modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-26 12:28:17
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-26 12:22:02
card
stringlengths
11
1.01M
mucai/vip-llava-7b
mucai
2023-12-17T23:42:47Z
3,375
7
transformers
[ "transformers", "pytorch", "llava", "text-generation", "arxiv:2312.00784", "autotrain_compatible", "region:us" ]
text-generation
2023-12-03T18:19:47Z
--- inference: false --- <br> <br> # ViP-LLaVA Model Card ## Model details **Model type:** ViP-LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on both image level instruction data and region-level instruction data annotated with visual prompts. It is an auto-regressive language model, based on the transformer architecture. **Model date:** ViP-LLaVA-7B was trained in November 2023. [Paper](https://arxiv.org/abs/2312.00784) **Paper or resources for more information:** https://vip-llava.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/mu-cai/ViP-LLaVA/issues ## Intended use **Primary intended uses:** The primary use of ViP-LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 665K image level instruction data from LLaVA-1.5. - 520K image-text pairs marked with visual prompts. - 13K region-level instruction data generated from GPT-4V. ## Evaluation dataset ViP-LLaVA achieves state-of-the-art performance in 4 academic region-level benchmarks and our newly proposed RegionBench.
shirsh10mall/First_LLM_Project
shirsh10mall
2023-12-17T23:40:28Z
18
0
peft
[ "peft", "pytorch", "t5", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "4-bit", "region:us" ]
null
2023-07-17T12:30:15Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
Prezily/bert-yelp
Prezily
2023-12-17T23:31:55Z
1
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-17T23:31:16Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: bert-yelp results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-yelp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5026 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.5026 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
hkivancoral/smids_5x_deit_base_sgd_00001_fold2
hkivancoral
2023-12-17T23:30:35Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-17T10:35:23Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_base_sgd_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4459234608985025 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0641 - Accuracy: 0.4459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1035 | 1.0 | 375 | 1.1062 | 0.3344 | | 1.1126 | 2.0 | 750 | 1.1043 | 0.3344 | | 1.104 | 3.0 | 1125 | 1.1024 | 0.3344 | | 1.1172 | 4.0 | 1500 | 1.1007 | 0.3428 | | 1.1218 | 5.0 | 1875 | 1.0990 | 0.3494 | | 1.103 | 6.0 | 2250 | 1.0973 | 0.3544 | | 1.0899 | 7.0 | 2625 | 1.0957 | 0.3594 | | 1.1072 | 8.0 | 3000 | 1.0942 | 0.3661 | | 1.0922 | 9.0 | 3375 | 1.0926 | 0.3744 | | 1.0843 | 10.0 | 3750 | 1.0912 | 0.3727 | | 1.081 | 11.0 | 4125 | 1.0898 | 0.3710 | | 1.0891 | 12.0 | 4500 | 1.0884 | 0.3760 | | 1.0709 | 13.0 | 4875 | 1.0871 | 0.3777 | | 1.0708 | 14.0 | 5250 | 1.0858 | 0.3827 | | 1.0647 | 15.0 | 5625 | 1.0846 | 0.3827 | | 1.0675 | 16.0 | 6000 | 1.0834 | 0.3877 | | 1.0777 | 17.0 | 6375 | 1.0822 | 0.3927 | | 1.1021 | 18.0 | 6750 | 1.0811 | 0.3943 | | 1.075 | 19.0 | 7125 | 1.0800 | 0.3993 | | 1.08 | 20.0 | 7500 | 1.0789 | 0.3977 | | 1.0665 | 21.0 | 7875 | 1.0779 | 0.4010 | | 1.0636 | 22.0 | 8250 | 1.0769 | 0.4010 | | 1.0724 | 23.0 | 8625 | 1.0760 | 0.4043 | | 1.075 | 24.0 | 9000 | 1.0751 | 0.4093 | | 1.0668 | 25.0 | 9375 | 1.0742 | 0.4077 | | 1.0648 | 26.0 | 9750 | 1.0734 | 0.4160 | | 1.0792 | 27.0 | 10125 | 1.0726 | 0.4176 | | 1.068 | 28.0 | 10500 | 1.0718 | 0.4160 | | 1.0536 | 29.0 | 10875 | 1.0711 | 0.4160 | | 1.0571 | 30.0 | 11250 | 1.0704 | 0.4193 | | 1.055 | 31.0 | 11625 | 1.0698 | 0.4226 | | 1.0604 | 32.0 | 12000 | 1.0691 | 0.4226 | | 1.0502 | 33.0 | 12375 | 1.0686 | 0.4260 | | 1.0518 | 34.0 | 12750 | 1.0680 | 0.4243 | | 1.0472 | 35.0 | 13125 | 1.0675 | 0.4276 | | 1.0642 | 36.0 | 13500 | 1.0670 | 0.4309 | | 1.052 | 37.0 | 13875 | 1.0666 | 0.4309 | | 1.0617 | 38.0 | 14250 | 1.0662 | 0.4309 | | 1.0473 | 39.0 | 14625 | 1.0658 | 0.4359 | | 1.0678 | 40.0 | 15000 | 1.0655 | 0.4393 | | 1.0397 | 41.0 | 15375 | 1.0652 | 0.4393 | | 1.0482 | 42.0 | 15750 | 1.0650 | 0.4393 | | 1.0333 | 43.0 | 16125 | 1.0647 | 0.4393 | | 1.0512 | 44.0 | 16500 | 1.0645 | 0.4409 | | 1.0593 | 45.0 | 16875 | 1.0644 | 0.4409 | | 1.0581 | 46.0 | 17250 | 1.0643 | 0.4409 | | 1.043 | 47.0 | 17625 | 1.0642 | 0.4426 | | 1.0454 | 48.0 | 18000 | 1.0641 | 0.4443 | | 1.0474 | 49.0 | 18375 | 1.0641 | 0.4459 | | 1.0427 | 50.0 | 18750 | 1.0641 | 0.4459 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
maxkretchmer/gc-mixtral
maxkretchmer
2023-12-17T23:25:46Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "region:us" ]
null
2023-12-17T23:24:22Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
ndarocha/swin-tiny-patch4-window7-224-breastdensity
ndarocha
2023-12-17T23:20:52Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-17T13:18:45Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-breastdensity results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5236051502145923 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-breastdensity This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0571 - Accuracy: 0.5236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1872 | 0.99 | 49 | 1.2194 | 0.4320 | | 1.0998 | 1.99 | 98 | 1.0917 | 0.4807 | | 1.0623 | 2.98 | 147 | 1.0571 | 0.5236 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
mike-krk/ppo-SnowballTarget
mike-krk
2023-12-17T23:11:59Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-12-17T23:02:56Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mike-krk/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nogamiNeuro/lab4
nogamiNeuro
2023-12-17T23:02:03Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T23:01:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 217.92 +/- 77.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
owanr/Sentiment-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T22:50:23Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T22:50:05Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.488 | 1.0 | 5628 | 3.2770 | | 3.675 | 2.0 | 11256 | 3.2770 | | 3.479 | 3.0 | 16884 | 3.2770 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Ashwin-s-n/q-FrozenLake-v1-4x4-noSlippery
Ashwin-s-n
2023-12-17T22:17:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T22:17:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Ashwin-s-n/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hkivancoral/smids_5x_deit_base_rms_001_fold1
hkivancoral
2023-12-17T22:16:09Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-17T21:00:17Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_base_rms_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7863105175292153 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_rms_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6839 - Accuracy: 0.7863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1051 | 1.0 | 376 | 1.0840 | 0.3356 | | 0.8654 | 2.0 | 752 | 0.8754 | 0.4841 | | 0.7982 | 3.0 | 1128 | 0.7992 | 0.5843 | | 0.8215 | 4.0 | 1504 | 0.8640 | 0.5509 | | 0.8937 | 5.0 | 1880 | 0.7446 | 0.6678 | | 0.7292 | 6.0 | 2256 | 0.7760 | 0.6361 | | 0.6914 | 7.0 | 2632 | 0.7052 | 0.6694 | | 0.6499 | 8.0 | 3008 | 0.7542 | 0.6511 | | 0.6981 | 9.0 | 3384 | 0.6919 | 0.6912 | | 0.6852 | 10.0 | 3760 | 0.6488 | 0.6995 | | 0.5929 | 11.0 | 4136 | 0.6360 | 0.7162 | | 0.6018 | 12.0 | 4512 | 0.6410 | 0.7212 | | 0.578 | 13.0 | 4888 | 0.6824 | 0.7078 | | 0.5646 | 14.0 | 5264 | 0.6123 | 0.7546 | | 0.5813 | 15.0 | 5640 | 0.6611 | 0.7479 | | 0.5334 | 16.0 | 6016 | 0.6911 | 0.7012 | | 0.4401 | 17.0 | 6392 | 0.6234 | 0.7362 | | 0.5629 | 18.0 | 6768 | 0.5782 | 0.7412 | | 0.5062 | 19.0 | 7144 | 0.6504 | 0.7329 | | 0.444 | 20.0 | 7520 | 0.5828 | 0.7696 | | 0.4995 | 21.0 | 7896 | 0.5919 | 0.7446 | | 0.4251 | 22.0 | 8272 | 0.6276 | 0.7629 | | 0.4812 | 23.0 | 8648 | 0.6155 | 0.7462 | | 0.4775 | 24.0 | 9024 | 0.6984 | 0.7179 | | 0.4597 | 25.0 | 9400 | 0.6577 | 0.7295 | | 0.4394 | 26.0 | 9776 | 0.5934 | 0.7429 | | 0.4129 | 27.0 | 10152 | 0.6066 | 0.7563 | | 0.4098 | 28.0 | 10528 | 0.5792 | 0.7579 | | 0.4483 | 29.0 | 10904 | 0.5708 | 0.7613 | | 0.3862 | 30.0 | 11280 | 0.5970 | 0.7679 | | 0.4253 | 31.0 | 11656 | 0.6053 | 0.7546 | | 0.4815 | 32.0 | 12032 | 0.5808 | 0.7479 | | 0.3892 | 33.0 | 12408 | 0.5698 | 0.7613 | | 0.35 | 34.0 | 12784 | 0.5670 | 0.7563 | | 0.3952 | 35.0 | 13160 | 0.5921 | 0.7696 | | 0.4191 | 36.0 | 13536 | 0.5999 | 0.7863 | | 0.3174 | 37.0 | 13912 | 0.5845 | 0.7679 | | 0.3864 | 38.0 | 14288 | 0.6529 | 0.7496 | | 0.4036 | 39.0 | 14664 | 0.6327 | 0.7679 | | 0.4274 | 40.0 | 15040 | 0.5923 | 0.7646 | | 0.357 | 41.0 | 15416 | 0.6017 | 0.7863 | | 0.348 | 42.0 | 15792 | 0.6309 | 0.7763 | | 0.2967 | 43.0 | 16168 | 0.6418 | 0.7679 | | 0.3292 | 44.0 | 16544 | 0.6405 | 0.7780 | | 0.3428 | 45.0 | 16920 | 0.6600 | 0.7813 | | 0.3127 | 46.0 | 17296 | 0.6429 | 0.7780 | | 0.2979 | 47.0 | 17672 | 0.6618 | 0.7813 | | 0.3209 | 48.0 | 18048 | 0.6803 | 0.7796 | | 0.2866 | 49.0 | 18424 | 0.6856 | 0.7880 | | 0.2611 | 50.0 | 18800 | 0.6839 | 0.7863 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/smids_5x_deit_base_sgd_00001_fold1
hkivancoral
2023-12-17T22:14:38Z
8
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-17T09:20:26Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_base_sgd_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5008347245409015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_base_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0498 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1042 | 1.0 | 376 | 1.0929 | 0.3856 | | 1.1057 | 2.0 | 752 | 1.0909 | 0.3923 | | 1.1149 | 3.0 | 1128 | 1.0890 | 0.3940 | | 1.1189 | 4.0 | 1504 | 1.0872 | 0.3907 | | 1.1034 | 5.0 | 1880 | 1.0854 | 0.3973 | | 1.0984 | 6.0 | 2256 | 1.0837 | 0.4023 | | 1.1017 | 7.0 | 2632 | 1.0821 | 0.4073 | | 1.0896 | 8.0 | 3008 | 1.0805 | 0.4157 | | 1.0923 | 9.0 | 3384 | 1.0789 | 0.4240 | | 1.0904 | 10.0 | 3760 | 1.0774 | 0.4257 | | 1.0756 | 11.0 | 4136 | 1.0759 | 0.4324 | | 1.0821 | 12.0 | 4512 | 1.0745 | 0.4357 | | 1.0908 | 13.0 | 4888 | 1.0731 | 0.4424 | | 1.0966 | 14.0 | 5264 | 1.0718 | 0.4441 | | 1.0817 | 15.0 | 5640 | 1.0706 | 0.4441 | | 1.0679 | 16.0 | 6016 | 1.0693 | 0.4457 | | 1.0876 | 17.0 | 6392 | 1.0681 | 0.4457 | | 1.064 | 18.0 | 6768 | 1.0670 | 0.4474 | | 1.072 | 19.0 | 7144 | 1.0658 | 0.4474 | | 1.09 | 20.0 | 7520 | 1.0648 | 0.4474 | | 1.081 | 21.0 | 7896 | 1.0637 | 0.4508 | | 1.0655 | 22.0 | 8272 | 1.0627 | 0.4558 | | 1.0774 | 23.0 | 8648 | 1.0618 | 0.4574 | | 1.0736 | 24.0 | 9024 | 1.0609 | 0.4608 | | 1.0774 | 25.0 | 9400 | 1.0600 | 0.4691 | | 1.055 | 26.0 | 9776 | 1.0591 | 0.4691 | | 1.0689 | 27.0 | 10152 | 1.0583 | 0.4674 | | 1.0612 | 28.0 | 10528 | 1.0576 | 0.4691 | | 1.0701 | 29.0 | 10904 | 1.0568 | 0.4691 | | 1.0631 | 30.0 | 11280 | 1.0561 | 0.4741 | | 1.0623 | 31.0 | 11656 | 1.0555 | 0.4758 | | 1.0571 | 32.0 | 12032 | 1.0549 | 0.4791 | | 1.0769 | 33.0 | 12408 | 1.0543 | 0.4841 | | 1.0511 | 34.0 | 12784 | 1.0537 | 0.4891 | | 1.0652 | 35.0 | 13160 | 1.0532 | 0.4891 | | 1.0631 | 36.0 | 13536 | 1.0527 | 0.4908 | | 1.0446 | 37.0 | 13912 | 1.0523 | 0.4908 | | 1.0591 | 38.0 | 14288 | 1.0519 | 0.4925 | | 1.0589 | 39.0 | 14664 | 1.0516 | 0.4925 | | 1.0552 | 40.0 | 15040 | 1.0512 | 0.4942 | | 1.0353 | 41.0 | 15416 | 1.0509 | 0.4925 | | 1.0348 | 42.0 | 15792 | 1.0507 | 0.4958 | | 1.0561 | 43.0 | 16168 | 1.0505 | 0.4992 | | 1.0679 | 44.0 | 16544 | 1.0503 | 0.4992 | | 1.0611 | 45.0 | 16920 | 1.0501 | 0.5008 | | 1.0413 | 46.0 | 17296 | 1.0500 | 0.5008 | | 1.0517 | 47.0 | 17672 | 1.0499 | 0.5008 | | 1.0644 | 48.0 | 18048 | 1.0499 | 0.5008 | | 1.052 | 49.0 | 18424 | 1.0498 | 0.5008 | | 1.0428 | 50.0 | 18800 | 1.0498 | 0.5008 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Osquery/1a5e2b8e
Osquery
2023-12-17T22:14:33Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:udpos28", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-16T23:40:30Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - udpos28 metrics: - precision - recall - f1 - accuracy model-index: - name: 1a5e2b8e results: - task: name: Token Classification type: token-classification dataset: name: udpos28 type: udpos28 config: te split: validation args: te metrics: - name: Precision type: precision value: 0.894336015358501 - name: Recall type: recall value: 0.8576779328683283 - name: F1 type: f1 value: 0.8680916339670367 - name: Accuracy type: accuracy value: 0.947129909365559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 1a5e2b8e This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the udpos28 dataset. It achieves the following results on the evaluation set: - Loss: 0.3219 - Precision: 0.8943 - Recall: 0.8577 - F1: 0.8681 - Accuracy: 0.9471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0423 | 7.58 | 1000 | 0.3219 | 0.8943 | 0.8577 | 0.8681 | 0.9471 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
owanr/ghc-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T22:10:18Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T22:09:50Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: ghc-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.941 | 1.0 | 11020 | 0.9253 | | 0.939 | 2.0 | 22040 | 0.9253 | | 0.911 | 3.0 | 33060 | 0.9253 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
owanr/Sentiment-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T22:10:12Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T22:09:43Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.144 | 1.0 | 5628 | 3.0376 | | 3.213 | 2.0 | 11256 | 3.0376 | | 3.115 | 3.0 | 16884 | 3.0376 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
rizalmilyardi/IndobertTopicClassify01
rizalmilyardi
2023-12-17T22:08:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-17T22:03:20Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: IndobertTopicClassify01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndobertTopicClassify01 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7277 - Accuracy: 0.8175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 200 | 1.2833 | 0.69 | | No log | 2.0 | 400 | 0.8090 | 0.8 | | 1.3814 | 3.0 | 600 | 0.7277 | 0.8175 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
katxtong/coqa_full
katxtong
2023-12-17T22:02:26Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "question-answering", "generated_from_trainer", "dataset:coqa", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2023-12-14T18:56:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - coqa model-index: - name: coqa_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # coqa_full This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the coqa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
quantumaikr/quantum-dpo-v0.1
quantumaikr
2023-12-17T21:55:57Z
1,548
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T21:32:31Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation --- # quantumaikr/quantum-dpo-v0.1 ## Usage Start chatting with `quantumaikr/quantum-dpo-v0.1` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("quantumaikr/quantum-dpo-v0.1") model = AutoModelForCausalLM.from_pretrained("quantumaikr/quantum-dpo-v0.1", torch_dtype=torch.float16, device_map="auto") system_prompt = "You are QuantumLM, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal." message = "Write me a poem please" prompt = f"[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{message}[/INST]" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, temperature=0.7, top_p=0.95, top_k=30, max_new_tokens=2048) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` QuantumLM should be used with this prompt format: ``` ### System: This is a system prompt, please behave and help the user. ### User: Your prompt here ### Assistant The output of QuantumLM ``` ## Use and Limitations ### Intended Use These models are intended for research only, in adherence with the [CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. ### Limitations and bias Although the aforementioned dataset helps to steer the base language models into "safer" distributions of text, not all biases and toxicity can be mitigated through fine-tuning. We ask that users be mindful of such potential issues that can arise in generated responses. Do not treat model outputs as substitutes for human judgment or as sources of truth. Please use it responsibly. Contact us : [email protected]
owanr/Sentiment-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T21:49:21Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T21:49:04Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.286 | 1.0 | 5628 | 2.9077 | | 3.321 | 2.0 | 11256 | 2.9077 | | 3.117 | 3.0 | 16884 | 2.9077 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
gunkaynar/bert-base-multilingual-uncased-sentiment
gunkaynar
2023-12-17T21:39:50Z
13
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:nlptown/bert-base-multilingual-uncased-sentiment", "base_model:finetune:nlptown/bert-base-multilingual-uncased-sentiment", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-11T16:34:54Z
--- license: mit base_model: nlptown/bert-base-multilingual-uncased-sentiment tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-uncased-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-sentiment This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4877 - Accuracy: 0.7447 - F1: 0.7972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1 - Datasets 2.14.7 - Tokenizers 0.11.0
gonxatroll/ppo-Pyramids
gonxatroll
2023-12-17T21:37:23Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-12-17T21:05:11Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gonxatroll/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_SystemError0.0_Seed103
behzadnet
2023-12-17T21:36:36Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-17T21:36:33Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_SystemError0.0_Seed103
behzadnet
2023-12-17T21:36:27Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-17T21:36:22Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
yishanz/mistral-7b-finetuned-datatalk
yishanz
2023-12-17T21:36:24Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "conversational", "license:other", "region:us" ]
text-generation
2023-12-17T21:36:17Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
danlindb/a2c-PandaReachDense-v3
danlindb
2023-12-17T21:31:13Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T21:23:30Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
owanr/Sentiment-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T21:29:38Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T21:29:20Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.853 | 1.0 | 5628 | 2.7827 | | 3.002 | 2.0 | 11256 | 2.7827 | | 2.839 | 3.0 | 16884 | 2.7827 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
bartowski/dolphin-2.5-mixtral-8x7b-exl2
bartowski
2023-12-17T21:25:56Z
5
4
null
[ "text-generation", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/dolphin-coder", "dataset:migtissera/Synthia-v1.3", "dataset:teknium/openhermes", "dataset:ise-uiuc/Magicoder-OSS-Instruct-75K", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:LDJnr/Pure-Dove", "license:apache-2.0", "region:us" ]
text-generation
2023-12-17T05:01:10Z
--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - migtissera/Synthia-v1.3 - teknium/openhermes - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - LDJnr/Pure-Dove language: - en license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of dolphin-2.5-mixtral-8x7b Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using the default calibration dataset. Default arguments used except when the bits per weight is above 6.0, at that point the lm_head layer is quantized at 8 bits per weight instead of the default 6. Original model: https://huggingface.co/ehartford/dolphin-2.5-mixtral-8x7b <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/3_0">3.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/3_5">3.5 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/3_75">3.75 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/4_0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/5_0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/6_0">6.0 bits per weight</a> <a href="https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2/tree/8_0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4_0 https://huggingface.co/bartowski/dolphin-2.5-mixtral-8x7b-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `dolphin-2.5-mixtral-8x7b-exl2`: ```shell mkdir dolphin-2.5-mixtral-8x7b-exl2 huggingface-cli download bartowski/dolphin-2.5-mixtral-8x7b-exl2 --local-dir dolphin-2.5-mixtral-8x7b-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir dolphin-2.5-mixtral-8x7b-exl2 huggingface-cli download bartowski/dolphin-2.5-mixtral-8x7b-exl2 --revision 4_0 --local-dir dolphin-2.5-mixtral-8x7b-exl2 --local-dir-use-symlinks False ```
alitolga/deberta-v3-base-peft
alitolga
2023-12-17T21:19:05Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "region:us" ]
null
2023-12-14T12:41:10Z
--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base-peft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-peft This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.6045 | 1.0 | 258 | 5.7917 | | 4.3948 | 2.0 | 516 | 3.4037 | | 3.771 | 3.0 | 774 | 2.8971 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
alitolga/deberta-base-peft
alitolga
2023-12-17T21:13:26Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/deberta-base", "base_model:finetune:microsoft/deberta-base", "license:mit", "region:us" ]
null
2023-12-14T12:17:28Z
--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer model-index: - name: deberta-base-peft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-peft This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4191 | 1.0 | 389 | 1.2536 | | 1.2007 | 2.0 | 778 | 0.6712 | | 0.9788 | 3.0 | 1167 | 0.5691 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
dsuhcs/video-mae-ollie-kickflip-1
dsuhcs
2023-12-17T21:11:40Z
1
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "license:mit", "endpoints_compatible", "region:us" ]
video-classification
2023-12-17T20:24:33Z
--- license: mit --- Simple Model for video classification of ollie and kickflip skateboard tricks
ccdv/lsg-legal-small-uncased-4096
ccdv
2023-12-17T21:11:13Z
5,609
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "long context", "legal", "fill-mask", "custom_code", "en", "arxiv:2210.15497", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - long context - legal pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is a small version of the [LEGAL-BERT](https://huggingface.co/nlpaueb/legal-bert-small-uncased) model without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). Support encoder-decoder but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/legal-lsg-small-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-small-uncased-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/legal-lsg-small-uncased-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 6 different sparse selection patterns. The best type is task dependent. \ If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \ Note that for sequences with length < 2*block_size, the type has no effect. * `sparsity_type="bos_pooling"` (new) * weighted average pooling using the BOS token * Works best in general, especially with a rather large sparsity_factor (8, 16, 32) * Additional parameters: * None * `sparsity_type="norm"`, select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="pooling"`, use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * `sparsity_type="stride"`, use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * `sparsity_type="block_stride"`, use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/legal-lsg-small-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-small-uncased-4096") SENTENCES = ["Paris is the <mask> of France.", "The goal of life is <mask>."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.', 'The goal of life is happiness.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/legal-lsg-small-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-small-uncased-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/legal-lsg-small-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-small-uncased-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ``` **LEGAL-BERT** ``` @inproceedings{chalkidis-etal-2020-legal, title = "{LEGAL}-{BERT}: The Muppets straight out of Law School", author = "Chalkidis, Ilias and Fergadiotis, Manos and Malakasiotis, Prodromos and Aletras, Nikolaos and Androutsopoulos, Ion", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", doi = "10.18653/v1/2020.findings-emnlp.261", pages = "2898--2904" } ```
ccdv/lsg-distilbert-base-uncased-4096
ccdv
2023-12-17T21:11:02Z
31
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "long context", "custom_code", "en", "arxiv:2210.15497", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-08T15:40:18Z
--- language: en tags: - distilbert - long context --- # LSG model **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is adapted from [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). Support encoder-decoder and causal masking but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 6 different sparse selection patterns. The best type is task dependent. \ If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \ Note that for sequences with length < 2*block_size, the type has no effect. * `sparsity_type="bos_pooling"` (new) * weighted average pooling using the BOS token * Works best in general, especially with a rather large sparsity_factor (8, 16, 32) * Additional parameters: * None * `sparsity_type="norm"`, select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="pooling"`, use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * `sparsity_type="stride"`, use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * `sparsity_type="block_stride"`, use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") SENTENCES = ["Paris is the <mask> of France.", "The goal of life is <mask>."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.', 'The goal of life is happiness.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-distilbert-base-uncased-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ```
ccdv/lsg-bart-base-16384
ccdv
2023-12-17T21:10:30Z
21
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "long context", "fill-mask", "custom_code", "en", "arxiv:2210.15497", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
fill-mask
2022-06-28T14:44:38Z
--- tags: - summarization - bart - long context language: - en pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) This model is adapted from [BART-base](https://huggingface.co/facebook/bart-base) for encoder-decoder tasks without additional pretraining. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 6 different sparse selection patterns. The best type is task dependent. \ If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \ Note that for sequences with length < 2*block_size, the type has no effect. * `sparsity_type="bos_pooling"` (new) * weighted average pooling using the BOS token * Works best in general, especially with a rather large sparsity_factor (8, 16, 32) * Additional parameters: * None * `sparsity_type="norm"`, select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="pooling"`, use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * `sparsity_type="stride"`, use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * `sparsity_type="block_stride"`, use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Seq2Seq example for summarization: ```python: from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", padding="max_length", # Optional but recommended truncation=True # Optional but recommended ) output = model(**token_ids) ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-bart-base-16384", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` **BART** ``` @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
ccdv/lsg-bart-base-4096-pubmed
ccdv
2023-12-17T21:10:22Z
13
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "custom_code", "en", "dataset:scientific_papers", "arxiv:2210.15497", "autotrain_compatible", "region:us" ]
summarization
2022-05-09T16:20:01Z
--- language: - en tags: - summarization datasets: - scientific_papers metrics: - rouge model-index: - name: ccdv/lsg-bart-base-4096-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-pubmed", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True ) ``` # ccdv/lsg-bart-base-4096-pubmed This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co/ccdv/lsg-bart-base-4096) on the [scientific_papers pubmed](https://huggingface.co/datasets/scientific_papers) dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 47.37 | 21.74 | 28.59 | 43.67 | | 4096 | Local | 128 | 0 | 384 | 47.02 | 21.33 | 28.34 | 43.31 | | 4096 | Pooling | 128 | 4 | 644 | 47.11 | 21.42 | 28.43 | 43.40 | | 4096 | Stride | 128 | 4 | 644 | 47.16 | 21.49 | 28.38 | 43.44 | | 4096 | Block Stride | 128 | 4 | 644 | 47.13 | 21.46 | 28.39 | 43.42 | | 4096 | Norm | 128 | 4 | 644 | 47.09 | 21.44 | 28.40 | 43.36 | | 4096 | LSH | 128 | 4 | 644 | 47.11 | 21.41 | 28.41 | 43.42 | With smaller block size (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 64 | 0 | 192 | 45.74 | 20.26 | 27.51 | 41.99 | | 4096 | Local | 32 | 0 | 96 | 42.69 | 17.83 | 25.62 | 38.89 | | 4096 | Pooling | 32 | 4 | 160 | 44.60 | 19.35 | 26.83 | 40.85 | | 4096 | Stride | 32 | 4 | 160 | 45.52 | 20.07 | 27.39 | 41.75 | | 4096 | Block Stride | 32 | 4 | 160 | 45.30 | 19.89 | 27.22 | 41.54 | | 4096 | Norm | 32 | 4 | 160 | 44.30 | 19.05 | 26.57 | 40.47 | | 4096 | LSH | 32 | 4 | 160 | 44.53 | 19.27 | 26.84 | 40.74 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: scientific_papers - dataset_config_name: pubmed - eval_batch_size: 8 - eval_samples: 6658 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 512 - min_length: 128 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
ccdv/lsg-bart-base-4096-multinews
ccdv
2023-12-17T21:10:18Z
26
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "custom_code", "en", "dataset:multi_news", "arxiv:2210.15497", "autotrain_compatible", "region:us" ]
summarization
2022-05-25T11:09:23Z
--- language: - en tags: - summarization datasets: - multi_news metrics: - rouge model-index: - name: ccdv/lsg-bart-base-4096-multinews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-multinews", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True ) ``` # ccdv/lsg-bart-base-4096-multinews This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co/ccdv/lsg-bart-base-4096) on the [multi_news default](https://huggingface.co/datasets/multi_news) dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 47.10 | 18.94 | 25.22 | 43.13 | | 4096 | Local | 128 | 0 | 384 | 46.73 | 18.79 | 25.13 | 42.76 | | 4096 | Pooling | 128 | 4 | 644 | 46.83 | 18.87 | 25.23 | 42.86 | | 4096 | Stride | 128 | 4 | 644 | 46.83 | 18.68 | 24.98 | 42.88 | | 4096 | Block Stride | 128 | 4 | 644 | 46.83 | 18.72 | 25.06 | 42.88 | | 4096 | Norm | 128 | 4 | 644 | 46.74 | 18.60 | 24.93 | 42.79 | | 4096 | LSH | 128 | 4 | 644 | 46.74 | 18.82 | 25.19 | 42.77 | With smaller block size (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 64 | 0 | 192 | 45.61 | 17.91 | 24.54 | 41.65 | | 4096 | Local | 32 | 0 | 96 | 43.50 | 16.36 | 23.45 | 39.61 | | 4096 | Pooling | 32 | 4 | 160 | 44.77 | 17.31 | 24.16 | 40.86 | | 4096 | Stride | 32 | 4 | 160 | 45.29 | 17.81 | 24.45 | 41.40 | | 4096 | Block Stride | 32 | 4 | 160 | 45.39 | 17.86 | 24.51 | 41.43 | | 4096 | Norm | 32 | 4 | 160 | 44.65 | 17.25 | 24.09 | 40.76 | | 4096 | LSH | 32 | 4 | 160 | 44.44 | 17.20 | 24.00 | 40.57 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: multi_news - dataset_config_name: default - eval_batch_size: 8 - eval_samples: 5622 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 320 - min_length: 32 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
ccdv/lsg-bart-base-4096-arxiv
ccdv
2023-12-17T21:10:03Z
18
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "custom_code", "en", "dataset:scientific_papers", "arxiv:2210.15497", "autotrain_compatible", "region:us" ]
summarization
2022-05-09T15:53:09Z
--- language: - en tags: - summarization datasets: - scientific_papers metrics: - rouge model-index: - name: ccdv/lsg-bart-base-4096-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-arxiv", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-arxiv", trust_remote_code=True) text = "Replace by what you want." pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0) generated_text = pipe( text, truncation=True, max_length=64, no_repeat_ngram_size=7, num_beams=2, early_stopping=True ) ``` # ccdv/lsg-bart-base-4096-arxiv This model is a fine-tuned version of [ccdv/lsg-bart-base-4096](https://huggingface.co/ccdv/lsg-bart-base-4096) on the [scientific_papers arxiv](https://huggingface.co/datasets/scientific_papers) dataset. \ It achieves the following results on the test set: | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 256 | 0 | 768 | 46.65 | 18.91 | 26.90 | 42.18 | | 4096 | Local | 128 | 0 | 384 | 46.18 | 18.57 | 26.71 | 41.69 | | 4096 | Pooling | 128 | 4 | 644 | 46.27 | 18.68 | 26.87 | 41.82 | | 4096 | Stride | 128 | 4 | 644 | 46.34 | 18.64 | 26.69 | 41.87 | | 4096 | Block Stride | 128 | 4 | 644 | 46.23 | 18.62 | 26.62 | 41.80 | | 4096 | Norm | 128 | 4 | 644 | 45.96 | 18.46 | 26.52 | 41.51 | | 4096 | LSH | 128 | 4 | 644 | 46.19 | 18.72 | 26.89 | 41.76 | With smaller block size (lower ressources): | Length | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum | |:------ |:------------ |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- | | 4096 | Local | 64 | 0 | 192 | 44.71 | 17.53 | 26.03 | 40.23 | | 4096 | Local | 32 | 0 | 96 | 39.67 | 14.34 | 23.81 | 35.00 | | 4096 | Pooling | 32 | 4 | 160 | 42.75 | 16.34 | 25.20 | 38.23 | | 4096 | Stride | 32 | 4 | 160 | 44.23 | 17.21 | 25.71 | 39.72 | | 4096 | Block Stride | 32 | 4 | 160 | 44.15 | 17.10 | 25.68 | 39.60 | | 4096 | Norm | 32 | 4 | 160 | 42.02 | 15.65 | 24.56 | 37.45 | | 4096 | LSH | 32 | 4 | 160 | 42.58 | 16.21 | 25.10 | 38.04 | ## Model description The model relies on Local-Sparse-Global attention to handle long sequences: ![attn](attn.png) The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \ The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Generate hyperparameters The following hyperparameters were used during generation: - dataset_name: scientific_papers - dataset_config_name: arxiv - eval_batch_size: 8 - eval_samples: 6440 - early_stopping: True - ignore_pad_token_for_loss: True - length_penalty: 2.0 - max_length: 320 - min_length: 32 - num_beams: 5 - no_repeat_ngram_size: None - seed: 123 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
ccdv/lsg-bart-base-4096
ccdv
2023-12-17T21:10:01Z
39
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "long context", "fill-mask", "custom_code", "en", "arxiv:2210.15497", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - summarization - bart - long context language: - en pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.36.1**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** LSG ArXiv [paper](https://arxiv.org/abs/2210.15497). \ Github/conversion script is available at this [link](https://github.com/ccdv-ai/convert_checkpoint_to_lsg). * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) This model is adapted from [BART-base](https://huggingface.co/facebook/bart-base) for encoder-decoder tasks without additional pretraining. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-bart-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-bart-base-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 6 different sparse selection patterns. The best type is task dependent. \ If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \ Note that for sequences with length < 2*block_size, the type has no effect. * `sparsity_type="bos_pooling"` (new) * weighted average pooling using the BOS token * Works best in general, especially with a rather large sparsity_factor (8, 16, 32) * Additional parameters: * None * `sparsity_type="norm"`, select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="pooling"`, use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * `sparsity_type="stride"`, use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * `sparsity_type="block_stride"`, use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Seq2Seq example for summarization: ```python: from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", padding="max_length", # Optional but recommended truncation=True # Optional but recommended ) output = model(**token_ids) ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-bart-base-4096", trust_remote_code=True, pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096") SENTENCE = "This is a test sequence to test the model. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` **BART** ``` @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
owanr/SBIC-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T21:07:55Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T21:07:38Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SBIC-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-roberta-base-inter-frequency-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.202 | 1.0 | 12516 | 1.1768 | | 1.228 | 2.0 | 25032 | 1.1768 | | 1.209 | 3.0 | 37548 | 1.1768 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
rizalmilyardi/IndobertTypeNewsClassify02
rizalmilyardi
2023-12-17T20:51:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-17T20:35:10Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: IndobertTypeNewsClassify02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndobertTypeNewsClassify02 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3068 - Accuracy: 0.9491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 192 | 0.2083 | 0.9295 | | No log | 2.0 | 384 | 0.2298 | 0.9504 | | 0.1682 | 3.0 | 576 | 0.2888 | 0.9452 | | 0.1682 | 4.0 | 768 | 0.3007 | 0.9465 | | 0.1682 | 5.0 | 960 | 0.2916 | 0.9517 | | 0.0369 | 6.0 | 1152 | 0.3068 | 0.9491 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
owanr/Sentiment-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T20:49:08Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T20:48:50Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.476 | 1.0 | 5628 | 2.3196 | | 2.571 | 2.0 | 11256 | 2.3196 | | 2.453 | 3.0 | 16884 | 2.3196 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Tirendaz/emotion-analysis-with-distilbert
Tirendaz
2023-12-17T20:41:50Z
14
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-04T11:46:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Tirendaz/emotion-analysis-with-distilbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tirendaz/emotion-analysis-with-distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1347 - Validation Loss: 0.1393 - Train Accuracy: 0.937 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3781 | 0.1645 | 0.927 | 0 | | 0.1347 | 0.1393 | 0.937 | 1 | ### Framework versions - Transformers 4.33.0 - TensorFlow 2.12.0 - Datasets 2.15.0 - Tokenizers 0.13.3
owanr/SBIC-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T20:41:41Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T20:41:24Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SBIC-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.173 | 1.0 | 12516 | 2.1218 | | 2.133 | 2.0 | 25032 | 2.1218 | | 2.158 | 3.0 | 37548 | 2.1218 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Oyunbaatar/roberta-base-ner-demo
Oyunbaatar
2023-12-17T20:35:08Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "token-classification", "generated_from_trainer", "mn", "base_model:bayartsogt/mongolian-roberta-base", "base_model:finetune:bayartsogt/mongolian-roberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-17T20:34:42Z
--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - Precision: 0.9297 - Recall: 0.9366 - F1: 0.9331 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1678 | 1.0 | 477 | 0.0929 | 0.8136 | 0.8806 | 0.8457 | 0.9679 | | 0.0635 | 2.0 | 954 | 0.0894 | 0.8477 | 0.8933 | 0.8699 | 0.9708 | | 0.0291 | 3.0 | 1431 | 0.0840 | 0.9262 | 0.9357 | 0.9309 | 0.9809 | | 0.0163 | 4.0 | 1908 | 0.0928 | 0.9269 | 0.9357 | 0.9313 | 0.9805 | | 0.0087 | 5.0 | 2385 | 0.1048 | 0.9259 | 0.9352 | 0.9305 | 0.9802 | | 0.0059 | 6.0 | 2862 | 0.1179 | 0.9271 | 0.9339 | 0.9305 | 0.9794 | | 0.0032 | 7.0 | 3339 | 0.1230 | 0.9278 | 0.9353 | 0.9316 | 0.9800 | | 0.002 | 8.0 | 3816 | 0.1335 | 0.9285 | 0.9337 | 0.9311 | 0.9795 | | 0.0016 | 9.0 | 4293 | 0.1341 | 0.9287 | 0.9358 | 0.9322 | 0.9799 | | 0.0013 | 10.0 | 4770 | 0.1352 | 0.9297 | 0.9366 | 0.9331 | 0.9801 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
owanr/Sentiment-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T20:28:13Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T19:44:16Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: Sentiment-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.859 | 1.0 | 5628 | 1.7642 | | 1.9 | 2.0 | 11256 | 1.7642 | | 1.791 | 3.0 | 16884 | 1.7642 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
espnet/ofuton_p_utagoe_db_svs_naive_rnn_dp
espnet
2023-12-17T20:24:09Z
0
0
espnet
[ "espnet", "audio", "singing-voice-synthesis", "jp", "dataset:ofuton_p_utagoe_db", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2023-12-17T20:23:55Z
--- tags: - espnet - audio - singing-voice-synthesis language: jp datasets: - ofuton_p_utagoe_db license: cc-by-4.0 --- ## ESPnet2 SVS model ### `espnet/ofuton_p_utagoe_db_svs_naive_rnn_dp` This model was trained by ftshijt using ofuton_p_utagoe_db recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 5c4d7cf7feba8461de2e1080bf82182f0efaef38 pip install -e . cd egs2/ofuton_p_utagoe_db/svs1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ofuton_p_utagoe_db_svs_naive_rnn_dp ``` ## SVS config <details><summary>expand</summary> ``` config: conf/tuning/train_naive_rnn_dp.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/svs_train_naive_rnn_dp_raw_phn_pyopenjtalk_jp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 2 nbest_averaging_interval: 0 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/svs_stats_raw_phn_pyopenjtalk_jp/train/text_shape.phn - exp/svs_stats_raw_phn_pyopenjtalk_jp/train/singing_shape valid_shape_file: - exp/svs_stats_raw_phn_pyopenjtalk_jp/valid/text_shape.phn - exp/svs_stats_raw_phn_pyopenjtalk_jp/valid/singing_shape batch_type: sorted valid_batch_type: null fold_length: - 150 - 240000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - singing - sound - - dump/raw/tr_no_dev/label - label - duration - - dump/raw/tr_no_dev/score.scp - score - score valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - singing - sound - - dump/raw/dev/label - label - duration - - dump/raw/dev/score.scp - score - score allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - pau - a - o - i - u - e - k - n - r - t - m - N - s - w - y - d - g - sh - b - ch - cl - ts - p - z - h - j - f - ry - v - ty - by - py - ky - dy - my - ny - hy - gy - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: pyopenjtalk fs: 24000 score_feats_extract: syllable_score_feats score_feats_extract_conf: fs: 24000 n_fft: 2048 win_length: 1200 hop_length: 300 feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 300 win_length: 1200 fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/svs_stats_raw_phn_pyopenjtalk_jp/train/feats_stats.npz svs: naive_rnn_dp svs_conf: midi_dim: 129 embed_dim: 512 duration_dim: 500 eprenet_conv_layers: 0 eprenet_conv_chans: 256 eprenet_conv_filts: 3 elayers: 3 eunits: 256 ebidirectional: true midi_embed_integration_type: add dlayers: 2 dunits: 256 dbidirectional: true postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 use_batch_norm: true reduction_factor: 1 eprenet_dropout_rate: 0.2 edropout_rate: 0.1 ddropout_rate: 0.1 postnet_dropout_rate: 0.5 init_type: pytorch use_masking: true pitch_extract: dio pitch_extract_conf: use_token_averaged_f0: false fs: 24000 n_fft: 2048 hop_length: 300 f0max: 800 f0min: 80 reduction_factor: 1 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/svs_stats_raw_phn_pyopenjtalk_jp/train/pitch_stats.npz ying_extract: null ying_extract_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202310' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{shi22d_interspeech, author={Jiatong Shi and Shuai Guo and Tao Qian and Tomoki Hayashi and Yuning Wu and Fangzheng Xu and Xuankai Chang and Huazhe Li and Peter Wu and Shinji Watanabe and Qin Jin}, title={{Muskits: an End-to-end Music Processing Toolkit for Singing Voice Synthesis}}, year=2022, booktitle={Proc. Interspeech 2022}, pages={4277--4281}, doi={10.21437/Interspeech.2022-10039} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
EugeneEvstafev/Mistral-7B-v0.1-chess-01
EugeneEvstafev
2023-12-17T20:21:45Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-12-17T18:41:59Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
pEpOo/catastrophy5
pEpOo
2023-12-17T20:21:33Z
7
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2023-12-17T20:20:54Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: A traumatised dog that was found buried up to its head in dirt in France is now in safe hands. This is such a... http://t.co/AGQo1479xM - text: 'Hibernating pbx irrespective of pitch fatality careerism pan: crbZFZ' - text: Stuart Broad Takes Eight Before Joe Root Runs Riot Against Aussies - text: Maj Muzzamil Pilot Offr of MI-17 crashed near Mansehra today. http://t.co/kL4R1ccWct - text: '@AdriaSimon_: Hailstorm day 2.... #round2 #yyc #yycstorm http://t.co/FqQI8GVLQ4' pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8172066549912435 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | <ul><li>"Was '80s New #Wave a #Casualty of #AIDS?: Tweet And Since they\x89Ûªd grown up watching David\x89Û_ http://t.co/qBecjli7cx"</li><li>"@CharlesDagnall He's getting 50 here I think. Salt. Wounds. Rub. In."</li><li>'Navy sidelines 3 newest subs http://t.co/gpVZV0249Y'</li></ul> | | 1 | <ul><li>'The Latest: More Homes Razed by Northern California Wildfire - ABC News http://t.co/bKsYymvIsg #GN'</li><li>'@Durban_Knight Rescuers are searching for hundreds of migrants in the Mediterranean after a boat carr... http://t.co/cWCVBuBs01 @Nosy_Be'</li><li>'NEMA Ekiti distributed relief materials to affected victims of Rain/Windstorm disaster at Ode-Ekiti in Gbonyin LGA.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8172 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("pEpOo/catastrophy5") # Run inference preds = model("Stuart Broad Takes Eight Before Joe Root Runs Riot Against Aussies") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 14.9796 | 54 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 1732 | | 1 | 1313 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0001 | 1 | 0.3383 | - | | 0.0066 | 50 | 0.352 | - | | 0.0131 | 100 | 0.3529 | - | | 0.0197 | 150 | 0.2286 | - | | 0.0263 | 200 | 0.2654 | - | | 0.0328 | 250 | 0.2892 | - | | 0.0394 | 300 | 0.1808 | - | | 0.0460 | 350 | 0.2056 | - | | 0.0525 | 400 | 0.0863 | - | | 0.0591 | 450 | 0.2034 | - | | 0.0657 | 500 | 0.1339 | - | | 0.0722 | 550 | 0.1022 | - | | 0.0788 | 600 | 0.1083 | - | | 0.0854 | 650 | 0.1035 | - | | 0.0919 | 700 | 0.1201 | - | | 0.0985 | 750 | 0.0626 | - | | 0.1051 | 800 | 0.1257 | - | | 0.1117 | 850 | 0.1543 | - | | 0.1182 | 900 | 0.0367 | - | | 0.1248 | 950 | 0.1749 | - | | 0.1314 | 1000 | 0.0553 | - | | 0.1379 | 1050 | 0.0836 | - | | 0.1445 | 1100 | 0.0161 | - | | 0.1511 | 1150 | 0.1149 | - | | 0.1576 | 1200 | 0.1144 | - | | 0.1642 | 1250 | 0.0028 | - | | 0.1708 | 1300 | 0.0037 | - | | 0.1773 | 1350 | 0.1769 | - | | 0.1839 | 1400 | 0.0172 | - | | 0.1905 | 1450 | 0.0397 | - | | 0.1970 | 1500 | 0.0645 | - | | 0.2036 | 1550 | 0.0659 | - | | 0.2102 | 1600 | 0.0014 | - | | 0.2167 | 1650 | 0.0016 | - | | 0.2233 | 1700 | 0.0729 | - | | 0.2299 | 1750 | 0.0072 | - | | 0.2364 | 1800 | 0.0175 | - | | 0.2430 | 1850 | 0.0278 | - | | 0.2496 | 1900 | 0.0537 | - | | 0.2561 | 1950 | 0.0038 | - | | 0.2627 | 2000 | 0.087 | - | | 0.2693 | 2050 | 0.0459 | - | | 0.2758 | 2100 | 0.0169 | - | | 0.2824 | 2150 | 0.0112 | - | | 0.2890 | 2200 | 0.001 | - | | 0.2955 | 2250 | 0.0204 | - | | 0.3021 | 2300 | 0.0796 | - | | 0.3087 | 2350 | 0.0592 | - | | 0.3153 | 2400 | 0.0003 | - | | 0.3218 | 2450 | 0.0033 | - | | 0.3284 | 2500 | 0.0309 | - | | 0.3350 | 2550 | 0.0065 | - | | 0.3415 | 2600 | 0.002 | - | | 0.3481 | 2650 | 0.0076 | - | | 0.3547 | 2700 | 0.0008 | - | | 0.3612 | 2750 | 0.0023 | - | | 0.3678 | 2800 | 0.0028 | - | | 0.3744 | 2850 | 0.0171 | - | | 0.3809 | 2900 | 0.0011 | - | | 0.3875 | 2950 | 0.0015 | - | | 0.3941 | 3000 | 0.0468 | - | | 0.4006 | 3050 | 0.0075 | - | | 0.4072 | 3100 | 0.0009 | - | | 0.4138 | 3150 | 0.0334 | - | | 0.4203 | 3200 | 0.0002 | - | | 0.4269 | 3250 | 0.0001 | - | | 0.4335 | 3300 | 0.0002 | - | | 0.4400 | 3350 | 0.0001 | - | | 0.4466 | 3400 | 0.021 | - | | 0.4532 | 3450 | 0.0043 | - | | 0.4597 | 3500 | 0.0084 | - | | 0.4663 | 3550 | 0.0009 | - | | 0.4729 | 3600 | 0.0033 | - | | 0.4794 | 3650 | 0.0035 | - | | 0.4860 | 3700 | 0.0004 | - | | 0.4926 | 3750 | 0.0297 | - | | 0.4991 | 3800 | 0.0004 | - | | 0.5057 | 3850 | 0.0011 | - | | 0.5123 | 3900 | 0.0238 | - | | 0.5188 | 3950 | 0.0248 | - | | 0.5254 | 4000 | 0.0293 | - | | 0.5320 | 4050 | 0.0365 | - | | 0.5386 | 4100 | 0.0261 | - | | 0.5451 | 4150 | 0.0469 | - | | 0.5517 | 4200 | 0.0098 | - | | 0.5583 | 4250 | 0.0002 | - | | 0.5648 | 4300 | 0.0236 | - | | 0.5714 | 4350 | 0.0001 | - | | 0.5780 | 4400 | 0.0001 | - | | 0.5845 | 4450 | 0.0001 | - | | 0.5911 | 4500 | 0.0138 | - | | 0.5977 | 4550 | 0.0116 | - | | 0.6042 | 4600 | 0.0003 | - | | 0.6108 | 4650 | 0.0003 | - | | 0.6174 | 4700 | 0.0001 | - | | 0.6239 | 4750 | 0.0 | - | | 0.6305 | 4800 | 0.0246 | - | | 0.6371 | 4850 | 0.0001 | - | | 0.6436 | 4900 | 0.0543 | - | | 0.6502 | 4950 | 0.0001 | - | | 0.6568 | 5000 | 0.0093 | - | | 0.6633 | 5050 | 0.0001 | - | | 0.6699 | 5100 | 0.0 | - | | 0.6765 | 5150 | 0.0002 | - | | 0.6830 | 5200 | 0.0001 | - | | 0.6896 | 5250 | 0.0372 | - | | 0.6962 | 5300 | 0.0 | - | | 0.7027 | 5350 | 0.0001 | - | | 0.7093 | 5400 | 0.0001 | - | | 0.7159 | 5450 | 0.0003 | - | | 0.7224 | 5500 | 0.0004 | - | | 0.7290 | 5550 | 0.0001 | - | | 0.7356 | 5600 | 0.0 | - | | 0.7422 | 5650 | 0.0 | - | | 0.7487 | 5700 | 0.0001 | - | | 0.7553 | 5750 | 0.0001 | - | | 0.7619 | 5800 | 0.0 | - | | 0.7684 | 5850 | 0.0 | - | | 0.7750 | 5900 | 0.0 | - | | 0.7816 | 5950 | 0.0 | - | | 0.7881 | 6000 | 0.0 | - | | 0.7947 | 6050 | 0.0 | - | | 0.8013 | 6100 | 0.0 | - | | 0.8078 | 6150 | 0.0001 | - | | 0.8144 | 6200 | 0.0001 | - | | 0.8210 | 6250 | 0.0 | - | | 0.8275 | 6300 | 0.0 | - | | 0.8341 | 6350 | 0.0 | - | | 0.8407 | 6400 | 0.0002 | - | | 0.8472 | 6450 | 0.0 | - | | 0.8538 | 6500 | 0.0001 | - | | 0.8604 | 6550 | 0.0 | - | | 0.8669 | 6600 | 0.0001 | - | | 0.8735 | 6650 | 0.0001 | - | | 0.8801 | 6700 | 0.0 | - | | 0.8866 | 6750 | 0.0 | - | | 0.8932 | 6800 | 0.0373 | - | | 0.8998 | 6850 | 0.0 | - | | 0.9063 | 6900 | 0.0 | - | | 0.9129 | 6950 | 0.0272 | - | | 0.9195 | 7000 | 0.0 | - | | 0.9260 | 7050 | 0.0 | - | | 0.9326 | 7100 | 0.0001 | - | | 0.9392 | 7150 | 0.0 | - | | 0.9458 | 7200 | 0.0002 | - | | 0.9523 | 7250 | 0.0001 | - | | 0.9589 | 7300 | 0.0 | - | | 0.9655 | 7350 | 0.0 | - | | 0.9720 | 7400 | 0.0 | - | | 0.9786 | 7450 | 0.0001 | - | | 0.9852 | 7500 | 0.0 | - | | 0.9917 | 7550 | 0.0 | - | | 0.9983 | 7600 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.15.0 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Tylerswe/zinbo-llama2-7b
Tylerswe
2023-12-17T20:20:16Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "region:us" ]
text-generation
2023-12-17T20:20:06Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
leeda36/matroskin_LoRA
leeda36
2023-12-17T20:20:09Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-17T15:01:50Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK cat license: openrail++ --- # SDXL LoRA DreamBooth - leeda36/matroskin_LoRA <Gallery /> ## Model description These are leeda36/matroskin_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK cat to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](leeda36/matroskin_LoRA/tree/main) them in the Files & versions tab.
dmanary-pronavigator/Mixtral-8x7B-instruct-exl2-3-0bpw
dmanary-pronavigator
2023-12-17T20:16:30Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-21T21:21:27Z
--- license: apache-2.0 language: - fr - it - de - es - en inference: false --- # Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Instruction format This format must be strictly respected, otherwise the model will generate sub-optimal outputs. The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. As reference, here is the pseudo-code used to tokenize instructions during fine-tuning: ```python def tokenize(text): return tok.encode(text, add_special_tokens=False) [BOS_ID] + tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_1) + [EOS_ID] + … tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") + tokenize(BOT_MESSAGE_N) + [EOS_ID] ``` In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Limitations The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
Fo1zsyzrk/ppo-LunarLander-v2
Fo1zsyzrk
2023-12-17T20:15:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T20:15:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.49 +/- 18.68 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CarlBrendt/llama2-dialogsum-adapter
CarlBrendt
2023-12-17T20:14:22Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2023-12-17T19:53:01Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
bdsaglam/llama-2-7b-chat-hf-kg-cons-multi-1702827674
bdsaglam
2023-12-17T20:04:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-12-17T20:04:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
espnet/opencpop_xiaoice
espnet
2023-12-17T20:00:45Z
0
0
espnet
[ "espnet", "audio", "singing-voice-synthesis", "zh", "dataset:opencpop", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2023-12-17T20:00:23Z
--- tags: - espnet - audio - singing-voice-synthesis language: zh datasets: - opencpop license: cc-by-4.0 --- ## ESPnet2 SVS model ### `espnet/opencpop_xiaoice` This model was trained by ftshijt using opencpop recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 5c4d7cf7feba8461de2e1080bf82182f0efaef38 pip install -e . cd egs2/opencpop/svs1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/opencpop_xiaoice ``` ## SVS config <details><summary>expand</summary> ``` config: conf/tuning/train_xiaoice.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/svs_train_xiaoice_raw_phn_None_zh ngpu: 1 seed: 0 num_workers: 10 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/svs_stats_raw_phn_None_zh/train/text_shape.phn - exp/svs_stats_raw_phn_None_zh/train/singing_shape valid_shape_file: - exp/svs_stats_raw_phn_None_zh/valid/text_shape.phn - exp/svs_stats_raw_phn_None_zh/valid/singing_shape batch_type: sorted valid_batch_type: null fold_length: - 150 - 240000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump24k/raw/tr_no_dev/text - text - text - - dump24k/raw/tr_no_dev/wav.scp - singing - sound - - dump24k/raw/tr_no_dev/label - label - duration - - dump24k/raw/tr_no_dev/score.scp - score - score - - exp/svs_stats_raw_phn_None_zh/train/collect_feats/pitch.scp - pitch - npy - - exp/svs_stats_raw_phn_None_zh/train/collect_feats/feats.scp - feats - npy valid_data_path_and_name_and_type: - - dump24k/raw/dev/text - text - text - - dump24k/raw/dev/wav.scp - singing - sound - - dump24k/raw/dev/label - label - duration - - dump24k/raw/dev/score.scp - score - score - - exp/svs_stats_raw_phn_None_zh/valid/collect_feats/pitch.scp - pitch - npy - - exp/svs_stats_raw_phn_None_zh/valid/collect_feats/feats.scp - feats - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - SP - i - AP - e - y - d - w - sh - ai - n - x - j - ian - u - l - h - b - o - zh - an - ou - m - q - z - en - g - ing - ei - ao - ang - uo - eng - t - a - ong - ui - k - f - r - iang - ch - v - in - iao - ie - iu - c - s - van - p - ve - uan - uang - ia - ua - uai - un - er - vn - iong - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null fs: 24000 score_feats_extract: syllable_score_feats score_feats_extract_conf: fs: 24000 n_fft: 2048 win_length: 1200 hop_length: 300 feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 300 win_length: 1200 fs: 24000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/svs_stats_raw_phn_None_zh/train/feats_stats.npz svs: xiaoice svs_conf: midi_dim: 129 duration_dim: 512 adim: 384 aheads: 4 elayers: 6 eunits: 1536 dlayers: 6 dunits: 1536 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 postnet_dropout_rate: 0.5 use_batch_norm: true reduction_factor: 1 init_type: pytorch use_masking: true loss_function: XiaoiceSing2 loss_type: L1 lambda_mel: 1 lambda_dur: 0.1 lambda_pitch: 0.01 lambda_vuv: 0.01 pitch_extract: dio pitch_extract_conf: use_token_averaged_f0: false fs: 24000 n_fft: 2048 hop_length: 300 f0max: 800 f0min: 80 reduction_factor: 1 pitch_normalize: global_mvn pitch_normalize_conf: stats_file: exp/svs_stats_raw_phn_None_zh/train/pitch_stats.npz ying_extract: null ying_extract_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202310' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{shi22d_interspeech, author={Jiatong Shi and Shuai Guo and Tao Qian and Tomoki Hayashi and Yuning Wu and Fangzheng Xu and Xuankai Chang and Huazhe Li and Peter Wu and Shinji Watanabe and Qin Jin}, title={{Muskits: an End-to-end Music Processing Toolkit for Singing Voice Synthesis}}, year=2022, booktitle={Proc. Interspeech 2022}, pages={4277--4281}, doi={10.21437/Interspeech.2022-10039} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
CarlBrendt/Lama_Dialog
CarlBrendt
2023-12-17T19:57:29Z
4
0
peft
[ "peft", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2023-12-17T19:55:15Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
espnet/opencpop_visinger2
espnet
2023-12-17T19:56:00Z
0
0
espnet
[ "espnet", "audio", "singing-voice-synthesis", "zh", "dataset:opencpop", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2023-12-17T19:55:24Z
--- tags: - espnet - audio - singing-voice-synthesis language: zh datasets: - opencpop license: cc-by-4.0 --- ## ESPnet2 SVS model ### `espnet/opencpop_visinger2` This model was trained by ftshijt using opencpop recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 5c4d7cf7feba8461de2e1080bf82182f0efaef38 pip install -e . cd egs2/opencpop/svs1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/opencpop_visinger2 ``` ## SVS config <details><summary>expand</summary> ``` config: conf/tuning/transfer_visinger2.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/svs_visinger2_normal ngpu: 1 seed: 777 num_workers: 0 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 500 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - total_count - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: -1 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 50 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/svs_stats_raw_phn_None_zh/train/text_shape.phn - exp/svs_stats_raw_phn_None_zh/train/singing_shape valid_shape_file: - exp/svs_stats_raw_phn_None_zh/valid/text_shape.phn - exp/svs_stats_raw_phn_None_zh/valid/singing_shape batch_type: sorted valid_batch_type: null fold_length: - 150 - 409600 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - singing - sound - - dump/raw/tr_no_dev/label - label - duration - - dump/raw/tr_no_dev/score.scp - score - score - - exp/svs_stats_raw_phn_None_zh/train/collect_feats/pitch.scp - pitch - npy - - exp/svs_stats_raw_phn_None_zh/train/collect_feats/feats.scp - feats - npy valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - singing - sound - - dump/raw/dev/label - label - duration - - dump/raw/dev/score.scp - score - score - - exp/svs_stats_raw_phn_None_zh/valid/collect_feats/pitch.scp - pitch - npy - - exp/svs_stats_raw_phn_None_zh/valid/collect_feats/feats.scp - feats - npy allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adamw optim_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler: exponentiallr scheduler_conf: gamma: 0.998 optim2: adamw optim2_conf: lr: 0.0002 betas: - 0.8 - 0.99 eps: 1.0e-09 weight_decay: 0.0 scheduler2: exponentiallr scheduler2_conf: gamma: 0.998 generator_first: true token_list: - <blank> - <unk> - SP - i - AP - e - y - d - w - sh - ai - n - x - j - ian - u - l - h - b - o - zh - an - ou - m - q - z - en - g - ing - ei - ao - ang - uo - eng - t - a - ong - ui - k - f - r - iang - ch - v - in - iao - ie - iu - c - s - van - p - ve - uan - uang - ia - ua - uai - un - er - vn - iong - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null fs: 44100 score_feats_extract: syllable_score_feats score_feats_extract_conf: fs: 44100 n_fft: 2048 win_length: 2048 hop_length: 512 feats_extract: fbank feats_extract_conf: n_fft: 2048 hop_length: 512 win_length: 2048 fs: 44100 fmin: 0 fmax: 22050 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/svs_stats_raw_phn_None_zh/train/feats_stats.npz svs: vits svs_conf: generator_type: visinger vocoder_generator_type: hifigan generator_params: hidden_channels: 192 spks: -1 global_channels: 256 segment_size: 20 text_encoder_attention_heads: 2 text_encoder_ffn_expand: 4 text_encoder_blocks: 6 text_encoder_positionwise_layer_type: conv1d text_encoder_positionwise_conv_kernel_size: 3 text_encoder_positional_encoding_layer_type: rel_pos text_encoder_self_attention_layer_type: rel_selfattn text_encoder_activation_type: swish text_encoder_normalize_before: true text_encoder_dropout_rate: 0.1 text_encoder_positional_dropout_rate: 0.0 text_encoder_attention_dropout_rate: 0.1 use_macaron_style_in_text_encoder: true use_conformer_conv_in_text_encoder: false text_encoder_conformer_kernel_size: -1 decoder_kernel_size: 7 decoder_channels: 512 decoder_upsample_scales: - 8 - 8 - 4 - 2 decoder_upsample_kernel_sizes: - 16 - 16 - 8 - 4 decoder_resblock_kernel_sizes: - 3 - 7 - 11 decoder_resblock_dilations: - - 1 - 3 - 5 - - 1 - 3 - 5 - - 1 - 3 - 5 use_weight_norm_in_decoder: true posterior_encoder_kernel_size: 3 posterior_encoder_layers: 8 posterior_encoder_stacks: 1 posterior_encoder_base_dilation: 1 posterior_encoder_dropout_rate: 0.0 use_weight_norm_in_posterior_encoder: true flow_flows: -1 flow_kernel_size: 5 flow_base_dilation: 1 flow_layers: 4 flow_dropout_rate: 0.0 use_weight_norm_in_flow: true use_only_mean_in_flow: true use_phoneme_predictor: false vocabs: 63 aux_channels: 80 generator_type: visinger vocoder_generator_type: hifigan fs: 44100 hop_length: 512 win_length: 2048 n_fft: 2048 discriminator_type: visinger2 discriminator_params: scales: 1 scale_downsample_pooling: AvgPool1d scale_downsample_pooling_params: kernel_size: 4 stride: 2 padding: 2 scale_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 15 - 41 - 5 - 3 channels: 128 max_downsample_channels: 1024 max_groups: 256 bias: true downsample_scales: - 4 - 4 - 4 - 4 nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false follow_official_norm: false periods: - 2 - 3 - 5 - 7 - 11 period_discriminator_params: in_channels: 1 out_channels: 1 kernel_sizes: - 5 - 3 channels: 32 downsample_scales: - 3 - 3 - 3 - 3 - 1 max_downsample_channels: 1024 bias: true nonlinear_activation: LeakyReLU nonlinear_activation_params: negative_slope: 0.1 use_weight_norm: true use_spectral_norm: false multi_freq_disc_params: hidden_channels: - 256 - 256 - 256 - 256 - 256 domain: double mel_scale: true divisors: - 32 - 16 - 8 - 4 - 2 - 1 - 1 strides: - 1 - 2 - 1 - 2 - 1 - 2 - 1 sample_rate: 44100 hop_lengths: - 110 - 220 - 330 - 441 - 551 - 661 generator_adv_loss_params: average_by_discriminators: false loss_type: mse discriminator_adv_loss_params: average_by_discriminators: false loss_type: mse feat_match_loss_params: average_by_discriminators: false average_by_layers: false include_final_outputs: true mel_loss_params: fs: 44100 n_fft: 2048 hop_length: 512 win_length: 2048 window: hann n_mels: 80 fmin: 0 fmax: 22050 log_base: null lambda_adv: 1.0 lambda_mel: 45.0 lambda_feat_match: 2.0 lambda_dur: 0.1 lambda_pitch: 10.0 lambda_phoneme: 1.0 lambda_kl: 1.0 sampling_rate: 44100 cache_generator_outputs: true pitch_extract: dio pitch_extract_conf: use_token_averaged_f0: false use_log_f0: false fs: 44100 n_fft: 2048 hop_length: 512 f0max: 800 f0min: 80 pitch_normalize: null pitch_normalize_conf: stats_file: exp/svs_stats_raw_phn_None_zh/train/pitch_stats.npz ying_extract: null ying_extract_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202310' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{shi22d_interspeech, author={Jiatong Shi and Shuai Guo and Tao Qian and Tomoki Hayashi and Yuning Wu and Fangzheng Xu and Xuankai Chang and Huazhe Li and Peter Wu and Shinji Watanabe and Qin Jin}, title={{Muskits: an End-to-end Music Processing Toolkit for Singing Voice Synthesis}}, year=2022, booktitle={Proc. Interspeech 2022}, pages={4277--4281}, doi={10.21437/Interspeech.2022-10039} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ai-aerospace/autotrain-ams_v0.1_100_TinyLlama-1.1B-Chat-v0.1
ai-aerospace
2023-12-17T19:55:02Z
0
0
null
[ "safetensors", "text-generation", "dataset:ai-aerospace/ams_data_train_generic_v0.1_100", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.1", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v0.1", "license:apache-2.0", "region:us" ]
text-generation
2023-12-11T03:23:27Z
--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.1 inference: false license: apache-2.0 model_name: TinyLlama-1.1B-Chat-v0.1 model_type: TinyLlama pipeline_tag: text-generation prompt_template: '###Human: {prompt}###Assistant:{response}' datasets: - ai-aerospace/ams_data_train_generic_v0.1_100 --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
TheBloke/GreenNodeLM-7B-v4leo-GPTQ
TheBloke
2023-12-17T19:53:07Z
24
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "base_model:GreenNode/GreenNodeLM-7B-v4leo", "base_model:quantized:GreenNode/GreenNodeLM-7B-v4leo", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-12-17T19:24:25Z
--- base_model: GreenNode/GreenNodeLM-7B-v4leo inference: false license: apache-2.0 model_creator: GreenNode.ai model_name: GreenNodeLM 7B V4Leo model_type: mistral prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # GreenNodeLM 7B V4Leo - GPTQ - Model creator: [GreenNode.ai](https://huggingface.co/GreenNode) - Original model: [GreenNodeLM 7B V4Leo](https://huggingface.co/GreenNode/GreenNodeLM-7B-v4leo) <!-- description start --> # Description This repo contains GPTQ model files for [GreenNode.ai's GreenNodeLM 7B V4Leo](https://huggingface.co/GreenNode/GreenNodeLM-7B-v4leo). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GGUF) * [GreenNode.ai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/GreenNode/GreenNodeLM-7B-v4leo) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/GreenNodeLM-7B-v4leo-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/GreenNodeLM-7B-v4leo-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `GreenNodeLM-7B-v4leo-GPTQ`: ```shell mkdir GreenNodeLM-7B-v4leo-GPTQ huggingface-cli download TheBloke/GreenNodeLM-7B-v4leo-GPTQ --local-dir GreenNodeLM-7B-v4leo-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir GreenNodeLM-7B-v4leo-GPTQ huggingface-cli download TheBloke/GreenNodeLM-7B-v4leo-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir GreenNodeLM-7B-v4leo-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir GreenNodeLM-7B-v4leo-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/GreenNodeLM-7B-v4leo-GPTQ --local-dir GreenNodeLM-7B-v4leo-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GreenNodeLM-7B-v4leo-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/GreenNodeLM-7B-v4leo-GPTQ`. - To download from a specific branch, enter for example `TheBloke/GreenNodeLM-7B-v4leo-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `GreenNodeLM-7B-v4leo-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/GreenNodeLM-7B-v4leo-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/GreenNodeLM-7B-v4leo-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: GreenNode.ai's GreenNodeLM 7B V4Leo # How to use ``` from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig from peft import PeftModel import torch import os os.environ["CUDA_VISIBLE_DEVICES"] = "7" model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval() tokenizer = AutoTokenizer.from_pretrained(model_path) model.config.pad_token_id = tokenizer.eos_token_id prompts = [ "Explain QKV in Transformer.", "Can coughing effectively stop a heart attack?", "Who is the president of the United States?", "A farmer has a rectangular field with a length of 150 meters and a width of 100 meters. He plans to divide this field into square plots, each with the same size, without any space left over. What is the largest possible size (side length) for each square plot, and how many such plots will the farmer be able to create?", "A farmer has a certain number of chickens and rabbits in her farmyard. One day, she counts a total of 72 heads and 200 feet among them. How many chickens and how many rabbits are in the farmer's farmyard?", "What items is it legal to carry for anyone in the US?", "A man lives on the 10th floor of a building. Every day, he takes the elevator down to the ground floor to go to work. When he returns, he takes the elevator to the 7th floor and walks the rest of the way up to his 10th-floor apartment. However, on rainy days, he goes straight to the 10th floor. Why does he do this?", "Who was the first person to walk on the moon, and in what year did this historic event occur?", "The trophy doesn’t fit into the brown suitcase because it’s too large. What does 'it' refer to?", "Which element makes up most of the air we breathe? (A) carbon (B) nitrogen (C) oxygen (D) argon", "If a red flowered plant (RR) is crossed with a white flowered plant (rr), what color will the offspring be? (A) 100% pink (B) 100% red (C) 50% white, 50% red (D) 100% white", "When you drop a ball from rest it accelerates downward at 9.8 m/s². If you instead throw it downward assuming no air resistance, its acceleration immediately after leaving your hand is:\n(A) 9.8 m/s²\n(B) more than 9.8 m/s²\n(C) less than 9.8 m/s²\n(D) Cannot say unless the speed of throw is given.", "A snail is at the bottom of a 10-meter deep well. Every day, the snail climbs up 3 meters. However, at night, while the snail sleeps, it slides down 2 meters. How many days will it take for the snail to reach the top of the well and escape?", "Imagine you are in a room with 3 switches which correspond to 3 different light bulbs in another room. You cannot see the bulbs from the first room. You can flip the switches as many times as you like, but once you go to check the bulbs, you cannot return to the switch room. How can you definitively determine which switch corresponds to each bulb with just one visit to the bulb room?", "Translate from English to Vietnamese:\n\"Imagine you are in a room with 3 switches which correspond to 3 different light bulbs in another room. You cannot see the bulbs from the first room. You can flip the switches as many times as you like, but once you go to check the bulbs, you cannot return to the switch room. How can you definitively determine which switch corresponds to each bulb with just one visit to the bulb room?\"" ] system = """Below is an instruction that describes a task. Write a response that appropriately completes the request.""" template_format = """{system} ### Instruction: {prompt} ### Response: """ for prompt in prompts: template = template_format.format(system=system, prompt=prompt) input_ids = tokenizer([template], return_tensors="pt").to("cuda") print(input_ids) print(tokenizer.decode(input_ids["input_ids"][0])) outputs = model.generate( **input_ids, max_new_tokens=1024, do_sample=True, repetition_penalty=1.1, temperature=0.3, top_k=10, top_p=0.95, ) response = tokenizer.decode(outputs[0]) print(response) print('*'*20) ```
fatmhd1995/toxic_comment_model_ethos_ft
fatmhd1995
2023-12-17T19:49:19Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "dataset:ethos", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-16T19:23:04Z
--- datasets: - ethos language: - en metrics: - accuracy pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
owanr/SBIC-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T19:42:51Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T19:42:33Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SBIC-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.267 | 1.0 | 12516 | 1.2944 | | 1.282 | 2.0 | 25032 | 1.2944 | | 1.308 | 3.0 | 37548 | 1.2944 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
masonanalytics/PEFT-Zephyr-7B-Alpha
masonanalytics
2023-12-17T19:35:01Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:HuggingFaceH4/zephyr-7b-alpha", "base_model:adapter:HuggingFaceH4/zephyr-7b-alpha", "region:us" ]
null
2023-12-17T19:30:54Z
--- library_name: peft base_model: HuggingFaceH4/zephyr-7b-alpha --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
owanr/SChem5Labels-roberta-base-intra-data-frequency-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T19:24:42Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T19:24:21Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-intra-data-frequency-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-intra-data-frequency-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.235 | 1.0 | 3164 | 3.9116 | | 4.162 | 2.0 | 6328 | 3.9116 | | 4.457 | 3.0 | 9492 | 3.9116 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ
TheBloke
2023-12-17T19:23:31Z
20
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:garage-bAInd/Open-Platypus", "base_model:kyujinpy/PlatYi-34B-Llama-Q-v3", "base_model:quantized:kyujinpy/PlatYi-34B-Llama-Q-v3", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-12-17T17:21:16Z
--- base_model: kyujinpy/PlatYi-34B-Llama-Q-v3 datasets: - garage-bAInd/Open-Platypus inference: false language: - en library_name: transformers license: cc-by-nc-sa-4.0 model_creator: KyujinHan model_name: PlatYi 34B Llama Q V3 model_type: yi pipeline_tag: text-generation prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # PlatYi 34B Llama Q V3 - GPTQ - Model creator: [KyujinHan](https://huggingface.co/kyujinpy) - Original model: [PlatYi 34B Llama Q V3](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3) <!-- description start --> # Description This repo contains GPTQ model files for [KyujinHan's PlatYi 34B Llama Q V3](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GGUF) * [KyujinHan's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.60 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.25 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 21.21 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 15.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 35.34 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 16.90 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 36.11 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ:gptq-4bit-128g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `PlatYi-34B-Llama-Q-v3-GPTQ`: ```shell mkdir PlatYi-34B-Llama-Q-v3-GPTQ huggingface-cli download TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ --local-dir PlatYi-34B-Llama-Q-v3-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir PlatYi-34B-Llama-Q-v3-GPTQ huggingface-cli download TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir PlatYi-34B-Llama-Q-v3-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir PlatYi-34B-Llama-Q-v3-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ --local-dir PlatYi-34B-Llama-Q-v3-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ`. - To download from a specific branch, enter for example `TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ:gptq-4bit-128g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `PlatYi-34B-Llama-Q-v3-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-128g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: KyujinHan's PlatYi 34B Llama Q V3 # **PlatYi-34B-Llama-Q-v3** <img src='./PlatYi.png' width=256> ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** PlatYi-34B-Llama-Q-v3 is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [chargoddard/Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) **Training Dataset** [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). ## Fix some bugs - Before model, there is some mistakes. - I modified the templates and warmup_steps. ## Notice While training, I used Q-LoRA. The lora_r values is 64. # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | PlatYi-34B-Llama-Q-v3 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | PlatYi-34B-Llama-Q-v2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | PlatYi-34B-Llama-Q | 71.13 | 65.70 | 85.22 | 78.78 | 53.64 | 83.03 | 60.42 | | PlatYi-34B-Llama | 68.37 | 67.83 | 85.35 | 78.26 | 53.46 | 82.87 | 42.46 | | [Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) | 70.95 | 64.59 | 85.63 | 76.31 | 55.60 | 82.79 | 60.80 | | [Yi-34B](https://huggingface.co/01-ai/Yi-34B) | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/PlatYi-34B-Llama-Q-v3" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---
owanr/SChem5Labels-roberta-base-inter-data-frequency-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T19:12:48Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T19:12:32Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-inter-data-frequency-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-inter-data-frequency-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.0808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.478 | 1.0 | 3164 | 6.0808 | | 6.494 | 2.0 | 6328 | 6.0808 | | 6.403 | 3.0 | 9492 | 6.0808 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
sinonimayzer/UzRoBERTa-v2
sinonimayzer
2023-12-17T19:06:41Z
28
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "uz", "dataset:sinonimayzer/mixed-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-06T08:24:07Z
--- widget: - text: Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi. example_title: Example 1 - text: >- Shu munosabat bilan O‘zbekiston Prezidenti global inqiroz sharoitida savdo-iqtisodiy hamkorlikni <mask> va hududlararo aloqalarni rivojlantirishning muhim masalalariga to‘xtalib o‘tdi. example_title: Example 2 tags: - generated_from_trainer datasets: - sinonimayzer/mixed-data language: - uz library_name: transformers pipeline_tag: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UzRoBERTa-v2 This model achieves the following results on the evaluation set: - Loss: 1.9097 ## How to use ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='sinonimayzer/UzRoBERTa-v2') >>> unmasker("Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi.") [{'score': 0.3318027853965759, 'token': 4877, 'token_str': ' hududlarda', 'sequence': 'Kuchli yomg‘irlar tufayli bir qator hududlarda kuchli sel oqishi kuzatildi.'}, {'score': 0.13175441324710846, 'token': 14470, 'token_str': ' viloyatlarda', 'sequence': 'Kuchli yomg‘irlar tufayli bir qator viloyatlarda kuchli sel oqishi kuzatildi.'}, {'score': 0.09735308587551117, 'token': 13555, 'token_str': ' tumanlarda', 'sequence': 'Kuchli yomg‘irlar tufayli bir qator tumanlarda kuchli sel oqishi kuzatildi.'}, {'score': 0.09112472087144852, 'token': 12261, 'token_str': ' shaharlarda', 'sequence': 'Kuchli yomg‘irlar tufayli bir qator shaharlarda kuchli sel oqishi kuzatildi.'}, {'score': 0.05940879508852959, 'token': 2767, 'token_str': ' joylarda', 'sequence': 'Kuchli yomg‘irlar tufayli bir qator joylarda kuchli sel oqishi kuzatildi.'}] ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 92 - eval_batch_size: 92 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.3673 | 0.25 | 100000 | 2.4588 | | 2.0797 | 0.51 | 200000 | 2.1653 | | 1.9369 | 0.76 | 300000 | 2.0265 | | 1.8545 | 1.02 | 400000 | 1.9456 | | 1.8133 | 1.27 | 500000 | 1.9101 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
owanr/ghc-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:56:55Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:56:38Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: ghc-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.927 | 1.0 | 11020 | 0.9253 | | 0.927 | 2.0 | 22040 | 0.9253 | | 0.902 | 3.0 | 33060 | 0.9253 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
xezno/phi-2-alpaca-lora
xezno
2023-12-17T18:54:59Z
0
0
null
[ "safetensors", "dataset:tatsu-lab/alpaca", "license:other", "region:us" ]
null
2023-12-17T18:50:59Z
--- license: other datasets: - tatsu-lab/alpaca --- # Model Card for phi-2-alpaca This is a low-rank adapter for [phi-2](https://huggingface.co/microsoft/phi-2) fit on the [alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) dataset. ## Training Hyperparameters The model was trained on 1xA100 GPU using PEFT-LORA. The following hyperparameters were used during training: - Lora target modules: Wqkv, out_proj - Lora r: 16 - lora_alpha: 16 - lora_dropout: 0.1 - learning_rate: 5e-05 - per_device_train_batch_size: 1 - gradient_accumulation_steps: 1 - training_steps: 120000 ## Limitations and Bias The model is based on a large and diverse dataset, but it may still have limitations and biases in certain areas. Some limitations include: - Language: The model is designed to work with English text only and may not perform as well in other languages. In addition, the model may have some bias in terms of the data it was trained on. The dataset includes questions from a variety of sources, but it may not be representative of all populations or perspectives. As a result, the model may perform better or worse for certain types of questions or on certain types of texts.
bhuvana1/anime-sdxl
bhuvana1
2023-12-17T18:51:48Z
1
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-12-15T11:48:27Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: anime of rajinik with warm smile and cool style in hd quality tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Zabihin/Symptom_to_Diagnosis
Zabihin
2023-12-17T18:51:05Z
147
10
transformers
[ "transformers", "tf", "bert", "text-classification", "medical", "en", "dataset:gretelai/symptom_to_diagnosis", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-16T21:06:40Z
--- license: apache-2.0 base_model: bert-base-cased datasets: - gretelai/symptom_to_diagnosis metrics: - f1 tags: - medical widget: - text: >- I've been having a lot of pain in my neck and back. I've also been having trouble with my balance and coordination. I've been coughing a lot and my limbs feel weak. - text: >- I've been feeling really run down and weak. My throat is sore and I've been coughing a lot. I've also been having chills and a fever. model-index: - name: Symptom_to_Diagnosis results: - task: type: text-classification dataset: type: gretelai/symptom_to_diagnosis name: gretelai/symptom_to_diagnosis split: test metrics: - type: precision value: 0.94 name: macro avg - type: recall value: 0.93 name: macro avg - type: f1-score value: 0.93 name: macro avg language: - en --- # Symptom_to_Diagnosis This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on this dataset (https://huggingface.co/datasets/gretelai/symptom_to_diagnosis). ## Model description Model Description This model is a fine-tuned version of the bert-base-cased architecture, specifically designed for text classification tasks related to diagnosing diseases from symptoms. The primary objective is to analyze natural language descriptions of symptoms and predict one of 22 corresponding diagnoses. ## Dataset Information The model was trained on the Gretel/symptom_to_diagnosis dataset, which consists of 1,065 symptom descriptions in the English language, each labeled with one of the 22 possible diagnoses. The dataset focuses on fine-grained single-domain diagnosis, making it suitable for tasks that require detailed classification based on symptom descriptions. Example { "output_text": "drug reaction", "input_text": "I've been having headaches and migraines, and I can't sleep. My whole body shakes and twitches. Sometimes I feel lightheaded." } # Use a pipeline as a high-level helper ``` from transformers import pipeline pipe = pipeline("text-classification", model="Zabihin/Symptom_to_Diagnosis") Example: result = pipe("I've been having headaches and migraines, and I can't sleep. My whole body shakes and twitches. Sometimes I feel lightheaded.") result: [{'label': 'drug reaction', 'score': 0.9489321112632751}] ``` or ``` from transformers import pipeline # Load the model classifier = pipeline("text-classification", model="Zabihin/Symptom_to_Diagnosis", tokenizer="Zabihin/Symptom_to_Diagnosis") # Example input text input_text = "I've been having headaches and migraines, and I can't sleep. My whole body shakes and twitches. Sometimes I feel lightheaded." # Get the predicted label result = classifier(input_text) # Print the predicted label predicted_label = result[0]['label'] print("Predicted Label:", predicted_label) Predicted Label: drug reaction ``` ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
HARSHAPALNATIUNH/Githubmodel
HARSHAPALNATIUNH
2023-12-17T18:50:42Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "bloom", "text-generation", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:finetune:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-16T20:32:22Z
--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - generated_from_trainer model-index: - name: Githubmodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Githubmodel This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.0
owanr/SBIC-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:50:21Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:50:01Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SBIC-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-roberta-base-inter-shuffle-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.173 | 1.0 | 12516 | 2.1269 | | 2.125 | 2.0 | 25032 | 2.1269 | | 2.166 | 3.0 | 37548 | 2.1269 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
urbija/llama-fine-tuned-peft
urbija
2023-12-17T18:48:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-12-17T18:47:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
tarekziade/distilbert-reuters21578
tarekziade
2023-12-17T18:39:54Z
7
0
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "news_classification", "multi_label", "en", "dataset:reuters21578", "base_model:distilbert/distilbert-base-cased", "base_model:quantized:distilbert/distilbert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-17T18:29:49Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer - news_classification - multi_label datasets: - reuters21578 metrics: - f1 - accuracy model-index: - name: distilbert-finetuned-reuters21578-multilabel results: - task: name: Text Classification type: text-classification dataset: name: reuters21578 type: reuters21578 config: ModApte split: test args: ModApte metrics: - name: F1 type: f1 value: 0.8628858578607322 - name: Accuracy type: accuracy value: 0.8195625759416768 language: - en pipeline_tag: text-classification widget: - text: "JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWARDS The Ministry of International Trade and Industry (MITI) will revise its long-term energy supply/demand outlook by August to meet a forecast downtrend in Japanese energy demand, ministry officials said. MITI is expected to lower the projection for primary energy supplies in the year 2000 to 550 mln kilolitres (kl) from 600 mln, they said. The decision follows the emergence of structural changes in Japanese industry following the rise in the value of the yen and a decline in domestic electric power demand. MITI is planning to work out a revised energy supply/demand outlook through deliberations of committee meetings of the Agency of Natural Resources and Energy, the officials said. They said MITI will also review the breakdown of energy supply sources, including oil, nuclear, coal and natural gas. Nuclear energy provided the bulk of Japan's electric power in the fiscal year ended March 31, supplying an estimated 27 pct on a kilowatt/hour basis, followed by oil (23 pct) and liquefied natural gas (21 pct), they noted. REUTER" example_title: "Example-1" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Origin of this model This model was forked from https://huggingface.co/lxyuan/distilbert-finetuned-reuters21578-multilabel -- I just generated the onnx versions in /onnx ## Motivation Fine-tuning on the Reuters-21578 multilabel dataset is a valuable exercise, especially as it's frequently used in take-home tests during interviews. The dataset's complexity is just right for testing multilabel classification skills within a limited timeframe, while its real-world relevance helps simulate practical challenges. Experimenting with this dataset not only helps candidates prepare for interviews but also hones various skills including preprocessing, feature extraction, and model evaluation. This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the reuters21578 dataset. ## Inference Example ```python from transformers import pipeline pipe = pipeline("text-classification", model="lxyuan/distilbert-finetuned-reuters21578-multilabel", return_all_scores=True) # dataset["test"]["text"][2] news_article = ( "JAPAN TO REVISE LONG-TERM ENERGY DEMAND DOWNWARDS The Ministry of International Trade and " "Industry (MITI) will revise its long-term energy supply/demand " "outlook by August to meet a forecast downtrend in Japanese " "energy demand, ministry officials said. " "MITI is expected to lower the projection for primary energy " "supplies in the year 2000 to 550 mln kilolitres (kl) from 600 " "mln, they said. " "The decision follows the emergence of structural changes in " "Japanese industry following the rise in the value of the yen " "and a decline in domestic electric power demand. " "MITI is planning to work out a revised energy supply/demand " "outlook through deliberations of committee meetings of the " "Agency of Natural Resources and Energy, the officials said. " "They said MITI will also review the breakdown of energy " "supply sources, including oil, nuclear, coal and natural gas. " "Nuclear energy provided the bulk of Japan's electric power " "in the fiscal year ended March 31, supplying an estimated 27 " "pct on a kilowatt/hour basis, followed by oil (23 pct) and " "liquefied natural gas (21 pct), they noted. " "REUTER" ) # dataset["test"]["topics"][2] target_topics = ['crude', 'nat-gas'] fn_kwargs={"padding": "max_length", "truncation": True, "max_length": 512} output = pipe(example, function_to_apply="sigmoid", **fn_kwargs) for item in output[0]: if item["score"]>=0.5: print(item["label"], item["score"]) >>> crude 0.7355073690414429 nat-gas 0.8600426316261292 ``` ## Overall Summary and Comparison Table | Metric | Baseline (Scikit-learn) | Transformer Model | | ------------------- | ----------------------- | ----------------- | | Micro-Averaged F1 | 0.77 | 0.86 | | Macro-Averaged F1 | 0.29 | 0.33 | | Weighted Average F1 | 0.70 | 0.84 | | Samples Average F1 | 0.75 | 0.80 | **Precision vs Recall**: Both models prioritize high precision over recall. In our client-facing news classification model, precision takes precedence over recall. This is because the repercussions of false positives are more severe and harder to justify to clients compared to false negatives. When the model incorrectly tags a news item with a topic, it's challenging to explain this error. On the other hand, if the model misses a topic, it's easier to defend by stating that the topic wasn't sufficiently emphasized in the news article. **Class Imbalance Handling**: Both models suffer from the same general issue of not performing well on minority classes, as reflected in the low macro-averaged F1-scores. However, the transformer model shows a slight improvement, albeit marginal, in macro-averaged F1-score (0.33 vs 0.29). **Issue of Zero Support Labels**: Both models have the problem of zero support for several labels, meaning these labels did not appear in the test set. This lack of "support" can significantly skew the performance metrics and may suggest that either the models are not well-tuned to predict these minority classes, or the dataset itself lacks sufficient examples of these classes. Given that both models struggle with low macro-averaged F1 scores, this issue further emphasizes the need for improved minority class handling in the models. **General Performance**: The transformer model surpasses the scikit-learn baseline in terms of weighted and samples average F1-scores, indicating better overall performance and better handling of label imbalance. **Conclusion**: While both models exhibit high precision, which is a business requirement, the transformer model slightly outperforms the scikit-learn baseline model in all metrics considered. It provides a better trade-off between precision and recall, as well as some improvement, albeit small, in handling minority classes. Thus, despite sharing similar weaknesses with the baseline, the transformer model demonstrates incremental improvements that could be significant in a production setting. ## Training and evaluation data We remove single appearance label from both training and test sets using the following code: ```python # Find Single Appearance Labels def find_single_appearance_labels(y): """Find labels that appear only once in the dataset.""" all_labels = list(chain.from_iterable(y)) label_count = Counter(all_labels) single_appearance_labels = [label for label, count in label_count.items() if count == 1] return single_appearance_labels # Remove Single Appearance Labels from Dataset def remove_single_appearance_labels(dataset, single_appearance_labels): """Remove samples with single-appearance labels from both train and test sets.""" for split in ['train', 'test']: dataset[split] = dataset[split].filter(lambda x: all(label not in single_appearance_labels for label in x['topics'])) return dataset dataset = load_dataset("reuters21578", "ModApte") # Find and Remove Single Appearance Labels y_train = [item['topics'] for item in dataset['train']] single_appearance_labels = find_single_appearance_labels(y_train) print(f"Single appearance labels: {single_appearance_labels}") >>> Single appearance labels: ['lin-oil', 'rye', 'red-bean', 'groundnut-oil', 'citruspulp', 'rape-meal', 'corn-oil', 'peseta', 'cotton-oil', 'ringgit', 'castorseed', 'castor-oil', 'lit', 'rupiah', 'skr', 'nkr', 'dkr', 'sun-meal', 'lin-meal', 'cruzado'] print("Removing samples with single-appearance labels...") dataset = remove_single_appearance_labels(dataset, single_appearance_labels) unique_labels = set(chain.from_iterable(dataset['train']["topics"])) print(f"We have {len(unique_labels)} unique labels:\n{unique_labels}") >>> We have 95 unique labels: {'veg-oil', 'gold', 'platinum', 'ipi', 'acq', 'carcass', 'wool', 'coconut-oil', 'linseed', 'copper', 'soy-meal', 'jet', 'dlr', 'copra-cake', 'hog', 'rand', 'strategic-metal', 'can', 'tea', 'sorghum', 'livestock', 'barley', 'lumber', 'earn', 'wheat', 'trade', 'soy-oil', 'cocoa', 'inventories', 'income', 'rubber', 'tin', 'iron-steel', 'ship', 'rapeseed', 'wpi', 'sun-oil', 'pet-chem', 'palmkernel', 'nat-gas', 'gnp', 'l-cattle', 'propane', 'rice', 'lead', 'alum', 'instal-debt', 'saudriyal', 'cpu', 'jobs', 'meal-feed', 'oilseed', 'dmk', 'plywood', 'zinc', 'retail', 'dfl', 'cpi', 'crude', 'pork-belly', 'gas', 'money-fx', 'corn', 'tapioca', 'palladium', 'lei', 'cornglutenfeed', 'sunseed', 'potato', 'silver', 'sugar', 'grain', 'groundnut', 'naphtha', 'orange', 'soybean', 'coconut', 'stg', 'cotton', 'yen', 'rape-oil', 'palm-oil', 'oat', 'reserves', 'housing', 'interest', 'coffee', 'fuel', 'austdlr', 'money-supply', 'heat', 'fishmeal', 'bop', 'nickel', 'nzdlr'} ``` ## Training procedure [EDA on Reuters-21578 dataset](https://github.com/LxYuan0420/nlp/blob/main/notebooks/eda_reuters.ipynb): This notebook provides an Exploratory Data Analysis (EDA) of the Reuters-21578 dataset. It includes visualizations and statistical summaries that offer insights into the dataset's structure, label distribution, and text characteristics. [Reuters Baseline Scikit-Learn Model](https://github.com/LxYuan0420/nlp/blob/main/notebooks/scikit_learn_reuters.ipynb): This notebook establishes a baseline model for text classification on the Reuters-21578 dataset using scikit-learn. It guides you through data preprocessing, feature extraction, model training, and evaluation. [Reuters Transformer Model](https://github.com/LxYuan0420/nlp/blob/main/notebooks/transformer_reuters.ipynb): This notebook delves into advanced text classification using a Transformer model on the Reuters-21578 dataset. It covers the implementation details, training process, and performance metrics of using Transformer-based models for this specific task. [Multilabel Stratified Sampling & Hypyerparameter Search on Reuters Dataset](https://github.com/LxYuan0420/nlp/blob/main/notebooks/transformer_reuters_hyperparameter_tuning.ipynb): In this notebook, we explore advanced machine learning techniques through the lens of the Hugging Face Trainer API, specifically targeting Multilabel Iterative Stratified Splitting and Hyperparameter Search. The former aims to fairly distribute imbalanced datasets across multiple labels in k-fold cross-validation, maintaining a distribution closely resembling that of the complete dataset. The latter walks users through a structured hyperparameter search to fine-tune model performance for optimal results. ## Evaluation results <details> <summary>Transformer Model Evaluation Result</summary> Classification Report: precision recall f1-score support acq 0.97 0.93 0.95 719 alum 1.00 0.70 0.82 23 austdlr 0.00 0.00 0.00 0 barley 1.00 0.50 0.67 12 bop 0.79 0.50 0.61 30 can 0.00 0.00 0.00 0 carcass 0.67 0.67 0.67 18 cocoa 1.00 1.00 1.00 18 coconut 0.00 0.00 0.00 2 coconut-oil 0.00 0.00 0.00 2 coffee 0.86 0.89 0.87 27 copper 1.00 0.78 0.88 18 copra-cake 0.00 0.00 0.00 1 corn 0.84 0.87 0.86 55 cornglutenfeed 0.00 0.00 0.00 0 cotton 0.92 0.67 0.77 18 cpi 0.86 0.43 0.57 28 cpu 0.00 0.00 0.00 1 crude 0.87 0.93 0.90 189 dfl 0.00 0.00 0.00 1 dlr 0.72 0.64 0.67 44 dmk 0.00 0.00 0.00 4 earn 0.98 0.99 0.98 1087 fishmeal 0.00 0.00 0.00 0 fuel 0.00 0.00 0.00 10 gas 0.80 0.71 0.75 17 gnp 0.79 0.66 0.72 35 gold 0.95 0.67 0.78 30 grain 0.94 0.92 0.93 146 groundnut 0.00 0.00 0.00 4 heat 0.00 0.00 0.00 5 hog 1.00 0.33 0.50 6 housing 0.00 0.00 0.00 4 income 0.00 0.00 0.00 7 instal-debt 0.00 0.00 0.00 1 interest 0.89 0.67 0.77 131 inventories 0.00 0.00 0.00 0 ipi 1.00 0.58 0.74 12 iron-steel 0.90 0.64 0.75 14 jet 0.00 0.00 0.00 1 jobs 0.92 0.57 0.71 21 l-cattle 0.00 0.00 0.00 2 lead 0.00 0.00 0.00 14 lei 0.00 0.00 0.00 3 linseed 0.00 0.00 0.00 0 livestock 0.63 0.79 0.70 24 lumber 0.00 0.00 0.00 6 meal-feed 0.00 0.00 0.00 17 money-fx 0.78 0.81 0.80 177 money-supply 0.80 0.71 0.75 34 naphtha 0.00 0.00 0.00 4 nat-gas 0.82 0.60 0.69 30 nickel 0.00 0.00 0.00 1 nzdlr 0.00 0.00 0.00 2 oat 0.00 0.00 0.00 4 oilseed 0.64 0.61 0.63 44 orange 1.00 0.36 0.53 11 palladium 0.00 0.00 0.00 1 palm-oil 1.00 0.56 0.71 9 palmkernel 0.00 0.00 0.00 1 pet-chem 0.00 0.00 0.00 12 platinum 0.00 0.00 0.00 7 plywood 0.00 0.00 0.00 0 pork-belly 0.00 0.00 0.00 0 potato 0.00 0.00 0.00 3 propane 0.00 0.00 0.00 3 rand 0.00 0.00 0.00 1 rape-oil 0.00 0.00 0.00 1 rapeseed 0.00 0.00 0.00 8 reserves 0.83 0.56 0.67 18 retail 0.00 0.00 0.00 2 rice 1.00 0.57 0.72 23 rubber 0.82 0.75 0.78 12 saudriyal 0.00 0.00 0.00 0 ship 0.95 0.81 0.87 89 silver 1.00 0.12 0.22 8 sorghum 1.00 0.12 0.22 8 soy-meal 0.00 0.00 0.00 12 soy-oil 0.00 0.00 0.00 8 soybean 0.72 0.56 0.63 32 stg 0.00 0.00 0.00 0 strategic-metal 0.00 0.00 0.00 11 sugar 1.00 0.80 0.89 35 sun-oil 0.00 0.00 0.00 0 sunseed 0.00 0.00 0.00 5 tapioca 0.00 0.00 0.00 0 tea 0.00 0.00 0.00 3 tin 1.00 0.42 0.59 12 trade 0.78 0.79 0.79 116 veg-oil 0.91 0.59 0.71 34 wheat 0.83 0.83 0.83 69 wool 0.00 0.00 0.00 0 wpi 0.00 0.00 0.00 10 yen 0.57 0.29 0.38 14 zinc 1.00 0.69 0.82 13 micro avg 0.92 0.81 0.86 3694 macro avg 0.41 0.30 0.33 3694 weighted avg 0.87 0.81 0.84 3694 samples avg 0.81 0.80 0.80 3694 </details> <details> <summary>Scikit-learn Baseline Model Evaluation Result</summary> Classification Report: precision recall f1-score support acq 0.98 0.87 0.92 719 alum 1.00 0.00 0.00 23 austdlr 1.00 1.00 1.00 0 barley 1.00 0.00 0.00 12 bop 1.00 0.30 0.46 30 can 1.00 1.00 1.00 0 carcass 1.00 0.06 0.11 18 cocoa 1.00 0.61 0.76 18 coconut 1.00 0.00 0.00 2 coconut-oil 1.00 0.00 0.00 2 coffee 0.94 0.59 0.73 27 copper 1.00 0.22 0.36 18 copra-cake 1.00 0.00 0.00 1 corn 0.97 0.51 0.67 55 cornglutenfeed 1.00 1.00 1.00 0 cotton 1.00 0.06 0.11 18 cpi 1.00 0.14 0.25 28 cpu 1.00 0.00 0.00 1 crude 0.94 0.69 0.80 189 dfl 1.00 0.00 0.00 1 dlr 0.86 0.43 0.58 44 dmk 1.00 0.00 0.00 4 earn 0.99 0.97 0.98 1087 fishmeal 1.00 1.00 1.00 0 fuel 1.00 0.00 0.00 10 gas 1.00 0.00 0.00 17 gnp 1.00 0.31 0.48 35 gold 0.83 0.17 0.28 30 grain 1.00 0.65 0.79 146 groundnut 1.00 0.00 0.00 4 heat 1.00 0.00 0.00 5 hog 1.00 0.00 0.00 6 housing 1.00 0.00 0.00 4 income 1.00 0.00 0.00 7 instal-debt 1.00 0.00 0.00 1 interest 0.88 0.40 0.55 131 inventories 1.00 1.00 1.00 0 ipi 1.00 0.00 0.00 12 iron-steel 1.00 0.00 0.00 14 jet 1.00 0.00 0.00 1 jobs 1.00 0.14 0.25 21 l-cattle 1.00 0.00 0.00 2 lead 1.00 0.00 0.00 14 lei 1.00 0.00 0.00 3 linseed 1.00 1.00 1.00 0 livestock 0.67 0.08 0.15 24 lumber 1.00 0.00 0.00 6 meal-feed 1.00 0.00 0.00 17 money-fx 0.80 0.50 0.62 177 money-supply 0.88 0.41 0.56 34 naphtha 1.00 0.00 0.00 4 nat-gas 1.00 0.27 0.42 30 nickel 1.00 0.00 0.00 1 nzdlr 1.00 0.00 0.00 2 oat 1.00 0.00 0.00 4 oilseed 0.62 0.11 0.19 44 orange 1.00 0.00 0.00 11 palladium 1.00 0.00 0.00 1 palm-oil 1.00 0.22 0.36 9 palmkernel 1.00 0.00 0.00 1 pet-chem 1.00 0.00 0.00 12 platinum 1.00 0.00 0.00 7 plywood 1.00 1.00 1.00 0 pork-belly 1.00 1.00 1.00 0 potato 1.00 0.00 0.00 3 propane 1.00 0.00 0.00 3 rand 1.00 0.00 0.00 1 rape-oil 1.00 0.00 0.00 1 rapeseed 1.00 0.00 0.00 8 reserves 1.00 0.00 0.00 18 retail 1.00 0.00 0.00 2 rice 1.00 0.00 0.00 23 rubber 1.00 0.17 0.29 12 saudriyal 1.00 1.00 1.00 0 ship 0.92 0.26 0.40 89 silver 1.00 0.00 0.00 8 sorghum 1.00 0.00 0.00 8 soy-meal 1.00 0.00 0.00 12 soy-oil 1.00 0.00 0.00 8 soybean 1.00 0.16 0.27 32 stg 1.00 1.00 1.00 0 strategic-metal 1.00 0.00 0.00 11 sugar 1.00 0.60 0.75 35 sun-oil 1.00 1.00 1.00 0 sunseed 1.00 0.00 0.00 5 tapioca 1.00 1.00 1.00 0 tea 1.00 0.00 0.00 3 tin 1.00 0.00 0.00 12 trade 0.92 0.61 0.74 116 veg-oil 1.00 0.12 0.21 34 wheat 0.97 0.55 0.70 69 wool 1.00 1.00 1.00 0 wpi 1.00 0.00 0.00 10 yen 1.00 0.00 0.00 14 zinc 1.00 0.00 0.00 13 micro avg 0.97 0.64 0.77 3694 macro avg 0.98 0.25 0.29 3694 weighted avg 0.96 0.64 0.70 3694 samples avg 0.98 0.74 0.75 3694 </details> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | | :-----------: | :---: | :--: | :-------------: | :----: | :-----: | :------: | | 0.1801 | 1.0 | 300 | 0.0439 | 0.3896 | 0.6210 | 0.3566 | | 0.0345 | 2.0 | 600 | 0.0287 | 0.6289 | 0.7318 | 0.5954 | | 0.0243 | 3.0 | 900 | 0.0219 | 0.6721 | 0.7579 | 0.6084 | | 0.0178 | 4.0 | 1200 | 0.0177 | 0.7505 | 0.8128 | 0.6908 | | 0.014 | 5.0 | 1500 | 0.0151 | 0.7905 | 0.8376 | 0.7278 | | 0.0115 | 6.0 | 1800 | 0.0135 | 0.8132 | 0.8589 | 0.7555 | | 0.0096 | 7.0 | 2100 | 0.0124 | 0.8291 | 0.8727 | 0.7725 | | 0.0082 | 8.0 | 2400 | 0.0124 | 0.8335 | 0.8757 | 0.7822 | | 0.0071 | 9.0 | 2700 | 0.0119 | 0.8392 | 0.8847 | 0.7883 | | 0.0064 | 10.0 | 3000 | 0.0123 | 0.8339 | 0.8810 | 0.7828 | | 0.0058 | 11.0 | 3300 | 0.0114 | 0.8538 | 0.8999 | 0.8047 | | 0.0053 | 12.0 | 3600 | 0.0113 | 0.8525 | 0.8967 | 0.8044 | | 0.0048 | 13.0 | 3900 | 0.0115 | 0.8520 | 0.8982 | 0.8029 | | 0.0045 | 14.0 | 4200 | 0.0111 | 0.8566 | 0.8962 | 0.8104 | | 0.0042 | 15.0 | 4500 | 0.0110 | 0.8610 | 0.9060 | 0.8165 | | 0.0039 | 16.0 | 4800 | 0.0112 | 0.8583 | 0.9021 | 0.8138 | | 0.0037 | 17.0 | 5100 | 0.0110 | 0.8620 | 0.9055 | 0.8196 | | 0.0035 | 18.0 | 5400 | 0.0110 | 0.8629 | 0.9063 | 0.8196 | | 0.0035 | 19.0 | 5700 | 0.0111 | 0.8624 | 0.9062 | 0.8180 | | 0.0034 | 20.0 | 6000 | 0.0111 | 0.8626 | 0.9055 | 0.8177 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
TheBloke/PlatYi-34B-Llama-Q-v3-AWQ
TheBloke
2023-12-17T18:31:01Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:garage-bAInd/Open-Platypus", "base_model:kyujinpy/PlatYi-34B-Llama-Q-v3", "base_model:quantized:kyujinpy/PlatYi-34B-Llama-Q-v3", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2023-12-17T17:21:16Z
--- base_model: kyujinpy/PlatYi-34B-Llama-Q-v3 datasets: - garage-bAInd/Open-Platypus inference: false language: - en library_name: transformers license: cc-by-nc-sa-4.0 model_creator: KyujinHan model_name: PlatYi 34B Llama Q V3 model_type: yi pipeline_tag: text-generation prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # PlatYi 34B Llama Q V3 - AWQ - Model creator: [KyujinHan](https://huggingface.co/kyujinpy) - Original model: [PlatYi 34B Llama Q V3](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3) <!-- description start --> ## Description This repo contains AWQ model files for [KyujinHan's PlatYi 34B Llama Q V3](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-GGUF) * [KyujinHan's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/kyujinpy/PlatYi-34B-Llama-Q-v3) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/PlatYi-34B-Llama-Q-v3-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 19.23 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/PlatYi-34B-Llama-Q-v3-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `PlatYi-34B-Llama-Q-v3-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/PlatYi-34B-Llama-Q-v3-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/PlatYi-34B-Llama-Q-v3-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/PlatYi-34B-Llama-Q-v3-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/PlatYi-34B-Llama-Q-v3-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: KyujinHan's PlatYi 34B Llama Q V3 # **PlatYi-34B-Llama-Q-v3** <img src='./PlatYi.png' width=256> ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** PlatYi-34B-Llama-Q-v3 is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [chargoddard/Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) **Training Dataset** [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). ## Fix some bugs - Before model, there is some mistakes. - I modified the templates and warmup_steps. ## Notice While training, I used Q-LoRA. The lora_r values is 64. # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | PlatYi-34B-Llama-Q-v3 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | PlatYi-34B-Llama-Q-v2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | | PlatYi-34B-Llama-Q | 71.13 | 65.70 | 85.22 | 78.78 | 53.64 | 83.03 | 60.42 | | PlatYi-34B-Llama | 68.37 | 67.83 | 85.35 | 78.26 | 53.46 | 82.87 | 42.46 | | [Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) | 70.95 | 64.59 | 85.63 | 76.31 | 55.60 | 82.79 | 60.80 | | [Yi-34B](https://huggingface.co/01-ai/Yi-34B) | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/PlatYi-34B-Llama-Q-v3" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---
TheBloke/PiVoT-MoE-GPTQ
TheBloke
2023-12-17T18:30:04Z
27
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "base_model:maywell/PiVoT-MoE", "base_model:quantized:maywell/PiVoT-MoE", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-12-17T16:20:29Z
--- base_model: maywell/PiVoT-MoE inference: false license: cc-by-nc-4.0 model_creator: Jeonghwan Park model_name: Pivot MoE model_type: mixtral prompt_template: '{system_message} ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Pivot MoE - GPTQ - Model creator: [Jeonghwan Park](https://huggingface.co/maywell) - Original model: [Pivot MoE](https://huggingface.co/maywell/PiVoT-MoE) <!-- description start --> # Description This repo contains GPTQ model files for [Jeonghwan Park's Pivot MoE](https://huggingface.co/maywell/PiVoT-MoE). Mixtral GPTQs currently require: * Transformers 4.36.0 or later * either, AutoGPTQ 0.6 compiled from source, or * Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers` Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PiVoT-MoE-GGUF) * [Jeonghwan Park's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/maywell/PiVoT-MoE) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca-System ``` {system_message} ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. Mixtral GPTQs currently have special requirements - see Description above. <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 18.50 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 19.18 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 21.28 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 14.02 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. | | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 14.66 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. | | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 16.66 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 36.42 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 37.24 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/PiVoT-MoE-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/PiVoT-MoE-GPTQ:gptq-4bit-128g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `PiVoT-MoE-GPTQ`: ```shell mkdir PiVoT-MoE-GPTQ huggingface-cli download TheBloke/PiVoT-MoE-GPTQ --local-dir PiVoT-MoE-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir PiVoT-MoE-GPTQ huggingface-cli download TheBloke/PiVoT-MoE-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir PiVoT-MoE-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir PiVoT-MoE-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/PiVoT-MoE-GPTQ --local-dir PiVoT-MoE-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/PiVoT-MoE-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) **NOTE**: Requires: * Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github * Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`, * or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers` Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/PiVoT-MoE-GPTQ`. - To download from a specific branch, enter for example `TheBloke/PiVoT-MoE-GPTQ:gptq-4bit-128g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `PiVoT-MoE-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) Not currently supported for Mixtral models. <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later. ```shell pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ DISABLE_QIGEN=1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/PiVoT-MoE-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-128g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''{system_message} ### Instruction: {prompt} ### Response: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github). <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Jeonghwan Park's Pivot MoE # PiVot-MoE ![img](./PiVoT-MoE.png) ## Model Description PiVoT-MoE, is an advanced AI model specifically designed for roleplaying purposes. It has been trained using a combination of four 10.7B sized experts, each with their own specialized characteristic, all fine-tuned to bring a unique and diverse roleplaying experience. The Mixture of Experts (MoE) technique is utilized in this model, allowing the experts to work together synergistically, resulting in a more cohesive and natural conversation flow. The MoE architecture allows for a higher level of flexibility and adaptability, enabling PiVoT-MoE to handle a wide variety of roleplaying scenarios and characters. Based on the PiVoT-10.7B-Mistral-v0.2-RP model, PiVoT-MoE takes it a step further with the incorporation of the MoE technique. This means that not only does the model have an expansive knowledge base, but it also has the ability to mix and match its expertise to better suit the specific roleplaying scenario. ## Prompt Template - Alpaca (ChatML works) ``` {system} ### Instruction: {instruction} ### Response: {response} ```
owanr/SChem5Labels-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:26:06Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:25:48Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-inter-frequency-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.4255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.535 | 1.0 | 3164 | 7.4255 | | 7.625 | 2.0 | 6328 | 7.4255 | | 7.694 | 3.0 | 9492 | 7.4255 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
oSabre/opus_books_es_pt
oSabre
2023-12-17T18:25:17Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-17T11:25:33Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: opus_books_es_pt results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: es-pt split: train args: es-pt metrics: - name: Bleu type: bleu value: 1.2169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus_books_es_pt This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 2.0763 - Bleu: 1.2169 - Gen Len: 18.5038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 133 | 2.5227 | 0.5795 | 18.5789 | | No log | 2.0 | 266 | 2.3918 | 0.6703 | 18.5451 | | No log | 3.0 | 399 | 2.3166 | 0.8471 | 18.5301 | | 2.6664 | 4.0 | 532 | 2.2665 | 0.8914 | 18.4737 | | 2.6664 | 5.0 | 665 | 2.2319 | 0.928 | 18.4549 | | 2.6664 | 6.0 | 798 | 2.2025 | 1.0067 | 18.5113 | | 2.6664 | 7.0 | 931 | 2.1784 | 1.0162 | 18.515 | | 2.2503 | 8.0 | 1064 | 2.1580 | 1.1102 | 18.5113 | | 2.2503 | 9.0 | 1197 | 2.1420 | 1.0638 | 18.515 | | 2.2503 | 10.0 | 1330 | 2.1257 | 1.1149 | 18.5113 | | 2.2503 | 11.0 | 1463 | 2.1142 | 1.1334 | 18.4474 | | 2.1172 | 12.0 | 1596 | 2.1091 | 1.1308 | 18.4925 | | 2.1172 | 13.0 | 1729 | 2.0980 | 1.1655 | 18.5075 | | 2.1172 | 14.0 | 1862 | 2.0950 | 1.1464 | 18.4925 | | 2.1172 | 15.0 | 1995 | 2.0890 | 1.1383 | 18.5038 | | 2.0185 | 16.0 | 2128 | 2.0833 | 1.1671 | 18.5 | | 2.0185 | 17.0 | 2261 | 2.0806 | 1.1555 | 18.5038 | | 2.0185 | 18.0 | 2394 | 2.0777 | 1.15 | 18.5113 | | 1.9882 | 19.0 | 2527 | 2.0770 | 1.2252 | 18.5113 | | 1.9882 | 20.0 | 2660 | 2.0763 | 1.2169 | 18.5038 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
adityamavle/ppo-LunarLander-v3
adityamavle
2023-12-17T18:22:46Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T18:22:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -507.76 +/- 138.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
owanr/ghc-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:19:36Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:19:18Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: ghc-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-roberta-base-inter-sorted-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.904 | 1.0 | 11020 | 0.9064 | | 0.859 | 2.0 | 22040 | 0.9064 | | 0.901 | 3.0 | 33060 | 0.9064 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
karawalla/mistral_b_karawalla_aqclv1002
karawalla
2023-12-17T18:19:29Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "region:us" ]
null
2023-12-17T18:19:12Z
--- library_name: peft base_model: mistralai/Mixtral-8x7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
owanr/SChem5Labels-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:14:49Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:14:29Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-intra-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.6970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.981 | 1.0 | 3164 | 6.6970 | | 6.834 | 2.0 | 6328 | 6.6970 | | 7.035 | 3.0 | 9492 | 6.6970 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
A2H0H0R1/Llama-2-7b-chat-hf-biology-2
A2H0H0R1
2023-12-17T18:07:13Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "llama", "llama-factory", "lora", "generated_from_trainer", "biology", "dataset:A2H0H0R1/Animal-nutrition-pair", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:other", "region:us" ]
null
2023-12-17T17:19:17Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer - biology base_model: meta-llama/Llama-2-7b-hf model-index: - name: dpo_model results: [] datasets: - A2H0H0R1/Animal-nutrition-pair --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_model This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the Animal-nutrition-pair dataset and DPO fine tunning type. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Bilal326/SD_2.0_DreamBooth_DragonWarrior
Bilal326
2023-12-17T18:04:14Z
4
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "StableDiffusion", "KungfuPanda", "DreamBooth", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-17T16:22:36Z
--- license: apache-2.0 tags: - StableDiffusion - KungfuPanda - DreamBooth ---
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_SystemError0.2_Seed103
behzadnet
2023-12-17T18:02:53Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-17T18:02:47Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
owanr/SChem5Labels-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T18:02:50Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T18:02:32Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-inter-shuffle-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.958 | 1.0 | 3164 | 6.9268 | | 7.27 | 2.0 | 6328 | 6.9268 | | 7.077 | 3.0 | 9492 | 6.9268 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/Mixtral-8x7B-v0.1-6.0bpw-h6-exl2-2
LoneStriker
2023-12-17T17:51:15Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T17:28:08Z
--- license: apache-2.0 language: - fr - it - de - es - en --- # Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Notice Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
owanr/ghc-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T17:42:14Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T17:41:56Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: ghc-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.194 | 1.0 | 11020 | 0.1930 | | 0.174 | 2.0 | 22040 | 0.1930 | | 0.211 | 3.0 | 33060 | 0.1930 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
owanr/SChem5Labels-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T17:39:39Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T17:39:21Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-intra-sorted-model_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.4949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.963 | 1.0 | 3164 | 7.4949 | | 7.634 | 2.0 | 6328 | 7.4949 | | 7.963 | 3.0 | 9492 | 7.4949 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
prashantyai/my_awesome_eli5_mlm_model
prashantyai
2023-12-17T17:39:32Z
3
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-17T17:08:06Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_keras_callback model-index: - name: prashantyai/my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # prashantyai/my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8890 - Validation Loss: 1.7635 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0236 | 1.8024 | 0 | | 1.9394 | 1.8156 | 1 | | 1.8890 | 1.7635 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
BrianHsu/BERT_test_graident_accumulation_test3
BrianHsu
2023-12-17T17:37:48Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:google-bert/bert-base-chinese", "base_model:finetune:google-bert/bert-base-chinese", "endpoints_compatible", "region:us" ]
multiple-choice
2023-12-17T15:57:28Z
--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT_test_graident_accumulation_test3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_test_graident_accumulation_test3 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0101 - Accuracy: 0.6102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 94 | 0.9398 | 0.6007 | | No log | 2.0 | 188 | 0.9191 | 0.6183 | | No log | 3.0 | 282 | 1.0101 | 0.6102 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
hkivancoral/smids_5x_deit_tiny_adamax_0001_fold4
hkivancoral
2023-12-17T17:30:17Z
4
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-small-patch16-224", "base_model:finetune:facebook/deit-small-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-14T10:32:36Z
--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_adamax_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_5x_deit_tiny_adamax_0001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2292 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2019 | 1.0 | 375 | 0.3616 | 0.8683 | | 0.2348 | 2.0 | 750 | 0.5390 | 0.7983 | | 0.0464 | 3.0 | 1125 | 0.5043 | 0.88 | | 0.0924 | 4.0 | 1500 | 0.5883 | 0.8833 | | 0.0137 | 5.0 | 1875 | 0.7305 | 0.8783 | | 0.0256 | 6.0 | 2250 | 0.8161 | 0.8783 | | 0.0006 | 7.0 | 2625 | 0.7997 | 0.8833 | | 0.0263 | 8.0 | 3000 | 0.8542 | 0.885 | | 0.0002 | 9.0 | 3375 | 0.9159 | 0.87 | | 0.0 | 10.0 | 3750 | 0.9248 | 0.8833 | | 0.0181 | 11.0 | 4125 | 1.0824 | 0.8633 | | 0.0031 | 12.0 | 4500 | 0.9537 | 0.89 | | 0.0115 | 13.0 | 4875 | 1.0751 | 0.8667 | | 0.0169 | 14.0 | 5250 | 0.8764 | 0.8867 | | 0.0 | 15.0 | 5625 | 0.9541 | 0.8817 | | 0.0 | 16.0 | 6000 | 1.0324 | 0.87 | | 0.0003 | 17.0 | 6375 | 1.0424 | 0.8733 | | 0.0131 | 18.0 | 6750 | 1.0393 | 0.8767 | | 0.0 | 19.0 | 7125 | 1.0119 | 0.8867 | | 0.0 | 20.0 | 7500 | 0.9792 | 0.8833 | | 0.0 | 21.0 | 7875 | 1.0247 | 0.88 | | 0.0 | 22.0 | 8250 | 1.0061 | 0.885 | | 0.0 | 23.0 | 8625 | 1.0234 | 0.8867 | | 0.0 | 24.0 | 9000 | 1.0734 | 0.8733 | | 0.0 | 25.0 | 9375 | 1.0638 | 0.8867 | | 0.0 | 26.0 | 9750 | 1.0711 | 0.88 | | 0.0 | 27.0 | 10125 | 1.1175 | 0.88 | | 0.0 | 28.0 | 10500 | 1.0879 | 0.8867 | | 0.0 | 29.0 | 10875 | 1.1361 | 0.8817 | | 0.0 | 30.0 | 11250 | 1.1028 | 0.89 | | 0.0 | 31.0 | 11625 | 1.1478 | 0.8817 | | 0.0 | 32.0 | 12000 | 1.1406 | 0.8833 | | 0.0 | 33.0 | 12375 | 1.1490 | 0.8833 | | 0.0 | 34.0 | 12750 | 1.1669 | 0.8817 | | 0.0 | 35.0 | 13125 | 1.1635 | 0.8833 | | 0.0 | 36.0 | 13500 | 1.1789 | 0.8817 | | 0.0 | 37.0 | 13875 | 1.1756 | 0.8833 | | 0.0029 | 38.0 | 14250 | 1.1808 | 0.8833 | | 0.0 | 39.0 | 14625 | 1.1891 | 0.8833 | | 0.0 | 40.0 | 15000 | 1.1976 | 0.8833 | | 0.0 | 41.0 | 15375 | 1.2036 | 0.8817 | | 0.0 | 42.0 | 15750 | 1.2058 | 0.88 | | 0.0 | 43.0 | 16125 | 1.2107 | 0.8817 | | 0.0 | 44.0 | 16500 | 1.2163 | 0.88 | | 0.0 | 45.0 | 16875 | 1.2201 | 0.8783 | | 0.0 | 46.0 | 17250 | 1.2238 | 0.8783 | | 0.0 | 47.0 | 17625 | 1.2266 | 0.88 | | 0.0 | 48.0 | 18000 | 1.2286 | 0.88 | | 0.0 | 49.0 | 18375 | 1.2293 | 0.88 | | 0.0 | 50.0 | 18750 | 1.2292 | 0.88 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
owanr/SChem5Labels-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05
owanr
2023-12-17T17:15:56Z
0
0
null
[ "pytorch", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2023-12-17T17:15:39Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: SChem5Labels-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-roberta-base-inter-sorted-human_annots_alpha0.0_whole_1e-05 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.2285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.419 | 1.0 | 3164 | 8.2285 | | 8.423 | 2.0 | 6328 | 8.2285 | | 8.528 | 3.0 | 9492 | 8.2285 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/Mixtral-8x7B-v0.1-4.0bpw-h6-exl2-2
LoneStriker
2023-12-17T17:08:24Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T16:26:34Z
--- license: apache-2.0 language: - fr - it - de - es - en --- # Model Card for Mixtral-8x7B The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/). ## Warning This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF. ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem: ### In half-precision Note `float16` precision only works on GPU devices <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Lower precision using (8-bit & 4-bit) using `bitsandbytes` <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ### Load the model with Flash Attention 2 <details> <summary> Click to expand </summary> ```diff + import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True) text = "Hello my name is" + inputs = tokenizer(text, return_tensors="pt").to(0) outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` </details> ## Notice Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms. # The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
MattGarber/output
MattGarber
2023-12-17T16:56:26Z
5
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-17T15:48:10Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - MattGarber/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
ShynBui/s25
ShynBui
2023-12-17T16:52:50Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-04T16:15:52Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: s25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s25 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
neopolita/LunarLander-v2
neopolita
2023-12-17T16:48:00Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-12-17T16:47:55Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -186.54 +/- 54.20 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'neopolita/LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ
TheBloke
2023-12-17T16:46:55Z
24
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "ko", "base_model:maywell/PiVoT-10.7B-Mistral-v0.2", "base_model:quantized:maywell/PiVoT-10.7B-Mistral-v0.2", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-12-16T10:06:57Z
--- base_model: maywell/PiVoT-10.7B-Mistral-v0.2 inference: false language: - en - ko license: cc-by-sa-4.0 model_creator: Jeonghwan Park model_name: Pivot 10.7B Mistral V0.2 model_type: mistral pipeline_tag: text-generation prompt_template: '[INST] {prompt} [/INST] ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Pivot 10.7B Mistral V0.2 - GPTQ - Model creator: [Jeonghwan Park](https://huggingface.co/maywell) - Original model: [Pivot 10.7B Mistral V0.2](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2) <!-- description start --> # Description This repo contains GPTQ model files for [Jeonghwan Park's Pivot 10.7B Mistral V0.2](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GGUF) * [Jeonghwan Park's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/maywell/PiVoT-10.7B-Mistral-v0.2) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Mistral ``` [INST] {prompt} [/INST] ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.98 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 6.59 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 11.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 11.25 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 11.99 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 6.18 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `PiVoT-10.7B-Mistral-v0.2-GPTQ`: ```shell mkdir PiVoT-10.7B-Mistral-v0.2-GPTQ huggingface-cli download TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ --local-dir PiVoT-10.7B-Mistral-v0.2-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir PiVoT-10.7B-Mistral-v0.2-GPTQ huggingface-cli download TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir PiVoT-10.7B-Mistral-v0.2-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir PiVoT-10.7B-Mistral-v0.2-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ --local-dir PiVoT-10.7B-Mistral-v0.2-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ`. - To download from a specific branch, enter for example `TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `PiVoT-10.7B-Mistral-v0.2-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''[INST] {prompt} [/INST] ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/PiVoT-10.7B-Mistral-v0.2-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''[INST] {prompt} [/INST] ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Jeonghwan Park's Pivot 10.7B Mistral V0.2 # PiVoT-10.7B-Mistral-v0.2 ![image/png](./PiVoT.png) # **Model Details** ### Description PivoT is Finetuned model based on merge of Mistral 0.2. SFT + DPO used when training. Follow me on twitter: https://twitter.com/stablefluffy Consider Support me making these model alone: https://www.buymeacoffee.com/mwell or with Runpod Credit Gift 💕 Contact me on Telegram: https://t.me/AlzarTakkarsen
NExtNewChattingAI/shark_tank_ai_7_b
NExtNewChattingAI
2023-12-17T16:43:55Z
1,605
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T16:23:32Z
--- license: apache-2.0 language: - en --- This model is based on <a href="https://huggingface.co/viethq188/LeoScorpius-7B-Chat-DPO"> LeoScorpius </a> trained on internal data. --- license: apache-2.0 --- Chatbot is a highly advanced artificial intelligence designed to provide you with personalized assistance and support. With its natural language processing capabilities, it can understand and respond to a wide range of queries and requests, making it a valuable tool for both personal and professional use. The chatbot is equipped with a vast knowledge base, allowing it to provide accurate and reliable information on a wide range of topics, from general knowledge to specific industry-related information. It can also perform tasks such as scheduling appointments, sending emails, and even ordering products online. One of the standout features of this assistant chatbot is its ability to learn and adapt to your individual preferences and needs. Over time, it can become more personalized to your specific requirements, making it an even more valuable asset to your daily life. The chatbot is also designed to be user-friendly and intuitive, with a simple and easy-to-use interface that allows you to interact with it in a natural and conversational way. Whether you're looking for information, need help with a task, or just want to chat, your assistant chatbot is always ready and available to assist you.
Kooten/Noromaid-13b-v0.2-6bpw-exl2
Kooten
2023-12-17T16:40:47Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T15:45:40Z
--- license: cc-by-nc-4.0 --- # This is a 6BPW EXL2 quant of Noromaid-13b-v0.2 Exllama 2 quant of [NeverSleep/Noromaid-13b-v0.2](https://huggingface.co/NeverSleep/Noromaid-13b-v0.2) ## Prompt template: Custom format, or Alpaca ### Custom format: SillyTavern config files: [Context](https://files.catbox.moe/ifmhai.json), [Instruct](https://files.catbox.moe/ttw1l9.json). ### Alpaca: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ```
kanishka/smolm-autoreg-bpe-counterfactual-babylm-aann-indef-non_num_removal-1e-4
kanishka
2023-12-17T16:33:08Z
5
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "dataset:kanishka/counterfactual-babylm-aanns_indef_non_num_removal", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T03:21:09Z
--- tags: - generated_from_trainer datasets: - kanishka/counterfactual-babylm-aanns_indef_non_num_removal metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual-babylm-aann-indef-non_num_removal-1e-4 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/counterfactual-babylm-aanns_indef_non_num_removal type: kanishka/counterfactual-babylm-aanns_indef_non_num_removal metrics: - name: Accuracy type: accuracy value: 0.4052309408152 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-counterfactual-babylm-aann-indef-non_num_removal-1e-4 This model was trained from scratch on the kanishka/counterfactual-babylm-aanns_indef_non_num_removal dataset. It achieves the following results on the evaluation set: - Loss: 3.4253 - Accuracy: 0.4052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 4.0479 | 1.0 | 18592 | 4.2707 | 0.3092 | | 3.5639 | 2.0 | 37184 | 3.7423 | 0.3625 | | 3.3891 | 3.0 | 55776 | 3.5886 | 0.3789 | | 3.2863 | 4.0 | 74368 | 3.4958 | 0.3879 | | 3.2196 | 5.0 | 92960 | 3.4607 | 0.3931 | | 3.1627 | 6.0 | 111552 | 3.4520 | 0.3956 | | 3.1282 | 7.0 | 130144 | 3.4094 | 0.3982 | | 3.0897 | 8.0 | 148736 | 3.4137 | 0.3995 | | 3.0631 | 9.0 | 167328 | 3.4069 | 0.4010 | | 3.0316 | 10.0 | 185920 | 3.4121 | 0.4018 | | 3.0154 | 11.0 | 204512 | 3.4134 | 0.4020 | | 2.9887 | 12.0 | 223104 | 3.4061 | 0.4032 | | 2.9637 | 13.0 | 241696 | 3.4075 | 0.4038 | | 2.9493 | 14.0 | 260288 | 3.4058 | 0.4045 | | 2.9268 | 15.0 | 278880 | 3.4043 | 0.4047 | | 2.9095 | 16.0 | 297472 | 3.4192 | 0.4048 | | 2.8912 | 17.0 | 316064 | 3.4116 | 0.4050 | | 2.875 | 18.0 | 334656 | 3.4216 | 0.4049 | | 2.8542 | 19.0 | 353248 | 3.4266 | 0.4052 | | 2.8429 | 20.0 | 371840 | 3.4253 | 0.4052 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0