modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 00:47:30
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 00:47:21
card
stringlengths
11
1.01M
Jeska/BertjeWDialDataALL
Jeska
2021-12-03T22:10:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1739 | 1.0 | 1542 | 2.0150 | | 2.0759 | 2.0 | 3084 | 1.9918 | | 2.0453 | 3.0 | 4626 | 2.0132 | | 1.9936 | 4.0 | 6168 | 1.9341 | | 1.9659 | 5.0 | 7710 | 1.9140 | | 1.9545 | 6.0 | 9252 | 1.9418 | | 1.9104 | 7.0 | 10794 | 1.9179 | | 1.8991 | 8.0 | 12336 | 1.9157 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ffsouza/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
ffsouza
2021-12-03T21:45:00Z
38
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed model-index: - name: t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
rtoguchi/t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001
rtoguchi
2021-12-03T19:24:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 4.7258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4943 - Bleu: 4.7258 - Gen Len: 18.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.047 | 1.0 | 7629 | 1.4943 | 4.7258 | 18.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
jenspt/byt5_ft_all_clean_data_lr_1e4
jenspt
2021-12-03T18:11:12Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1, # total number of training epochs per_device_train_batch_size=8, # batch size per device during training #per_device_eval_batch_size=2, # batch size for evaluation warmup_steps=3000, # number of warmup steps for learning rate scheduler (used to be 500) weight_decay=0.01, # strength of weight decay learning_rate=0.1e-3, # default = 5e-5=0.5e-4 logging_dir='./logs', # directory for storing logs logging_steps=50, #eval_steps = 100, overwrite_output_dir = True, save_strategy = 'epoch', #logging_strategy = 'epoch', )
ffsouza/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
ffsouza
2021-12-03T16:07:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 6.4854 - Bleu: 0.0002 - Gen Len: 9.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 6.2568 | 1.0 | 76290 | 6.4854 | 0.0002 | 9.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
jenspt/byt5_ft_all_clean_data
jenspt
2021-12-03T13:32:56Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1, # total number of training epochs per_device_train_batch_size=8, # batch size per device during training #per_device_eval_batch_size=2, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler (used to be 500) weight_decay=0.01, # strength of weight decay #learning_rate=0.1e-3, # default = 5e-5=0.5e-4 logging_dir='./logs', # directory for storing logs logging_steps=50, #eval_steps = 100, overwrite_output_dir = True, save_strategy = 'epoch', #logging_strategy = 'epoch', )
rtoguchi/t5-small-finetuned-en-to-ro-fp16_off
rtoguchi
2021-12-03T13:18:24Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-fp16_off results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3056 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4078 - Bleu: 7.3056 - Gen Len: 18.2556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6037 | 1.0 | 7629 | 1.4078 | 7.3056 | 18.2556 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
vicgalle/clip-vit-base-patch16-photo-critique
vicgalle
2021-12-03T10:05:09Z
20
1
transformers
[ "transformers", "jax", "clip", "zero-shot-image-classification", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-03-02T23:29:05Z
CLIP model retrained over some subset of the DPC dataset ### Usage instructions ``` from transformers import AutoTokenizer, AutoModel, CLIPProcessor tokenizer = AutoTokenizer.from_pretrained("vicgalle/clip-vit-base-patch16-photo-critique") model = AutoModel.from_pretrained("vicgalle/clip-vit-base-patch16-photo-critique", from_flax=True) processor = CLIPProcessor.from_pretrained("vicgalle/clip-vit-base-patch16-photo-critique") ```
danhsf/t5-small-finetuned-en-to-ro-lr_2e-3-fp_false
danhsf
2021-12-03T09:19:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-lr_2e-3-fp_false results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.1921 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-lr_2e-3-fp_false This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4239 - Bleu: 7.1921 - Gen Len: 18.2611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.8922 | 0.05 | 2000 | 1.7000 | 6.5274 | 18.2656 | | 0.8621 | 0.1 | 4000 | 1.6409 | 6.6411 | 18.2311 | | 0.8433 | 0.16 | 6000 | 1.6396 | 6.6601 | 18.2596 | | 0.8297 | 0.21 | 8000 | 1.6304 | 6.7129 | 18.2581 | | 0.8006 | 0.26 | 10000 | 1.6022 | 6.6067 | 18.2816 | | 0.793 | 0.31 | 12000 | 1.5999 | 6.551 | 18.2631 | | 0.774 | 0.37 | 14000 | 1.5586 | 6.7105 | 18.2661 | | 0.7618 | 0.42 | 16000 | 1.5769 | 6.7278 | 18.2526 | | 0.7463 | 0.47 | 18000 | 1.5625 | 6.6972 | 18.2201 | | 0.7394 | 0.52 | 20000 | 1.5377 | 6.936 | 18.2491 | | 0.7203 | 0.58 | 22000 | 1.5191 | 7.0205 | 18.2731 | | 0.7158 | 0.63 | 24000 | 1.5055 | 6.835 | 18.2506 | | 0.688 | 0.68 | 26000 | 1.4779 | 7.0534 | 18.2716 | | 0.678 | 0.73 | 28000 | 1.4691 | 6.9735 | 18.2616 | | 0.6677 | 0.79 | 30000 | 1.4702 | 7.0359 | 18.2496 | | 0.6568 | 0.84 | 32000 | 1.4534 | 6.9982 | 18.2556 | | 0.6475 | 0.89 | 34000 | 1.4427 | 7.0443 | 18.2466 | | 0.6395 | 0.94 | 36000 | 1.4265 | 7.1205 | 18.2721 | | 0.6319 | 1.0 | 38000 | 1.4239 | 7.1921 | 18.2611 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
nateraw/resnet50-oxford-iiit-pet
nateraw
2021-12-03T06:59:13Z
82
0
timm
[ "timm", "pytorch", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - timm library_tag: timm --- # Model card for resnet50-oxford-iiit-pet ![boxer](boxer.jpg)
eliotm/t5-small-finetuned-en-to-ro-fp16_off
eliotm
2021-12-03T03:05:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-fp16_off results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 5.9132 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.8351 - Bleu: 5.9132 - Gen Len: 18.2656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.8501 | 1.0 | 7629 | 1.8351 | 5.9132 | 18.2656 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
OscarNav/dialoGPT_translate
OscarNav
2021-12-03T01:30:17Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
# Finetuned DialoGPT model for Eng-Spa translation DialoGPT-small model was used and finetuned on English to Spanish translations, extracted from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip some examples of translations | Role | Response | | :---: |------------------------| | User | please, sing me a song | | Bot | Por favor, canta una canción. | | User | I really want to go to China | | Bot | Realmente quiero ir a China. | | User | Can you do me a favor? | | Bot | ¿Me puedes hacer un favor? | | User | I don't know what you are talking about | | Bot | No sé de qué estás hablando. | | User | I don't want to go to China | | Bot | No quiero ir a China. | # Using the model example code for trying out the model ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-small') model = AutoModelWithLMHead.from_pretrained('OscarNav/dialoGPT_translate') # Let's traslate 5 sentences for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( new_user_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, top_p=0.92, top_k = 50 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, new_user_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
alexrfelicio/t5-small-finetuned32-en-to-de
alexrfelicio
2021-12-02T22:39:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: t5-small-finetuned32-en-to-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned32-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.4226 | 21.9554 | 17.8089 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
gayanin/bart-mlm-pubmed-medterm
gayanin
2021-12-02T20:51:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-medterm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-medterm This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Rouge2 Precision: 0.985 - Rouge2 Recall: 0.7208 - Rouge2 Fmeasure: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.0018 | 1.0 | 13833 | 0.0003 | 0.985 | 0.7208 | 0.8088 | | 0.0014 | 2.0 | 27666 | 0.0006 | 0.9848 | 0.7207 | 0.8086 | | 0.0009 | 3.0 | 41499 | 0.0002 | 0.9848 | 0.7207 | 0.8086 | | 0.0007 | 4.0 | 55332 | 0.0002 | 0.985 | 0.7208 | 0.8088 | | 0.0006 | 5.0 | 69165 | 0.0001 | 0.9848 | 0.7207 | 0.8087 | | 0.0001 | 6.0 | 82998 | 0.0002 | 0.9846 | 0.7206 | 0.8086 | | 0.0009 | 7.0 | 96831 | 0.0001 | 0.9848 | 0.7208 | 0.8087 | | 0.0 | 8.0 | 110664 | 0.0000 | 0.9848 | 0.7207 | 0.8087 | | 0.0001 | 9.0 | 124497 | 0.0000 | 0.985 | 0.7208 | 0.8088 | | 0.0 | 10.0 | 138330 | 0.0000 | 0.985 | 0.7208 | 0.8088 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/angiejolielive
huggingtweets
2021-12-02T20:17:53Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/angiejolielive/1638476268574/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/817164380081180673/TJnt3Lxe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Angelina Jolie</div> <div style="text-align: center; font-size: 14px;">@angiejolielive</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Angelina Jolie. | Data | Angelina Jolie | | --- | --- | | Tweets downloaded | 1118 | | Retweets | 71 | | Short tweets | 45 | | Tweets kept | 1002 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fb12gam/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angiejolielive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g9ynpkt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g9ynpkt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angiejolielive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fse/fasttext-wiki-news-subwords-300
fse
2021-12-02T20:13:10Z
0
2
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Fasttext 1 million word vectors trained on Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset (16B tokens). Read more: * https://fasttext.cc/docs/en/english-vectors.html
fse/fasttext-crawl-subwords-300
fse
2021-12-02T20:06:16Z
0
0
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Fasttext 2 million word vectors trained with subword information on Common Crawl (600B tokens). Read more: * https://fasttext.cc/docs/en/english-vectors.html
rtoguchi/t5-small-finetuned-en-to-ro-weight_decay_0.001
rtoguchi
2021-12-02T17:46:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-weight_decay_0.001 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3524 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-weight_decay_0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4509 - Bleu: 7.3524 - Gen Len: 18.2581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6488 | 1.0 | 7629 | 1.4509 | 7.3524 | 18.2581 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
fse/glove-wiki-gigaword-50
fse
2021-12-02T16:45:04Z
0
1
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
fse/glove-wiki-gigaword-300
fse
2021-12-02T16:44:23Z
0
5
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
fse/glove-twitter-50
fse
2021-12-02T16:41:57Z
0
0
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
fse/glove-twitter-200
fse
2021-12-02T16:40:17Z
0
1
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
fse/glove-twitter-100
fse
2021-12-02T16:39:20Z
0
0
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
huggingtweets/derspiegel
huggingtweets
2021-12-02T16:13:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/derspiegel/1638461583796/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1214723509521387520/7UENeEVp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DER SPIEGEL</div> <div style="text-align: center; font-size: 14px;">@derspiegel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DER SPIEGEL. | Data | DER SPIEGEL | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 478 | | Short tweets | 6 | | Tweets kept | 2766 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uv8zr0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @derspiegel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i3q4xu9o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i3q4xu9o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/derspiegel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jayalammar
huggingtweets
2021-12-02T15:51:33Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/jayalammar/1638460288971/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1325460517922729984/xDO9dBt-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jay Alammar</div> <div style="text-align: center; font-size: 14px;">@jayalammar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jay Alammar. | Data | Jay Alammar | | --- | --- | | Tweets downloaded | 692 | | Retweets | 198 | | Short tweets | 35 | | Tweets kept | 459 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wf3zug3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jayalammar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/hq8g8xlh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/hq8g8xlh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jayalammar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emrecan/bert-base-turkish-cased-allnli_tr
emrecan
2021-12-02T14:58:36Z
19
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: mit datasets: - nli_tr metrics: - accuracy widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5771 - Accuracy: 0.7978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8559 | 0.03 | 1000 | 0.7577 | 0.6798 | | 0.6612 | 0.07 | 2000 | 0.7263 | 0.6958 | | 0.6115 | 0.1 | 3000 | 0.6431 | 0.7364 | | 0.5916 | 0.14 | 4000 | 0.6347 | 0.7407 | | 0.5719 | 0.17 | 5000 | 0.6317 | 0.7483 | | 0.5575 | 0.2 | 6000 | 0.6034 | 0.7544 | | 0.5521 | 0.24 | 7000 | 0.6148 | 0.7568 | | 0.5393 | 0.27 | 8000 | 0.5931 | 0.7610 | | 0.5382 | 0.31 | 9000 | 0.5866 | 0.7665 | | 0.5306 | 0.34 | 10000 | 0.5881 | 0.7594 | | 0.5295 | 0.37 | 11000 | 0.6120 | 0.7632 | | 0.5225 | 0.41 | 12000 | 0.5620 | 0.7759 | | 0.5112 | 0.44 | 13000 | 0.5641 | 0.7769 | | 0.5133 | 0.48 | 14000 | 0.5571 | 0.7798 | | 0.5023 | 0.51 | 15000 | 0.5719 | 0.7722 | | 0.5017 | 0.54 | 16000 | 0.5482 | 0.7844 | | 0.5111 | 0.58 | 17000 | 0.5503 | 0.7800 | | 0.4929 | 0.61 | 18000 | 0.5502 | 0.7836 | | 0.4923 | 0.65 | 19000 | 0.5424 | 0.7843 | | 0.4894 | 0.68 | 20000 | 0.5417 | 0.7851 | | 0.4877 | 0.71 | 21000 | 0.5514 | 0.7841 | | 0.4818 | 0.75 | 22000 | 0.5494 | 0.7848 | | 0.4898 | 0.78 | 23000 | 0.5450 | 0.7859 | | 0.4823 | 0.82 | 24000 | 0.5417 | 0.7878 | | 0.4806 | 0.85 | 25000 | 0.5354 | 0.7875 | | 0.4779 | 0.88 | 26000 | 0.5338 | 0.7848 | | 0.4744 | 0.92 | 27000 | 0.5277 | 0.7934 | | 0.4678 | 0.95 | 28000 | 0.5507 | 0.7871 | | 0.4727 | 0.99 | 29000 | 0.5603 | 0.7789 | | 0.4243 | 1.02 | 30000 | 0.5626 | 0.7894 | | 0.3955 | 1.05 | 31000 | 0.5324 | 0.7939 | | 0.4022 | 1.09 | 32000 | 0.5322 | 0.7925 | | 0.3976 | 1.12 | 33000 | 0.5450 | 0.7920 | | 0.3913 | 1.15 | 34000 | 0.5464 | 0.7948 | | 0.406 | 1.19 | 35000 | 0.5406 | 0.7958 | | 0.3875 | 1.22 | 36000 | 0.5489 | 0.7878 | | 0.4024 | 1.26 | 37000 | 0.5427 | 0.7925 | | 0.3988 | 1.29 | 38000 | 0.5335 | 0.7904 | | 0.393 | 1.32 | 39000 | 0.5415 | 0.7923 | | 0.3988 | 1.36 | 40000 | 0.5385 | 0.7962 | | 0.3912 | 1.39 | 41000 | 0.5383 | 0.7950 | | 0.3949 | 1.43 | 42000 | 0.5415 | 0.7931 | | 0.3902 | 1.46 | 43000 | 0.5438 | 0.7893 | | 0.3948 | 1.49 | 44000 | 0.5348 | 0.7906 | | 0.3921 | 1.53 | 45000 | 0.5361 | 0.7890 | | 0.3944 | 1.56 | 46000 | 0.5419 | 0.7953 | | 0.3959 | 1.6 | 47000 | 0.5402 | 0.7967 | | 0.3926 | 1.63 | 48000 | 0.5429 | 0.7925 | | 0.3854 | 1.66 | 49000 | 0.5346 | 0.7959 | | 0.3864 | 1.7 | 50000 | 0.5241 | 0.7979 | | 0.385 | 1.73 | 51000 | 0.5149 | 0.8002 | | 0.3871 | 1.77 | 52000 | 0.5325 | 0.8002 | | 0.3819 | 1.8 | 53000 | 0.5332 | 0.8022 | | 0.384 | 1.83 | 54000 | 0.5419 | 0.7873 | | 0.3899 | 1.87 | 55000 | 0.5225 | 0.7974 | | 0.3894 | 1.9 | 56000 | 0.5358 | 0.7977 | | 0.3838 | 1.94 | 57000 | 0.5264 | 0.7988 | | 0.3881 | 1.97 | 58000 | 0.5280 | 0.7956 | | 0.3756 | 2.0 | 59000 | 0.5601 | 0.7969 | | 0.3156 | 2.04 | 60000 | 0.5936 | 0.7925 | | 0.3125 | 2.07 | 61000 | 0.5898 | 0.7938 | | 0.3179 | 2.11 | 62000 | 0.5591 | 0.7981 | | 0.315 | 2.14 | 63000 | 0.5853 | 0.7970 | | 0.3122 | 2.17 | 64000 | 0.5802 | 0.7979 | | 0.3105 | 2.21 | 65000 | 0.5758 | 0.7979 | | 0.3076 | 2.24 | 66000 | 0.5685 | 0.7980 | | 0.3117 | 2.28 | 67000 | 0.5799 | 0.7944 | | 0.3108 | 2.31 | 68000 | 0.5742 | 0.7988 | | 0.3047 | 2.34 | 69000 | 0.5907 | 0.7921 | | 0.3114 | 2.38 | 70000 | 0.5723 | 0.7937 | | 0.3035 | 2.41 | 71000 | 0.5944 | 0.7955 | | 0.3129 | 2.45 | 72000 | 0.5838 | 0.7928 | | 0.3071 | 2.48 | 73000 | 0.5929 | 0.7949 | | 0.3061 | 2.51 | 74000 | 0.5794 | 0.7967 | | 0.3068 | 2.55 | 75000 | 0.5892 | 0.7954 | | 0.3053 | 2.58 | 76000 | 0.5796 | 0.7962 | | 0.3117 | 2.62 | 77000 | 0.5763 | 0.7981 | | 0.3062 | 2.65 | 78000 | 0.5852 | 0.7964 | | 0.3004 | 2.68 | 79000 | 0.5793 | 0.7966 | | 0.3146 | 2.72 | 80000 | 0.5693 | 0.7985 | | 0.3146 | 2.75 | 81000 | 0.5788 | 0.7982 | | 0.3079 | 2.79 | 82000 | 0.5726 | 0.7978 | | 0.3058 | 2.82 | 83000 | 0.5677 | 0.7988 | | 0.3055 | 2.85 | 84000 | 0.5701 | 0.7982 | | 0.3049 | 2.89 | 85000 | 0.5809 | 0.7970 | | 0.3044 | 2.92 | 86000 | 0.5741 | 0.7986 | | 0.3057 | 2.96 | 87000 | 0.5743 | 0.7980 | | 0.3081 | 2.99 | 88000 | 0.5771 | 0.7978 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
fse/glove-twitter-25
fse
2021-12-02T13:39:31Z
0
0
null
[ "glove", "gensim", "fse", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - glove - gensim - fse --- # Glove Twitter Pre-trained glove vectors based on 2B tweets, 27B tokens, 1.2M vocab, uncased. Read more: * https://nlp.stanford.edu/projects/glove/ * https://nlp.stanford.edu/pubs/glove.pdf
chandank/bart-base-finetuned-kaggglenews-batch8-epochs10
chandank
2021-12-02T12:42:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-base-finetuned-kaggglenews-batch8-epochs10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-kaggglenews-batch8-epochs10 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5763 - Rouge1: 28.693 - Rouge2: 16.666 - Rougel: 24.2361 - Rougelsum: 26.0289 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 1.6043 | 27.8611 | 15.8713 | 23.8365 | 25.378 | 20.0 | | 1.9054 | 2.0 | 990 | 1.5613 | 28.2715 | 16.3724 | 24.3212 | 25.8499 | 20.0 | | 1.651 | 3.0 | 1485 | 1.5394 | 28.6282 | 16.2976 | 24.2336 | 25.9434 | 20.0 | | 1.4955 | 4.0 | 1980 | 1.5438 | 28.9266 | 16.7257 | 24.61 | 26.443 | 20.0 | | 1.4034 | 5.0 | 2475 | 1.5449 | 28.2296 | 16.1292 | 23.9698 | 25.651 | 20.0 | | 1.3077 | 6.0 | 2970 | 1.5642 | 28.4486 | 16.3833 | 24.1629 | 26.0013 | 20.0 | | 1.2505 | 7.0 | 3465 | 1.5566 | 28.5469 | 16.5374 | 24.2966 | 25.962 | 20.0 | | 1.2027 | 8.0 | 3960 | 1.5730 | 28.7278 | 16.6442 | 24.2531 | 26.1171 | 20.0 | | 1.1571 | 9.0 | 4455 | 1.5690 | 28.7736 | 16.7491 | 24.3066 | 26.1439 | 20.0 | | 1.1237 | 10.0 | 4950 | 1.5763 | 28.693 | 16.666 | 24.2361 | 26.0289 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
ai-forever/rudalle-Emojich
ai-forever
2021-12-02T11:06:48Z
0
16
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05Z
# Emojich ![](./pics/emojich_rgba_100.png) ### generate emojis from text Model was trained by [Sber AI](https://github.com/sberbank-ai) * Task: `text2image generation` * Num Parameters: `1.3 B` * Training Data Volume: `120 million text-image pairs` & [`2749 text-emoji pairs`](https://www.kaggle.com/shonenkov/russian-emoji) [![Telegram](https://img.shields.io/badge/Telegram-Stickers-blue?style=for-the-badge&logo=)](https://telegram.me/addstickers/SberAI_ruDALLE) ### Model Description 😋 Emojich is a 1.3 billion params model from the family GPT3-like, it generates emoji-style images with the brain of ◾ Malevich. ### Fine-tuning stage: The main goal of fine-tuning is trying to keep the generalization of [ruDALL-E Malevich (XL)](https://huggingface.co/sberbank-ai/rudalle-Malevich) model on text to emoji tasks. ruDALL-E Malevich is a multi-modality big pretrained transformer, that uses images and texts. The idea with freezing feedforward and self-attention layers in pretrained transformer is demonstrated high performance in changing different modalities. Also, the model has a good chance for over-fitting text modality and lost generalization. To deal with this problem is increased coefficient 10^3 in weighted cross-entropy loss for image codebooks part. Full version of training code is available on Kaggle: [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/shonenkov/emojich-rudall-e) ### Examples of generated emojis All examples are generated automatically (without manual cherry-picking) with hyper-parameters: seed 42, batch size 16, top-k 2048, top-p 0.995, temperature 1.0, GPU A100. For making better generative emojis should use more attempts (~512) and select the best one manually. *Remember, the great art makers became "great" after creating just only one masterpiece.* ![](./pics/examples.png)
LzLzLz/Bert
LzLzLz
2021-12-02T06:50:05Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
It's a sentiment inference model base on bert.
Akari/albert-base-v2-finetuned-squad
Akari
2021-12-02T05:36:13Z
51
1
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8695 | 1.0 | 8248 | 0.8813 | | 0.6333 | 2.0 | 16496 | 0.8042 | | 0.4372 | 3.0 | 24744 | 0.9492 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.7.1 - Datasets 1.15.1 - Tokenizers 0.10.3
BigSalmon/FormalRobertaaa
BigSalmon
2021-12-02T00:23:58Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
https://huggingface.co/spaces/BigSalmon/MASK2
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
aretw0
2021-12-01T21:21:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-epoch.04375 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3292 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-epoch.04375 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4137 - Bleu: 7.3292 - Gen Len: 18.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6211 | 0.04 | 1669 | 1.4137 | 7.3292 | 18.2541 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
emrecan/bert-base-multilingual-cased-snli_tr
emrecan
2021-12-01T19:43:01Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
emrecan/distilbert-base-turkish-cased-snli_tr
emrecan
2021-12-01T19:42:34Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
hankzhong/electra-small-discriminator-finetuned-squad
hankzhong
2021-12-01T19:04:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-small-discriminator-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-squad This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5751 | 1.0 | 2767 | 1.3952 | | 1.2939 | 2.0 | 5534 | 1.2458 | | 1.1866 | 3.0 | 8301 | 1.2174 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/binance
huggingtweets
2021-12-01T14:02:42Z
7
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/binance/1638367358099/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1466001345324875784/4RrjsTR__400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Binance</div> <div style="text-align: center; font-size: 14px;">@binance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Binance. | Data | Binance | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 268 | | Short tweets | 353 | | Tweets kept | 2629 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m31ml960/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @binance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vx6m0ip/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/binance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rossanez/t5-small-finetuned-de-en-256
rossanez
2021-12-01T11:08:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt14", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.2663 | 4.5343 | 17.698 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Emmanuel/bert-finetuned-ner
Emmanuel
2021-12-01T11:05:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9317394888705688 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9412842508536686 - name: Accuracy type: accuracy value: 0.9865779713898863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.9317 - Recall: 0.9510 - F1: 0.9413 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0872 | 1.0 | 1756 | 0.0660 | 0.9152 | 0.9350 | 0.9250 | 0.9827 | | 0.0386 | 2.0 | 3512 | 0.0579 | 0.9374 | 0.9498 | 0.9436 | 0.9864 | | 0.0225 | 3.0 | 5268 | 0.0603 | 0.9317 | 0.9510 | 0.9413 | 0.9866 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-base-finetuned-de-en
rossanez
2021-12-01T10:55:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt14", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-base-finetuned-de-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-de-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.4324 | 1.2308 | 17.8904 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab-32
ying-tina
2021-12-01T10:54:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-base-timit-demo-colab-32 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-32 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4488 - Wer: 0.3149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6155 | 4.0 | 500 | 2.2647 | 0.9992 | | 0.9037 | 8.0 | 1000 | 0.4701 | 0.4336 | | 0.3159 | 12.0 | 1500 | 0.4247 | 0.3575 | | 0.1877 | 16.0 | 2000 | 0.4477 | 0.3442 | | 0.1368 | 20.0 | 2500 | 0.4932 | 0.3384 | | 0.1062 | 24.0 | 3000 | 0.4758 | 0.3202 | | 0.0928 | 28.0 | 3500 | 0.4488 | 0.3149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
emrecan/bert-base-turkish-cased-snli_tr
emrecan
2021-12-01T10:49:12Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
emrecan/bert-base-turkish-cased-multinli_tr
emrecan
2021-12-01T10:45:51Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "zero-shot-classification", "nli", "tr", "dataset:nli_tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:05Z
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
BSen/wav2vec2-large-xls-r-300m-turkish-colab
BSen
2021-12-01T10:18:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
glasses/vit_base_patch16_224
glasses
2021-12-01T08:23:58Z
31
0
transformers
[ "transformers", "pytorch", "arxiv:2010.11929", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# vit_base_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/efficientnet_b3
glasses
2021-12-01T08:08:37Z
2
0
transformers
[ "transformers", "pytorch", "arxiv:1905.11946", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# efficientnet_b3 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/vgg19_bn
glasses
2021-12-01T08:06:23Z
2
0
transformers
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# vgg19_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg11_bn
glasses
2021-12-01T07:58:18Z
1
0
transformers
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# vgg11_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg11
glasses
2021-12-01T07:53:25Z
2
0
transformers
[ "transformers", "pytorch", "arxiv:1409.1556", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# vgg11 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/densenet161
glasses
2021-12-01T07:50:20Z
2
0
transformers
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# densenet161 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
glasses/densenet201
glasses
2021-12-01T07:49:34Z
4
0
transformers
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# densenet201 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
glasses/densenet169
glasses
2021-12-01T07:48:55Z
1
0
transformers
[ "transformers", "pytorch", "arxiv:1608.06993", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# densenet169 Implementation of DenseNet proposed in [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993) Create a default models ``` {.sourceCode .} DenseNet.densenet121() DenseNet.densenet161() DenseNet.densenet169() DenseNet.densenet201() ``` Examples: ``` {.sourceCode .} # change activation DenseNet.densenet121(activation = nn.SELU) # change number of classes (default is 1000 ) DenseNet.densenet121(n_classes=100) # pass a different block DenseNet.densenet121(block=...) # change the initial convolution model = DenseNet.densenet121() model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = DenseNet.densenet121() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7]), torch.Size([1, 1024, 7, 7])] ```
glasses/regnety_008
glasses
2021-12-01T07:46:29Z
4
0
transformers
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# regnety_008 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_006
glasses
2021-12-01T07:46:05Z
2
0
transformers
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# regnety_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
mofawzy/argpt2-goodreads
mofawzy
2021-12-01T06:55:41Z
7
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "ar", "dataset:LABR", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer language: ar datasets: - LABR widget: - text: "كان الكاتب ممكن" - text: "كتاب ممتاز ولكن" - text: "رواية درامية جدا والافكار بسيطة" model-index: - name: argpt2-goodreads results: [] --- # argpt2-goodreads This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an goodreads LABR dataset. It achieves the following results on the evaluation set: - Loss: 1.4389 ## Model description Generate sentences either positive/negative examples based on goodreads corpus in arabic language. ## Intended uses & limitations the model fine-tuned on arabic language only with aspect to generate sentences such as reviews in order todo the same for other languages you need to fine-tune it in your own. any harmful content generated by GPT2 should not be used in anywhere. ## Training and evaluation data training and validation done on goodreads dataset LABR 80% for trainng and 20% for testing ## Usage ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("mofawzy/argpt2-goodreads") model = AutoModelForCausalLM.from_pretrained("mofawzy/argpt2-goodreads") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results - train_loss = 1.474 ### Evaluation results - eval_loss = 1.4389 ### train metrics - epoch = 20.0 - train_loss = 1.474 - train_runtime = 2:18:14.51 - train_samples = 108110 - train_samples_per_second = 260.678 - train_steps_per_second = 2.037 ### eval metrics - epoch = 20.0 - eval_loss = 1.4389 - eval_runtime = 0:04:37.01 - eval_samples = 27329 - eval_samples_per_second = 98.655 - eval_steps_per_second = 0.773 - perplexity = 4.2162 ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
MMG/bert-base-spanish-wwm-cased-finetuned-sqac
MMG
2021-12-01T06:13:29Z
34
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "es", "dataset:sqac", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - sqac model-index: - name: bert-base-spanish-wwm-cased-finetuned-sqac results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-sqac This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the sqac dataset. It achieves the following results on the evaluation set: {'exact_match': 62.017167, 'f1': 79.452767} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1335 | 1.0 | 1230 | 0.9346 | | 0.6794 | 2.0 | 2460 | 0.8634 | | 0.3992 | 3.0 | 3690 | 0.9662 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ykliu1892/translation-en-pt-t5-finetuned-Duolingo
ykliu1892
2021-12-01T04:58:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: translation-en-pt-t5-finetuned-Duolingo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-en-pt-t5-finetuned-Duolingo This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7362 - Bleu: 39.4725 - Gen Len: 9.002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.5429 | 0.24 | 9000 | 0.7461 | 39.4744 | 9.0 | | 0.5302 | 0.48 | 18000 | 0.7431 | 39.7559 | 8.97 | | 0.5309 | 0.72 | 27000 | 0.7388 | 39.6751 | 8.998 | | 0.5336 | 0.96 | 36000 | 0.7362 | 39.4725 | 9.002 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-256-nofp16
rossanez
2021-12-01T00:54:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt14", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-256-nofp16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256-nofp16 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.1234 | 7.7305 | 17.4033 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-256-wd-01
rossanez
2021-12-01T00:48:47Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt14", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-256-wd-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256-wd-01 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.1202 | 7.5964 | 17.3996 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
kaporter/bert-base-uncased-finetuned-squad
kaporter
2021-11-30T22:42:17Z
267
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: bert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0749 | 1.0 | 5533 | 1.0167 | | 0.7851 | 2.0 | 11066 | 1.0299 | | 0.6067 | 3.0 | 16599 | 1.0725 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.8.1 - Datasets 1.16.1 - Tokenizers 0.10.1
mmcquade11-test/reuters-summarization
mmcquade11-test
2021-11-30T21:43:51Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "en", "dataset:mmcquade11/autonlp-data-reuters-summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-reuters-summarization co2_eq_emissions: 286.4350821612984 --- This is an autoNLP model I trained on Reuters dataset # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 34018133 - CO2 Emissions (in grams): 286.4350821612984 ## Validation Metrics - Loss: 1.1805976629257202 - Rouge1: 55.4013 - Rouge2: 30.8004 - RougeL: 52.57 - RougeLsum: 52.6103 - Gen Len: 15.3458 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/mmcquade11/autonlp-reuters-summarization-34018133 ```
nouamanetazi/cover-letter-t5-base
nouamanetazi
2021-11-30T21:14:47Z
7
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "t5-base", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 tags: - generated_from_trainer - t5-base model-index: - name: cover-letter-t5-base results: [] widget: - text: "coverletter name: Nouamane Tazi job: Machine Learning Engineer at HuggingFace background: Master's student in AI at the University of Paris Saclay experiences: I participated in the Digital Tech Year program, developing three minimal valuable products for three companies in a 7-week constraint. I also spent 1 year as a machine learning engineer for Flashbrand where I mainly worked on their chatbot . And I recently completed the HuggingFace course, where I built an amazing huggingface space. I am a strong team player." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cover-letter-t5-base This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on cover letter samples scraped from Indeed and JobHero. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
glasses/regnetx_016
glasses
2021-11-30T20:26:57Z
3
0
transformers
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# regnetx_016 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_002
glasses
2021-11-30T20:25:54Z
3
0
transformers
[ "transformers", "pytorch", "arxiv:2003.13678", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# regnetx_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/wide_resnet101_2
glasses
2021-11-30T20:20:06Z
4
0
transformers
[ "transformers", "pytorch", "arxiv:1605.07146", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# wide_resnet101_2 Implementation of Wide ResNet proposed in [\"Wide Residual Networks\"](https://arxiv.org/pdf/1605.07146.pdf) Create a default model ``` python WideResNet.wide_resnet50_2() WideResNet.wide_resnet101_2() # create a wide_resnet18_4 WideResNet.resnet18(block=WideResNetBottleNeckBlock, width_factor=4) ``` Examples: ``` python # change activation WideResNet.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) WideResNet.resnext50_32x4d(n_classes=100) # pass a different block WideResNet.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = WideResNet.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = WideResNet.wide_resnet50_2() features = [] x = model.encoder.gate(x) for block in model.encoder.layers: x = block(x) features.append(x) print([x.shape for x in features]) # [torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7])] ```
glasses/resnext50_32x4d
glasses
2021-11-30T20:13:20Z
11
0
transformers
[ "transformers", "pytorch", "arxiv:1611.05431", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# resnext50_32x4d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet152
glasses
2021-11-30T20:12:19Z
30
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet152 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet50d
glasses
2021-11-30T20:10:20Z
29
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet50d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet50
glasses
2021-11-30T20:09:35Z
29
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet50 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet34
glasses
2021-11-30T20:08:12Z
33
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet34 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet26
glasses
2021-11-30T20:06:59Z
32
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet26 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet18
glasses
2021-11-30T20:06:28Z
37
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:imagenet", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification datasets: - imagenet --- # resnet18 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
NDugar/1epochv3
NDugar
2021-11-30T20:05:36Z
15
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "deberta-v3", "deberta-v2`", "deberta-mnli", "zero-shot-classification", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
tyoyo/t5-base-TEDxJP-1body-10context
tyoyo
2021-11-30T19:40:13Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1body-10context results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1body-10context This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.3833 - Wer: 0.1983 - Mer: 0.1900 - Wil: 0.2778 - Wip: 0.7222 - Hits: 56229 - Substitutions: 6686 - Deletions: 3593 - Insertions: 2909 - Cer: 0.1823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.5641 | 1.0 | 746 | 0.4426 | 0.2336 | 0.2212 | 0.3143 | 0.6857 | 54711 | 7183 | 4614 | 3742 | 0.2238 | | 0.4867 | 2.0 | 1492 | 0.4017 | 0.2045 | 0.1972 | 0.2863 | 0.7137 | 55378 | 6764 | 4366 | 2470 | 0.1853 | | 0.4257 | 3.0 | 2238 | 0.3831 | 0.2008 | 0.1933 | 0.2826 | 0.7174 | 55715 | 6788 | 4005 | 2560 | 0.1784 | | 0.4038 | 4.0 | 2984 | 0.3797 | 0.1963 | 0.1890 | 0.2776 | 0.7224 | 56028 | 6731 | 3749 | 2578 | 0.1748 | | 0.3817 | 5.0 | 3730 | 0.3769 | 0.1944 | 0.1877 | 0.2758 | 0.7242 | 55926 | 6663 | 3919 | 2345 | 0.1730 | | 0.3467 | 6.0 | 4476 | 0.3806 | 0.2111 | 0.2002 | 0.2876 | 0.7124 | 56082 | 6688 | 3738 | 3616 | 0.1916 | | 0.3361 | 7.0 | 5222 | 0.3797 | 0.1977 | 0.1897 | 0.2780 | 0.7220 | 56173 | 6721 | 3614 | 2816 | 0.1785 | | 0.3107 | 8.0 | 5968 | 0.3814 | 0.1993 | 0.1910 | 0.2792 | 0.7208 | 56167 | 6720 | 3621 | 2916 | 0.1839 | | 0.3141 | 9.0 | 6714 | 0.3820 | 0.1991 | 0.1907 | 0.2787 | 0.7213 | 56201 | 6709 | 3598 | 2933 | 0.1859 | | 0.3122 | 10.0 | 7460 | 0.3833 | 0.1983 | 0.1900 | 0.2778 | 0.7222 | 56229 | 6686 | 3593 | 2909 | 0.1823 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro
ffsouza
2021-11-30T17:39:53Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.5137 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2817 | 1.0 | 76290 | 8.5137 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
NDugar/3epoch-3large
NDugar
2021-11-30T17:34:56Z
6
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "deberta-v3", "deberta-v2`", "deberta-mnli", "zero-shot-classification", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
Raphaelg9/distilbert-base-uncased-finetuned-squad
Raphaelg9
2021-11-30T17:30:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8535 | 1.0 | 661 | 2.0684 | | 1.5385 | 2.0 | 1322 | 2.0954 | | 1.2312 | 3.0 | 1983 | 2.1323 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
tiagohatta/opus-mt-de-en-finetuned-de-to-en-second
tiagohatta
2021-11-30T17:23:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-de-en-finetuned-de-to-en-second results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 38.959 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-finetuned-de-to-en-second This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.1719 - Bleu: 38.959 - Gen Len: 25.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 157 | 1.1492 | 39.2552 | 25.2268 | | No log | 2.0 | 314 | 1.1601 | 38.8343 | 25.2288 | | No log | 3.0 | 471 | 1.1651 | 39.0092 | 25.254 | | 1.8512 | 4.0 | 628 | 1.1704 | 38.9281 | 25.2756 | | 1.8512 | 5.0 | 785 | 1.1719 | 38.959 | 25.2812 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
beatrice-portelli/DiLBERT
beatrice-portelli
2021-11-30T16:00:18Z
7,455
1
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "medical", "disease", "classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - en tags: - medical - disease - classification --- # DiLBERT (Disease Language BERT) The objective of this model was to obtain a specialized disease-related language, trained **from scratch**. <br> We created a pre-training corpora starting from **ICD-11** entities, and enriched it with documents from **PubMed** and **Wikipedia** related to the same entities. <br> Results of finetuning show that DiLBERT leads to comparable or higher accuracy scores on various classification tasks compared with other general-purpose or in-domain models (e.g., BioClinicalBERT, RoBERTa, XLNet). Model released with the paper "**DiLBERT: Cheap Embeddings for Disease Related Medical NLP**". <br> To summarize the practical implications of our work: we pre-trained and fine-tuned a domain specific BERT model on a small corpora, with comparable or better performance than state-of-the-art models. This approach may also simplify the development of models for languages different from English, due to the minor quantity of data needed for training. ### Composition of the pretraining corpus | Source | Documents | Words | |---|---:|---:| | ICD-11 descriptions | 34,676 | 1.0 million | | PubMed Title and Abstracts | 852,550 | 184.6 million | | Wikipedia pages | 37,074 | 6.1 million | ### Main repository For more details check the main repo https://github.com/KevinRoitero/dilbert # Usage ```python from transformers import AutoModelForMaskedLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("beatrice-portelli/DiLBERT") model = AutoModelForMaskedLM.from_pretrained("beatrice-portelli/DiLBERT") ``` # How to cite ``` @article{roitero2021dilbert, title={{DilBERT}: Cheap Embeddings for Disease Related Medical NLP}, author={Roitero, Kevin and Portelli, Beatrice and Popescu, Mihai Horia and Della Mea, Vincenzo}, journal={IEEE Access}, volume={}, pages={}, year={2021}, publisher={IEEE}, note = {In Press} } ```
huggingtweets/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings
huggingtweets
2021-11-30T15:40:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings/1638286821619/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1449201367080386564/GllCx8JB_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1461790972392656898/e1248oRI_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1457045233783701504/fnjAg6lH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sinner & Hσɳҽყ & Anthropos & VacuumF</div> <div style="text-align: center; font-size: 14px;">@hel_ql-shahdashrf_-sinnerslayerr-witheredstrings</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sinner & Hσɳҽყ & Anthropos & VacuumF. | Data | Sinner | Hσɳҽყ | Anthropos | VacuumF | | --- | --- | --- | --- | --- | | Tweets downloaded | 403 | 3240 | 1088 | 379 | | Retweets | 296 | 135 | 376 | 1 | | Short tweets | 3 | 734 | 77 | 12 | | Tweets kept | 104 | 2371 | 635 | 366 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fhsvt3r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hel_ql-shahdashrf_-sinnerslayerr-witheredstrings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kjvpfsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kjvpfsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tyoyo/t5-base-TEDxJP-1body-5context
tyoyo
2021-11-30T13:49:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
Epoch Training Loss Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer 1 0.572400 0.447836 0.262284 0.241764 0.333088 0.666912 54709 7126 4673 5645 0.242417 2 0.492700 0.400297 0.203600 0.196446 0.285798 0.714202 55389 6777 4342 2422 0.183740 3 0.429200 0.385705 0.201179 0.193641 0.282458 0.717542 55717 6745 4046 2589 0.179833 4 0.408700 0.383085 0.198277 0.190817 0.280919 0.719081 55921 6867 3720 2600 0.177468 5 0.386100 0.381157 0.192488 0.186279 0.274890 0.725110 55923 6709 3876 2217 0.171644 6 0.353400 0.380517 0.193315 0.186615 0.275510 0.724490 56039 6747 3722 2388 0.170799 7 0.346100 0.379445 0.194713 0.187616 0.276780 0.723220 56074 6780 3654 2516 0.171347 8 0.314700 0.383521 0.196022 0.188486 0.277974 0.722026 56130 6820 3558 2659 0.179184
abhishek/autonlp-bbc-roberta-37249301
abhishek
2021-11-30T13:35:38Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "unk", "dataset:abhishek/autonlp-data-bbc-roberta", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-bbc-roberta co2_eq_emissions: 1.9859980179658823 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 37249301 - CO2 Emissions (in grams): 1.9859980179658823 ## Validation Metrics - Loss: 0.06406362354755402 - Accuracy: 0.9833887043189369 - Macro F1: 0.9832763664701248 - Micro F1: 0.9833887043189369 - Weighted F1: 0.9833288528828136 - Macro Precision: 0.9847257743677181 - Micro Precision: 0.9833887043189369 - Weighted Precision: 0.9835392869652073 - Macro Recall: 0.982101705176067 - Micro Recall: 0.9833887043189369 - Weighted Recall: 0.9833887043189369 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-bbc-roberta-37249301 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-bbc-roberta-37249301", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
DATEXIS/CORe-clinical-mortality-prediction
DATEXIS
2021-11-30T13:28:29Z
29
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "medical", "clinical", "mortality", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - bert - medical - clinical - mortality thumbnail: "https://core.app.datexis.com/static/paper.png" --- # CORe Model - Clinical Mortality Risk Prediction ## Model description The CORe (_Clinical Outcome Representations_) model is introduced in the paper [Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration](https://www.aclweb.org/anthology/2021.eacl-main.75.pdf). It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised _Clinical Outcome Pre-Training_ objective. This model checkpoint is **fine-tuned on the task of mortality risk prediction**. The model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality. #### How to use CORe Mortality Risk Prediction You can load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-mortality-prediction") ``` The following code shows an inference example: ``` input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life." tokenized_input = tokenizer(input, return_tensors="pt") output = model(**tokenized_input) import torch predictions = torch.softmax(output.logits.detach(), dim=1) mortality_risk_prediction = predictions[0][1].item() ``` ### More Information For all the details about CORe and contact info, please visit [CORe.app.datexis.com](http://core.app.datexis.com/). ### Cite ```bibtex @inproceedings{vanaken21, author = {Betty van Aken and Jens-Michalis Papaioannou and Manuel Mayrdorfer and Klemens Budde and Felix A. Gers and Alexander Löser}, title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, {EACL} 2021, Online, April 19 - 23, 2021}, publisher = {Association for Computational Linguistics}, year = {2021}, } ```
mimi/wynehills-mimi-ASR
mimi
2021-11-30T11:45:21Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: name: wynehills-mimi-ASR --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wynehills-mimi-ASR This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3822 - Wer: 0.6309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.54 | 20 | 1.4018 | 0.6435 | | No log | 3.08 | 40 | 1.4704 | 0.6593 | | No log | 4.62 | 60 | 1.4898 | 0.6625 | | No log | 6.15 | 80 | 1.4560 | 0.6404 | | No log | 7.69 | 100 | 1.3822 | 0.6309 | | No log | 9.23 | 120 | 1.3822 | 0.6309 | | No log | 10.77 | 140 | 1.3822 | 0.6309 | | No log | 12.31 | 160 | 1.3822 | 0.6309 | | No log | 13.85 | 180 | 1.3822 | 0.6309 | | No log | 15.38 | 200 | 1.3822 | 0.6309 | | No log | 16.92 | 220 | 1.3822 | 0.6309 | | No log | 18.46 | 240 | 1.3822 | 0.6309 | | No log | 20.0 | 260 | 1.3822 | 0.6309 | | No log | 21.54 | 280 | 1.3822 | 0.6309 | | No log | 23.08 | 300 | 1.3822 | 0.6309 | | No log | 24.62 | 320 | 1.3822 | 0.6309 | | No log | 26.15 | 340 | 1.3822 | 0.6309 | | No log | 27.69 | 360 | 1.3822 | 0.6309 | | No log | 29.23 | 380 | 1.3822 | 0.6309 | | No log | 30.77 | 400 | 1.3822 | 0.6309 | | No log | 32.31 | 420 | 1.3822 | 0.6309 | | No log | 33.85 | 440 | 1.3822 | 0.6309 | | No log | 35.38 | 460 | 1.3822 | 0.6309 | | No log | 36.92 | 480 | 1.3822 | 0.6309 | | 0.0918 | 38.46 | 500 | 1.3822 | 0.6309 | | 0.0918 | 40.0 | 520 | 1.3822 | 0.6309 | | 0.0918 | 41.54 | 540 | 1.3822 | 0.6309 | | 0.0918 | 43.08 | 560 | 1.3822 | 0.6309 | | 0.0918 | 44.62 | 580 | 1.3822 | 0.6309 | | 0.0918 | 46.15 | 600 | 1.3822 | 0.6309 | | 0.0918 | 47.69 | 620 | 1.3822 | 0.6309 | | 0.0918 | 49.23 | 640 | 1.3822 | 0.6309 | | 0.0918 | 50.77 | 660 | 1.3822 | 0.6309 | | 0.0918 | 52.31 | 680 | 1.3822 | 0.6309 | | 0.0918 | 53.85 | 700 | 1.3822 | 0.6309 | | 0.0918 | 55.38 | 720 | 1.3822 | 0.6309 | | 0.0918 | 56.92 | 740 | 1.3822 | 0.6309 | | 0.0918 | 58.46 | 760 | 1.3822 | 0.6309 | | 0.0918 | 60.0 | 780 | 1.3822 | 0.6309 | | 0.0918 | 61.54 | 800 | 1.3822 | 0.6309 | | 0.0918 | 63.08 | 820 | 1.3822 | 0.6309 | | 0.0918 | 64.62 | 840 | 1.3822 | 0.6309 | | 0.0918 | 66.15 | 860 | 1.3822 | 0.6309 | | 0.0918 | 67.69 | 880 | 1.3822 | 0.6309 | | 0.0918 | 69.23 | 900 | 1.3822 | 0.6309 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ying-tina/wav2vec2-base-timit-demo-colab
ying-tina
2021-11-30T10:52:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5127 - Wer: 0.3082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7645 | 2.01 | 500 | 2.5179 | 0.9999 | | 1.1873 | 4.02 | 1000 | 0.5464 | 0.4798 | | 0.46 | 6.02 | 1500 | 0.4625 | 0.4025 | | 0.2869 | 8.03 | 2000 | 0.4252 | 0.3650 | | 0.2213 | 10.04 | 2500 | 0.4340 | 0.3585 | | 0.1905 | 12.05 | 3000 | 0.4310 | 0.3404 | | 0.1545 | 14.06 | 3500 | 0.4547 | 0.3381 | | 0.1206 | 16.06 | 4000 | 0.4902 | 0.3384 | | 0.1116 | 18.07 | 4500 | 0.4767 | 0.3253 | | 0.0925 | 20.08 | 5000 | 0.5248 | 0.3160 | | 0.0897 | 22.09 | 5500 | 0.4960 | 0.3126 | | 0.0687 | 24.1 | 6000 | 0.4876 | 0.3086 | | 0.063 | 26.1 | 6500 | 0.4895 | 0.3065 | | 0.0558 | 28.11 | 7000 | 0.5127 | 0.3082 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mustapha/distilgpt2-finetuned-wikitext2
mustapha
2021-11-30T09:52:12Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
raynardj/xlsearch-cross-lang-search-zh-vs-classicical-cn
raynardj
2021-11-30T01:06:55Z
14
5
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "search", "zh", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - zh tags: - search --- # Cross Language Search ## Search cliassical CN with modern ZH * In some cases, Classical Chinese feels like another language, I even trained 2 translation models ([1](https://huggingface.co/raynardj/wenyanwen-chinese-translate-to-ancient) and [2](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern)) to prove this point. * That's why, when people wants to be savvy about their words, we choose to quote our ancestors. It's exactly like westerners like to quote Latin or Shakespeare, the difference is we have a much bigger pool to choose. * This model helps you **find** text within **ancient Chinese** literature, but you can **search with modern Chinese** # 跨语种搜索 ## 博古搜今 * 我不记得是谁, 哪个朝代,我只记得大概这么一个事儿,我就能模糊找到原文 * 我不记得原文, 但是我只记得原文想表达的现代汉语意思, 希望能找出来引用一下。 * 我在写文章, 有个观点, 我想碰运气看看古人有没有提过同样类似的说法。 * 我只是想更有效率地阅读古文 推荐的使用通道如下,当然, cosine距离搜索相关的框架和引擎很多, 大家自己看着适用的选 装包 ```shell pip install -Uqq unpackai pip install -Uqq SentenceTransformer ``` 搜索语句的函数 ```python from unpackai.interp import CosineSearch from sentence_transformers import SentenceTransformer import pandas as pd import numpy as np TAG = "raynardj/xlsearch-cross-lang-search-zh-vs-classicical-cn" encoder = SentenceTransformer(TAG) # all_lines is a list of all your sentences # all_lines 是一个你所有句子的列表, 可以是一本书, 按照句子分割, 也可以是很多很多书 all_lines = ["句子1","句子2",...] vec = encoder.encode(all_lines, batch_size=32, show_progress_bar=True) # consine距离搜索器 cosine = CosineSearch(vec) def search(text): enc = encoder.encode(text) # encode the search key order = cosine(enc) # distance array sentence_df = pd.DataFrame({"sentence":np.array(all_lines)[order[:5]]}) return sentence_df ``` 将史记打成句子以后, 搜索效果是这样的: ```python >>> search("他是一个很慷慨的人") ``` ``` sentence 0 季布者,楚人也。为气任侠,有名於楚。 1 董仲舒为人廉直。 2 大将军为人仁善退让,以和柔自媚於上,然天下未有称也。 3 勃为人木彊敦厚,高帝以为可属大事。 4 石奢者,楚昭王相也。坚直廉正,无所阿避。 ``` ```python >>> search("进入军营,必须缓缓牵着马骑") ``` ``` sentence 0 壁门士吏谓从属车骑曰:将军约,军中不得驱驰。 1 起之为将,与士卒最下者同衣食。卧不设席,行不骑乘,亲裹赢粮,与士卒分劳苦。 2 既出,沛公留车骑,独骑一马,与樊哙等四人步从,从间道山下归走霸上军,而使张良谢项羽。 3 顷之,上行出中渭桥,有一人从穚下走出,乘舆马惊。 4 元狩四年春,上令大将军青、骠骑将军去病将各五万骑,步兵转者踵军数十万,而敢力战深入之士皆属骠骑。 ``` ## 其他资源清单 * [项目源代码 🌟, 欢迎+star提pr](https://github.com/raynardj/yuan) * [跨语种搜索 🔎](https://huggingface.co/raynardj/xlsearch-cross-lang-search-zh-vs-classicical-cn) * [现代文翻译古汉语的模型 ⛰](https://huggingface.co/raynardj/wenyanwen-chinese-translate-to-ancient) * [古汉语到现代文的翻译模型, 输入可以是未断句的句子 🚀](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern) * [断句模型 🗡](https://huggingface.co/raynardj/classical-chinese-punctuation-guwen-biaodian) * [意境关键词 和 藏头写诗🤖](https://huggingface.co/raynardj/keywords-cangtou-chinese-poetry)
ffsouza/tiny-mbart-finetuned-en-to-ro
ffsouza
2021-11-30T00:39:57Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:wmt16_en_ro_pre_processed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: tiny-mbart-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.4792 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.2425 | 1.0 | 76290 | 8.4792 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
rossanez/opus-mt-finetuned-en-es
rossanez
2021-11-29T22:50:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: opus-mt-finetuned-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books args: en-es metrics: - name: Bleu type: bleu value: 21.5636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-finetuned-en-es This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.9813 - Bleu: 21.5636 - Gen Len: 30.0992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.09 | 1.0 | 4382 | 1.9813 | 21.5636 | 30.0992 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
BigSalmon/MrLincoln10
BigSalmon
2021-11-29T22:23:11Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln10") ``` ``` How To Make Prompt: Original: freedom of the press is a check against political corruption. Edited: fundamental to the spirit of democracy, freedom of the press is a check against political corruption. Edited 2: ever at odds with tyranny, freedom of the press is a check against political corruption. Edited 3: never to be neglected, freedom of the press is a check against political corruption. Original: solar is a beacon of achievement. Edited: central to decoupling from the perils of unsustainable energy, solar is a beacon of achievement. Edited 2: key to a future beyond fossil fuels, solar is a beacon of achievement. Original: milan is nevertheless ambivalent towards his costly terms. Edited: keen on contracting him, milan is nevertheless ambivalent towards his costly terms. Edited 2: intent on securing his services, milan is nevertheless ambivalent towards his costly terms. Original: ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: meteors are much harder to see, because they are only there for a fraction of a second. Translated into the Style of Abraham Lincoln: meteors are not ( easily / readily ) detectable, lasting for mere fractions of a second. informal english: ````
Narsil/pet-segmentation
Narsil
2021-11-29T16:23:29Z
6
9
generic
[ "generic", "tf", "image-segmentation", "license:apache-2.0", "region:us" ]
image-segmentation
2022-03-02T23:29:04Z
--- tags: - image-segmentation - generic library_name: generic pipeline_tag: image-segmentation dataset: - oxfort-iit pets license: apache-2.0 --- ## Keras semantic segmentation models on the 🤗Hub! 🐶 🐕 🐩 Image classification task tells us about a class assigned to an image, and object detection task creates a boundary box on an object in an image. But what if we want to know about the shape of the image? Segmentation models helps us segment images and reveal their shapes. It has many variants. You can host your Keras segmentation models on the Hub. Semantic segmentation models classify pixels, meaning, they assign a class (can be cat or dog) to each pixel. The output of a model looks like following. ![Raw Output](./raw_output.jpg) We need to get the best prediction for every pixel. ![Mask](./mask.jpg) This is still not readable. We have to convert this into different binary masks for each class and convert to a readable format by converting each mask into base64. We will return a list of dicts, and for each dictionary, we have the label itself, the base64 code and a score (semantic segmentation models don't return a score, so we have to return 1.0 for this case). You can find the full implementation in ```pipeline.py```. ![Binary Mask](./binary_mask.jpg) Now that you know the expected output by the model, you can host your Keras segmentation models (and other semantic segmentation models) in the similar fashion. Try it yourself and host your segmentation models! ![Segmented Cat](./hircin_the_cat.png)
Jeska/BertjeWDialDataQA20k
Jeska
2021-11-29T15:35:11Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataQA20k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataQA20k This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1713 | 1.0 | 1542 | 2.0098 | | 2.0736 | 2.0 | 3084 | 1.9853 | | 2.0543 | 3.0 | 4626 | 2.0134 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
raynardj/wenyanwen-chinese-translate-to-ancient
raynardj
2021-11-29T14:42:25Z
136
49
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "translation", "文言文", "ancient", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - zh - zh tags: - translation - 文言文 - ancient license: apache-2.0 widget: - text: "轻轻的我走了,正如我轻轻的来。我轻轻的招手,作别西天的云彩。" example_title: "再别康桥" - text: "当恐惧逝去,我会打开心眼,看清它的轨迹。" example_title: "沙丘" - text: "暴力是无能者的最后手段" example_title: "基地" --- # From modern Chinese to Ancient Chinese > This model translate modern Chinese to Classical Chinese, so I guess who's interested in the problemset can speak at least modern Chinese, so... let me continue the documentation in Chinese * 从现代文到文言文的翻译器, 欢迎前往[github文言诗词项目页面:渊, 讨论&加⭐️ ](https://github.com/raynardj/yuan) * 还有同款的[🤗文言文到现代文模型](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern),原文输入可以**断句** 也可以是**未断句**的哦 * 训练语料是就是九十多万句句对, [数据集链接📚](https://github.com/BangBOOM/Classical-Chinese)。 ## 推荐的inference 通道 **注意**, 你必须将```generate```函数的```eos_token_id```设置为102就可以翻译出完整的语句, 不然翻译完了会有残留的语句(因为做熵的时候用pad标签=-100导致)。 目前huggingface 页面上compute按钮会有这个问题, 推荐使用以下代码来得到翻译结果🎻 ```python from transformers import ( EncoderDecoderModel, AutoTokenizer ) PRETRAINED = "raynardj/wenyanwen-chinese-translate-to-ancient" tokenizer = AutoTokenizer.from_pretrained(PRETRAINED) model = EncoderDecoderModel.from_pretrained(PRETRAINED) def inference(text): tk_kwargs = dict( truncation=True, max_length=128, padding="max_length", return_tensors='pt') inputs = tokenizer([text,],**tk_kwargs) with torch.no_grad(): return tokenizer.batch_decode( model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, num_beams=3, bos_token_id=101, eos_token_id=tokenizer.sep_token_id, pad_token_id=tokenizer.pad_token_id, ), skip_special_tokens=True) ``` ## 目前版本的案例 > 大家如果有好玩的调戏案例, 也欢迎反馈 ```python >>> inference('你连一百块都不肯给我') ['不 肯 与 我 百 钱 。'] ``` ```python >>> inference("他不能做长远的谋划") ['不 能 为 远 谋 。'] ``` ```python >>> inference("我们要干一番大事业") ['吾 属 当 举 大 事 。'] ``` ```python >>> inference("这感觉,已经不对,我努力,在挽回") ['此 之 谓 也 , 已 不 可 矣 , 我 勉 之 , 以 回 之 。'] ``` ```python >>> inference("轻轻地我走了, 正如我轻轻地来, 我挥一挥衣袖,不带走一片云彩") ['轻 我 行 , 如 我 轻 来 , 挥 袂 不 携 一 片 云 。'] ``` ## 其他文言诗词的资源 * [项目源代码 🌟, 欢迎+star提pr](https://github.com/raynardj/yuan) * [跨语种搜索 🔎](https://huggingface.co/raynardj/xlsearch-cross-lang-search-zh-vs-classicical-cn) * [现代文翻译古汉语的模型 ⛰](https://huggingface.co/raynardj/wenyanwen-chinese-translate-to-ancient) * [古汉语到现代文的翻译模型, 输入可以是未断句的句子 🚀](https://huggingface.co/raynardj/wenyanwen-ancient-translate-to-modern) * [断句模型 🗡](https://huggingface.co/raynardj/classical-chinese-punctuation-guwen-biaodian) * [意境关键词 和 藏头写诗🤖](https://huggingface.co/raynardj/keywords-cangtou-chinese-poetry)
BigSalmon/MrLincoln6
BigSalmon
2021-11-29T14:42:02Z
10
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln6") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: meteors are much harder to see, because they are only there for a fraction of a second. Translated into the Style of Abraham Lincoln: meteors are not ( easily / readily ) detectable, lasting for mere fractions of a second. informal english: ````
google/tapas-mini-masklm
google
2021-11-29T14:15:38Z
10
0
transformers
[ "transformers", "pytorch", "tf", "tapas", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
This model corresponds to **tapas_masklm_mini_reset** of the [original repository](https://github.com/google-research/tapas). Here's how you can use it: ```python from transformers import TapasTokenizer, TapasForMaskedLM import pandas as pd import torch tokenizer = TapasTokenizer.from_pretrained("google/tapas-mini-masklm") model = TapasForMaskedLM.from_pretrained("google/tapas-mini-masklm") data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Age': ["56", "45", "59"], 'Number of movies': ["87", "53", "69"] } table = pd.DataFrame.from_dict(data) query = "How many movies has Leonardo [MASK] Caprio played in?" # prepare inputs inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt") # forward pass outputs = model(**inputs) # return top 5 values and predictions masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False) logits = outputs.logits[0, masked_index.item(), :] probs = logits.softmax(dim=0) values, predictions = probs.topk(5) for value, pred in zip(values, predictions): print(f"{tokenizer.decode([pred])} with confidence {value}") ```
xiongjie/realtime-SRGAN-for-anime
xiongjie
2021-11-29T13:46:51Z
0
2
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is super resolution model to upscale anime like illustration image by 4x. This model can upscale 256x256 image to 1024x1024 within around 20[ms] on GPU and around 250[ms] on CPU. Example is [here](https://github.com/xiong-jie-y/ml-examples/tree/master/realtime_srgan_anime). All the models in this repository is under MIT License.
google/tapas-medium-finetuned-tabfact
google
2021-11-29T13:09:54Z
12
0
transformers
[ "transformers", "pytorch", "tf", "tapas", "text-classification", "sequence-classification", "en", "dataset:tab_fact", "arxiv:2010.00571", "arxiv:2004.02349", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - tapas - sequence-classification license: apache-2.0 datasets: - tab_fact --- # TAPAS medium model fine-tuned on Tabular Fact Checking (TabFact) This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_tabfact_inter_masklm_medium_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [TabFact](https://github.com/wenhuchen/Table-Fact-Checking). It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `no_reset`, which corresponds to `tapas_tabfact_inter_masklm_medium` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a classification head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on TabFact. ## Intended uses & limitations You can use this model for classifying whether a sentence is supported or refuted by the contents of a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 80,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 14 hours. The optimizer used is Adam with a learning rate of 2e-5, and a warmup ratio of 0.05. See the [paper](https://arxiv.org/abs/2010.00571) for more details (appendix A2). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @inproceedings{2019TabFactA, title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, booktitle = {International Conference on Learning Representations (ICLR)}, address = {Addis Ababa, Ethiopia}, month = {April}, year = {2020} } ```
google/tapas-small-finetuned-sqa
google
2021-11-29T13:09:34Z
523
0
transformers
[ "transformers", "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:msr_sqa", "arxiv:2004.02349", "arxiv:2010.00571", "license:apache-2.0", "endpoints_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapas license: apache-2.0 datasets: - msr_sqa --- # TAPAS small model fine-tuned on Sequential Question Answering (SQA) This model has 2 versions which can be used. The default version corresponds to the `tapas_sqa_inter_masklm_small_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_sqa_inter_masklm_small` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results on SQA - Dev Accuracy Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.7223 | [tapas-large-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/no_reset) LARGE | reset | 0.7289 | [tapas-large-finetuned-sqa](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/main) BASE | noreset | 0.6737 | [tapas-base-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/no_reset) BASE | reset | 0.6874 | [tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/main) MEDIUM | noreset | 0.6464 | [tapas-medium-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/no_reset) MEDIUM | reset | 0.6561 | [tapas-medium-finetuned-sqa](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/main) **SMALL** | **noreset** | **0.5876** | [tapas-small-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/no_reset) **SMALL** | **reset** | **0.6155** | [tapas-small-finetuned-sqa](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/main) MINI | noreset | 0.4574 | [tapas-mini-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/no_reset) MINI | reset | 0.5148 | [tapas-mini-finetuned-sqa](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/main)) TINY | noreset | 0.2004 | [tapas-tiny-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/no_reset) TINY | reset | 0.2375 | [tapas-tiny-finetuned-sqa](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on SQA. ## Intended uses & limitations You can use this model for answering questions related to a table in a conversational set-up. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 200,000 steps with maximum sequence length 512 and batch size of 128. In this setup, fine-tuning takes around 20 hours. The optimizer used is Adam with a learning rate of 1.25e-5, and a warmup ratio of 0.2. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See also table 12 of the [original paper](https://arxiv.org/abs/2004.02349). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @InProceedings{iyyer2017search-based, author = {Iyyer, Mohit and Yih, Scott Wen-tau and Chang, Ming-Wei}, title = {Search-based Neural Structured Learning for Sequential Question Answering}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, year = {2017}, month = {July}, abstract = {Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions.}, publisher = {Association for Computational Linguistics}, url = {https://www.microsoft.com/en-us/research/publication/search-based-neural-structured-learning-sequential-question-answering/}, } ```
google/tapas-small-finetuned-tabfact
google
2021-11-29T13:07:47Z
10
0
transformers
[ "transformers", "pytorch", "tf", "tapas", "text-classification", "sequence-classification", "en", "dataset:tab_fact", "arxiv:2010.00571", "arxiv:2004.02349", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - tapas - sequence-classification license: apache-2.0 datasets: - tab_fact --- # TAPAS small model fine-tuned on Tabular Fact Checking (TabFact) This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_tabfact_inter_masklm_small_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [TabFact](https://github.com/wenhuchen/Table-Fact-Checking). It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `no_reset`, which corresponds to `tapas_tabfact_inter_masklm_small` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a classification head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on TabFact. ## Intended uses & limitations You can use this model for classifying whether a sentence is supported or refuted by the contents of a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 80,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 14 hours. The optimizer used is Adam with a learning rate of 2e-5, and a warmup ratio of 0.05. See the [paper](https://arxiv.org/abs/2010.00571) for more details (appendix A2). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @inproceedings{2019TabFactA, title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, booktitle = {International Conference on Learning Representations (ICLR)}, address = {Addis Ababa, Ethiopia}, month = {April}, year = {2020} } ```
google/tapas-base-finetuned-wikisql-supervised
google
2021-11-29T13:05:40Z
502
9
transformers
[ "transformers", "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:wikisql", "arxiv:2004.02349", "arxiv:2010.00571", "arxiv:1709.00103", "license:apache-2.0", "endpoints_compatible", "region:us" ]
table-question-answering
2022-03-02T23:29:05Z
--- language: en tags: - tapas license: apache-2.0 datasets: - wikisql --- # TAPAS base model fine-tuned on WikiSQL (in a supervised fashion) his model has 2 versions which can be used. The default version corresponds to the `tapas_wikisql_sqa_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned in a chain on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253), and [WikiSQL](https://github.com/salesforce/WikiSQL). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_wikisql_sqa_inter_masklm_base` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head and aggregation head on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on SQA and WikiSQL. ## Intended uses & limitations You can use this model for answering questions related to a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` The authors did first convert the WikiSQL dataset into the format of SQA using automatic conversion scripts. ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 50,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 10 hours. The optimizer used is Adam with a learning rate of 6.17164e-5, and a warmup ratio of 0.1424. See the [paper](https://arxiv.org/abs/2004.02349) for more details (tables 11 and 12). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @article{DBLP:journals/corr/abs-1709-00103, author = {Victor Zhong and Caiming Xiong and Richard Socher}, title = {Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning}, journal = {CoRR}, volume = {abs/1709.00103}, year = {2017}, url = {http://arxiv.org/abs/1709.00103}, archivePrefix = {arXiv}, eprint = {1709.00103}, timestamp = {Mon, 13 Aug 2018 16:48:41 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1709-00103.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```