, `14106`, `14107`, `14108`, `14109`, `14110`, `14111`, `14112`, `14113`, `14114`, `14115`, `14116`, `14117`, `14118`, `14119`, `14120`, `14121`, `14122`, `14123`, `14124`, `14125`, `14126`, `14127`, `14128`, `14129`, `14130`, `14131`, `14132`, `14133`, `14134`, `14135`, `14136`, `14137`, `14138`, `14139`, `14140`, `14141`, `14142`, `14143`, `14144`, `14145`, `14146`, `14147`, `14148`, `14149`, `14150`, `14151`, `14152`, `14153`, `14154`, `14155`, `14156`, `14157`, `14158`, `14159`, `14160`, `14161`, `14162`, `14163`, `14164`, `14165`, `14166`, `14167`, `14168`, `14169`, `14170`, `14171`, `14172`, `14173`, `14174`, `14175`, `14176`, `14177`, `14178`, `14179`, `14180`, `14181`, `14182`, `14183`, `14184`, `14185`, `14186`, `14187`, `14188`, `14189`, `14190`, `14191`, `14192`, `14193`, `14194`, `14195`, `14196`, `14197`, `14198`, `14199`, `14200`, `14201`, `14202`, `14203`, `14204`, `14205`, `14206`, `14207`, `14208`, `14209`, `14210`, `14211`, `14212`, `14213`, `14214`, `14215`, `14216`, `14217`, `14218`, `14219`, `14220`, `14221`, `14222`, `14223`, `14224`, `14225`, `14226`, `14227`, `14228`, `14229`, `14230`, `14231`, `14232`, `14233`, `14234`, `14235`, `14236`, `14237`, `14238`, `14239`, `14240`, `14241`, `14242`, `14243`, `14244`, `14245`, `14246`, `14247`, `14248`, `14249`, `14250`, `14251`, `14252`, `14253`, `14254`, `14255`, `14256`, `14257`, `14258`, `14259`, `14260`, `14261`, `14262`, `14263`, `14264`, `14265`, `14266`, `14267`, `14268`, `14269`, `14270`, `14271`, `14272`, `14273`, `14274`, `14275`, `14276`, `14277`, `14278`, `14279`, `14280`, `14281`, `14282`, `14283`, `14284`, `14285`, `14286`, `14287`, `14288`, `14289`, `14290`, `14291`, `14292`, `14293`, `14294`, `14295`, `14296`, `14297`, `14298`, `14299`, `14300`, `14301`, `14302`, `14303`, `14304`, `14305`, `14306`, `14307`, `14308`, `14309`, `14310`, `14311`, `14312`, `14313`, `14314`, `14315`, `14316`, `14317`, `14318`, `14319`, `14320`, `14321`, `14322`, `14323`, `14324`, `14325`, `14326`, `14327`, `14328`, `14329`, `14330`, `14331`, `14332`, `14333`, `14334`, `14335`, `14336`, `14337`, `14338`, `14339`, `14340`, `14341`, `14342`, `14343`, `14344`, `14345`, `14346`, `14347`, `14348`, `14349`, `14350`, `14351`, `14352`, `14353`, `14354`, `14355`, `14356`, `14357`, `14358`, `14359`, `14360`, `14361`, `14362`, `14363`, `14364`, `14365`, `14366`, `14367`, `14368`, `14369`, `14370`, `14371`, `14372`, `14373`, `14374`, `14375`, `14376`, `14377`, `14378`, `14379`, `14380`, `14381`, `14382`, `14383`, `14384`, `14385`, `14386`, `14387`, `14388`, `14389`, `14390`, `14391`, `14392`, `14393`, `14394`, `14395`, `14396`, `14397`, `14398`, `14399`, `14400`, `14401`, `14402`, `14403`, `14404`, `14405`, `14406`, `14407`, `14408`, `14409`, `14410`, `14411`, `14412`, `14413`, `14414`, `14415`, `14416`, `14417`, `14418`, `14419`, `14420`, `14421`, `14422`, `14423`, `14424`, `14425`, `14426`, `14427`, `14428`, `14429`, `14430`, `14431`, `14432`, `14433`, `14434`, `14435`, `14436`, `14437`, `14438`, `14439`, `14440`, `14441`, `14442`, `14443`, `14444`, `14445`, `14446`, `14447`, `14448`, `14449`, `14450`, `14451`, `14452`, `14453`, `14454`, `14455`, `14456`, `14457`, `14458`, `14459`, `14460`, `14461`, `14462`, `14463`, `14464`, `14465`, `14466`, `14467`, `14468`, `14469`, `14470`, `14471`, `14472`, `14473`, `14474`, `14475`, `14476`, `14477`, `14478`, `14479`, `14480`, `14481`, `14482`, `14483`, `14484`, `14485`, `14486`, `14487`, `14488`, `14489`, `14490`, `14491`, `14492`, `14493`, `14494`, `14495`, `14496`, `14497`, `14498`, `14499`, `14500`, `14501`, `14502`, `14503`, `14504`, `14505`, `14506`, `14507`, `14508`, `14509`, `14510`, `14511`, `14512`, `14513`, `14514`, `14515`, `14516`, `14517`, `14518`, `14519`, `14520`, `14521`, `14522`, `14523`, `14524`, `14525`, `14526`, `14527`, `14528`, `14529`, `14530`, `14531`, `14532`, `14533`, `14534`, `14535`, `14536`, `14537`, `14538`, `14539`, `14540`, `14541`, `14542`, `14543`, `14544`, `14545`, `14546`, `14547`, `14548`, `14549`, `14550`, `14551`, `14552`, `14553`, `14554`, `14555`, `14556`, `14557`, `14558`, `14559`, `14560`, `14561`, `14562`, `14563`, `14564`, `14565`, `14566`, `14567`, `14568`, `14569`, `14570`, `14571`, `14572`, `14573`, `14574`, `14575`, `14576`, `14577`, `14578`, `14579`, `14580`, `14581`, `14582`, `14583`, `14584`, `14585`, `14586`, `14587`, `14588`, `14589`, `14590`, `14591`, `14592`, `14593`, `14594`, `14595`, `14596`, `14597`, `14598`, `14599`, `14600`, `14601`, `14602`, `14603`, `14604`, `14605`, `14606`, `14607`, `14608`, `14609`, `14610`, `14611`, `14612`, `14613`, `14614`, `14615`, `14616`, `14617`, `14618`, `14619`, `14620`, `14621`, `14622`, `14623`, `14624`, `14625`, `14626`, `14627`, `14628`, `14629`, `14630`, `14631`, `14632`, `14633`, `14634`, `14635`, `14636`, `14637`, `14638`, `14639`, `14640`, `14641`, `14642`, `14643`, `14644`, `14645`, `14646`, `14647`, `14648`, `14649`, `14650`, `14651`, `14652`, `14653`, `14654`, `14655`, `14656`, `14657`, `14658`, `14659`, `14660`, `14661`, `14662`, `14663`, `14664`, `14665`, `14666`, `14667`, `14668`, `14669`, `14670`, `14671`, `14672`, `14673`, `14674`, `14675`, `14676`, `14677`, `14678`, `14679`, `14680`, `14681`, `14682`, `14683`, `14684`, `14685`, `14686`, `14687`, `14688`, `14689`, `14690`, `14691`, `14692`, `14693`, `14694`, `14695`, `14696`, `14697`, `14698`, `14699`, `14700`, `14701`, `14702`, `14703`, `14704`, `14705`, `14706`, `14707`, `14708`, `14709`, `14710`, `14711`, `14712`, `14713`, `14714`, `14715`, `14716`, `14717`, `14718`, `14719`, `14720`, `14721`, `14722`, `14723`, `14724`, `14725`, `14726`, `14727`, `14728`, `14729`, `14730`, `14731`, `14732`, `14733`, `14734`, `14735`, `14736`, `14737`, `14738`, `14739`, `14740`, `14741`, `14742`, `14743`, `14744`, `14745`, `14746`, `14747`, `14748`, `14749`, `14750`, `14751`, `14752`, `14753`, `14754`, `14755`, `14756`, `14757`, `14758`, `14759`, `14760`, `14761`, `14762`, `14763`, `14764`, `14765`, `14766`, `14767`, `14768`, `14769`, `14770`, `14771`, `14772`, `14773`, `14774`, `14775`, `14776`, `14777`, `14778`, `14779`, `14780`, `14781`, `14782`, `14783`, `14784`, `14785`, `14786`, `14787`, `14788`, `14789`, `14790`, `14791`, `14792`, `14793`, `14794`, `14795`, `14796`, `14797`, `14798`, `14799`, `14800`, `14801`, `14802`, `14803`, `14804`, `14805`, `14806`, `14807`, `14808`, `14809`, `14810`, `14811`, `14812`, `14813`, `14814`, `14815`, `14816`, `14817`, `14818`, `14819`, `14820`, `14821`, `14822`, `14823`, `14824`, `14825`, `14826`, `14827`, `14828`, `14829`, `14830`, `14831`, `14832`, `14833`, `14834`, `14835`, `14836`, `14837`, `14838`, `14839`, `14840`, `14841`, `14842`, `14843`, `14844`, `14845`, `14846`, `14847`, `14848`, `14849`, `14850`, `14851`, `14852`, `14853`, `14854`, `14855`, `14856`, `14857`, `14858`, `14859`, `14860`, `14861`, `14862`, `14863`, `14864`, `14865`, `14866`, `14867`, `14868`, `14869`, `14870`, `14871`, `14872`, `14873`, `14874`, `14875`, `14876`, `14877`, `14878`, `14879`, `14880`, `14881`, `14882`, `14883`, `14884`, `14885`, `14886`, `14887`, `14888`, `14889`, `14890`, `14891`, `14892`, `14893`, `14894`, `14895`, `14896`, `14897`, `14898`, `14899`, `14900`, `14901`, `14902`, `14903`, `14904`, `14905`, `14906`, `14907`, `14908`, `14909`, `14910`, `14911`, `14912`, `14913`, `14914`, `14915`, `14916`, `14917`, `14918`, `14919`, `14920`, `14921`, `14922`, `14923`, `14924`, `14925`, `14926`, `14927`, `14928`, `14929`, `14930`, `14931`, `14932`, `14933`, `14934`, `14935`, `14936`, `14937`, `14938`, `14939`, `14940`, `14941`, `14942`, `14943`, `14944`, `14945`, `14946`, `14947`, `14948`, `14949`, `14950`, `14951`, `14952`, `14953`, `14954`, `14955`, `14956`, `14957`, `14958`, `14959`, `14960`, `14961`, `14962`, `14963`, `14964`, `14965`, `14966`, `14967`, `14968`, `14969`, `14970`, `14971`, `14972`, `14973`, `14974`, `14975`, `14976`, `14977`, `14978`, `14979`, `14980`, `14981`, `14982`, `14983`, `14984`, `14985`, `14986`, `14987`, `14988`, `14989`, `14990`, `14991`, `14992`, `14993`, `14994`, `14995`, `14996`, `14997`, `14998`, `14999`, `15000`, `15001`, `15002`, `15003`, `15004`, `15005`, `15006`, `15007`, `15008`, `15009`, `15010`, `15011`, `15012`, `15013`, `15014`, `15015`, `15016`, `15017`, `15018`, `15019`, `15020`, `15021`, `15022`, `15023`, `15024`, `15025`, `15026`, `15027`, `15028`, `15029`, `15030`, `15031`, `15032`, `15033`, `15034`, `15035`, `15036`, `15037`, `15038`, `15039`, `15040`, `15041`, `15042`, `15043`, `15044`, `15045`, `15046`, `15047`, `15048`, `15049`, `15050`, `15051`, `15052`, `15053`, `15054`, `15055`, `15056`, `15057`, `15058`, `15059`, `15060`, `15061`, `15062`, `15063`, `15064`, `15065`, `15066`, `15067`, `15068`, `15069`, `15070`, `15071`, `15072`, `15073`, `15074`, `15075`, `15076`, `15077`, `15078`, `15079`, `15080`, `15081`, `15082`, `15083`, `15084`, `15085`, `15086`, `15087`, `15088`, `15089`, `15090`, `15091`, `15092`, `15093`, `15094`, `15095`, `15096`, `15097`, `15098`, `15099`, `15100`, `15101`, `15102`, `15103`, `15104`, `15105`, `15106`, `15107`, `15108`, `15109`, `15110`, `15111`, `15112`, `15113`, `15114`, `15115`, `15116`, `15117`, `15118`, `15119`, `15120`, `15121`, `15122`, `15123`, `15124`, `15125`, `15126`, `15127`, `15128`, `15129`, `15130`, `15131`, `15132`, `15133`, `15134`, `15135`, `15136`, `15137`, `15138`, `15139`, `15140`, `15141`, `15142`, `15143`, `15144`, `15145`, `15146`, `15147`, `15148`, `15149`, `15150`, `15151`, `15152`, `15153`, `15154`, `15155`, `15156`, `15157`, `15158`, `15159`, `15160`, `15161`, `15162`, `15163`, `15164`, `15165`, `15166`, `15167`, `15168`, `15169`, `15170`, `15171`, `15172`, `15173`, `15174`, `15175`, `15176`, `15177`, `15178`, `15179`, `15180`, `15181`, `15182`, `15183`, `15184`, `15185`, `15186`, `15187`, `15188`, `15189`, `15190`, `15191`, `15192`, `15193`, `15194`, `15195`, `15196`, `15197`, `15198`, `15199`, `15200`, `15201`, `15202`, `15203`, `15204`, `15205`, `15206`, `15207`, `15208`, `15209`, `15210`, `15211`, `15212`, `15213`, `15214`, `15215`, `15216`, `15217`, `15218`, `15219`, `15220`, `15221`, `15222`, `15223`, `15224`, `15225`, `15226`, `15227`, `15228`, `15229`, `15230`, `15231`, `15232`, `15233`, `15234`, `15235`, `15236`, `15237`, `15238`, `15239`, `15240`, `15241`, `15242`, `15243`, `15244`, `15245`, `15246`, `15247`, `15248`, `15249`, `15250`, `15251`, `15252`, `15253`, `15254`, `15255`, `15256`, `15257`, `15258`, `15259`, `15260`, `15261`, `15262`, `15263`, `15264`, `15265`, `15266`, `15267`, `15268`, `15269`, `15270`, `15271`, `15272`, `15273`, `15274`, `15275`, `15276`, `15277`, `15278`, `15279`, `15280`, `15281`, `15282`, `15283`, `15284`, `15285`, `15286`, `15287`, `15288`, `15289`, `15290`, `15291`, `15292`, `15293`, `15294`, `15295`, `15296`, `15297`, `15298`, `15299`, `15300`, `15301`, `15302`, `15303`, `15304`, `15305`, `15306`, `15307`, `15308`, `15309`, `15310`, `15311`, `15312`, `15313`, `15314`, `15315`, `15316`, `15317`, `15318`, `15319`, `15320`, `15321`, `15322`, `15323`, `15324`, `15325`, `15326`, `15327`, `15328`, `15329`, `15330`, `15331`, `15332`, `15333`, `15334`, `15335`, `15336`, `15337`, `15338`, `15339`, `15340`, `15341`, `15342`, `15343`, `15344`, `15345`, `15346`, `15347`, `15348`, `15349`, `15350`, `15351`, `15352`, `15353`, `15354`, `15355`, `15356`, `15357`, `15358`, `15359`, `15360`, `15361`, `15362`, `15363`, `15364`, `15365`, `15366`, `15367`, `15368`, `15369`, `15370`, `15371`, `15372`, `15373`, `15374`, `15375`, `15376`, `15377`, `15378`, `15379`, `15380`, `15381`, `15382`, `15383`, `15384`, `15385`, `15386`, `15387`, `15388`, `15389`, `15390`, `15391`, `15392`, `15393`, `15394`, `15395`, `15396`, `15397`, `15398`, `15399`, `15400`, `15401`, `15402`, `15403`, `15404`, `15405`, `15406`, `15407`, `15408`, `15409`, `15410`, `15411`, `15412`, `15413`, `15414`, `15415`, `15416`, `15417`, `15418`, `15419`, `15420`, `15421`, `15422`, `15423`, `15424`, `15425`, `15426`, `15427`, `15428`, `15429`, `15430`, `15431`, `15432`, `15433`, `15434`, `15435`, `15436`, `15437`, `15438`, `15439`, `15440`, `15441`, `15442`, `15443`, `15444`, `15445`, `15446`, `15447`, `15448`, `15449`, `15450`, `15451`, `15452`, `15453`, `15454`, `15455`, `15456`, `15457`, `15458`, `15459`, `15460`, `15461`, `15462`, `15463`, `15464`, `15465`, `15466`, `15467`, `15468`, `15469`, `15470`, `15471`, `15472`, `15473`, `15474`, `15475`, `15476`, `15477`, `15478`, `15479`, `15480`, `15481`, `15482`, `15483`, `15484`, `15485`, `15486`, `15487`, `15488`, `15489`, `15490`, `15491`, `15492`, `15493`, `15494`, `15495`, `15496`, `15497`, `15498`, `15499`, `15500`, `15501`, `15502`, `15503`, `15504`, `15505`, `15506`, `15507`, `15508`, `15509`, `15510`, `15511`, `15512`, `15513`, `15514`, `15515`, `15516`, `15517`, `15518`, `15519`, `15520`, `15521`, `15522`, `15523`, `15524`, `15525`, `15526`, `15527`, `15528`, `15529`, `15530`, `15531`, `15532`, `15533`, `15534`, `15535`, `15536`, `15537`, `15538`, `15539`, `15540`, `15541`, `15542`, `15543`, `15544`, `15545`, `15546`, `15547`, `15548`, `15549`, `15550`, `15551`, `15552`, `15553`, `15554`, `15555`, `15556`, `15557`, `15558`, `15559`, `15560`, `15561`, `15562`, `15563`, `15564`, `15565`, `15566`, `15567`, `15568`, `15569`, `15570`, `15571`, `15572`, `15573`, `15574`, `15575`, `15576`, `15577`, `15578`, `15579`, `15580`, `15581`, `15582`, `15583`, `15584`, `15585`, `15586`, `15587`, `15588`, `15589`, `15590`, `15591`, `15592`, `15593`, `15594`, `15595`, `15596`, `15597`, `15598`, `15599`, `15600`, `15601`, `15602`, `15603`, `15604`, `15605`, `15606`, `15607`, `15608`, `15609`, `15610`, `15611`, `15612`, `15613`, `15614`, `15615`, `15616`, `15617`, `15618`, `15619`, `15620`, `15621`, `15622`, `15623`, `15624`, `15625`, `15626`, `15627`, `15628`, `15629`, `15630`, `15631`, `15632`, `15633`, `15634`, `15635`, `15636`, `15637`, `15638`, `15639`, `15640`, `15641`, `15642`, `15643`, `15644`, `15645`, `15646`, `15647`, `15648`, `15649`, `15650`, `15651`, `15652`, `15653`, `15654`, `15655`, `15656`, `15657`, `15658`, `15659`, `15660`, `15661`, `15662`, `15663`, `15664`, `15665`, `15666`, `15667`, `15668`, `15669`, `15670`, `15671`, `15672`, `15673`, `15674`, `15675`, `15676`, `15677`, `15678`, `15679`, `15680`, `15681`, `15682`, `15683`, `15684`, `15685`, `15686`, `15687`, `15688`, `15689`, `15690`, `15691`, `15692`, `15693`, `15694`, `15695`, `15696`, `15697`, `15698`, `15699`, `15700`, `15701`, `15702`, `15703`, `15704`, `15705`, `15706`, `15707`, `15708`, `15709`, `15710`, `15711`, `15712`, `15713`, `15714`, `15715`, `15716`, `15717`, `15718`, `15719`, `15720`, `15721`, `15722`, `15723`, `15724`, `15725`, `15726`, `15727`, `15728`, `15729`, `15730`, `15731`, `15732`, `15733`, `15734`, `15735`, `15736`, `15737`, `15738`, `15739`, `15740`, `15741`, `15742`, `15743`, `15744`, `15745`, `15746`, `15747`, `15748`, `15749`, `15750`, `15751`, `15752`, `15753`, `15754`, `15755`, `15756`, `15757`, `15758`, `15759`, `15760`, `15761`, `15762`, `15763`, `15764`, `15765`, `15766`, `15767`, `15768`, `15769`, `15770`, `15771`, `15772`, `15773`, `15774`, `15775`, `15776`, `15777`, `15778`, `15779`, `15780`, `15781`, `15782`, `15783`, `15784`, `15785`, `15786`, `15787`, `15788`, `15789`, `15790`, `15791`, `15792`, `15793`, `15794`, `15795`, `15796`, `15797`, `15798`, `15799`, `15800`, `15801`, `15802`, `15803`, `15804`, `15805`, `15806`, `15807`, `15808`, `15809`, `15810`, `15811`, `15812`, `15813`, `15814`, `15815`, `15816`, `15817`, `15818`, `15819`, `15820`, `15821`, `15822`, `15823`, `15824`, `15825`, `15826`, `15827`, `15828`, `15829`, `15830`, `15831`, `15832`, `15833`, `15834`, `15835`, `15836`, `15837`, `15838`, `15839`, `15840`, `15841`, `15842`, `15843`, `15844`, `15845`, `15846`, `15847`, `15848`, `15849`, `15850`, `15851`, `15852`, `15853`, `15854`, `15855`, `15856`, `15857`, `15858`, `15859`, `15860`, `15861`, `15862`, `15863`, `15864`, `15865`, `15866`, `15867`, `15868`, `15869`, `15870`, `15871`, `15872`, `15873`, `15874`, `15875`, `15876`, `15877`, `15878`, `15879`, `15880`, `15881`, `15882`, `15883`, `15884`, `15885`, `15886`, `15887`, `15888`, `15889`, `15890`, `15891`, `15892`, `15893`, `15894`, `15895`, `15896`, `15897`, `15898`, `15899`, `15900`, `15901`, `15902`, `15903`, `15904`, `15905`, `15906`, `15907`, `15908`, `15909`, `15910`, `15911`, `15912`, `15913`, `15914`, `15915`, `15916`, `15917`, `15918`, `15919`, `15920`, `15921`, `15922`, `15923`, `15924`, `15925`, `15926`, `15927`, `15928`, `15929`, `15930`, `15931`, `15932`, `15933`, `15934`, `15935`, `15936`, `15937`, `15938`, `15939`, `15940`, `15941`, `15942`, `15943`, `15944`, `15945`, `15946`, `15947`, `15948`, `15949`, `15950`, `15951`, `15952`, `15953`, `15954`, `15955`, `15956`, `15957`, `15958`, `15959`, `15960`, `15961`, `15962`, `15963`, `15964`, `15965`, `15966`, `15967`, `15968`, `15969`, `15970`, `15971`, `15972`, `15973`, `15974`, `15975`, `15976`, `15977`, `15978`, `15979`, `15980`, `15981`, `15982`, `15983`, `15984`, `15985`, `15986`, `15987`, `15988`, `15989`, `15990`, `15991`, `15992`, `15993`, `15994`, `15995`, `15996`, `15997`, `15998`, `15999`, `16000`, `16001`, `16002`, `16003`, `16004`, `16005`, `16006`, `16007`, `16008`, `16009`, `16010`, `16011`, `16012`, `16013`, `16014`, `16015`, `16016`, `16017`, `16018`, `16019`, `16020`, `16021`, `16022`, `16023`, `16024`, `16025`, `16026`, `16027`, `16028`, `16029`, `16030`, `16031`, `16032`, `16033`, `16034`, `16035`, `16036`, `16037`, `16038`, `16039`, `16040`, `16041`, `16042`, `16043`, `16044`, `16045`, `16046`, `16047`, `16048`, `16049`, `16050`, `16051`, `16052`, `16053`, `16054`, `16055`, `16056`, `16057`, `16058` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 81.11 |
| `SENTS_P` | 79.75 |
| `SENTS_R` | 82.52 |
| `TAG_ACC` | 96.41 |
| `POS_ACC` | 96.52 |
| `MORPH_ACC` | 97.74 |
| `DEP_UAS` | 90.21 |
| `DEP_LAS` | 85.42 |
| `LEMMA_ACC` | 90.34 |
|
nateraw/rare-puppers-123
|
nateraw
| 2021-12-10T21:18:44Z | 95 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers-123
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9701492786407471
---
# rare-puppers-123
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### corgi

#### samoyed

#### shiba inu

|
explosion/nb_udv25_norwegiannynorsk_trf
|
explosion
| 2021-12-10T20:45:29Z | 1 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nb",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nb
license: cc-by-sa-4.0
model-index:
- name: nb_udv25_norwegiannynorsk_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9833263993
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9833584024
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9790699907
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9828149002
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9411235308
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9214320428
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9910005294
---
UD v2.5 benchmarking pipeline for UD_Norwegian-Nynorsk
| Feature | Description |
| --- | --- |
| **Name** | `nb_udv25_norwegiannynorsk_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1400 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` |
| **`morphologizer`** | `Number=Plur\|POS=DET\|PronType=Ind`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=ADV`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `POS=PRON\|PronType=Rel`, `POS=VERB\|VerbForm=Part`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADV`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=DET\|PronType=Int`, `POS=AUX\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=INTJ`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Tot`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Def\|POS=DET\|PronType=Dem`, `POS=X`, `Case=Gen\|Gender=Masc\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=SYM`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Abbr=Yes\|POS=PRON\|PronType=Prs`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `POS=ADJ`, `Gender=Neut\|POS=NOUN`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|NumType=Card\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Abbr=Yes\|POS=CCONJ`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Def\|POS=ADV`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADP`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Art,Prs`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Prs`, `POS=ADV\|VerbForm=Inf`, `Degree=Sup\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|POS=ADJ`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|POS=PRON\|Person=3\|PronType=Prs`, `Abbr=Yes\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Gender=Neut\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Gender=Neut\|POS=NOUN`, `Definite=Def\|POS=ADJ\|VerbForm=Part`, `POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `NumType=Card\|POS=NUM\|PronType=Dem`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `reparandum`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `2`, `4`, `5`, `7`, `9`, `11`, `13`, `17`, `19`, `21`, `23`, `25`, `29`, `31`, `35`, `38`, `40`, `42`, `44`, `45`, `47`, `49`, `51`, `53`, `55`, `56`, `58`, `62`, `65`, `67`, `70`, `72`, `75`, `77`, `79`, `80`, `82`, `84`, `86`, `88`, `90`, `92`, `95`, `98`, `100`, `102`, `104`, `106`, `107`, `108`, `110`, `112`, `114`, `119`, `121`, `123`, `126`, `128`, `130`, `132`, `134`, `136`, `138`, `141`, `143`, `145`, `146`, `148`, `150`, `152`, `154`, `156`, `158`, `160`, `162`, `164`, `165`, `167`, `170`, `171`, `172`, `174`, `175`, `177`, `178`, `180`, `182`, `185`, `186`, `189`, `191`, `193`, `196`, `198`, `202`, `203`, `207`, `209`, `212`, `214`, `217`, `220`, `222`, `224`, `225`, `227`, `228`, `231`, `233`, `235`, `238`, `239`, `241`, `245`, `247`, `248`, `250`, `253`, `255`, `256`, `259`, `262`, `263`, `265`, `266`, `268`, `270`, `271`, `274`, `275`, `277`, `279`, `280`, `282`, `285`, `288`, `290`, `292`, `294`, `296`, `298`, `299`, `302`, `306`, `309`, `310`, `313`, `316`, `318`, `320`, `321`, `322`, `323`, `324`, `327`, `329`, `330`, `332`, `334`, `335`, `337`, `340`, `341`, `342`, `343`, `345`, `346`, `347`, `349`, `350`, `352`, `354`, `355`, `356`, `357`, `358`, `360`, `362`, `363`, `365`, `366`, `368`, `370`, `371`, `373`, `375`, `378`, `379`, `380`, `383`, `384`, `385`, `386`, `388`, `389`, `392`, `393`, `394`, `395`, `397`, `398`, `399`, `400`, `401`, `403`, `405`, `407`, `408`, `410`, `412`, `413`, `415`, `417`, `419`, `420`, `423`, `424`, `425`, `426`, `427`, `429`, `431`, `432`, `433`, `435`, `438`, `440`, `442`, `444`, `446`, `447`, `448`, `449`, `451`, `452`, `454`, `456`, `458`, `459`, `462`, `465`, `466`, `468`, `469`, `470`, `471`, `473`, `475`, `476`, `478`, `479`, `481`, `482`, `484`, `485`, `488`, `489`, `490`, `492`, `495`, `497`, `501`, `503`, `505`, `507`, `508`, `510`, `512`, `513`, `515`, `517`, `518`, `520`, `521`, `523`, `524`, `526`, `527`, `529`, `530`, `531`, `534`, `536`, `537`, `538`, `539`, `541`, `543`, `544`, `545`, `547`, `548`, `549`, `551`, `552`, `553`, `556`, `557`, `558`, `559`, `561`, `562`, `564`, `565`, `567`, `568`, `569`, `571`, `573`, `574`, `577`, `578`, `580`, `581`, `582`, `583`, `584`, `585`, `589`, `591`, `593`, `594`, `596`, `598`, `599`, `602`, `603`, `604`, `605`, `607`, `609`, `611`, `613`, `615`, `616`, `617`, `619`, `621`, `622`, `623`, `625`, `627`, `629`, `630`, `631`, `632`, `633`, `635`, `636`, `637`, `639`, `640`, `641`, `642`, `644`, `645`, `647`, `648`, `649`, `651`, `652`, `653`, `655`, `659`, `660`, `661`, `662`, `663`, `664`, `665`, `666`, `668`, `671`, `672`, `673`, `675`, `676`, `677`, `678`, `679`, `680`, `684`, `687`, `688`, `689`, `184`, `690`, `692`, `261`, `694`, `695`, `696`, `698`, `701`, `702`, `705`, `707`, `709`, `710`, `711`, `714`, `715`, `716`, `718`, `720`, `721`, `723`, `725`, `727`, `729`, `731`, `732`, `735`, `737`, `738`, `739`, `740`, `743`, `744`, `746`, `747`, `749`, `750`, `751`, `752`, `753`, `754`, `755`, `756`, `758`, `760`, `761`, `762`, `765`, `768`, `769`, `770`, `772`, `773`, `775`, `777`, `778`, `780`, `781`, `784`, `785`, `787`, `789`, `791`, `792`, `793`, `795`, `796`, `798`, `799`, `801`, `803`, `805`, `806`, `808`, `810`, `811`, `815`, `816`, `817`, `818`, `819`, `820`, `821`, `822`, `825`, `827`, `828`, `829`, `830`, `832`, `833`, `834`, `835`, `836`, `837`, `839`, `840`, `842`, `843`, `845`, `846`, `847`, `849`, `850`, `851`, `852`, `854`, `855`, `857`, `860`, `861`, `862`, `863`, `865`, `867`, `868`, `870`, `872`, `874`, `875`, `876`, `877`, `878`, `879`, `881`, `883`, `884`, `885`, `887`, `889`, `890`, `891`, `894`, `895`, `897`, `898`, `900`, `902`, `905`, `907`, `909`, `910`, `911`, `912`, `913`, `914`, `915`, `917`, `919`, `921`, `922`, `926`, `928`, `929`, `930`, `931`, `932`, `933`, `935`, `936`, `939`, `940`, `941`, `943`, `944`, `946`, `948`, `949`, `950`, `951`, `952`, `953`, `955`, `957`, `958`, `960`, `961`, `962`, `963`, `964`, `965`, `966`, `967`, `968`, `970`, `971`, `973`, `974`, `976`, `977`, `978`, `979`, `980`, `982`, `983`, `984`, `986`, `988`, `989`, `990`, `992`, `993`, `995`, `997`, `999`, `1000`, `1001`, `1003`, `1006`, `1007`, `1009`, `1010`, `1011`, `1012`, `1014`, `1015`, `1016`, `1019`, `1020`, `1021`, `1023`, `1024`, `1025`, `1027`, `1028`, `1030`, `1032`, `1033`, `1034`, `1036`, `1037`, `1040`, `1043`, `1044`, `1046`, `1048`, `1050`, `1051`, `1053`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1064`, `1065`, `1067`, `1068`, `1069`, `1071`, `1072`, `1073`, `1077`, `1078`, `1079`, `1080`, `1082`, `1083`, `1084`, `1085`, `1087`, `1088`, `1090`, `1092`, `1096`, `1098`, `1100`, `1102`, `1104`, `1106`, `1107`, `1110`, `1112`, `1114`, `1116`, `1118`, `1120`, `1121`, `1124`, `1127`, `1128`, `1130`, `1131`, `1133`, `1134`, `1135`, `1138`, `1139`, `1141`, `1142`, `1143`, `1146`, `1147`, `1150`, `1151`, `1154`, `1156`, `1157`, `1158`, `1160`, `1161`, `1162`, `1163`, `1165`, `1166`, `1168`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1180`, `1183`, `1186`, `1187`, `1190`, `1192`, `1193`, `1194`, `1195`, `1198`, `1199`, `1200`, `1202`, `1205`, `1207`, `1208`, `1209`, `1210`, `1212`, `1213`, `1214`, `1215`, `1216`, `1217`, `1219`, `1220`, `1221`, `1222`, `1224`, `1225`, `1226`, `1227`, `1229`, `1231`, `1232`, `1235`, `1236`, `1239`, `1240`, `1241`, `1243`, `1244`, `1245`, `1248`, `1250`, `1251`, `1252`, `1253`, `1254`, `1255`, `1258`, `1259`, `1260`, `1261`, `1263`, `1265`, `1266`, `1267`, `1268`, `1269`, `1270`, `1271`, `1272`, `1273`, `1274`, `1275`, `1278`, `1279`, `1280`, `1281`, `1282`, `1283`, `1285`, `1286`, `1287`, `1289`, `1291`, `1293`, `1294`, `1295`, `1296`, `1298`, `1299`, `1300`, `1301`, `1302`, `1303`, `1304`, `1307`, `1308`, `1309`, `1311`, `1312`, `1315`, `1317`, `1319`, `1320`, `1322`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1337`, `1338`, `1340`, `1341`, `1342`, `1343`, `1345`, `1347`, `1348`, `1349`, `1350`, `1351`, `1353`, `1354`, `1356`, `1359`, `1360`, `1362`, `1363`, `1364`, `1365`, `1366`, `1367`, `1369`, `1370`, `1372`, `1374`, `1376`, `1377`, `1378`, `1379`, `1380`, `1382`, `1383`, `1385`, `1386`, `1390`, `1391`, `1257`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1398`, `1399`, `1400`, `1402`, `1403`, `1404`, `1405`, `1408`, `1409`, `1411`, `576`, `1413`, `1414`, `1416`, `1417`, `1419`, `1420`, `1421`, `1422`, `1423`, `1426`, `1429`, `1430`, `1433`, `1435`, `1436`, `1437`, `1439`, `1441`, `1442`, `1443`, `1444`, `1445`, `1447`, `1448`, `1449`, `1451`, `1452`, `1453`, `1454`, `1456`, `1457`, `1460`, `1462`, `1463`, `1465`, `1467`, `1468`, `1469`, `1470`, `1471`, `1472`, `1474`, `1476`, `1477`, `1478`, `1479`, `1481`, `1484`, `1486`, `1489`, `1492`, `1494`, `1496`, `1498`, `1499`, `1501`, `1504`, `1505`, `1506`, `1508`, `1510`, `1511`, `1512`, `1513`, `1514`, `1517`, `1518`, `1520`, `1521`, `1522`, `1524`, `1525`, `1526`, `1528`, `1531`, `1533`, `1535`, `1536`, `1537`, `1538`, `1540`, `1543`, `1544`, `1546`, `1547`, `1549`, `1550`, `1552`, `1555`, `1558`, `1559`, `1560`, `1561`, `1563`, `1565`, `1566`, `1567`, `1570`, `1572`, `1574`, `1576`, `1578`, `1579`, `1580`, `1582`, `1585`, `1587`, `1589`, `1590`, `1591`, `1593`, `1595`, `1596`, `1597`, `1598`, `1599`, `1600`, `1601`, `1604`, `1608`, `1610`, `1611`, `1612`, `1613`, `1614`, `1616`, `1617`, `1618`, `1620`, `1621`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1631`, `1632`, `1635`, `1636`, `1638`, `1639`, `1641`, `1642`, `1643`, `1644`, `1645`, `1647`, `1648`, `1651`, `1653`, `1654`, `1655`, `1657`, `1658`, `1659`, `1660`, `1661`, `1662`, `1664`, `1666`, `1669`, `1673`, `1676`, `1677`, `1679`, `1682`, `1684`, `1686`, `1689`, `1690`, `1691`, `1692`, `1694`, `1696`, `1697`, `1699`, `1701`, `1702`, `1703`, `1705`, `1706`, `1708`, `1709`, `1711`, `1712`, `1713`, `1715`, `1717`, `1718`, `1720`, `1722`, `1724`, `1725`, `1726`, `1728`, `1730`, `1732`, `1734`, `1736`, `1738`, `1741`, `1743`, `1745`, `1747`, `1748`, `1749`, `1750`, `1751`, `1753`, `1754`, `1755`, `1756`, `1757`, `1758`, `1761`, `1763`, `1765`, `1767`, `1771`, `1774`, `1777`, `1779`, `1781`, `1783`, `1785`, `1786`, `1789`, `1791`, `1792`, `1793`, `1794`, `1795`, `1797`, `1800`, `1803`, `1806`, `1808`, `1810`, `1811`, `1812`, `1813`, `1816`, `1818`, `1820`, `1821`, `1823`, `1827`, `1829`, `1831`, `1832`, `1833`, `1835`, `1837`, `1838`, `1840`, `1842`, `1843`, `1844`, `1845`, `1848`, `1849`, `1851`, `1852`, `1854`, `1855`, `1857`, `1858`, `1859`, `1861`, `1862`, `1863`, `1866`, `1868`, `1871`, `1873`, `1874`, `1875`, `1876`, `1877`, `1879`, `1882`, `1884`, `1885`, `1887`, `1889`, `1890`, `1891`, `1892`, `1894`, `1896` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.96 |
| `TOKEN_P` | 99.96 |
| `TOKEN_R` | 99.96 |
| `TOKEN_ACC` | 99.99 |
| `SENTS_F` | 99.10 |
| `SENTS_P` | 99.15 |
| `SENTS_R` | 99.05 |
| `TAG_ACC` | 98.33 |
| `POS_ACC` | 98.34 |
| `MORPH_ACC` | 97.91 |
| `DEP_UAS` | 94.11 |
| `DEP_LAS` | 92.14 |
| `LEMMA_ACC` | 98.28 |
|
huggingtweets/deliveroo_fr
|
huggingtweets
| 2021-12-10T19:38:51Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/deliveroo_fr/1639165126235/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1460542430357381120/3QwgzK9N_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🍕 Deliveroo France</div>
<div style="text-align: center; font-size: 14px;">@deliveroo_fr</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🍕 Deliveroo France.
| Data | 🍕 Deliveroo France |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 5 |
| Short tweets | 209 |
| Tweets kept | 3036 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35lhnvsx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deliveroo_fr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3544md47) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3544md47/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deliveroo_fr')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
explosion/lt_udv25_lithuanianalksnis_trf
|
explosion
| 2021-12-10T19:13:26Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"lt",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- lt
license: cc-by-sa-4.0
model-index:
- name: lt_udv25_lithuanianalksnis_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9542839843
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9806669262
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9549759958
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9045621622
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8811484062
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8361832383
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9565217391
---
UD v2.5 benchmarking pipeline for UD_Lithuanian-ALKSNIS
| Feature | Description |
| --- | --- |
| **Name** | `lt_udv25_lithuanianalksnis_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (3674 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `.`, `akr.`, `bdv.aukšt.mot.dgs.K.`, `bdv.aukšt.mot.dgs.V.`, `bdv.aukšt.mot.dgs.Vt.`, `bdv.aukšt.mot.dgs.Įn.`, `bdv.aukšt.mot.vns.G.`, `bdv.aukšt.mot.vns.K.`, `bdv.aukšt.mot.vns.V.`, `bdv.aukšt.vyr.dgs.G.`, `bdv.aukšt.vyr.dgs.K.`, `bdv.aukšt.vyr.dgs.N.`, `bdv.aukšt.vyr.dgs.V.`, `bdv.aukšt.vyr.dgs.Vt.`, `bdv.aukšt.vyr.dgs.Įn.`, `bdv.aukšt.vyr.vns.G.`, `bdv.aukšt.vyr.vns.K.`, `bdv.aukšt.vyr.vns.N.`, `bdv.aukšt.vyr.vns.V.`, `bdv.aukšt.vyr.vns.Vt.`, `bdv.aukšt.vyr.vns.Įn.`, `bdv.aukšč.bev.`, `bdv.aukšč.mot.dgs.G.`, `bdv.aukšč.mot.dgs.K.`, `bdv.aukšč.mot.dgs.V.`, `bdv.aukšč.mot.dgs.Įn.`, `bdv.aukšč.mot.vns.K.`, `bdv.aukšč.mot.vns.V.`, `bdv.aukšč.mot.vns.Vt.`, `bdv.aukšč.mot.vns.Įn.`, `bdv.aukšč.vyr.dgs.G.`, `bdv.aukšč.vyr.dgs.K.`, `bdv.aukšč.vyr.dgs.V.`, `bdv.aukšč.vyr.dgs.Vt.`, `bdv.aukšč.vyr.dgs.Įn.`, `bdv.aukšč.vyr.vns.G.`, `bdv.aukšč.vyr.vns.K.`, `bdv.aukšč.vyr.vns.V.`, `bdv.aukšč.vyr.vns.Įn.`, `bdv.aukšč.įvardž.mot.vns.K.`, `bdv.nelygin.`, `bdv.nelygin..vyr.vns.K.`, `bdv.nelygin.bev.`, `bdv.nelygin.mot.dgs.G.`, `bdv.nelygin.mot.dgs.K.`, `bdv.nelygin.mot.dgs.N.`, `bdv.nelygin.mot.dgs.V`, `bdv.nelygin.mot.dgs.V.`, `bdv.nelygin.mot.dgs.Vt.`, `bdv.nelygin.mot.dgs.Įn.`, `bdv.nelygin.mot.vns.G.`, `bdv.nelygin.mot.vns.K.`, `bdv.nelygin.mot.vns.N.`, `bdv.nelygin.mot.vns.V.`, `bdv.nelygin.mot.vns.Vt.`, `bdv.nelygin.mot.vns.Įn.`, `bdv.nelygin.vyr.dgs.G.`, `bdv.nelygin.vyr.dgs.K.`, `bdv.nelygin.vyr.dgs.N.`, `bdv.nelygin.vyr.dgs.V.`, `bdv.nelygin.vyr.dgs.Vt.`, `bdv.nelygin.vyr.dgs.Įn.`, `bdv.nelygin.vyr.vns.G.`, `bdv.nelygin.vyr.vns.K.`, `bdv.nelygin.vyr.vns.N.`, `bdv.nelygin.vyr.vns.V.`, `bdv.nelygin.vyr.vns.Vt.`, `bdv.nelygin.vyr.vns.Įn.`, `bdv.nelygin.įvardž.mot.dgs.G.`, `bdv.nelygin.įvardž.mot.dgs.K.`, `bdv.nelygin.įvardž.mot.dgs.N.`, `bdv.nelygin.įvardž.mot.dgs.V.`, `bdv.nelygin.įvardž.mot.dgs.Įn.`, `bdv.nelygin.įvardž.mot.vns.G.`, `bdv.nelygin.įvardž.mot.vns.K.`, `bdv.nelygin.įvardž.mot.vns.N.`, `bdv.nelygin.įvardž.mot.vns.V.`, `bdv.nelygin.įvardž.mot.vns.Vt.`, `bdv.nelygin.įvardž.mot.vns.Įn.`, `bdv.nelygin.įvardž.vyr.dgs.G.`, `bdv.nelygin.įvardž.vyr.dgs.K.`, `bdv.nelygin.įvardž.vyr.dgs.V.`, `bdv.nelygin.įvardž.vyr.dgs.Vt.`, `bdv.nelygin.įvardž.vyr.dgs.Įn.`, `bdv.nelygin.įvardž.vyr.vns.G.`, `bdv.nelygin.įvardž.vyr.vns.K.`, `bdv.nelygin.įvardž.vyr.vns.N.`, `bdv.nelygin.įvardž.vyr.vns.V.`, `bdv.nelygin.įvardž.vyr.vns.Vt.`, `bdv.nelygin.įvardž.vyr.vns.Įn.`, `būdv.nelygin.įvardž.vyr.dgs.K.`, `dkt.`, `dkt.bendr.dgs.V.`, `dkt.bendr.vns.K.`, `dkt.bendr.vns.N.`, `dkt.bendr.vns.V.`, `dkt.mot.`, `dkt.mot.dgs.G.`, `dkt.mot.dgs.K.`, `dkt.mot.dgs.N.`, `dkt.mot.dgs.V.`, `dkt.mot.dgs.Vt.`, `dkt.mot.dgs.Įn.`, `dkt.mot.vns.G.`, `dkt.mot.vns.Il.`, `dkt.mot.vns.K`, `dkt.mot.vns.K.`, `dkt.mot.vns.N.`, `dkt.mot.vns.V.`, `dkt.mot.vns.Vt.`, `dkt.mot.vns.Įn.`, `dkt.mot.vns.Įv.`, `dkt.mot.vns.Š.`, `dkt.sngr.vyr.dgs.G.`, `dkt.sngr.vyr.dgs.K.`, `dkt.sngr.vyr.dgs.V.`, `dkt.sngr.vyr.dgs.Įn.`, `dkt.sngr.vyr.vns.G.`, `dkt.sngr.vyr.vns.K.`, `dkt.sngr.vyr.vns.N.`, `dkt.sngr.vyr.vns.V.`, `dkt.sngr.vyr.vns.Įn.`, `dkt.tikr.`, `dkt.tikr.mot.`, `dkt.tikr.mot.dgs.K.`, `dkt.tikr.mot.vns.G.`, `dkt.tikr.mot.vns.K.`, `dkt.tikr.mot.vns.N.`, `dkt.tikr.mot.vns.V.`, `dkt.tikr.mot.vns.Vt.`, `dkt.tikr.mot.vns.Įn.`, `dkt.tikr.vyr.dgs.K.`, `dkt.tikr.vyr.vns.G.`, `dkt.tikr.vyr.vns.K.`, `dkt.tikr.vyr.vns.N.`, `dkt.tikr.vyr.vns.V.`, `dkt.tikr.vyr.vns.Vt.`, `dkt.tikr.vyr.vns.Įn.`, `dkt.vyr.`, `dkt.vyr.dgs.G.`, `dkt.vyr.dgs.K.`, `dkt.vyr.dgs.N.`, `dkt.vyr.dgs.V.`, `dkt.vyr.dgs.Vt.`, `dkt.vyr.dgs.v.`, `dkt.vyr.dgs.Įn.`, `dkt.vyr.vns,K.`, `dkt.vyr.vns.G.`, `dkt.vyr.vns.Il.`, `dkt.vyr.vns.K.`, `dkt.vyr.vns.N.`, `dkt.vyr.vns.V.`, `dkt.vyr.vns.Vt.`, `dkt.vyr.vns.vt.`, `dkt.vyr.vns.Įn.`, `dkt.vyr.vns.Š.`, `dktv.mot.vns.K.`, `dll`, `dll.`, `dlv.neveik.es.mot.vns.V.`, `jng.`, `jst.`, `kita`, `kita.`, `prl.G.`, `prl.K.`, `prl.Įn.`, `prv.aukšt.`, `prv.aukšč.`, `prv.nelygin.`, `prv.neygin.`, `prv.sampl.nelygin.`, `samp.įv.mot.dgs.N.`, `sampl.dll.`, `sampl.jng.`, `sampl.jst.`, `sampl.prv.`, `sampl.prv.nelyg.`, `sampl.prv.nelygin.`, `sampl.sktv.`, `sampl.sktv.raid.kiek.`, `sampl.sutr.`, `sampl.užs.`, `sampl.vksm.pad.es.`, `sampl.įv.`, `sampl.įv.G.`, `sampl.įv.K.`, `sampl.įv.V.`, `sampl.įv.bev.`, `sampl.įv.mot.dgs.G.`, `sampl.įv.mot.dgs.K.`, `sampl.įv.mot.dgs.V.`, `sampl.įv.mot.dgs.Vt.`, `sampl.įv.mot.dgs.Įn.`, `sampl.įv.mot.vns.G.`, `sampl.įv.mot.vns.K.`, `sampl.įv.mot.vns.N.`, `sampl.įv.mot.vns.V.`, `sampl.įv.mot.vns.Vt.`, `sampl.įv.mot.vns.Įn.`, `sampl.įv.vyr.dgs.G.`, `sampl.įv.vyr.dgs.K.`, `sampl.įv.vyr.dgs.N.`, `sampl.įv.vyr.dgs.V.`, `sampl.įv.vyr.dgs.Vt.`, `sampl.įv.vyr.dgs.Įn.`, `sampl.įv.vyr.vns.G.`, `sampl.įv.vyr.vns.K.`, `sampl.įv.vyr.vns.V.`, `sampl.įv.vyr.vns.Vt.`, `sampl.įv.vyr.vns.Įn.`, `sampl.įv.Įn.`, `sktv.`, `sktv.arab`, `sktv.arab.`, `sktv.kelint.mot.vns.Vt.`, `sktv.kelint.įvardž.mot.vns.V.`, `sktv.kelint.įvardž.vyr.vns.G.`, `sktv.kiek.mot.V.`, `sktv.kiek.vyr.dgs.G.`, `sktv.mišr.`, `sktv.mišr.kelint.įvardž.mot.vns.G.`, `sktv.mišr.kelint.įvardž.mot.vns.K.`, `sktv.mišr.kelint.įvardž.mot.vns.V.`, `sktv.mišr.kelint.įvardž.vyr.vns.G.`, `sktv.mišr.kelint.įvardž.vyr.vns.K.`, `sktv.mišr.kelint.įvardž.vyr.vns.Vt.`, `sktv.raid.daugin.vyr.G.`, `sktv.raid.daugin.vyr.K.`, `sktv.raid.kelint.bev.`, `sktv.raid.kelint.mot.vns.K.`, `sktv.raid.kelint.mot.vns.V.`, `sktv.raid.kelint.mot.vns.Vt.`, `sktv.raid.kelint.vyr.dgs.K.`, `sktv.raid.kelint.vyr.dgs.V.`, `sktv.raid.kelint.vyr.dgs.Vt.`, `sktv.raid.kelint.vyr.dgs.Įn.`, `sktv.raid.kelint.vyr.vns.G.`, `sktv.raid.kelint.vyr.vns.K.`, `sktv.raid.kelint.vyr.vns.V.`, `sktv.raid.kelint.vyr.vns.Vt.`, `sktv.raid.kelint.įvardž.mot.vns.G.`, `sktv.raid.kelint.įvardž.mot.vns.K.`, `sktv.raid.kelint.įvardž.mot.vns.N.`, `sktv.raid.kelint.įvardž.mot.vns.V.`, `sktv.raid.kelint.įvardž.mot.vns.Vt.`, `sktv.raid.kelint.įvardž.vyr.dgs.K.`, `sktv.raid.kelint.įvardž.vyr.dgs.N.`, `sktv.raid.kelint.įvardž.vyr.dgs.V.`, `sktv.raid.kelint.įvardž.vyr.dgs.Įn.`, `sktv.raid.kelint.įvardž.vyr.vns.G.`, `sktv.raid.kelint.įvardž.vyr.vns.K.`, `sktv.raid.kelint.įvardž.vyr.vns.V.`, `sktv.raid.kiek.`, `sktv.raid.kiek.K.`, `sktv.raid.kiek.mot.G.`, `sktv.raid.kiek.mot.K.`, `sktv.raid.kiek.mot.N.`, `sktv.raid.kiek.mot.V.`, `sktv.raid.kiek.mot.Vt.`, `sktv.raid.kiek.mot.dgs.V.`, `sktv.raid.kiek.mot.vns.G.`, `sktv.raid.kiek.mot.vns.K.`, `sktv.raid.kiek.mot.vns.Įn.`, `sktv.raid.kiek.mot.Įn.`, `sktv.raid.kiek.vyr.G.`, `sktv.raid.kiek.vyr.K.`, `sktv.raid.kiek.vyr.N.`, `sktv.raid.kiek.vyr.V.`, `sktv.raid.kiek.vyr.Vt.`, `sktv.raid.kiek.vyr.dgs.K.`, `sktv.raid.kiek.vyr.dgs.V.`, `sktv.raid.kiek.vyr.vns.G.`, `sktv.raid.kiek.vyr.vns.K.`, `sktv.raid.kiek.vyr.vns.V.`, `sktv.raid.kiek.vyr.Įn.`, `sktv.raid.kiekin.mot.vns.G.`, `sktv.raid.kiekin.mot.vns.V.`, `sktv.raid.kuopin.G.`, `sktv.rom.`, `skyr.`, `sutr.`, `tęs`, `tęs.`, `tęs.sktv.raid.kelint.vyr.vns.G.`, `tęs.įv.vyr.dgs.G.`, `tęs.įv.vyr.dgs.N.`, `tęs.įv.vyr.vns.G.`, `tęs.įv.vyr.vns.N.`, `tęs.įv.vyr.vns.V.`, `tęs.įv.vyr.vns.Įn.`, `užs.`, `vksm.asm.liep.dgs.1.`, `vksm.asm.liep.dgs.2.`, `vksm.asm.liep.vns.2.`, `vksm.asm.liep.vns.3.`, `vksm.asm.neig.liep.dgs.2.`, `vksm.asm.neig.liep.vns.2.`, `vksm.asm.neig.sngr.liep.dgs.2.`, `vksm.asm.neig.sngr.tar.3.`, `vksm.asm.neig.sngr.tar.dgs.1.`, `vksm.asm.neig.sngr.tar.vns.1.`, `vksm.asm.neig.sngr.tar.vns.3.`, `vksm.asm.neig.sngr.tiesiog.būs.vns.2.`, `vksm.asm.neig.sngr.tiesiog.būs.vns.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.dgs.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.vns.1.`, `vksm.asm.neig.sngr.tiesiog.būt-k.vns.3.`, `vksm.asm.neig.sngr.tiesiog.es.3.`, `vksm.asm.neig.sngr.tiesiog.es.dgs.3.`, `vksm.asm.neig.sngr.tiesiog.es.vns.1.`, `vksm.asm.neig.sngr.tiesiog.es.vns.3.`, `vksm.asm.neig.tar.3.`, `vksm.asm.neig.tar.dgs.1.`, `vksm.asm.neig.tar.dgs.3.`, `vksm.asm.neig.tar.vns.1.`, `vksm.asm.neig.tar.vns.2.`, `vksm.asm.neig.tar.vns.3.`, `vksm.asm.neig.tiesiog.būs.3.`, `vksm.asm.neig.tiesiog.būs.dgs.1.`, `vksm.asm.neig.tiesiog.būs.dgs.3.`, `vksm.asm.neig.tiesiog.būs.vns.1.`, `vksm.asm.neig.tiesiog.būs.vns.2.`, `vksm.asm.neig.tiesiog.būs.vns.3.`, `vksm.asm.neig.tiesiog.būt-d.vns.1.`, `vksm.asm.neig.tiesiog.būt-d.vns.3.`, `vksm.asm.neig.tiesiog.būt-k.3.`, `vksm.asm.neig.tiesiog.būt-k.dgs.1.`, `vksm.asm.neig.tiesiog.būt-k.dgs.3.`, `vksm.asm.neig.tiesiog.būt-k.vns.1.`, `vksm.asm.neig.tiesiog.būt-k.vns.2.`, `vksm.asm.neig.tiesiog.būt-k.vns.3.`, `vksm.asm.neig.tiesiog.es.3.`, `vksm.asm.neig.tiesiog.es.dgs.1.`, `vksm.asm.neig.tiesiog.es.dgs.2.`, `vksm.asm.neig.tiesiog.es.dgs.3.`, `vksm.asm.neig.tiesiog.es.vns.1.`, `vksm.asm.neig.tiesiog.es.vns.2.`, `vksm.asm.neig.tiesiog.es.vns.3.`, `vksm.asm.sngr.liep.dgs.1.`, `vksm.asm.sngr.liep.dgs.2.`, `vksm.asm.sngr.liep.vns.2.`, `vksm.asm.sngr.tar.3.`, `vksm.asm.sngr.tar.dgs.3.`, `vksm.asm.sngr.tar.vns.1.`, `vksm.asm.sngr.tar.vns.3.`, `vksm.asm.sngr.tiesiog.būs.dgs.1.`, `vksm.asm.sngr.tiesiog.būs.dgs.2.`, `vksm.asm.sngr.tiesiog.būs.dgs.3.`, `vksm.asm.sngr.tiesiog.būs.vns.2.`, `vksm.asm.sngr.tiesiog.būs.vns.3.`, `vksm.asm.sngr.tiesiog.būt-d.dgs.3.`, `vksm.asm.sngr.tiesiog.būt-d.vns.1.`, `vksm.asm.sngr.tiesiog.būt-d.vns.3.`, `vksm.asm.sngr.tiesiog.būt-k.3.`, `vksm.asm.sngr.tiesiog.būt-k.dgs.1.`, `vksm.asm.sngr.tiesiog.būt-k.dgs.3.`, `vksm.asm.sngr.tiesiog.būt-k.vns.1.`, `vksm.asm.sngr.tiesiog.būt-k.vns.3.`, `vksm.asm.sngr.tiesiog.es.3.`, `vksm.asm.sngr.tiesiog.es.dgs.1.`, `vksm.asm.sngr.tiesiog.es.dgs.3.`, `vksm.asm.sngr.tiesiog.es.vns.1.`, `vksm.asm.sngr.tiesiog.es.vns.2.`, `vksm.asm.sngr.tiesiog.es.vns.3.`, `vksm.asm.tar.3.`, `vksm.asm.tar.dgs.1.`, `vksm.asm.tar.dgs.2.`, `vksm.asm.tar.dgs.3.`, `vksm.asm.tar.vns.1.`, `vksm.asm.tar.vns.2.`, `vksm.asm.tar.vns.3.`, `vksm.asm.tiesiog.būs.3.`, `vksm.asm.tiesiog.būs.dgs.1.`, `vksm.asm.tiesiog.būs.dgs.2.`, `vksm.asm.tiesiog.būs.dgs.3.`, `vksm.asm.tiesiog.būs.vns.1.`, `vksm.asm.tiesiog.būs.vns.2.`, `vksm.asm.tiesiog.būs.vns.3.`, `vksm.asm.tiesiog.būt-d.3.`, `vksm.asm.tiesiog.būt-d.dgs.3.`, `vksm.asm.tiesiog.būt-d.vns.1.`, `vksm.asm.tiesiog.būt-d.vns.2.`, `vksm.asm.tiesiog.būt-d.vns.3.`, `vksm.asm.tiesiog.būt-k.`, `vksm.asm.tiesiog.būt-k.3.`, `vksm.asm.tiesiog.būt-k.dgs.1.`, `vksm.asm.tiesiog.būt-k.dgs.2.`, `vksm.asm.tiesiog.būt-k.dgs.3.`, `vksm.asm.tiesiog.būt-k.vns.1.`, `vksm.asm.tiesiog.būt-k.vns.2.`, `vksm.asm.tiesiog.būt-k.vns.3.`, `vksm.asm.tiesiog.es.3.`, `vksm.asm.tiesiog.es.dgs.1.`, `vksm.asm.tiesiog.es.dgs.2.`, `vksm.asm.tiesiog.es.dgs.3.`, `vksm.asm.tiesiog.es.vns.1.`, `vksm.asm.tiesiog.es.vns.2.`, `vksm.asm.tiesiog.es.vns.3.`, `vksm.bndr.`, `vksm.bndr.neig.`, `vksm.bndr.neig.sngr.`, `vksm.bndr.sngr.`, `vksm.dlv.neig.neveik.būt.bev.`, `vksm.dlv.neig.neveik.būt.mot.dgs.G.`, `vksm.dlv.neig.neveik.būt.mot.dgs.K.`, `vksm.dlv.neig.neveik.būt.mot.dgs.V.`, `vksm.dlv.neig.neveik.būt.mot.vns.K.`, `vksm.dlv.neig.neveik.būt.mot.vns.V.`, `vksm.dlv.neig.neveik.būt.vyr.dgs.N.`, `vksm.dlv.neig.neveik.būt.vyr.dgs.V.`, `vksm.dlv.neig.neveik.būt.vyr.vns.G.`, `vksm.dlv.neig.neveik.būt.vyr.vns.N.`, `vksm.dlv.neig.neveik.būt.vyr.vns.V.`, `vksm.dlv.neig.neveik.es.bev.`, `vksm.dlv.neig.neveik.es.mot.dgs.K.`, `vksm.dlv.neig.neveik.es.mot.dgs.V.`, `vksm.dlv.neig.neveik.es.mot.vns.G.`, `vksm.dlv.neig.neveik.es.mot.vns.K.`, `vksm.dlv.neig.neveik.es.mot.vns.V.`, `vksm.dlv.neig.neveik.es.mot.vns.Įn.`, `vksm.dlv.neig.neveik.es.vyr.dgs.G.`, `vksm.dlv.neig.neveik.es.vyr.dgs.K.`, `vksm.dlv.neig.neveik.es.vyr.dgs.V.`, `vksm.dlv.neig.neveik.es.vyr.vns.V.`, `vksm.dlv.neig.neveik.es.įvardž.mot.dgs.V.`, `vksm.dlv.neig.reik.bev.`, `vksm.dlv.neig.reik.mot.dgs.K.`, `vksm.dlv.neig.reik.mot.vns.V.`, `vksm.dlv.neig.reik.vyr.vns.V.`, `vksm.dlv.neig.sngr.neveik.būt.bev.`, `vksm.dlv.neig.sngr.neveik.es.bev.`, `vksm.dlv.neig.sngr.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.neig.sngr.veik.es.vyr.vns.V.`, `vksm.dlv.neig.veik.būt-k.bev.`, `vksm.dlv.neig.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.neig.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.neig.veik.būt-k.vyr.vns.G.`, `vksm.dlv.neig.veik.būt-k.vyr.vns.V.`, `vksm.dlv.neig.veik.es.mot.dgs.K.`, `vksm.dlv.neig.veik.es.mot.vns.N.`, `vksm.dlv.neig.veik.es.mot.vns.V.`, `vksm.dlv.neig.veik.es.mot.vns.Įn.`, `vksm.dlv.neig.veik.es.vyr.dgs.G.`, `vksm.dlv.neig.veik.es.vyr.dgs.N.`, `vksm.dlv.neig.veik.es.vyr.dgs.V.`, `vksm.dlv.neig.veik.es.vyr.dgs.Įn.`, `vksm.dlv.neig.veik.es.vyr.vns.K.`, `vksm.dlv.neig.veik.es.vyr.vns.N.`, `vksm.dlv.neig.veik.es.vyr.vns.V.`, `vksm.dlv.neig.veik.es.įvardž.vyr.dgs.V.`, `vksm.dlv.neig.veik.es.įvardž.vyr.dgs.Įn.`, `vksm.dlv.neveik.būs.vyr.vns.G.`, `vksm.dlv.neveik.būs.vyr.vns.N.`, `vksm.dlv.neveik.būt-k.vyr.dgs.V.`, `vksm.dlv.neveik.būt-k.vyr.vns.V.`, `vksm.dlv.neveik.būt.bev.`, `vksm.dlv.neveik.būt.mot.V.`, `vksm.dlv.neveik.būt.mot.dgs.G.`, `vksm.dlv.neveik.būt.mot.dgs.K`, `vksm.dlv.neveik.būt.mot.dgs.K.`, `vksm.dlv.neveik.būt.mot.dgs.N.`, `vksm.dlv.neveik.būt.mot.dgs.V.`, `vksm.dlv.neveik.būt.mot.dgs.Įn.`, `vksm.dlv.neveik.būt.mot.vns.G.`, `vksm.dlv.neveik.būt.mot.vns.K.`, `vksm.dlv.neveik.būt.mot.vns.N.`, `vksm.dlv.neveik.būt.mot.vns.V`, `vksm.dlv.neveik.būt.mot.vns.V.`, `vksm.dlv.neveik.būt.mot.vns.Vt.`, `vksm.dlv.neveik.būt.mot.vns.Įn.`, `vksm.dlv.neveik.būt.vyr.dgs.G.`, `vksm.dlv.neveik.būt.vyr.dgs.K.`, `vksm.dlv.neveik.būt.vyr.dgs.N.`, `vksm.dlv.neveik.būt.vyr.dgs.V`, `vksm.dlv.neveik.būt.vyr.dgs.V.`, `vksm.dlv.neveik.būt.vyr.dgs.Vt.`, `vksm.dlv.neveik.būt.vyr.dgs.Įn.`, `vksm.dlv.neveik.būt.vyr.vns.G.`, `vksm.dlv.neveik.būt.vyr.vns.K.`, `vksm.dlv.neveik.būt.vyr.vns.N.`, `vksm.dlv.neveik.būt.vyr.vns.V`, `vksm.dlv.neveik.būt.vyr.vns.V.`, `vksm.dlv.neveik.būt.vyr.vns.Vt.`, `vksm.dlv.neveik.būt.vyr.vns.Įn.`, `vksm.dlv.neveik.būt.įvardž.mot.dgs.G.`, `vksm.dlv.neveik.būt.įvardž.mot.dgs.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.G.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.V.`, `vksm.dlv.neveik.būt.įvardž.vyr.vns.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.vns.V.`, `vksm.dlv.neveik.būts.vyr.dgs.V.`, `vksm.dlv.neveik.es.bev.`, `vksm.dlv.neveik.es.mot.V.`, `vksm.dlv.neveik.es.mot.dgs.G.`, `vksm.dlv.neveik.es.mot.dgs.K.`, `vksm.dlv.neveik.es.mot.dgs.N.`, `vksm.dlv.neveik.es.mot.dgs.V.`, `vksm.dlv.neveik.es.mot.dgs.Vt.`, `vksm.dlv.neveik.es.mot.dgs.Įn.`, `vksm.dlv.neveik.es.mot.vns.G.`, `vksm.dlv.neveik.es.mot.vns.K.`, `vksm.dlv.neveik.es.mot.vns.N.`, `vksm.dlv.neveik.es.mot.vns.V`, `vksm.dlv.neveik.es.mot.vns.V.`, `vksm.dlv.neveik.es.mot.vns.Vt.`, `vksm.dlv.neveik.es.mot.vns.Įn.`, `vksm.dlv.neveik.es.vyr.dgs.G.`, `vksm.dlv.neveik.es.vyr.dgs.K.`, `vksm.dlv.neveik.es.vyr.dgs.N.`, `vksm.dlv.neveik.es.vyr.dgs.V.`, `vksm.dlv.neveik.es.vyr.dgs.Įn.`, `vksm.dlv.neveik.es.vyr.vns.G.`, `vksm.dlv.neveik.es.vyr.vns.K.`, `vksm.dlv.neveik.es.vyr.vns.N.`, `vksm.dlv.neveik.es.vyr.vns.V.`, `vksm.dlv.neveik.es.vyr.vns.Įn.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.K.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.V.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.Įn.`, `vksm.dlv.neveik.es.įvardž.mot.vns.G.`, `vksm.dlv.neveik.es.įvardž.mot.vns.K.`, `vksm.dlv.neveik.es.įvardž.mot.vns.N.`, `vksm.dlv.neveik.es.įvardž.mot.vns.V.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.G.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.K.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.N.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.V.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.G.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.K.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.N.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.V.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.Įn.`, `vksm.dlv.neveik.mot.vns.V.`, `vksm.dlv.neveik.vyr.dgs.K.`, `vksm.dlv.neveik.įvardž.es.mot.vns.Vt.`, `vksm.dlv.neveik.įvardž.es.vyr.dgs.K.`, `vksm.dlv.neveik.įvardž.es.vyr.vns.K.`, `vksm.dlv.reik.bev.`, `vksm.dlv.reik.mot.vns.V.`, `vksm.dlv.reik.vyr.dgs.K.`, `vksm.dlv.reik.vyr.dgs.V.`, `vksm.dlv.reik.vyr.vns.V.`, `vksm.dlv.sngr.neveik.būt.bev.`, `vksm.dlv.sngr.neveik.būt.mot.dgs.G.`, `vksm.dlv.sngr.neveik.būt.mot.dgs.V.`, `vksm.dlv.sngr.neveik.būt.mot.vns.V.`, `vksm.dlv.sngr.neveik.būt.mot.vns.Vt.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.G.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.V.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.Vt.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.Įn.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.G.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.K.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.V.`, `vksm.dlv.sngr.neveik.es.bev.`, `vksm.dlv.sngr.neveik.es.mot.dgs.V.`, `vksm.dlv.sngr.neveik.es.mot.vns.V.`, `vksm.dlv.sngr.neveik.es.vyr.dgs.Įn.`, `vksm.dlv.sngr.neveik.es.vyr.vns.V.`, `vksm.dlv.sngr.veik.būt-k.bev.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.G.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.K.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.V.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.Įn.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.G.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.K.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.V.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.Įn.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.G.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.K.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.G.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.K.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.V.`, `vksm.dlv.sngr.veik.es.mot.dgs.K.`, `vksm.dlv.sngr.veik.es.mot.dgs.V.`, `vksm.dlv.sngr.veik.es.mot.dgs.Įn.`, `vksm.dlv.sngr.veik.es.mot.vns.K.`, `vksm.dlv.sngr.veik.es.vyr.dgs.G.`, `vksm.dlv.sngr.veik.es.vyr.dgs.K.`, `vksm.dlv.sngr.veik.es.vyr.dgs.N.`, `vksm.dlv.sngr.veik.es.vyr.dgs.V.`, `vksm.dlv.sngr.veik.es.vyr.vns.G.`, `vksm.dlv.sngr.veik.es.vyr.vns.K.`, `vksm.dlv.sngr.veik.es.vyr.vns.N.`, `vksm.dlv.sngr.veik.es.vyr.vns.V.`, `vksm.dlv.sngr.veik.es.įvardž.mot.vns.K.`, `vksm.dlv.veik.būs.vyr.vns.V.`, `vksm.dlv.veik.būt-k.bev.`, `vksm.dlv.veik.būt-k.mot.dgs.G.`, `vksm.dlv.veik.būt-k.mot.dgs.K.`, `vksm.dlv.veik.būt-k.mot.dgs.N.`, `vksm.dlv.veik.būt-k.mot.dgs.V.`, `vksm.dlv.veik.būt-k.mot.dgs.Vt.`, `vksm.dlv.veik.būt-k.mot.vns.G.`, `vksm.dlv.veik.būt-k.mot.vns.K.`, `vksm.dlv.veik.būt-k.mot.vns.N.`, `vksm.dlv.veik.būt-k.mot.vns.V.`, `vksm.dlv.veik.būt-k.mot.vns.Įn.`, `vksm.dlv.veik.būt-k.vyr.dgs.G.`, `vksm.dlv.veik.būt-k.vyr.dgs.K.`, `vksm.dlv.veik.būt-k.vyr.dgs.N.`, `vksm.dlv.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.veik.būt-k.vyr.vns.G.`, `vksm.dlv.veik.būt-k.vyr.vns.K.`, `vksm.dlv.veik.būt-k.vyr.vns.N.`, `vksm.dlv.veik.būt-k.vyr.vns.V.`, `vksm.dlv.veik.būt-k.vyr.vns.Vt.`, `vksm.dlv.veik.būt-k.vyr.vns.Įn.`, `vksm.dlv.veik.būt-k.įvardž.vyr.dgs.K.`, `vksm.dlv.veik.būt-k.įvardž.vyr.dgs.V.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.K.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.V.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.Įn.`, `vksm.dlv.veik.būt.k.vyr.dgs.V.`, `vksm.dlv.veik.es.mot.dgs.G.`, `vksm.dlv.veik.es.mot.dgs.K.`, `vksm.dlv.veik.es.mot.dgs.N.`, `vksm.dlv.veik.es.mot.dgs.V.`, `vksm.dlv.veik.es.mot.dgs.Vt.`, `vksm.dlv.veik.es.mot.dgs.Įn.`, `vksm.dlv.veik.es.mot.vns.G.`, `vksm.dlv.veik.es.mot.vns.K.`, `vksm.dlv.veik.es.mot.vns.N.`, `vksm.dlv.veik.es.mot.vns.V`, `vksm.dlv.veik.es.mot.vns.V.`, `vksm.dlv.veik.es.mot.vns.Vt.`, `vksm.dlv.veik.es.mot.vns.Įn.`, `vksm.dlv.veik.es.vyr.dgs.G.`, `vksm.dlv.veik.es.vyr.dgs.K.`, `vksm.dlv.veik.es.vyr.dgs.N.`, `vksm.dlv.veik.es.vyr.dgs.V.`, `vksm.dlv.veik.es.vyr.dgs.Vt.`, `vksm.dlv.veik.es.vyr.dgs.Įn.`, `vksm.dlv.veik.es.vyr.vns.G.`, `vksm.dlv.veik.es.vyr.vns.K.`, `vksm.dlv.veik.es.vyr.vns.N.`, `vksm.dlv.veik.es.vyr.vns.V.`, `vksm.dlv.veik.es.vyr.vns.Vt.`, `vksm.dlv.veik.es.vyr.vns.Įn.`, `vksm.dlv.veik.es.įvardž.mot.vns.K.`, `vksm.dlv.veik.es.įvardž.mot.vns.V.`, `vksm.dlv.veik.es.įvardž.vyr.dgs.K.`, `vksm.dlv.veik.es.įvardž.vyr.vns.K.`, `vksm.dlv.veik.es.įvardž.vyr.vns.N.`, `vksm.neig.dlv.neveik.es.mot.vns.V.`, `vksm.neveik.būt.vyr.dgs.V.`, `vksm.pad.būt-k.`, `vksm.pad.es.`, `vksm.pad.es.sngr.`, `vksm.pad.neig.būt-k.`, `vksm.pad.neig.es.`, `vksm.pad.neig.sngr.būt-k.`, `vksm.pad.neig.sngr.es.`, `vksm.pad.sngr.būt-k.`, `vksm.pad.sngr.es.`, `vksm.padlv.sngr.es.`, `vksm.pusd.mot.dgs.`, `vksm.pusd.mot.vns.`, `vksm.pusd.neig.mot.vns.`, `vksm.pusd.neig.vyr.dgs.`, `vksm.pusd.neig.vyr.vns.`, `vksm.pusd.sngr.mot.dgs.`, `vksm.pusd.sngr.mot.vns.`, `vksm.pusd.sngr.vyr.dgs.`, `vksm.pusd.sngr.vyr.vns.`, `vksm.pusd.vyr.dgs.`, `vksm.pusd.vyr.vns.`, `vksm.sngr.pad.es.`, `įv.G.`, `įv.K.`, `įv.N.`, `įv.V.`, `įv.bev.`, `įv.dgs.G.`, `įv.dgs.K.`, `įv.dgs.N.`, `įv.dgs.V.`, `įv.dgs.Vt.`, `įv.dgs.Įn.`, `įv.dvisk.V.`, `įv.mot.G.`, `įv.mot.K.`, `įv.mot.V.`, `įv.mot.dgs.G.`, `įv.mot.dgs.K.`, `įv.mot.dgs.N.`, `įv.mot.dgs.V.`, `įv.mot.dgs.Vt.`, `įv.mot.dgs.Įn.`, `įv.mot.dvisk.N.`, `įv.mot.dvisk.V.`, `įv.mot.vns.G.`, `įv.mot.vns.K.`, `įv.mot.vns.N.`, `įv.mot.vns.V.`, `įv.mot.vns.Vt.`, `įv.mot.vns.Įn.`, `įv.vns.G.`, `įv.vns.K.`, `įv.vns.N.`, `įv.vns.V.`, `įv.vns.Vt.`, `įv.vns.Įn.`, `įv.vyr.G.`, `įv.vyr.K.`, `įv.vyr.N.`, `įv.vyr.V.`, `įv.vyr.dgs.G.`, `įv.vyr.dgs.K.`, `įv.vyr.dgs.N.`, `įv.vyr.dgs.V.`, `įv.vyr.dgs.Vt.`, `įv.vyr.dgs.Įn.`, `įv.vyr.dvisk.G.`, `įv.vyr.dvisk.K.`, `įv.vyr.dvisk.V.`, `įv.vyr.vns.G.`, `įv.vyr.vns.K.`, `įv.vyr.vns.N.`, `įv.vyr.vns.V.`, `įv.vyr.vns.Vt.`, `įv.vyr.vns.Įn.`, `įv.vyr.Įn,`, `įv.Įn.`, `įv.įvardž.bev.`, `įv.įvardž.mot.vns.K.`, `įv.įvardž.mot.vns.V.` |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=PUNCT`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=X`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Hyph=Yes\|POS=ADV`, `Hyph=Yes\|POS=X`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SCONJ`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Ind`, `POS=PART`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Ger`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|NumForm=Digit\|POS=NUM`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Hyph=Yes\|POS=PART`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|NumForm=Roman\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `AdpType=Prep\|Case=Ins\|POS=ADP`, `Case=Gen\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=INTJ`, `Definite=Ind\|Gender=Neut\|NumForm=Word\|NumType=Ord\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Hyph=Yes\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Hyph=Yes\|POS=SCONJ`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Ger`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Ger`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Mood=Cnd\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Hyph=Yes\|POS=ADV`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|NumForm=Word\|NumType=Card\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=X`, `Case=Acc\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Ger`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Ger`, `Case=Nom\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Definite=Ind\|Hyph=Yes\|POS=NUM`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Ger`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Hyph=Yes\|POS=CCONJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Ger`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Dual\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Gender=Neut\|Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Definite=Def\|Gender=Neut\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Dual\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Foreign=Yes\|Hyph=Yes\|POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Degree=Sup\|Gender=Neut\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=SYM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Definite=Ind\|NumForm=Combi\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Acc\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Definite=Ind\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Gen\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Hyph=Yes\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `POS=VERB\|Polarity=Neg\|VerbForm=Inf`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Ger`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Aspect=Perf\|Case=Ins\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres`, `Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Loc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ill\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|Hyph=Yes\|POS=X`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Peri`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Gender=Fem\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Dat\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Mood=Nec\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Aspect=Hab\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Hyph=Yes\|POS=INTJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Hab\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Com\|Number=Sing\|POS=NOUN`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|NumForm=Word\|NumType=Sets\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Mult\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|NumType=Card\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Loc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|NumForm=Word\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `flat`, `flat:foreign`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:gov`, `obj`, `obl`, `obl:arg`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `2`, `3`, `5`, `7`, `9`, `12`, `16`, `18`, `19`, `21`, `24`, `26`, `30`, `32`, `34`, `37`, `39`, `41`, `43`, `44`, `46`, `48`, `50`, `52`, `55`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `74`, `75`, `77`, `79`, `81`, `84`, `86`, `88`, `90`, `92`, `94`, `96`, `98`, `101`, `103`, `105`, `107`, `109`, `110`, `111`, `113`, `115`, `117`, `119`, `121`, `123`, `125`, `127`, `129`, `131`, `133`, `135`, `137`, `139`, `142`, `146`, `148`, `151`, `153`, `155`, `158`, `162`, `165`, `167`, `168`, `170`, `173`, `175`, `177`, `180`, `182`, `184`, `185`, `187`, `189`, `190`, `194`, `195`, `196`, `197`, `200`, `202`, `204`, `205`, `206`, `207`, `208`, `209`, `211`, `213`, `216`, `217`, `219`, `220`, `222`, `224`, `225`, `227`, `231`, `234`, `238`, `242`, `246`, `249`, `251`, `252`, `255`, `258`, `261`, `263`, `265`, `267`, `269`, `272`, `274`, `276`, `278`, `281`, `284`, `285`, `287`, `289`, `292`, `294`, `295`, `297`, `299`, `301`, `303`, `306`, `308`, `310`, `313`, `314`, `317`, `319`, `323`, `325`, `328`, `331`, `333`, `336`, `339`, `341`, `344`, `346`, `350`, `353`, `356`, `359`, `360`, `363`, `366`, `368`, `371`, `374`, `376`, `378`, `380`, `382`, `384`, `385`, `387`, `389`, `390`, `391`, `393`, `395`, `397`, `402`, `403`, `404`, `406`, `408`, `409`, `413`, `415`, `417`, `419`, `420`, `423`, `424`, `426`, `429`, `432`, `434`, `436`, `439`, `442`, `445`, `447`, `448`, `450`, `452`, `455`, `456`, `458`, `460`, `463`, `465`, `468`, `472`, `475`, `477`, `480`, `482`, `483`, `485`, `487`, `488`, `489`, `491`, `492`, `494`, `496`, `497`, `500`, `501`, `502`, `504`, `505`, `506`, `508`, `509`, `513`, `515`, `518`, `519`, `521`, `522`, `523`, `525`, `527`, `529`, `533`, `535`, `538`, `541`, `542`, `545`, `547`, `550`, `552`, `554`, `555`, `557`, `560`, `561`, `563`, `566`, `569`, `572`, `574`, `577`, `580`, `582`, `584`, `589`, `594`, `596`, `599`, `600`, `602`, `604`, `607`, `609`, `611`, `613`, `615`, `616`, `619`, `623`, `625`, `628`, `629`, `631`, `633`, `635`, `638`, `640`, `642`, `645`, `647`, `649`, `653`, `655`, `658`, `660`, `661`, `663`, `665`, `666`, `668`, `670`, `671`, `672`, `673`, `675`, `678`, `679`, `681`, `683`, `685`, `688`, `691`, `693`, `697`, `699`, `700`, `702`, `703`, `704`, `705`, `706`, `707`, `709`, `714`, `715`, `717`, `719`, `721`, `722`, `725`, `726`, `728`, `730`, `732`, `735`, `738`, `739`, `741`, `742`, `743`, `746`, `748`, `750`, `754`, `755`, `757`, `759`, `761`, `762`, `765`, `768`, `770`, `773`, `774`, `777`, `781`, `784`, `785`, `788`, `791`, `793`, `795`, `796`, `799`, `801`, `803`, `805`, `807`, `808`, `811`, `813`, `814`, `816`, `817`, `818`, `822`, `825`, `827`, `829`, `831`, `835`, `836`, `838`, `839`, `841`, `843`, `844`, `846`, `849`, `850`, `851`, `854`, `855`, `856`, `857`, `858`, `859`, `860`, `861`, `367`, `862`, `865`, `867`, `868`, `869`, `870`, `873`, `874`, `875`, `878`, `879`, `882`, `886`, `888`, `890`, `893`, `895`, `898`, `900`, `901`, `902`, `903`, `905`, `907`, `908`, `910`, `912`, `914`, `915`, `917`, `919`, `921`, `922`, `924`, `928`, `929`, `930`, `931`, `932`, `935`, `936`, `938`, `940`, `942`, `944`, `945`, `947`, `951`, `953`, `956`, `958`, `959`, `961`, `963`, `965`, `967`, `969`, `970`, `972`, `975`, `976`, `977`, `979`, `980`, `981`, `983`, `987`, `990`, `992`, `993`, `995`, `996`, `998`, `1000`, `1002`, `1004`, `1006`, `1008`, `1009`, `1012`, `1014`, `1015`, `1016`, `1018`, `1019`, `1022`, `1024`, `1026`, `1028`, `1029`, `1033`, `1036`, `1038`, `1040`, `1042`, `1047`, `1049`, `1051`, `1053`, `1055`, `1057`, `1060`, `1063`, `1065`, `1067`, `1069`, `1070`, `1071`, `1073`, `1075`, `1078`, `1080`, `1082`, `1084`, `1086`, `1089`, `1092`, `1093`, `1094`, `1095`, `1096`, `1098`, `1100`, `1102`, `1104`, `1105`, `1107`, `1108`, `1110`, `1113`, `1115`, `1118`, `1121`, `1123`, `1124`, `1126`, `1127`, `1129`, `1131`, `1134`, `1137`, `1141`, `1142`, `1144`, `1146`, `1148`, `1150`, `1151`, `1153`, `1154`, `1156`, `1158`, `1159`, `1162`, `1164`, `1166`, `1169`, `1173`, `1175`, `1178`, `1180`, `1183`, `1184`, `1186`, `1187`, `1189`, `1191`, `1194`, `1196`, `1197`, `1198`, `1200`, `1201`, `1203`, `1205`, `1207`, `1210`, `1212`, `1215`, `1216`, `1218`, `1220`, `1223`, `1224`, `1227`, `1229`, `1232`, `1234`, `1235`, `1238`, `1241`, `1242`, `1243`, `1246`, `1247`, `1249`, `1251`, `1252`, `1253`, `1256`, `1259`, `1262`, `1264`, `1267`, `1269`, `1271`, `1272`, `1275`, `1277`, `1278`, `1280`, `1282`, `1284`, `1285`, `1288`, `1291`, `1293`, `1296`, `1298`, `1300`, `1301`, `1302`, `1303`, `1305`, `1307`, `1309`, `1312`, `1315`, `1316`, `1319`, `1320`, `1321`, `1322`, `1323`, `1324`, `1327`, `1330`, `1333`, `1334`, `1335`, `1336`, `1339`, `1341`, `1344`, `1345`, `1347`, `1349`, `1350`, `1351`, `1352`, `1354`, `1357`, `1358`, `1359`, `1360`, `1362`, `1365`, `1368`, `1369`, `1370`, `1372`, `1374`, `1376`, `1377`, `1379`, `1382`, `1385`, `1386`, `1390`, `1393`, `1394`, `1396`, `1398`, `1400`, `1403`, `1405`, `1408`, `1410`, `1413`, `1415`, `1418`, `1420`, `1421`, `1423`, `1424`, `1426`, `1428`, `1429`, `1432`, `1434`, `1436`, `1438`, `1441`, `1443`, `1444`, `1445`, `1447`, `1449`, `1450`, `1451`, `1453`, `1455`, `1457`, `1458`, `1460`, `1461`, `1463`, `1465`, `1467`, `1470`, `1472`, `1474`, `1476`, `1477`, `1479`, `1481`, `1482`, `1483`, `1484`, `1486`, `1489`, `1492`, `1494`, `1495`, `1497`, `1498`, `1501`, `1503`, `1505`, `1506`, `1507`, `1508`, `1510`, `1511`, `1514`, `1515`, `1518`, `1521`, `1524`, `1526`, `1529`, `1532`, `1533`, `1534`, `1537`, `1539`, `1540`, `1542`, `1544`, `1545`, `1547`, `1549`, `1550`, `1551`, `1552`, `1553`, `1555`, `1557`, `1559`, `1562`, `1565`, `1568`, `1570`, `1571`, `1574`, `1576`, `1579`, `1580`, `1582`, `1583`, `1585`, `1586`, `1588`, `1590`, `1591`, `1592`, `1594`, `1595`, `1597`, `1598`, `1600`, `1602`, `1605`, `1607`, `1608`, `1609`, `1611`, `1613`, `1615`, `1616`, `1617`, `1620`, `1621`, `1623`, `1624`, `1625`, `1628`, `1630`, `1632`, `1634`, `1635`, `1636`, `1638`, `1639`, `1641`, `1643`, `1644`, `1647`, `1649`, `1650`, `1651`, `1652`, `1654`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1664`, `1665`, `1666`, `1669`, `1672`, `1673`, `1674`, `1675`, `1678`, `1679`, `1682`, `1685`, `1686`, `1689`, `1690`, `1691`, `1693`, `1694`, `1695`, `1697`, `1699`, `1701`, `1702`, `1704`, `1706`, `1707`, `1709`, `1711`, `1713`, `1715`, `1716`, `1720`, `1722`, `1724`, `1726`, `1727`, `1728`, `1729`, `1732`, `1733`, `1736`, `1737`, `1740`, `1741`, `1742`, `1744`, `1747`, `1749`, `1751`, `1755`, `1756`, `1757`, `1759`, `1761`, `1763`, `1764`, `1766`, `1769`, `1771`, `1772`, `1774`, `1776`, `1777`, `1780`, `1781`, `1782`, `1784`, `1785`, `1787`, `1789`, `1790`, `1791`, `1794`, `1796`, `1798`, `1801`, `1802`, `1805`, `1806`, `1807`, `1808`, `1811`, `1812`, `1815`, `1818`, `1821`, `1823`, `1825`, `1828`, `1830`, `1832`, `1835`, `1836`, `1839`, `1841`, `1844`, `1847`, `1850`, `1852`, `1853`, `1854`, `1855`, `1856`, `1857`, `1860`, `1862`, `1863`, `1864`, `1866`, `1867`, `1869`, `1870`, `1871`, `1874`, `1876`, `1878`, `1879`, `1882`, `1885`, `1887`, `1890`, `1893`, `1896`, `1898`, `1900`, `1902`, `1903`, `1904`, `1905`, `1906`, `1909`, `1912`, `1913`, `1917`, `1919`, `1921`, `1924`, `1925`, `1926`, `1928`, `1929`, `1931`, `1933`, `1935`, `1936`, `1937`, `1939`, `1941`, `1944`, `1946`, `1947`, `1950`, `1951`, `1954`, `1955`, `1957`, `1958`, `1960`, `1961`, `1964`, `1966`, `1968`, `1970`, `1971`, `1972`, `1975`, `1977`, `1980`, `1982`, `1983`, `1984`, `1985`, `1986`, `1987`, `1988`, `1991`, `1993`, `1995`, `1996`, `1997`, `1999`, `2000`, `2001`, `2003`, `2005`, `2008`, `2011`, `2012`, `2014`, `2017`, `2018`, `2019`, `2020`, `2022`, `2024`, `2025`, `2027`, `2029`, `2031`, `2032`, `2035`, `2036`, `2039`, `2040`, `2041`, `2044`, `2045`, `40`, `2046`, `2048`, `2049`, `2052`, `2055`, `2056`, `2058`, `2059`, `2061`, `2063`, `2066`, `2068`, `2069`, `2071`, `2072`, `2074`, `2076`, `2077`, `2078`, `2079`, `2080`, `2082`, `2084`, `2086`, `2087`, `2088`, `2090`, `2091`, `2094`, `2097`, `2098`, `2100`, `2102`, `2103`, `2104`, `2106`, `2107`, `2108`, `2111`, `2113`, `2114`, `2116`, `2118`, `2121`, `2124`, `2126`, `2128`, `2130`, `2134`, `2137`, `2139`, `2141`, `2143`, `2145`, `2146`, `2148`, `2150`, `2152`, `2155`, `2157`, `2160`, `2161`, `2163`, `2164`, `2165`, `2166`, `2167`, `2169`, `2170`, `2171`, `2174`, `2177`, `2178`, `2179`, `2180`, `2182`, `2185`, `2186`, `2187`, `2189`, `2190`, `2191`, `2192`, `2194`, `2195`, `2196`, `2199`, `2200`, `2202`, `2204`, `2206`, `2207`, `2208`, `2211`, `2213`, `2214`, `2215`, `2216`, `2217`, `2219`, `2220`, `2221`, `2222`, `2223`, `2225`, `2226`, `2227`, `2228`, `2230`, `2232`, `2234`, `2237`, `2239`, `2240`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2247`, `2249`, `2251`, `2254`, `2256`, `2257`, `2258`, `2260`, `2261`, `2263`, `2266`, `2268`, `2269`, `2270`, `2271`, `2272`, `2273`, `2274`, `2275`, `2276`, `2279`, `2281`, `2283`, `2284`, `2285`, `2286`, `2287`, `2289`, `2291`, `2294`, `2295`, `2297`, `2298`, `2301`, `2302`, `2303`, `2304`, `2305`, `2306`, `2308`, `2310`, `2311`, `2312`, `2313`, `2314`, `2315`, `2316`, `2317`, `2318`, `2319`, `2322`, `2324`, `2326`, `2327`, `2330`, `2331`, `2332`, `2334`, `2335`, `2336`, `2337`, `2338`, `2339`, `2340`, `2341`, `2342`, `2343`, `2344`, `2345`, `2346`, `2347`, `2348`, `2349`, `2351`, `2353`, `2354`, `2356`, `2357`, `2358`, `2359`, `2360`, `2361`, `2362`, `2363`, `2364`, `2365`, `2366`, `2367`, `2368`, `2369`, `2370`, `2371`, `2372`, `2375`, `2376`, `2377`, `2378`, `2379`, `2380`, `2381`, `2382`, `2383`, `2384`, `2385`, `2386`, `2387`, `2388`, `2389`, `2390`, `2391`, `2392`, `2393`, `2394`, `2395`, `2396`, `2398`, `2399`, `2401`, `2403`, `2404`, `2405`, `2406`, `2407`, `2410`, `2411`, `2413`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2421`, `2422`, `2423`, `2424`, `2425`, `2426`, `2429`, `2430`, `2432`, `2433`, `2435`, `2437`, `2440`, `2443`, `2444`, `2445`, `2446`, `2447`, `2448`, `2450`, `2451`, `2452`, `2453`, `2454`, `2455`, `2456`, `2457`, `2458`, `2459`, `2460`, `2461`, `2462`, `2463`, `2466`, `2468`, `2469`, `2470`, `2471`, `2472`, `2473`, `2474`, `2475`, `2476`, `2477`, `2478`, `2480`, `2482`, `2483`, `2484`, `2485`, `2486`, `2487`, `2488`, `2489`, `2491`, `2493`, `2495`, `2496`, `2498`, `2500`, `2501`, `2504`, `2505`, `2506`, `2508`, `2509`, `2511`, `2513`, `2515`, `2516`, `2518`, `2519`, `2520`, `2522`, `2525`, `2526`, `2528`, `2530`, `2532`, `2533`, `2534`, `2535`, `2537`, `2539`, `2540`, `2541`, `2542`, `2543`, `2544`, `2546`, `2548`, `2550`, `2552`, `2553`, `2555`, `2557`, `2558`, `2560`, `2561`, `2564`, `2565`, `2566`, `2567`, `2568`, `2570`, `2572`, `2574`, `2578`, `2579`, `2580`, `2581`, `2583`, `2584`, `2585`, `2586`, `2588`, `2589`, `2590`, `2591`, `2594`, `2596`, `2597`, `2599`, `2600`, `2601`, `2602`, `2603`, `2606`, `2609`, `2612`, `2613`, `2617`, `2618`, `2621`, `2622`, `2625`, `2629`, `2631`, `2633`, `2634`, `2636`, `2637`, `2638`, `2639`, `2640`, `2641`, `2643`, `2645`, `2647`, `2649`, `2650`, `2651`, `2653`, `2654`, `2657`, `2658`, `2659`, `2660`, `2662`, `2663`, `2665`, `2669`, `2671`, `2673`, `2676`, `2677`, `2678`, `2680`, `2682`, `2684`, `2687`, `2690`, `2692`, `2694`, `2696`, `2697`, `2698`, `2699`, `2700`, `2701`, `2702`, `2703`, `2704`, `2705`, `2706`, `2708`, `2710`, `2711`, `2712`, `2713`, `2716`, `2718`, `2721`, `2722`, `2725`, `2726`, `2727`, `2730`, `2731`, `2732`, `2733`, `2737`, `2740`, `2741`, `2742`, `2744`, `2747`, `2750`, `2752`, `2754`, `2756`, `2757`, `2760`, `2762`, `2765`, `2768`, `2769`, `2772`, `2775`, `2778`, `2779`, `2780`, `2782`, `2784`, `2786`, `2787`, `2789`, `2790`, `2791`, `2794`, `2795`, `2797`, `2799`, `2800`, `2801`, `2803`, `2804`, `2805`, `2808`, `2810`, `2811`, `2812`, `2815`, `2817`, `2818`, `2819`, `2821`, `2822`, `2823`, `2824`, `2826`, `2828`, `2829`, `2830`, `2833`, `2834`, `2836`, `2838`, `2839`, `2842`, `2845`, `2847`, `2848`, `2849`, `2851`, `2854`, `2856`, `2859`, `2861`, `2863`, `2864`, `2865`, `2866`, `2867`, `2870`, `2873`, `2874`, `2876`, `2880`, `2882`, `2884`, `2887`, `2889`, `2890`, `2893`, `2895`, `2897`, `2899`, `2900`, `2901`, `2904`, `2905`, `2907`, `2909`, `2911`, `2912`, `2914`, `2916`, `2917`, `2918`, `2919`, `2922`, `2925`, `2926`, `2855`, `2928`, `2930`, `2932`, `2933`, `2936`, `2937`, `2939`, `2940`, `2941`, `2942`, `2943`, `2945`, `2946`, `2948`, `2952`, `2954`, `2957`, `2958`, `2961`, `2962`, `2963`, `2965`, `2967`, `2969`, `2971`, `2974`, `2976`, `2979`, `2980`, `2981`, `2982`, `2984`, `2985`, `2987`, `2989`, `2991`, `2993`, `2995`, `2997`, `2998`, `2999`, `3000`, `3001`, `3002`, `3004`, `3005`, `3007`, `3008`, `3009`, `3010`, `3011`, `3012`, `3013`, `3015`, `3017`, `3019`, `3021`, `3022`, `3023`, `3024`, `3025`, `3027`, `3028`, `3030`, `3031`, `3033`, `3036`, `3039`, `3040`, `3042`, `3045`, `3047`, `3049`, `3050`, `3053`, `3054`, `3055`, `3056`, `3057`, `3058`, `3059`, `3061`, `3062`, `3063`, `3064`, `3066`, `3067`, `3068`, `3069`, `3071`, `3073`, `3074`, `3077`, `3078`, `3080`, `3081`, `3083`, `3084`, `3085`, `3086`, `3087`, `3088`, `3089`, `3090`, `3091`, `3093`, `3095`, `3096`, `3098`, `3100`, `3101`, `3102`, `3103`, `3104`, `3107`, `3109`, `3113`, `3114`, `3115`, `3116`, `3117`, `3119`, `3120`, `3123`, `3124`, `3125`, `3128`, `3130`, `3133`, `3134`, `3136`, `3137`, `3139`, `3140`, `3141`, `3142`, `3143`, `3145`, `3147`, `3148`, `3150`, `3151`, `3153`, `3154`, `3157`, `3158`, `3159`, `3161`, `3163`, `3164`, `3165`, `3166`, `3167`, `3169`, `3170`, `3173`, `3174`, `3177`, `3178`, `3179`, `3182`, `3185`, `3187`, `3190`, `3191`, `3192`, `3193`, `3194`, `3195`, `3196`, `3197`, `3198`, `3199`, `3200`, `3201`, `3203`, `3205`, `3206`, `3209`, `3212`, `3213`, `3215`, `3216`, `3217`, `3218`, `3219`, `3220`, `3222`, `3225`, `3226`, `3229`, `3232`, `3234`, `3236`, `3237`, `3240`, `3241`, `3242`, `3243`, `3244`, `3245`, `3246`, `3247`, `3248`, `3249`, `3250`, `3252`, `3255`, `3257`, `3258`, `3259`, `3260`, `3261`, `3262`, `3263`, `3264`, `3266`, `3267`, `3268`, `3269`, `3272`, `3273`, `3276`, `3279`, `3282`, `3283`, `3285`, `3286`, `3287`, `3289`, `3292`, `3294`, `3297`, `3299`, `3301`, `3303`, `3305`, `3307`, `3309`, `3310`, `3311`, `3312`, `3313`, `3314`, `3315`, `3317`, `3318`, `3319`, `3322`, `3324`, `3325`, `3328`, `3330`, `3331`, `3333`, `3334`, `3337`, `3341`, `3342`, `3344`, `3345`, `3347`, `3349`, `3350`, `3352`, `3354`, `3355`, `3356`, `3357`, `3358`, `3359`, `3360`, `3361`, `3362`, `3364`, `3365`, `3366`, `3367`, `3368`, `3370`, `3373`, `3374`, `3375`, `3376`, `3377`, `3378`, `3379`, `3380`, `3381`, `3382`, `3385`, `3386`, `3388`, `3390`, `3391`, `3392`, `3394`, `3395`, `3396`, `3397`, `3398`, `3399`, `3400`, `3401`, `3402`, `3404`, `3406`, `3407`, `3408`, `3409`, `3410`, `3411`, `3412`, `3413`, `3414`, `3415`, `3416`, `3418`, `3420`, `3423`, `3426`, `3429`, `3430`, `3431`, `3432`, `3433`, `3434`, `3435`, `3436`, `3437`, `3440`, `3441`, `3442`, `3445`, `3446`, `3448`, `3449`, `3451`, `3453`, `3455`, `3457`, `3458`, `3459`, `3460`, `3461`, `3462`, `3463`, `3464`, `3465`, `3466`, `3468`, `3469`, `3473`, `3474`, `3475`, `3477`, `3478`, `3479`, `3481`, `3482`, `3483`, `3485`, `3488`, `3489`, `3490`, `3491`, `3492`, `3493`, `3495`, `3496`, `3497`, `3498`, `3499`, `3500`, `3501`, `3502`, `3503`, `3504`, `3505`, `3506`, `3509`, `3510`, `3511`, `3512`, `3514`, `3516`, `3517`, `3518`, `3519`, `3520`, `3521`, `3522`, `3523`, `3524`, `3525`, `3526`, `3527`, `3528`, `3529`, `3530`, `3531`, `3532`, `3535`, `3536`, `3537`, `3538`, `3539`, `3540`, `3542`, `3543`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3552`, `3553` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.96 |
| `TOKEN_P` | 99.94 |
| `TOKEN_R` | 99.98 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 95.65 |
| `SENTS_P` | 96.84 |
| `SENTS_R` | 94.49 |
| `TAG_ACC` | 95.43 |
| `POS_ACC` | 98.07 |
| `MORPH_ACC` | 95.50 |
| `DEP_UAS` | 88.11 |
| `DEP_LAS` | 83.62 |
| `LEMMA_ACC` | 90.46 |
|
aadelucia/GPT2_small_narrative_finetuned_medium
|
aadelucia
| 2021-12-10T18:48:36Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
|
crabz/FERNET-CC_sk-ner
|
crabz
| 2021-12-10T18:46:02Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"sk",
"dataset:wikiann",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
language:
- sk
inference: false
model-index:
- name: fernet-sk-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann sk
type: wikiann
args: sk
metrics:
- name: Precision
type: precision
value: 0.9359821760118826
- name: Recall
type: recall
value: 0.9472378804960541
- name: F1
type: f1
value: 0.9415763914830033
- name: Accuracy
type: accuracy
value: 0.9789063466534702
---
# Named Entity Recognition based on FERNET-CC_sk
This model is a fine-tuned version of [fav-kky/FERNET-CC_sk](https://huggingface.co/fav-kky/FERNET-CC_sk) on the Slovak wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1763
- Precision: 0.9360
- Recall: 0.9472
- F1: 0.9416
- Accuracy: 0.9789
## Intended uses & limitation
Supported classes: LOCATION, PERSON, ORGANIZATION
```
from transformers import pipeline
ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1259 | 1.0 | 834 | 0.1095 | 0.8963 | 0.9182 | 0.9071 | 0.9697 |
| 0.071 | 2.0 | 1668 | 0.0974 | 0.9270 | 0.9357 | 0.9313 | 0.9762 |
| 0.0323 | 3.0 | 2502 | 0.1259 | 0.9257 | 0.9330 | 0.9293 | 0.9745 |
| 0.0175 | 4.0 | 3336 | 0.1347 | 0.9241 | 0.9360 | 0.9300 | 0.9756 |
| 0.0156 | 5.0 | 4170 | 0.1407 | 0.9337 | 0.9404 | 0.9370 | 0.9780 |
| 0.0062 | 6.0 | 5004 | 0.1522 | 0.9267 | 0.9410 | 0.9338 | 0.9774 |
| 0.0055 | 7.0 | 5838 | 0.1559 | 0.9322 | 0.9429 | 0.9375 | 0.9780 |
| 0.0024 | 8.0 | 6672 | 0.1733 | 0.9321 | 0.9438 | 0.9379 | 0.9779 |
| 0.0009 | 9.0 | 7506 | 0.1765 | 0.9347 | 0.9468 | 0.9407 | 0.9784 |
| 0.0002 | 10.0 | 8340 | 0.1763 | 0.9360 | 0.9472 | 0.9416 | 0.9789 |
### Framework versions
- Transformers 4.14.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
explosion/lv_udv25_latvianlvtb_trf
|
explosion
| 2021-12-10T18:27:19Z | 1 | 2 |
spacy
|
[
"spacy",
"token-classification",
"lv",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- lv
license: cc-by-sa-4.0
model-index:
- name: lv_udv25_latvianlvtb_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9158590393
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9793637642
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9568769509
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.953872229
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9130165092
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8774541377
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9776570048
---
UD v2.5 benchmarking pipeline for UD_Latvian-LVTB
| Feature | Description |
| --- | --- |
| **Name** | `lv_udv25_latvianlvtb_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (6012 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `X`, `affpanc`, `affpanp`, `affpayc`, `affpayp`, `affpays`, `affpdnc`, `affpdnp`, `affpdyc`, `affpdyp`, `affpdys`, `affpgnp`, `affpgyc`, `affpgyp`, `affplnc`, `affplnp`, `affplyc`, `affplyp`, `affpnnc`, `affpnnp`, `affpnyc`, `affpnyp`, `affpnys`, `affsanc`, `affsanp`, `affsayc`, `affsayp`, `affsays`, `affsdnc`, `affsdnp`, `affsdyc`, `affsdyp`, `affsgnc`, `affsgnp`, `affsgyc`, `affsgyp`, `affsgys`, `affslnc`, `affslnp`, `affslyc`, `affslyp`, `affslys`, `affsnnc`, `affsnnp`, `affsnyc`, `affsnyp`, `affsnys`, `affsvyp`, `afmpanc`, `afmpanp`, `afmpayc`, `afmpayp`, `afmpays`, `afmpdnc`, `afmpdnp`, `afmpdyc`, `afmpdyp`, `afmpdys`, `afmpgnc`, `afmpgnp`, `afmpgyc`, `afmpgyp`, `afmpgys`, `afmplnc`, `afmplnp`, `afmplyc`, `afmplyp`, `afmplys`, `afmpnnc`, `afmpnnp`, `afmpnyc`, `afmpnyp`, `afmpnys`, `afmpvyp`, `afmsanc`, `afmsanp`, `afmsayc`, `afmsayp`, `afmsays`, `afmsdnc`, `afmsdnp`, `afmsdyc`, `afmsdyp`, `afmsdys`, `afmsgnc`, `afmsgnp`, `afmsgyc`, `afmsgyp`, `afmsgys`, `afmslnc`, `afmslnp`, `afmslyc`, `afmslyp`, `afmslys`, `afmsnnc`, `afmsnnp`, `afmsnyc`, `afmsnyp`, `afmsnys`, `arfpanp`, `arfpayp`, `arfpdnp`, `arfpdyc`, `arfpdyp`, `arfpgnp`, `arfpgyp`, `arfplnc`, `arfplnp`, `arfplyc`, `arfplyp`, `arfpnnc`, `arfpnnp`, `arfpnyp`, `arfpnys`, `arfsanp`, `arfsayp`, `arfsdnp`, `arfsdyp`, `arfsgnc`, `arfsgnp`, `arfsgyp`, `arfslnp`, `arfslyp`, `arfsnnc`, `arfsnnp`, `arfsnyc`, `arfsnyp`, `arfsvyp`, `armpanp`, `armpayc`, `armpayp`, `armpdnp`, `armpdyc`, `armpdyp`, `armpdys`, `armpgnp`, `armpgyp`, `armplnp`, `armplyc`, `armplyp`, `armpnnc`, `armpnnp`, `armpnyc`, `armpnyp`, `armsanp`, `armsayc`, `armsayp`, `armsdnp`, `armsdyp`, `armsgnp`, `armsgyp`, `armslnp`, `armslyp`, `armsnnp`, `armsnyp`, `armsnys`, `cc`, `cs`, `i`, `mcc0p0`, `mccfpa`, `mccmpn`, `mccmsa`, `mcs0p0`, `mcsfp0`, `mcsfpa`, `mcsfpd`, `mcsfpg`, `mcsfpl`, `mcsfpn`, `mcsfsa`, `mcsfsd`, `mcsfsg`, `mcsfsl`, `mcsfsn`, `mcsmpa`, `mcsmpd`, `mcsmpg`, `mcsmpl`, `mcsmpn`, `mcsmsa`, `mcsmsd`, `mcsmsg`, `mcsmsl`, `mcsmsn`, `mfcfsa`, `mfcfsg`, `mfcfsn`, `mfsmsg`, `mocfsg`, `mocmsg`, `mosfpa`, `mosfpd`, `mosfpg`, `mosfpl`, `mosfpn`, `mosfsa`, `mosfsd`, `mosfsg`, `mosfsl`, `mosfsn`, `mosmpa`, `mosmpd`, `mosmpg`, `mosmpl`, `mosmpn`, `mosmsa`, `mosmsd`, `mosmsg`, `mosmsl`, `mosmsn`, `n0msa1`, `nc0000`, `nc000g`, `nc00g1`, `nc00gg`, `ncfda4`, `ncfda5`, `ncfda6`, `ncfdd4`, `ncfdd5`, `ncfdd6`, `ncfdg4`, `ncfdg5`, `ncfdg6`, `ncfdgg`, `ncfdl4`, `ncfdl5`, `ncfdl6`, `ncfdn4`, `ncfdn5`, `ncfdn6`, `ncfpa4`, `ncfpa5`, `ncfpa6`, `ncfpar`, `ncfpd4`, `ncfpd5`, `ncfpd6`, `ncfpdr`, `ncfpg1`, `ncfpg2`, `ncfpg4`, `ncfpg5`, `ncfpg6`, `ncfpgg`, `ncfpl4`, `ncfpl5`, `ncfpl6`, `ncfpn1`, `ncfpn4`, `ncfpn5`, `ncfpn6`, `ncfpnr`, `ncfsa1`, `ncfsa2`, `ncfsa4`, `ncfsa5`, `ncfsa6`, `ncfsar`, `ncfsd4`, `ncfsd5`, `ncfsd6`, `ncfsg1`, `ncfsg4`, `ncfsg5`, `ncfsg6`, `ncfsgg`, `ncfsgr`, `ncfsl1`, `ncfsl4`, `ncfsl5`, `ncfsl6`, `ncfslr`, `ncfsn4`, `ncfsn5`, `ncfsn6`, `ncfsnr`, `ncfsv4`, `ncfsv5`, `ncfva4`, `ncfva5`, `ncfvd5`, `ncfvg4`, `ncfvg5`, `ncfvl4`, `ncfvl5`, `ncfvn5`, `ncm000`, `ncmda1`, `ncmda2`, `ncmda6`, `ncmdd1`, `ncmdd2`, `ncmdd3`, `ncmdd6`, `ncmdg1`, `ncmdg2`, `ncmdg3`, `ncmdg6`, `ncmdgg`, `ncmdl1`, `ncmdl2`, `ncmdn1`, `ncmdn2`, `ncmdn6`, `ncmpa1`, `ncmpa2`, `ncmpa3`, `ncmpa4`, `ncmpd1`, `ncmpd2`, `ncmpd3`, `ncmpd5`, `ncmpg1`, `ncmpg2`, `ncmpg3`, `ncmpg4`, `ncmpg5`, `ncmpg6`, `ncmpgg`, `ncmpl1`, `ncmpl2`, `ncmpl3`, `ncmpl4`, `ncmpn0`, `ncmpn1`, `ncmpn2`, `ncmpn3`, `ncmpn4`, `ncmpn5`, `ncmpv1`, `ncmpv2`, `ncmsa1`, `ncmsa2`, `ncmsa3`, `ncmsa4`, `ncmsa5`, `ncmsd1`, `ncmsd2`, `ncmsd3`, `ncmsd4`, `ncmsg0`, `ncmsg1`, `ncmsg2`, `ncmsg3`, `ncmsg4`, `ncmsgg`, `ncmsgr`, `ncmsl1`, `ncmsl2`, `ncmsl3`, `ncmsl4`, `ncmsl5`, `ncmsn1`, `ncmsn2`, `ncmsn3`, `ncmsn4`, `ncmsnr`, `ncmsv1`, `ncmsv2`, `ncmva1`, `ncmva3`, `ncmvd1`, `ncmvd3`, `ncmvg1`, `ncmvg3`, `ncmvl1`, `ncmvl3`, `ncmvn1`, `ncmvn3`, `np0000`, `npfda4`, `npfdd4`, `npfdd6`, `npfdg1`, `npfdg4`, `npfdg6`, `npfdl4`, `npfdl6`, `npfdn4`, `npfdn5`, `npfdn6`, `npfpa5`, `npfpd5`, `npfpg2`, `npfpg4`, `npfpn4`, `npfpn5`, `npfsa4`, `npfsa5`, `npfsa6`, `npfsd4`, `npfsd5`, `npfsg1`, `npfsg3`, `npfsg4`, `npfsg5`, `npfsg6`, `npfsl4`, `npfsl5`, `npfsl6`, `npfsn3`, `npfsn4`, `npfsn5`, `npfsn6`, `npfsv4`, `npfsv5`, `npmda1`, `npmda2`, `npmdd1`, `npmdd2`, `npmdg1`, `npmdg2`, `npmdl1`, `npmdl2`, `npmdn1`, `npmdn2`, `npmpa1`, `npmpd1`, `npmpd2`, `npmpg1`, `npmpg2`, `npmpgg`, `npmpl1`, `npmpl2`, `npmpn1`, `npmpn2`, `npmsa1`, `npmsa2`, `npmsa3`, `npmsa4`, `npmsa5`, `npmsd1`, `npmsd2`, `npmsd3`, `npmsd4`, `npmsd5`, `npmsg0`, `npmsg1`, `npmsg2`, `npmsg3`, `npmsg4`, `npmsg5`, `npmsl1`, `npmsl2`, `npmsn1`, `npmsn2`, `npmsn3`, `npmsn4`, `npmsn5`, `npmsv1`, `npmsv2`, `pd0fpan`, `pd0fpdn`, `pd0fpgn`, `pd0fpln`, `pd0fpnn`, `pd0fsan`, `pd0fsdn`, `pd0fsgn`, `pd0fsln`, `pd0fsnn`, `pd0mpan`, `pd0mpdn`, `pd0mpgn`, `pd0mpln`, `pd0mply`, `pd0mpnn`, `pd0msan`, `pd0msdn`, `pd0msgn`, `pd0msln`, `pd0msnn`, `pd3fpan`, `pd3fpdn`, `pd3fpgn`, `pd3fpln`, `pd3fpnn`, `pd3fsan`, `pd3fsdn`, `pd3fsgn`, `pd3fsln`, `pd3fsnn`, `pd3mpan`, `pd3mpdn`, `pd3mpgn`, `pd3mpln`, `pd3mpnn`, `pd3msan`, `pd3msdn`, `pd3msgn`, `pd3msln`, `pd3msnn`, `pg0fpan`, `pg0fpdn`, `pg0fpgn`, `pg0fpln`, `pg0fpnn`, `pg0fsan`, `pg0fsdn`, `pg0fsgn`, `pg0fsln`, `pg0fsnn`, `pg0mpan`, `pg0mpdn`, `pg0mpgn`, `pg0mpln`, `pg0mpnn`, `pg0msan`, `pg0msdn`, `pg0msgn`, `pg0msln`, `pg0msnn`, `pi000an`, `pi000ay`, `pi000dn`, `pi000dy`, `pi000gn`, `pi000gy`, `pi000nn`, `pi000ny`, `pi0fpan`, `pi0fpay`, `pi0fpdn`, `pi0fpgn`, `pi0fpgy`, `pi0fpln`, `pi0fply`, `pi0fpnn`, `pi0fpny`, `pi0fsan`, `pi0fsay`, `pi0fsdn`, `pi0fsgn`, `pi0fsgy`, `pi0fsln`, `pi0fsnn`, `pi0fsny`, `pi0mpan`, `pi0mpay`, `pi0mpdn`, `pi0mpgn`, `pi0mpgy`, `pi0mpln`, `pi0mpnn`, `pi0mpny`, `pi0msan`, `pi0msay`, `pi0msdn`, `pi0msdy`, `pi0msgn`, `pi0msgy`, `pi0msln`, `pi0msly`, `pi0msnn`, `pi0msny`, `pi3msnn`, `pp10pan`, `pp10pdn`, `pp10pgn`, `pp10pln`, `pp10pnn`, `pp10san`, `pp10sdn`, `pp10sgn`, `pp10sln`, `pp10snn`, `pp1mpgn`, `pp20pan`, `pp20pdn`, `pp20pgn`, `pp20pnn`, `pp20san`, `pp20sdn`, `pp20sgn`, `pp20sln`, `pp20snn`, `pp2fsln`, `pp3fpan`, `pp3fpdn`, `pp3fpgn`, `pp3fpnn`, `pp3fsan`, `pp3fsdn`, `pp3fsgn`, `pp3fsln`, `pp3fsnn`, `pp3mpan`, `pp3mpdn`, `pp3mpgn`, `pp3mpln`, `pp3mpnn`, `pp3msan`, `pp3msdn`, `pp3msgn`, `pp3msln`, `pp3msnn`, `pq000an`, `pq000dn`, `pq000gn`, `pq000nn`, `pq0fpan`, `pq0fpnn`, `pq0fsnn`, `pq0mpnn`, `pq0msan`, `pq0msdn`, `pq0msln`, `pq0msnn`, `pr000an`, `pr000dn`, `pr000gn`, `pr000nn`, `pr00pgn`, `pr0fpan`, `pr0fpdn`, `pr0fpgn`, `pr0fpln`, `pr0fpnn`, `pr0fsan`, `pr0fsdn`, `pr0fsgn`, `pr0fsln`, `pr0fsnn`, `pr0mpan`, `pr0mpdn`, `pr0mpgn`, `pr0mpln`, `pr0mpnn`, `pr0msan`, `pr0msdn`, `pr0msgn`, `pr0msln`, `pr0msnn`, `ps0fpan`, `ps0fpdn`, `ps0fpgn`, `ps0fpln`, `ps0fpnn`, `ps0fsan`, `ps0fsdn`, `ps0fsgn`, `ps0fsln`, `ps0fsnn`, `ps0mpan`, `ps0mpdn`, `ps0mpgn`, `ps0mpln`, `ps0mpnn`, `ps0msan`, `ps0msdn`, `ps0msgn`, `ps0msln`, `ps0msnn`, `ps10sgn`, `ps1mpnn`, `ps1msgn`, `ps1msnn`, `ps2fsnn`, `px000an`, `px000dn`, `px000gn`, `px000ln`, `q`, `r0c`, `r0m`, `r0p`, `r0q`, `r0t`, `rcc`, `rcm`, `rcp`, `rcq`, `rct`, `rpc`, `rpm`, `rpp`, `rpq`, `rpt`, `rrm`, `rrp`, `rrt`, `rsm`, `rsp`, `rsq`, `rst`, `sp00`, `sppd`, `sppg`, `spsa`, `spsd`, `spsg`, `stpg`, `stsg`, `vcnc0ii00an`, `vcnc0ii00ay`, `vcnd0ii00an`, `vcnifi130an`, `vcnifii1pan`, `vcnifii1pay`, `vcnifii1san`, `vcnifii1say`, `vcnifii2pan`, `vcnifii2pay`, `vcnifii2san`, `vcnifii2say`, `vcnifii30an`, `vcnifii30ay`, `vcnipii1pan`, `vcnipii1pay`, `vcnipii1san`, `vcnipii1say`, `vcnipii2pan`, `vcnipii2pay`, `vcnipii2san`, `vcnipii2say`, `vcnipii30an`, `vcnipii30ay`, `vcnisii1pan`, `vcnisii1pay`, `vcnisii1san`, `vcnisii1say`, `vcnisii2pay`, `vcnisii30an`, `vcnisii30ay`, `vcnist330an`, `vcnm0ii2pan`, `vcnm0ii2san`, `vcnn0ii000n`, `vcnn0ii000y`, `vcnn0ii00an`, `vcnn0t3000n`, `vcnpdfpnasnpn`, `vcnpdfsaasypn`, `vcnpdfsgapypn`, `vcnpdfsnapnpn`, `vcnpdfsnasnpn`, `vcnpdmplasypn`, `vcnpdmpnasnpn`, `vcnpdmsaasnpy`, `vcnpdmsaasypn`, `vcnpdmsnasn0n`, `vcnpdmsnasnpn`, `vcnppfsn0000n`, `vcnppmpn0000n`, `vcnppmsn0000n`, `vcnpu0000000n`, `vcnrfii00an`, `vcnrpii00an`, `vcnrpii00ay`, `venipi130an`, `venipi130ay`, `venisi130an`, `veyifii30an`, `veyipi130an`, `veyipi130ay`, `veyipi330an`, `veyipii30an`, `veyipii30ay`, `veyisi130an`, `veyisi330an`, `veyisii30an`, `veyisii30ay`, `veypdmpnasnpn`, `veypdmsnasnpn`, `vgnpdmsgapypn`, `vmnc0i100an`, `vmnc0i100ay`, `vmnc0i10say`, `vmnc0i200an`, `vmnc0i300an`, `vmnc0i300ay`, `vmnc0ii000n`, `vmnc0ii00an`, `vmnc0ii00ay`, `vmnc0t100an`, `vmnc0t100ay`, `vmnc0t200an`, `vmnc0t200ay`, `vmnc0t300an`, `vmnc0t300ay`, `vmnc0ti00an`, `vmnd0i100an`, `vmnd0i200an`, `vmnd0i300an`, `vmnd0ii00an`, `vmnd0t100an`, `vmnd0t130an`, `vmnd0t200an`, `vmnd0t300an`, `vmnd0ti00an`, `vmnd0ti00pn`, `vmnifi11pan`, `vmnifi11pay`, `vmnifi11san`, `vmnifi11say`, `vmnifi12pan`, `vmnifi12san`, `vmnifi130an`, `vmnifi130ay`, `vmnifi13san`, `vmnifi21pan`, `vmnifi21san`, `vmnifi21say`, `vmnifi22san`, `vmnifi230an`, `vmnifi230ay`, `vmnifi31pan`, `vmnifi32san`, `vmnifi32say`, `vmnifi330an`, `vmnifi330ay`, `vmnifii1san`, `vmnifii2san`, `vmnifii30an`, `vmnifii30ay`, `vmnift11pan`, `vmnift11pay`, `vmnift11san`, `vmnift11say`, `vmnift12pan`, `vmnift12san`, `vmnift12say`, `vmnift130an`, `vmnift130ay`, `vmnift21pan`, `vmnift21pay`, `vmnift21san`, `vmnift21say`, `vmnift22pan`, `vmnift22pay`, `vmnift22san`, `vmnift22say`, `vmnift230an`, `vmnift230ay`, `vmnift31pan`, `vmnift31pay`, `vmnift31san`, `vmnift31say`, `vmnift32pan`, `vmnift32san`, `vmnift32say`, `vmnift330an`, `vmnift330ay`, `vmnifti1san`, `vmnifti2san`, `vmnifti30an`, `vmnim0230an`, `vmnipi11pan`, `vmnipi11pay`, `vmnipi11san`, `vmnipi12pan`, `vmnipi12san`, `vmnipi130an`, `vmnipi130ay`, `vmnipi21pan`, `vmnipi21san`, `vmnipi22pan`, `vmnipi22pay`, `vmnipi22san`, `vmnipi230an`, `vmnipi230ay`, `vmnipi23san`, `vmnipi31pan`, `vmnipi31san`, `vmnipi31say`, `vmnipi32pan`, `vmnipi32san`, `vmnipi330an`, `vmnipi330ay`, `vmnipii1pan`, `vmnipii1san`, `vmnipii2pan`, `vmnipii2pay`, `vmnipii2san`, `vmnipii30an`, `vmnipii30ay`, `vmnipt110an`, `vmnipt11pan`, `vmnipt11pay`, `vmnipt11san`, `vmnipt11say`, `vmnipt12pan`, `vmnipt12san`, `vmnipt12say`, `vmnipt130an`, `vmnipt130ay`, `vmnipt21pan`, `vmnipt21pay`, `vmnipt21san`, `vmnipt21say`, `vmnipt22pan`, `vmnipt22san`, `vmnipt22say`, `vmnipt230an`, `vmnipt230ay`, `vmnipt23san`, `vmnipt31pan`, `vmnipt31pay`, `vmnipt31san`, `vmnipt31say`, `vmnipt32pan`, `vmnipt32san`, `vmnipt32say`, `vmnipt330an`, `vmnipt330ay`, `vmnipti1pan`, `vmnipti1san`, `vmnipti2pan`, `vmnipti30an`, `vmnipti30ay`, `vmnipti3san`, `vmnisi11pan`, `vmnisi11san`, `vmnisi11say`, `vmnisi12san`, `vmnisi130an`, `vmnisi130ay`, `vmnisi21pan`, `vmnisi21san`, `vmnisi22pan`, `vmnisi230an`, `vmnisi230ay`, `vmnisi31pan`, `vmnisi31san`, `vmnisi31say`, `vmnisi330an`, `vmnisi330ay`, `vmnisii1pan`, `vmnisii1pay`, `vmnisii1san`, `vmnisii2san`, `vmnisii30an`, `vmnisii30ay`, `vmnist11pan`, `vmnist11pay`, `vmnist11san`, `vmnist11say`, `vmnist12pan`, `vmnist12san`, `vmnist130an`, `vmnist130ay`, `vmnist21pan`, `vmnist21pay`, `vmnist21san`, `vmnist21say`, `vmnist230an`, `vmnist230ay`, `vmnist31pan`, `vmnist31pay`, `vmnist31san`, `vmnist31say`, `vmnist32pan`, `vmnist32san`, `vmnist32say`, `vmnist330an`, `vmnist330ay`, `vmnisti1san`, `vmnisti30an`, `vmnisti30ay`, `vmnm0i12pan`, `vmnm0i12pay`, `vmnm0i12san`, `vmnm0i12say`, `vmnm0i21san`, `vmnm0i22pan`, `vmnm0i22san`, `vmnm0i32pan`, `vmnm0i32san`, `vmnm0i32say`, `vmnm0ii1pan`, `vmnm0ii2pan`, `vmnm0ii2san`, `vmnm0t11san`, `vmnm0t12pan`, `vmnm0t12pay`, `vmnm0t12san`, `vmnm0t12say`, `vmnm0t130an`, `vmnm0t21san`, `vmnm0t21say`, `vmnm0t22pan`, `vmnm0t22san`, `vmnm0t22say`, `vmnm0t230an`, `vmnm0t31san`, `vmnm0t32pan`, `vmnm0t32pay`, `vmnm0t32san`, `vmnm0t32say`, `vmnm0ti2pan`, `vmnm0ti2san`, `vmnmpi130ay`, `vmnmpi32san`, `vmnmpii2pan`, `vmnmpt12pan`, `vmnmpt12say`, `vmnmpt130ay`, `vmnmpt22san`, `vmnmpt32pan`, `vmnmpt32san`, `vmnn0i1000n`, `vmnn0i1000y`, `vmnn0i100an`, `vmnn0i130an`, `vmnn0i2000n`, `vmnn0i2000y`, `vmnn0i200an`, `vmnn0i3000n`, `vmnn0i3000y`, `vmnn0i300an`, `vmnn0ii000n`, `vmnn0ii000y`, `vmnn0t1000n`, `vmnn0t1000y`, `vmnn0t100an`, `vmnn0t2000n`, `vmnn0t2000y`, `vmnn0t200an`, `vmnn0t3000n`, `vmnn0t3000y`, `vmnn0t300an`, `vmnn0ti000n`, `vmnn0ti00an`, `vmnpdfpaapnpn`, `vmnpdfpaapypn`, `vmnpdfpaasnpn`, `vmnpdfpaasypn`, `vmnpdfpappnpn`, `vmnpdfpappnpy`, `vmnpdfpappypn`, `vmnpdfpapsnpn`, `vmnpdfpapsnpy`, `vmnpdfpapsypn`, `vmnpdfpdapnpn`, `vmnpdfpdapnpy`, `vmnpdfpdapypn`, `vmnpdfpdapysn`, `vmnpdfpdasnpn`, `vmnpdfpdasypn`, `vmnpdfpdppnpn`, `vmnpdfpdppnpy`, `vmnpdfpdppypn`, `vmnpdfpdpsnpn`, `vmnpdfpdpsypn`, `vmnpdfpdpsypy`, `vmnpdfpgapncn`, `vmnpdfpgapypn`, `vmnpdfpgppnpn`, `vmnpdfpgppnpy`, `vmnpdfpgppypn`, `vmnpdfpgpsnpn`, `vmnpdfpgpsypn`, `vmnpdfplapnpn`, `vmnpdfplapypn`, `vmnpdfplasnpn`, `vmnpdfplasypn`, `vmnpdfplppnpy`, `vmnpdfplpsnpn`, `vmnpdfplpsypn`, `vmnpdfpnapn0n`, `vmnpdfpnapnpn`, `vmnpdfpnapnpy`, `vmnpdfpnapypn`, `vmnpdfpnasnpn`, `vmnpdfpnasypn`, `vmnpdfpnasypy`, `vmnpdfpnppnpn`, `vmnpdfpnppnpy`, `vmnpdfpnppypn`, `vmnpdfpnpsnpn`, `vmnpdfpnpsnpy`, `vmnpdfpnpsypn`, `vmnpdfpnpsypy`, `vmnpdfsaapn0n`, `vmnpdfsaapncn`, `vmnpdfsaapnpn`, `vmnpdfsaapnpy`, `vmnpdfsaapypn`, `vmnpdfsaasnpn`, `vmnpdfsaasypn`, `vmnpdfsappnpn`, `vmnpdfsappnpy`, `vmnpdfsappypn`, `vmnpdfsappypy`, `vmnpdfsapsncn`, `vmnpdfsapsnpn`, `vmnpdfsapsnpy`, `vmnpdfsapsypn`, `vmnpdfsdapnpn`, `vmnpdfsdapypn`, `vmnpdfsdasnpn`, `vmnpdfsdasypn`, `vmnpdfsdppnpn`, `vmnpdfsdppypn`, `vmnpdfsdpsnpn`, `vmnpdfsdpsnpy`, `vmnpdfsdpsypn`, `vmnpdfsgapnpn`, `vmnpdfsgapypn`, `vmnpdfsgasnpn`, `vmnpdfsgasypn`, `vmnpdfsgppnpn`, `vmnpdfsgppnpy`, `vmnpdfsgppypn`, `vmnpdfsgpsnpn`, `vmnpdfsgpsypn`, `vmnpdfsgpsypy`, `vmnpdfslapnpn`, `vmnpdfslapypn`, `vmnpdfslasnpn`, `vmnpdfslasypn`, `vmnpdfslppnpn`, `vmnpdfslppypn`, `vmnpdfslpsnpn`, `vmnpdfslpsypn`, `vmnpdfslpsypy`, `vmnpdfsnapnpn`, `vmnpdfsnapnpy`, `vmnpdfsnapypn`, `vmnpdfsnapysn`, `vmnpdfsnasn0n`, `vmnpdfsnasnpn`, `vmnpdfsnasnpy`, `vmnpdfsnasypn`, `vmnpdfsnppncn`, `vmnpdfsnppnpn`, `vmnpdfsnppnpy`, `vmnpdfsnppypn`, `vmnpdfsnppypy`, `vmnpdfsnpsncn`, `vmnpdfsnpsnpn`, `vmnpdfsnpsnpy`, `vmnpdfsnpsypn`, `vmnpdfsnpsypy`, `vmnpdmpaapnpn`, `vmnpdmpaapycn`, `vmnpdmpaapypn`, `vmnpdmpaasnpn`, `vmnpdmpaasypn`, `vmnpdmpappnpn`, `vmnpdmpappypn`, `vmnpdmpapsnpn`, `vmnpdmpapsnpy`, `vmnpdmpapsypn`, `vmnpdmpapsypy`, `vmnpdmpdapnpn`, `vmnpdmpdapypn`, `vmnpdmpdasnpn`, `vmnpdmpdasypn`, `vmnpdmpdppnpn`, `vmnpdmpdppycn`, `vmnpdmpdppypn`, `vmnpdmpdpsnpn`, `vmnpdmpdpsnpy`, `vmnpdmpdpsycn`, `vmnpdmpdpsypn`, `vmnpdmpdpsypy`, `vmnpdmpgapnpn`, `vmnpdmpgapypn`, `vmnpdmpgasnpn`, `vmnpdmpgasypn`, `vmnpdmpgppypn`, `vmnpdmpgpsnpn`, `vmnpdmpgpsypn`, `vmnpdmpgpsypy`, `vmnpdmplapnpn`, `vmnpdmplapypn`, `vmnpdmplpsnpn`, `vmnpdmplpsypn`, `vmnpdmpnapnpn`, `vmnpdmpnapypn`, `vmnpdmpnasnpn`, `vmnpdmpnasypn`, `vmnpdmpnppn0n`, `vmnpdmpnppnpn`, `vmnpdmpnppnpy`, `vmnpdmpnppypn`, `vmnpdmpnpsnpn`, `vmnpdmpnpsnpy`, `vmnpdmpnpsypn`, `vmnpdmpnpsypy`, `vmnpdmpvppypn`, `vmnpdmsaapnpn`, `vmnpdmsaapypn`, `vmnpdmsaasnpn`, `vmnpdmsaasypn`, `vmnpdmsappnpn`, `vmnpdmsappnpy`, `vmnpdmsappypn`, `vmnpdmsappypy`, `vmnpdmsapsnpn`, `vmnpdmsapsnpy`, `vmnpdmsapsypn`, `vmnpdmsapsypy`, `vmnpdmsdapnpn`, `vmnpdmsdapypn`, `vmnpdmsdasnpn`, `vmnpdmsdppnpn`, `vmnpdmsdppypn`, `vmnpdmsdppypy`, `vmnpdmsdpsnpn`, `vmnpdmsdpsypn`, `vmnpdmsdpsypy`, `vmnpdmsgapnpn`, `vmnpdmsgapypn`, `vmnpdmsgasnpn`, `vmnpdmsgasypn`, `vmnpdmsgppnpn`, `vmnpdmsgppy0n`, `vmnpdmsgppypn`, `vmnpdmsgppypy`, `vmnpdmsgpsnpn`, `vmnpdmsgpsycn`, `vmnpdmsgpsypn`, `vmnpdmsgpsypy`, `vmnpdmslapnpn`, `vmnpdmslapypn`, `vmnpdmslasnpn`, `vmnpdmslasypn`, `vmnpdmslppnpn`, `vmnpdmslppy0n`, `vmnpdmslppypn`, `vmnpdmslpsnpn`, `vmnpdmslpsypn`, `vmnpdmsnapnpn`, `vmnpdmsnapnpy`, `vmnpdmsnapypn`, `vmnpdmsnasn0n`, `vmnpdmsnasnpn`, `vmnpdmsnasnpy`, `vmnpdmsnasypn`, `vmnpdmsnppnpn`, `vmnpdmsnppnpy`, `vmnpdmsnppypn`, `vmnpdmsnppypy`, `vmnpdmsnpsnpn`, `vmnpdmsnpsnpy`, `vmnpdmsnpsycn`, `vmnpdmsnpsypn`, `vmnpdmsnpsypy`, `vmnppfpn0000y`, `vmnppfsn0000n`, `vmnppmpn0000n`, `vmnppmpnap00n`, `vmnppmpnap0pn`, `vmnppmpnap0py`, `vmnppmsn0000n`, `vmnpu0000000n`, `vmnpu0000000y`, `vmnpu000000pn`, `vmnpu00000n0n`, `vmnpu000apnpn`, `vmnpumpgpsnpn`, `vmnr0t100an`, `vmnr0t3000n`, `vmnrfi100an`, `vmnrft100an`, `vmnrft200an`, `vmnrft200ay`, `vmnrft300an`, `vmnrpi1000y`, `vmnrpi100an`, `vmnrpi2000n`, `vmnrpi200an`, `vmnrpi300an`, `vmnrpii00an`, `vmnrpii00ay`, `vmnrpt100an`, `vmnrpt100ay`, `vmnrpt200an`, `vmnrpt200ay`, `vmnrpt300an`, `vmnrpt300ay`, `vmyc0i100an`, `vmyc0i100ay`, `vmyc0i200an`, `vmyc0i200ay`, `vmyc0i300an`, `vmyc0i300ay`, `vmyc0t100an`, `vmyc0t200an`, `vmyc0t300an`, `vmyc0ti00an`, `vmyd0i100an`, `vmyd0i200an`, `vmyd0i300an`, `vmyd0ii00an`, `vmyd0t100an`, `vmyd0t200an`, `vmyd0t300an`, `vmyd0ti00an`, `vmyifi11pan`, `vmyifi11san`, `vmyifi11say`, `vmyifi12pan`, `vmyifi12san`, `vmyifi130an`, `vmyifi130ay`, `vmyifi21san`, `vmyifi230an`, `vmyifi230ay`, `vmyifi31pan`, `vmyifi31san`, `vmyifi31say`, `vmyifi32san`, `vmyifi330an`, `vmyifi330ay`, `vmyift11pan`, `vmyift130an`, `vmyift21san`, `vmyift31pan`, `vmyift32san`, `vmyift330an`, `vmyifti1san`, `vmyifti30an`, `vmyipi110ay`, `vmyipi11pan`, `vmyipi11san`, `vmyipi12pan`, `vmyipi12san`, `vmyipi12say`, `vmyipi130an`, `vmyipi130ay`, `vmyipi21pan`, `vmyipi21san`, `vmyipi21say`, `vmyipi22pan`, `vmyipi22san`, `vmyipi230an`, `vmyipi230ay`, `vmyipi31pan`, `vmyipi31san`, `vmyipi31say`, `vmyipi32pan`, `vmyipi32san`, `vmyipi330an`, `vmyipi330ay`, `vmyipii1pan`, `vmyipt11pan`, `vmyipt11san`, `vmyipt12san`, `vmyipt130an`, `vmyipt130ay`, `vmyipt21san`, `vmyipt22san`, `vmyipt230an`, `vmyipt31pan`, `vmyipt31san`, `vmyipt31say`, `vmyipt32pan`, `vmyipt32san`, `vmyipt32say`, `vmyipt330an`, `vmyipt330ay`, `vmyipti1pan`, `vmyipti1san`, `vmyipti2pan`, `vmyipti30an`, `vmyipti30ay`, `vmyisi11pan`, `vmyisi11san`, `vmyisi12san`, `vmyisi130an`, `vmyisi130ay`, `vmyisi13pan`, `vmyisi21pan`, `vmyisi21san`, `vmyisi22san`, `vmyisi230an`, `vmyisi230ay`, `vmyisi31pan`, `vmyisi31san`, `vmyisi31say`, `vmyisi32san`, `vmyisi330an`, `vmyisi330ay`, `vmyisii1san`, `vmyisii30an`, `vmyist11pan`, `vmyist11san`, `vmyist130an`, `vmyist21pan`, `vmyist230an`, `vmyist230ay`, `vmyist31pan`, `vmyist31san`, `vmyist32pan`, `vmyist330an`, `vmyist330ay`, `vmyisti1pan`, `vmyisti1san`, `vmyisti30an`, `vmyisti30ay`, `vmym0i11san`, `vmym0i12pan`, `vmym0i12san`, `vmym0i12say`, `vmym0i22pan`, `vmym0i22san`, `vmym0i22say`, `vmym0i32pan`, `vmym0i32pay`, `vmym0i32san`, `vmym0t22pan`, `vmym0t22san`, `vmym0t32pan`, `vmym0t32san`, `vmympi32san`, `vmympt32san`, `vmyn0i1000n`, `vmyn0i1000y`, `vmyn0i2000n`, `vmyn0i3000n`, `vmyn0i3000y`, `vmyn0ii000n`, `vmyn0ii00an`, `vmyn0t1000n`, `vmyn0t1000y`, `vmyn0t100an`, `vmyn0t2000n`, `vmyn0t3000n`, `vmyn0t3000y`, `vmyn0ti000n`, `vmypdfpaasnpn`, `vmypdfpnasnpn`, `vmypdfpnasnpy`, `vmypdfpnasypn`, `vmypdfpnppypn`, `vmypdfsaasnpn`, `vmypdfsaasnpy`, `vmypdfsnasn0n`, `vmypdfsnasnpn`, `vmypdmpaapnpn`, `vmypdmpaasypn`, `vmypdmpnasn0n`, `vmypdmpnasnpn`, `vmypdmsaapnpn`, `vmypdmsaasnpn`, `vmypdmsnasn0n`, `vmypdmsnasnpn`, `vmypdmsnasnpy`, `vmypdmsnpsnpn`, `vmyppf0n0000n`, `vmyppfsn0000n`, `vmyppfsn0000y`, `vmyppm0n0000n`, `vmyppmpn0000n`, `vmyppms00000n`, `vmyppmsn0000n`, `vmypu0000000n`, `vmypu0000000y`, `vmypu000000pn`, `vmypumsnasnpn`, `vmyrfi100an`, `vmyrpi200an`, `vmyrpi300an`, `vmyrpt100an`, `vmyrpt300an`, `vmyrpt300ay`, `vonc0i100an`, `vonc0i100ay`, `vonc0i300an`, `vonc0i300ay`, `vonc0t300ay`, `vond0i100an`, `vond0t300an`, `vondpi300an`, `vonifi11pay`, `vonifi12pay`, `vonifi130an`, `vonifi130ay`, `vonifi230an`, `vonifi31pan`, `vonifi31san`, `vonifi31say`, `vonifi32san`, `vonifi32say`, `vonifi330an`, `vonifi330ay`, `vonift31say`, `vonift32san`, `vonift330an`, `vonift330ay`, `vonipi11pan`, `vonipi11pay`, `vonipi11san`, `vonipi11say`, `vonipi12pan`, `vonipi130an`, `vonipi130ay`, `vonipi21pan`, `vonipi230an`, `vonipi230ay`, `vonipi300ay`, `vonipi31pan`, `vonipi31pay`, `vonipi31san`, `vonipi31say`, `vonipi32pan`, `vonipi32pay`, `vonipi32san`, `vonipi32say`, `vonipi330an`, `vonipi330ay`, `vonipii30an`, `vonipt130an`, `vonipt230an`, `vonipt31pan`, `vonipt31pay`, `vonipt31san`, `vonipt31say`, `vonipt32pan`, `vonipt32san`, `vonipt330an`, `vonipt330ay`, `vonisi11san`, `vonisi11say`, `vonisi130an`, `vonisi130ay`, `vonisi230an`, `vonisi31pan`, `vonisi31pay`, `vonisi31san`, `vonisi31say`, `vonisi32pan`, `vonisi330an`, `vonisi330ay`, `vonist130an`, `vonist330an`, `vonist330ay`, `vonm0i32san`, `vonmpi32san`, `vonn0i3000n`, `vonn0t3000n`, `vonpdfpn00npy`, `vonpdfpnasnpn`, `vonpdfsnasnpn`, `vonpdfsnasnpy`, `vonpdmpnasnpn`, `vonpdmsnasnpn`, `vonpdmsnpsnpn`, `vonpdmsnpsypn`, `vonppfsn0000n`, `vonppmsn0000n`, `vonppmsn0000y`, `vonpu0000000n`, `vonpu0000000y`, `vonrft300an`, `vonrpi100ay`, `vonrpi300an`, `vonrpi300ay`, `vonrpt300an`, `vonrpt300ay`, `voyc0i100an`, `voyc0i100ay`, `voyc0i300an`, `voyc0i300ay`, `voyc0t300an`, `voyd0i100an`, `voyifi12san`, `voyifi130an`, `voyifi330an`, `voyifi330ay`, `voyifii30an`, `voyipi11pan`, `voyipi11san`, `voyipi11say`, `voyipi130an`, `voyipi130ay`, `voyipi230ay`, `voyipi300ay`, `voyipi31pan`, `voyipi31san`, `voyipi31say`, `voyipi32pan`, `voyipi330an`, `voyipi330ay`, `voyipii30an`, `voyipt11pan`, `voyipt130an`, `voyipt31san`, `voyipt32san`, `voyipt330an`, `voyipt330ay`, `voyisi11pan`, `voyisi11san`, `voyisi11say`, `voyisi130an`, `voyisi230an`, `voyisi31san`, `voyisi31say`, `voyisi330an`, `voyisi330ay`, `voyist11san`, `voyist330an`, `voym0i12pay`, `voyn0i1000n`, `voyn0i3000n`, `voyn0t1000n`, `voyp0msnap00n`, `voypdfsnasnpn`, `voypdmpnasnpn`, `voypdmsnasnpn`, `voypdmsnasnpy`, `voypu0000000n`, `voyrfi100an`, `voyrpi100an`, `voyrpi300ay`, `vpnc0i100an`, `vpnc0i300an`, `vpnd0i100an`, `vpnd0t100an`, `vpnifi12san`, `vpnifi130an`, `vpnifi31pan`, `vpnifi330an`, `vpnift130an`, `vpnift31pan`, `vpnipi11pan`, `vpnipi11pay`, `vpnipi11san`, `vpnipi130an`, `vpnipi130ay`, `vpnipi330an`, `vpnipt11pan`, `vpnipt11san`, `vpnipt130an`, `vpnipt31pan`, `vpnisi11pan`, `vpnisi11san`, `vpnisi11say`, `vpnisi130an`, `vpnisi130ay`, `vpnisi230an`, `vpnisi31san`, `vpnisi330an`, `vpnist11san`, `vpnist130an`, `vpnist330an`, `vpnisti30an`, `vpnm0i12san`, `vpnm0i32san`, `vpnm0t32san`, `vpnn0i1000n`, `vpnn0i3000n`, `vpnn0t1000n`, `vpnn0t3000n`, `vpnpdfpnasnpn`, `vpnpdfsgasypn`, `vpnpdfsnasnpn`, `vpnpdmpnasnpn`, `vpnpdmsnasnpn`, `vpnpdmsnpsnpn`, `vpnppmsn0000n`, `vpnpu0000000n`, `vpyifi130an`, `vpyipi130an`, `vpyisi130an`, `vtnc0i100an`, `vtnc0i100ay`, `vtnc0t200an`, `vtnd0i100an`, `vtnifi11pay`, `vtnifi11san`, `vtnifi130an`, `vtnifi130ay`, `vtnift130an`, `vtnipi11pan`, `vtnipi11san`, `vtnipi130an`, `vtnipi130ay`, `vtnipi230an`, `vtnipii30an`, `vtnipt230an`, `vtnipt330an`, `vtnisi11san`, `vtnisi12san`, `vtnisi130an`, `vtnisi130ay`, `vtnist330an`, `vtnn0i1000n`, `vtnn0i100an`, `vtnn0t1000n`, `vtnpdfpnasnpn`, `vtnpdfsnasnpn`, `vtnpdmpnasnpn`, `vtnpdmsnasnpn`, `vtnppmsn0000n`, `vtnpu0000000n`, `vtnrpi100an`, `vtyc0i300ay`, `vtyifi330an`, `vtyipi11san`, `vtyipi130an`, `vtyipi130ay`, `vtyipi330an`, `vtyipi330ay`, `vtyipt11pay`, `vtyipt11say`, `vtyipt130an`, `vtyipt330an`, `vtyisi11san`, `vtyisi130an`, `vtyisi330an`, `vtyist11pan`, `vtyist11san`, `vtyist130an`, `vtyist330an`, `vtyn0i1000n`, `vtyn0i3000n`, `vtyn0t1000n`, `vtyn0t3000n`, `vtypdfsnasnpn`, `vtypdmsnasnpn`, `xf`, `xn`, `xo`, `xu`, `xx`, `ya`, `yd`, `yn`, `yp`, `yr`, `yv`, `z_`, `zb`, `zc`, `zd`, `zo`, `zq`, `zs`, `zx` |
| **`morphologizer`** | `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `POS=CCONJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|PronType=Dem`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=SCONJ`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Rel`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=CCONJ\|Polarity=Neg`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|POS=PROPN`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Neg`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|POS=VERB\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Cnd\|POS=AUX\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|POS=AUX\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|POS=PRON\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Polarity=Neg\|VerbForm=Inf`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `NumType=Ord\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=PROPN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Mood=Nec\|POS=AUX\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=SYM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Foreign=Yes\|POS=X\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `POS=X\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|POS=SYM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|POS=NOUN`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=DET\|PronType=Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `POS=PART\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Int,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|POS=PRON\|PronType=Ind,Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=DET\|PronType=Ind,Neg`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|POS=PRON\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Int`, `Case=Gen\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADV\|PronType=Tot`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|POS=DET\|PronType=Ind`, `Case=Acc\|POS=PRON\|PronType=Ind,Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Conv`, `POS=INTJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PART\|Polarity=Pos`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `POS=ADV\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Nec\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `NumType=Mult\|POS=ADV`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Ind`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADP\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|POS=DET\|PronType=Rel`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|Typo=Yes`, `Case=Nom\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Inf`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=DET\|PronType=Rel`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADV`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Coll\|POS=NOUN\|PronType=Int`, `POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Mood=Nec\|POS=AUX\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|Typo=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `POS=PUNCT\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|POS=PRON\|PronType=Rel`, `Mood=Imp\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `POS=SCONJ\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|POS=ADV\|Typo=Yes`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|POS=SYM\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `POS=ADV\|PronType=Neg\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Degree=Cmp\|POS=ADV\|Typo=Yes`, `POS=NOUN\|Typo=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=AUX\|Polarity=Neg\|VerbForm=Inf`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|PronType=Int\|Typo=Yes`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|POS=VERB`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `NumType=Ord\|POS=ADJ\|Typo=Yes`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Neg`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `10`, `11`, `13`, `15`, `18`, `20`, `22`, `26`, `28`, `31`, `34`, `37`, `39`, `41`, `43`, `45`, `47`, `49`, `52`, `54`, `56`, `58`, `60`, `61`, `64`, `66`, `67`, `69`, `71`, `73`, `74`, `76`, `78`, `80`, `83`, `85`, `86`, `87`, `89`, `91`, `93`, `95`, `97`, `98`, `101`, `104`, `107`, `109`, `110`, `112`, `113`, `116`, `119`, `122`, `124`, `126`, `128`, `131`, `134`, `138`, `140`, `142`, `145`, `147`, `149`, `152`, `153`, `155`, `157`, `160`, `163`, `164`, `166`, `168`, `172`, `175`, `177`, `179`, `181`, `183`, `184`, `187`, `190`, `193`, `195`, `196`, `198`, `200`, `201`, `203`, `205`, `208`, `209`, `210`, `212`, `214`, `218`, `220`, `222`, `224`, `227`, `230`, `233`, `235`, `237`, `239`, `243`, `245`, `246`, `248`, `250`, `251`, `253`, `255`, `256`, `259`, `260`, `262`, `265`, `269`, `272`, `274`, `275`, `276`, `278`, `281`, `283`, `287`, `291`, `293`, `295`, `298`, `300`, `303`, `305`, `306`, `308`, `311`, `313`, `314`, `316`, `319`, `322`, `324`, `326`, `328`, `329`, `332`, `333`, `335`, `337`, `339`, `341`, `343`, `345`, `348`, `349`, `350`, `352`, `354`, `355`, `358`, `359`, `361`, `362`, `365`, `368`, `370`, `372`, `374`, `376`, `377`, `379`, `381`, `382`, `384`, `387`, `389`, `390`, `392`, `396`, `398`, `400`, `401`, `405`, `408`, `409`, `410`, `412`, `415`, `417`, `419`, `420`, `422`, `425`, `426`, `428`, `430`, `432`, `434`, `436`, `438`, `439`, `440`, `443`, `445`, `447`, `448`, `450`, `452`, `454`, `455`, `458`, `461`, `462`, `464`, `466`, `468`, `469`, `471`, `473`, `474`, `476`, `477`, `480`, `483`, `484`, `485`, `487`, `488`, `491`, `494`, `495`, `497`, `498`, `499`, `500`, `501`, `502`, `504`, `506`, `508`, `510`, `511`, `512`, `513`, `515`, `517`, `518`, `519`, `520`, `524`, `525`, `527`, `529`, `532`, `535`, `536`, `537`, `539`, `540`, `541`, `543`, `546`, `548`, `549`, `550`, `551`, `553`, `555`, `556`, `560`, `562`, `564`, `566`, `567`, `569`, `571`, `572`, `575`, `577`, `579`, `582`, `584`, `585`, `586`, `587`, `588`, `593`, `595`, `596`, `599`, `601`, `603`, `605`, `607`, `610`, `613`, `616`, `619`, `622`, `624`, `625`, `627`, `629`, `631`, `633`, `636`, `638`, `640`, `642`, `644`, `645`, `646`, `650`, `651`, `653`, `655`, `657`, `660`, `662`, `665`, `667`, `668`, `670`, `673`, `676`, `678`, `680`, `681`, `682`, `684`, `687`, `688`, `690`, `691`, `692`, `693`, `694`, `697`, `699`, `700`, `701`, `702`, `705`, `706`, `708`, `709`, `712`, `714`, `715`, `718`, `721`, `723`, `725`, `726`, `728`, `729`, `731`, `732`, `733`, `735`, `736`, `737`, `738`, `739`, `741`, `743`, `745`, `746`, `748`, `749`, `750`, `751`, `753`, `754`, `755`, `756`, `758`, `759`, `760`, `761`, `762`, `764`, `766`, `767`, `768`, `771`, `773`, `774`, `775`, `776`, `777`, `778`, `779`, `781`, `783`, `785`, `786`, `787`, `790`, `791`, `792`, `793`, `795`, `796`, `798`, `799`, `800`, `801`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `816`, `823`, `825`, `826`, `828`, `830`, `831`, `832`, `835`, `838`, `839`, `840`, `842`, `843`, `844`, `846`, `847`, `849`, `851`, `853`, `855`, `856`, `858`, `859`, `861`, `862`, `864`, `865`, `866`, `869`, `870`, `871`, `873`, `876`, `878`, `879`, `880`, `881`, `882`, `883`, `886`, `888`, `889`, `891`, `894`, `897`, `898`, `899`, `900`, `901`, `904`, `907`, `908`, `909`, `912`, `914`, `916`, `917`, `919`, `921`, `922`, `923`, `925`, `928`, `930`, `932`, `933`, `936`, `937`, `938`, `940`, `942`, `943`, `944`, `946`, `947`, `949`, `951`, `953`, `955`, `956`, `957`, `961`, `963`, `966`, `967`, `968`, `969`, `972`, `974`, `976`, `977`, `979`, `981`, `982`, `983`, `986`, `988`, `989`, `990`, `991`, `995`, `998`, `999`, `1002`, `1004`, `1007`, `1008`, `1009`, `1012`, `1015`, `1016`, `1018`, `1019`, `1021`, `1024`, `1027`, `1028`, `1031`, `1034`, `1035`, `1037`, `1039`, `1041`, `1043`, `1044`, `1046`, `1049`, `1051`, `1053`, `1054`, `1056`, `1058`, `1060`, `1061`, `1062`, `1064`, `1065`, `1067`, `1069`, `1070`, `1071`, `1073`, `1074`, `1075`, `1076`, `1078`, `1079`, `1082`, `1083`, `1085`, `1088`, `1089`, `1092`, `1095`, `1097`, `1099`, `1100`, `1102`, `1104`, `1105`, `1108`, `1110`, `1114`, `1116`, `1117`, `1119`, `1121`, `1123`, `1127`, `1128`, `1129`, `1130`, `1131`, `1133`, `1135`, `1137`, `1139`, `1140`, `1142`, `1143`, `1145`, `1147`, `1149`, `1150`, `1153`, `1158`, `1160`, `1162`, `1167`, `1168`, `1169`, `1171`, `1172`, `1174`, `1176`, `1178`, `1180`, `1181`, `1182`, `1183`, `1185`, `1188`, `1191`, `1193`, `1195`, `1196`, `1197`, `1200`, `1201`, `1204`, `1205`, `1206`, `1208`, `1209`, `1211`, `1213`, `1216`, `1218`, `1220`, `1221`, `1222`, `1223`, `1225`, `1226`, `1227`, `1229`, `1230`, `1232`, `1233`, `1235`, `1236`, `1237`, `1238`, `1240`, `1241`, `1242`, `1243`, `1245`, `1247`, `1248`, `1250`, `1251`, `1252`, `1253`, `1255`, `1256`, `1257`, `1258`, `1259`, `1260`, `1261`, `1262`, `1263`, `1264`, `1267`, `1269`, `1270`, `1272`, `1274`, `523`, `1276`, `1279`, `1280`, `1281`, `1282`, `1284`, `1285`, `1287`, `1289`, `1292`, `1293`, `1294`, `1297`, `1298`, `1300`, `1301`, `1305`, `1307`, `1309`, `1310`, `1313`, `1314`, `1317`, `1318`, `1319`, `1321`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1333`, `1335`, `1337`, `1338`, `1340`, `1342`, `1344`, `1346`, `1347`, `1350`, `1351`, `1353`, `1356`, `1357`, `1358`, `1360`, `1362`, `1364`, `1367`, `1368`, `1369`, `1370`, `1371`, `1373`, `1375`, `1377`, `1378`, `1381`, `1383`, `1384`, `1386`, `1388`, `1390`, `1391`, `1392`, `1393`, `1395`, `1396`, `1398`, `1399`, `1401`, `1402`, `1403`, `1405`, `1406`, `1407`, `1408`, `1410`, `1411`, `1412`, `1413`, `1416`, `1418`, `1419`, `1422`, `1423`, `1425`, `1427`, `1428`, `1431`, `1432`, `1433`, `1434`, `1437`, `1438`, `1439`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1448`, `1450`, `1452`, `1454`, `1455`, `1456`, `1457`, `1458`, `1460`, `1462`, `1466`, `1467`, `1469`, `1470`, `1474`, `1476`, `1477`, `1479`, `1481`, `1482`, `1483`, `1484`, `1485`, `1487`, `1489`, `1492`, `1493`, `1495`, `1496`, `1498`, `1499`, `1501`, `1502`, `1503`, `1506`, `1507`, `1508`, `1509`, `1511`, `1513`, `1514`, `1517`, `1518`, `1520`, `1523`, `1525`, `1527`, `1528`, `1530`, `1532`, `1534`, `1535`, `1536`, `1537`, `1539`, `1540`, `1542`, `1543`, `1545`, `1546`, `1547`, `1549`, `1551`, `1552`, `1553`, `1554`, `1557`, `1558`, `1560`, `1562`, `1564`, `1567`, `1569`, `1571`, `1572`, `1573`, `1574`, `1576`, `1577`, `1579`, `1581`, `1583`, `1584`, `1531`, `1585`, `1587`, `1588`, `1589`, `1591`, `1592`, `1595`, `1596`, `1598`, `1600`, `1601`, `1604`, `1605`, `1607`, `1608`, `1610`, `1612`, `1613`, `1616`, `1618`, `1619`, `1621`, `1623`, `1625`, `1626`, `1629`, `1630`, `1631`, `1633`, `1637`, `1639`, `1640`, `1642`, `1643`, `1645`, `1647`, `1648`, `1651`, `1652`, `1654`, `1655`, `1656`, `1657`, `1659`, `1661`, `1664`, `1665`, `1668`, `1670`, `1672`, `1673`, `1674`, `1675`, `1678`, `1679`, `1681`, `1682`, `1685`, `1688`, `1690`, `1692`, `1694`, `1695`, `1697`, `1699`, `1701`, `1705`, `1708`, `1709`, `1710`, `1711`, `1714`, `1715`, `1718`, `1721`, `1723`, `1725`, `1727`, `1729`, `1731`, `1734`, `1736`, `1739`, `1741`, `1743`, `1745`, `1746`, `1748`, `1749`, `1752`, `1754`, `1756`, `1757`, `1758`, `1759`, `1760`, `1761`, `1766`, `1768`, `1769`, `1770`, `1771`, `1773`, `1775`, `1776`, `1777`, `1779`, `1781`, `1784`, `1785`, `1786`, `1788`, `1789`, `1790`, `1792`, `1794`, `1796`, `1798`, `1800`, `1802`, `1805`, `1807`, `1809`, `1810`, `1811`, `1813`, `1815`, `1816`, `1817`, `1818`, `1821`, `1823`, `1824`, `1825`, `1826`, `1828`, `1830`, `1832`, `1833`, `1834`, `1835`, `1837`, `1840`, `1842`, `1846`, `1848`, `1852`, `1853`, `1854`, `1856`, `1857`, `1858`, `1859`, `1860`, `1862`, `1863`, `1866`, `1868`, `1869`, `1871`, `1873`, `1304`, `1874`, `1875`, `1876`, `1878`, `1879`, `1880`, `1881`, `1883`, `1885`, `1886`, `1887`, `1890`, `1892`, `1893`, `1894`, `1897`, `1898`, `1900`, `1488`, `1903`, `1904`, `1905`, `1906`, `1907`, `1908`, `1910`, `1912`, `1913`, `1914`, `1915`, `1916`, `1918`, `1919`, `1920`, `1922`, `1925`, `1927`, `1929`, `1931`, `1933`, `1934`, `1936`, `1938`, `1939`, `1940`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1950`, `1951`, `1953`, `1955`, `1956`, `1957`, `1960`, `1962`, `1963`, `1964`, `1965`, `1966`, `1969`, `1971`, `1973`, `1975`, `1976`, `1979`, `1980`, `1981`, `1982`, `1985`, `1986`, `1987`, `1988`, `1989`, `1991`, `1992`, `1993`, `1994`, `1995`, `1996`, `1999`, `2002`, `2003`, `2004`, `2006`, `2007`, `2008`, `2010`, `2011`, `2013`, `2015`, `2016`, `2017`, `2018`, `2020`, `2021`, `2023`, `2024`, `2028`, `2030`, `2031`, `2032`, `2033`, `2034`, `2037`, `2038`, `2040`, `2041`, `2043`, `2044`, `2047`, `2048`, `2049`, `2050`, `2051`, `2052`, `2053`, `2056`, `2058`, `2060`, `2062`, `2063`, `2065`, `2066`, `2067`, `2068`, `2069`, `2070`, `2071`, `2072`, `2075`, `2076`, `1806`, `2079`, `2081`, `2083`, `2086`, `2089`, `2090`, `2091`, `2092`, `2093`, `2095`, `2096`, `2097`, `2098`, `2099`, `2102`, `2103`, `2106`, `2107`, `2108`, `2110`, `2111`, `2112`, `2113`, `2114`, `2115`, `2116`, `2117`, `2118`, `2119`, `2120`, `2121`, `2122`, `2123`, `2124`, `2125`, `2127`, `2129`, `2132`, `2135`, `2136`, `2137`, `2138`, `2139`, `2141`, `2142`, `2143`, `2144`, `2147`, `2149`, `2151`, `2152`, `2153`, `2154`, `2157`, `2158`, `2159`, `2161`, `2162`, `2163`, `2166`, `2168`, `2169`, `2171`, `2174`, `2175`, `2176`, `2179`, `2181`, `2182`, `2184`, `2185`, `2186`, `2187`, `2189`, `2192`, `2193`, `2195`, `2196`, `2197`, `2199`, `2200`, `2202`, `2203`, `2206`, `2207`, `2208`, `2209`, `2212`, `2213`, `2216`, `2219`, `2220`, `2222`, `2225`, `2227`, `2228`, `2230`, `2231`, `2233`, `2235`, `2236`, `2237`, `2239`, `2241`, `2243`, `2245`, `2246`, `2248`, `2249`, `2250`, `2251`, `2252`, `2253`, `2254`, `2255`, `2256`, `2259`, `2264`, `2265`, `2269`, `2270`, `2272`, `2273`, `2274`, `2276`, `2277`, `2278`, `2279`, `2283`, `2285`, `2286`, `2288`, `2289`, `2290`, `2292`, `2293`, `2294`, `2295`, `2297`, `2299`, `2300`, `2303`, `2305`, `2306`, `2309`, `2310`, `2312`, `2314`, `2316`, `2318`, `2319`, `2320`, `2321`, `2322`, `2323`, `2325`, `2327`, `1961`, `2328`, `2329`, `2330`, `2332`, `2333`, `2334`, `2336`, `2338`, `2340`, `2342`, `2343`, `2345`, `2347`, `2349`, `2351`, `2353`, `2354`, `2357`, `2358`, `2359`, `2360`, `2362`, `2363`, `2364`, `2365`, `2366`, `2367`, `2368`, `2369`, `2372`, `2375`, `2376`, `2377`, `2379`, `2381`, `2382`, `2383`, `2384`, `2385`, `2386`, `2387`, `2388`, `2389`, `2390`, `2392`, `2393`, `2394`, `2396`, `2398`, `2399`, `2400`, `2404`, `2405`, `2406`, `2407`, `2408`, `2409`, `2410`, `2411`, `2412`, `2413`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2422`, `2423`, `2425`, `2426`, `2427`, `2428`, `2430`, `2431`, `2432`, `2435`, `2436`, `2438`, `2439`, `2441`, `2442`, `2443`, `2444`, `2446`, `2448`, `2449`, `2452`, `2454`, `2455`, `2456`, `2457`, `2458`, `2461`, `2463`, `2464`, `2467`, `2468`, `2470`, `2472`, `2475`, `2477`, `2478`, `2479`, `2481`, `2483`, `2485`, `2486`, `2488`, `2489`, `2490`, `2491`, `2492`, `2493`, `2494`, `2495`, `2496`, `2497`, `2498`, `2499`, `2500`, `2501`, `2503`, `2504`, `2505`, `2506`, `2507`, `2508`, `2510`, `2512`, `2513`, `2514`, `2515`, `2516`, `2517`, `2518`, `2519`, `2520`, `2521`, `2522`, `2523`, `2524`, `2526`, `2527`, `2528`, `2529`, `2530`, `2531`, `2534`, `2537`, `2540`, `2542`, `2543`, `2544`, `2546`, `2548`, `2549`, `2550`, `2551`, `2552`, `2553`, `2554`, `2555`, `2558`, `2560`, `2561`, `2562`, `2563`, `2565`, `2567`, `2570`, `2572`, `2573`, `2575`, `2576`, `2577`, `2578`, `2579`, `2581`, `2583`, `2584`, `2586`, `2588`, `2589`, `2592`, `2593`, `2595`, `2597`, `2598`, `2601`, `2603`, `2604`, `2605`, `2606`, `2607`, `2608`, `2610`, `2611`, `2612`, `2613`, `2614`, `2615`, `2617`, `2618`, `2619`, `2620`, `2623`, `2624`, `2626`, `2628`, `2629`, `2630`, `2631`, `2632`, `2633`, `2634`, `2636`, `2637`, `2639`, `2640`, `2642`, `2643`, `2644`, `2645`, `2646`, `2649`, `2650`, `2652`, `2653`, `2654`, `2655`, `2656`, `2657`, `2659`, `2660`, `2663`, `2664`, `2665`, `2666`, `2668`, `2669`, `2671`, `2672`, `2673`, `2675`, `2677`, `2678`, `2679`, `2680`, `2681`, `2682`, `2685`, `2686`, `2687`, `2688`, `2689`, `2690`, `2691`, `2693`, `2694`, `2695`, `2697`, `2699`, `2700`, `2701`, `2703`, `2704`, `2706`, `2707`, `2708`, `2709`, `2711`, `2712`, `2713`, `2716`, `2718`, `2720`, `2721`, `2722`, `2724`, `2725`, `2726`, `2728`, `2731`, `2732`, `2735`, `2736`, `2737`, `2740`, `2741`, `2742`, `2744`, `2746`, `2749`, `2750`, `2753`, `2756`, `2757`, `2760`, `2763`, `2764`, `2765`, `2766`, `2769`, `2771`, `2772`, `2773`, `2775`, `2778`, `2779`, `2780`, `2781`, `2437`, `2782`, `2784`, `2786`, `2787`, `2788`, `2789`, `2790`, `2792`, `2793`, `2795`, `2796`, `2797`, `2799`, `2800`, `2804`, `2805`, `2806`, `2807`, `2029`, `2808`, `2809`, `2812`, `2814`, `2816`, `2819`, `2820`, `2822`, `2823`, `2824`, `2825`, `2827`, `2829`, `2831`, `2832`, `2833`, `2835`, `2836`, `2838`, `2839`, `2395`, `2841`, `2843`, `2844`, `2846`, `2847`, `2848`, `2850`, `2852`, `2854`, `2855`, `2856`, `2859`, `2860`, `2862`, `2863`, `2864`, `2865`, `2867`, `2869`, `2870`, `2871`, `2873`, `2874`, `2875`, `2876`, `2877`, `2878`, `2880`, `2882`, `2883`, `2884`, `2885`, `2887`, `2889`, `2890`, `2891`, `2892`, `2894`, `2895`, `2896`, `2897`, `2898`, `2899`, `2900`, `2901`, `2902`, `2903`, `2904`, `490`, `2906`, `2907`, `2909`, `2910`, `2911`, `2913`, `2914`, `2915`, `2917`, `2919`, `2920`, `2921`, `2924`, `2925`, `2926`, `2928`, `2929`, `2930`, `2931`, `2933`, `2934`, `2937`, `2938`, `2939`, `2940`, `2941`, `2942`, `2943`, `2946`, `2947`, `2948`, `2949`, `2950`, `2951`, `2952`, `2954`, `2955`, `2956`, `2957`, `2958`, `2960`, `2962`, `2964`, `2965`, `2966`, `2967`, `2969`, `2970`, `1491`, `2971`, `2972`, `1599`, `2973`, `2974`, `2975`, `2977`, `2979`, `2980`, `2981`, `2982`, `2983`, `2985`, `2986`, `2987`, `2988`, `2989`, `2990`, `2991`, `2992`, `2994`, `2995`, `2998`, `3001`, `3002`, `3003`, `3004`, `3008`, `3010`, `3011`, `3012`, `3013`, `3014`, `3016`, `3018`, `3020`, `3021`, `3023`, `3024`, `3025`, `3026`, `3027`, `3029`, `3032`, `3033`, `3036`, `3037`, `3038`, `3040`, `3041`, `3042`, `3043`, `3044`, `3046`, `3047`, `3048`, `3050`, `3051`, `3054`, `3055`, `3056`, `3057`, `3058`, `3060`, `3061`, `3062`, `3063`, `3064`, `3065`, `3068`, `3071`, `3072`, `3073`, `3075`, `3077`, `3078`, `3080`, `3081`, `3082`, `3084`, `3085`, `3087`, `3088`, `3089`, `3090`, `3091`, `3092`, `3094`, `3096`, `3097`, `3098`, `3099`, `3102`, `3103`, `3105`, `3107`, `3108`, `3109`, `3111`, `3113`, `3114`, `3116`, `3117`, `3118`, `3120`, `3122`, `3124`, `3125`, `3126`, `3127`, `3128`, `3130`, `3131`, `3132`, `3133`, `3136`, `3137`, `3139`, `3140`, `3143`, `3144`, `3146`, `3147`, `3148`, `3151`, `3152`, `3154`, `3156`, `3158`, `3159`, `3161`, `3164`, `3165`, `3166`, `3168`, `3170`, `3171`, `3172`, `3173`, `3174`, `3176`, `3177`, `3178`, `3179`, `3180`, `3181`, `3183`, `3184`, `3187`, `3188`, `3189`, `3190`, `3192`, `3193`, `3197`, `3198`, `3200`, `3201`, `3202`, `3205`, `3206`, `3207`, `3209`, `3210`, `3211`, `3212`, `3214`, `3215`, `3216`, `3217`, `3218`, `3220`, `3221`, `3222`, `3223`, `3224`, `3226`, `3227`, `3228`, `3230`, `3232`, `3235`, `3237`, `3238`, `3239`, `3241`, `3243`, `3246`, `3248`, `3249`, `3250`, `3251`, `3252`, `3253`, `3254`, `3255`, `3256`, `3257`, `3258`, `3259`, `3260`, `3263`, `3264`, `3265`, `3269`, `3270`, `3272`, `3273`, `3275`, `3276`, `3278`, `3279`, `3280`, `3282`, `3283`, `3284`, `3285`, `3287`, `3288`, `3291`, `3292`, `3294`, `3295`, `3296`, `3297`, `3299`, `3301`, `3306`, `3308`, `3310`, `3311`, `3312`, `3313`, `3315`, `3317`, `3318`, `3319`, `3320`, `3321`, `3322`, `3325`, `3326`, `3327`, `3330`, `3331`, `3332`, `3333`, `3334`, `3335`, `3337`, `3338`, `3340`, `3342`, `3343`, `3344`, `3345`, `3346`, `3347`, `3348`, `3349`, `3350`, `3352`, `3353`, `3355`, `3356`, `3357`, `3359`, `3360`, `3361`, `3363`, `3364`, `3366`, `3368`, `3369`, `3370`, `3371`, `3372`, `3373`, `3375`, `3376`, `3377`, `3378`, `3380`, `3381`, `3382`, `3383`, `3384`, `3385`, `3386`, `3387`, `3388`, `3390`, `3391`, `3392`, `3393`, `3394`, `3395`, `3397`, `3399`, `3400`, `3401`, `3402`, `3406`, `3407`, `3408`, `3409`, `3411`, `3413`, `3414`, `3415`, `3416`, `3417`, `3418`, `3419`, `3421`, `3422`, `3424`, `3425`, `3428`, `3429`, `3431`, `3432`, `3433`, `3434`, `3436`, `3439`, `3441`, `3442`, `3444`, `3445`, `3446`, `3447`, `3448`, `3450`, `3451`, `3452`, `3453`, `3454`, `3455`, `3456`, `3457`, `3459`, `3460`, `3461`, `3462`, `3463`, `3464`, `3465`, `3468`, `3470`, `3473`, `3474`, `3475`, `3476`, `3477`, `3478`, `3480`, `3481`, `3483`, `3484`, `3485`, `3486`, `3487`, `3489`, `3490`, `3493`, `3495`, `3496`, `3498`, `3499`, `3500`, `3502`, `3503`, `3504`, `3505`, `3507`, `3508`, `3509`, `3510`, `3511`, `3512`, `3513`, `3515`, `3516`, `3517`, `3520`, `3521`, `3522`, `3524`, `3525`, `3526`, `3527`, `3529`, `3531`, `3534`, `3535`, `3536`, `3537`, `3538`, `3539`, `3542`, `3543`, `3544`, `3545`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3553`, `3556`, `3557`, `3558`, `3559`, `3560`, `3561`, `3562`, `3563`, `3564`, `3565`, `3566`, `3568`, `3569`, `3570`, `3573`, `3574`, `3576`, `3577`, `3580`, `3581`, `3582`, `3585`, `3586`, `3587`, `3588`, `3589`, `3591`, `3592`, `3594`, `3596`, `3597`, `3598`, `3599`, `3600`, `3602`, `3603`, `3605`, `3606`, `3608`, `3609`, `3610`, `3611`, `3613`, `3614`, `3615`, `3616`, `3617`, `3618`, `3619`, `3620`, `3622`, `3623`, `3624`, `3625`, `3626`, `3627`, `3628`, `3630`, `3631`, `3632`, `3633`, `3634`, `3635`, `3637`, `3639`, `3640`, `3641`, `3643`, `3644`, `3645`, `3647`, `3648`, `3649`, `3650`, `3652`, `3654`, `3655`, `3657`, `3658`, `3659`, `3660`, `3661`, `3663`, `3666`, `3669`, `3670`, `3671`, `3672`, `3673`, `3675`, `3676`, `3677`, `3678`, `3679`, `3681`, `3682`, `3685`, `3686`, `3687`, `3689`, `3690`, `3692`, `3693`, `3695`, `3697`, `3698`, `3699`, `3700`, `3701`, `3703`, `3705`, `3708`, `3709`, `3710`, `3713`, `3714`, `3715`, `3716`, `3717`, `3718`, `3719`, `3720`, `3723`, `3725`, `3726`, `3728`, `3729`, `3730`, `3731`, `3732`, `3733`, `3734`, `3735`, `3736`, `3737`, `3738`, `3740`, `3742`, `3744`, `3746`, `3747`, `3748`, `3749`, `3751`, `3752`, `3753`, `3754`, `3755`, `3756`, `3757`, `3758`, `3760`, `3761`, `3762`, `3764`, `3765`, `3766`, `3767`, `3768`, `3769`, `3771`, `3773`, `3775`, `3777`, `3779`, `3780`, `3781`, `3782`, `3783`, `3784`, `3786`, `3787`, `3788`, `3789`, `3791`, `3792`, `3793`, `3795`, `3796`, `3797`, `3798`, `3799`, `3800`, `3801`, `3803`, `3805`, `3806`, `3808`, `3809`, `3812`, `3814`, `3817`, `3819`, `3822`, `3825`, `3827`, `3828`, `3829`, `3830`, `3831`, `3832`, `3833`, `3835`, `3836`, `3837`, `3838`, `3839`, `3840`, `3841`, `3842`, `3843`, `3844`, `3845`, `3847`, `3848`, `3849`, `3850`, `3851`, `3852`, `3853`, `3854`, `3855`, `3857`, `3858`, `3861`, `3863`, `3864`, `3865`, `3866`, `3867`, `3868`, `3869`, `3870`, `3872`, `3873`, `3874`, `3875`, `3876`, `3877`, `3879`, `3880`, `3881`, `3883`, `3884`, `3885`, `3886`, `3887`, `3888`, `3889`, `3891`, `3892`, `3893`, `3894`, `3895`, `3896`, `3898`, `3899`, `3900`, `3901`, `3902`, `3905`, `3906`, `3907`, `3908`, `3909`, `3910`, `3911`, `3912`, `3913`, `3914`, `3915`, `3916`, `3917`, `3918`, `3920`, `3923`, `3924`, `3925`, `3927`, `3928`, `3929`, `3930`, `3931`, `3932`, `3934`, `3935`, `3936`, `3938`, `3939`, `3940`, `3941`, `3942`, `3945`, `3946`, `3949`, `3950`, `3951`, `3952`, `3953`, `3955`, `3956`, `3958`, `3959`, `3960`, `3962`, `3963`, `3964`, `3965`, `3967`, `3969`, `3970`, `3973`, `3974`, `3976`, `3979`, `3980`, `3983`, `3984`, `3985`, `3986`, `3987`, `3989`, `3990`, `3991`, `3993`, `3994`, `3997`, `3998`, `3999`, `4001`, `4004`, `4005`, `4007`, `4010`, `4011`, `4013`, `4016`, `4019`, `4020`, `4023`, `4024`, `4025`, `4026`, `4027`, `4028`, `4029`, `4030`, `4031`, `4032`, `4034`, `4035`, `4037`, `4038`, `4040`, `4041`, `4043`, `4045`, `4046`, `4047`, `4049`, `4050`, `4052`, `4054`, `4056`, `4057`, `4058`, `4059`, `4060`, `4061`, `4062`, `4063`, `4065`, `4067`, `4068`, `4069`, `4070`, `4071`, `4072`, `4073`, `4074`, `4076`, `4079`, `4080`, `4081`, `4082`, `4083`, `4084`, `4086`, `4088`, `4089`, `4090`, `4091`, `4092`, `4093`, `4094`, `4095`, `4097`, `4098`, `4099`, `4102`, `4103`, `4104`, `4106`, `4107`, `4108`, `4110`, `4112`, `4113`, `4114`, `4115`, `4116`, `4117`, `4118`, `4120`, `4122`, `4125`, `4127`, `4129`, `4132`, `4134`, `4135`, `4136`, `4137`, `4138`, `4139`, `4140`, `4141`, `4142`, `4143`, `4144`, `4146`, `4147`, `4148`, `4149`, `4150`, `4151`, `4152`, `4153`, `4154`, `4155`, `4156`, `4158`, `4159`, `4160`, `4161`, `4162`, `4164`, `4165`, `4166`, `4168`, `4171`, `4172`, `4173`, `4174`, `4175`, `4176`, `4177`, `4179`, `4180`, `4181`, `4182`, `4184`, `4186`, `4187`, `4188`, `4189`, `4191`, `4195`, `4196`, `4197`, `4198`, `4199`, `4202`, `4203`, `4204`, `4205`, `4206`, `4209`, `4210`, `4212`, `4213`, `4216`, `4217`, `4218`, `4219`, `4221`, `4224`, `4225`, `4226`, `4227`, `4230`, `4232`, `4233`, `4234`, `4238`, `4239`, `4241`, `4242`, `4245`, `4247`, `4249`, `4252`, `4254`, `4257`, `4258`, `4261`, `4262`, `4263`, `4265`, `4266`, `4268`, `4269`, `4270`, `4271`, `4273`, `4275`, `4276`, `4278`, `4279`, `4280`, `4281`, `4282`, `4283`, `4284`, `4286`, `4287`, `4288`, `4289`, `4290`, `4291`, `4292`, `4294`, `4295`, `4296`, `4297`, `4298`, `4299`, `4300`, `4301`, `4302`, `4303`, `4306`, `4309`, `4310`, `4311`, `4312`, `4313`, `4314`, `4317`, `4318`, `4319`, `4320`, `4321`, `4322`, `4324`, `4325`, `4327`, `4329`, `4330`, `4331`, `4332`, `4333`, `4334`, `4336`, `4337`, `4339`, `4340`, `4341`, `4343`, `4344`, `4345`, `4346`, `4347`, `4348`, `4350`, `4351`, `4352`, `4353`, `4354`, `4355`, `4356`, `4358`, `4359`, `4360`, `4361`, `4363`, `4364`, `4365`, `4366`, `4368`, `4370`, `4373`, `4376`, `4377`, `4378`, `4379`, `4380`, `4381`, `4384`, `4385`, `4386`, `4387`, `4388`, `4389`, `4390`, `4391`, `4393`, `4394`, `4395`, `4396`, `4397`, `4398`, `4400`, `4401`, `3467`, `4402`, `4403`, `4405`, `4406`, `4407`, `4408`, `4409`, `4410`, `4411`, `4412`, `4413`, `4414`, `4416`, `4417`, `4418`, `4420`, `4421`, `4422`, `4424`, `4425`, `4426`, `4427`, `4430`, `4431`, `4432`, `4435`, `4436`, `4437`, `4438`, `4439`, `4440`, `4441`, `4443`, `4444`, `4446`, `4447`, `4449`, `4451`, `4452`, `4454`, `4455`, `4456`, `4457`, `4458`, `4459`, `4462`, `4463`, `4465`, `4466`, `4468`, `4469`, `4471`, `4472`, `4473`, `4474`, `4476`, `4477`, `4478`, `4479`, `4480`, `4482`, `4483`, `4484`, `4486`, `4488`, `4489`, `4490`, `4491`, `4494`, `4496`, `4497`, `4498`, `4499`, `4500`, `4501`, `4503`, `4505`, `4506`, `249`, `4507`, `4508`, `4509`, `4510`, `4513`, `4514`, `4515`, `4517`, `4518`, `4519`, `4520`, `4521`, `931`, `4523`, `4527`, `4528`, `4529`, `4530`, `4531`, `4532`, `4533`, `4535`, `4536`, `4537`, `4538`, `4540`, `4542`, `4545`, `4546`, `4547`, `4548`, `4549`, `4551`, `4552`, `4555`, `4556`, `4557`, `4559`, `4560`, `4562`, `4563`, `4564`, `4565`, `4566`, `4568`, `4570`, `4571`, `4572`, `4573`, `4574`, `4576`, `4577`, `4578`, `4579`, `4581`, `4583`, `4586`, `4587`, `4590`, `4591`, `4592`, `4594`, `4595`, `4598`, `4599`, `4600`, `4601`, `4602`, `4603`, `4605`, `4606`, `4607`, `4608`, `4609`, `4612`, `4613`, `4615`, `4616`, `4617`, `4618`, `4619`, `4620`, `4621`, `4623`, `4625`, `4626`, `4627`, `4629`, `4630`, `4631`, `4632`, `4633`, `4634`, `4635`, `4636`, `4637`, `4638`, `4639`, `4641`, `4643`, `4644`, `4645`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4653`, `4655`, `4656`, `4658`, `4659`, `4660`, `4662`, `4663`, `4664`, `4665`, `4667`, `4668`, `4669`, `4670`, `4672`, `4673`, `4674`, `4676`, `4678`, `4679`, `4680`, `4682`, `4684`, `4685`, `4686`, `4688`, `4690`, `4691`, `4692`, `4693`, `4695`, `4696`, `4697`, `4698`, `4700`, `4701`, `4704`, `4705`, `4706`, `4708`, `4711`, `4712`, `4713`, `4714`, `4715`, `4716`, `4719`, `4722`, `4723`, `4724`, `4726`, `4727`, `4728`, `4730`, `4731`, `4733`, `4734`, `4735`, `4736`, `4738`, `4739`, `4740`, `4741`, `4742`, `4743`, `4744`, `4745`, `4746`, `4747`, `4748`, `4749`, `4750`, `70`, `84`, `4751`, `4752`, `4753`, `4754`, `4756`, `4758`, `4760`, `4761`, `4762`, `4764`, `4766`, `4769`, `4771`, `4772`, `4774`, `4775`, `4776`, `4778`, `4779`, `4781`, `4782` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.80 |
| `TOKEN_P` | 99.79 |
| `TOKEN_R` | 99.81 |
| `TOKEN_ACC` | 99.97 |
| `SENTS_F` | 97.77 |
| `SENTS_P` | 98.24 |
| `SENTS_R` | 97.30 |
| `TAG_ACC` | 91.59 |
| `POS_ACC` | 97.94 |
| `MORPH_ACC` | 95.69 |
| `DEP_UAS` | 91.30 |
| `DEP_LAS` | 87.75 |
| `LEMMA_ACC` | 95.39 |
|
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-sv
|
patrickvonplaten
| 2021-12-10T18:14:51Z | 46 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"sv",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language:
- sv
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-phoneme-300m-sv
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2vec2-xls-r-phoneme-300m-sv
**Note**: The tokenizer was created from the official Swedish phoneme vocabulary as defined here: https://github.com/microsoft/UniSpeech/blob/main/UniSpeech/examples/unispeech/data/sv/phonesMatches_reduced.json
One can simply download the file, rename it to `vocab.json` and load a `Wav2Vec2PhonemeCTCTokenizer.from_pretrained("./directory/with/vocab.json/")`.
This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9707
- PER: 0.2215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
See Tensorboard traces
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.8.1
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
explosion/ko_udv25_koreankaist_trf
|
explosion
| 2021-12-10T17:41:25Z | 2 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ko",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ko
license: cc-by-sa-4.0
model-index:
- name: ko_udv25_koreankaist_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.8893108632
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9652266793
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 1.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9450905926
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.894835346
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8717525957
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 1.0
---
UD v2.5 benchmarking pipeline for UD_Korean-Kaist
| Feature | Description |
| --- | --- |
| **Name** | `ko_udv25_koreankaist_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (5329 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ecs`, `etm`, `f`, `f+f+jcj`, `f+f+jcs`, `f+f+jct`, `f+f+jxt`, `f+jca`, `f+jca+jp+ecc`, `f+jca+jp+ep+ef`, `f+jca+jxc`, `f+jca+jxc+jcm`, `f+jca+jxt`, `f+jcj`, `f+jcm`, `f+jco`, `f+jcs`, `f+jct`, `f+jct+jcm`, `f+jp+ef`, `f+jp+ep+ef`, `f+jp+etm`, `f+jxc`, `f+jxt`, `f+ncn`, `f+ncn+jcm`, `f+ncn+jcs`, `f+ncn+jp+ecc`, `f+ncn+jxt`, `f+ncpa+jcm`, `f+npp+jcs`, `f+nq`, `f+xsn`, `f+xsn+jco`, `f+xsn+jxt`, `ii`, `jca`, `jca+jcm`, `jca+jxc`, `jca+jxt`, `jcc`, `jcj`, `jcm`, `jco`, `jcr`, `jcr+jxc`, `jcs`, `jct`, `jct+jcm`, `jct+jxt`, `jp+ecc`, `jp+ecs`, `jp+ef`, `jp+ef+jcr`, `jp+ef+jcr+jxc`, `jp+ep+ecs`, `jp+ep+ef`, `jp+ep+etm`, `jp+ep+etn`, `jp+etm`, `jp+etn`, `jp+etn+jco`, `jp+etn+jxc`, `jxc`, `jxc+jca`, `jxc+jco`, `jxc+jcs`, `jxt`, `mad`, `mad+jxc`, `mad+jxt`, `mag`, `mag+jca`, `mag+jcm`, `mag+jcs`, `mag+jp+ef+jcr`, `mag+jxc`, `mag+jxc+jxc`, `mag+jxt`, `mag+xsn`, `maj`, `maj+jxc`, `maj+jxt`, `mma`, `mmd`, `nbn`, `nbn+jca`, `nbn+jca+jcj`, `nbn+jca+jcm`, `nbn+jca+jp+ef`, `nbn+jca+jxc`, `nbn+jca+jxt`, `nbn+jcc`, `nbn+jcj`, `nbn+jcm`, `nbn+jco`, `nbn+jcr`, `nbn+jcs`, `nbn+jct`, `nbn+jct+jcm`, `nbn+jct+jxt`, `nbn+jp+ecc`, `nbn+jp+ecs`, `nbn+jp+ecs+jca`, `nbn+jp+ecs+jcm`, `nbn+jp+ecs+jco`, `nbn+jp+ecs+jxc`, `nbn+jp+ecs+jxt`, `nbn+jp+ecx`, `nbn+jp+ef`, `nbn+jp+ef+jca`, `nbn+jp+ef+jco`, `nbn+jp+ef+jcr`, `nbn+jp+ef+jcr+jxc`, `nbn+jp+ef+jcr+jxt`, `nbn+jp+ef+jcs`, `nbn+jp+ef+jxc`, `nbn+jp+ef+jxc+jco`, `nbn+jp+ef+jxf`, `nbn+jp+ef+jxt`, `nbn+jp+ep+ecc`, `nbn+jp+ep+ecs`, `nbn+jp+ep+ecs+jxc`, `nbn+jp+ep+ef`, `nbn+jp+ep+ef+jcr`, `nbn+jp+ep+etm`, `nbn+jp+ep+etn`, `nbn+jp+ep+etn+jco`, `nbn+jp+ep+etn+jcs`, `nbn+jp+etm`, `nbn+jp+etn`, `nbn+jp+etn+jca`, `nbn+jp+etn+jca+jxt`, `nbn+jp+etn+jco`, `nbn+jp+etn+jcs`, `nbn+jp+etn+jxc`, `nbn+jp+etn+jxt`, `nbn+jxc`, `nbn+jxc+jca`, `nbn+jxc+jca+jxc`, `nbn+jxc+jca+jxt`, `nbn+jxc+jcc`, `nbn+jxc+jcm`, `nbn+jxc+jco`, `nbn+jxc+jcs`, `nbn+jxc+jp+ef`, `nbn+jxc+jxc`, `nbn+jxc+jxt`, `nbn+jxt`, `nbn+nbn`, `nbn+nbn+jp+ef`, `nbn+xsm+ecs`, `nbn+xsm+ef`, `nbn+xsm+ep+ef`, `nbn+xsm+ep+ef+jcr`, `nbn+xsm+etm`, `nbn+xsn`, `nbn+xsn+jca`, `nbn+xsn+jca+jp+ef+jcr`, `nbn+xsn+jca+jxc`, `nbn+xsn+jca+jxt`, `nbn+xsn+jcm`, `nbn+xsn+jco`, `nbn+xsn+jcs`, `nbn+xsn+jct`, `nbn+xsn+jp+ecc`, `nbn+xsn+jp+ecs`, `nbn+xsn+jp+ef`, `nbn+xsn+jp+ef+jcr`, `nbn+xsn+jp+ep+ef`, `nbn+xsn+jxc`, `nbn+xsn+jxt`, `nbn+xsv+etm`, `nbu`, `nbu+jca`, `nbu+jca+jxc`, `nbu+jca+jxt`, `nbu+jcc`, `nbu+jcc+jxc`, `nbu+jcj`, `nbu+jcm`, `nbu+jco`, `nbu+jcs`, `nbu+jct`, `nbu+jct+jxc`, `nbu+jp+ecc`, `nbu+jp+ecs`, `nbu+jp+ef`, `nbu+jp+ef+jcr`, `nbu+jp+ef+jxc`, `nbu+jp+ep+ecc`, `nbu+jp+ep+ecs`, `nbu+jp+ep+ef`, `nbu+jp+ep+ef+jcr`, `nbu+jp+ep+etm`, `nbu+jp+ep+etn+jco`, `nbu+jp+etm`, `nbu+jxc`, `nbu+jxc+jca`, `nbu+jxc+jcs`, `nbu+jxc+jp+ef`, `nbu+jxc+jp+ep+ef`, `nbu+jxc+jxt`, `nbu+jxt`, `nbu+ncn`, `nbu+ncn+jca`, `nbu+ncn+jcm`, `nbu+xsn`, `nbu+xsn+jca`, `nbu+xsn+jca+jxc`, `nbu+xsn+jca+jxt`, `nbu+xsn+jcm`, `nbu+xsn+jco`, `nbu+xsn+jcs`, `nbu+xsn+jp+ecs`, `nbu+xsn+jp+ep+ef`, `nbu+xsn+jxc`, `nbu+xsn+jxc+jxt`, `nbu+xsn+jxt`, `nbu+xsv+ecc`, `nbu+xsv+etm`, `ncn`, `ncn+f+ncpa+jco`, `ncn+jca`, `ncn+jca+jca`, `ncn+jca+jcc`, `ncn+jca+jcj`, `ncn+jca+jcm`, `ncn+jca+jcs`, `ncn+jca+jct`, `ncn+jca+jp+ecc`, `ncn+jca+jp+ecs`, `ncn+jca+jp+ef`, `ncn+jca+jp+ep+ef`, `ncn+jca+jp+etm`, `ncn+jca+jp+etn+jxt`, `ncn+jca+jxc`, `ncn+jca+jxc+jcc`, `ncn+jca+jxc+jcm`, `ncn+jca+jxc+jxc`, `ncn+jca+jxc+jxt`, `ncn+jca+jxt`, `ncn+jcc`, `ncn+jcc+jxc`, `ncn+jcj`, `ncn+jcj+jxt`, `ncn+jcm`, `ncn+jco`, `ncn+jcr`, `ncn+jcr+jxc`, `ncn+jcs`, `ncn+jcs+jxt`, `ncn+jct`, `ncn+jct+jcm`, `ncn+jct+jxc`, `ncn+jct+jxt`, `ncn+jcv`, `ncn+jp+ecc`, `ncn+jp+ecc+jct`, `ncn+jp+ecc+jxc`, `ncn+jp+ecs`, `ncn+jp+ecs+jcm`, `ncn+jp+ecs+jco`, `ncn+jp+ecs+jxc`, `ncn+jp+ecs+jxt`, `ncn+jp+ecx`, `ncn+jp+ef`, `ncn+jp+ef+jca`, `ncn+jp+ef+jcm`, `ncn+jp+ef+jco`, `ncn+jp+ef+jcr`, `ncn+jp+ef+jcr+jxc`, `ncn+jp+ef+jcr+jxt`, `ncn+jp+ef+jp+etm`, `ncn+jp+ef+jxc`, `ncn+jp+ef+jxf`, `ncn+jp+ef+jxt`, `ncn+jp+ep+ecc`, `ncn+jp+ep+ecs`, `ncn+jp+ep+ecs+jxc`, `ncn+jp+ep+ecx`, `ncn+jp+ep+ef`, `ncn+jp+ep+ef+jcr`, `ncn+jp+ep+ef+jcr+jxc`, `ncn+jp+ep+ef+jxc`, `ncn+jp+ep+ef+jxf`, `ncn+jp+ep+ef+jxt`, `ncn+jp+ep+ep+etm`, `ncn+jp+ep+etm`, `ncn+jp+ep+etn`, `ncn+jp+ep+etn+jca`, `ncn+jp+ep+etn+jca+jxc`, `ncn+jp+ep+etn+jco`, `ncn+jp+ep+etn+jcs`, `ncn+jp+ep+etn+jxt`, `ncn+jp+etm`, `ncn+jp+etn`, `ncn+jp+etn+jca`, `ncn+jp+etn+jca+jxc`, `ncn+jp+etn+jca+jxt`, `ncn+jp+etn+jco`, `ncn+jp+etn+jcs`, `ncn+jp+etn+jct`, `ncn+jp+etn+jxc`, `ncn+jp+etn+jxt`, `ncn+jxc`, `ncn+jxc+jca`, `ncn+jxc+jca+jxc`, `ncn+jxc+jca+jxt`, `ncn+jxc+jcc`, `ncn+jxc+jcm`, `ncn+jxc+jco`, `ncn+jxc+jcs`, `ncn+jxc+jct+jxt`, `ncn+jxc+jp+ef`, `ncn+jxc+jp+ef+jcr`, `ncn+jxc+jp+ep+ecs`, `ncn+jxc+jp+ep+ef`, `ncn+jxc+jp+etm`, `ncn+jxc+jxc`, `ncn+jxc+jxt`, `ncn+jxt`, `ncn+jxt+jcm`, `ncn+jxt+jxc`, `ncn+nbn`, `ncn+nbn+jca`, `ncn+nbn+jcm`, `ncn+nbn+jcs`, `ncn+nbn+jp+ecc`, `ncn+nbn+jp+ep+ef`, `ncn+nbn+jxc`, `ncn+nbn+jxt`, `ncn+nbu`, `ncn+nbu+jca`, `ncn+nbu+jcm`, `ncn+nbu+jco`, `ncn+nbu+jp+ef`, `ncn+nbu+jxc`, `ncn+nbu+ncn`, `ncn+ncn`, `ncn+ncn+jca`, `ncn+ncn+jca+jcc`, `ncn+ncn+jca+jcm`, `ncn+ncn+jca+jxc`, `ncn+ncn+jca+jxc+jcm`, `ncn+ncn+jca+jxc+jxc`, `ncn+ncn+jca+jxt`, `ncn+ncn+jcc`, `ncn+ncn+jcj`, `ncn+ncn+jcm`, `ncn+ncn+jco`, `ncn+ncn+jcr`, `ncn+ncn+jcs`, `ncn+ncn+jct`, `ncn+ncn+jct+jcm`, `ncn+ncn+jct+jxc`, `ncn+ncn+jct+jxt`, `ncn+ncn+jp+ecc`, `ncn+ncn+jp+ecs`, `ncn+ncn+jp+ef`, `ncn+ncn+jp+ef+jcm`, `ncn+ncn+jp+ef+jcr`, `ncn+ncn+jp+ef+jcs`, `ncn+ncn+jp+ep+ecc`, `ncn+ncn+jp+ep+ecs`, `ncn+ncn+jp+ep+ef`, `ncn+ncn+jp+ep+ef+jcr`, `ncn+ncn+jp+ep+ep+etm`, `ncn+ncn+jp+ep+etm`, `ncn+ncn+jp+ep+etn`, `ncn+ncn+jp+etm`, `ncn+ncn+jp+etn`, `ncn+ncn+jp+etn+jca`, `ncn+ncn+jp+etn+jco`, `ncn+ncn+jp+etn+jxc`, `ncn+ncn+jxc`, `ncn+ncn+jxc+jca`, `ncn+ncn+jxc+jcc`, `ncn+ncn+jxc+jcm`, `ncn+ncn+jxc+jco`, `ncn+ncn+jxc+jcs`, `ncn+ncn+jxc+jxc`, `ncn+ncn+jxt`, `ncn+ncn+nbn`, `ncn+ncn+ncn`, `ncn+ncn+ncn+jca`, `ncn+ncn+ncn+jca+jcm`, `ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+jcj`, `ncn+ncn+ncn+jcm`, `ncn+ncn+ncn+jco`, `ncn+ncn+ncn+jcs`, `ncn+ncn+ncn+jct+jxt`, `ncn+ncn+ncn+jp+etn+jxc`, `ncn+ncn+ncn+jxt`, `ncn+ncn+ncn+ncn+jca`, `ncn+ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+ncn+jco`, `ncn+ncn+ncn+xsn+jp+etm`, `ncn+ncn+ncpa`, `ncn+ncn+ncpa+jca`, `ncn+ncn+ncpa+jcm`, `ncn+ncn+ncpa+jco`, `ncn+ncn+ncpa+jcs`, `ncn+ncn+ncpa+jxc`, `ncn+ncn+ncpa+jxt`, `ncn+ncn+ncpa+ncn`, `ncn+ncn+ncpa+ncn+jca`, `ncn+ncn+ncpa+ncn+jcj`, `ncn+ncn+ncpa+ncn+jcm`, `ncn+ncn+ncpa+ncn+jxt`, `ncn+ncn+xsn`, `ncn+ncn+xsn+jca`, `ncn+ncn+xsn+jca+jxt`, `ncn+ncn+xsn+jcj`, `ncn+ncn+xsn+jcm`, `ncn+ncn+xsn+jco`, `ncn+ncn+xsn+jcs`, `ncn+ncn+xsn+jct`, `ncn+ncn+xsn+jp+ecs`, `ncn+ncn+xsn+jp+ep+ef`, `ncn+ncn+xsn+jp+etm`, `ncn+ncn+xsn+jxc`, `ncn+ncn+xsn+jxc+jcs`, `ncn+ncn+xsn+jxt`, `ncn+ncn+xsv+ecc`, `ncn+ncn+xsv+etm`, `ncn+ncpa`, `ncn+ncpa+jca`, `ncn+ncpa+jca+jcm`, `ncn+ncpa+jca+jxc`, `ncn+ncpa+jca+jxt`, `ncn+ncpa+jcc`, `ncn+ncpa+jcj`, `ncn+ncpa+jcm`, `ncn+ncpa+jco`, `ncn+ncpa+jcr`, `ncn+ncpa+jcs`, `ncn+ncpa+jct`, `ncn+ncpa+jct+jcm`, `ncn+ncpa+jct+jxt`, `ncn+ncpa+jp+ecc`, `ncn+ncpa+jp+ecc+jxc`, `ncn+ncpa+jp+ecs`, `ncn+ncpa+jp+ecs+jxc`, `ncn+ncpa+jp+ef`, `ncn+ncpa+jp+ef+jcr`, `ncn+ncpa+jp+ef+jcr+jxc`, `ncn+ncpa+jp+ep+ef`, `ncn+ncpa+jp+ep+etm`, `ncn+ncpa+jp+ep+etn`, `ncn+ncpa+jp+etm`, `ncn+ncpa+jxc`, `ncn+ncpa+jxc+jca+jxc`, `ncn+ncpa+jxc+jco`, `ncn+ncpa+jxc+jcs`, `ncn+ncpa+jxt`, `ncn+ncpa+nbn+jcs`, `ncn+ncpa+ncn`, `ncn+ncpa+ncn+jca`, `ncn+ncpa+ncn+jca+jcm`, `ncn+ncpa+ncn+jca+jxc`, `ncn+ncpa+ncn+jca+jxt`, `ncn+ncpa+ncn+jcj`, `ncn+ncpa+ncn+jcm`, `ncn+ncpa+ncn+jco`, `ncn+ncpa+ncn+jcs`, `ncn+ncpa+ncn+jct`, `ncn+ncpa+ncn+jct+jcm`, `ncn+ncpa+ncn+jp+ef+jcr`, `ncn+ncpa+ncn+jp+ep+etm`, `ncn+ncpa+ncn+jxc`, `ncn+ncpa+ncn+jxt`, `ncn+ncpa+ncn+xsn+jcm`, `ncn+ncpa+ncn+xsn+jxt`, `ncn+ncpa+ncpa`, `ncn+ncpa+ncpa+jca`, `ncn+ncpa+ncpa+jcj`, `ncn+ncpa+ncpa+jcm`, `ncn+ncpa+ncpa+jco`, `ncn+ncpa+ncpa+jcs`, `ncn+ncpa+ncpa+jp+ep+ef`, `ncn+ncpa+ncpa+jxt`, `ncn+ncpa+ncpa+ncn`, `ncn+ncpa+xsn`, `ncn+ncpa+xsn+jcm`, `ncn+ncpa+xsn+jco`, `ncn+ncpa+xsn+jcs`, `ncn+ncpa+xsn+jp+ecc`, `ncn+ncpa+xsn+jp+etm`, `ncn+ncpa+xsn+jxt`, `ncn+ncpa+xsv+ecc`, `ncn+ncpa+xsv+ecs`, `ncn+ncpa+xsv+ecx`, `ncn+ncpa+xsv+ecx+px+etm`, `ncn+ncpa+xsv+ef`, `ncn+ncpa+xsv+ef+jcm`, `ncn+ncpa+xsv+ef+jcr`, `ncn+ncpa+xsv+etm`, `ncn+ncpa+xsv+etn`, `ncn+ncpa+xsv+etn+jco`, `ncn+ncps`, `ncn+ncps+jca`, `ncn+ncps+jcm`, `ncn+ncps+jco`, `ncn+ncps+jcs`, `ncn+ncps+jp+ecs`, `ncn+ncps+jxt`, `ncn+ncps+ncn+jcs`, `ncn+ncps+ncpa+ncn`, `ncn+ncps+xsm+ef`, `ncn+ncps+xsm+etm`, `ncn+nnc`, `ncn+nnc+jcs`, `ncn+nnc+nnc`, `ncn+nno`, `ncn+nq`, `ncn+nq+jca`, `ncn+nq+jca+jxc`, `ncn+nq+jca+jxt`, `ncn+nq+jcm`, `ncn+nq+jcs`, `ncn+nq+jxt`, `ncn+nq+ncn+jcm`, `ncn+nq+ncn+xsn+jcs`, `ncn+nq+xsn+jxt`, `ncn+xsa`, `ncn+xsm+ecc`, `ncn+xsm+ecs`, `ncn+xsm+ecs+jxc`, `ncn+xsm+ecx`, `ncn+xsm+ecx+jcs`, `ncn+xsm+ecx+px+ep+etm`, `ncn+xsm+ef`, `ncn+xsm+ef+jcr`, `ncn+xsm+etm`, `ncn+xsm+etn+jcm`, `ncn+xsm+etn+jp+ef+jcr`, `ncn+xsn`, `ncn+xsn+jca`, `ncn+xsn+jca+jcj`, `ncn+xsn+jca+jxc`, `ncn+xsn+jca+jxc+jxc`, `ncn+xsn+jca+jxt`, `ncn+xsn+jcc`, `ncn+xsn+jcj`, `ncn+xsn+jcm`, `ncn+xsn+jco`, `ncn+xsn+jcs`, `ncn+xsn+jcs+jxt`, `ncn+xsn+jct`, `ncn+xsn+jct+jcm`, `ncn+xsn+jct+jxc`, `ncn+xsn+jct+jxt`, `ncn+xsn+jcv`, `ncn+xsn+jp+ecc`, `ncn+xsn+jp+ecc+jxc`, `ncn+xsn+jp+ecs`, `ncn+xsn+jp+ecs+jxc`, `ncn+xsn+jp+ecx`, `ncn+xsn+jp+ecx+jxt`, `ncn+xsn+jp+ef`, `ncn+xsn+jp+ef+jca`, `ncn+xsn+jp+ef+jcr`, `ncn+xsn+jp+ep+ecc`, `ncn+xsn+jp+ep+ecs`, `ncn+xsn+jp+ep+ef`, `ncn+xsn+jp+ep+ef+jcr`, `ncn+xsn+jp+ep+etm`, `ncn+xsn+jp+ep+etn`, `ncn+xsn+jp+etm`, `ncn+xsn+jp+etn`, `ncn+xsn+jp+etn+jca`, `ncn+xsn+jp+etn+jca+jxt`, `ncn+xsn+jp+etn+jxc`, `ncn+xsn+jp+etn+jxt`, `ncn+xsn+jxc`, `ncn+xsn+jxc+jcm`, `ncn+xsn+jxc+jco`, `ncn+xsn+jxc+jcs`, `ncn+xsn+jxc+jxc`, `ncn+xsn+jxt`, `ncn+xsn+ncn+jca`, `ncn+xsn+ncn+jca+jxt`, `ncn+xsn+ncn+jcs`, `ncn+xsn+ncpa+jca`, `ncn+xsn+xsn`, `ncn+xsn+xsn+jca`, `ncn+xsn+xsn+jcm`, `ncn+xsn+xsn+jp+ecs`, `ncn+xsn+xsn+jxc`, `ncn+xsn+xsn+jxc+jcc`, `ncn+xsn+xsn+jxc+jcs`, `ncn+xsn+xsv+ecc`, `ncn+xsn+xsv+etm`, `ncn+xsn+xsv+etn`, `ncn+xsv+ecc`, `ncn+xsv+ecs`, `ncn+xsv+ecx`, `ncn+xsv+ef`, `ncn+xsv+ep+ecs`, `ncn+xsv+ep+ef`, `ncn+xsv+ep+etm`, `ncn+xsv+etm`, `ncn+xsv+etn+jca`, `ncpa`, `ncpa+jca`, `ncpa+jca+jcm`, `ncpa+jca+jct`, `ncpa+jca+jp+ecs`, `ncpa+jca+jp+ef`, `ncpa+jca+jp+ep+ef`, `ncpa+jca+jxc`, `ncpa+jca+jxc+jcm`, `ncpa+jca+jxc+jxc`, `ncpa+jca+jxc+jxt`, `ncpa+jca+jxt`, `ncpa+jcc`, `ncpa+jcj`, `ncpa+jcm`, `ncpa+jco`, `ncpa+jcr`, `ncpa+jcs`, `ncpa+jct`, `ncpa+jct+jcm`, `ncpa+jct+jxc`, `ncpa+jct+jxt`, `ncpa+jp+ecc`, `ncpa+jp+ecs`, `ncpa+jp+ecs+jxc`, `ncpa+jp+ecx`, `ncpa+jp+ecx+jxc`, `ncpa+jp+ef`, `ncpa+jp+ef+jca`, `ncpa+jp+ef+jco`, `ncpa+jp+ef+jcr`, `ncpa+jp+ef+jxc`, `ncpa+jp+ef+jxf`, `ncpa+jp+ep+ecc`, `ncpa+jp+ep+ecs`, `ncpa+jp+ep+ef`, `ncpa+jp+ep+ef+jca`, `ncpa+jp+ep+ef+jcr`, `ncpa+jp+ep+ef+jxt`, `ncpa+jp+ep+etm`, `ncpa+jp+ep+etn+jca`, `ncpa+jp+ep+etn+jca+jxc`, `ncpa+jp+ep+etn+jcs`, `ncpa+jp+etm`, `ncpa+jp+etn`, `ncpa+jp+etn+jca`, `ncpa+jp+etn+jca+jxt`, `ncpa+jp+etn+jco`, `ncpa+jp+etn+jcs`, `ncpa+jp+etn+jxc`, `ncpa+jp+etn+jxt`, `ncpa+jxc`, `ncpa+jxc+jca`, `ncpa+jxc+jca+jxc`, `ncpa+jxc+jca+jxt`, `ncpa+jxc+jcc`, `ncpa+jxc+jcm`, `ncpa+jxc+jco`, `ncpa+jxc+jcs`, `ncpa+jxc+jxc`, `ncpa+jxt`, `ncpa+jxt+jxc`, `ncpa+jxt+jxt`, `ncpa+nbn+jca`, `ncpa+nbn+jct`, `ncpa+nbn+jp+ef`, `ncpa+nbn+jp+ep+ef`, `ncpa+nbn+jp+etm`, `ncpa+nbn+jxc+jcc`, `ncpa+nbu+jca`, `ncpa+ncn`, `ncpa+ncn+jca`, `ncpa+ncn+jca+jcm`, `ncpa+ncn+jca+jxc`, `ncpa+ncn+jca+jxc+jcm`, `ncpa+ncn+jca+jxt`, `ncpa+ncn+jcc`, `ncpa+ncn+jcj`, `ncpa+ncn+jcm`, `ncpa+ncn+jco`, `ncpa+ncn+jcr`, `ncpa+ncn+jcs`, `ncpa+ncn+jct`, `ncpa+ncn+jct+jcm`, `ncpa+ncn+jct+jxc`, `ncpa+ncn+jp+ecc`, `ncpa+ncn+jp+ecs`, `ncpa+ncn+jp+ef`, `ncpa+ncn+jp+ef+jcr`, `ncpa+ncn+jp+ef+jcr+jxc`, `ncpa+ncn+jp+ep+ef`, `ncpa+ncn+jp+ep+etm`, `ncpa+ncn+jp+etm`, `ncpa+ncn+jp+etn+jca+jxt`, `ncpa+ncn+jp+etn+jco`, `ncpa+ncn+jp+etn+jxc`, `ncpa+ncn+jxc`, `ncpa+ncn+jxc+jcc`, `ncpa+ncn+jxc+jco`, `ncpa+ncn+jxt`, `ncpa+ncn+nbn`, `ncpa+ncn+ncn`, `ncpa+ncn+ncn+jca`, `ncpa+ncn+ncn+jca+jxt`, `ncpa+ncn+ncn+jcm`, `ncpa+ncn+ncn+jco`, `ncpa+ncn+ncn+jcs`, `ncpa+ncn+ncn+jp+ep+ef`, `ncpa+ncn+ncn+jp+etm`, `ncpa+ncn+ncn+jxt`, `ncpa+ncn+ncn+ncn`, `ncpa+ncn+ncn+xsn+jxt`, `ncpa+ncn+ncpa`, `ncpa+ncn+ncpa+jca`, `ncpa+ncn+ncpa+jcj`, `ncpa+ncn+ncpa+jco`, `ncpa+ncn+ncpa+ncn`, `ncpa+ncn+ncpa+ncn+jco`, `ncpa+ncn+xsn`, `ncpa+ncn+xsn+jca`, `ncpa+ncn+xsn+jca+jxc`, `ncpa+ncn+xsn+jcj`, `ncpa+ncn+xsn+jcm`, `ncpa+ncn+xsn+jco`, `ncpa+ncn+xsn+jcs`, `ncpa+ncn+xsn+jct`, `ncpa+ncn+xsn+jp+ep+ef`, `ncpa+ncn+xsn+jp+etm`, `ncpa+ncn+xsn+jxt`, `ncpa+ncpa`, `ncpa+ncpa+jca`, `ncpa+ncpa+jca+jcm`, `ncpa+ncpa+jca+jxc`, `ncpa+ncpa+jca+jxt`, `ncpa+ncpa+jcj`, `ncpa+ncpa+jcm`, `ncpa+ncpa+jco`, `ncpa+ncpa+jcs`, `ncpa+ncpa+jct`, `ncpa+ncpa+jct+jxc`, `ncpa+ncpa+jct+jxt`, `ncpa+ncpa+jp+ecc`, `ncpa+ncpa+jp+ecs`, `ncpa+ncpa+jp+ecx`, `ncpa+ncpa+jp+ef`, `ncpa+ncpa+jp+ef+jca`, `ncpa+ncpa+jp+ef+jcr`, `ncpa+ncpa+jp+ef+jcr+jxc`, `ncpa+ncpa+jp+ep+ecs`, `ncpa+ncpa+jp+etm`, `ncpa+ncpa+jxc`, `ncpa+ncpa+jxt`, `ncpa+ncpa+ncn`, `ncpa+ncpa+ncn+jca`, `ncpa+ncpa+ncn+jcj`, `ncpa+ncpa+ncn+jcm`, `ncpa+ncpa+ncn+jco`, `ncpa+ncpa+ncn+jcs`, `ncpa+ncpa+ncn+jxt`, `ncpa+ncpa+ncpa+jcm`, `ncpa+ncpa+ncpa+jcs`, `ncpa+ncpa+ncpa+ncpa+jco`, `ncpa+ncpa+xsn`, `ncpa+ncpa+xsn+jca`, `ncpa+ncpa+xsn+jcj`, `ncpa+ncpa+xsn+jco`, `ncpa+ncpa+xsn+jcs`, `ncpa+ncpa+xsn+jxc`, `ncpa+ncpa+xsn+jxt`, `ncpa+ncpa+xsv+ecc`, `ncpa+ncpa+xsv+ecs`, `ncpa+ncpa+xsv+ef`, `ncpa+ncpa+xsv+ep+ef`, `ncpa+ncpa+xsv+ep+etm`, `ncpa+ncpa+xsv+etm`, `ncpa+ncpa+xsv+etn+jca`, `ncpa+ncps`, `ncpa+ncps+jca`, `ncpa+ncps+jcm`, `ncpa+ncps+jco`, `ncpa+ncps+jcs`, `ncpa+ncps+jxt`, `ncpa+ncps+xsm+etm`, `ncpa+nq+jca`, `ncpa+xsa`, `ncpa+xsn`, `ncpa+xsn+jca`, `ncpa+xsn+jca+jxc`, `ncpa+xsn+jca+jxt`, `ncpa+xsn+jcc`, `ncpa+xsn+jcj`, `ncpa+xsn+jcm`, `ncpa+xsn+jco`, `ncpa+xsn+jcs`, `ncpa+xsn+jct`, `ncpa+xsn+jp+ecc`, `ncpa+xsn+jp+ecs`, `ncpa+xsn+jp+ecs+jxc`, `ncpa+xsn+jp+ecx`, `ncpa+xsn+jp+ecx+jxt`, `ncpa+xsn+jp+ef`, `ncpa+xsn+jp+ef+jcr`, `ncpa+xsn+jp+ef+jxf`, `ncpa+xsn+jp+ep+ecc`, `ncpa+xsn+jp+ep+ef`, `ncpa+xsn+jp+ep+ef+jco`, `ncpa+xsn+jp+ep+ef+jcr`, `ncpa+xsn+jp+etm`, `ncpa+xsn+jp+etn`, `ncpa+xsn+jp+etn+jco`, `ncpa+xsn+jp+etn+jxc`, `ncpa+xsn+jxc`, `ncpa+xsn+jxt`, `ncpa+xsv+ecc`, `ncpa+xsv+ecc+jcm`, `ncpa+xsv+ecc+jxc`, `ncpa+xsv+ecc+jxt`, `ncpa+xsv+ecs`, `ncpa+xsv+ecs+jca`, `ncpa+xsv+ecs+jco`, `ncpa+xsv+ecs+jp+ef`, `ncpa+xsv+ecs+jxc`, `ncpa+xsv+ecs+jxc+jxt`, `ncpa+xsv+ecs+jxt`, `ncpa+xsv+ecx`, `ncpa+xsv+ecx+jco`, `ncpa+xsv+ecx+jxc`, `ncpa+xsv+ecx+jxt`, `ncpa+xsv+ecx+px+ecc`, `ncpa+xsv+ecx+px+ecs`, `ncpa+xsv+ecx+px+ecx`, `ncpa+xsv+ecx+px+ecx+jxc`, `ncpa+xsv+ecx+px+ecx+px+ecs`, `ncpa+xsv+ecx+px+ef`, `ncpa+xsv+ecx+px+ef+jcr`, `ncpa+xsv+ecx+px+ep+ecc`, `ncpa+xsv+ecx+px+ep+ecs`, `ncpa+xsv+ecx+px+ep+ef`, `ncpa+xsv+ecx+px+ep+ef+jcr`, `ncpa+xsv+ecx+px+ep+etm`, `ncpa+xsv+ecx+px+ep+etn+jca`, `ncpa+xsv+ecx+px+ep+etn+jco`, `ncpa+xsv+ecx+px+ep+etn+jxc`, `ncpa+xsv+ecx+px+ep+etn+jxt`, `ncpa+xsv+ecx+px+etm`, `ncpa+xsv+ecx+px+etn`, `ncpa+xsv+ecx+px+etn+jca`, `ncpa+xsv+ecx+px+etn+jco`, `ncpa+xsv+ef`, `ncpa+xsv+ef+jca`, `ncpa+xsv+ef+jcj`, `ncpa+xsv+ef+jcm`, `ncpa+xsv+ef+jco`, `ncpa+xsv+ef+jcr`, `ncpa+xsv+ef+jcr+jxt`, `ncpa+xsv+ef+jcs`, `ncpa+xsv+ef+jxc`, `ncpa+xsv+ef+jxf`, `ncpa+xsv+ef+jxt`, `ncpa+xsv+ep+ecc`, `ncpa+xsv+ep+ecs`, `ncpa+xsv+ep+ecs+jco`, `ncpa+xsv+ep+ecs+jxc`, `ncpa+xsv+ep+ecs+jxt`, `ncpa+xsv+ep+ecx`, `ncpa+xsv+ep+ecx+jxc`, `ncpa+xsv+ep+ef`, `ncpa+xsv+ep+ef+jca`, `ncpa+xsv+ep+ef+jca+jxt`, `ncpa+xsv+ep+ef+jco`, `ncpa+xsv+ep+ef+jcr`, `ncpa+xsv+ep+ef+jcr+jxc`, `ncpa+xsv+ep+ef+jcr+jxc+jxt`, `ncpa+xsv+ep+ef+jxc`, `ncpa+xsv+ep+ef+jxf`, `ncpa+xsv+ep+ef+jxt`, `ncpa+xsv+ep+ep+ecs`, `ncpa+xsv+ep+ep+ef`, `ncpa+xsv+ep+etm`, `ncpa+xsv+ep+etn`, `ncpa+xsv+ep+etn+jca`, `ncpa+xsv+ep+etn+jca+jxc`, `ncpa+xsv+ep+etn+jcj`, `ncpa+xsv+ep+etn+jco`, `ncpa+xsv+ep+etn+jcs`, `ncpa+xsv+ep+etn+jxt`, `ncpa+xsv+etm`, `ncpa+xsv+etn`, `ncpa+xsv+etn+jca`, `ncpa+xsv+etn+jca+jxc`, `ncpa+xsv+etn+jca+jxt`, `ncpa+xsv+etn+jco`, `ncpa+xsv+etn+jcs`, `ncpa+xsv+etn+jct`, `ncpa+xsv+etn+jxc`, `ncpa+xsv+etn+jxc+jcm`, `ncpa+xsv+etn+jxc+jcs`, `ncpa+xsv+etn+jxc+jxc`, `ncpa+xsv+etn+jxc+jxt`, `ncpa+xsv+etn+jxt`, `ncps`, `ncps+jca`, `ncps+jca+jcm`, `ncps+jca+jxc`, `ncps+jca+jxc+jcm`, `ncps+jcc`, `ncps+jcj`, `ncps+jcm`, `ncps+jco`, `ncps+jcs`, `ncps+jct`, `ncps+jct+jcm`, `ncps+jct+jxt`, `ncps+jp+ecc`, `ncps+jp+ecs`, `ncps+jp+ecs+jxt`, `ncps+jp+ef`, `ncps+jp+ef+jcr`, `ncps+jp+ep+ef`, `ncps+jp+ep+etn`, `ncps+jp+etm`, `ncps+jp+etn+jcs`, `ncps+jp+etn+jxt`, `ncps+jxc`, `ncps+jxc+jxc`, `ncps+jxt`, `ncps+nbn+jp+etm`, `ncps+nbn+jxc`, `ncps+ncn`, `ncps+ncn+jca`, `ncps+ncn+jca+jcm`, `ncps+ncn+jcm`, `ncps+ncn+jco`, `ncps+ncn+jcs`, `ncps+ncn+jct+jxt`, `ncps+ncn+jp+ef`, `ncps+ncn+jp+ef+jcr`, `ncps+ncn+jp+etm`, `ncps+ncn+jxc+jco`, `ncps+ncn+jxt`, `ncps+ncn+ncn`, `ncps+ncn+ncn+jca+jxc`, `ncps+ncn+ncn+jcm`, `ncps+ncn+ncn+jco`, `ncps+ncn+ncn+jxt`, `ncps+ncn+xsn`, `ncps+ncn+xsn+jca`, `ncps+ncn+xsn+jcj`, `ncps+ncn+xsn+jco`, `ncps+ncn+xsn+jp+ecc`, `ncps+ncn+xsn+jp+etm`, `ncps+ncpa`, `ncps+ncpa+jca`, `ncps+ncpa+jcc`, `ncps+ncpa+jcj`, `ncps+ncpa+jcm`, `ncps+ncpa+jco`, `ncps+ncpa+jcs`, `ncps+ncpa+jp+etm`, `ncps+ncpa+jxt`, `ncps+ncpa+xsv+etm`, `ncps+ncps+jca`, `ncps+ncps+jcm`, `ncps+ncps+xsm+ecc`, `ncps+ncps+xsm+ecs`, `ncps+ncps+xsm+etm`, `ncps+xsa`, `ncps+xsa+jxc`, `ncps+xsm+ecc`, `ncps+xsm+ecc+jxc`, `ncps+xsm+ecc+jxt`, `ncps+xsm+ecs`, `ncps+xsm+ecs+jxc`, `ncps+xsm+ecs+jxt`, `ncps+xsm+ecx`, `ncps+xsm+ecx+jcs`, `ncps+xsm+ecx+jxc`, `ncps+xsm+ecx+jxt`, `ncps+xsm+ecx+px+ecc`, `ncps+xsm+ecx+px+ecs`, `ncps+xsm+ecx+px+ecx`, `ncps+xsm+ecx+px+ecx+jxt`, `ncps+xsm+ecx+px+ef`, `ncps+xsm+ecx+px+ep+ecs`, `ncps+xsm+ecx+px+ep+ef`, `ncps+xsm+ecx+px+ep+etm`, `ncps+xsm+ecx+px+ep+etn+jco`, `ncps+xsm+ecx+px+etm`, `ncps+xsm+ecx+px+etn`, `ncps+xsm+ecx+px+etn+jca`, `ncps+xsm+ecx+px+etn+jcj`, `ncps+xsm+ecx+px+etn+jco`, `ncps+xsm+ef`, `ncps+xsm+ef+jco`, `ncps+xsm+ef+jcr`, `ncps+xsm+ef+jcr+jxc`, `ncps+xsm+ef+jcr+jxt`, `ncps+xsm+ef+jxf`, `ncps+xsm+ef+jxt`, `ncps+xsm+ep+ecc`, `ncps+xsm+ep+ecs`, `ncps+xsm+ep+ecs+etm`, `ncps+xsm+ep+ef`, `ncps+xsm+ep+ef+jco`, `ncps+xsm+ep+ef+jcr`, `ncps+xsm+ep+ef+jxf`, `ncps+xsm+ep+ep+ef`, `ncps+xsm+ep+etm`, `ncps+xsm+ep+etn`, `ncps+xsm+ep+etn+jxt`, `ncps+xsm+etm`, `ncps+xsm+etn`, `ncps+xsm+etn+jca`, `ncps+xsm+etn+jca+jxt`, `ncps+xsm+etn+jcj`, `ncps+xsm+etn+jcm`, `ncps+xsm+etn+jco`, `ncps+xsm+etn+jcs`, `ncps+xsm+etn+jct`, `ncps+xsm+etn+jct+jcm`, `ncps+xsm+etn+jp+ef+jcr`, `ncps+xsm+etn+jp+etm`, `ncps+xsm+etn+jxc`, `ncps+xsm+etn+jxc+jxt`, `ncps+xsm+etn+jxt`, `ncps+xsn`, `ncps+xsn+jca`, `ncps+xsn+jca+jxt`, `ncps+xsn+jcm`, `ncps+xsn+jco`, `ncps+xsn+jcs`, `ncps+xsn+jp+ecc`, `ncps+xsn+jp+ep+ecs`, `ncps+xsn+jp+etm`, `ncps+xsn+jxc`, `ncps+xsn+jxt`, `ncps+xsv+etm`, `nnc`, `nnc+f`, `nnc+f+jca`, `nnc+f+jp+ef`, `nnc+jca`, `nnc+jca+jxc`, `nnc+jca+jxt`, `nnc+jcc`, `nnc+jcj`, `nnc+jcm`, `nnc+jco`, `nnc+jcs`, `nnc+jp+ecc`, `nnc+jp+ecs`, `nnc+jp+ef`, `nnc+jp+ef+jcr`, `nnc+jp+ep+ef`, `nnc+jp+ep+etm`, `nnc+jp+etm`, `nnc+jp+etn+jca`, `nnc+jxc`, `nnc+jxt`, `nnc+nbn`, `nnc+nbn+jcm`, `nnc+nbn+jco`, `nnc+nbn+nbu+jcc`, `nnc+nbn+nbu+jcs`, `nnc+nbn+xsn`, `nnc+nbu`, `nnc+nbu+jca`, `nnc+nbu+jca+jxc`, `nnc+nbu+jcc`, `nnc+nbu+jcj`, `nnc+nbu+jcm`, `nnc+nbu+jco`, `nnc+nbu+jcs`, `nnc+nbu+jp+ef`, `nnc+nbu+jp+ef+jcr`, `nnc+nbu+jp+ep+ecs`, `nnc+nbu+jp+ep+ef`, `nnc+nbu+jp+etm`, `nnc+nbu+jxc`, `nnc+nbu+jxc+jcs`, `nnc+nbu+jxc+jxt`, `nnc+nbu+jxt`, `nnc+nbu+nbu`, `nnc+nbu+nbu+jcm`, `nnc+nbu+nbu+jp+ef+jcr`, `nnc+nbu+ncn`, `nnc+nbu+ncn+jca`, `nnc+nbu+ncn+jcj`, `nnc+nbu+ncn+jcm`, `nnc+nbu+ncn+jxc`, `nnc+nbu+xsn`, `nnc+nbu+xsn+jca`, `nnc+nbu+xsn+jcm`, `nnc+nbu+xsn+jco`, `nnc+nbu+xsn+jcs`, `nnc+nbu+xsn+jp+ecc`, `nnc+nbu+xsn+jp+ef`, `nnc+nbu+xsn+jxc`, `nnc+nbu+xsn+jxc+jcm`, `nnc+nbu+xsn+jxt`, `nnc+nbu+xsv+etm`, `nnc+ncn`, `nnc+ncn+jca`, `nnc+ncn+jca+jxt`, `nnc+ncn+jcj`, `nnc+ncn+jcm`, `nnc+ncn+jco`, `nnc+ncn+jcs`, `nnc+ncn+jct`, `nnc+ncn+jp+ef`, `nnc+ncn+jp+etm`, `nnc+ncn+jxc`, `nnc+ncn+jxt`, `nnc+ncn+nbu`, `nnc+ncn+nbu+xsn+jca`, `nnc+ncn+ncn+jca+jxt`, `nnc+ncn+ncn+xsn`, `nnc+ncn+nnc+nnc`, `nnc+ncn+xsn`, `nnc+ncn+xsn+jp+etm`, `nnc+ncn+xsn+jxt`, `nnc+ncpa`, `nnc+ncpa+jcs`, `nnc+nnc`, `nnc+nnc+jca`, `nnc+nnc+jca+jxt`, `nnc+nnc+jcm`, `nnc+nnc+jco`, `nnc+nnc+jp+ef`, `nnc+nnc+nbu`, `nnc+nnc+nbu+jca`, `nnc+nnc+nbu+jcc`, `nnc+nnc+nbu+jcm`, `nnc+nnc+nbu+jco`, `nnc+nnc+nbu+jcs`, `nnc+nnc+nbu+jp+ep+ef`, `nnc+nnc+nbu+jp+etm`, `nnc+nnc+nbu+jxc`, `nnc+nnc+nbu+xsn`, `nnc+nnc+nbu+xsn+jcm`, `nnc+nnc+nbu+xsn+jxc`, `nnc+nnc+ncn+jco`, `nnc+nnc+nnc`, `nnc+nnc+nnc+nnc`, `nnc+nnc+su+jp+ef`, `nnc+nnc+xsn`, `nnc+nnc+xsn+jcm`, `nnc+nnc+xsn+nbu+jca`, `nnc+nnc+xsn+nbu+jcm`, `nnc+nnc+xsn+nbu+jco`, `nnc+nnc+xsn+nbu+jcs`, `nnc+nno+nbu`, `nnc+nno+nbu+jcc`, `nnc+su`, `nnc+su+jca`, `nnc+su+jcm`, `nnc+su+jco`, `nnc+su+jcs`, `nnc+su+jxc`, `nnc+su+xsn`, `nnc+xsn`, `nnc+xsn+jca`, `nnc+xsn+jca+jxt`, `nnc+xsn+jcm`, `nnc+xsn+jco`, `nnc+xsn+jcs`, `nnc+xsn+jp+ef`, `nnc+xsn+jxc`, `nnc+xsn+nbn+jca`, `nnc+xsn+nbu`, `nnc+xsn+nbu+jca`, `nnc+xsn+nbu+jcm`, `nnc+xsn+nbu+jco`, `nnc+xsn+nbu+jcs`, `nnc+xsn+nnc+nbu`, `nnc+xsn+nnc+nbu+jcm`, `nno`, `nno+jca`, `nno+jca+jxt`, `nno+jcj`, `nno+jcm`, `nno+jco`, `nno+jcs`, `nno+jxt`, `nno+nbn`, `nno+nbn+jcm`, `nno+nbn+xsn`, `nno+nbu`, `nno+nbu+jca`, `nno+nbu+jca+jxc`, `nno+nbu+jca+jxt`, `nno+nbu+jcc`, `nno+nbu+jcj`, `nno+nbu+jcm`, `nno+nbu+jco`, `nno+nbu+jcs`, `nno+nbu+jct`, `nno+nbu+jp+ecc`, `nno+nbu+jp+ecs`, `nno+nbu+jp+ef`, `nno+nbu+jp+ep+ecc`, `nno+nbu+jp+ep+ecs`, `nno+nbu+jp+ep+ef`, `nno+nbu+jp+etm`, `nno+nbu+jxc`, `nno+nbu+jxc+jca`, `nno+nbu+jxc+jcm`, `nno+nbu+jxc+jp+ef`, `nno+nbu+jxc+jp+etm`, `nno+nbu+jxc+jxc`, `nno+nbu+jxc+jxt`, `nno+nbu+jxt`, `nno+nbu+nbu`, `nno+nbu+ncn`, `nno+nbu+ncn+jp+ep+ef`, `nno+nbu+ncn+ncn`, `nno+nbu+xsn`, `nno+nbu+xsn+jca`, `nno+nbu+xsn+jcc`, `nno+nbu+xsn+jcm`, `nno+nbu+xsn+jxc`, `nno+nbu+xsn+jxt`, `nno+ncn`, `nno+ncn+jca`, `nno+ncn+jca+jxc`, `nno+ncn+jca+jxt`, `nno+ncn+jcm`, `nno+ncn+jco`, `nno+ncn+jcs`, `nno+ncn+jct`, `nno+ncn+jp+ef`, `nno+ncn+jp+etm`, `nno+ncn+jxc`, `nno+ncn+jxc+jxt`, `nno+ncn+ncn+jp+etm`, `nno+ncn+xsn`, `nno+ncn+xsn+jca`, `nno+ncn+xsn+jp+ep+ef`, `nno+ncn+xsn+jp+etm`, `nno+ncpa+jp+ep+etn+jca+jxc`, `nno+nnc`, `nno+xsn`, `nno+xsn+jca`, `nno+xsn+jca+jxc`, `nno+xsn+jxc`, `nno+xsn+jxc+jcs`, `nno+xsn+nbu`, `nno+xsn+nbu+jcm`, `npd`, `npd+jca`, `npd+jca+jcm`, `npd+jca+jp+ef`, `npd+jca+jp+ef+jca`, `npd+jca+jxc`, `npd+jca+jxc+jcm`, `npd+jca+jxt`, `npd+jcc`, `npd+jcj`, `npd+jcm`, `npd+jco`, `npd+jcs`, `npd+jct`, `npd+jct+jcm`, `npd+jct+jxt`, `npd+jp+ecc`, `npd+jp+ecs`, `npd+jp+ecs+jco`, `npd+jp+ecs+jxt`, `npd+jp+ef`, `npd+jp+ef+jca`, `npd+jp+ef+jcm`, `npd+jp+ef+jco`, `npd+jp+ef+jcr`, `npd+jp+ef+jcs`, `npd+jp+ef+jp+ef`, `npd+jp+ef+jp+etm`, `npd+jp+ef+jxc`, `npd+jp+ef+jxt`, `npd+jp+ep+ef`, `npd+jp+etm`, `npd+jxc`, `npd+jxc+jca`, `npd+jxc+jca+jxc`, `npd+jxc+jcc`, `npd+jxc+jcr`, `npd+jxc+jp+ef`, `npd+jxc+jxc`, `npd+jxc+jxt`, `npd+jxt`, `npd+nbn`, `npd+nbn+jca`, `npd+nbn+jcs`, `npd+nbn+jxc`, `npd+nbn+jxc+jxt`, `npd+ncn`, `npd+ncn+jca`, `npd+ncn+jca+jxc`, `npd+ncn+jcm`, `npd+ncn+jco`, `npd+ncn+jcs`, `npd+ncn+jxt`, `npd+npd`, `npd+xsn`, `npd+xsn+jca`, `npd+xsn+jca+jxc`, `npd+xsn+jca+jxt`, `npd+xsn+jcm`, `npd+xsn+jco`, `npd+xsn+jcs`, `npd+xsn+jct`, `npd+xsn+jp+ef`, `npd+xsn+jxc`, `npd+xsn+jxt`, `npp`, `npp+jca`, `npp+jca+jcm`, `npp+jca+jxc`, `npp+jca+jxc+jcm`, `npp+jca+jxt`, `npp+jcc`, `npp+jcj`, `npp+jcm`, `npp+jco`, `npp+jcs`, `npp+jcs+jxt`, `npp+jct`, `npp+jct+jcm`, `npp+jct+jxc`, `npp+jct+jxt`, `npp+jp+ecs`, `npp+jp+ecs+jco`, `npp+jp+ef`, `npp+jp+ef+jcs`, `npp+jp+ef+jxc+jcs`, `npp+jp+ef+jxt`, `npp+jp+ep+ecc`, `npp+jp+ep+ef`, `npp+jp+ep+etm`, `npp+jp+etm`, `npp+jxc`, `npp+jxc+jcc`, `npp+jxc+jcm`, `npp+jxc+jco`, `npp+jxt`, `npp+nbn+jca`, `npp+nbn+jcs`, `npp+ncn`, `npp+ncn+jca`, `npp+ncn+jca+jxc`, `npp+ncn+jca+jxt`, `npp+ncn+jcm`, `npp+ncn+jco`, `npp+ncn+jcs`, `npp+ncn+jct`, `npp+ncn+jct+jxt`, `npp+ncn+jp+ecs`, `npp+ncn+jxc`, `npp+ncn+jxt`, `npp+ncn+xsn`, `npp+ncpa`, `npp+ncpa+jca`, `npp+ncpa+jca+jxc`, `npp+ncpa+jcj`, `npp+ncpa+jcm`, `npp+ncpa+jco`, `npp+ncpa+jcs`, `npp+ncpa+jxt`, `npp+ncpa+ncpa+jca`, `npp+ncpa+xsn+jp+ecc`, `npp+ncpa+xsn+jp+etm`, `npp+npp+jco`, `npp+xsn`, `npp+xsn+jca`, `npp+xsn+jca+jxc`, `npp+xsn+jca+jxc+jxc`, `npp+xsn+jca+jxt`, `npp+xsn+jcj`, `npp+xsn+jcm`, `npp+xsn+jco`, `npp+xsn+jcs`, `npp+xsn+jcs+jxt`, `npp+xsn+jct`, `npp+xsn+jct+jcm`, `npp+xsn+jct+jxt`, `npp+xsn+jp+ecs`, `npp+xsn+jp+ef`, `npp+xsn+jp+etm`, `npp+xsn+jxc`, `npp+xsn+jxc+jcs`, `npp+xsn+jxc+jxt`, `npp+xsn+jxt`, `npp+xsn+ncn`, `npp+xsn+xsn`, `npp+xsn+xsn+jca`, `npp+xsn+xsn+jca+jxt`, `nq`, `nq+jca`, `nq+jca+jca`, `nq+jca+jca+jxc`, `nq+jca+jcm`, `nq+jca+jxc`, `nq+jca+jxc+jcm`, `nq+jca+jxc+jxc`, `nq+jca+jxt`, `nq+jcc`, `nq+jcj`, `nq+jcm`, `nq+jco`, `nq+jcr`, `nq+jcs`, `nq+jcs+jca+jxc`, `nq+jcs+jxt`, `nq+jct`, `nq+jct+jcm`, `nq+jct+jxt`, `nq+jp+ecc`, `nq+jp+ecs`, `nq+jp+ef`, `nq+jp+ef+jcr`, `nq+jp+ef+jcr+jxc`, `nq+jp+ep+ecc`, `nq+jp+ep+ecs`, `nq+jp+ep+ef`, `nq+jp+ep+etm`, `nq+jp+ep+etn`, `nq+jp+etm`, `nq+jp+etn+jco`, `nq+jxc`, `nq+jxc+jca+jxt`, `nq+jxc+jcm`, `nq+jxc+jcs`, `nq+jxc+jp+ef`, `nq+jxc+jp+ef+jcr`, `nq+jxc+jxc`, `nq+jxc+jxc+jxt`, `nq+jxc+jxt`, `nq+jxt`, `nq+nbn`, `nq+nbn+jca`, `nq+nbn+jcm`, `nq+nbn+jp+ep+ef`, `nq+ncn`, `nq+ncn+jca`, `nq+ncn+jca+jcm`, `nq+ncn+jca+jxc`, `nq+ncn+jca+jxt`, `nq+ncn+jcc`, `nq+ncn+jcj`, `nq+ncn+jcm`, `nq+ncn+jco`, `nq+ncn+jcs`, `nq+ncn+jct`, `nq+ncn+jct+jcm`, `nq+ncn+jct+jxc`, `nq+ncn+jct+jxt`, `nq+ncn+jp+ef`, `nq+ncn+jp+ep+ef`, `nq+ncn+jp+ep+etm`, `nq+ncn+jp+etm`, `nq+ncn+jxc`, `nq+ncn+jxc+jxt`, `nq+ncn+jxt`, `nq+ncn+ncn`, `nq+ncn+ncn+jca`, `nq+ncn+ncn+jca+jxt`, `nq+ncn+ncn+jcm`, `nq+ncn+ncn+jco`, `nq+ncn+ncn+jp+etm`, `nq+ncn+ncn+jxc`, `nq+ncn+ncn+ncn`, `nq+ncn+ncn+ncn+jca`, `nq+ncn+ncn+ncn+jcs`, `nq+ncn+ncn+xsn+jxt`, `nq+ncn+ncpa+jca`, `nq+ncn+ncpa+jcs`, `nq+ncn+ncpa+jxt`, `nq+ncn+ncpa+ncn`, `nq+ncn+ncpa+ncn+jcm`, `nq+ncn+xsn`, `nq+ncn+xsn+jca`, `nq+ncn+xsn+jca+jxt`, `nq+ncn+xsn+jcm`, `nq+ncn+xsn+jco`, `nq+ncn+xsn+jcs`, `nq+ncn+xsn+jct`, `nq+ncn+xsn+jp+etm`, `nq+ncn+xsn+jxt`, `nq+ncpa`, `nq+ncpa+jca`, `nq+ncpa+jcm`, `nq+ncpa+jco`, `nq+ncpa+jxt`, `nq+ncpa+ncn+jcm`, `nq+ncpa+ncn+jp+ef`, `nq+ncpa+ncn+jp+etm`, `nq+nq`, `nq+nq+jca`, `nq+nq+jcj`, `nq+nq+jcm`, `nq+nq+jcs`, `nq+nq+jct`, `nq+nq+jxc+jcs`, `nq+nq+jxt`, `nq+nq+ncn`, `nq+nq+ncn+jca`, `nq+nq+nq+jxt`, `nq+nq+nq+nq+jcm`, `nq+xsm+ecs`, `nq+xsm+etm`, `nq+xsn`, `nq+xsn+jca`, `nq+xsn+jca+jxc`, `nq+xsn+jca+jxt`, `nq+xsn+jcj`, `nq+xsn+jcm`, `nq+xsn+jco`, `nq+xsn+jcs`, `nq+xsn+jcs+jxt`, `nq+xsn+jct`, `nq+xsn+jct+jcm`, `nq+xsn+jp+ef`, `nq+xsn+jp+ef+jcr`, `nq+xsn+jp+ep+ef`, `nq+xsn+jp+etm`, `nq+xsn+jp+etn+jco`, `nq+xsn+jxc`, `nq+xsn+jxt`, `nq+xsn+xsn`, `nq+xsn+xsn+jcj`, `nq+xsn+xsn+jcs`, `nq+xsn+xsv+ep+etm`, `nq+xsv+ecs`, `paa+ecc`, `paa+ecc+jxc`, `paa+ecc+jxt`, `paa+ecs`, `paa+ecs+etm`, `paa+ecs+jca`, `paa+ecs+jcm`, `paa+ecs+jco`, `paa+ecs+jct`, `paa+ecs+jp+ecc`, `paa+ecs+jp+ep+ef`, `paa+ecs+jxc`, `paa+ecs+jxc+jxt`, `paa+ecs+jxt`, `paa+ecx`, `paa+ecx+jco`, `paa+ecx+jcs`, `paa+ecx+jxc`, `paa+ecx+jxt`, `paa+ecx+px+ecc`, `paa+ecx+px+ecs`, `paa+ecx+px+ecx`, `paa+ecx+px+ecx+jxc`, `paa+ecx+px+ecx+px+ecc`, `paa+ecx+px+ecx+px+ecx`, `paa+ecx+px+ecx+px+ef`, `paa+ecx+px+ecx+px+ep+ef`, `paa+ecx+px+ecx+px+etm`, `paa+ecx+px+ef`, `paa+ecx+px+ef+jcr`, `paa+ecx+px+ep+ecc`, `paa+ecx+px+ep+ecs`, `paa+ecx+px+ep+ef`, `paa+ecx+px+ep+ef+jcr`, `paa+ecx+px+ep+etm`, `paa+ecx+px+ep+etn`, `paa+ecx+px+ep+etn+jco`, `paa+ecx+px+etm`, `paa+ecx+px+etn`, `paa+ecx+px+etn+jca`, `paa+ecx+px+etn+jco`, `paa+ecx+px+etn+jcs`, `paa+ecx+px+etn+jxc`, `paa+ecx+px+etn+jxt`, `paa+ef`, `paa+ef+ecc`, `paa+ef+ecs`, `paa+ef+ecs+jxc`, `paa+ef+jca`, `paa+ef+jcm`, `paa+ef+jco`, `paa+ef+jcr`, `paa+ef+jcr+jxc`, `paa+ef+jcr+jxt`, `paa+ef+jxf`, `paa+ep+ecc`, `paa+ep+ecs`, `paa+ep+ecs+jxc`, `paa+ep+ef`, `paa+ep+ef+jcr`, `paa+ep+ef+jxc`, `paa+ep+ef+jxf`, `paa+ep+ef+jxt`, `paa+ep+ep+ecs`, `paa+ep+ep+ef`, `paa+ep+ep+etm`, `paa+ep+etm`, `paa+ep+etn`, `paa+ep+etn+jca`, `paa+ep+etn+jca+jxc`, `paa+ep+etn+jco`, `paa+ep+etn+jcs`, `paa+ep+etn+jxt`, `paa+etm`, `paa+etn`, `paa+etn+jca`, `paa+etn+jca+jxc`, `paa+etn+jca+jxt`, `paa+etn+jcc`, `paa+etn+jcj`, `paa+etn+jcm`, `paa+etn+jco`, `paa+etn+jcs`, `paa+etn+jct`, `paa+etn+jp+ecc`, `paa+etn+jp+ef`, `paa+etn+jp+ep+ecs`, `paa+etn+jp+ep+ef`, `paa+etn+jxc`, `paa+etn+jxt`, `paa+jxt`, `pad+ecc`, `pad+ecc+jxt`, `pad+ecs`, `pad+ecs+jxc`, `pad+ecs+jxt`, `pad+ecx`, `pad+ecx+jcs`, `pad+ecx+jxc`, `pad+ecx+jxt`, `pad+ecx+px+ecs`, `pad+ecx+px+ecx+px+ecc+jxt`, `pad+ef`, `pad+ef+jcr`, `pad+ef+jcr+jxt`, `pad+ef+jxf`, `pad+ef+jxt`, `pad+ep+ecc`, `pad+ep+ecs`, `pad+ep+ef`, `pad+ep+ef+jco`, `pad+ep+etm`, `pad+etm`, `pad+etn`, `pad+etn+jxt`, `pvd+ecc+jxc`, `pvd+ecs`, `pvd+ecs+jp+ecs`, `pvd+ecs+jxc`, `pvd+ecs+jxt`, `pvd+ecx`, `pvd+ep+ef`, `pvd+ep+etm`, `pvd+etm`, `pvd+etn`, `pvd+etn+jca`, `pvd+etn+jca+jxc`, `pvg+ecc`, `pvg+ecc+jxc`, `pvg+ecc+jxt`, `pvg+ecs`, `pvg+ecs+ecs`, `pvg+ecs+jca`, `pvg+ecs+jca+jxt`, `pvg+ecs+jcc`, `pvg+ecs+jcm`, `pvg+ecs+jco`, `pvg+ecs+jcs`, `pvg+ecs+jct`, `pvg+ecs+jp+ecs`, `pvg+ecs+jp+ef`, `pvg+ecs+jp+ep+ecs`, `pvg+ecs+jp+ep+ef`, `pvg+ecs+jp+ep+ef+jcr`, `pvg+ecs+jxc`, `pvg+ecs+jxc+jcc`, `pvg+ecs+jxc+jp+ef`, `pvg+ecs+jxc+jp+ep+ef`, `pvg+ecs+jxt`, `pvg+ecx`, `pvg+ecx+jco`, `pvg+ecx+jxc`, `pvg+ecx+jxt`, `pvg+ecx+jxt+px+ep+ef`, `pvg+ecx+px+ecc`, `pvg+ecx+px+ecc+jxc`, `pvg+ecx+px+ecc+jxt`, `pvg+ecx+px+ecs`, `pvg+ecx+px+ecs+jxc`, `pvg+ecx+px+ecs+jxt`, `pvg+ecx+px+ecx`, `pvg+ecx+px+ecx+jco`, `pvg+ecx+px+ecx+jxc`, `pvg+ecx+px+ecx+jxt`, `pvg+ecx+px+ecx+px+ecc`, `pvg+ecx+px+ecx+px+ecs`, `pvg+ecx+px+ecx+px+ecs+jxt`, `pvg+ecx+px+ecx+px+ecx`, `pvg+ecx+px+ecx+px+ecx+px+ecc`, `pvg+ecx+px+ecx+px+ef`, `pvg+ecx+px+ecx+px+ep+ecc`, `pvg+ecx+px+ecx+px+ep+ef`, `pvg+ecx+px+ecx+px+ep+etm`, `pvg+ecx+px+ecx+px+ep+etn+jco`, `pvg+ecx+px+ecx+px+etm`, `pvg+ecx+px+ecx+px+etn`, `pvg+ecx+px+ecx+px+etn+jca`, `pvg+ecx+px+ef`, `pvg+ecx+px+ef+jca`, `pvg+ecx+px+ef+jcm`, `pvg+ecx+px+ef+jcr`, `pvg+ecx+px+ep+ecc`, `pvg+ecx+px+ep+ecs`, `pvg+ecx+px+ep+ecs+jxc`, `pvg+ecx+px+ep+ef`, `pvg+ecx+px+ep+ef+jcm`, `pvg+ecx+px+ep+ef+jcr`, `pvg+ecx+px+ep+ef+jxf`, `pvg+ecx+px+ep+ep+ecs`, `pvg+ecx+px+ep+etm`, `pvg+ecx+px+ep+etn`, `pvg+ecx+px+ep+etn+jca`, `pvg+ecx+px+ep+etn+jca+jxc`, `pvg+ecx+px+ep+etn+jco`, `pvg+ecx+px+etm`, `pvg+ecx+px+etn`, `pvg+ecx+px+etn+jca`, `pvg+ecx+px+etn+jca+jxc`, `pvg+ecx+px+etn+jca+jxt`, `pvg+ecx+px+etn+jco`, `pvg+ecx+px+etn+jcs`, `pvg+ecx+px+etn+jct`, `pvg+ecx+px+etn+jxc`, `pvg+ecx+px+etn+jxc+jxt`, `pvg+ecx+px+etn+jxt`, `pvg+ef`, `pvg+ef+jca`, `pvg+ef+jcm`, `pvg+ef+jco`, `pvg+ef+jcr`, `pvg+ef+jcr+jxc`, `pvg+ef+jcr+jxt`, `pvg+ef+jcs`, `pvg+ef+jp+ef+jcr`, `pvg+ef+jp+etm`, `pvg+ef+jxc`, `pvg+ef+jxf`, `pvg+ef+jxt`, `pvg+ep+ecc`, `pvg+ep+ecc+jxt`, `pvg+ep+ecs`, `pvg+ep+ecs+jca+jxt`, `pvg+ep+ecs+jco`, `pvg+ep+ecs+jxc`, `pvg+ep+ecs+jxt`, `pvg+ep+ecx`, `pvg+ep+ecx+px+ef`, `pvg+ep+ef`, `pvg+ep+ef+jca`, `pvg+ep+ef+jcm`, `pvg+ep+ef+jco`, `pvg+ep+ef+jcr`, `pvg+ep+ef+jcr+jxc`, `pvg+ep+ef+jcr+jxt`, `pvg+ep+ef+jct`, `pvg+ep+ef+jxc`, `pvg+ep+ef+jxf`, `pvg+ep+ef+jxt`, `pvg+ep+ep+ef`, `pvg+ep+ep+ef+jco`, `pvg+ep+ep+ef+jxf`, `pvg+ep+etm`, `pvg+ep+etn`, `pvg+ep+etn+jca`, `pvg+ep+etn+jca+jxc`, `pvg+ep+etn+jca+jxt`, `pvg+ep+etn+jco`, `pvg+ep+etn+jcs`, `pvg+ep+etn+jxt`, `pvg+etm`, `pvg+etn`, `pvg+etn+jca`, `pvg+etn+jca+jxc`, `pvg+etn+jca+jxt`, `pvg+etn+jcc`, `pvg+etn+jcj`, `pvg+etn+jcm`, `pvg+etn+jco`, `pvg+etn+jcr`, `pvg+etn+jcs`, `pvg+etn+jct`, `pvg+etn+jct+jxt`, `pvg+etn+jp+ecc`, `pvg+etn+jp+ecs`, `pvg+etn+jp+ef`, `pvg+etn+jp+ef+jcr`, `pvg+etn+jp+ef+jcs`, `pvg+etn+jp+ep+ef`, `pvg+etn+jp+ep+ef+jcr`, `pvg+etn+jp+etm`, `pvg+etn+jxc`, `pvg+etn+jxc+jca+jxt`, `pvg+etn+jxc+jcm`, `pvg+etn+jxc+jco`, `pvg+etn+jxc+jcs`, `pvg+etn+jxc+jxt`, `pvg+etn+jxt`, `pvg+etn+xsm+ecs`, `pvg+etn+xsn+jcm`, `px+ecc`, `px+ecc+jxc`, `px+ecc+jxc+jp+ef`, `px+ecc+jxt`, `px+ecs`, `px+ecs+jca`, `px+ecs+jcc`, `px+ecs+jcj`, `px+ecs+jcm`, `px+ecs+jco`, `px+ecs+jp+ep+ef`, `px+ecs+jxc`, `px+ecs+jxt`, `px+ecx`, `px+ecx+jxc`, `px+ecx+jxt`, `px+ecx+px+ecs`, `px+ecx+px+ecx`, `px+ecx+px+ef`, `px+ecx+px+ef+jcr`, `px+ecx+px+ep+ef`, `px+ecx+px+etm`, `px+ecx+px+etn+jca`, `px+ef`, `px+ef+etm`, `px+ef+jca`, `px+ef+jca+jxc`, `px+ef+jcj`, `px+ef+jcm`, `px+ef+jco`, `px+ef+jcr`, `px+ef+jcr+jxc`, `px+ef+jcs`, `px+ef+jp+etm`, `px+ef+jxc`, `px+ef+jxf`, `px+ef+jxt`, `px+ep+ecc`, `px+ep+ecs`, `px+ep+ecs+jxc`, `px+ep+ecs+jxt`, `px+ep+ecx`, `px+ep+ef`, `px+ep+ef+jca`, `px+ep+ef+jco`, `px+ep+ef+jcr`, `px+ep+ef+jcr+jxc`, `px+ep+ef+jxf`, `px+ep+ep+ef`, `px+ep+ep+ef+jxf`, `px+ep+etm`, `px+ep+etn`, `px+ep+etn+jca`, `px+ep+etn+jca+jxc`, `px+ep+etn+jco`, `px+ep+etn+jcs`, `px+ep+etn+jxc`, `px+ep+etn+jxt`, `px+etm`, `px+etn`, `px+etn+jca`, `px+etn+jca+jxc`, `px+etn+jca+jxt`, `px+etn+jco`, `px+etn+jcs`, `px+etn+jct`, `px+etn+jxc`, `px+etn+jxc+jxt`, `px+etn+jxt`, `sf`, `sl`, `sp`, `sr`, `su`, `su+jca`, `su+jcm`, `xp+nbn`, `xp+nbu`, `xp+ncn`, `xp+ncn+jca`, `xp+ncn+jcm`, `xp+ncn+jco`, `xp+ncn+jcs`, `xp+ncn+jp+ef`, `xp+ncn+jp+ep+ef`, `xp+ncn+jxt`, `xp+ncn+ncn+jca`, `xp+ncn+ncn+jcm`, `xp+ncn+ncn+jco`, `xp+ncn+ncpa+jco`, `xp+ncn+xsn`, `xp+ncn+xsn+jca`, `xp+ncn+xsn+jcm`, `xp+ncn+xsn+jp+ef`, `xp+ncn+xsn+jp+etm`, `xp+ncpa`, `xp+ncpa+jca`, `xp+ncpa+jcm`, `xp+ncpa+jco`, `xp+ncpa+ncn+jcm`, `xp+ncpa+ncn+jco`, `xp+ncpa+ncpa+jco`, `xp+ncpa+xsn`, `xp+ncpa+xsn+jp+etm`, `xp+ncpa+xsv+ecc`, `xp+ncpa+xsv+ecs`, `xp+ncpa+xsv+ecx`, `xp+ncpa+xsv+ef`, `xp+ncpa+xsv+ef+jcr`, `xp+ncpa+xsv+ep+ef`, `xp+ncpa+xsv+etm`, `xp+ncpa+xsv+etn+jca`, `xp+ncps`, `xp+ncps+xsm+ecs`, `xp+ncps+xsm+ecx`, `xp+ncps+xsm+ef`, `xp+ncps+xsm+ep+ef`, `xp+ncps+xsm+etm`, `xp+ncps+xsn`, `xp+nnc`, `xp+nnc+jcm`, `xp+nnc+nbn`, `xp+nnc+nbu`, `xp+nnc+nbu+jcs`, `xp+nnc+ncn`, `xp+nnc+ncn+jca`, `xp+nnc+ncn+jcm`, `xp+nnc+ncn+jcs`, `xp+nnc+ncn+jp+ef+jcr`, `xp+nno`, `xp+nno+jcm`, `xp+nno+nbn+jca`, `xp+nno+nbu`, `xp+nno+nbu+jcs`, `xp+nno+ncn`, `xp+nno+ncn+jca`, `xp+nno+ncn+jcs`, `xp+nno+ncn+jxt`, `xp+nq`, `xp+nq+ncn+jca`, `xp+nq+ncpa`, `xp+nq+ncpa+jco`, `xp+nq+ncpa+jp+etm`, `xsm+etm`, `xsn`, `xsn+jca`, `xsn+jca+jxt`, `xsn+jco`, `xsn+jcs`, `xsn+jp+ef`, `xsn+jp+ep+ef`, `xsn+jxc+jca+jxt`, `xsn+jxc+jcs`, `xsn+jxt`, `xsv+ecc`, `xsv+ecs`, `xsv+ecx+px+ep+ef`, `xsv+ep+ecx`, `xsv+etm` |
| **`morphologizer`** | `POS=CCONJ`, `POS=ADV`, `POS=SCONJ`, `POS=DET`, `POS=NOUN`, `POS=VERB`, `POS=ADJ`, `POS=PUNCT`, `POS=AUX`, `POS=PRON`, `POS=PROPN`, `POS=NUM`, `POS=INTJ`, `POS=PART`, `POS=X`, `POS=ADP`, `POS=SYM` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `3`, `5`, `7`, `9`, `11`, `12`, `16`, `18`, `20`, `22`, `25`, `28`, `31`, `34`, `35`, `36`, `39`, `40`, `43`, `45`, `47`, `48`, `51`, `54`, `56`, `58`, `60`, `61`, `63`, `65`, `67`, `69`, `71`, `73`, `75`, `76`, `78`, `79`, `82`, `85`, `87`, `89`, `92`, `95`, `97`, `99`, `101`, `104`, `106`, `109`, `112`, `114`, `116`, `119`, `121`, `122`, `124`, `126`, `127`, `128`, `130`, `133`, `135`, `137`, `140`, `142`, `145`, `147`, `148`, `150`, `151`, `152`, `155`, `156`, `158`, `161`, `162`, `164`, `167`, `169`, `172`, `174`, `176`, `177`, `179`, `182`, `184`, `186`, `188`, `191`, `192`, `194`, `196`, `199`, `202`, `203`, `173`, `115`, `205`, `207`, `210`, `213`, `216`, `218`, `221`, `146`, `223`, `225`, `227`, `229`, `230`, `231`, `232`, `234`, `236`, `238`, `239`, `242`, `244`, `246`, `248`, `251`, `253`, `255`, `256`, `259`, `261`, `264`, `265`, `268`, `270`, `272`, `274`, `276`, `278`, `279`, `282`, `285`, `287`, `289`, `293`, `295`, `297`, `300`, `302`, `304`, `307`, `309`, `310`, `313`, `315`, `226`, `318`, `319`, `321`, `323`, `325`, `327`, `329`, `332`, `334`, `335`, `337`, `149`, `339`, `340`, `342`, `344`, `346`, `348`, `349`, `350`, `352`, `354`, `356`, `358`, `360`, `361`, `363`, `365`, `369`, `370`, `372`, `374`, `376`, `21`, `15`, `377`, `379`, `382`, `385`, `387`, `388`, `254`, `390`, `393`, `395`, `397`, `399`, `401`, `403`, `404`, `405`, `407`, `408`, `411`, `414`, `417`, `418`, `421`, `422`, `424`, `427`, `429`, `431`, `435`, `437`, `439`, `440`, `442`, `443`, `444`, `447`, `449`, `451`, `389`, `454`, `455`, `457`, `460`, `461`, `463`, `466`, `468`, `471`, `473`, `476`, `477`, `479`, `482`, `296`, `485`, `487`, `490`, `492`, `493`, `495`, `497`, `500`, `502`, `504`, `505`, `507`, `510`, `511`, `514`, `267`, `516`, `520`, `472`, `523`, `525`, `526`, `527`, `530`, `532`, `462`, `533`, `534`, `535`, `537`, `540`, `541`, `465`, `543`, `545`, `546`, `547`, `550`, `551`, `552`, `553`, `555`, `556`, `72`, `558`, `560`, `562`, `563`, `564`, `567`, `568`, `571`, `574`, `577`, `579`, `581`, `582`, `584`, `587`, `589`, `591`, `594`, `595`, `597`, `600`, `603`, `606`, `608`, `610`, `611`, `613`, `614`, `616`, `617`, `620`, `10`, `623`, `626`, `629`, `632`, `633`, `635`, `637`, `638`, `640`, `642`, `644`, `645`, `647`, `648`, `651`, `652`, `653`, `655`, `657`, `659`, `660`, `664`, `666`, `667`, `669`, `672`, `674`, `675`, `676`, `678`, `679`, `680`, `683`, `684`, `687`, `689`, `690`, `692`, `694`, `697`, `699`, `702`, `703`, `706`, `707`, `710`, `713`, `715`, `717`, `719`, `721`, `723`, `725`, `728`, `730`, `733`, `735`, `738`, `740`, `743`, `744`, `649`, `747`, `749`, `753`, `756`, `757`, `759`, `761`, `764`, `767`, `769`, `772`, `774`, `777`, `780`, `783`, `785`, `787`, `789`, `792`, `794`, `797`, `799`, `800`, `802`, `805`, `806`, `808`, `809`, `811`, `812`, `813`, `815`, `817`, `819`, `820`, `59`, `822`, `824`, `827`, `829`, `831`, `618`, `832`, `834`, `836`, `838`, `724`, `841`, `55`, `842`, `844`, `846`, `847`, `850`, `852`, `855`, `857`, `859`, `861`, `863`, `865`, `868`, `869`, `871`, `873`, `874`, `877`, `880`, `884`, `887`, `890`, `891`, `892`, `893`, `896`, `898`, `901`, `351`, `904`, `906`, `908`, `911`, `913`, `915`, `650`, `918`, `920`, `830`, `921`, `923`, `924`, `926`, `927`, `930`, `931`, `934`, `937`, `938`, `940`, `941`, `942`, `945`, `947`, `949`, `952`, `954`, `957`, `960`, `963`, `965`, `967`, `970`, `972`, `974`, `977`, `980`, `981`, `983`, `985`, `986`, `988`, `991`, `994`, `997`, `999`, `1000`, `1002`, `1005`, `1006`, `1007`, `1010`, `125`, `1013`, `1016`, `1017`, `1019`, `1020`, `1024`, `1026`, `1028`, `1030`, `1032`, `1034`, `1036`, `1038`, `1040`, `1041`, `1044`, `1045`, `1048`, `415`, `1051`, `1053`, `1055`, `1056`, `1058`, `1061`, `1063`, `1065`, `1067`, `1068`, `1069`, `1070`, `1074`, `946`, `1077`, `1079`, `1081`, `1083`, `1086`, `1088`, `1089`, `1092`, `936`, `1096`, `1098`, `1101`, `1104`, `1106`, `1108`, `1110`, `1112`, `1114`, `1116`, `1118`, `1119`, `1120`, `1085`, `1123`, `1125`, `1127`, `1031`, `1128`, `1131`, `1124`, `1134`, `1135`, `1137`, `1139`, `1142`, `1144`, `1145`, `1147`, `1150`, `1152`, `1156`, `1158`, `1159`, `1162`, `1164`, `1166`, `1167`, `1170`, `1172`, `1174`, `1176`, `1178`, `1180`, `1181`, `1183`, `1186`, `1187`, `1189`, `1192`, `1195`, `1198`, `1200`, `1201`, `1204`, `1206`, `1208`, `1209`, `763`, `1211`, `1212`, `1214`, `1215`, `1218`, `1220`, `1222`, `1225`, `1226`, `1227`, `1228`, `1230`, `1232`, `1234`, `1236`, `1237`, `1239`, `1241`, `181`, `1244`, `1245`, `1247`, `1249`, `1251`, `1253`, `1256`, `1257`, `1260`, `1261`, `1262`, `1264`, `1267`, `1268`, `1269`, `1272`, `1274`, `1277`, `1280`, `1283`, `1285`, `1287`, `1289`, `1290`, `1294`, `1296`, `1279`, `1298`, `1300`, `1303`, `1304`, `1306`, `1309`, `1311`, `1313`, `1314`, `1317`, `1319`, `1320`, `1324`, `1327`, `1329`, `1332`, `1334`, `1336`, `1338`, `1340`, `1342`, `1344`, `1345`, `303`, `1346`, `1349`, `1350`, `1352`, `1354`, `1356`, `1359`, `362`, `1360`, `1363`, `1365`, `1366`, `1367`, `1369`, `1370`, `1372`, `1374`, `1375`, `1378`, `1380`, `1384`, `1385`, `1389`, `1390`, `1393`, `1395`, `1398`, `1403`, `1404`, `1405`, `1407`, `1410`, `1413`, `1415`, `1418`, `1420`, `1422`, `1423`, `1425`, `1426`, `1428`, `1429`, `1431`, `1433`, `1435`, `1436`, `1438`, `1440`, `1442`, `1444`, `1447`, `1448`, `1449`, `1451`, `1452`, `105`, `1454`, `1456`, `1457`, `1459`, `1462`, `1463`, `1464`, `1466`, `1468`, `1470`, `1471`, `1475`, `810`, `1476`, `1478`, `1480`, `1483`, `1485`, `1487`, `1490`, `1493`, `450`, `1496`, `1498`, `1501`, `1504`, `1506`, `1508`, `1510`, `1513`, `1515`, `1517`, `1520`, `1523`, `1526`, `1529`, `1531`, `1535`, `1536`, `1538`, `1540`, `1542`, `1545`, `1548`, `1550`, `1554`, `1555`, `1558`, `1559`, `1561`, `1563`, `1565`, `1566`, `1568`, `1569`, `1572`, `1574`, `1576`, `1578`, `1580`, `1581`, `1582`, `1585`, `1586`, `1589`, `1591`, `1593`, `1596`, `1597`, `416`, `615`, `1599`, `1601`, `1603`, `1608`, `1611`, `840`, `1613`, `1614`, `1616`, `1618`, `1622`, `1624`, `1627`, `1630`, `1633`, `1636`, `1638`, `1642`, `1645`, `1647`, `1650`, `1653`, `1656`, `1659`, `1661`, `1664`, `1665`, `1668`, `1670`, `1671`, `1674`, `1676`, `1679`, `1680`, `1683`, `1685`, `1687`, `1689`, `1694`, `1697`, `1698`, `1699`, `1700`, `1702`, `1705`, `1706`, `1709`, `1711`, `1712`, `1714`, `1718`, `1720`, `1721`, `1723`, `1725`, `1726`, `1728`, `987`, `506`, `1730`, `1733`, `1735`, `1736`, `1738`, `1740`, `1741`, `1743`, `1745`, `1747`, `1748`, `166`, `1750`, `1752`, `1753`, `1755`, `1758`, `1761`, `1763`, `224`, `1764`, `1767`, `1768`, `1771`, `1773`, `1777`, `1779`, `1783`, `1786`, `1787`, `1791`, `1794`, `1797`, `1798`, `1799`, `1801`, `1804`, `1806`, `1807`, `1809`, `228`, `1810`, `1813`, `1814`, `1817`, `1819`, `1821`, `1824`, `1826`, `1829`, `1831`, `1833`, `1834`, `1835`, `1837`, `1839`, `1637`, `1840`, `1844`, `1846`, `905`, `1850`, `1851`, `1853`, `1855`, `1858`, `1859`, `1861`, `1862`, `1863`, `1866`, `1867`, `1869`, `1873`, `1875`, `1878`, `1879`, `1883`, `1884`, `1887`, `1890`, `1892`, `1895`, `1896`, `1899`, `1901`, `1903`, `1905`, `1907`, `1908`, `1909`, `1910`, `1912`, `1914`, `1917`, `1920`, `1922`, `1924`, `1926`, `1928`, `1929`, `1932`, `1933`, `1935`, `1936`, `1937`, `1940`, `1942`, `1944`, `1946`, `1947`, `1949`, `1952`, `1953`, `1956`, `1959`, `1960`, `1962`, `1964`, `1965`, `1966`, `1967`, `1970`, `1971`, `1972`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1981`, `1982`, `1983`, `1985`, `1987`, `1991`, `673`, `1992`, `1994`, `1995`, `1997`, `1999`, `2002`, `2003`, `2005`, `2008`, `2010`, `2012`, `2013`, `2015`, `2017`, `2019`, `2020`, `2023`, `2026`, `2027`, `2030`, `2032`, `2034`, `2036`, `2038`, `2040`, `2041`, `2042`, `2045`, `2046`, `2048`, `2049`, `2051`, `2052`, `2053`, `1295`, `2054`, `536`, `2057`, `2059`, `2062`, `2064`, `2066`, `2067`, `2068`, `2072`, `2075`, `2076`, `2078`, `2081`, `2083`, `2085`, `2086`, `2088`, `2090`, `2091`, `2093`, `2096`, `2098`, `2099`, `2102`, `2104`, `2105`, `2107`, `2110`, `2111`, `17`, `2113`, `2116`, `2118`, `2121`, `2123`, `2124`, `2125`, `2127`, `2128`, `2129`, `2131`, `2133`, `2135`, `2137`, `2140`, `2141`, `2143`, `2145`, `2146`, `2147`, `2149`, `2151`, `2154`, `2155`, `2156`, `2159`, `2160`, `2161`, `2162`, `2163`, `2165`, `2168`, `1477`, `2170`, `2171`, `2173`, `2174`, `2175`, `2177`, `2180`, `2181`, `2183`, `2185`, `2187`, `2188`, `2190`, `2193`, `2195`, `2199`, `2202`, `2204`, `2205`, `2207`, `2210`, `2212`, `2213`, `2216`, `338`, `2218`, `2220`, `2222`, `2224`, `2226`, `2229`, `2231`, `2233`, `2236`, `2238`, `2240`, `2243`, `2245`, `2247`, `2248`, `593`, `2250`, `2251`, `2256`, `2258`, `2261`, `2263`, `2264`, `2266`, `2268`, `2271`, `2274`, `2277`, `2278`, `2281`, `2282`, `2284`, `2287`, `2289`, `2292`, `345`, `2294`, `2297`, `2299`, `2301`, `2304`, `2306`, `2308`, `2310`, `2312`, `2315`, `2317`, `2318`, `2321`, `2322`, `2323`, `1663`, `2324`, `2328`, `2331`, `2332`, `2335`, `2337`, `2339`, `2341`, `2344`, `2346`, `2348`, `2350`, `2354`, `2355`, `2359`, `2361`, `2363`, `2366`, `2368`, `2369`, `2372`, `2375`, `2376`, `2380`, `2384`, `2167`, `2385`, `2386`, `2388`, `2391`, `2393`, `2395`, `2397`, `2398`, `2400`, `2403`, `2404`, `2406`, `2410`, `2412`, `2414`, `2416`, `2418`, `1111`, `2420`, `2421`, `2422`, `2425`, `2428`, `2431`, `2433`, `2435`, `2437`, `2438`, `2439`, `2442`, `2445`, `2447`, `2448`, `2450`, `2453`, `2456`, `2459`, `2461`, `2462`, `2463`, `2466`, `2467`, `2470`, `2471`, `2473`, `2476`, `2478`, `2479`, `2482`, `2485`, `2486`, `2488`, `2489`, `2491`, `2494`, `2496`, `2498`, `2501`, `2503`, `2506`, `2507`, `2508`, `2510`, `2512`, `2513`, `2515`, `2517`, `2518`, `2520`, `2522`, `2526`, `2529`, `2531`, `1219`, `2534`, `2536`, `2538`, `2540`, `2542`, `2544`, `2546`, `2547`, `2549`, `2550`, `2552`, `2553`, `2556`, `2559`, `2561`, `2563`, `2565`, `2567`, `2569`, `2571`, `2573`, `2575`, `2577`, `2578`, `2579`, `2580`, `2583`, `2585`, `2587`, `2590`, `2594`, `2596`, `2598`, `2602`, `2605`, `2607`, `2609`, `2613`, `2614`, `2615`, `2616`, `2620`, `2621`, `2625`, `2626`, `2629`, `2631`, `2632`, `2634`, `2636`, `2639`, `2640`, `2642`, `2643`, `2644`, `2647`, `2648`, `2650`, `2653`, `2656`, `2658`, `864`, `2661`, `1052`, `2662`, `2664`, `2665`, `2666`, `2669`, `2672`, `2674`, `2676`, `2679`, `2680`, `2682`, `2684`, `2687`, `2688`, `2693`, `2695`, `2697`, `2699`, `2700`, `2703`, `2705`, `2686`, `2706`, `2709`, `2711`, `2714`, `2717`, `2719`, `2721`, `2725`, `2728`, `2730`, `2192`, `2731`, `2734`, `2735`, `2738`, `2739`, `2741`, `2744`, `2745`, `2747`, `2750`, `2753`, `2755`, `2758`, `2759`, `2761`, `2763`, `2766`, `2768`, `2769`, `2771`, `2773`, `2775`, `2776`, `2779`, `2782`, `2785`, `2786`, `2788`, `1406`, `2790`, `2791`, `2792`, `2793`, `2794`, `2796`, `2799`, `2801`, `2804`, `2807`, `2810`, `2813`, `2814`, `2816`, `2818`, `2820`, `2822`, `2824`, `2827`, `2828`, `2830`, `2833`, `2803`, `2835`, `2837`, `2839`, `2841`, `2844`, `2845`, `2846`, `2847`, `2849`, `2850`, `2852`, `2853`, `2854`, `2857`, `2859`, `2861`, `2863`, `2865`, `2867`, `2869`, `2871`, `2872`, `2874`, `2876`, `2878`, `2880`, `2882`, `2884`, `2886`, `2887`, `2891`, `2894`, `2895`, `2896`, `2897`, `2900`, `2903`, `2904`, `386`, `2906`, `2909`, `2912`, `2913`, `2915`, `2917`, `2919`, `2920`, `2923`, `2924`, `2925`, `2926`, `2928`, `2930`, `2932`, `2935`, `2938`, `2939`, `2940`, `2944`, `2946`, `2947`, `2951`, `2952`, `2955`, `2957`, `2961`, `2963`, `2965`, `2968`, `2971`, `275`, `2973`, `2975`, `2977`, `2980`, `2982`, `2984`, `2988`, `573`, `2990`, `2991`, `2993`, `2994`, `2995`, `2998`, `3001`, `3004`, `3007`, `3009`, `378`, `3012`, `3013`, `3014`, `3015`, `3018`, `3020`, `3022`, `3024`, `3026`, `3028`, `3031`, `3033`, `3036`, `3037`, `3039`, `3041`, `3042`, `3043`, `3044`, `3046`, `3048`, `3049`, `3050`, `3053`, `3055`, `3056`, `3058`, `3060`, `3062`, `3064`, `3066`, `3068`, `3071`, `3072`, `3073`, `3076`, `3078`, `3079`, `3081`, `3084`, `3085`, `3087`, `445`, `3089`, `3091`, `3093`, `3094`, `3097`, `3098`, `3100`, `456`, `3104`, `3106`, `3107`, `3109`, `3111`, `3113`, `3115`, `3117`, `3118`, `3121`, `3122`, `3124`, `3126`, `3128`, `3130`, `3132`, `3135`, `3136`, `3137`, `3138`, `3141`, `3142`, `3144`, `3146`, `1080`, `3151`, `3153`, `3155`, `3156`, `3160`, `98`, `3162`, `3163`, `3165`, `3166`, `3169`, `3171`, `3173`, `3175`, `3176`, `3179`, `3182`, `3185`, `3186`, `3189`, `3192`, `3195`, `3198`, `3199`, `3201`, `3203`, `3204`, `3205`, `3208`, `3209`, `2597`, `3210`, `3213`, `3216`, `3217`, `3218`, `1592`, `3221`, `3222`, `3224`, `3227`, `3229`, `3230`, `3231`, `3233`, `3237`, `3240`, `3243`, `3246`, `3248`, `3251`, `3252`, `3253`, `347`, `3255`, `3258`, `3260`, `3263`, `3266`, `3267`, `3271`, `3272`, `3275`, `3276`, `3279`, `3281`, `3283`, `3286`, `3289`, `3290`, `3293`, `3294`, `3295`, `3297`, `3299`, `3300`, `3301`, `3304`, `3307`, `3311`, `136`, `3313`, `3314`, `3316`, `3318`, `3320`, `3324`, `3326`, `3330`, `3333`, `3335`, `3337`, `3341`, `3343`, `3346`, `3350`, `3352`, `3353`, `3355`, `3356`, `3358`, `3360`, `3362`, `3364`, `3366`, `3369`, `3370`, `3372`, `3373`, `3376`, `3378`, `3380`, `2106`, `3382`, `3386`, `3387`, `3390`, `3392`, `3393`, `3395`, `3398`, `3400`, `3403`, `3404`, `3407`, `3409`, `3410`, `1762`, `3412`, `3414`, `3416`, `3418`, `3420`, `3421`, `3424`, `3427`, `3430`, `3432`, `3433`, `3435`, `3437`, `3438`, `3440`, `3442`, `1205`, `3445`, `3447`, `3448`, `3449`, `3453`, `3455`, `3456`, `3457`, `1626`, `3461`, `3464`, `3465`, `3468`, `3471`, `3472`, `3475`, `3478`, `3131`, `3480`, `3482`, `3483`, `3486`, `3489`, `3492`, `3494`, `3496`, `3497`, `3500`, `3502`, `3505`, `3506`, `3509`, `3511`, `3514`, `3516`, `3519`, `3522`, `3523`, `3525`, `3531`, `3534`, `3536`, `3538`, `3540`, `3541`, `3543`, `3546`, `3549`, `3551`, `3554`, `3555`, `3558`, `3560`, `3562`, `3565`, `3567`, `3569`, `3573`, `3574`, `3577`, `3579`, `3581`, `3584`, `3587`, `3590`, `3592`, `3595`, `3597`, `3599`, `3601`, `3604`, `3607`, `3610`, `3612`, `3615`, `3617`, `3620`, `3623`, `3627`, `3629`, `3632`, `3634`, `3635`, `3637`, `3639`, `3642`, `3645`, `3648`, `3649`, `3652`, `3654`, `3655`, `3657`, `3658`, `3660`, `3665`, `2016`, `3669`, `3670`, `3672`, `3674`, `3675`, `3676`, `3678`, `3680`, `3683`, `3686`, `3689`, `3690`, `3693`, `3696`, `3698`, `3700`, `3702`, `3704`, `3706`, `3708`, `3710`, `3712`, `3714`, `3716`, `3719`, `3720`, `3721`, `3723`, `3724`, `3726`, `3730`, `3732`, `3735`, `3736`, `3737`, `3738`, `3741`, `3743`, `3746`, `3748`, `3750`, `3752`, `3755`, `3756`, `3757`, `3759`, `3761`, `3764`, `3765`, `3767`, `3771`, `3772`, `3774`, `3776`, `3778`, `3781`, `3783`, `3784`, `3786`, `3789`, `3790`, `3793`, `3796`, `3799`, `3802`, `3805`, `3806`, `3807`, `3809`, `3811`, `3815`, `3817`, `3818`, `3823`, `3825`, `3828`, `3831`, `3832`, `3834`, `3836`, `3838`, `3841`, `3843`, `3845`, `3847`, `3848`, `3850`, `1800`, `3852`, `3854`, `3856`, `3858`, `3861`, `3865`, `3866`, `3868`, `3869`, `3873`, `3875`, `3878`, `3879`, `3881`, `3884`, `3886`, `3888`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3901`, `3904`, `3907`, `3908`, `3910`, `3912`, `3913`, `3914`, `3916`, `3917`, `3919`, `3920`, `3923`, `3924`, `3926`, `3928`, `3930`, `3931`, `3934`, `3939`, `3941`, `3942`, `3944`, `3948`, `3950`, `3951`, `3953`, `3956`, `3957`, `3958`, `3960`, `3963`, `3966`, `3969`, `3971`, `3975`, `3977`, `3979`, `3980`, `3983`, `3985`, `3987`, `3990`, `3991`, `3992`, `3994`, `3997`, `4000`, `4002`, `4005`, `4006`, `4008`, `4010`, `4013`, `4015`, `4019`, `4021`, `4024`, `4026`, `4028`, `4030`, `3795`, `4031`, `4033`, `4035`, `4037`, `4039`, `4042`, `4044`, `4047`, `4049`, `4051`, `4054`, `2235`, `4056`, `4059`, `4061`, `4062`, `4063`, `4065`, `4067`, `4069`, `4071`, `4072`, `4075`, `4077`, `4080`, `4083`, `4086`, `4088`, `4090`, `4092`, `4094`, `4095`, `4097`, `4098`, `979`, `4099`, `4100`, `4102`, `4104`, `4107`, `4109`, `4111`, `4112`, `4113`, `4117`, `4118`, `4120`, `4122`, `4124`, `4125`, `4126`, `4128`, `4129`, `4131`, `4134`, `4135`, `4136`, `4138`, `4141`, `4143`, `4146`, `4148`, `4150`, `4152`, `4154`, `4157`, `4161`, `4163`, `4164`, `4167`, `4168`, `4170`, `4173`, `4175`, `4177`, `4178`, `4180`, `4183`, `4185`, `4188`, `4189`, `4190`, `4192`, `4193`, `4195`, `4197`, `4199`, `4201`, `4203`, `4204`, `4206`, `4208`, `4209`, `4211`, `4214`, `4216`, `4218`, `4220`, `4221`, `4224`, `4226`, `4228`, `4230`, `4232`, `4235`, `4238`, `4240`, `4242`, `4244`, `4247`, `4248`, `4250`, `4252`, `123`, `4254`, `4255`, `4256`, `4258`, `4260`, `4261`, `4262`, `4264`, `4266`, `4267`, `4269`, `4271`, `4273`, `4275`, `4278`, `4279`, `4281`, `4282`, `4283`, `4285`, `4286`, `4289`, `4292`, `4294`, `4297`, `4299`, `4302`, `4303`, `4305`, `4307`, `4308`, `4312`, `4314`, `4316`, `4318`, `4321`, `4323`, `4325`, `4327`, `4329`, `4332`, `4335`, `4336`, `4338`, `4341`, `4342`, `4343`, `4344`, `4347`, `4348`, `4351`, `4354`, `4357`, `4358`, `2303`, `4360`, `4363`, `4366`, `4368`, `4370`, `4371`, `4374`, `3317`, `4375`, `4378`, `4381`, `4384`, `4387`, `4390`, `4392`, `4394`, `4397`, `4399`, `3754`, `4401`, `4402`, `4405`, `4407`, `4410`, `4411`, `4414`, `4415`, `4417`, `4420`, `4422`, `4423`, `4426`, `4429`, `4430`, `4433`, `4435`, `4436`, `4438`, `4440`, `4441`, `4442`, `4444`, `4447`, `4450`, `4451`, `4453`, `4454`, `4455`, `4456`, `4458`, `4460`, `4462`, `4465`, `4467`, `4468`, `4469`, `4471`, `4475`, `4477`, `4480`, `4481`, `2509`, `4484`, `4486`, `4487`, `4490`, `4492`, `4493`, `4495`, `4496`, `4498`, `4500`, `4503`, `4506`, `4508`, `4511`, `4512`, `4514`, `4516`, `4518`, `4520`, `4522`, `4524`, `4527`, `4528`, `4529`, `4532`, `2176`, `4536`, `4539`, `4541`, `4542`, `4543`, `4544`, `4545`, `4548`, `4549`, `4551`, `4553`, `4555`, `4559`, `4562`, `4564`, `4566`, `4569`, `4571`, `4574`, `4577`, `4578`, `4581`, `4584`, `4586`, `4589`, `4592`, `4593`, `4596`, `4598`, `4602`, `4605`, `4607`, `4609`, `4611`, `4613`, `4616`, `4618`, `4620`, `4622`, `4624`, `4627`, `4628`, `4629`, `4630`, `4631`, `4632`, `4633`, `4635`, `4637`, `4638`, `4640`, `4642`, `4645`, `4647`, `4649`, `4651`, `4653`, `4655`, `4657`, `4659`, `4660`, `4661`, `4662`, `4664`, `4665`, `4666`, `4669`, `4672`, `4673`, `4675`, `4678`, `4679`, `4681`, `4682`, `4685`, `4687`, `4688`, `4689`, `4692`, `4695`, `4698`, `4700`, `4702`, `4705`, `4707`, `4710`, `4712`, `4713`, `4715`, `4718`, `4719`, `4722`, `4724`, `4726`, `4729`, `4730`, `4732`, `4733`, `4734`, `4736`, `4737`, `4739`, `4741`, `4743`, `4745`, `4748`, `4750`, `4753`, `4755`, `4757`, `4759`, `4762`, `4763`, `4765`, `4767`, `4768`, `4770`, `4772`, `4775`, `4777`, `4779`, `4781`, `4784`, `4786`, `4787`, `4790`, `3108`, `4793`, `4794`, `4797`, `4798`, `4801`, `4803`, `4805`, `4806`, `4808`, `4014`, `4809`, `4811`, `4813`, `4815`, `4818`, `4821`, `4824`, `4826`, `4827`, `4830`, `4833`, `4835`, `4650`, `4838`, `4841`, `4843`, `4844`, `4846`, `4847`, `4848`, `4849`, `4851`, `4853`, `4855`, `4857`, `4860`, `4861`, `4862`, `4865`, `4867`, `4868`, `4870`, `4874`, `4875`, `4877`, `4882`, `4883`, `4885`, `4888`, `4890`, `4891`, `4892`, `4894`, `4896`, `4899`, `4901`, `4904`, `4907`, `4908`, `4615`, `4911`, `4914`, `4916`, `4918`, `4920`, `4921`, `4924`, `4926`, `4929`, `4930`, `4931`, `4934`, `4936`, `4937`, `4939`, `4942`, `4945`, `4948`, `2484`, `4949`, `4950`, `4952`, `4953`, `4956`, `4957`, `914`, `4958`, `4959`, `4961`, `4963`, `4964`, `4967`, `4969`, `4970`, `4973`, `1259`, `4974`, `4977`, `4978`, `4979`, `4982`, `4984`, `4985`, `4988`, `4991`, `4994`, `4995`, `3747`, `4997`, `4999`, `5001`, `5002`, `5004`, `5006`, `5009`, `665`, `2784`, `1854`, `5011`, `5012`, `5014`, `5016`, `5018`, `5021`, `5022`, `5025`, `5028`, `5031`, `5033`, `5036`, `5037`, `5039`, `3846`, `5040`, `5042`, `5044`, `5046`, `5048`, `5050`, `5017`, `5053`, `5054`, `5055`, `5057`, `5059`, `5061`, `5064`, `5067`, `5068`, `5071`, `5074`, `5076`, `5078`, `5080`, `5083`, `5086`, `5088`, `5091`, `5093`, `5097`, `5099`, `5101`, `5102`, `5103`, `5104`, `5108`, `5110`, `5112`, `5085`, `5116`, `5118`, `5120`, `5122`, `5125`, `5126`, `5128`, `5130`, `5132`, `5134`, `5136`, `5139`, `5141`, `5142`, `5143`, `5146`, `5149`, `5151`, `5154`, `5156`, `5159`, `5162`, `5165`, `5167`, `5171`, `5173`, `5176`, `5178`, `5182`, `5185`, `5186`, `5187`, `5190`, `5192`, `5196`, `5197`, `5198`, `5199`, `5201`, `4873`, `5203`, `5207`, `5209`, `5212`, `5215`, `5217`, `5219`, `5222`, `5223`, `5225`, `5227`, `5229`, `5231`, `5232`, `5234`, `5236`, `5237`, `5240`, `5242`, `5244`, `5246`, `5248`, `5250`, `5251`, `5255`, `5257`, `5258`, `5259`, `5261`, `5264`, `5268`, `5271`, `2858`, `5272`, `5274`, `5275`, `5277`, `5278`, `5281`, `5282`, `5285`, `5287`, `5289`, `5291`, `5292`, `5295`, `5297`, `5298`, `5299`, `5300`, `5302`, `5303`, `5305`, `5307`, `446`, `5309`, `5310`, `5312`, `5315`, `5317`, `5318`, `5320`, `3824`, `5323`, `5324`, `5326`, `5329`, `5331`, `5333`, `5336`, `5338`, `5339`, `5340`, `5342`, `5345`, `5347`, `5349`, `5351`, `5353`, `5355`, `5357`, `3381`, `5358`, `5359`, `5360`, `796`, `5362`, `5365`, `5368`, `5369`, `5372`, `5374`, `5377`, `5379`, `5381`, `5382`, `5383`, `5384`, `5387`, `5389`, `5391`, `5392`, `5395`, `5396`, `5397`, `5400`, `5403`, `5406`, `5408`, `5411`, `5413`, `5415`, `5418`, `5422`, `5424`, `5425`, `5428`, `5431`, `5434`, `5435`, `5437`, `5438`, `5441`, `5442`, `5444`, `5446`, `5449`, `5452`, `5456`, `5458`, `5461`, `5466`, `5468`, `5471`, `5474`, `5476`, `5478`, `5481`, `5483`, `5486`, `5487`, `5489`, `5492`, `5493`, `5496`, `5498`, `5499`, `5501`, `5503`, `5504`, `5507`, `5510`, `5514`, `5516`, `5427`, `1805`, `5519`, `5521`, `5522`, `5523`, `5526`, `5527`, `5529`, `5531`, `5532`, `5534`, `5535`, `5536`, `5538`, `5539`, `5542`, `5545`, `5547`, `5548`, `5549`, `5550`, `5552`, `5554`, `5555`, `5556`, `5558`, `5560`, `5561`, `5564`, `5565`, `5567`, `5569`, `5572`, `5573`, `5575`, `5578`, `5581`, `5584`, `5588`, `5591`, `5593`, `5594`, `5596`, `5598`, `5599`, `5603`, `5605`, `5607`, `5609`, `5611`, `5612`, `5613`, `5615`, `5616`, `5619`, `5621`, `5622`, `5625`, `5627`, `5630`, `5633`, `5635`, `5639`, `5642`, `5645`, `5647`, `5650`, `5651`, `5652`, `5653`, `5654`, `5655`, `5656`, `5658`, `5659`, `5660`, `5663`, `5664`, `5667`, `5668`, `5669`, `5670`, `5671`, `5672`, `5676`, `5680`, `5682`, `5683`, `5684`, `5685`, `5687`, `5690`, `5692`, `5695`, `5696`, `5697`, `5699`, `5701`, `5703`, `5705`, `5706`, `5709`, `5710`, `5712`, `5714`, `5716`, `5718`, `5720`, `5723`, `5726`, `5727`, `5729`, `5732`, `5734`, `5736`, `5738`, `5741`, `5743`, `5744`, `5747`, `5749`, `5751`, `5752`, `5754`, `5756`, `5759`, `5760`, `5764`, `5766`, `3947`, `5769`, `5770`, `5774`, `5775`, `5777`, `5779`, `5782`, `5784`, `5786`, `5789`, `5791`, `5794`, `5796`, `5798`, `5799`, `5802`, `5804`, `5806`, `5810`, `5811`, `5813`, `5815`, `5817`, `5819`, `5821`, `5824`, `5825`, `5828`, `5830`, `5833`, `5834`, `5836`, `5837`, `5838`, `5840`, `5842`, `5844`, `5846`, `5848`, `5849`, `5850`, `5853`, `5855`, `5857`, `5858`, `483`, `5860`, `5863`, `5864`, `5866`, `5870`, `5872`, `5874`, `5876`, `5879`, `5881`, `5882`, `5885`, `5886`, `5887`, `5889`, `5891`, `5893`, `5895`, `5896`, `5898`, `5900`, `5902`, `5904`, `5906`, `5909`, `5911`, `5912`, `5914`, `5916`, `5921`, `5923`, `5924`, `5926`, `5928`, `5931`, `5933`, `5936`, `5938`, `5940`, `5941`, `5945`, `5947`, `5949`, `5951`, `5953`, `5956`, `5958`, `5960`, `5963`, `5965`, `5966`, `5968`, `5971`, `5973`, `5975`, `5978`, `5980`, `5983`, `5984`, `5986`, `5987`, `5990`, `5991`, `5994`, `5996`, `5997`, `5999`, `6001`, `6002`, `6005`, `6007`, `6009`, `6011`, `6014`, `6016`, `6020`, `6022`, `6024`, `6025`, `6028`, `6029`, `6030`, `6033`, `6036`, `6038`, `6039`, `6040`, `6042`, `6044`, `6045`, `6046`, `6048`, `6050`, `6052`, `6053`, `6054`, `6055`, `6058`, `6060`, `6062`, `6063`, `6065`, `3788`, `6068`, `6071`, `6073`, `6074`, `6077`, `6078`, `6080`, `6081`, `6084`, `1254`, `6087`, `6089`, `6091`, `6094`, `6095`, `6098`, `6099`, `266`, `6100`, `6102`, `6103`, `6104`, `6106`, `6107`, `6109`, `6110`, `4817`, `6112`, `6115`, `6117`, `6118`, `5491`, `3359`, `6119`, `6121`, `6123`, `6126`, `6128`, `6130`, `6132`, `6136`, `6137`, `6139`, `6141`, `6142`, `6145`, `6147`, `6149`, `6151`, `6154`, `6156`, `6157`, `6158`, `6160`, `6163`, `6165`, `6167`, `6168`, `6170`, `6174`, `6178`, `835`, `4523`, `6180`, `4485`, `6181`, `6184`, `6187`, `6190`, `6193`, `6197`, `6199`, `6200`, `6202`, `6204`, `6205`, `6207`, `6209`, `6212`, `6215`, `6218`, `6219`, `6221`, `6223`, `6226`, `6228`, `6230`, `6233`, `6234`, `6236`, `6238`, `6241`, `6243`, `6246`, `6248`, `6250`, `6251`, `6253`, `6254`, `6256`, `6257`, `6259`, `6261`, `6264`, `6266`, `6267`, `6268`, `6270`, `6272`, `6275`, `6277`, `6279`, `2497`, `6282`, `6284`, `6287`, `6289`, `6290`, `6291`, `6293`, `6296`, `6297`, `6300`, `6302`, `6303`, `6307`, `6309`, `6311`, `2972`, `6314`, `6317`, `6319`, `6322`, `6324`, `6326`, `6328`, `6331`, `6332`, `6334`, `6336`, `6338`, `6339`, `6341`, `6344`, `6345`, `6346`, `6349`, `6352`, `6353`, `6355`, `6356`, `6359`, `5488`, `6361`, `6362`, `6365`, `6366`, `6368`, `6371`, `6373`, `6375`, `6377`, `6378`, `6380`, `6383`, `6386`, `6388`, `6390`, `6391`, `1351`, `6393`, `6395`, `6396`, `6397`, `6399`, `6401`, `6402`, `6403`, `6406`, `6408`, `6409`, `6411`, `6414`, `6417`, `6420`, `6423`, `6425`, `6429`, `6430`, `6431`, `910`, `6433`, `6434`, `6435`, `6437`, `2487`, `6439`, `6441`, `6445`, `6448`, `6450`, `6454`, `6456`, `6458`, `6460`, `6463`, `6464`, `6467`, `6468`, `6470`, `6472`, `6474`, `6477`, `6478`, `6479`, `6480`, `6482`, `6485`, `6486`, `6489`, `6491`, `6494`, `6497`, `6499`, `6502`, `6504`, `6505`, `6507`, `6509`, `6510`, `6512`, `6515`, `6516`, `6517`, `6519`, `6522`, `6524`, `6525`, `6527`, `6529`, `6532`, `1640`, `6533`, `6534`, `6536`, `6539`, `6542`, `4355`, `6545`, `6546`, `6548`, `6550`, `6551`, `6552`, `6555`, `6556`, `6558`, `6560`, `6563`, `6564`, `6566`, `6568`, `6569`, `6570` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 100.00 |
| `SENTS_P` | 100.00 |
| `SENTS_R` | 100.00 |
| `TAG_ACC` | 88.93 |
| `POS_ACC` | 96.52 |
| `MORPH_ACC` | 100.00 |
| `MORPH_PER_FEAT` | 0.00 |
| `DEP_UAS` | 89.48 |
| `DEP_LAS` | 87.18 |
| `LEMMA_ACC` | 94.51 |
|
facebook/wav2vec2-xlsr-53-espeak-cv-ft
|
facebook
| 2021-12-10T17:18:39Z | 483,555 | 28 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"speech",
"audio",
"phoneme-recognition",
"dataset:common_voice",
"arxiv:2109.11680",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: multi-lingual
datasets:
- common_voice
tags:
- speech
- audio
- automatic-speech-recognition
- phoneme-recognition
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
license: apache-2.0
---
# Wav2Vec2-Large-XLSR-53 finetuned on multi-lingual Common Voice
This checkpoint leverages the pretrained checkpoint [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
and is fine-tuned on [CommonVoice](https://huggingface.co/datasets/common_voice) to recognize phonetic labels in multiple languages.
When using the model make sure that your speech input is sampled at 16kHz.
Note that the model outputs a string of phonetic labels. A dictionary mapping phonetic labels to words
has to be used to map the phonetic output labels to output words.
[Paper: Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)
Authors: Qiantong Xu, Alexei Baevski, Michael Auli
**Abstract**
Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech recognition systems without any labeled data. However, in many cases there is labeled data available for related languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by mapping phonemes of the training languages to the target language using articulatory features. Experiments show that this simple method significantly outperforms prior work which introduced task-specific architectures and used only part of a monolingually pretrained model.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
# load model and processor
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
# retrieve logits
with torch.no_grad():
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
# => should give ['m ɪ s t ɚ k w ɪ l t ɚ ɪ z ð ɪ ɐ p ɑː s əl l ʌ v ð ə m ɪ d əl k l æ s ɪ z æ n d w iː aʊ ɡ l æ d t ə w ɛ l k ə m h ɪ z ɡ ɑː s p ə']
```
|
explosion/id_udv25_indonesiangsd_trf
|
explosion
| 2021-12-10T16:10:32Z | 2 | 0 |
spacy
|
[
"spacy",
"token-classification",
"id",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- id
license: cc-by-sa-4.0
model-index:
- name: id_udv25_indonesiangsd_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9479067555
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9316523945
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9590072946
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9804947669
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8615977082
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7838256704
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9297777778
---
UD v2.5 benchmarking pipeline for UD_Indonesian-GSD
| Feature | Description |
| --- | --- |
| **Name** | `id_udv25_indonesiangsd_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1325 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `APP`, `ASP`, `ASP+PS2`, `ASP+PS3`, `ASP+T--`, `ASS`, `ASS+PS3`, `B--`, `B--+PS3`, `B--+T--`, `CC-`, `CC-+PS3`, `CC-+T--`, `CD-`, `CD-+PS3`, `CO-`, `CO-+PS3`, `D--`, `D--+PS2`, `D--+PS3`, `D--+T--`, `F--`, `F--+PS1`, `F--+PS2`, `F--+PS3`, `F--+T--`, `G--`, `G--+PS3`, `G--+T--`, `H--`, `H--+T--`, `I--`, `M--`, `M--+PS3`, `M--+T--`, `NOUN`, `NPD`, `NPD+PS2`, `NPD+PS3`, `NSD`, `NSD+PS1`, `NSD+PS2`, `NSD+PS3`, `NSD+T--`, `NSF`, `NSM`, `NSM+PS3`, `NUM`, `O--`, `PP1`, `PP1+T--`, `PP2`, `PP3`, `PP3+T--`, `PROPN`, `PS1`, `PS1+VSA`, `PS1+VSA+T--`, `PS2`, `PS2+VSA`, `PS3`, `PUNCT`, `R--`, `R--+PS1`, `R--+PS2`, `R--+PS3`, `S--`, `S--+PS3`, `T--`, `VERB`, `VPA`, `VSA`, `VSA+PS1`, `VSA+PS2`, `VSA+PS3`, `VSA+T--`, `VSP`, `VSP+PS3`, `VSP+T--`, `W--`, `W--+T--`, `X`, `X--`, `Z--` |
| **`morphologizer`** | `POS=PROPN`, `POS=AUX`, `POS=DET\|PronType=Ind`, `Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=VERB\|Voice=Pass`, `POS=ADP`, `POS=PUNCT`, `Number=Sing\|POS=PROPN`, `POS=NOUN`, `POS=ADV`, `POS=CCONJ`, `Number=Sing\|POS=VERB\|Voice=Act`, `POS=VERB`, `POS=DET\|PronType=Tot`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `POS=SCONJ`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=DET\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Degree=Pos\|Number=Sing\|POS=NOUN`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `NumType=Card\|POS=DET\|PronType=Ind`, `Degree=Pos\|Number=Sing\|POS=ADP`, `Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `Number=Sing\|POS=VERB`, `POS=PRON\|PronType=Int`, `Number=Sing\|POS=ADV\|Voice=Act`, `Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=3\|Voice=Act`, `Number=Sing\|POS=ADP\|Voice=Act`, `POS=ADJ`, `Number[psor]=Sing\|POS=ADP\|Person[psor]=3`, `Degree=Pos\|Number=Sing\|POS=DET`, `Degree=Pos\|Number=Sing\|POS=VERB`, `POS=PRON\|PronType=Dem`, `POS=PART\|Polarity=Neg`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `Number=Sing\|POS=PRON\|Person=1\|Polite=Form\|PronType=Prs`, `Number=Sing\|POS=ADJ`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SYM`, `POS=ADV\|PronType=Int`, `Clusivity=In\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=ADJ\|Voice=Act`, `Degree=Pos\|Number=Sing\|POS=PROPN`, `Degree=Pos\|Number=Sing\|POS=ADV`, `Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=3\|Voice=Pass`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3\|Voice=Act`, `Number=Sing\|POS=PROPN\|Voice=Act`, `Number=Sing\|POS=NOUN\|Voice=Act`, `POS=DET`, `Number=Sing\|POS=DET\|Voice=Act`, `NumType=Card\|POS=PRON\|PronType=Ind`, `Number=Sing\|Number[psor]=Sing\|POS=ADV\|Person[psor]=3`, `Number=Sing\|POS=DET`, `Number=Sing\|POS=ADJ\|Voice=Pass`, `POS=CCONJ\|PronType=Dem`, `Number=Sing\|POS=ADP`, `Number=Sing\|POS=ADV`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `Number=Sing\|POS=PRON`, `POS=PRON`, `NumType=Card\|POS=ADV\|PronType=Ind`, `NumType=Card\|Number[psor]=Sing\|POS=NUM\|Person[psor]=3`, `Number=Sing\|POS=PRON\|Person=3\|Polite=Form\|PronType=Prs`, `POS=DET\|PronType=Int`, `Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=1`, `Degree=Pos\|Number=Sing\|POS=SCONJ`, `POS=PRON\|PronType=Ind`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3\|Voice=Pass`, `POS=VERB\|PronType=Ind`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=3`, `Number=Sing\|POS=SCONJ`, `Degree=Sup\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=3`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=ADP\|Person[psor]=3`, `Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `Number=Plur\|POS=NOUN`, `POS=ADV\|PronType=Dem`, `Number=Sing\|POS=VERB\|Person=1\|Voice=Act`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADP\|Voice=Pass`, `Number[psor]=Sing\|POS=PART\|Person[psor]=3`, `Number=Sing\|POS=NOUN\|Voice=Pass`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=CCONJ\|Person[psor]=3`, `POS=PART`, `Number=Sing\|Number[psor]=Sing\|POS=PART\|Person[psor]=3\|Voice=Pass`, `Degree=Sup\|Number=Sing\|POS=ADV`, `Number=Sing\|POS=PRON\|Voice=Act`, `Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=3\|Voice=Act`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number[psor]=Sing\|POS=PRON\|Person[psor]=3\|PronType=Tot`, `Degree=Pos\|Number=Sing\|POS=X`, `POS=PRON\|PronType=Tot`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=ADV\|Person[psor]=3`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=ADP\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2`, `POS=SCONJ\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|Voice=Act`, `Number[psor]=Sing\|POS=DET\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=3`, `Clusivity=Ex\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=VERB\|Voice=Act`, `Number=Sing\|Number[psor]=Sing\|POS=ADV\|Person[psor]=3\|Voice=Act`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Polarity=Neg`, `POS=X`, `Number[psor]=Sing\|POS=ADJ\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=3`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|Polite=Infm\|PronType=Prs`, `Number=Sing\|POS=PROPN\|Voice=Pass`, `POS=ADV\|Polarity=Neg`, `NumType=Card\|Number=Sing\|POS=NUM`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=2`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=3`, `Degree=Sup\|Number=Sing\|POS=PROPN`, `POS=PROPN\|Polarity=Neg`, `Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=2\|Voice=Act`, `Number=Sing\|POS=PROPN\|Person=1\|Voice=Act`, `POS=SCONJ\|PronType=Dem`, `Number=Sing\|Number[psor]=Sing\|POS=ADV\|Person[psor]=2\|Voice=Act`, `Number=Sing\|POS=CCONJ`, `Degree=Sup\|Number=Sing\|POS=VERB`, `Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=3`, `Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=3\|Voice=Act`, `Degree=Pos\|Number=Sing\|POS=PRON`, `Number=Sing\|POS=ADV\|Voice=Pass`, `Number[psor]=Sing\|POS=ADP\|Person[psor]=2`, `Number=Sing\|POS=SYM`, `POS=ADJ\|Polarity=Neg`, `Degree=Pos\|NumType=Card\|Number=Sing\|POS=NUM`, `Number=Sing\|Number[psor]=Sing\|POS=SCONJ\|Person[psor]=3`, `Degree=Pos\|Number=Sing\|POS=CCONJ`, `Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Number=Sing\|POS=CCONJ\|Voice=Act`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Number=Sing\|Number[psor]=Sing\|POS=ADP\|Person[psor]=3\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=VERB\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `Number=Sing\|POS=PART\|Voice=Act`, `Degree=Sup\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=3`, `POS=ADP\|PronType=Int`, `Number[psor]=Sing\|POS=VERB\|Person[psor]=3`, `Number[psor]=Sing\|POS=PRON\|Person[psor]=3\|PronType=Rel`, `Degree=Pos\|Number=Sing\|POS=AUX`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Number=Sing\|POS=SCONJ\|Voice=Pass`, `Degree=Sup\|Number=Sing\|POS=ADP`, `Number=Sing\|POS=SCONJ\|Voice=Act`, `NumType=Card\|POS=DET\|PronType=Int`, `Degree=Pos\|Number=Sing\|POS=PART\|Polarity=Neg`, `Degree=Sup\|Number=Sing\|POS=SCONJ`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1\|Voice=Act`, `Number=Plur\|POS=ADJ`, `POS=VERB\|PronType=Int`, `Number=Sing\|POS=VERB\|Person=2\|Voice=Act`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=2`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=3\|PronType=Tot`, `POS=DET\|PronType=Rel`, `Number=Sing\|POS=NOUN\|Polarity=Neg`, `Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=2`, `NumType=Card\|Number=Sing\|POS=NUM\|Voice=Act`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Number[psor]=Sing\|POS=DET\|Person[psor]=3\|PronType=Tot`, `Number[psor]=Sing\|POS=PROPN\|Person[psor]=1`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=VERB\|Person=1`, `Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=PROPN\|Person[psor]=3`, `NumType=Card\|Number[psor]=Sing\|POS=DET\|Person[psor]=3\|PronType=Ind`, `POS=ADV\|PronType=Tot`, `Degree=Pos\|Number=Plur\|POS=ADV`, `Number=Plur\|POS=ADV\|Voice=Act`, `POS=CCONJ\|PronType=Int`, `Degree=Pos\|Number=Sing\|POS=PART`, `Number[psor]=Sing\|POS=PRON\|Person[psor]=2`, `Number=Plur\|POS=VERB`, `Number=Sing\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=3\|Voice=Pass`, `Degree=Pos\|Number=Sing\|POS=PUNCT`, `Number[psor]=Sing\|POS=ADP\|Person[psor]=1`, `Degree=Sup\|Number=Sing\|POS=NOUN`, `Number[psor]=Sing\|POS=PART\|Person[psor]=3\|Polarity=Neg`, `Number=Sing\|Number[psor]=Sing\|POS=ADP\|Person[psor]=3\|Voice=Act`, `POS=NOUN\|Polarity=Neg`, `Number[psor]=Sing\|POS=PROPN\|Person[psor]=2`, `Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=2\|Voice=Act` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `cc`, `ccomp`, `compound`, `compound:plur`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `6`, `8`, `10`, `12`, `15`, `19`, `22`, `24`, `26`, `27`, `29`, `30`, `31`, `34`, `36`, `37`, `40`, `42`, `44`, `46`, `48`, `50`, `51`, `53`, `54`, `56`, `58`, `47`, `59`, `62`, `64`, `66`, `68`, `70`, `71`, `3`, `72`, `74`, `75`, `77`, `78`, `79`, `81`, `84`, `86`, `87`, `88`, `89`, `92`, `11`, `93`, `95`, `96`, `97`, `98`, `99`, `101`, `103`, `105`, `106`, `107`, `108`, `110`, `111`, `113`, `115`, `116`, `118`, `120`, `122`, `123`, `124`, `125`, `126`, `127`, `128`, `130`, `131`, `132`, `134`, `135`, `137`, `140`, `142`, `143`, `144`, `146`, `147`, `148`, `149`, `150`, `151`, `152`, `153`, `43`, `155`, `157`, `158`, `160`, `161`, `162`, `163`, `164`, `165`, `166`, `167`, `168`, `170`, `171`, `172`, `174`, `175`, `177`, `178`, `179`, `180`, `181`, `182`, `183`, `25`, `184`, `185`, `186`, `187`, `188`, `190`, `192`, `193`, `194`, `196`, `57`, `197`, `198`, `199`, `201`, `203`, `204`, `206`, `207`, `208`, `209`, `210`, `211`, `212`, `213`, `214`, `215`, `217`, `218`, `219`, `220`, `221`, `223`, `225`, `227`, `228`, `230`, `232`, `234`, `236`, `237`, `238`, `240`, `242`, `243`, `244`, `246`, `247`, `248`, `249`, `250`, `251`, `252`, `253`, `254`, `256`, `257`, `258`, `260`, `261`, `262`, `263`, `264`, `266`, `267`, `268`, `269`, `270`, `272`, `41`, `273`, `274`, `275`, `276`, `277`, `278`, `280`, `281`, `282`, `283`, `284`, `285`, `286`, `287`, `288`, `289`, `290`, `291`, `292`, `293`, `294`, `295`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `304`, `306`, `307`, `308`, `309`, `310`, `312`, `313`, `314`, `317`, `315`, `318`, `320`, `321`, `322`, `323`, `324`, `9`, `325`, `326`, `327`, `329`, `330`, `331`, `332`, `333`, `334`, `336`, `337`, `339`, `341`, `342`, `343`, `345`, `346`, `347`, `348`, `80`, `241`, `349`, `350`, `351`, `353`, `354`, `355`, `356`, `357`, `358`, `359`, `360`, `361`, `363`, `49`, `364`, `365`, `366`, `23`, `367`, `368`, `369`, `370`, `371`, `372`, `373`, `374`, `375`, `376`, `378`, `379`, `380`, `381`, `382`, `383`, `385`, `386`, `387`, `388`, `389`, `390`, `391`, `393`, `394`, `45`, `35`, `395`, `396`, `63`, `397`, `398`, `399`, `400`, `401`, `402`, `403`, `404`, `405`, `406`, `407`, `408`, `409`, `410`, `412`, `413`, `415`, `416`, `417`, `419`, `421`, `422`, `173`, `28`, `424`, `425`, `426`, `427`, `428`, `429`, `430`, `431`, `432`, `434`, `435`, `437`, `439`, `440`, `441`, `442`, `443`, `444`, `445`, `446`, `447`, `448`, `450`, `451`, `453`, `454`, `455`, `457`, `459`, `461`, `463`, `464`, `465`, `466`, `467`, `469`, `470`, `0`, `471`, `472`, `473`, `474`, `475`, `477`, `478`, `479`, `480`, `481`, `482`, `483`, `484`, `485`, `486`, `487`, `489`, `490`, `491`, `493`, `495`, `496`, `497`, `498`, `499`, `500`, `501`, `502`, `503`, `504`, `52`, `506`, `507`, `508`, `509`, `510`, `511`, `512`, `514`, `515`, `516`, `519`, `520`, `67`, `522`, `523`, `525`, `526`, `527`, `528`, `529`, `530`, `531`, `533`, `534`, `535`, `536`, `537`, `538`, `539`, `540`, `541`, `542`, `543`, `544`, `545`, `546`, `548`, `549`, `551`, `553`, `554`, `555`, `556`, `557`, `559`, `560`, `561`, `562`, `563`, `564`, `565`, `566`, `568`, `569`, `570`, `571`, `572`, `573`, `575`, `576`, `577`, `578`, `579`, `513`, `580`, `582`, `583`, `584`, `586`, `587`, `588`, `589`, `591`, `592`, `593`, `594`, `595`, `597`, `599`, `600`, `602`, `607`, `608`, `609`, `610`, `611`, `612`, `613`, `614`, `615`, `616`, `617`, `618`, `619`, `620`, `621`, `623`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `632`, `633`, `634`, `635`, `636`, `637`, `638`, `639`, `640`, `641`, `642`, `644`, `645`, `646`, `647`, `648`, `649`, `651`, `652`, `653`, `655`, `656`, `657`, `658`, `659`, `660`, `661`, `662`, `664`, `665`, `666`, `667`, `668`, `669`, `670`, `672`, `674`, `675`, `676`, `677`, `169`, `678`, `679`, `680`, `681`, `682`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `7`, `691`, `692`, `693`, `694`, `695`, `696`, `697`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `708`, `709`, `710`, `711`, `712`, `713`, `715`, `717`, `719`, `720`, `721`, `722`, `723`, `724`, `725`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `735`, `736`, `737`, `738`, `740`, `741`, `742`, `743`, `744`, `745`, `746`, `747`, `748`, `749`, `750`, `752`, `753`, `754`, `755`, `756`, `757`, `758`, `760`, `761`, `763`, `764`, `765`, `766`, `767`, `768`, `769`, `770`, `771`, `772`, `773`, `774`, `775`, `776`, `65`, `777`, `778`, `779`, `780`, `781`, `782`, `783`, `784`, `785`, `786`, `788`, `790`, `791`, `792`, `793`, `794`, `795`, `796`, `797`, `798`, `799`, `145`, `800`, `801`, `802`, `803`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `815`, `817`, `818`, `819`, `820`, `821`, `822`, `823`, `824`, `826`, `829`, `830`, `831`, `832`, `833`, `834`, `835`, `836`, `837`, `838`, `839`, `840`, `841`, `843`, `845`, `847`, `849`, `850`, `851`, `852`, `853`, `854`, `855`, `856`, `857`, `858`, `5`, `859`, `860`, `861`, `862`, `863`, `864`, `865`, `866`, `867`, `868`, `869`, `871`, `872`, `873`, `874`, `875`, `876`, `877`, `878`, `879`, `880`, `881`, `882`, `884`, `885`, `887`, `888`, `889`, `891`, `892`, `893`, `894`, `896`, `897`, `898`, `899`, `900`, `901`, `902`, `903`, `904`, `905`, `906`, `907`, `908`, `69`, `909`, `910`, `912`, `913`, `914`, `915`, `916`, `917`, `919`, `920`, `921`, `922`, `923`, `924`, `925`, `926`, `927`, `929`, `229`, `930`, `931`, `932`, `933`, `934`, `935`, `936`, `937`, `938`, `939`, `940`, `941`, `942`, `944`, `945`, `946`, `947`, `948`, `949`, `950`, `951`, `953`, `954`, `955`, `956`, `957`, `958`, `959`, `960`, `962`, `963`, `964`, `965`, `967`, `968`, `969`, `970`, `971`, `972`, `973`, `974`, `976`, `977`, `978`, `979`, `980`, `981`, `982`, `983`, `984`, `986`, `987`, `988`, `990`, `993`, `994`, `995`, `996`, `997`, `998`, `999`, `1000`, `1001`, `1002`, `1003`, `1004`, `1005`, `1006`, `1007`, `1008`, `1009`, `1012`, `1014`, `1015`, `1016`, `1019`, `1020`, `1021`, `1022`, `1023`, `1024`, `1025`, `1026`, `1027`, `1028`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1035`, `1036`, `1037`, `1038`, `1039`, `1040`, `1041`, `1042`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1051`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1062`, `1063`, `1064`, `1065`, `1066`, `1068`, `1069`, `1070`, `1072`, `1074`, `1075`, `1076`, `1077`, `1078`, `1079`, `1080`, `1082`, `1083`, `1085`, `1086`, `1087`, `1088`, `1090`, `1091`, `1092`, `1093`, `1094`, `1095`, `1096`, `1097`, `1098`, `1099`, `1100`, `1101`, `673`, `1102`, `1103`, `1104`, `1106`, `1108`, `1109`, `1110`, `1111`, `1115`, `1116`, `1119`, `1120`, `1089`, `418`, `1121`, `1122`, `1123`, `1124`, `1125`, `1126`, `1127`, `1128`, `1129`, `1130`, `1131`, `1132`, `1134`, `1136`, `1137`, `1138`, `1139`, `1140`, `1141`, `1133`, `1142`, `1143`, `1144`, `1145`, `1146`, `1147`, `1148`, `1149`, `1150`, `1151`, `1153`, `1154`, `1156`, `1157`, `1158`, `1159`, `1160`, `1162`, `1164`, `1165`, `377`, `1166`, `1167`, `1168`, `1169`, `1170`, `1171`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1179`, `1180`, `1181`, `1182`, `191`, `1183`, `1184`, `1185`, `1186`, `1187`, `1188`, `1190`, `1191`, `1192`, `1194`, `1195`, `1196`, `1197`, `1198`, `1199`, `1200`, `1201` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.99 |
| `TOKEN_P` | 99.98 |
| `TOKEN_R` | 99.99 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 92.98 |
| `SENTS_P` | 92.40 |
| `SENTS_R` | 93.56 |
| `TAG_ACC` | 94.79 |
| `POS_ACC` | 93.17 |
| `MORPH_ACC` | 95.90 |
| `DEP_UAS` | 86.16 |
| `DEP_LAS` | 78.38 |
| `LEMMA_ACC` | 98.05 |
|
patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm
|
patrickvonplaten
| 2021-12-10T15:49:13Z | 1,650 | 8 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"es",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: es
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
---
# Wav2Vec2-Large-XLSR-53-Spanish-With-LM
This is a model copy of [Wav2Vec2-Large-XLSR-53-Spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish)
that has language model support.
This model card can be seen as a demo for the [pyctcdecode](https://github.com/kensho-technologies/pyctcdecode) integration
with Transformers led by [this PR](https://github.com/huggingface/transformers/pull/14339). The PR explains in-detail how the
integration works.
In a nutshell: This PR adds a new Wav2Vec2WithLMProcessor class as drop-in replacement for Wav2Vec2Processor.
The only change from the existing ASR pipeline will be:
## Changes
```diff
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm"
sample = next(iter(load_dataset("common_voice", "es", split="test", streaming=True)))
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
-prediction_ids = torch.argmax(logits, dim=-1)
-transcription = processor.batch_decode(prediction_ids)
+transcription = processor.batch_decode(logits.numpy()).text
# => 'bien y qué regalo vas a abrir primero'
```
**Improvement**
This model has been compared on 512 speech samples from the Spanish Common Voice Test set and
gives a nice *20 %* performance boost:
The results can be reproduced by running *from this model repository*:
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm | **8.44%** | **2.93%** |
| jonatasgrosman/wav2vec2-large-xlsr-53-spanish | **10.20%** | **3.24%** |
```
bash run_ngram_wav2vec2.py 1 512
```
```
bash run_ngram_wav2vec2.py 0 512
```
with `run_ngram_wav2vec2.py` being
https://huggingface.co/patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm/blob/main/run_ngram_wav2vec2.py
|
explosion/en_udv25_englishewt_trf
|
explosion
| 2021-12-10T15:24:49Z | 7 | 1 |
spacy
|
[
"spacy",
"token-classification",
"en",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- en
license: cc-by-sa-4.0
model-index:
- name: en_udv25_englishewt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9636175051
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9693826668
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9690635285
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9735945316
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9190022676
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8942035228
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.906218656
---
UD v2.5 benchmarking pipeline for UD_English-EWT
| Feature | Description |
| --- | --- |
| **Name** | `en_udv25_englishewt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1760 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `GW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`morphologizer`** | `Number=Sing\|POS=PROPN`, `POS=PUNCT`, `Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `POS=ADP`, `Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=AUX\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `POS=VERB\|VerbForm=Ger`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NUM`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PROPN`, `Degree=Pos\|NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=DET`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADV`, `Degree=Cmp\|POS=ADV`, `Number=Sing\|POS=PRON`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV\|PronType=Dem`, `POS=ADV\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Degree=Sup\|POS=ADJ`, `POS=PRON\|PronType=Int`, `NumType=Mult\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=DET\|PronType=Int`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Poss=Yes\|PronType=Int`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=ADV\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Sup\|POS=ADV`, `POS=INTJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=X`, `POS=SYM`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=CCONJ`, `POS=SCONJ\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SYM`, `POS=DET\|Typo=Yes`, `Degree=Pos\|POS=PROPN`, `Abbr=Yes\|POS=ADP`, `POS=ADP\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Abbr=Yes\|POS=PART`, `POS=AUX\|Typo=Yes\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ\|Typo=Yes`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=NOUN\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Abbr=Yes\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=NOUN`, `POS=CCONJ\|Typo=Yes`, `Number=Sing\|POS=X`, `Abbr=Yes\|POS=SCONJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADV\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NUM`, `POS=PRON\|Poss=Yes\|PronType=Rel`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=INTJ`, `Abbr=Yes\|POS=VERB\|VerbForm=Inf`, `Abbr=Yes\|Number=Sing\|POS=PRON`, `Abbr=Yes\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=PRON\|PronType=Int`, `Abbr=Yes\|POS=AUX\|VerbForm=Fin`, `Abbr=Yes\|POS=ADV`, `Abbr=Yes\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADJ`, `Number=Plur\|POS=NOUN\|Typo=Yes`, `POS=DET\|PronType=Rel\|Typo=Yes`, `POS=PART\|Typo=Yes`, `Abbr=Yes\|POS=DET`, `POS=DET\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Degree=Pos\|NumType=Ord\|POS=ADV`, `POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `POS=PRON\|Typo=Yes`, `Number=Plur\|POS=VERB`, `POS=VERB\|Typo=Yes\|VerbForm=Inf`, `Mood=Ind\|POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Inf`, `Abbr=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Abbr=Yes\|Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part`, `Mood=Ind\|POS=AUX\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|Typo=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Abbr=Yes\|POS=PRON`, `Abbr=Yes\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:predet`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:npmod`, `nmod:poss`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:npmod`, `obl:tmod`, `orphan`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `10`, `12`, `13`, `15`, `17`, `19`, `21`, `23`, `26`, `28`, `29`, `30`, `32`, `34`, `36`, `39`, `42`, `43`, `45`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `61`, `62`, `64`, `67`, `69`, `71`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `1`, `89`, `90`, `92`, `94`, `95`, `97`, `99`, `101`, `105`, `106`, `108`, `110`, `111`, `112`, `113`, `115`, `117`, `119`, `121`, `122`, `124`, `125`, `126`, `127`, `128`, `129`, `130`, `132`, `133`, `136`, `137`, `138`, `139`, `142`, `143`, `145`, `150`, `153`, `156`, `157`, `159`, `162`, `163`, `164`, `167`, `169`, `171`, `174`, `176`, `177`, `179`, `182`, `184`, `187`, `189`, `191`, `193`, `194`, `197`, `198`, `201`, `203`, `204`, `208`, `210`, `211`, `213`, `214`, `215`, `217`, `220`, `221`, `224`, `225`, `227`, `229`, `231`, `233`, `235`, `236`, `239`, `241`, `242`, `244`, `246`, `247`, `248`, `249`, `250`, `251`, `252`, `254`, `256`, `258`, `259`, `261`, `263`, `264`, `265`, `266`, `269`, `270`, `272`, `273`, `274`, `276`, `277`, `278`, `281`, `283`, `72`, `285`, `287`, `288`, `291`, `292`, `293`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `304`, `305`, `306`, `307`, `308`, `309`, `310`, `311`, `315`, `316`, `317`, `318`, `319`, `320`, `322`, `88`, `324`, `327`, `328`, `332`, `336`, `337`, `338`, `340`, `341`, `342`, `343`, `344`, `347`, `349`, `350`, `351`, `352`, `353`, `354`, `356`, `357`, `358`, `360`, `361`, `362`, `363`, `364`, `365`, `366`, `367`, `369`, `373`, `375`, `376`, `377`, `378`, `379`, `144`, `381`, `383`, `384`, `386`, `387`, `389`, `390`, `393`, `394`, `396`, `397`, `398`, `399`, `402`, `405`, `407`, `408`, `410`, `411`, `412`, `413`, `414`, `416`, `418`, `419`, `421`, `422`, `423`, `424`, `426`, `428`, `429`, `430`, `432`, `434`, `436`, `437`, `438`, `441`, `442`, `443`, `444`, `445`, `446`, `447`, `260`, `448`, `452`, `453`, `454`, `455`, `456`, `457`, `458`, `460`, `461`, `462`, `463`, `464`, `465`, `466`, `467`, `409`, `468`, `469`, `470`, `471`, `472`, `473`, `476`, `477`, `481`, `484`, `486`, `487`, `488`, `491`, `492`, `493`, `494`, `495`, `496`, `497`, `498`, `499`, `500`, `503`, `504`, `506`, `507`, `508`, `509`, `511`, `512`, `513`, `514`, `515`, `516`, `517`, `518`, `519`, `107`, `520`, `521`, `522`, `523`, `524`, `525`, `526`, `527`, `528`, `529`, `531`, `533`, `534`, `537`, `538`, `542`, `543`, `544`, `545`, `546`, `547`, `548`, `549`, `550`, `553`, `554`, `557`, `558`, `560`, `561`, `564`, `565`, `566`, `567`, `568`, `569`, `570`, `571`, `572`, `573`, `574`, `575`, `576`, `577`, `578`, `579`, `580`, `581`, `582`, `583`, `584`, `586`, `587`, `588`, `589`, `590`, `591`, `592`, `594`, `595`, `76`, `596`, `597`, `598`, `600`, `601`, `602`, `149`, `603`, `604`, `605`, `606`, `607`, `608`, `609`, `490`, `610`, `611`, `96`, `255`, `614`, `617`, `619`, `620`, `621`, `622`, `623`, `624`, `626`, `627`, `628`, `630`, `632`, `633`, `635`, `638`, `639`, `640`, `641`, `644`, `647`, `650`, `654`, `657`, `659`, `173`, `661`, `662`, `663`, `664`, `668`, `669`, `670`, `671`, `673`, `676`, `677`, `678`, `680`, `682`, `158`, `91`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `691`, `692`, `693`, `695`, `697`, `699`, `700`, `701`, `183`, `702`, `703`, `704`, `706`, `707`, `709`, `711`, `713`, `485`, `714`, `716`, `717`, `718`, `719`, `720`, `721`, `722`, `723`, `724`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `735`, `736`, `737`, `738`, `739`, `741`, `742`, `744`, `745`, `746`, `748`, `749`, `752`, `753`, `754`, `755`, `756`, `757`, `759`, `760`, `762`, `763`, `764`, `765`, `768`, `769`, `772`, `774`, `775`, `776`, `777`, `781`, `782`, `783`, `784`, `785`, `786`, `787`, `788`, `789`, `78`, `791`, `794`, `795`, `796`, `798`, `800`, `801`, `802`, `803`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `815`, `816`, `817`, `818`, `819`, `820`, `822`, `823`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `131`, `831`, `631`, `832`, `833`, `834`, `838`, `839`, `841`, `842`, `843`, `844`, `845`, `846`, `847`, `849`, `792`, `850`, `851`, `852`, `853`, `856`, `857`, `858`, `859`, `860`, `861`, `862`, `864`, `865`, `715`, `866`, `867`, `868`, `869`, `870`, `871`, `872`, `873`, `877`, `878`, `879`, `881`, `882`, `883`, `885`, `886`, `887`, `888`, `848`, `889`, `890`, `891`, `892`, `893`, `894`, `895`, `896`, `900`, `901`, `902`, `903`, `905`, `907`, `908`, `911`, `912`, `913`, `914`, `918`, `919`, `920`, `923`, `924`, `925`, `926`, `927`, `928`, `929`, `930`, `931`, `932`, `933`, `52`, `934`, `935`, `937`, `939`, `941`, `943`, `944`, `945`, `946`, `947`, `950`, `951`, `952`, `954`, `955`, `956`, `957`, `961`, `962`, `963`, `964`, `965`, `966`, `967`, `968`, `969`, `970`, `971`, `972`, `973`, `974`, `975`, `976`, `977`, `374`, `978`, `979`, `980`, `982`, `983`, `986`, `987`, `988`, `989`, `990`, `991`, `992`, `993`, `994`, `995`, `996`, `998`, `1000`, `1001`, `1002`, `1003`, `1004`, `1005`, `1006`, `1007`, `1008`, `1009`, `1012`, `1016`, `1020`, `1021`, `1023`, `1024`, `1025`, `1031`, `1032`, `1033`, `1034`, `1035`, `1036`, `1037`, `1038`, `1039`, `1041`, `1042`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1050`, `1051`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1063`, `1064`, `1065`, `642`, `1066`, `1067`, `1068`, `1069`, `1071`, `1072`, `1073`, `1074`, `1079`, `1080`, `1081`, `1082`, `1083`, `1085`, `1087`, `1088`, `1089`, `1090`, `559`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1101`, `1102`, `1103`, `1104`, `1105`, `1106`, `1107`, `1109`, `1110`, `1112`, `1113`, `1114`, `1115`, `1116`, `1117`, `1118`, `1119`, `1122`, `1123`, `1124`, `1126`, `1127`, `1128`, `1129`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1141`, `1142`, `1143`, `1144`, `1145`, `1146`, `1147`, `1150`, `1152`, `1161`, `1162`, `1163`, `1164`, `1165`, `1169`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1181`, `1182`, `1183`, `1186`, `1187`, `1188`, `1190`, `1191`, `1192`, `1111`, `1193`, `1194`, `1195`, `1196`, `1198`, `1200`, `1201`, `1202`, `1203`, `1204`, `1208`, `1211`, `1213`, `1215`, `1216`, `1217`, `1218`, `1219`, `1221`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1230`, `1231`, `1232`, `1234`, `1235`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1257`, `1258`, `1260`, `1262`, `1263`, `1264`, `1265`, `1266`, `1267`, `1269`, `1272`, `7`, `1274`, `1276`, `1277`, `1278`, `1280`, `1282`, `1283`, `1284`, `1285`, `1286`, `1287`, `1289`, `1290`, `1291`, `1293`, `1295`, `1298`, `1302`, `1303`, `1311`, `1312`, `1313`, `1314`, `1316`, `1318`, `1317`, `1320`, `1322`, `1323`, `192`, `1324`, `1326`, `1327`, `234`, `1329`, `1330`, `1331`, `1332`, `747`, `1333`, `1334`, `1335`, `1336`, `1337`, `1339`, `1340`, `1341`, `1342`, `1344`, `1346`, `1350`, `1351`, `1352`, `1355`, `1357`, `1358`, `1360`, `1361`, `1362`, `1363`, `1364`, `1365`, `1367`, `1369`, `1370`, `1371`, `1372`, `1373`, `1374`, `1375`, `1376`, `1378`, `1380`, `1382`, `1384`, `1385`, `1386`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1399`, `1401`, `1402`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1411`, `1412`, `1413`, `1414`, `1416`, `1418`, `1419`, `1420`, `1421`, `1422`, `188`, `1423`, `1424`, `1425`, `1426`, `1428`, `1429`, `1430`, `1431`, `1432`, `1433`, `1434`, `1435`, `148`, `1436`, `1439`, `1440`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1455`, `1456`, `1457`, `1458`, `1459`, `1460`, `1461`, `1462`, `1463`, `1464`, `1466`, `1467`, `1468`, `1469`, `1470`, `1471`, `1472`, `1474`, `1475`, `1478`, `1481`, `1484`, `1486`, `1488`, `1489`, `1473`, `1490`, `1492`, `1493`, `1494`, `1495`, `1496`, `1497`, `1498`, `1499`, `1500`, `1501`, `1502`, `1503`, `1504`, `1505`, `44`, `1506`, `1511`, `1513`, `1515`, `1517`, `1518`, `1522`, `1523`, `1525`, `1528`, `1530`, `1531`, `1532`, `1534`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `1543`, `1546`, `1547`, `1548`, `1549`, `1551`, `1552`, `1555`, `1556`, `1557`, `1558`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1573`, `1574`, `1575`, `1576`, `1577`, `1578`, `1579`, `1580`, `1581`, `1582`, `1583`, `1584`, `1585`, `1586`, `1588`, `1590`, `1591`, `1592`, `1594`, `1597`, `1598`, `1599`, `1601`, `168`, `1602`, `1603`, `1605`, `1607`, `1608`, `1611`, `1612`, `1613`, `1614`, `1615`, `1616`, `1617`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1632`, `1554`, `1633`, `1634`, `1635`, `1636`, `1637`, `1638`, `1639`, `1642`, `1647`, `1648`, `1649`, `1651`, `1653`, `1654`, `1655`, `1657`, `1658`, `1659`, `1660`, `1661`, `1662`, `1663`, `1664`, `1665`, `1666`, `1667`, `1668`, `1669`, `1670`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1687`, `1688`, `1689`, `1690`, `1691`, `1692`, `1693`, `1694`, `1695`, `1696`, `1697`, `1698`, `1699`, `1700`, `1701`, `1702`, `1704`, `1705`, `1706`, `1707`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1716`, `1717`, `1718`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1730`, `1732`, `1734`, `1735`, `1736`, `1737`, `1738`, `1740`, `1742`, `1743`, `1744`, `1745`, `1746`, `1747`, `1748`, `1749`, `1750`, `1751`, `1754`, `1755`, `1756`, `1758`, `1760`, `1761`, `1762`, `1763`, `1766`, `1767`, `1768`, `1769`, `1770`, `1772`, `1775`, `1778`, `1779`, `1784`, `1787`, `1788`, `1789`, `1790`, `1791`, `1793`, `1795`, `1796`, `1798`, `1800`, `1804`, `1805`, `1806`, `1807`, `1808`, `1809`, `1810`, `1811`, `1812`, `1813`, `1814`, `1815`, `1816`, `1818`, `1821`, `1822`, `1823`, `1824`, `1825`, `1826`, `1827`, `1828`, `1831`, `1832`, `1833`, `1834`, `1835`, `1836`, `1837`, `1838`, `1839`, `1840`, `1841`, `1842`, `1843`, `1844`, `1846`, `1847`, `1848`, `1849`, `1850`, `1851`, `1852`, `1853`, `1855`, `1857`, `1858`, `1859`, `1860`, `1861`, `1862`, `1863`, `1866`, `1867`, `1868`, `1869`, `1872`, `1873`, `1876`, `1877`, `1878`, `1879`, `1880`, `1881`, `1883`, `1884`, `1886`, `1887`, `1888`, `1893`, `1752`, `1896`, `1897`, `1899`, `1900`, `1901`, `1906`, `1907`, `1908`, `1910`, `1911`, `1912`, `1913`, `1916`, `1917`, `1918`, `1919`, `1920`, `1922`, `1923`, `1925`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1120`, `1934`, `1935`, `1936`, `1937`, `1938`, `1939`, `1940`, `1941`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1951`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1961`, `1962`, `1963`, `1964`, `1965`, `1966`, `1967`, `1968`, `1969`, `1970`, `1971`, `1972`, `1973`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1982`, `1985`, `1987`, `1988`, `1989`, `1990`, `1992`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2003`, `2006`, `152`, `2007`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2022`, `2023`, `2024`, `2025`, `2026`, `2029`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2037`, `2038`, `2039`, `2040`, `2041`, `2042`, `2043`, `2044`, `2045`, `2047` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.15 |
| `TOKEN_P` | 99.18 |
| `TOKEN_R` | 99.11 |
| `TOKEN_ACC` | 99.83 |
| `SENTS_F` | 90.62 |
| `SENTS_P` | 90.99 |
| `SENTS_R` | 90.26 |
| `TAG_ACC` | 96.36 |
| `POS_ACC` | 96.94 |
| `MORPH_ACC` | 96.91 |
| `DEP_UAS` | 91.90 |
| `DEP_LAS` | 89.42 |
| `LEMMA_ACC` | 97.36 |
|
explosion/nl_udv25_dutchlassysmall_trf
|
explosion
| 2021-12-10T14:38:34Z | 4 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nl",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nl
license: cc-by-sa-4.0
model-index:
- name: nl_udv25_dutchlassysmall_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9592982456
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9636842105
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9772747214
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9670628481
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9022862512
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8620941643
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9183673469
---
UD v2.5 benchmarking pipeline for UD_Dutch-LassySmall
| Feature | Description |
| --- | --- |
| **Name** | `nl_udv25_dutchlassysmall_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1070 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ\|nom\|basis\|met-e\|mv-n`, `ADJ\|nom\|basis\|met-e\|zonder-n\|bijz`, `ADJ\|nom\|basis\|met-e\|zonder-n\|stan`, `ADJ\|nom\|basis\|zonder\|mv-n`, `ADJ\|nom\|basis\|zonder\|zonder-n`, `ADJ\|nom\|comp\|met-e\|mv-n`, `ADJ\|nom\|sup\|met-e\|mv-n`, `ADJ\|nom\|sup\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|zonder\|zonder-n`, `ADJ\|postnom\|basis\|zonder`, `ADJ\|prenom\|basis\|met-e\|bijz`, `ADJ\|prenom\|basis\|met-e\|stan`, `ADJ\|prenom\|basis\|zonder`, `ADJ\|prenom\|comp\|met-e\|stan`, `ADJ\|prenom\|comp\|zonder`, `ADJ\|prenom\|sup\|met-e\|stan`, `ADJ\|vrij\|basis\|zonder`, `ADJ\|vrij\|comp\|zonder`, `ADJ\|vrij\|sup\|zonder`, `BW`, `LET`, `LID\|bep\|gen\|evmo`, `LID\|bep\|gen\|rest3`, `LID\|bep\|stan\|evon`, `LID\|bep\|stan\|rest`, `LID\|onbep\|stan\|agr`, `N\|eigen\|ev\|basis\|gen`, `N\|eigen\|ev\|basis\|genus\|stan`, `N\|eigen\|ev\|basis\|onz\|stan`, `N\|eigen\|ev\|basis\|zijd\|stan`, `N\|eigen\|ev\|dim\|onz\|stan`, `N\|eigen\|mv\|basis`, `N\|soort\|ev\|basis\|dat`, `N\|soort\|ev\|basis\|gen`, `N\|soort\|ev\|basis\|genus\|stan`, `N\|soort\|ev\|basis\|onz\|stan`, `N\|soort\|ev\|basis\|zijd\|stan`, `N\|soort\|ev\|dim\|onz\|stan`, `N\|soort\|mv\|basis`, `N\|soort\|mv\|dim`, `SPEC\|afgebr`, `SPEC\|afk`, `SPEC\|deeleigen`, `SPEC\|enof`, `SPEC\|symb`, `SPEC\|vreemd`, `TSW`, `TW\|hoofd\|nom\|mv-n\|basis`, `TW\|hoofd\|nom\|zonder-n\|basis`, `TW\|hoofd\|nom\|zonder-n\|dim`, `TW\|hoofd\|prenom\|stan`, `TW\|hoofd\|vrij`, `TW\|rang\|nom\|zonder-n`, `TW\|rang\|prenom\|stan`, `VG\|neven`, `VG\|onder`, `VNW\|aanw\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|aanw\|adv-pron\|stan\|red\|3\|getal`, `VNW\|aanw\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|aanw\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|stan\|prenom\|met-e\|rest`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|agr`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|evon`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|rest`, `VNW\|aanw\|pron\|gen\|vol\|3m\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3o\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3\|getal`, `VNW\|betr\|det\|stan\|nom\|zonder\|zonder-n`, `VNW\|betr\|pron\|stan\|vol\|3\|ev`, `VNW\|betr\|pron\|stan\|vol\|persoon\|getal`, `VNW\|bez\|det\|stan\|red\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|zonder\|evon`, `VNW\|bez\|det\|stan\|vol\|2\|getal\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3m\|ev\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3p\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3v\|ev\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3\|mv\|prenom\|zonder\|agr`, `VNW\|onbep\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|onbep\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|onbep\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|agr`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|evz`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|mv`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|rest`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|agr`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|evon`, `VNW\|onbep\|det\|stan\|vrij\|zonder`, `VNW\|onbep\|grad\|gen\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|mv\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|basis`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|sup`, `VNW\|onbep\|pron\|stan\|vol\|3o\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3p\|ev`, `VNW\|pers\|pron\|nomin\|nadr\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|red\|1\|mv`, `VNW\|pers\|pron\|nomin\|red\|2v\|ev`, `VNW\|pers\|pron\|nomin\|red\|3p\|ev\|masc`, `VNW\|pers\|pron\|nomin\|vol\|1\|ev`, `VNW\|pers\|pron\|nomin\|vol\|1\|mv`, `VNW\|pers\|pron\|nomin\|vol\|2b\|getal`, `VNW\|pers\|pron\|nomin\|vol\|3p\|mv`, `VNW\|pers\|pron\|nomin\|vol\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|3p\|mv`, `VNW\|pers\|pron\|obl\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|3\|getal\|fem`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|fem`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|onz`, `VNW\|pers\|pron\|stan\|red\|3\|mv`, `VNW\|pr\|pron\|obl\|red\|1\|ev`, `VNW\|pr\|pron\|obl\|red\|2v\|getal`, `VNW\|pr\|pron\|obl\|vol\|1\|ev`, `VNW\|pr\|pron\|obl\|vol\|1\|mv`, `VNW\|recip\|pron\|obl\|vol\|persoon\|mv`, `VNW\|refl\|pron\|obl\|nadr\|3\|getal`, `VNW\|refl\|pron\|obl\|red\|3\|getal`, `VNW\|vb\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|vb\|pron\|stan\|vol\|3o\|ev`, `VNW\|vb\|pron\|stan\|vol\|3p\|getal`, `VZ\|fin`, `VZ\|init`, `VZ\|versm`, `WW\|inf\|nom\|zonder\|zonder-n`, `WW\|inf\|vrij\|zonder`, `WW\|od\|nom\|met-e\|mv-n`, `WW\|od\|nom\|met-e\|zonder-n`, `WW\|od\|prenom\|met-e`, `WW\|od\|prenom\|zonder`, `WW\|od\|vrij\|zonder`, `WW\|pv\|conj\|ev`, `WW\|pv\|tgw\|ev`, `WW\|pv\|tgw\|met-t`, `WW\|pv\|tgw\|mv`, `WW\|pv\|verl\|ev`, `WW\|pv\|verl\|mv`, `WW\|vd\|nom\|met-e\|mv-n`, `WW\|vd\|nom\|met-e\|zonder-n`, `WW\|vd\|prenom\|met-e`, `WW\|vd\|prenom\|zonder`, `WW\|vd\|vrij\|zonder` |
| **`morphologizer`** | `Definite=Def\|POS=DET`, `Degree=Pos\|POS=ADJ`, `POS=CCONJ`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `POS=DET`, `Degree=Sup\|POS=ADJ`, `Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Gender=Com\|Number=Sing\|POS=PROPN`, `POS=SYM`, `POS=NUM`, `POS=ADP`, `Definite=Ind\|POS=DET`, `Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `POS=ADV`, `Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=PROPN`, `Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `POS=VERB\|VerbForm=Part`, `POS=ADJ`, `POS=X`, `Gender=Com,Neut\|Number=Sing\|POS=PROPN`, `Foreign=Yes\|POS=X`, `POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PROPN`, `Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Rel`, `POS=AUX\|VerbForm=Inf`, `POS=SCONJ`, `Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=X`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON\|Person=3\|PronType=Dem`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PRON\|PronType=Dem`, `POS=PRON\|Person=3\|PronType=Int`, `Gender=Com,Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Rcp`, `POS=AUX\|VerbForm=Part`, `Number=Sing\|POS=PROPN`, `Case=Nom\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `4`, `6`, `8`, `10`, `13`, `15`, `17`, `19`, `21`, `22`, `25`, `27`, `29`, `30`, `32`, `36`, `37`, `39`, `41`, `42`, `45`, `47`, `49`, `51`, `53`, `55`, `58`, `59`, `61`, `63`, `65`, `66`, `70`, `72`, `74`, `76`, `78`, `79`, `80`, `82`, `84`, `86`, `89`, `92`, `94`, `96`, `97`, `99`, `101`, `104`, `107`, `109`, `110`, `112`, `114`, `116`, `117`, `118`, `119`, `120`, `121`, `124`, `126`, `127`, `130`, `133`, `134`, `135`, `137`, `139`, `142`, `143`, `145`, `148`, `152`, `154`, `156`, `159`, `160`, `163`, `165`, `167`, `168`, `172`, `175`, `176`, `178`, `182`, `184`, `187`, `189`, `190`, `192`, `194`, `195`, `197`, `199`, `200`, `203`, `205`, `207`, `208`, `209`, `212`, `214`, `215`, `217`, `219`, `220`, `221`, `224`, `227`, `228`, `230`, `232`, `233`, `237`, `238`, `240`, `241`, `242`, `244`, `245`, `248`, `249`, `250`, `251`, `252`, `255`, `258`, `259`, `260`, `262`, `266`, `268`, `270`, `272`, `275`, `278`, `280`, `281`, `282`, `283`, `285`, `287`, `290`, `291`, `293`, `297`, `299`, `300`, `301`, `302`, `306`, `307`, `309`, `310`, `311`, `313`, `314`, `316`, `318`, `319`, `320`, `324`, `329`, `332`, `333`, `335`, `337`, `339`, `343`, `346`, `347`, `348`, `352`, `353`, `357`, `358`, `359`, `360`, `362`, `363`, `366`, `369`, `372`, `374`, `377`, `378`, `379`, `381`, `382`, `386`, `387`, `391`, `395`, `397`, `399`, `400`, `401`, `403`, `406`, `407`, `408`, `409`, `410`, `411`, `412`, `414`, `415`, `417`, `419`, `421`, `423`, `426`, `427`, `428`, `431`, `433`, `435`, `437`, `439`, `441`, `444`, `446`, `448`, `451`, `453`, `455`, `457`, `458`, `460`, `462`, `463`, `465`, `467`, `469`, `470`, `472`, `474`, `475`, `478`, `482`, `483`, `485`, `489`, `491`, `492`, `493`, `495`, `499`, `500`, `502`, `506`, `508`, `511`, `514`, `518`, `520`, `522`, `525`, `527`, `528`, `532`, `534`, `535`, `538`, `540`, `541`, `544`, `546`, `547`, `548`, `551`, `552`, `556`, `558`, `559`, `560`, `563`, `565`, `567`, `569`, `570`, `573`, `577`, `579`, `581`, `584`, `587`, `589`, `591`, `595`, `597`, `599`, `600`, `601`, `602`, `606`, `608`, `610`, `612`, `614`, `615`, `616`, `618`, `619`, `620`, `621`, `622`, `626`, `628`, `629`, `631`, `632`, `634`, `635`, `636`, `637`, `639`, `641`, `644`, `649`, `653`, `654`, `656`, `657`, `658`, `661`, `663`, `664`, `665`, `666`, `667`, `668`, `669`, `670`, `674`, `676`, `678`, `679`, `682`, `685`, `687`, `689`, `692`, `694`, `696`, `699`, `702`, `703`, `704`, `705`, `706`, `708`, `709`, `711`, `712`, `714`, `715`, `717`, `718`, `719`, `722`, `725`, `729`, `730`, `733`, `736`, `738`, `739`, `743`, `745`, `746`, `749`, `750`, `328`, `752`, `754`, `755`, `757`, `760`, `761`, `762`, `764`, `767`, `769`, `770`, `773`, `777`, `778`, `781`, `783`, `784`, `785`, `786`, `789`, `790`, `793`, `794`, `795`, `798`, `800`, `162`, `803`, `806`, `809`, `812`, `813`, `815`, `817`, `818`, `819`, `821`, `823`, `824`, `825`, `827`, `830`, `832`, `834`, `836`, `838`, `648`, `839`, `841`, `843`, `844`, `846`, `848`, `849`, `851`, `852`, `853`, `854`, `855`, `857`, `859`, `860`, `861`, `863`, `865`, `867`, `869`, `872`, `873`, `875`, `877`, `879`, `881`, `883`, `885`, `886`, `887`, `888`, `890`, `893`, `894`, `896`, `899`, `901`, `902`, `904`, `906`, `908`, `911`, `913`, `915`, `918`, `919`, `920`, `921`, `926`, `928`, `930`, `931`, `932`, `933`, `934`, `396`, `935`, `936`, `938`, `939`, `940`, `942`, `945`, `946`, `947`, `948`, `950`, `951`, `954`, `956`, `957`, `960`, `962`, `964`, `967`, `969`, `970`, `971`, `975`, `976`, `977`, `978`, `979`, `980`, `981`, `982`, `983`, `984`, `985`, `988`, `990`, `991`, `995`, `997`, `998`, `840`, `999`, `1000`, `1002`, `1003`, `1004`, `1006`, `1008`, `1009`, `1013`, `1017`, `862`, `1019`, `1020`, `1021`, `1024`, `1025`, `1027`, `1028`, `1029`, `1031`, `1033`, `1036`, `1039`, `1040`, `1041`, `1043`, `1044`, `1047`, `1048`, `1052`, `1055`, `1056`, `1057`, `1061`, `1062`, `1063`, `1066`, `1069`, `507`, `1071`, `1072`, `1074`, `1075`, `1076`, `1078`, `1079`, `1080`, `1081`, `1082`, `1085`, `1086`, `1087`, `1089`, `1090`, `1091`, `1093`, `1094`, `1097`, `1100`, `1102`, `1103`, `1104`, `1106`, `1107`, `1108`, `1109`, `1111`, `1113`, `1115`, `1116`, `1119`, `1121`, `1122`, `1123`, `1125`, `1126`, `1127`, `1128`, `1129`, `1131`, `1132`, `1135`, `1138`, `1140`, `1141`, `1143`, `1144`, `1145`, `1147`, `1150`, `1151`, `1152`, `1154`, `1155`, `1158`, `1159`, `1160`, `1161`, `1162`, `1164`, `1166`, `1167`, `1169`, `1170`, `1172`, `1175`, `1177`, `510`, `1178`, `1181`, `1182`, `1183`, `1185`, `1187`, `1189`, `1190`, `1191`, `1192`, `1194`, `1197`, `1201`, `1202`, `1203`, `1206`, `1208`, `1209`, `1210`, `1213`, `1217`, `1218`, `1220`, `1221`, `1223`, `1225`, `1227`, `1229`, `1231`, `1233`, `1236`, `1238`, `1240`, `1241`, `1244`, `1245`, `1247`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1257`, `1259`, `1261`, `1262`, `1264`, `1266`, `1268`, `1271`, `1273`, `1274`, `1276`, `1278`, `1279`, `48`, `1280`, `1281`, `1283`, `1248`, `1284`, `1286`, `1287`, `1289`, `1290`, `1292`, `884`, `1293`, `1295`, `1296`, `1298`, `1299`, `1300`, `1302`, `1303`, `1304`, `1305`, `1306`, `1307`, `1309`, `1311`, `1313`, `1316`, `1317`, `1318`, `1319`, `1321`, `206`, `1322`, `1323`, `1328`, `1330`, `1331`, `1332`, `1334`, `1336`, `1338`, `1341`, `1342`, `1343`, `1344`, `1345`, `1346`, `1347`, `1348`, `1350`, `1352`, `1354`, `1356`, `1357`, `1358`, `1359`, `1360`, `1361`, `864`, `1363`, `1364`, `1366`, `1367`, `1368`, `1370`, `1371`, `1372`, `1374`, `1376`, `1377`, `1378`, `1379`, `1381`, `1382`, `1383`, `1384`, `1386`, `1387`, `1389`, `1390`, `1391`, `1393`, `1396`, `1397`, `1398`, `1399`, `1403`, `1404`, `1406`, `1407`, `1410`, `1412`, `1415`, `1416`, `1419`, `1421`, `1422`, `1423`, `1424`, `1425`, `1427`, `1429`, `1432`, `1433`, `1437`, `1440`, `1442`, `1447`, `1450`, `1452`, `1454`, `1457`, `1458`, `1459`, `1460`, `1462`, `1463`, `1464`, `1466`, `1468`, `1469`, `1471`, `1473`, `1475`, `1476`, `1478`, `1479`, `1480`, `1481`, `1482`, `1483`, `1484` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.91 |
| `TOKEN_P` | 99.88 |
| `TOKEN_R` | 99.94 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 91.84 |
| `SENTS_P` | 90.52 |
| `SENTS_R` | 93.20 |
| `TAG_ACC` | 95.93 |
| `POS_ACC` | 96.37 |
| `MORPH_ACC` | 97.73 |
| `DEP_UAS` | 90.23 |
| `DEP_LAS` | 86.21 |
| `LEMMA_ACC` | 96.71 |
|
explosion/nl_udv25_dutchalpino_trf
|
explosion
| 2021-12-10T13:52:44Z | 6 | 1 |
spacy
|
[
"spacy",
"token-classification",
"nl",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nl
license: cc-by-sa-4.0
model-index:
- name: nl_udv25_dutchalpino_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9559890516
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9766694183
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9678932963
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.964639444
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9465618861
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9227973676
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9084457062
---
UD v2.5 benchmarking pipeline for UD_Dutch-Alpino
| Feature | Description |
| --- | --- |
| **Name** | `nl_udv25_dutchalpino_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1712 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ\|nom\|basis\|met-e\|mv-n`, `ADJ\|nom\|basis\|met-e\|zonder-n\|stan`, `ADJ\|nom\|basis\|zonder\|zonder-n`, `ADJ\|nom\|comp\|met-e\|mv-n`, `ADJ\|nom\|comp\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|met-e\|mv-n`, `ADJ\|nom\|sup\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|zonder\|zonder-n`, `ADJ\|postnom\|basis\|met-s`, `ADJ\|postnom\|basis\|zonder`, `ADJ\|postnom\|comp\|met-s`, `ADJ\|prenom\|basis\|met-e\|stan`, `ADJ\|prenom\|basis\|zonder`, `ADJ\|prenom\|comp\|met-e\|stan`, `ADJ\|prenom\|comp\|zonder`, `ADJ\|prenom\|sup\|met-e\|stan`, `ADJ\|vrij\|basis\|zonder`, `ADJ\|vrij\|comp\|zonder`, `ADJ\|vrij\|dim\|zonder`, `ADJ\|vrij\|sup\|zonder`, `BW`, `LET`, `LID\|bep\|dat\|evmo`, `LID\|bep\|gen\|evmo`, `LID\|bep\|gen\|rest3`, `LID\|bep\|stan\|evon`, `LID\|bep\|stan\|rest`, `LID\|onbep\|stan\|agr`, `N\|eigen\|ev\|basis\|gen`, `N\|eigen\|ev\|basis\|genus\|stan`, `N\|eigen\|ev\|basis\|onz\|stan`, `N\|eigen\|ev\|basis\|zijd\|stan`, `N\|eigen\|ev\|dim\|onz\|stan`, `N\|eigen\|mv\|basis`, `N\|soort\|ev\|basis\|dat`, `N\|soort\|ev\|basis\|gen`, `N\|soort\|ev\|basis\|genus\|stan`, `N\|soort\|ev\|basis\|onz\|stan`, `N\|soort\|ev\|basis\|zijd\|stan`, `N\|soort\|ev\|dim\|onz\|stan`, `N\|soort\|mv\|basis`, `N\|soort\|mv\|dim`, `SPEC\|afgebr`, `SPEC\|afk`, `SPEC\|deeleigen`, `SPEC\|enof`, `SPEC\|meta`, `SPEC\|symb`, `SPEC\|vreemd`, `TSW`, `TW\|hoofd\|nom\|mv-n\|basis`, `TW\|hoofd\|nom\|mv-n\|dim`, `TW\|hoofd\|nom\|zonder-n\|basis`, `TW\|hoofd\|nom\|zonder-n\|dim`, `TW\|hoofd\|prenom\|stan`, `TW\|hoofd\|vrij`, `TW\|rang\|nom\|mv-n`, `TW\|rang\|nom\|zonder-n`, `TW\|rang\|prenom\|stan`, `VG\|neven`, `VG\|onder`, `VNW\|aanw\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|aanw\|adv-pron\|stan\|red\|3\|getal`, `VNW\|aanw\|det\|dat\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|dat\|prenom\|met-e\|evmo`, `VNW\|aanw\|det\|gen\|prenom\|met-e\|rest3`, `VNW\|aanw\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|aanw\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|stan\|prenom\|met-e\|rest`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|agr`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|evon`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|rest`, `VNW\|aanw\|det\|stan\|vrij\|zonder`, `VNW\|aanw\|pron\|gen\|vol\|3m\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3o\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3\|getal`, `VNW\|betr\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|betr\|det\|stan\|nom\|zonder\|zonder-n`, `VNW\|betr\|pron\|stan\|vol\|3\|ev`, `VNW\|betr\|pron\|stan\|vol\|persoon\|getal`, `VNW\|bez\|det\|gen\|vol\|3\|ev\|prenom\|met-e\|rest3`, `VNW\|bez\|det\|stan\|nadr\|2v\|mv\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|zonder\|evon`, `VNW\|bez\|det\|stan\|vol\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|2\|getal\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3m\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3v\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3\|mv\|prenom\|zonder\|agr`, `VNW\|onbep\|adv-pron\|gen\|red\|3\|getal`, `VNW\|onbep\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|onbep\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|onbep\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|agr`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|evz`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|mv`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|rest`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|agr`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|evon`, `VNW\|onbep\|det\|stan\|vrij\|zonder`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|sup`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|comp`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|mv\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|basis`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|sup`, `VNW\|onbep\|pron\|gen\|vol\|3p\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3o\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3p\|ev`, `VNW\|pers\|pron\|gen\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|nomin\|red\|1\|mv`, `VNW\|pers\|pron\|nomin\|red\|2v\|ev`, `VNW\|pers\|pron\|nomin\|red\|2\|getal`, `VNW\|pers\|pron\|nomin\|red\|3p\|ev\|masc`, `VNW\|pers\|pron\|nomin\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|nomin\|vol\|1\|ev`, `VNW\|pers\|pron\|nomin\|vol\|1\|mv`, `VNW\|pers\|pron\|nomin\|vol\|2b\|getal`, `VNW\|pers\|pron\|nomin\|vol\|2v\|ev`, `VNW\|pers\|pron\|nomin\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|vol\|3p\|mv`, `VNW\|pers\|pron\|nomin\|vol\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|obl\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|2v\|ev`, `VNW\|pers\|pron\|obl\|vol\|3p\|mv`, `VNW\|pers\|pron\|obl\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|3\|getal\|fem`, `VNW\|pers\|pron\|stan\|nadr\|2v\|mv`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|fem`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|onz`, `VNW\|pers\|pron\|stan\|red\|3\|mv`, `VNW\|pr\|pron\|obl\|nadr\|1\|ev`, `VNW\|pr\|pron\|obl\|nadr\|2v\|getal`, `VNW\|pr\|pron\|obl\|nadr\|2\|getal`, `VNW\|pr\|pron\|obl\|red\|1\|ev`, `VNW\|pr\|pron\|obl\|red\|2v\|getal`, `VNW\|pr\|pron\|obl\|vol\|1\|ev`, `VNW\|pr\|pron\|obl\|vol\|1\|mv`, `VNW\|pr\|pron\|obl\|vol\|2\|getal`, `VNW\|recip\|pron\|gen\|vol\|persoon\|mv`, `VNW\|recip\|pron\|obl\|vol\|persoon\|mv`, `VNW\|refl\|pron\|obl\|nadr\|3\|getal`, `VNW\|refl\|pron\|obl\|red\|3\|getal`, `VNW\|vb\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|vb\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|vb\|det\|stan\|prenom\|met-e\|rest`, `VNW\|vb\|det\|stan\|prenom\|zonder\|evon`, `VNW\|vb\|pron\|gen\|vol\|3m\|ev`, `VNW\|vb\|pron\|gen\|vol\|3p\|mv`, `VNW\|vb\|pron\|gen\|vol\|3v\|ev`, `VNW\|vb\|pron\|stan\|vol\|3o\|ev`, `VNW\|vb\|pron\|stan\|vol\|3p\|getal`, `VZ\|fin`, `VZ\|init`, `VZ\|versm`, `WW\|inf\|nom\|zonder\|zonder-n`, `WW\|inf\|prenom\|met-e`, `WW\|inf\|vrij\|zonder`, `WW\|od\|nom\|met-e\|mv-n`, `WW\|od\|nom\|met-e\|zonder-n`, `WW\|od\|prenom\|met-e`, `WW\|od\|prenom\|zonder`, `WW\|od\|vrij\|zonder`, `WW\|pv\|conj\|ev`, `WW\|pv\|tgw\|ev`, `WW\|pv\|tgw\|met-t`, `WW\|pv\|tgw\|mv`, `WW\|pv\|verl\|ev`, `WW\|pv\|verl\|mv`, `WW\|vd\|nom\|met-e\|mv-n`, `WW\|vd\|nom\|met-e\|zonder-n`, `WW\|vd\|prenom\|met-e`, `WW\|vd\|prenom\|zonder`, `WW\|vd\|vrij\|zonder` |
| **`morphologizer`** | `POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `POS=VERB\|VerbForm=Part`, `POS=PUNCT`, `Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `POS=NUM`, `Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Definite=Def\|POS=DET`, `Gender=Com\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Gender=Com\|Number=Sing\|POS=PROPN`, `POS=AUX\|VerbForm=Inf`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=DET`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|Person=3\|PronType=Prs`, `POS=CCONJ`, `Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Ind\|POS=DET`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Gender=Com,Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|POS=PRON\|PronType=Rcp`, `Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NOUN`, `POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Abbr=Yes\|POS=X`, `Gender=Com,Neut\|Number=Sing\|POS=PROPN`, `Degree=Sup\|POS=ADJ`, `Foreign=Yes\|POS=X`, `POS=ADJ`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X`, `POS=INTJ`, `Case=Gen\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|POS=PRON\|Person=2\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `4`, `5`, `10`, `12`, `14`, `16`, `20`, `24`, `25`, `28`, `30`, `32`, `34`, `38`, `40`, `42`, `45`, `47`, `48`, `51`, `52`, `54`, `55`, `57`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `76`, `78`, `81`, `83`, `84`, `86`, `89`, `91`, `92`, `96`, `99`, `101`, `104`, `106`, `109`, `114`, `115`, `117`, `118`, `120`, `121`, `123`, `126`, `129`, `131`, `133`, `137`, `139`, `141`, `143`, `145`, `146`, `148`, `151`, `154`, `158`, `160`, `163`, `165`, `98`, `168`, `169`, `171`, `174`, `177`, `181`, `183`, `185`, `187`, `191`, `194`, `196`, `199`, `202`, `206`, `209`, `211`, `212`, `214`, `217`, `61`, `219`, `221`, `224`, `226`, `227`, `229`, `231`, `235`, `236`, `238`, `240`, `242`, `245`, `247`, `251`, `253`, `257`, `260`, `262`, `264`, `263`, `266`, `267`, `271`, `273`, `274`, `275`, `278`, `280`, `281`, `282`, `284`, `286`, `291`, `293`, `296`, `298`, `299`, `301`, `303`, `307`, `308`, `310`, `312`, `314`, `316`, `318`, `320`, `322`, `324`, `325`, `328`, `330`, `332`, `333`, `336`, `337`, `339`, `342`, `344`, `345`, `349`, `352`, `353`, `354`, `355`, `357`, `360`, `362`, `363`, `365`, `368`, `372`, `373`, `375`, `377`, `379`, `383`, `385`, `387`, `389`, `390`, `392`, `394`, `396`, `398`, `402`, `404`, `407`, `409`, `9`, `411`, `412`, `414`, `417`, `418`, `420`, `422`, `423`, `425`, `429`, `431`, `432`, `435`, `437`, `438`, `440`, `442`, `444`, `448`, `450`, `451`, `454`, `456`, `457`, `459`, `461`, `463`, `464`, `466`, `468`, `469`, `472`, `473`, `476`, `477`, `478`, `480`, `484`, `487`, `489`, `491`, `493`, `496`, `497`, `500`, `502`, `505`, `506`, `508`, `510`, `511`, `512`, `515`, `518`, `523`, `525`, `528`, `531`, `532`, `534`, `306`, `535`, `537`, `539`, `542`, `544`, `548`, `552`, `555`, `556`, `557`, `558`, `559`, `560`, `564`, `566`, `538`, `567`, `569`, `570`, `572`, `573`, `575`, `577`, `579`, `580`, `582`, `583`, `584`, `587`, `588`, `591`, `593`, `595`, `597`, `599`, `601`, `602`, `605`, `607`, `609`, `611`, `614`, `616`, `617`, `618`, `620`, `621`, `622`, `623`, `625`, `626`, `629`, `632`, `634`, `636`, `638`, `641`, `642`, `644`, `647`, `648`, `650`, `651`, `654`, `655`, `657`, `659`, `660`, `663`, `664`, `665`, `666`, `668`, `671`, `673`, `675`, `676`, `677`, `678`, `33`, `681`, `683`, `686`, `688`, `691`, `692`, `694`, `697`, `698`, `699`, `700`, `701`, `702`, `703`, `706`, `709`, `712`, `713`, `714`, `717`, `720`, `721`, `682`, `723`, `725`, `728`, `730`, `733`, `735`, `738`, `740`, `741`, `743`, `744`, `745`, `748`, `750`, `751`, `753`, `756`, `759`, `760`, `762`, `763`, `764`, `767`, `771`, `773`, `774`, `776`, `234`, `777`, `779`, `364`, `781`, `382`, `783`, `784`, `785`, `786`, `788`, `791`, `793`, `794`, `796`, `799`, `693`, `801`, `804`, `805`, `807`, `808`, `811`, `813`, `814`, `815`, `816`, `818`, `820`, `821`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `833`, `834`, `836`, `839`, `841`, `845`, `847`, `848`, `849`, `850`, `851`, `856`, `858`, `859`, `860`, `861`, `862`, `864`, `866`, `869`, `871`, `873`, `875`, `876`, `877`, `878`, `881`, `882`, `883`, `884`, `885`, `887`, `889`, `890`, `670`, `891`, `894`, `896`, `899`, `900`, `902`, `904`, `908`, `910`, `913`, `915`, `916`, `918`, `921`, `923`, `924`, `926`, `927`, `931`, `934`, `936`, `938`, `940`, `942`, `943`, `946`, `949`, `950`, `951`, `952`, `953`, `954`, `955`, `958`, `959`, `961`, `962`, `963`, `69`, `964`, `967`, `969`, `972`, `973`, `975`, `977`, `978`, `980`, `982`, `983`, `984`, `986`, `988`, `989`, `991`, `992`, `993`, `995`, `996`, `290`, `998`, `999`, `1000`, `1001`, `1003`, `1005`, `1007`, `1008`, `1009`, `1011`, `1014`, `1015`, `1016`, `1017`, `1018`, `1019`, `1021`, `1022`, `1023`, `1024`, `1025`, `1027`, `1030`, `1031`, `1032`, `1033`, `1036`, `1038`, `1041`, `1045`, `1046`, `1048`, `1052`, `1053`, `1055`, `1056`, `1057`, `1059`, `1060`, `1062`, `1064`, `1068`, `1069`, `1070`, `1073`, `1075`, `1076`, `1077`, `1080`, `1083`, `1086`, `1087`, `1088`, `1091`, `1092`, `1095`, `1098`, `1099`, `1100`, `1101`, `1104`, `1108`, `1109`, `1111`, `1113`, `1114`, `1115`, `1116`, `1118`, `1120`, `1121`, `1122`, `1125`, `1126`, `1129`, `1132`, `1133`, `1136`, `1137`, `1138`, `1140`, `1141`, `1142`, `1143`, `1144`, `1146`, `1147`, `1148`, `1149`, `1150`, `71`, `1151`, `1154`, `1155`, `1156`, `1158`, `1160`, `1161`, `1162`, `1163`, `1164`, `1165`, `1166`, `1168`, `1171`, `1172`, `1174`, `1175`, `1176`, `1177`, `1178`, `1180`, `1183`, `1185`, `1189`, `1192`, `1194`, `1195`, `1196`, `1198`, `1199`, `1200`, `1201`, `1202`, `981`, `1203`, `1204`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1215`, `1216`, `1218`, `1219`, `1221`, `1223`, `1224`, `1225`, `1227`, `1228`, `1230`, `1231`, `1232`, `1234`, `1235`, `1236`, `1237`, `1239`, `1241`, `1243`, `1245`, `1247`, `1248`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1256`, `1257`, `1258`, `1259`, `1261`, `1263`, `1265`, `1266`, `1267`, `1270`, `1271`, `1272`, `1273`, `1275`, `1276`, `1277`, `1280`, `53`, `1281`, `1285`, `1286`, `1287`, `1288`, `1291`, `1292`, `1294`, `1296`, `1298`, `1300`, `1301`, `1303`, `1305`, `1306`, `1308`, `1309`, `1311`, `1312`, `1315`, `1318`, `1321`, `1322`, `1323`, `1326`, `1328`, `1330`, `1332`, `1334`, `1335`, `1337`, `1338`, `1340`, `1342`, `1343`, `1344`, `1346`, `1347`, `1348`, `1349`, `1350`, `1351`, `1353`, `1355`, `1356`, `1357`, `1359`, `1361`, `1362`, `1364`, `1365`, `1368`, `1369`, `1370`, `1371`, `1372`, `1376`, `1377`, `1380`, `1381`, `1382`, `1385`, `1386`, `1387`, `1388`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1396`, `1397`, `1399`, `1398`, `1403`, `1405`, `1407`, `1411`, `1413`, `1415`, `1416`, `1417`, `1418`, `1421`, `1422`, `1424`, `1425`, `1426`, `1427`, `1428`, `1429`, `1431`, `1432`, `1434`, `803`, `1435`, `1436`, `1437`, `1439`, `1441`, `1445`, `1448`, `1449`, `1450`, `1451`, `1453`, `1454`, `1456`, `1459`, `1460`, `1461`, `1464`, `1466`, `1467`, `1470`, `1473`, `1477`, `1479`, `1481`, `1482`, `1485`, `1487`, `1488`, `1490`, `1495`, `1496`, `1497`, `1499`, `1500`, `1501`, `1503`, `1504`, `1505`, `1506`, `1508`, `1509`, `1512`, `1514`, `1515`, `1516`, `1517`, `1269`, `1518`, `1520`, `1521`, `1523`, `1524`, `1526`, `1528`, `1529`, `1531`, `1532`, `1534`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `294`, `1542`, `1544`, `1546`, `1548`, `1549`, `1551`, `1554`, `1555`, `1556`, `1557`, `1559`, `1560`, `1563`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1575`, `1576`, `1577`, `1578`, `1580`, `1582`, `1583`, `1586`, `1589`, `1592`, `1593`, `1594`, `1595`, `1596`, `1597`, `1598`, `1600`, `1601`, `1602`, `1604`, `1605`, `1606`, `1607`, `1608`, `1609`, `1610`, `1611`, `1612`, `1614`, `1615`, `1617`, `1619`, `1620`, `1621`, `1622`, `1623`, `1626`, `1628`, `1629`, `1630`, `1631`, `1632`, `1634`, `1636`, `1638`, `1639`, `1641`, `1643`, `1644`, `1646`, `1647`, `1648`, `1649`, `1222`, `1650`, `1652`, `1653`, `1655`, `1656`, `1657`, `1659`, `1661`, `1662`, `1664`, `1667`, `1668`, `1670`, `1671`, `1673`, `1676`, `1677`, `1679`, `1680`, `1682`, `1685`, `1687`, `1689`, `1691`, `1692`, `1695`, `1696`, `1699`, `1701`, `1703`, `1705`, `1707`, `1708`, `1709`, `1710`, `1712`, `1714`, `1715`, `1718`, `1720`, `1721`, `1722`, `1724`, `1725`, `1726`, `1728`, `1729`, `1731`, `1732`, `1733`, `1734`, `1736`, `1739`, `1742`, `1743`, `1746`, `1748`, `1749`, `1751`, `1752`, `1753`, `1754`, `1395`, `1756`, `1759`, `1760`, `1761`, `1762`, `1764`, `1766`, `1768`, `1770`, `1772`, `1773`, `1774`, `1775`, `1776`, `1777`, `1779`, `1233`, `1781`, `1782`, `1783`, `1785`, `1786`, `1787`, `1789`, `1790`, `1791`, `1543`, `1792`, `1794`, `1795`, `1796`, `1798`, `1800`, `1801`, `1802`, `1804`, `1806`, `1807`, `1809`, `1812`, `1814`, `1817`, `1818`, `1738`, `1819`, `1822`, `1824`, `1825`, `1827`, `1828`, `0`, `1829`, `1830`, `1831`, `1833`, `1834`, `1835`, `1837`, `1839`, `1841`, `1844`, `1845`, `1846`, `1847`, `1848`, `1581`, `1849`, `1850`, `1852`, `1854`, `1855`, `1856`, `1857`, `1858`, `1859`, `1860`, `1862`, `1864`, `1866`, `1867`, `1868`, `1869`, `1788`, `1871`, `77`, `1872`, `1873`, `1875`, `1877`, `1878`, `1879`, `1883`, `674`, `1884`, `1886`, `1887`, `1888`, `1889`, `1891`, `1892`, `1894`, `1895`, `1898`, `1899`, `1901`, `1902`, `1903`, `1905`, `1908`, `1911`, `1913`, `1915`, `1916`, `1917`, `1920`, `1921`, `1922`, `1923`, `1924`, `1925`, `1926`, `1927`, `1929`, `1930`, `1931`, `1932`, `1934`, `1935`, `1938`, `1940`, `1941`, `1942`, `1944`, `1945`, `1946`, `1948`, `1949`, `1950`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1960`, `1962`, `1963`, `1964`, `1966`, `1968`, `1970`, `1971`, `1972`, `1973`, `1976`, `1978`, `1979`, `1980`, `1981`, `1982`, `1984`, `1985`, `1986`, `1987`, `1988`, `1990`, `237`, `1992`, `1993`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2002`, `2005`, `2007`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2023`, `2025`, `2026`, `2028`, `2029`, `2032`, `1511`, `2034`, `2036`, `2038`, `2040`, `2042`, `2043`, `2045`, `2046`, `2047`, `2048`, `2049`, `2051`, `2052`, `2053`, `2054`, `2055`, `2056`, `2057`, `2058`, `2059`, `2060`, `2062`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2071`, `2072`, `2073`, `2074`, `2075`, `2077`, `2078`, `182`, `2081`, `2082`, `2083`, `2084`, `2087`, `2088`, `2089`, `2091`, `2094`, `2096`, `2098`, `1533`, `2099`, `2100`, `2101`, `2103`, `2105`, `2106`, `2107`, `2108`, `2109`, `2110`, `2111`, `2112`, `2113`, `2114`, `2115`, `2116`, `2117`, `2118`, `2120`, `2123`, `2124`, `2126`, `2128`, `2130`, `2132`, `2133`, `2136`, `2139`, `2140`, `39`, `2141`, `130`, `2142`, `2144`, `2145`, `2146`, `2149`, `2150`, `2152`, `2153`, `2154`, `2155`, `2157`, `2158`, `2159`, `2161`, `2162`, `2163`, `2164`, `2166`, `2169`, `2171`, `2173`, `2174`, `2175`, `2176`, `2178`, `2179`, `2180`, `2181`, `2182`, `2183`, `2184`, `2185`, `2186`, `2187`, `2188`, `2190`, `2191`, `2192`, `2193`, `2194`, `2196`, `2198`, `2199`, `2201`, `2204`, `2205`, `2207`, `2209`, `2212`, `2214`, `2216`, `2217`, `2218`, `2219`, `2220`, `2221`, `1730`, `2222`, `2223`, `501`, `2224`, `2225`, `2227`, `2229`, `2230`, `2232`, `2233`, `2234`, `2235`, `2237`, `2239`, `2241`, `2243`, `2244`, `2246`, `2247`, `2248`, `2249`, `2250`, `2251`, `2253`, `2254`, `2257`, `2259`, `2261`, `2264`, `2265`, `2266`, `2269`, `2270`, `2271`, `2273`, `2276`, `2278`, `2280`, `2281`, `2283`, `2285`, `2287`, `2288`, `2289`, `2290`, `2291`, `2292`, `2294`, `2297`, `2298`, `2300`, `2301`, `2302`, `2303`, `2304`, `2305`, `2307`, `2309`, `2312`, `1933`, `2313`, `2314`, `1423`, `2315`, `2316`, `2319`, `2321`, `2322`, `2323`, `2326`, `2328`, `2330`, `2331`, `2332`, `2334`, `63`, `2335`, `2336`, `2338`, `2339`, `2341`, `2343`, `2272`, `2344`, `2346`, `2347`, `2349`, `2350`, `2351`, `2353`, `2354`, `2355`, `2356`, `2357`, `2358`, `195` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 98.65 |
| `TOKEN_P` | 98.49 |
| `TOKEN_R` | 98.82 |
| `TOKEN_ACC` | 99.87 |
| `SENTS_F` | 90.84 |
| `SENTS_P` | 92.62 |
| `SENTS_R` | 89.14 |
| `TAG_ACC` | 95.60 |
| `POS_ACC` | 97.67 |
| `MORPH_ACC` | 96.79 |
| `DEP_UAS` | 94.66 |
| `DEP_LAS` | 92.28 |
| `LEMMA_ACC` | 96.46 |
|
explosion/da_udv25_danishddt_trf
|
explosion
| 2021-12-10T13:06:28Z | 3 | 0 |
spacy
|
[
"spacy",
"token-classification",
"da",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- da
license: cc-by-sa-4.0
model-index:
- name: da_udv25_danishddt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9848998161
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.98480302
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9819959346
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9755129694
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8966826762
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8728917681
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9688888889
---
UD v2.5 benchmarking pipeline for UD_Danish-DDT
| Feature | Description |
| --- | --- |
| **Name** | `da_udv25_danishddt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1316 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` |
| **`morphologizer`** | `AdpType=Prep\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN`, `Definite=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Definite=Ind\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADJ`, `POS=PRON\|PartType=Inf`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=ADP\|PartType=Inf`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Inf`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|POS=PRON\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Imp\|POS=VERB`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=ADV\|PartType=Inf`, `Degree=Sup\|POS=ADV`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|POS=PROPN`, `POS=ADP`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Com\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=SYM`, `Case=Nom\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Degree=Sup\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind\|Style=Arch`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Foreign=Yes\|POS=X`, `POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Int,Rel`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Abbr=Yes\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Abs\|POS=ADJ`, `Definite=Ind\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=NOUN`, `Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Com\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Degree=Abs\|POS=ADV`, `POS=VERB\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|Tense=Pres`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|POS=AUX`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=NOUN`, `Number[psor]=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:loc`, `obl:tmod`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `9`, `11`, `13`, `15`, `17`, `19`, `21`, `23`, `27`, `31`, `33`, `35`, `37`, `39`, `42`, `44`, `45`, `5`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `63`, `67`, `69`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `89`, `91`, `93`, `95`, `97`, `101`, `103`, `104`, `106`, `109`, `113`, `115`, `116`, `117`, `118`, `119`, `122`, `124`, `127`, `130`, `133`, `134`, `135`, `138`, `140`, `141`, `144`, `146`, `148`, `149`, `151`, `153`, `154`, `156`, `157`, `158`, `159`, `160`, `164`, `166`, `169`, `172`, `175`, `177`, `179`, `181`, `183`, `185`, `188`, `6`, `190`, `192`, `195`, `197`, `199`, `201`, `203`, `205`, `207`, `209`, `212`, `214`, `216`, `217`, `220`, `221`, `222`, `224`, `227`, `228`, `229`, `230`, `232`, `234`, `236`, `238`, `239`, `241`, `243`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `254`, `255`, `257`, `258`, `262`, `264`, `270`, `274`, `277`, `278`, `280`, `282`, `284`, `286`, `289`, `290`, `292`, `293`, `294`, `295`, `296`, `297`, `298`, `301`, `302`, `304`, `305`, `306`, `308`, `310`, `312`, `314`, `315`, `317`, `319`, `323`, `324`, `326`, `328`, `330`, `332`, `334`, `336`, `339`, `341`, `342`, `344`, `345`, `346`, `348`, `350`, `353`, `356`, `357`, `359`, `362`, `363`, `365`, `366`, `368`, `369`, `370`, `372`, `374`, `375`, `376`, `378`, `380`, `381`, `385`, `387`, `388`, `392`, `394`, `398`, `401`, `402`, `403`, `405`, `406`, `407`, `408`, `409`, `410`, `411`, `414`, `415`, `416`, `419`, `422`, `423`, `426`, `430`, `431`, `432`, `433`, `436`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `445`, `446`, `448`, `449`, `450`, `451`, `452`, `453`, `456`, `457`, `460`, `462`, `468`, `469`, `471`, `472`, `473`, `474`, `476`, `478`, `480`, `481`, `484`, `485`, `486`, `488`, `489`, `491`, `492`, `493`, `494`, `495`, `496`, `498`, `500`, `502`, `505`, `507`, `508`, `510`, `511`, `512`, `514`, `515`, `517`, `519`, `521`, `522`, `524`, `525`, `528`, `530`, `532`, `533`, `535`, `536`, `537`, `539`, `542`, `543`, `546`, `547`, `550`, `551`, `553`, `554`, `556`, `557`, `558`, `561`, `562`, `563`, `564`, `567`, `569`, `570`, `573`, `575`, `576`, `577`, `578`, `579`, `580`, `582`, `583`, `584`, `585`, `587`, `588`, `590`, `591`, `593`, `597`, `598`, `600`, `601`, `602`, `603`, `605`, `606`, `607`, `608`, `609`, `610`, `612`, `614`, `617`, `618`, `621`, `623`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `633`, `634`, `635`, `636`, `638`, `639`, `640`, `641`, `642`, `643`, `645`, `646`, `647`, `649`, `650`, `651`, `653`, `656`, `657`, `659`, `660`, `661`, `662`, `664`, `665`, `667`, `670`, `671`, `672`, `674`, `675`, `676`, `677`, `678`, `679`, `680`, `681`, `683`, `685`, `686`, `688`, `689`, `690`, `691`, `692`, `693`, `694`, `696`, `697`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `707`, `709`, `711`, `714`, `715`, `717`, `720`, `721`, `722`, `723`, `725`, `728`, `730`, `731`, `732`, `734`, `736`, `738`, `740`, `742`, `746`, `747`, `748`, `750`, `752`, `753`, `754`, `758`, `759`, `763`, `764`, `766`, `768`, `769`, `773`, `775`, `776`, `778`, `779`, `780`, `781`, `782`, `785`, `788`, `789`, `790`, `791`, `795`, `796`, `797`, `798`, `800`, `801`, `803`, `805`, `806`, `807`, `808`, `810`, `812`, `813`, `815`, `816`, `818`, `821`, `822`, `823`, `825`, `827`, `830`, `832`, `836`, `837`, `838`, `840`, `841`, `844`, `846`, `848`, `850`, `851`, `852`, `854`, `856`, `858`, `860`, `861`, `863`, `864`, `865`, `866`, `867`, `868`, `870`, `872`, `873`, `874`, `875`, `880`, `882`, `884`, `885`, `886`, `887`, `889`, `891`, `892`, `893`, `894`, `895`, `896`, `898`, `902`, `903`, `905`, `907`, `908`, `909`, `911`, `912`, `913`, `914`, `915`, `917`, `918`, `919`, `920`, `922`, `923`, `924`, `926`, `927`, `928`, `929`, `931`, `934`, `935`, `936`, `938`, `939`, `940`, `941`, `942`, `944`, `945`, `947`, `949`, `951`, `952`, `954`, `955`, `956`, `958`, `960`, `961`, `962`, `969`, `970`, `974`, `975`, `977`, `978`, `979`, `980`, `981`, `983`, `984`, `987`, `988`, `989`, `993`, `995`, `998`, `1000`, `1001`, `1002`, `1004`, `1007`, `1011`, `1012`, `1014`, `1017`, `1018`, `1020`, `1021`, `1022`, `1023`, `1025`, `1026`, `1027`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1036`, `1037`, `1038`, `1040`, `1042`, `1044`, `1045`, `1048`, `1050`, `1051`, `1053`, `1054`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1064`, `1066`, `1067`, `1069`, `1070`, `1072`, `1073`, `1076`, `1078`, `1080`, `1081`, `1085`, `1086`, `1087`, `1088`, `1089`, `1090`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1100`, `1101`, `1102`, `1106`, `1109`, `1110`, `1111`, `1113`, `1114`, `1116`, `1117`, `1119`, `1120`, `1122`, `1123`, `1125`, `1127`, `1128`, `1131`, `1132`, `1133`, `1134`, `1135`, `1136`, `1137`, `1138`, `1141`, `831`, `1142`, `1143`, `1144`, `1146`, `1148`, `1150`, `1152`, `1153`, `1155`, `1157`, `1158`, `1160`, `1161`, `1162`, `1163`, `1168`, `1170`, `1171`, `1174`, `1175`, `1176`, `1178`, `1181`, `1182`, `1183`, `1185`, `1186`, `1189`, `1191`, `1192`, `1193`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1203`, `1204`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1214`, `1215`, `1218`, `1219`, `1220`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1229`, `1231`, `1232`, `1235`, `1236`, `1238`, `1239`, `1242`, `1244`, `1247`, `1248`, `1249`, `1250`, `1251`, `1253`, `1255`, `1257`, `1258`, `1259`, `1261`, `1263`, `1265`, `1266`, `1267`, `1269`, `1271`, `1272`, `1273`, `1274`, `1276`, `1277`, `1278`, `1280`, `1281`, `1282`, `1283`, `1285`, `1286`, `1287`, `1288`, `1289`, `1291`, `1293`, `1294`, `1295`, `1297`, `1298`, `1299`, `1300`, `1303`, `1305`, `1307`, `1309`, `1310`, `1311`, `1312`, `1315`, `1316`, `1318`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1337`, `1338`, `1339`, `1341`, `1342`, `1343`, `1344`, `1345`, `1346`, `1347`, `1348`, `1349`, `1351`, `1352`, `1353`, `1354`, `1355`, `1357`, `1358`, `1359`, `1360`, `1362`, `1364`, `1365`, `1367`, `1368`, `1369`, `1370`, `1371`, `1372`, `1374`, `1376`, `1377`, `1379`, `1380`, `1382`, `1383`, `1384`, `1386`, `1387`, `1389`, `1390`, `1391`, `1392`, `1394`, `1396`, `1398`, `1399`, `1400`, `1401`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1147`, `1411`, `1413`, `1414`, `1415`, `1418`, `1420`, `1421`, `1422`, `1423`, `1426`, `1427`, `1428`, `1430`, `1431`, `1433`, `1438`, `1439`, `1440`, `1441`, `1442`, `1444`, `1446`, `1448`, `1449`, `1453`, `1454`, `1456`, `1457`, `1459`, `1463`, `1465`, `1466`, `1468`, `1469`, `1470`, `1472`, `1476`, `1478`, `1479`, `1480`, `1481`, `1482`, `1483`, `1485`, `1486`, `1487`, `1488`, `1490`, `1491`, `1493`, `1494`, `1496`, `1498`, `1500`, `1502`, `1503`, `1504`, `1505`, `1506`, `1508`, `1509`, `1511`, `1512`, `1513`, `1514`, `1516`, `1518`, `1519`, `1521`, `1522`, `1524`, `1525`, `1527`, `1533`, `1534`, `1535`, `1536`, `1538`, `1540`, `1541`, `1544`, `1545`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1556`, `1557`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1568`, `1569`, `1571`, `1572`, `1574`, `1577`, `1578`, `1579`, `1580`, `1581`, `1583`, `1585`, `1586`, `1587`, `1588`, `1589`, `1590`, `1591`, `1594`, `1595`, `1596`, `1597`, `1598`, `1599`, `1602`, `1603`, `1605`, `1606`, `1608`, `1610`, `1612`, `1613`, `1614`, `1616`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1626`, `1627`, `1629`, `1630`, `1631`, `1632`, `1634`, `1636`, `1637`, `1638`, `1639`, `1640`, `1641`, `1642`, `1644`, `1645`, `1647`, `1649`, `1651`, `1653`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1665`, `1666`, `1667`, `1668`, `1670`, `1673`, `1674`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1684`, `1685`, `1687`, `1688`, `1689`, `1690`, `1692`, `1693`, `1643`, `1694`, `1695`, `1696`, `1697`, `1699`, `1701`, `1702`, `1704`, `1706`, `1708`, `1710`, `1711`, `1712`, `1714`, `1715`, `1717`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1728`, `1729`, `1730`, `1732`, `1734`, `1735`, `1737`, `1739`, `1741`, `1742`, `1743`, `1745`, `1747`, `1749`, `1750`, `1751`, `1753`, `1754`, `1756`, `1758`, `1759`, `1760`, `1761`, `1762`, `1764`, `1766`, `1768`, `1769`, `1770`, `1771`, `1772`, `1773`, `1774` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.96 |
| `TOKEN_P` | 99.95 |
| `TOKEN_R` | 99.96 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 96.89 |
| `SENTS_P` | 97.15 |
| `SENTS_R` | 96.63 |
| `TAG_ACC` | 98.49 |
| `POS_ACC` | 98.48 |
| `MORPH_ACC` | 98.20 |
| `DEP_UAS` | 89.67 |
| `DEP_LAS` | 87.29 |
| `LEMMA_ACC` | 97.55 |
|
dlb/electra-base-portuguese-uncased-brwac
|
dlb
| 2021-12-10T12:33:58Z | 352 | 6 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"pt",
"dataset:brwac",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: pt
tags:
- electra
- pretraining
- pytorch
datasets:
- brwac
---
|
explosion/af_udv25_afrikaansafribooms_trf
|
explosion
| 2021-12-10T11:34:54Z | 5 | 0 |
spacy
|
[
"spacy",
"token-classification",
"af",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- af
license: cc-by-sa-4.0
model-index:
- name: af_udv25_afrikaansafribooms_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9601278917
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9852374236
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9751739703
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9786593964
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9078427294
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8749739963
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 1.0
---
UD v2.5 benchmarking pipeline for UD_Afrikaans-AfriBooms
| Feature | Description |
| --- | --- |
| **Name** | `af_udv25_afrikaansafribooms_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (455 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `AOA`, `AOP`, `ASA`, `ASP`, `AVA`, `AVP`, `BO`, `BS`, `BV`, `KN`, `KO`, `LB`, `LO`, `NA`, `NEE`, `NM`, `NME`, `NSE`, `NSED`, `NSM`, `PA`, `PB`, `PDHEB`, `PDHEDP`, `PDHENP`, `PDHEW`, `PDMB`, `PDMP`, `PDMW`, `PDOENP`, `PDOEW`, `PDVEB`, `PDVEDP`, `PDVENP`, `PDVEW`, `PEEB`, `PEEDP`, `PEENP`, `PEMB`, `PEMP`, `PEMW`, `PO`, `PTEB`, `PTEDP`, `PTENP`, `PTEW`, `PTMP`, `PV`, `PW`, `RA`, `RK`, `RL`, `RO`, `RS`, `RSF`, `RV`, `RWD`, `SVS`, `THAB`, `THAO`, `THBB`, `THBO`, `THNB`, `THPB`, `THPO`, `TRAB`, `TRAO`, `TRBB`, `UPB`, `UPD`, `UPI`, `UPO`, `UPS`, `UPV`, `UPW`, `UXD`, `VTHOG`, `VTHOK`, `VTHOO`, `VTHOV`, `VTHSG`, `VTHSO`, `VTUOA`, `VTUOM`, `VTUOP`, `VUOT`, `VVHOG`, `VVHOK`, `VVHOO`, `VVUOM`, `VVUOP`, `ZE`, `ZM`, `ZPL`, `ZPR` |
| **`morphologizer`** | `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `AdjType=Attr\|Case=Nom\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Cop`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=NUM`, `POS=PART\|PartType=Inf`, `POS=VERB\|Subcat=Tran\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=PRON\|PronType=Rel`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Pas`, `POS=PUNCT`, `POS=CCONJ`, `POS=SCONJ`, `POS=VERB\|Subcat=Intr\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=VERB\|Subcat=Intr\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Pas`, `Degree=Pos\|POS=ADV`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Mod`, `POS=DET\|PronType=Ind`, `POS=X`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PART\|PartType=Neg`, `POS=VERB\|Subcat=Tran\|Tense=Past\|VerbForm=Part`, `AdjType=Pred\|Case=Nom\|Degree=Pos\|POS=ADJ`, `POS=DET\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SYM`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART\|PartType=Gen`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|POS=ADV`, `Degree=Dim\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `AdjType=Attr\|Case=Nom\|Degree=Sup\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `POS=VERB\|Subcat=Prep\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Aux`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Rcp`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Cop`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `AdjType=Attr\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Sup\|POS=ADJ` |
| **`parser`** | `ROOT`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `8`, `10`, `12`, `14`, `16`, `18`, `21`, `24`, `26`, `28`, `31`, `32`, `34`, `37`, `39`, `40`, `42`, `44`, `46`, `47`, `49`, `51`, `53`, `54`, `56`, `57`, `58`, `59`, `61`, `64`, `66`, `68`, `69`, `72`, `74`, `75`, `77`, `78`, `81`, `83`, `84`, `85`, `86`, `87`, `90`, `92`, `94`, `96`, `99`, `101`, `103`, `105`, `108`, `110`, `113`, `116`, `117`, `118`, `121`, `123`, `124`, `125`, `127`, `128`, `129`, `133`, `136`, `138`, `141`, `143`, `145`, `147`, `151`, `153`, `154`, `156`, `158`, `159`, `160`, `162`, `164`, `165`, `167`, `168`, `170`, `172`, `174`, `176`, `178`, `179`, `180`, `181`, `183`, `185`, `189`, `190`, `191`, `192`, `194`, `195`, `197`, `198`, `201`, `202`, `203`, `204`, `206`, `207`, `209`, `213`, `214`, `216`, `217`, `218`, `220`, `221`, `222`, `223`, `225`, `226`, `228`, `229`, `231`, `233`, `234`, `236`, `238`, `240`, `241`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `255`, `256`, `257`, `258`, `261`, `262`, `263`, `265`, `267`, `269`, `270`, `271`, `273`, `275`, `276`, `278`, `279`, `281`, `283`, `285`, `287`, `289`, `291`, `294`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `305`, `306`, `307`, `309`, `310`, `311`, `313`, `314`, `315`, `317`, `320`, `321`, `323`, `325`, `326`, `327`, `328`, `329`, `330`, `332`, `333`, `335`, `336`, `337`, `338`, `339`, `340`, `341`, `343`, `344`, `347`, `348`, `349`, `351`, `353`, `355`, `357`, `359`, `360`, `361`, `362`, `365`, `366`, `367`, `369`, `371`, `373`, `374`, `375`, `377`, `379`, `381`, `383`, `386`, `388`, `390`, `392`, `393`, `395`, `397`, `398`, `400`, `401`, `402`, `403`, `405`, `406`, `408`, `409`, `411`, `412`, `414`, `417`, `215`, `418`, `419`, `420`, `421`, `422`, `424`, `425`, `426`, `427`, `429`, `431`, `432`, `433`, `434`, `436`, `438`, `439`, `440`, `442`, `443`, `444`, `447`, `449`, `450`, `452` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.92 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.94 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 100.00 |
| `SENTS_P` | 100.00 |
| `SENTS_R` | 100.00 |
| `TAG_ACC` | 96.01 |
| `POS_ACC` | 98.52 |
| `MORPH_ACC` | 97.52 |
| `DEP_UAS` | 90.78 |
| `DEP_LAS` | 87.50 |
| `LEMMA_ACC` | 97.87 |
|
huggingtweets/googleai
|
huggingtweets
| 2021-12-10T09:50:14Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/googleai/1639129810325/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/993649592422907904/yD7LkqU2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Google AI</div>
<div style="text-align: center; font-size: 14px;">@googleai</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Google AI.
| Data | Google AI |
| --- | --- |
| Tweets downloaded | 1754 |
| Retweets | 51 |
| Short tweets | 20 |
| Tweets kept | 1683 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/176c02iv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @googleai's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3cg366zk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3cg366zk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/googleai')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
TJMUCH/transcriptome-iseeek
|
TJMUCH
| 2021-12-10T09:32:52Z | 23 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# iSEEEK
A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings
## An simple pipeline for single-cell analysis
```python
import torch
import gzip
import re
from tqdm import tqdm
import numpy as np
import scanpy as sc
from torch.utils.data import DataLoader, Dataset
from transformers import PreTrainedTokenizerFast, BertForMaskedLM
class LineDataset(Dataset):
def __init__(self, lines):
self.lines = lines
self.regex = re.compile(r'\-|\.')
def __getitem__(self, i):
return self.regex.sub('_', self.lines[i])
def __len__(self):
return len(self.lines)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_num_threads(2)
tokenizer = PreTrainedTokenizerFast.from_pretrained("TJMUCH/transcriptome-iseeek")
model = BertForMaskedLM.from_pretrained("TJMUCH/transcriptome-iseeek").bert
model = model.to(device)
model.eval()
## Data desposited in https://huggingface.co/TJMUCH/transcriptome-iseeek/tree/main
lines = [s.strip().decode() for s in gzip.open("pbmc_ranking.txt.gz")]
labels = [s.strip().decode() for s in gzip.open("pbmc_label.txt.gz")]
labels = np.asarray(labels)
ds = LineDataset(lines)
dl = DataLoader(ds, batch_size=80)
features = []
for a in tqdm(dl, total=len(dl)):
batch = tokenizer(a, max_length=128, truncation=True,
padding=True, return_tensors="pt")
for k, v in batch.items():
batch[k] = v.to(device)
with torch.no_grad():
out = model(**batch)
f = out.last_hidden_state[:,0,:]
features.extend(f.tolist())
features = np.stack(features)
adata = sc.AnnData(features)
adata.obs['celltype'] = labels
adata.obs.celltype = adata.obs.celltype.astype("category")
sc.pp.neighbors(adata, use_rep='X')
sc.tl.umap(adata)
sc.tl.leiden(adata)
sc.pl.umap(adata, color=['celltype','leiden'],save= "UMAP")
```
## Extract token representations
```python
cell_counts = len(lines)
x = np.zeros((cell_counts, len(tokenizer)), dtype=np.float16)
for a in tqdm(dl, total=len(dl)):
batch = tokenizer(a, max_length=128, truncation=True,
padding=True, return_tensors="pt")
for k, v in batch.items():
batch[k] = v.to(device)
with torch.no_grad():
out = model(**batch)
eos_idxs = batch.attention_mask.sum(dim=1) - 1
f = out.last_hidden_state
batch_size = f.shape[0]
input_ids = batch.input_ids
for i in range(batch_size):
##genes = tokenizer.batch_decode(input_ids[i])
token_norms = [f[i][j].norm().item() for j in range(1, eos_idxs[i])]
idxs = input_ids[i].tolist()[1:eos_idxs[i]]
x[counter, idxs] = token_norms
counter = counter + 1
```
|
Jeska/BertjeWDialDataALLQonly05
|
Jeska
| 2021-12-10T07:54:00Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly05
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.9349 | 1.0 | 871 | 2.9642 |
| 2.9261 | 2.0 | 1742 | 2.9243 |
| 2.8409 | 3.0 | 2613 | 2.8895 |
| 2.7308 | 4.0 | 3484 | 2.8394 |
| 2.6042 | 5.0 | 4355 | 2.7703 |
| 2.4671 | 6.0 | 5226 | 2.7522 |
| 2.3481 | 7.0 | 6097 | 2.6339 |
| 2.2493 | 8.0 | 6968 | 2.6224 |
| 2.1233 | 9.0 | 7839 | 2.5637 |
| 2.0194 | 10.0 | 8710 | 2.4896 |
| 1.9178 | 11.0 | 9581 | 2.4689 |
| 1.8588 | 12.0 | 10452 | 2.4663 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
masoudmzb/wav2vec2-xlsr-multilingual-53-fa
|
masoudmzb
| 2021-12-10T07:10:05Z | 105 | 6 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:2006.13979",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
# wav2vec 2.0 multilingual ( Finetued )
The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information.
[Paper](https://arxiv.org/abs/2006.13979)
Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli
**Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice) plus Our own created Dataset(1/3 of total dataset). When using this model, make sure that your speech input is sampled at 16kHz.
## Evaluation: 🌡️
We have evaluated the model on private dataset with different type of audios (unfortunately the dataset for testing and validation is not publicly available but to see a sample of the dataset [check this link)](https://github.com/shenasa-ai/speech2text#part-of-our-dataset-v01--) :
| Name | test dataset (wer) |
| :----------------------------------------------------------: | :-----------------: |
| [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 0.56754 |
| [This New Model](https://huggingface.co/masoudmzb/wav2vec2-xlsr-multilingual-53-fa) | **0.40815** |
| Base Multilingual Model | 0.69746 |
- This Table show if we add more data we will have much better result
## How to use❓
### Use FineTuned Model
This model is finetuned on [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) , so the process for train or evaluation is same
> ```bash
> # requirement packages
> !pip install git+https://github.com/huggingface/datasets.git
> !pip install git+https://github.com/huggingface/transformers.git
> !pip install torchaudio
> !pip install librosa
> !pip install jiwer
> !pip install parsivar
> !pip install num2fawords
> ```
**Normalizer**
```bash
# Normalizer
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/dictionary.py
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/normalizer.py
```
If you are not sure your transcriptions are clean or not (having weird characters or any other alphabete chars ) use this code provided by [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3)
**Cleaning** (Fill the data part with your own data dir)
```python
from normalizer import normalizer
def cleaning(text):
if not isinstance(text, str):
return None
return normalizer({"sentence": text}, return_dict=False)
# edit these parts with your own data directory
data_dir = "data"
test = pd.read_csv(f"{data_dir}/yourtest.tsv", sep=" ")
test["path"] = data_dir + "/clips/" + test["path"]
print(f"Step 0: {len(test)}")
test["status"] = test["path"].apply(lambda path: True if os.path.exists(path) else None)
test = test.dropna(subset=["path"])
test = test.drop("status", 1)
print(f"Step 1: {len(test)}")
test["sentence"] = test["sentence"].apply(lambda t: cleaning(t))
test = test.dropna(subset=["sentence"])
print(f"Step 2: {len(test)}")
test = test.reset_index(drop=True)
print(test.head())
test = test[["path", "sentence"]]
test.to_csv("/content/test.csv", sep=" ", encoding="utf-8", index=False)
```
**Prediction**
```python
import numpy as np
import pandas as pd
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import IPython.display as ipd
model_name_or_path = "masoudmzb/wav2vec2-xlsr-multilingual-53-fa"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(model_name_or_path, device)
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, processor.feature_extractor.sampling_rate)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(
batch["speech"],
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True
)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
# edit these parts with your own data directory
dataset = load_dataset("csv", data_files={"test": "/path_to/your_test.csv"}, delimiter=" ")["test"]
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=4)
```
**WER Score**
```python
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
```
**Output**
```python
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
```
## training details: 🔭
One model was trained on Persian Mozilla dataset before So we Decided to continue from that one. Model is warm started from `mehrdadfa`’s [checkpoint](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3)
- For more details, you can take a look at config.json at the model card in 🤗 Model Hub
- The model trained 84000 steps, equal to 12.42 Epochs.
- The base model to finetune was https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/tree/main
## Fine Tuning Recommendations: 🐤
For fine tuning you can check the link below. but be aware some Tips. you may need gradient_accumulation because you need more batch size. the are many hyperparameters make sure you set them properly :
- learning_rate
- attention_dropout
- hidden_dropout
- feat_proj_dropout
- mask_time_prob
- layer_drop
### Fine Tuning Examples 👷♂️👷♀️
| Dataset | Fine Tuning Example |
| ------------------------------------------------ | ------------------------------------------------------------ |
| Fine Tune on Mozilla Turkish Dataset | <a href="https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb"><img src="https://img.shields.io/static/v1?label=Colab&message=Fine-tuning Example&logo=Google%20Colab&color=f9ab00"></a> |
| Sample Code for Other Dataset And other Language | [github_link](https://github.com/m3hrdadfi/notebooks/) |
## Contact us: 🤝
If you have a technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the fastest way to reach us.
## Citation: ↩️
we didn't publish any papers on the work. However, if you did, please cite us properly with an entry like one below.
```bibtex
@misc{wav2vec2-xlsr-multilingual-53-fa,
author = {Paparnchi, Seyyed Mohammad Masoud},
title = {wav2vec2-xlsr-multilingual-53-fa},
year = 2021,
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Hamtech-ai/wav2vec2-fa}},
}
```
|
kco4776/kogpt-chat
|
kco4776
| 2021-12-10T06:24:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
## References
- [koGPT2](https://github.com/SKT-AI/KoGPT2)
- [koGPT2-chatbot](https://github.com/haven-jeon/KoGPT2-chatbot)
|
huggingtweets/moncleryear
|
huggingtweets
| 2021-12-10T06:00:52Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/moncleryear/1639116048575/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1455663704146579459/y1Vb5Ur2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ɠucci</div>
<div style="text-align: center; font-size: 14px;">@moncleryear</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ɠucci.
| Data | Ɠucci |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 47 |
| Short tweets | 716 |
| Tweets kept | 2481 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/133g5roi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @moncleryear's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/klif92y8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/klif92y8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/moncleryear')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/krankergeist1
|
huggingtweets
| 2021-12-10T05:50:24Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/krankergeist1/1639115420252/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1437721566108917762/bzn0HN29_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Kranker Geist</div>
<div style="text-align: center; font-size: 14px;">@krankergeist1</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Kranker Geist.
| Data | Kranker Geist |
| --- | --- |
| Tweets downloaded | 755 |
| Retweets | 75 |
| Short tweets | 336 |
| Tweets kept | 344 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zpv7kt6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @krankergeist1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jipf5v9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jipf5v9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/krankergeist1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/notcrypticno
|
huggingtweets
| 2021-12-10T05:41:54Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/notcrypticno/1639114910066/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1462813846746406916/M_72p8Tr_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">incognito tab #3</div>
<div style="text-align: center; font-size: 14px;">@notcrypticno</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from incognito tab #3.
| Data | incognito tab #3 |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 30 |
| Short tweets | 1015 |
| Tweets kept | 2203 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c09ohhz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @notcrypticno's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lmw2qufb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lmw2qufb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/notcrypticno')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
luoren000/Token_Classification
|
luoren000
| 2021-12-09T20:47:25Z | 0 | 0 | null |
[
"tensorboard",
"region:us"
] | null | 2022-03-02T23:29:05Z |
This is Contract Token Classification Model
|
yongzx/gpt2-finetuned-oscar-de
|
yongzx
| 2021-12-09T16:44:10Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation",
"de",
"dataset:oscar",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- de
tags:
- text-generation
license: mit
datasets:
- oscar
widget:
- text: "Mein Name ist Anna. Ich komme aus Österreich und "
---
# GPT-2 finetuned on German Dataset
### Tokenizer
We first trained a tokenizer on OSCAR's `unshuffled_original_de` German data subset by following the training of GPT2 tokenizer (same vocab size of 50,257). Here's the [Python file](https://github.com/bigscience-workshop/multilingual-modeling/blob/gpt2-ko/experiments/exp-001/train_tokenizer_gpt2.py) for the training.
### Model
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_de` German data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
```
- preprocessing_num_workers: 8
- per_device_train_batch_size: 2
- gradient_accumulation_steps: 4
- per_device_eval_batch_size: 2
- eval_accumulation_steps: 4
- eval_steps: 1000
- evaluation_strategy: "steps"
- max_eval_samples: 5000
```
**Training details**: total training steps: 457000, effective train batch size per step: 32, max tokens per batch: 1024)
**Final checkpoint**: checkpoint-457000
|
Katsiaryna/distilbert-base-uncased-finetuned_9th
|
Katsiaryna
| 2021-12-09T13:46:21Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned_9th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned_9th
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2826
- Accuracy: 0.4462
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2357 | 1.0 | 569 | 0.2277 | 0.3474 |
| 0.2237 | 2.0 | 1138 | 0.2316 | 0.3474 |
| 0.1847 | 3.0 | 1707 | 0.2456 | 0.3712 |
| 0.1302 | 4.0 | 2276 | 0.2763 | 0.4602 |
| 0.0863 | 5.0 | 2845 | 0.2826 | 0.4462 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
ncduy/distilbert-base-cased-distilled-squad-finetuned-squad-small
|
ncduy
| 2021-12-09T12:41:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-cased-distilled-squad-finetuned-squad-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-cased-distilled-squad-finetuned-squad-small
This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
InfoCoV/Cro-CoV-cseBERT
|
InfoCoV
| 2021-12-09T12:39:35Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
## Usage:
```
from sentence_transformers import models
from sentence_transformers import SentenceTransformer
word_embedding_model = models.Transformer('Cro-CoV-cseBERT')
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device='') ## device = 'gpu' or 'cpu'
texts_emb = model.encode(texts)
```
## Datasets:
https://github.com/InfoCoV/InfoCoV
## Paper:
Please cite https://www.mdpi.com/2076-3417/11/21/10442
|
ncduy/bert-base-cased-finetuned-emotion
|
ncduy
| 2021-12-09T10:30:48Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: bert-base-cased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: F1
type: f1
value: 0.9365323747830425
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-emotion
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1342
- F1: 0.9365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7357 | 1.0 | 250 | 0.2318 | 0.9224 |
| 0.1758 | 2.0 | 500 | 0.1679 | 0.9349 |
| 0.1228 | 3.0 | 750 | 0.1385 | 0.9382 |
| 0.0961 | 4.0 | 1000 | 0.1452 | 0.9340 |
| 0.0805 | 5.0 | 1250 | 0.1342 | 0.9365 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
yellowback/gpt-neo-japanese-1.3B
|
yellowback
| 2021-12-09T08:59:05Z | 23 | 9 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"text generation",
"causal-lm",
"japanese",
"ja",
"dataset:oscar",
"dataset:cc100",
"dataset:wikipedia",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- ja
tags:
- text generation
- pytorch
- causal-lm
- japanese
license: apache-2.0
datasets:
- oscar
- cc100
- wikipedia
---
# GPT-Neo 1.3B pre-trained model for Japanese
## Model Description
GPT2/GPT3 like model trained on Japanese.corpus.
## Training data
- cc100 ja
- oscar ja
- wikipedia ja
## How to use
```
from transformers import pipeline
>>> generator = pipeline('text-generation', model='yellowback/gpt-neo-japanese-1.3B')
>>> generator("こんばんは、徳川家康です。", do_sample=True, max_length=50, num_return_sequences=3)
[{'generated_text': 'こんばんは、徳川家康です。 世の中を見渡してみても、残念なことだけれども、まぎれもなく「世のなか...\n5月になりました、家康です。 ゴールデンウィークも終ってしまい、世間では'},
{'generated_text': 'こんばんは、徳川家康です。さあ今日は昨晩から降り続いた雨は上がりましたが、まだまだ雨脚は強いですが、晴れるところは晴れて欲しいですね。昨日の夜は仕事だったので、今日の夕'},
{'generated_text': 'こんばんは、徳川家康です。 今回は、『世界史再考──日本史再考』という本を書いたあと、『世界史再考──日本史再考』の6~8章'}]
```
|
yongzx/gpt2-finetuned-oscar-ko
|
yongzx
| 2021-12-09T06:53:05Z | 98 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation",
"ko",
"dataset:oscar",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- ko
tags:
- text-generation
license: mit
datasets:
- oscar
widget:
- text: "모든사람은교육을 "
---
# GPT-2 finetuned on Korean Dataset
### Tokenizer
We first trained a tokenizer on OSCAR's `unshuffled_original_ko` Korean data subset by following the training of GPT2 tokenizer (same vocab size of 50,257). Here's the [Python file](https://github.com/bigscience-workshop/multilingual-modeling/blob/gpt2-ko/experiments/exp-001/train_tokenizer_gpt2.py) for the training.
### Model
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_ko` Korean data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
```
- preprocessing_num_workers: 8
- per_device_train_batch_size: 2
- gradient_accumulation_steps: 4
- per_device_eval_batch_size: 2
- eval_accumulation_steps: 4
- eval_steps: 1000
- evaluation_strategy: "steps"
- max_eval_samples: 5000
```
**Training details**: total training steps: 688000, effective train batch size per step: 32, max tokens per batch: 1024)
|
yongzx/gpt2-finetuned-oscar-fr
|
yongzx
| 2021-12-09T06:28:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation",
"fr",
"dataset:oscar",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- fr
tags:
- text-generation
license: mit
datasets:
- oscar
widget:
- text: "Je suis ravi de vous "
---
# GPT-2 finetuned on French Dataset
### Tokenizer
We first trained a tokenizer on OSCAR's `unshuffled_original_fr` French data subset by following the training of GPT2 tokenizer (same vocab size of 50,257). Here's the [Python file](https://github.com/bigscience-workshop/multilingual-modeling/blob/gpt2-fr/experiments/exp-001/train_tokenizer_gpt2.py) for the training.
### Model
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_fr` French data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
```
- preprocessing_num_workers: 8
- per_device_train_batch_size: 2
- gradient_accumulation_steps: 4
- per_device_eval_batch_size: 2
- eval_accumulation_steps: 4
- eval_steps: 1000
- evaluation_strategy: "steps"
- max_eval_samples: 5000
```
**Setup**: 8 RTX-3090 GPUs, trained for seven days (total training steps: 110500, effective train batch size: 64, tokens per batch: 1024)
**Final checkpoint**: checkpoint-111500
|
addy88/hindi-wav2vec2-stt
|
addy88
| 2021-12-09T03:55:47Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import argparse
def parse_transcription(wav_file):
# load pretrained model
processor = Wav2Vec2Processor.from_pretrained("addy88/hindi-wav2vec2-stt")
model = Wav2Vec2ForCTC.from_pretrained("addy88/hindi-wav2vec2-stt")
# load audio
audio_input, sample_rate = sf.read(wav_file)
# pad input values and return pt tensor
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
# INFERENCE
# retrieve logits & take argmax
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# transcribe
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
print(transcription)
```
|
Katsiaryna/distilbert-base-uncased-finetuned
|
Katsiaryna
| 2021-12-09T00:20:03Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8229
- Accuracy: 0.54
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 7 | 0.7709 | 0.74 |
| No log | 2.0 | 14 | 0.7048 | 0.72 |
| No log | 3.0 | 21 | 0.8728 | 0.46 |
| No log | 4.0 | 28 | 0.7849 | 0.64 |
| No log | 5.0 | 35 | 0.8229 | 0.54 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Jeska/BertjeWDialDataALLQonly02
|
Jeska
| 2021-12-08T21:40:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly02
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2438 | 1.0 | 871 | 2.1122 |
| 2.1235 | 2.0 | 1742 | 2.0784 |
| 2.0712 | 3.0 | 2613 | 2.0679 |
| 2.0034 | 4.0 | 3484 | 2.0546 |
| 1.9375 | 5.0 | 4355 | 2.0277 |
| 1.8911 | 6.0 | 5226 | 2.0364 |
| 1.8454 | 7.0 | 6097 | 1.9812 |
| 1.808 | 8.0 | 6968 | 2.0175 |
| 1.7716 | 9.0 | 7839 | 2.0286 |
| 1.7519 | 10.0 | 8710 | 1.9653 |
| 1.7358 | 11.0 | 9581 | 1.9817 |
| 1.7084 | 12.0 | 10452 | 1.9633 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
oo/distilbert-base-uncased-finetuned-squad
|
oo
| 2021-12-08T18:56:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
patrickvonplaten/phoneme_test_5_sv
|
patrickvonplaten
| 2021-12-08T17:13:24Z | 28 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"multilingual_librispeech",
"generated_from_trainer",
"dataset:multilingual_librispeech",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- automatic-speech-recognition
- multilingual_librispeech
- generated_from_trainer
datasets:
- multilingual_librispeech
model-index:
- name: wav2vec2-300m-mls-german-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-300m-mls-german-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MULTILINGUAL_LIBRISPEECH - GERMAN 10h dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2398
- Wer: 0.1520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 3.0132 | 7.25 | 500 | 2.9393 | 1.0 |
| 2.9241 | 14.49 | 1000 | 2.8734 | 1.0 |
| 1.0766 | 21.74 | 1500 | 0.2773 | 0.2488 |
| 0.8416 | 28.99 | 2000 | 0.2224 | 0.1990 |
| 0.8048 | 36.23 | 2500 | 0.2063 | 0.1792 |
| 0.7664 | 43.48 | 3000 | 0.2088 | 0.1748 |
| 0.6571 | 50.72 | 3500 | 0.2042 | 0.1668 |
| 0.7014 | 57.97 | 4000 | 0.2136 | 0.1649 |
| 0.6171 | 65.22 | 4500 | 0.2139 | 0.1641 |
| 0.6609 | 72.46 | 5000 | 0.2144 | 0.1621 |
| 0.6318 | 79.71 | 5500 | 0.2129 | 0.1600 |
| 0.6222 | 86.96 | 6000 | 0.2124 | 0.1582 |
| 0.608 | 94.2 | 6500 | 0.2255 | 0.1639 |
| 0.6099 | 101.45 | 7000 | 0.2265 | 0.1622 |
| 0.6069 | 108.7 | 7500 | 0.2246 | 0.1593 |
| 0.5929 | 115.94 | 8000 | 0.2323 | 0.1617 |
| 0.6218 | 123.19 | 8500 | 0.2287 | 0.1566 |
| 0.5751 | 130.43 | 9000 | 0.2275 | 0.1563 |
| 0.5181 | 137.68 | 9500 | 0.2316 | 0.1579 |
| 0.6306 | 144.93 | 10000 | 0.2372 | 0.1556 |
| 0.5874 | 152.17 | 10500 | 0.2362 | 0.1533 |
| 0.5546 | 159.42 | 11000 | 0.2342 | 0.1543 |
| 0.6294 | 166.67 | 11500 | 0.2381 | 0.1536 |
| 0.5989 | 173.91 | 12000 | 0.2360 | 0.1527 |
| 0.5697 | 181.16 | 12500 | 0.2399 | 0.1526 |
| 0.5379 | 188.41 | 13000 | 0.2375 | 0.1523 |
| 0.5022 | 195.65 | 13500 | 0.2395 | 0.1519 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3
|
NbAiLabArchive/test_NCC_small_flax_stream_100
|
NbAiLabArchive
| 2021-12-08T13:44:15Z | 5 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
NbAiLabArchive/test_w8
|
NbAiLabArchive
| 2021-12-08T10:57:06Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
mchochowski/test-model
|
mchochowski
| 2021-12-08T10:04:42Z | 78 | 0 |
transformers
|
[
"transformers",
"image-classification",
"resnet",
"dataset:imagenet",
"arxiv:1512.03385",
"arxiv:1502.01852",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- image-classification
- resnet
datasets:
- imagenet
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
### Model Description
The ***ResNet50 v1.5*** model is a modified version of the [original ResNet50 v1 model](https://arxiv.org/abs/1512.03385).
The difference between v1 and v1.5 is that, in the bottleneck blocks which requires
downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution.
This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a smallperformance drawback (\~5% imgs/sec).
The model is initialized as described in [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf)
This model is trained with mixed precision using Tensor Cores on Volta, Turing, and the NVIDIA Ampere GPU architectures. Therefore, researchers can get results over 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time.
Note that the ResNet50 v1.5 model can be deployed for inference on the [NVIDIA Triton Inference Server](https://github.com/NVIDIA/trtis-inference-server) using TorchScript, ONNX Runtime or TensorRT as an execution backend. For details check [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_for_triton_from_pytorch)
### Example
In the example below we will use the pretrained ***ResNet50 v1.5*** model to perform inference on ***image*** and present the result.
To run the example you need some extra python packages installed. These are needed for preprocessing images and visualization.
```python
!pip install validators matplotlib
```
```python
import torch
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import json
import requests
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f'Using {device} for inference')
```
Load the model pretrained on IMAGENET dataset.
```python
resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
resnet50.eval().to(device)
```
Prepare sample input data.
```python
uris = [
'http://images.cocodataset.org/test-stuff2017/000000024309.jpg',
'http://images.cocodataset.org/test-stuff2017/000000028117.jpg',
'http://images.cocodataset.org/test-stuff2017/000000006149.jpg',
'http://images.cocodataset.org/test-stuff2017/000000004954.jpg',
]
batch = torch.cat(
[utils.prepare_input_from_uri(uri) for uri in uris]
).to(device)
```
Run inference. Use `pick_n_best(predictions=output, n=topN)` helepr function to pick N most probably hypothesis according to the model.
```python
with torch.no_grad():
output = torch.nn.functional.softmax(resnet50(batch), dim=1)
results = utils.pick_n_best(predictions=output, n=5)
```
Display the result.
```python
for uri, result in zip(uris, results):
img = Image.open(requests.get(uri, stream=True).raw)
img.thumbnail((256,256), Image.ANTIALIAS)
plt.imshow(img)
plt.show()
print(result)
```
### Details
For detailed information on model input and output, training recipies, inference and performance visit:
[github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5)
and/or [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch)
### References
- [Original ResNet50 v1 paper](https://arxiv.org/abs/1512.03385)
- [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf)
- [model on github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5)
- [model on NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch)
- [pretrained model on NGC](https://ngc.nvidia.com/catalog/models/nvidia:resnet50_pyt_amp)
```python
```
|
rafiulrumy/wav2vec2-large-xlsr-hindi-demo-colab_2
|
rafiulrumy
| 2021-12-08T09:51:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-hindi-demo-colab_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-hindi-demo-colab_2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8793
- Wer: 1.1357
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 22.381 | 1.11 | 20 | 22.1964 | 1.0 |
| 7.6212 | 2.22 | 40 | 4.0591 | 1.0 |
| 3.6951 | 3.32 | 60 | 3.6782 | 1.0 |
| 3.5574 | 4.43 | 80 | 3.6776 | 1.0 |
| 3.5374 | 5.54 | 100 | 3.5649 | 1.0 |
| 3.5512 | 6.65 | 120 | 3.5266 | 1.0 |
| 3.5075 | 7.76 | 140 | 3.6860 | 1.0 |
| 3.5097 | 8.86 | 160 | 3.4941 | 1.0 |
| 3.481 | 9.97 | 180 | 3.4659 | 1.0 |
| 3.5623 | 11.11 | 200 | 3.7254 | 1.0 |
| 3.4404 | 12.22 | 220 | 3.5225 | 1.0 |
| 3.432 | 13.32 | 240 | 3.5706 | 1.0 |
| 3.4177 | 14.43 | 260 | 3.3833 | 1.0 |
| 3.3735 | 15.54 | 280 | 3.4140 | 1.0 |
| 3.31 | 16.65 | 300 | 3.2702 | 1.0 |
| 3.2256 | 17.76 | 320 | 3.2405 | 1.0 |
| 3.0546 | 18.86 | 340 | 3.1644 | 1.0 |
| 2.7233 | 19.97 | 360 | 2.9753 | 1.0 |
| 2.2822 | 21.11 | 380 | 3.1119 | 1.1183 |
| 1.8027 | 22.22 | 400 | 3.0035 | 1.2378 |
| 1.5274 | 23.32 | 420 | 2.8536 | 1.2227 |
| 1.2313 | 24.43 | 440 | 2.9544 | 1.0951 |
| 1.0956 | 25.54 | 460 | 2.8814 | 1.0661 |
| 0.9456 | 26.65 | 480 | 3.1192 | 1.1589 |
| 0.7893 | 27.76 | 500 | 3.2919 | 1.1833 |
| 0.7256 | 28.86 | 520 | 3.0864 | 1.0951 |
| 0.6051 | 29.97 | 540 | 3.5888 | 1.1821 |
| 0.6087 | 31.11 | 560 | 3.4579 | 1.1392 |
| 0.5529 | 32.22 | 580 | 3.1998 | 1.0708 |
| 0.5211 | 33.32 | 600 | 3.4655 | 1.1311 |
| 0.4506 | 34.43 | 620 | 3.4338 | 1.1694 |
| 0.4101 | 35.54 | 640 | 3.5189 | 1.1450 |
| 0.4484 | 36.65 | 660 | 3.6585 | 1.1601 |
| 0.4038 | 37.76 | 680 | 3.6314 | 1.1497 |
| 0.3539 | 38.86 | 700 | 3.6955 | 1.1485 |
| 0.3898 | 39.97 | 720 | 3.5738 | 1.1148 |
| 0.35 | 41.11 | 740 | 3.6594 | 1.1195 |
| 0.3328 | 42.22 | 760 | 3.6894 | 1.1299 |
| 0.3264 | 43.32 | 780 | 3.7290 | 1.1021 |
| 0.3364 | 44.43 | 800 | 3.7256 | 1.1543 |
| 0.3071 | 45.54 | 820 | 3.8834 | 1.1415 |
| 0.3074 | 46.65 | 840 | 3.8077 | 1.1450 |
| 0.3064 | 47.76 | 860 | 3.8733 | 1.1346 |
| 0.3223 | 48.86 | 880 | 3.8780 | 1.1323 |
| 0.275 | 49.97 | 900 | 3.8793 | 1.1357 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
tngo/DialoGPT-small-HankHill
|
tngo
| 2021-12-08T08:37:47Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- conversational
---
# Hank Hill ChatBot
This is an instance of microsoft/DialoGPT-small trained on a tv show character, Hank Hill from King of The Hill. The data comes from a csv file that contains character lines from the first 5 seasons of the show. Updated some portion of the data to accurately show Hank's famous pronunciation of the word "what" with "hwhat". Chat with the model:
## Issues
Occasionally the chatbot just responds with just multiple '!' characters. The chatbot frequently responds with "I'm not your buddy, pal" to uncomfortable/strange prompts/messages. Still working on a fix for those known issues.
```Python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("tngo/DialoGPT-small-HankHill")
model = AutoModelWithLMHead.from_pretrained("tngo/DialoGPT-small-HankHill")
# Let's chat for 4 lines
for step in range(4):
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
print("Hank Hill Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
NbAiLabArchive/test_w4
|
NbAiLabArchive
| 2021-12-08T08:27:23Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
NbAiLabArchive/test_w6
|
NbAiLabArchive
| 2021-12-08T08:05:56Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
huggingtweets/whatsylviaate
|
huggingtweets
| 2021-12-08T06:59:48Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/whatsylviaate/1638946783606/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1417983394235965444/fooJopVZ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sylvia Plath's Food Diary</div>
<div style="text-align: center; font-size: 14px;">@whatsylviaate</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sylvia Plath's Food Diary.
| Data | Sylvia Plath's Food Diary |
| --- | --- |
| Tweets downloaded | 717 |
| Retweets | 18 |
| Short tweets | 2 |
| Tweets kept | 697 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29xzctsj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whatsylviaate's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jwd8u1b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jwd8u1b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/whatsylviaate')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/sadfaceone
|
huggingtweets
| 2021-12-08T03:05:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/sadfaceone/1638932633342/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1461421488330870790/uqHRnPLI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MelancholyAK</div>
<div style="text-align: center; font-size: 14px;">@sadfaceone</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from MelancholyAK.
| Data | MelancholyAK |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 202 |
| Short tweets | 466 |
| Tweets kept | 2567 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2aeiomu7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sadfaceone's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2loki1ml) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2loki1ml/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sadfaceone')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/foxehhyz
|
huggingtweets
| 2021-12-08T01:50:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/foxehhyz/1638928181616/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1445910806420344839/Rm_oWBH0_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Pakun/Foxe</div>
<div style="text-align: center; font-size: 14px;">@foxehhyz</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Pakun/Foxe.
| Data | Pakun/Foxe |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 413 |
| Short tweets | 192 |
| Tweets kept | 2638 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/urqo8vqu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @foxehhyz's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38j8w9y5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38j8w9y5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/foxehhyz')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/chrisrgun
|
huggingtweets
| 2021-12-08T01:19:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/chrisrgun/1638926316305/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1438283137692446720/2Xc5tmwD_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Chris Ray Gun 🇵🇷</div>
<div style="text-align: center; font-size: 14px;">@chrisrgun</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Chris Ray Gun 🇵🇷.
| Data | Chris Ray Gun 🇵🇷 |
| --- | --- |
| Tweets downloaded | 3230 |
| Retweets | 364 |
| Short tweets | 484 |
| Tweets kept | 2382 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/245uz5wp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrisrgun's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjh34bsj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjh34bsj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/chrisrgun')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
austin/Austin-MeDeBERTa
|
austin
| 2021-12-08T00:30:40Z | 7 | 2 |
transformers
|
[
"transformers",
"pytorch",
"deberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: deberta-pretrained-large
results: []
---
# Austin MeDeBERTa
This model was developed using further MLM pre-training on [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base), using a dataset of 1.1M clinical notes from the Austin Health EMR. The notes span discharge summaries, inpatient notes, radiology reports and histopathology reports.
## Model description
This is the base version of the original DeBERTa model. The architecture and tokenizer are unchanged.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 9
- eval_batch_size: 9
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9756 | 0.51 | 40000 | 0.9127 |
| 0.8876 | 1.01 | 80000 | 0.8221 |
| 0.818 | 1.52 | 120000 | 0.7786 |
| 0.7836 | 2.03 | 160000 | 0.7438 |
| 0.7672 | 2.54 | 200000 | 0.7165 |
| 0.734 | 3.04 | 240000 | 0.6948 |
| 0.7079 | 3.55 | 280000 | 0.6749 |
| 0.6987 | 4.06 | 320000 | 0.6598 |
| 0.6771 | 4.57 | 360000 | 0.6471 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3
|
mrm8488/deberta-v3-small-finetuned-mnli
|
mrm8488
| 2021-12-07T17:45:59Z | 9 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"deberta-v3",
"en",
"dataset:glue",
"arxiv:2006.03654",
"arxiv:2111.09543",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
model-index:
- name: ds_results
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.874593165174939
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa v3 (small) fine-tuned on MNLI
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4985
- Accuracy: 0.8746
## Model description
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2, our V3 version significantly improves the model performance in downstream tasks. You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654), but we will provide more details in a separate write-up.
The DeBERTa V3 small model comes with 6 layers and a hidden size of 768. Its total parameter number is 143M since we use a vocabulary containing 128K tokens which introduce 98M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
## Intended uses & limitations
More information needed
## Training and evaluation data
The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7773 | 0.04 | 1000 | 0.5241 | 0.7984 |
| 0.546 | 0.08 | 2000 | 0.4629 | 0.8194 |
| 0.5032 | 0.12 | 3000 | 0.4704 | 0.8274 |
| 0.4711 | 0.16 | 4000 | 0.4383 | 0.8355 |
| 0.473 | 0.2 | 5000 | 0.4652 | 0.8305 |
| 0.4619 | 0.24 | 6000 | 0.4234 | 0.8386 |
| 0.4542 | 0.29 | 7000 | 0.4825 | 0.8349 |
| 0.4468 | 0.33 | 8000 | 0.3985 | 0.8513 |
| 0.4288 | 0.37 | 9000 | 0.4084 | 0.8493 |
| 0.4354 | 0.41 | 10000 | 0.3850 | 0.8533 |
| 0.423 | 0.45 | 11000 | 0.3855 | 0.8509 |
| 0.4167 | 0.49 | 12000 | 0.4122 | 0.8513 |
| 0.4129 | 0.53 | 13000 | 0.4009 | 0.8550 |
| 0.4135 | 0.57 | 14000 | 0.4136 | 0.8544 |
| 0.4074 | 0.61 | 15000 | 0.3869 | 0.8595 |
| 0.415 | 0.65 | 16000 | 0.3911 | 0.8517 |
| 0.4095 | 0.69 | 17000 | 0.3880 | 0.8593 |
| 0.4001 | 0.73 | 18000 | 0.3907 | 0.8587 |
| 0.4069 | 0.77 | 19000 | 0.3686 | 0.8630 |
| 0.3927 | 0.81 | 20000 | 0.4008 | 0.8593 |
| 0.3958 | 0.86 | 21000 | 0.3716 | 0.8639 |
| 0.4016 | 0.9 | 22000 | 0.3594 | 0.8679 |
| 0.3945 | 0.94 | 23000 | 0.3595 | 0.8679 |
| 0.3932 | 0.98 | 24000 | 0.3577 | 0.8645 |
| 0.345 | 1.02 | 25000 | 0.4080 | 0.8699 |
| 0.2885 | 1.06 | 26000 | 0.3919 | 0.8674 |
| 0.2858 | 1.1 | 27000 | 0.4346 | 0.8651 |
| 0.2872 | 1.14 | 28000 | 0.4105 | 0.8674 |
| 0.3002 | 1.18 | 29000 | 0.4133 | 0.8708 |
| 0.2954 | 1.22 | 30000 | 0.4062 | 0.8667 |
| 0.2912 | 1.26 | 31000 | 0.3972 | 0.8708 |
| 0.2958 | 1.3 | 32000 | 0.3713 | 0.8732 |
| 0.293 | 1.34 | 33000 | 0.3717 | 0.8715 |
| 0.3001 | 1.39 | 34000 | 0.3826 | 0.8716 |
| 0.2864 | 1.43 | 35000 | 0.4155 | 0.8694 |
| 0.2827 | 1.47 | 36000 | 0.4224 | 0.8666 |
| 0.2836 | 1.51 | 37000 | 0.3832 | 0.8744 |
| 0.2844 | 1.55 | 38000 | 0.4179 | 0.8699 |
| 0.2866 | 1.59 | 39000 | 0.3969 | 0.8681 |
| 0.2883 | 1.63 | 40000 | 0.4000 | 0.8683 |
| 0.2832 | 1.67 | 41000 | 0.3853 | 0.8688 |
| 0.2876 | 1.71 | 42000 | 0.3924 | 0.8677 |
| 0.2855 | 1.75 | 43000 | 0.4177 | 0.8719 |
| 0.2845 | 1.79 | 44000 | 0.3877 | 0.8724 |
| 0.2882 | 1.83 | 45000 | 0.3961 | 0.8713 |
| 0.2773 | 1.87 | 46000 | 0.3791 | 0.8740 |
| 0.2767 | 1.91 | 47000 | 0.3877 | 0.8779 |
| 0.2772 | 1.96 | 48000 | 0.4022 | 0.8690 |
| 0.2816 | 2.0 | 49000 | 0.3837 | 0.8732 |
| 0.2068 | 2.04 | 50000 | 0.4644 | 0.8720 |
| 0.1914 | 2.08 | 51000 | 0.4919 | 0.8744 |
| 0.2 | 2.12 | 52000 | 0.4870 | 0.8702 |
| 0.1904 | 2.16 | 53000 | 0.5038 | 0.8737 |
| 0.1915 | 2.2 | 54000 | 0.5232 | 0.8711 |
| 0.1956 | 2.24 | 55000 | 0.5192 | 0.8747 |
| 0.1911 | 2.28 | 56000 | 0.5215 | 0.8761 |
| 0.2053 | 2.32 | 57000 | 0.4604 | 0.8738 |
| 0.2008 | 2.36 | 58000 | 0.5162 | 0.8715 |
| 0.1971 | 2.4 | 59000 | 0.4886 | 0.8754 |
| 0.192 | 2.44 | 60000 | 0.4921 | 0.8725 |
| 0.1937 | 2.49 | 61000 | 0.4917 | 0.8763 |
| 0.1931 | 2.53 | 62000 | 0.4789 | 0.8778 |
| 0.1964 | 2.57 | 63000 | 0.4997 | 0.8721 |
| 0.2008 | 2.61 | 64000 | 0.4748 | 0.8756 |
| 0.1962 | 2.65 | 65000 | 0.4840 | 0.8764 |
| 0.2029 | 2.69 | 66000 | 0.4889 | 0.8767 |
| 0.1927 | 2.73 | 67000 | 0.4820 | 0.8758 |
| 0.1926 | 2.77 | 68000 | 0.4857 | 0.8762 |
| 0.1919 | 2.81 | 69000 | 0.4836 | 0.8749 |
| 0.1911 | 2.85 | 70000 | 0.4859 | 0.8742 |
| 0.1897 | 2.89 | 71000 | 0.4853 | 0.8766 |
| 0.186 | 2.93 | 72000 | 0.4946 | 0.8768 |
| 0.2011 | 2.97 | 73000 | 0.4851 | 0.8767 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
huggingtweets/zemmoureric
|
huggingtweets
| 2021-12-07T17:28:50Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/zemmoureric/1638897923015/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1465637600060919808/8nQIBTEI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Eric Zemmour</div>
<div style="text-align: center; font-size: 14px;">@zemmoureric</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Eric Zemmour.
| Data | Eric Zemmour |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 546 |
| Short tweets | 175 |
| Tweets kept | 2523 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24afk8k1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zemmoureric's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dz80r2t) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dz80r2t/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/zemmoureric')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
|
Jeska
| 2021-12-07T15:55:12Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 |
| 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 |
| 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 |
| 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 |
| 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 |
| 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 |
| 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 |
| 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 |
| 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 |
| 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 |
| 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 |
| 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 |
| 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 |
| 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 |
| 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2
|
Jeska
| 2021-12-07T13:46:05Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VaccinChatSentenceClassifierDutch_fromBERTje2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5112
- Accuracy: 0.9004
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 4.1505 | 1.0 | 1320 | 3.3293 | 0.3793 |
| 2.7333 | 2.0 | 2640 | 2.2295 | 0.6133 |
| 2.0189 | 3.0 | 3960 | 1.5134 | 0.7587 |
| 1.2504 | 4.0 | 5280 | 1.0765 | 0.8282 |
| 0.7733 | 5.0 | 6600 | 0.7937 | 0.8629 |
| 0.5217 | 6.0 | 7920 | 0.6438 | 0.8784 |
| 0.3148 | 7.0 | 9240 | 0.5733 | 0.8857 |
| 0.2067 | 8.0 | 10560 | 0.5362 | 0.8912 |
| 0.1507 | 9.0 | 11880 | 0.5098 | 0.8903 |
| 0.1024 | 10.0 | 13200 | 0.5078 | 0.8976 |
| 0.0837 | 11.0 | 14520 | 0.5054 | 0.8967 |
| 0.0608 | 12.0 | 15840 | 0.5062 | 0.8958 |
| 0.0426 | 13.0 | 17160 | 0.5072 | 0.9013 |
| 0.0374 | 14.0 | 18480 | 0.5110 | 0.9040 |
| 0.0346 | 15.0 | 19800 | 0.5112 | 0.9004 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
castorini/duot5-base-msmarco
|
castorini
| 2021-12-07T12:53:29Z | 265 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"arxiv:2101.05667",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
This model is a T5-base pairwise reranker fine-tuned on MS MARCO passage dataset for 50k steps (or 5 epochs).
For more details on how to use it, check [pygaggle.ai](pygaggle.ai)
Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/pdf/2101.05667.pdf)
|
Seongkyu/bert-base-cased-finetuned-squad
|
Seongkyu
| 2021-12-07T09:52:54Z | 25 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-base-cased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0458
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0179 | 1.0 | 6194 | 0.9548 |
| 0.7277 | 2.0 | 12388 | 0.9717 |
| 0.507 | 3.0 | 18582 | 1.0458 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
akahana/indonesia-sentiment-roberta
|
akahana
| 2021-12-07T04:26:11Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"id",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: "id"
widget:
- text: "dia orang yang baik ya bunds."
---
## how to use
```python
from transformers import pipeline, set_seed
path = "akahana/indonesia-sentiment-roberta"
emotion = pipeline('text-classification',
model=path,device=0)
set_seed(42)
kalimat = "dia orang yang baik ya bunds."
preds = emotion(kalimat)
preds
```
|
NbAiLabArchive/test_NCC_OSCAR_style
|
NbAiLabArchive
| 2021-12-07T01:55:12Z | 3 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
NbAiLabArchive/test_NCC_OSCAR_style_98w
|
NbAiLabArchive
| 2021-12-07T01:53:59Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
SaulLu/test-push-to-hub
|
SaulLu
| 2021-12-06T23:21:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
test readme
test 2
test 3
test 4
test 5
test 6
test 7
test 8
test 9
test 10
test 11
|
philschmid/MiniLMv2-L6-H384-emotion
|
philschmid
| 2021-12-06T19:59:04Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: MiniLMv2-L6-H384-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9215
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLMv2-L6-H384-emotion
This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2140
- Accuracy: 0.9215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.432 | 1.0 | 500 | 0.9992 | 0.6805 |
| 0.8073 | 2.0 | 1000 | 0.5437 | 0.846 |
| 0.4483 | 3.0 | 1500 | 0.3018 | 0.909 |
| 0.2833 | 4.0 | 2000 | 0.2412 | 0.915 |
| 0.2169 | 5.0 | 2500 | 0.2140 | 0.9215 |
| 0.1821 | 6.0 | 3000 | 0.2159 | 0.917 |
| 0.154 | 7.0 | 3500 | 0.2084 | 0.919 |
| 0.1461 | 8.0 | 4000 | 0.2047 | 0.92 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
gokulkarthik/xlm-roberta-qa-chaii
|
gokulkarthik
| 2021-12-06T15:50:08Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"en",
"ta",
"hi",
"dataset:squad",
"dataset:chaii",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language:
- en
- ta
- hi
datasets:
- squad
- chaii
widget:
- text: "அலுமினியத்தின் அணு எண் என்ன?"
context: "அலுமினியம் (ஆங்கிலம்: அலுமினியம்; வட அமெரிக்க ஆங்கிலம்: Aluminum) ஒரு வேதியியல் தனிமம் ஆகும். இதனுடைய அணு எண் 13 ஆகும். இது பூமியில் அதிகம் கிடைக்கும் உலோகங்களுள் ஒன்று. இது மின்சாரத்தையும் வெப்பத்தையும் கடத்த வல்லது. பாக்ஸைட் என்ற தாதுவில் இருந்து அலுமினியம் தயாரிக்கப்படுகிறது. இதன் வேதிக்குறியீடு Al ஆகும்."
- text: "ज्वाला गुट्टा की माँ का नाम क्या है?"
context: "ज्वाला गुट्टा (जन्म: 7 सितंबर 1983; वर्धा, महाराष्ट्र) एक भारतीय बैडमिंटन खिलाडी हैं। प्रारंभिक जीवन ज्वाला गुट्टा का जन्म 7 सितंबर 1983 को वर्धा, महाराष्ट्र में हुआ था। उनके पिता एम. क्रांति तेलुगु और मां येलन चीन से हैं। उनकी मां येलन गुट्टा पहली बार 1977 में अपने दादा जी के साथ भारत आई थीं। ज्वाला गुट्टा की प्रारंभिक पढ़ाई हैदराबाद से हुई और यहीं से उन्होंने बैडमिंटन खेलना भी शुरू किया। कॅरियर 10 साल की उम्र से ही ज्वाला गुट्टा ने एस.एम. आरिफ से ट्रेनिंग लेना शुरू कर दिया था। एस.एम. आरिफ भारत के जाने माने खेल प्रशिक्षक हैं जिन्हें द्रोणाचार्य अवार्ड से सम्मानित किया गया है। पहली बार 13 साल की उम्र में उन्होंने मिनी नेशनल बैडमिंटन चैंपियनशिप जीती थी। साल 2000 में ज्वाला गुट्टा ने 17 साल की उम्र में जूनियर नेशनल बैडमिंटन चैंपियनशिप जीती। इसी साल उन्होंने श्रुति कुरियन के साथ डबल्स में जोड़ी बनाते हुए महिलाओं के डबल्स जूनियर नेशनल बैडमिंटन चैंपियनशिप और सीनियर नेशनल बैडमिंटन चैंपियनशिप में जीत हासिल की। श्रुति कुरियन के साथ उनकी जोड़ी काफी लंबे समय तक चली। 2002 से 2008 तक लगातार सात बार ज्वाला गुट्टा ने महिलाओं के नेशनल युगल प्रतियोगिता में जीत हासिल की।"
- text: "How many bones do you have in your body?"
context: "A normal adult human skeleton consists of the following 206 (208 if the breast is thought to be three parts). This number can vary depending on the physiological differences. For example, in a very small number of humans, an extra rib (neck) or an extra lower spinal cord is found. There are 22 bones in the human skull (excluding the ear tendons), which are divided into eight cranium bones and 14 facial bones. (Thick numbers indicate the numbers seen in the nearby picture.) Bones (8) 1 frontal bone (2) 3 temporal bone (2) 4 occipital bone (4) Sphinoid bone (14) 7 mandible (6) maxilla (2) palatine bone (2) 5 zygotic bone (9) 9 nasal bone (2) The sacral vertebrae (4 or 5), in adults, form the sacral vertebrae (3 to 5), in adults they form the valve."
---
# XLM-RoBERTa for question answering in Indian languages
pre-trained XLM-Roberta with intermediate pre-training on SQUAD dataset (English) and fine tuning on Chaii dataset (Tamil, Hindi)
# How to use from the 🤗/transformers library
```
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii")
model = AutoModelForQuestionAnswering.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii")
```
|
Ayham/xlnetgpt2_xsum7
|
Ayham
| 2021-12-06T13:13:12Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: xlnetgpt2_xsum7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnetgpt2_xsum7
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
DebateLabKIT/argument-analyst
|
DebateLabKIT
| 2021-12-06T12:23:43Z | 37 | 4 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:debatelab/aaac",
"arxiv:2110.01509",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language:
- "en"
license: "cc-by-sa-4.0"
datasets:
- debatelab/aaac
widget:
- text: "reason_statements: argument_source: If Peter likes fish, Peter has been to New York. So, Peter has been to New York."
example_title: "Premise identification"
- text: "argdown_reconstruction: argument_source: If Peter likes fish, Peter has been to New York. So, Peter has been to New York."
example_title: "Argdown reconstruction"
- text: "premises_formalized: reason_statements: If Peter likes fish, Peter has been to New York. (ref: (1))"
example_title: "Formalization"
inference:
parameters:
max_length: 80
---
Pretraining Dataset: [AAAC01](https://huggingface.co/datasets/debatelab/aaac)
Demo: [DeepA2 Demo](https://huggingface.co/spaces/debatelab/deepa2-demo)
Paper: [DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models](https://arxiv.org/abs/2110.01509)
Authors: *Gregor Betz, Kyle Richardson*
## Abstract
In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst -- a T5 model (Raffel et al. 2020) set up and trained within DeepA2 -- reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank (Dalvi et al. 2021). Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model's uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.
|
emfa/l-lectra-danish-finetuned-hatespeech
|
emfa
| 2021-12-06T11:14:45Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: l-lectra-danish-finetuned-hatespeech
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# l-lectra-danish-finetuned-hatespeech
This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-)
This model is a fine-tuned version of [Maltehb/-l-ctra-danish-electra-small-uncased](https://huggingface.co/Maltehb/-l-ctra-danish-electra-small-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 315 | 0.2561 |
| 0.291 | 2.0 | 630 | 0.2491 |
| 0.291 | 3.0 | 945 | 0.2434 |
| 0.2089 | 4.0 | 1260 | 0.2608 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
ncduy/marian-finetuned-kde4-en-to-fr
|
ncduy
| 2021-12-06T08:46:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.8691179414982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8558
- Bleu: 52.8691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0a0+0aef44c
- Datasets 1.16.1
- Tokenizers 0.10.3
|
tyoyo/t5-base-TEDxJP-1body-2context
|
tyoyo
| 2021-12-06T08:37:39Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:te_dx_jp",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-1body-2context
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-TEDxJP-1body-2context
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4968
- Wer: 0.1969
- Mer: 0.1895
- Wil: 0.2801
- Wip: 0.7199
- Hits: 55902
- Substitutions: 6899
- Deletions: 3570
- Insertions: 2599
- Cer: 0.1727
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.7136 | 1.0 | 746 | 0.5716 | 0.2512 | 0.2345 | 0.3279 | 0.6721 | 54430 | 7249 | 4692 | 4731 | 0.2344 |
| 0.6267 | 2.0 | 1492 | 0.5152 | 0.2088 | 0.2005 | 0.2917 | 0.7083 | 55245 | 6949 | 4177 | 2732 | 0.2009 |
| 0.5416 | 3.0 | 2238 | 0.4969 | 0.2025 | 0.1948 | 0.2851 | 0.7149 | 55575 | 6871 | 3925 | 2646 | 0.1802 |
| 0.5223 | 4.0 | 2984 | 0.4915 | 0.1989 | 0.1917 | 0.2816 | 0.7184 | 55652 | 6826 | 3893 | 2481 | 0.1754 |
| 0.4985 | 5.0 | 3730 | 0.4929 | 0.1991 | 0.1916 | 0.2814 | 0.7186 | 55759 | 6828 | 3784 | 2603 | 0.1753 |
| 0.4675 | 6.0 | 4476 | 0.4910 | 0.1969 | 0.1897 | 0.2799 | 0.7201 | 55834 | 6859 | 3678 | 2534 | 0.1756 |
| 0.445 | 7.0 | 5222 | 0.4940 | 0.1955 | 0.1884 | 0.2782 | 0.7218 | 55881 | 6821 | 3669 | 2485 | 0.1712 |
| 0.4404 | 8.0 | 5968 | 0.4932 | 0.1979 | 0.1903 | 0.2801 | 0.7199 | 55881 | 6828 | 3662 | 2643 | 0.1742 |
| 0.4525 | 9.0 | 6714 | 0.4951 | 0.1968 | 0.1893 | 0.2799 | 0.7201 | 55939 | 6897 | 3535 | 2632 | 0.1740 |
| 0.4077 | 10.0 | 7460 | 0.4968 | 0.1969 | 0.1895 | 0.2801 | 0.7199 | 55902 | 6899 | 3570 | 2599 | 0.1727 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|
ncduy/bert-finetuned-ner
|
ncduy
| 2021-12-06T06:21:38Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9310572323932047
- name: Recall
type: recall
value: 0.9500168293503871
- name: F1
type: f1
value: 0.9404414827155352
- name: Accuracy
type: accuracy
value: 0.9865191028433508
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0590
- Precision: 0.9311
- Recall: 0.9500
- F1: 0.9404
- Accuracy: 0.9865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0874 | 1.0 | 1756 | 0.0635 | 0.9211 | 0.9369 | 0.9289 | 0.9835 |
| 0.0376 | 2.0 | 3512 | 0.0618 | 0.9342 | 0.9485 | 0.9413 | 0.9858 |
| 0.0226 | 3.0 | 5268 | 0.0590 | 0.9311 | 0.9500 | 0.9404 | 0.9865 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
prithivida/cnn-lstm-probwordnoise
|
prithivida
| 2021-12-06T05:56:30Z | 0 | 0 | null |
[
"pytorch",
"CNN",
"LSTM",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
tags:
- CNN
- LSTM
license: "MIT"
---
# NeuSpell: A Neural Spelling Correction Toolkit
This model checkpoint belongs to the Original Neuspell python library and is ported to HuggingFace Hub to be used as a part of NeuSpell-Demo spaces.
- [Refer to the Fork of the library (with HF hub support) in GitHub:](https://github.com/PrithivirajDamodaran/neuspell)
- [Refer to the original library in GitHub:](https://github.com/neuspell/neuspell)
|
ingridnc/t5-small-finetuned-fi-to-en
|
ingridnc
| 2021-12-06T01:11:33Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt19",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt19
metrics:
- bleu
model-index:
- name: t5-small-finetuned-fi-to-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt19
type: wmt19
args: fi-en
metrics:
- name: Bleu
type: bleu
value: 1.618
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-fi-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3598
- Bleu: 1.618
- Gen Len: 17.3223
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 3.3627 | 1.0 | 6250 | 3.5122 | 1.2882 | 17.1803 |
| 3.2162 | 2.0 | 12500 | 3.4442 | 1.4329 | 17.2617 |
| 3.1304 | 3.0 | 18750 | 3.3872 | 1.4862 | 17.296 |
| 3.0832 | 4.0 | 25000 | 3.3648 | 1.5795 | 17.3047 |
| 3.0623 | 5.0 | 31250 | 3.3598 | 1.618 | 17.3223 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800
|
diegor2
| 2021-12-06T00:23:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16_en_ro_pre_processed",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- wmt16_en_ro_pre_processed
metrics:
- bleu
model-index:
- name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16_en_ro_pre_processed
type: wmt16_en_ro_pre_processed
args: enro
metrics:
- name: Bleu
type: bleu
value: 0.0002
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1
This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset.
It achieves the following results on the evaluation set:
- Loss: 6.4897
- Bleu: 0.0002
- Gen Len: 9.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 6.2585 | 1.0 | 76290 | 6.4897 | 0.0002 | 9.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
usc-isi/sbert-roberta-large-anli-mnli-snli
|
usc-isi
| 2021-12-05T21:04:27Z | 8 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"dataset:anli",
"dataset:multi_nli",
"dataset:snli",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language:
- en
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- anli
- multi_nli
- snli
---
# sbert-roberta-large-anli-mnli-snli
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model is weight initialized by RoBERTa-large and trained on ANLI (Nie et al., 2020), MNLI (Williams et al., 2018), and SNLI (Bowman et al., 2015) using the [`training_nli.py`](https://github.com/UKPLab/sentence-transformers/blob/v0.3.5/examples/training/nli/training_nli.py) example script.
Training Details:
- Learning rate: 2e-5
- Batch size: 8
- Pooling: Mean
- Training time: ~20 hours on one [NVIDIA GeForce RTX 2080 Ti](https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```bash
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("usc-isi/sbert-roberta-large-anli-mnli-snli")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (Hugging Face Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: first, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
import torch
from transformers import AutoModel, AutoTokenizer
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["This is an example sentence", "Each sentence is converted"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli")
model = AutoModel.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
See section 4.1 of our paper for evaluation results.
## Full Model Architecture
```text
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
For more information about the project, see our paper:
> Ciosici, Manuel, et al. "Machine-Assisted Script Curation." _Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations_, Association for Computational Linguistics, 2021, pp. 8–17. _ACLWeb_, <https://www.aclweb.org/anthology/2021.naacl-demos.2>.
## References
- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. [A large annotated corpus for learning natural language inference](https://doi.org/10.18653/v1/D15-1075). In _Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing_, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.
- Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. [AdversarialNLI: A new benchmark for natural language understanding](https://doi.org/10.18653/v1/2020.acl-main.441). In _Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics_, pages 4885–4901, Online. Association for Computational Linguistics.
- Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. [A broad-coverage challenge corpus for sentence understanding through inference](https://doi.org/10.18653/v1/N18-1101). In _Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)_, pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.
|
Ayham/xlnet_gpt_xsum
|
Ayham
| 2021-12-05T21:00:24Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: xlnet_gpt_xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet_gpt_xsum
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
chandank/bart-base-finetuned-kaggglenews-fact-corrector-II
|
chandank
| 2021-12-05T20:22:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-kaggglenews-fact-corrector-II
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-fact-corrector-II
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 305 | 1.5749 | 27.9313 | 15.1004 | 23.3282 | 25.2336 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
tyoyo/t5-base-TEDxJP-1body-1context
|
tyoyo
| 2021-12-05T20:01:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:te_dx_jp",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-1body-1context
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-TEDxJP-1body-1context
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5061
- Wer: 0.1990
- Mer: 0.1913
- Wil: 0.2823
- Wip: 0.7177
- Hits: 55830
- Substitutions: 6943
- Deletions: 3598
- Insertions: 2664
- Cer: 0.1763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.7277 | 1.0 | 746 | 0.5799 | 0.2384 | 0.2256 | 0.3188 | 0.6812 | 54323 | 7170 | 4878 | 3777 | 0.2371 |
| 0.6278 | 2.0 | 1492 | 0.5254 | 0.2070 | 0.1997 | 0.2905 | 0.7095 | 55045 | 6885 | 4441 | 2412 | 0.1962 |
| 0.5411 | 3.0 | 2238 | 0.5076 | 0.2022 | 0.1950 | 0.2858 | 0.7142 | 55413 | 6902 | 4056 | 2463 | 0.1805 |
| 0.53 | 4.0 | 2984 | 0.5020 | 0.1979 | 0.1911 | 0.2814 | 0.7186 | 55599 | 6849 | 3923 | 2362 | 0.1761 |
| 0.5094 | 5.0 | 3730 | 0.4999 | 0.1987 | 0.1915 | 0.2828 | 0.7172 | 55651 | 6944 | 3776 | 2465 | 0.1742 |
| 0.4783 | 6.0 | 4476 | 0.5016 | 0.1985 | 0.1914 | 0.2826 | 0.7174 | 55684 | 6947 | 3740 | 2490 | 0.1753 |
| 0.4479 | 7.0 | 5222 | 0.5035 | 0.1976 | 0.1905 | 0.2819 | 0.7181 | 55726 | 6961 | 3684 | 2468 | 0.1733 |
| 0.4539 | 8.0 | 5968 | 0.5022 | 0.1967 | 0.1896 | 0.2807 | 0.7193 | 55795 | 6938 | 3638 | 2477 | 0.1729 |
| 0.4632 | 9.0 | 6714 | 0.5034 | 0.1991 | 0.1913 | 0.2824 | 0.7176 | 55844 | 6942 | 3585 | 2687 | 0.1758 |
| 0.4201 | 10.0 | 7460 | 0.5061 | 0.1990 | 0.1913 | 0.2823 | 0.7177 | 55830 | 6943 | 3598 | 2664 | 0.1763 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|
chandank/bart-base-finetuned-kaggglenews-baseline-final
|
chandank
| 2021-12-05T18:45:24Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-kaggglenews-baseline-final
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-baseline-final
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6942
- Rouge1: 28.581
- Rouge2: 16.3417
- Rougel: 24.1277
- Rougelsum: 25.9797
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 495 | 1.7514 | 27.911 | 15.7038 | 23.6466 | 25.2111 | 20.0 |
| 2.0585 | 2.0 | 990 | 1.6655 | 28.7581 | 16.4875 | 24.2669 | 26.1676 | 20.0 |
| 1.4173 | 3.0 | 1485 | 1.6942 | 28.581 | 16.3417 | 24.1277 | 25.9797 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
danielbispov/t5-small-finetuned-fi-to-en
|
danielbispov
| 2021-12-05T16:40:52Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt19",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt19
metrics:
- bleu
model-index:
- name: t5-small-finetuned-fi-to-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt19
type: wmt19
args: fi-en
metrics:
- name: Bleu
type: bleu
value: 1.129
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-fi-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5235
- Bleu: 1.129
- Gen Len: 17.088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:|
| 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
asyou20/1234
|
asyou20
| 2021-12-05T15:06:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
git clone https://github.com/saic-mdal/lama.git
|
Kithogue/T5_Question_Generation
|
Kithogue
| 2021-12-05T15:05:13Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
T5-base fine-tuned on SQuAD and CoQA datasets for question generation
language:
- en-us
tags:
- question-generation
license:
- MIT
datasets:
- SQuAD 2.0
- CoQA
|
NbAiLabArchive/test_NCC_OSCAR_16w_noada
|
NbAiLabArchive
| 2021-12-04T22:33:03Z | 4 | 0 |
transformers
|
[
"transformers",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
felipetanios/opus-mt-de-en-finetuned-de-to-en-second
|
felipetanios
| 2021-12-04T18:48:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: opus-mt-de-en-finetuned-de-to-en-second
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: de-en
metrics:
- name: Bleu
type: bleu
value: 37.9762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-de-en-finetuned-de-to-en-second
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2282
- Bleu: 37.9762
- Gen Len: 25.3696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 157 | 1.1837 | 38.8278 | 25.22 |
| No log | 2.0 | 314 | 1.2057 | 38.3047 | 25.2908 |
| No log | 3.0 | 471 | 1.2167 | 38.231 | 25.316 |
| 1.4808 | 4.0 | 628 | 1.2256 | 37.9871 | 25.3556 |
| 1.4808 | 5.0 | 785 | 1.2282 | 37.9762 | 25.3696 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
dee4hf/deeBERT
|
dee4hf
| 2021-12-04T18:44:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
trying to create my first BERT model
|
rossanez/t5-small-finetuned-de-en-final
|
rossanez
| 2021-12-04T14:59:44Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt14",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-final
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt14
type: wmt14
args: de-en
metrics:
- name: Bleu
type: bleu
value: 9.8394
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-en-final
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3285
- Bleu: 9.8394
- Gen Len: 17.325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 188 | 2.3867 | 9.7928 | 17.2581 |
| No log | 2.0 | 376 | 2.3942 | 9.7222 | 17.4186 |
| 0.7948 | 3.0 | 564 | 2.3909 | 9.6495 | 17.3513 |
| 0.7948 | 4.0 | 752 | 2.3496 | 9.7376 | 17.3417 |
| 0.7948 | 5.0 | 940 | 2.3285 | 9.8394 | 17.325 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
rossanez/t5-small-finetuned-de-en-batch8
|
rossanez
| 2021-12-04T14:31:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt14",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-batch8
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt14
type: wmt14
args: de-en
metrics:
- name: Bleu
type: bleu
value: 10.039
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-en-batch8
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1282
- Bleu: 10.039
- Gen Len: 17.3839
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 375 | 2.0912 | 9.9147 | 17.3084 |
| 1.5593 | 2.0 | 750 | 2.0858 | 9.9386 | 17.4299 |
| 1.4383 | 3.0 | 1125 | 2.1137 | 9.9804 | 17.34 |
| 1.3562 | 4.0 | 1500 | 2.1198 | 9.9685 | 17.367 |
| 1.3562 | 5.0 | 1875 | 2.1282 | 10.039 | 17.3839 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
rossanez/t5-small-finetuned-de-en-nofp16
|
rossanez
| 2021-12-04T13:59:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt14",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-nofp16
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt14
type: wmt14
args: de-en
metrics:
- name: Bleu
type: bleu
value: 9.5801
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-en-nofp16
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1460
- Bleu: 9.5801
- Gen Len: 17.333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 188 | 2.1899 | 9.4821 | 17.312 |
| No log | 2.0 | 376 | 2.1986 | 9.5705 | 17.3853 |
| 1.2118 | 3.0 | 564 | 2.1933 | 9.448 | 17.3293 |
| 1.2118 | 4.0 | 752 | 2.1607 | 9.563 | 17.336 |
| 1.2118 | 5.0 | 940 | 2.1460 | 9.5801 | 17.333 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
rossanez/t5-small-finetuned-de-en-lr2e-4
|
rossanez
| 2021-12-04T13:15:11Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt14",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt14
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-en-lr2e-4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt14
type: wmt14
args: de-en
metrics:
- name: Bleu
type: bleu
value: 9.12
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-en-lr2e-4
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0115
- Bleu: 9.12
- Gen Len: 17.4026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 188 | 2.0701 | 8.1225 | 17.4542 |
| No log | 2.0 | 376 | 2.0316 | 8.5741 | 17.4229 |
| 2.2224 | 3.0 | 564 | 2.0229 | 8.9227 | 17.3703 |
| 2.2224 | 4.0 | 752 | 2.0105 | 9.0764 | 17.4053 |
| 2.2224 | 5.0 | 940 | 2.0115 | 9.12 | 17.4026 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
chandank/bart-base-finetuned-kaggglenews-batch8-LR2E6
|
chandank
| 2021-12-04T12:07:12Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-kaggglenews-batch8-LR2E6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-batch8-LR2E6
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 495 | 1.7971 | 26.6141 | 13.9957 | 22.3012 | 23.7509 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
chandank/bart-base-finetuned-kaggglenews-batch8-LR4
|
chandank
| 2021-12-04T11:53:34Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-kaggglenews-batch8-LR4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-batch8-LR4
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 495 | 1.6037 | 28.1247 | 15.9399 | 23.8676 | 25.3739 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
chandank/bart-base-finetuned-kaggglenews-batch8-LR1
|
chandank
| 2021-12-04T11:37:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-kaggglenews-batch8-LR1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-batch8-LR1
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 495 | 1.6826 | 27.5191 | 15.0672 | 23.3065 | 24.7163 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_xml
|
Edomonndo
| 2021-12-04T10:23:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model_index:
- name: opus-mt-ja-en-finetuned-ja-to-en_xml
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
metric:
name: Bleu
type: bleu
value: 73.8646
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ja-en-finetuned-ja-to-en_xml
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7520
- Bleu: 73.8646
- Gen Len: 27.0884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.0512 | 1.0 | 748 | 0.8333 | 59.8234 | 27.905 |
| 0.6076 | 2.0 | 1496 | 0.7817 | 62.5606 | 26.1834 |
| 0.4174 | 3.0 | 2244 | 0.7817 | 64.8346 | 28.2918 |
| 0.2971 | 4.0 | 2992 | 0.7653 | 67.6013 | 27.2222 |
| 0.2172 | 5.0 | 3740 | 0.7295 | 69.4017 | 27.0174 |
| 0.1447 | 6.0 | 4488 | 0.7522 | 68.8355 | 28.2865 |
| 0.0953 | 7.0 | 5236 | 0.7596 | 71.4743 | 27.1861 |
| 0.0577 | 8.0 | 5984 | 0.7469 | 72.0684 | 26.921 |
| 0.04 | 9.0 | 6732 | 0.7526 | 73.2821 | 27.1365 |
| 0.0213 | 10.0 | 7480 | 0.7520 | 73.8646 | 27.0884 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.10.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|
limjiayi/bert-hateful-memes-expanded
|
limjiayi
| 2021-12-04T04:38:38Z | 14 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-hateful-memes-expanded
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-hateful-memes-expanded
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on texts from the following datasets:
- [Hateful Memes](https://hatefulmemeschallenge.com/), `train`, `dev_seen` and `dev_unseen`
- [HarMeme](https://github.com/di-dimitrov/harmeme), `train`, `val` and `test`
- [MultiOFF](https://github.com/bharathichezhiyan/Multimodal-Meme-Classification-Identifying-Offensive-Content-in-Image-and-Text), `Training`, `Validation` and `Testing`
It achieves the following results on the evaluation set:
- Loss: 3.7600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.11.0
- Pytorch 1.8.1+cu102
- Datasets 1.8.0
- Tokenizers 0.10.2
|
marciovbarbosa/t5-small-finetuned-de-to-en-fp16
|
marciovbarbosa
| 2021-12-04T04:27:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-to-en-fp16
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: de-en
metrics:
- name: Bleu
type: bleu
value: 9.2226
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-to-en-fp16
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9416
- Bleu: 9.2226
- Gen Len: 17.3311
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 272 | 2.1671 | 3.8489 | 17.6382 |
| 2.6715 | 2.0 | 544 | 2.0660 | 6.4354 | 17.4905 |
| 2.6715 | 3.0 | 816 | 2.0206 | 7.4092 | 17.3708 |
| 2.4325 | 4.0 | 1088 | 1.9926 | 8.1453 | 17.3685 |
| 2.4325 | 5.0 | 1360 | 1.9739 | 8.6739 | 17.3521 |
| 2.3312 | 6.0 | 1632 | 1.9602 | 8.8808 | 17.3681 |
| 2.3312 | 7.0 | 1904 | 1.9509 | 9.1173 | 17.3491 |
| 2.2946 | 8.0 | 2176 | 1.9465 | 9.1504 | 17.3414 |
| 2.2946 | 9.0 | 2448 | 1.9426 | 9.2372 | 17.3398 |
| 2.2665 | 10.0 | 2720 | 1.9416 | 9.2226 | 17.3311 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marciovbarbosa/t5-small-finetuned-de-to-en-lr3e-4
|
marciovbarbosa
| 2021-12-04T03:33:12Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-to-en-lr3e-4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: de-en
metrics:
- name: Bleu
type: bleu
value: 11.9094
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-to-en-lr3e-4
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9059
- Bleu: 11.9094
- Gen Len: 17.2257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 272 | 1.8814 | 10.3468 | 17.2244 |
| 2.2309 | 2.0 | 544 | 1.8320 | 10.9949 | 17.2768 |
| 2.2309 | 3.0 | 816 | 1.8273 | 11.4299 | 17.2147 |
| 1.7515 | 4.0 | 1088 | 1.8321 | 11.5576 | 17.3191 |
| 1.7515 | 5.0 | 1360 | 1.8377 | 11.8255 | 17.2244 |
| 1.488 | 6.0 | 1632 | 1.8562 | 11.6741 | 17.2427 |
| 1.488 | 7.0 | 1904 | 1.8653 | 11.7363 | 17.2331 |
| 1.3301 | 8.0 | 2176 | 1.8938 | 12.0458 | 17.2044 |
| 1.3301 | 9.0 | 2448 | 1.9005 | 11.8676 | 17.2437 |
| 1.2241 | 10.0 | 2720 | 1.9059 | 11.9094 | 17.2257 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marciovbarbosa/t5-small-finetuned-de-to-en
|
marciovbarbosa
| 2021-12-04T00:56:09Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: t5-small-finetuned-de-to-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: de-en
metrics:
- name: Bleu
type: bleu
value: 9.2166
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-de-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9417
- Bleu: 9.2166
- Gen Len: 17.3404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 272 | 2.1660 | 3.8515 | 17.6289 |
| 2.6678 | 2.0 | 544 | 2.0656 | 6.4422 | 17.4842 |
| 2.6678 | 3.0 | 816 | 2.0203 | 7.4348 | 17.3741 |
| 2.4316 | 4.0 | 1088 | 1.9926 | 8.0914 | 17.3658 |
| 2.4316 | 5.0 | 1360 | 1.9739 | 8.6535 | 17.3461 |
| 2.3307 | 6.0 | 1632 | 1.9603 | 8.8757 | 17.3768 |
| 2.3307 | 7.0 | 1904 | 1.9509 | 9.0744 | 17.3511 |
| 2.2945 | 8.0 | 2176 | 1.9466 | 9.1111 | 17.3418 |
| 2.2945 | 9.0 | 2448 | 1.9427 | 9.1969 | 17.3351 |
| 2.2666 | 10.0 | 2720 | 1.9417 | 9.2166 | 17.3404 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.